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Chapter 1

Introduction

This document describes the OpenGL ES graphics system: what it is, how it acts,
and what is required to implement it. We assume that the reader has at least a
rudimentary understanding of computer graphics. This means familiarity with the
essentials of computer graphics algorithms as well as familiarity with basic graph-
ics hardware and associated terms.

1.1 Comments on edits to the OpenGL ES 2.0 Specifica-
tion

Changes in the most recent draft are typeset in magenta, as seen in this paragraph.
Editorial comments and questions are typeset in blue.

1.2 What is the OpenGL ES Graphics System?

OpenGL ES is a software interface to graphics hardware. The interface consists of
a set of procedures and functions that allow a programmer to specify the objects
and operations involved in producing high-quality graphical images, specifically
color images of three-dimensional objects.

Most of OpenGL ES requires that the graphics hardware contain a framebuffer.
Many OpenGL ES calls pertain to drawing objects such as points, lines and poly-
gons, but the way that some of this drawing occurs (such as when antialiasing or
texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL ES is specifically concerned with framebuffer manipulation.

OpenGL ES 2.0 is based on the OpenGL 2.0 graphics system, but is designed
primarily for graphics hardware running on embedded and mobile devices. It re-
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moves a great deal of redundant and legacy functionality, while adding a few new
features. The differences between OpenGL ES and OpenGL are not described in
detail in this specification; however, they are summarized in a companion docu-
ment titled OpenGL ES Common Profile Specification 2.0 (Difference Specifica-
tion).

1.3 Programmer’s View of OpenGL ES

To the programmer, OpenGL ES is a set of commands that allow the specification
of geometric objects in two or three dimensions, together with commands that
control how these objects are rendered into the framebuffer. OpenGL ES provides
an immediate-mode interface, meaning that specifying an object causes it to be
drawn.

A typical program that uses OpenGL ES begins with calls to open a window
into the framebuffer into which the program will draw. Then, calls are made to
allocate an OpenGL ES context and associate it with the window. These steps may
be performed using a companion API such as the Khronos Native Platform Graph-
ics Interface (EGL), and are documented separately. Once a context is allocated,
the programmer is free to issue OpenGL ES commands. Some calls are used to
draw simple geometric objects (i.e. points, line segments, and polygons), while
others affect the rendering of these primitives including how they are lit or colored
and how they are mapped from the user’s two- or three-dimensional model space
to the two-dimensional screen. There are also calls which operate directly on the
framebuffer, such as reading pixels.

1.4 Implementor’s View of OpenGL ES

To the implementor, OpenGL ES is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL ES must be implemented almost entirely on the host CPU. More
typically, the graphics hardware may comprise varying degrees of graphics accel-
eration, from a raster subsystem capable of rendering two-dimensional lines and
polygons to sophisticated floating-point processors capable of transforming and
computing on geometric data. The OpenGL ES implementor’s task is to provide
the CPU software interface while dividing the work for each OpenGL ES com-
mand between the CPU and the graphics hardware. This division must be tailored
to the available graphics hardware to obtain optimum performance in carrying out
OpenGL ES calls.

Version 2.0.25 (November 2, 2010)
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OpenGL ES maintains a considerable amount of state information. This state
controls how objects are drawn into the framebuffer. Some of this state is directly
available to the user, who can make calls to obtain its value. Some of it, however,
is visible only by the effect it has on what is drawn. One of the main goals of this
specification is to make OpenGL ES state information explicit, to elucidate how it
changes, and to indicate what its effects are.

1.5 Our View

We view OpenGL ES as a state machine that controls a set of specific drawing
operations. This model should engender a specification that satisfies the needs of
both programmers and implementors. It does not, however, necessarily provide a
model for implementation. An implementation must produce results conforming
to those produced by the specified methods, but there may be ways to carry out a
particular computation that are more efficient than the one specified.

1.6 Companion Documents

This specification should be read together with a companion document titled 7The
OpenGL ES Shading Language. The latter document (referred to as the OpenGL
ES Shading Language Specification hereafter) defines the syntax and semantics
of the programming language used to write vertex and fragment shaders (see sec-
tions 2.10 and 3.8). These sections may include references to concepts and terms
(such as shading language variable types) defined in the companion document.

OpenGL ES 2.0 implementations are guaranteed to support at least version 1.0
of the shading language; the actual version supported may be queried as described
in section 6.1.5.

1.6.1 Window System Bindings

OpenGL ES requires a companion API to create and manage graphics contexts,
windows to render into, and other resources beyond the scope of this Specification.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices. The
EGL Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

Khronos strongly encourages OpenGL ES implementations to also support
EGL, but some implementations may provide alternate, platform- or vendor-
specific APIs with similar functionality.

Version 2.0.25 (November 2, 2010)
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Chapter 2

OpenGL ES Operation

2.1 OpenGL ES Fundamentals

OpenGL ES (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms, such as the Khronos
OpenKODE API, to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each primi-
tive is a point, line segment, or triangle. Each mode may be changed independently;
the setting of one does not affect the settings of others (although many modes may
interact to determine what eventually ends up in the framebuffer). Modes are set,
primitives specified, and other GL operations described by sending commands in
the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a triangle where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all pre-
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viously invoked GL commands. In general, the effects of a GL command on either
GL modes or the framebuffer must be complete before any subsequent command
can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. Another
way to describe this situation is to say that the GL provides mechanisms to de-
scribe how complex geometric objects are to be rendered rather than mechanisms
to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). A server may maintain a number of GL contexts,
each of which is an encapsulation of current GL state. A client may choose to con-
nect to any one of these contexts. Issuing GL commands when the program is not
connected to a context results in undefined behavior.

The GL interacts with two classes of framebuffers: window-system-provided
framebuffers and application-created framebuffers. There is always one window-
system-provided framebuffer, while application-created framebuffers can be cre-
ated as desired. These two types of framebuffer are distinguished primarily by the
interface for configuring and managing their state.

The effects of GL commands on the window-system-provided framebuffer are
ultimately controlled by the window-system that allocates framebuffer resources.
It is the window-system that determines which portions of this framebuffer the GL
may access at any given time and that communicates to the GL how those portions
are structured. Therefore, there are no GL commands to configure the window-
system-provided framebuffer or initialize the GL. Similarly, display of framebuffer
contents on a monitor or LCD panel (including the transformation of individual
framebuffer values by such techniques as gamma correction) is not addressed by
the GL. Framebufter configuration occurs outside of the GL in conjunction with the
window-system; the initialization of a GL context occurs when the window system
allocates a window for GL rendering. The EGL API defines a portable mechanism
for creating GL contexts and windows for rendering into, which may be used in
conjunction with different native platform window systems.

Version 2.0.25 (November 2, 2010)
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The initialization of a GL context itself occurs when the window-system al-
locates a window for GL rendering and is influenced by the state of the window-
system-provided framebuffer.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Numeric Computation

The GL must perform a number of numeric computations during the course of its
operation.

Implementations will normally perform computations in floating-point, and
must meet the range and precision requirements defined under ’Floating-Point
Computation” below.

These requirements only apply to computations performed in GL operations
outside of vertex and fragment execution (see sections 2.10 and 3.8), such as tex-
ture image specification and per-fragment operations. Range and precision require-
ments during shader execution differ and are as specified by the OpenGL ES Shad-
ing Language Specification.

Floating-Point Computation

We do not specify how floating-point numbers are to be represented or how
operations on them are to be performed. We require simply that numbers’ floating-
point parts contain enough bits and that their exponent fields are large enough so
that individual results of floating-point operations are accurate to about 1 part in
10°. The maximum representable magnitude for floating-point values must be at
least2’2. 2.0 =0-2=0. 1 o =z-1=2. 240=0+z =2 0° =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
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point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or
a denormalized number to a GL command yields predictable results, while provid-
ing a NaN or an infinity yields unspecified results. The identities specified above
do not hold if the value of x is not a floating-point number.

Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s-complement signed rep-
resentation with 16 bits to the right of the binary point (fraction bits).

General Requirements

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.1.2 Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values.

In the remainder of this section, when an integer type defined in table 2.2 is
being discussed, b denotes the minimum required bit width of the integer type as
defined in the table. The formulas for conversion to and from unsigned integers
also apply to pixel components packed into unsigned integers (see section 3.6.2),
but b in these cases is defined by the specific packed pixel format and component
being converted.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Integer to Floating-Point

Normalized unsigned integers represent numbers in the range [0, 1]. The conver-
sion from a normalized unsigned integer ¢ to the corresponding floating-point f is

defined as
fo
20— 1°

Normalized signed integers represent numbers in the range [—1,1]. The con-
version from a normalized signed integer c to the corresponding floating-point f is
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defined as
Fo 2c+1
217

Conversion from Floating-Point to Integer

The conversion from a floating-point value f to the corresponding normalized un-
signed integer c is defined by first clamping f to the range [0, 1], then computing

fl=fx@2b-1).

/' is then cast to an unsigned integer value with exactly b bits of precision.
The conversion from a floating-point value f to the corresponding normalized
signed integer c is defined by first clamping f to the range [—1, 1], then computing

, fx(2-1)-1
= 5 .

f is then cast to a signed integer value with exactly b bits of precision.

Conversion from Floating-Point to Framebuffer Fixed-Point

When floating-point values are to be written to the fixed-point color or depth
buffers, they must initially lie in [0,1]. Values are converted (by rounding to
nearest) to a fixed-point value with m bits, where m is the number of bits allo-
cated to the corresponding R, G, B, A, or depth buffer component. We assume
that the fixed-point representation used represents each value k/(2™ — 1), where
ke {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a string of all
ones). m must be at least as large as the number of bits in the corresponding com-
ponent of the framebuffer. m must be at least 2 for A if the framebuffer does not
contain an A component, or if there is only 1 bit of A in the framebuffer.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
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otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.6.1. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix C. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name followed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 32-bit integer, 32-bit
fixed-point, or single-precision floating-point. The final character, if present, is v,
indicating that the command takes a pointer to an array (a vector) of values rather
than a series of individual arguments. Two specific examples:

void Uniformdf( int location, f£loat v0, float vl,
float v2, float v3);

and

void GetFloatv( enum value, float *data);
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’ Letter ‘ Corresponding GL Type

1 int
f float

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to Table 2.2 for definitions of the GL types.

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form'

rtype Name{e1234}{c i f}{ev}
([args,] Targl, ..., TargN [, args] ) ;

rtype is the return type of the function. The braces ({}) enclose a series of char-
acters (or character pairs) of which one is selected. € indicates no character. The
arguments enclosed in brackets ([args ,] and [, args]) may or may not be present.
The N arguments argl through arg N have type T, which corresponds to one of the
type letters or letter pairs as indicated in Table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then N is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of IV values of
the indicated type.
For example,

void Uniform{1234}{if}( int location, T value);
indicates the eight declarations

void Uniformli( int location, int value);

void Uniformlf( int location, float value);

void Uniform2i( int location, int v0, int vl);

void Uniform2f( int location, float v0, float vl);

void Uniform3i( int location, int v0, int vI, int v2);

void Uniform3f( int location, £loat vl, float v2,
float v2 );

void Uniformdi( int location, int v0, int vI, int v2,
int v3);

'The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.
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void Uniformdf( int location, £loat v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the 13 types (or pointers to one of these) summarized in Table 2.2.

The mapping of GL data types to data types of a specific language binding are
part of the language binding definition and may be platform-dependent. Type con-
version and type promotion behavior when mixing actual and formal arguments of
different data types are specific to the language binding and platform. For exam-
ple, the C language includes automatic conversion between integer and floating-
point data types, but does not include automatic conversion between the int and
fixed, or float and fixed GL types since the £ixed data type is not a dis-
tinct built-in type. Regardless of language binding, the enum type converts to
fixed-point without scaling, and integer types are converted to fixed-point by mul-
tiplying by 216,

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages.

The first stage operates on geometric primitives described by vertices: points,
line segments, and triangles. In this stage vertices are transformed and lit, and
primitives are clipped to a viewing volume in preparation for the next stage, ras-
terization. The rasterizer produces a series of framebuffer addresses and values
using a two-dimensional description of a point, line segment, or triangle. Each
fragment so produced is fed to the next stage that performs operations on individ-
ual fragments before they finally alter the framebuffer. These operations include
conditional updates into the framebuffer based on incoming and previously stored
depth values (to effect depth buffering), blending of incoming fragment colors with
stored colors, and other operations on fragment values, such as masking (see chap-
ter 4).

Values may also be read back from the framebuffer. These transfers may in-
clude some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL.
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GL Type Minimum | Description

Bit Width
boolean 1 Boolean
byte 8 Signed binary integer
ubyte 8 Unsigned binary integer
char 8 characters making up strings
short 16 Signed 2’s complement binary integer
ushort 16 Unsigned binary integer
int 32 Signed 2’s complement binary integer
uint 32 Unsigned binary integer
fixed 32 Signed 2’s complement 16.16 scaled

integer

sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed 2’s complement binary integer
sizeiptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped to [0, 1]

12

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr and sizeiptr must be sufficiently large as to store any address.
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Figure 2.1. Block diagram of the GL.
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2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. Extensions may change behavior that would
otherwise generate errors in an unextended GL implementation.

Several error generation conditions are implicit in the description of every GL
command:

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the er-
ror INVALID_ENUM error is generated. This is the case even if the argument
is a pointer to a symbolic constant, if the value pointed to is not allowable
for the given command.

o If a negative number is provided where an argument of type sizei is spec-
ified, the error INVALID_VALUE is generated.
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Error

Description

Offending com-
mand ignored?

INVALID_ENUM enum argument out of range Yes
INVALID_FRAMEBUFFER_OPERATION || Framebuffer is incomplete Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes
OUT_OF_MEMORY Not enough memory left to exe- | Unknown

cute command

Table 2.3: Summary of GL errors

o If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Primitives and Vertices

In the GL, geometric objects are drawn by specifying a series of generic attribute
sets using vertex arrays (see section 2.8). There are seven geometric objects that are
drawn this way: points, connected line segments (line strips), line segment loops,
separated line segments, triangle strips, triangle fans, and separated triangles.

Each vertex is specified with multiple generic vertex attributes. Each attribute
is specified with one, two, three, or four scalar values. Generic vertex attributes can
be accessed from within vertex shaders (section 2.10) and used to compute values
for consumption by later processing stages.

The methods by which generic attributes are sent to the GL, as well as how
attributes are used by vertex shaders to generate vertices mapped to the two-
dimensional screen, are discussed later.

Before vertex shader execution, the state required by a vertex is its multiple
generic vertex attribute sets. After vertex shader execution, the state required by a
processed vertex is its screen-space coordinates and any varying outputs written by
the vertex shader.

Figure 2.2 shows the sequence of operations that builds a primitive (point, line
segment, or triangle) from a sequence of vertices. After a primitive is formed,
it is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates and varying outputs. In the case of line and triangle primitives, clipping
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Figure 2.2. Vertex processing and primitive assembly.

Rasterization
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may insert new vertices into the primitive. The vertices defining a primitive to be
rasterized have varying outputs associated with them.

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using the commands DrawArrays or
DrawElements (see section 2.8). There is no limit to the number of vertices that
may be specified, other than the size of the vertex arrays.

The mode parameter of these commands determines the type of primitives to
be drawn using these coordinate sets. The types, and the corresponding mode
parameters, are:

Points. A series of individual points may be specified with mode POINTS.
Each vertex defines a separate point.

Line Strips. A series of one or more connected line segments may be specified
with mode LINE_STRIP. At least two vertices must be provided. In this case, the
first vertex specifies the first segment’s start point while the second vertex specifies
the first segment’s endpoint and the second segment’s start point. In general, the
tth vertex (for ¢ > 1) specifies the beginning of the ith segment and the end of the
¢ — 1st. The last vertex specifies the end of the last segment. If only one vertex is
specified, then no primitive is generated.

The required state consists of the processed vertex produced from the preceding
vertex that was passed (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops may be specified with mode LINE_LOOP. Loops are
the same as line strips except that a final segment is added from the final specified
vertex to the first vertex.

The required state consists of the processed first vertex, in addition to the state
required for line strips.

Separate Lines. Individual line segments, each specified by a pair of vertices,
may be specified with mode L.INES. The first two vertices passed define the first
segment, with subsequent pairs of vertices each defining one more segment. If the
number of specified vertices is odd, then the last one is ignored. The required state
is the same as for line strips but it is used differently: a processed vertex holding
the first endpoint of the current segment, and a boolean flag indicating whether the
current vertex is odd or even (a segment start or end).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges, specified by giving a series of defining vertices with mode TRIANGLE_—
STRIP. In this case, the first three vertices define the first triangle (and their order
is significant). Each subsequent vertex defines a new triangle using that point along
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NN

1 3

(@) (b) ()

Figure 2.3. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

with two vertices from the previous triangle. If fewer than three vertices are speci-
fied, no primitives are produced. See Figure 2.3.

The required state to support triangle strips consists of a flag indicating if the
first triangle has been completed, two stored processed vertices, (called vertex A
and vertex B), and a one bit pointer indicating which stored vertex will be replaced
with the next vertex. The pointer is initialized to point to vertex A. Each successive
vertex toggles the pointer. Therefore, the first vertex is stored as vertex A, the
second stored as vertex B, the third stored as vertex A, and so on. Any vertex after
the second one sent forms a triangle from vertex A, vertex B, and the current vertex
(in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one excep-
tion: each vertex after the first always replaces vertex B of the two stored vertices.
Triangle fans are specified with mode TRIANGLE_FAN.

Separate Triangles. Separate triangles are specified with mode TRIANGLES.
In this case, The 3¢ + 1st, 3¢ 4+ 2nd, and 37 + 3rd vertices (in that order) determine
a triangle for each ¢ = 0,1, ...,n — 1, where there are 3n + k vertices drawn. k is
either 0, 1, or 2; if k is not zero, the final k vertices are ignored. For each triangle,
vertex A is vertex 3¢ and vertex B is vertex 3¢ + 1. Otherwise, separate triangles
are the same as a triangle strip.

The order of the vertices in a triangle generated from a triangle strip, trian-
gle fan, or separate triangles is significant in polygon rasterization and fragment
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shading (see sections 3.5.1 and 3.8.2).

2.7 Current Vertex State

Vertex shaders (see section 2.10) access an array of 4-component generic vertex
attributes. The first slot of this array is numbered 0, and the size of the array is
specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.

Current generic attribute values define generic attributes for a vertex when a
vertex array defining that data is not enabled, as described in section 2.8. A current
value may be changed at any time by issuing one of the commands

void VertexAttrib{1234}{f}( uint index, T values);
void VertexAttrib{1234}{f}v( uint index, T values);

to load the given value(s) into the current generic attribute for slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates. The error INVALID_VALUE is
generated if index is greater than or equal to MAX_VERTEX_ATTRIBS.

The VertexAttrib* commands can also be used to load attributes declared as a
2x 2,3 x 3 or 4 x4 matrix in a vertex shader. Each column of a matrix takes up one
generic 4-component attribute slot out of the MAX_VERTEX_ATTRIBS available
slots. Matrices are loaded into these slots in column major order. Matrix columns
need to be loaded in increasing slot numbers.

The state required to support vertex specification consists of MAX_VERTEX_—
ATTRIBS four-component floating-point vectors to store generic vertex attributes.
The initial values for all generic vertex attributes are (0, 0,0, 1).

2.8 Vertex Arrays

Vertex data is placed into arrays stored in the client’s address space (described
here) or in the server’s address space (described in section 2.9). Blocks of data in
these arrays may then be used to specify multiple geometric primitives through the
execution of a single GL command. The client may specify up to MAX_VERTEX_-
ATTRIBS arrays specifying one or more generic vertex attributes. The command
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Command Sizes \Normalized Types

VertexAttribPointer | 1,2,3,4 | flag byte, ubyte, short,
ushort, fixed, float

Table 2.4: Vertex array sizes (values per vertex) and data types. The “normalized”
column indicates whether integer types are accepted directly or normalized to [0, 1]
(for unsigned types) or [—1, 1] (for signed types). For generic vertex attributes,
integer data are normalized if and only if the VertexAttribPointer normalized flag
is set.

void VertexAttribPointer( uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

describes the locations and organizations of these arrays. fype specifies the data
type of the values stored in the array. size indicates the number of values per vertex
that are stored in the array. Table 2.4 indicates the allowable values for size and
type. For type the values BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT,
FIXED, and FLOAT, indicate types byte, ubyte, short, ushort, fixed, and
float, respectively. The error INVALID_VALUE is generated if size is specified
with a value other than that indicated in the table.

The index parameter in the VertexAttribPointer command identifies the
generic vertex attribute array being described. The error INVALID_VALUE is gen-
erated if index is greater than or equal to MAX_VERTEX_ATTRIBS. The normalized
parameter in the VertexAttribPointer command identifies whether integer types
should be normalized when converted to floating-point. If normalized is TRUE, in-
teger data are converted as specified in section 2.1.2; otherwise, the integer values
are converted directly.

The one, two, three, or four values in an array that correspond to a single
generic vertex attribute comprise an array element. The values within each array
element are stored sequentially in memory. If stride is specified as zero, then array
elements are stored sequentially as well. The error INVALID_VALUE is generated
if stride is negative. Otherwise pointers to the ith and (i 4 1)st elements of an array
differ by stride basic machine units (typically unsigned bytes), the pointer to the
(7 4 1)st element being greater. For each command, pointer specifies the location
in memory of the first value of the first element of the array being specified.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray( uint index);
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void DisableVertexAttribArray( uint index);

where index identifies the generic vertex attribute array to enable or disable. The
error INVALID_VALUE is generated if index is greater than or equal to MAX_-
VERTEX_ ATTRIBS.

Transferring Array Elements

When an array element i is transferred to the GL by the DrawArrays or
DrawElements commands, each generic attribute is expanded to four components.
If size is one then the x component of the attribute is specified by the array; the v,
z, and w components are implicitly set to zero, zero, and one, respectively. If size
is two then the x and y components of the attribute are specified by the array; the z,
and w components are implicitly set to zero, and one, respectively. If size is three
then x, y, and z are specified, and w is implicitly set to one. If size is four then all
components are specified.

The command

void DrawArrays( enum mode, int first, sizei count);

constructs a sequence of geometric primitives by successively transferring ele-
ments first through first + count — 1 of each enabled array to the GL. mode
specifies what kind of primitives are constructed, as defined in section 2.6.1. If
an array corresponding to a generic attribute required by a vertex shader is not en-
abled, then the corresponding element is taken from the current generic attribute
state (see section 2.7).

Specifying first < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.

The command

void DrawElements( enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives by successively transferring the
count elements whose indices are stored in indices to the GL. The 7th element trans-
ferred by DrawElements will be taken from element indices[:] of each enabled
array. type must be one of UNSIGNED_BYTE or UNSIGNED_SHORT, indicating that
the values in indices are indices of GL type ubyte or ushort, respectively. mode
specifies what kind of primitives are constructed; it accepts the same values as the
mode parameter of DrawArrays. If an array corresponding to a generic attribute
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Name Type Initial Value | Legal Values

BUFFER_SIZE | integer 0 any non-negative integer

BUFFER_USAGE | enum STATIC_DRAW | STATIC_DRAW, DYNAMIC_DRAW, STREAM_DRAW

Table 2.5: Buffer object parameters and their values.

required by a vertex shader is not enabled, then the corresponding element is taken
from the current generic attribute state (see section 2.7).

If the number of supported generic vertex attributes (the value of MAX_-
VERTEX_ATTRIBS) is n, then the client state required to implement vertex ar-
rays consists of n boolean values, n memory pointers, n integer stride values, n
symbolic constants representing array types, n integers representing values per
element, and n boolean values indicating normalization. In the initial state, the
boolean values are each false, the memory pointers are each NULL, the strides are
each zero, the array types are each FLOAT, and the integers representing values per
element are each four.

2.9 Buffer Objects

The vertex data arrays described in section 2.8 are stored in client memory. It is
sometimes desirable to store frequently used client data, such as vertex array data,
in high-performance server memory. GL buffer objects provide a mechanism that
clients can use to allocate, initialize, and render from such memory.

The name space for buffer objects is the unsigned integers, with zero reserved
for the GL. A buffer object is created by binding an unused name to ARRAY_—
BUFFER. The binding is effected by calling

void BindBuffer( enum farget, uint buffer);

with target set to ARRAY_BUFFER and buffer set to the unused name. The resulting
buffer object is a new state vector, initialized with a zero-sized memory buffer, and
comprising the state values listed in Table 2.5.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object.
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In the initial state the reserved name zero is bound to ARRAY_BUFFER. There
is no buffer object corresponding to the name zero, so client attempts to modify
or query buffer object state for the target ARRAY_BUFFER while zero is bound will
generate GL errors.

Buffer objects are deleted by calling

void DeleteBuffers( sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names in buffers
are silently ignored, as is the value zero.

The command

void GenBuffers( sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound, just as if they were unused.

While a buffer object is bound, any GL operations on that object affect any
other bindings of that object. If a buffer object is deleted while it is bound, all
bindings to that object in the current context (i.e. in the thread that called Delete-
Buffers) are reset to zero. Bindings to that buffer in other contexts and other
threads are not affected, but attempting to use a deleted buffer in another thread
produces undefined results, including but not limited to possible GL errors and
rendering corruption. Using a deleted buffer in another context or thread may not,
however, result in program termination.

The data store of a buffer object is created and initialized by calling

void BufferData( enum farget, sizeiptr size, const
void *data, enum usage);

with target set to ARRAY_BUFFER, size set to the size of the data store in basic
machine units, and dara pointing to the source data in client memory. If data is
non-null, then the source data is copied to the buffer object’s data store. If data is
null, then the contents of the buffer object’s data store are undefined.

usage is specified as one of three enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing commands.
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Name ‘ Value ‘

BUFFER_SIZE size
BUFFER_USAGE | usage

Table 2.6: Buffer object initial state.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing commands.

STREAM_DRAW The data store contents will be specified once by the application,
and used at most a few times as the source of a GL drawing command.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.6.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising [V basic machine units be a multiple of N.

If the GL is unable to create a data store of the requested size, the error OUT_-
OF_MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData( enum rarget, intptr offset,
sizeiptr size, const void *data);

with target set to ARRAY_BUFFER. offset and size indicate the range of data in the
buffer object that is to be replaced, in terms of basic machine units. data specifies
a region of client memory size basic machine units in length, containing the data
that replace the specified buffer range. An INVALID_VALUE error is generated
if offset or size is less than zero, or if offset + size is greater than the value of
BUFFER_SIZE.

2.9.1 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays.

The client state associated with each vertex array type includes a buffer object
binding point. The commands that specify the locations and organizations of vertex
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arrays copy the buffer object name that is bound to ARRAY_BUFFER to the binding
point corresponding to the vertex array of the type being specified. For example,
the VertexAttribPointer command copies the value of ARRAY _BUFFER_BINDING
(the queriable name of the buffer binding corresponding to the target ARRAY_ -
BUFFER) to the client state variable VERTEX_ATTRIB_ARRAY_ BUFFER_BINDING
for the specified index.

Rendering commands DrawArrays and DrawElements operate as previously
defined, except that data for enabled generic attribute arrays are sourced from
buffers if the array’s buffer binding is non-zero. When an array is sourced from
a buffer object, the pointer value of that array is used to compute an offset, in basic
machine units, into the data store of the buffer object. This offset is computed by
subtracting a null pointer from the pointer value, where both pointers are treated as
pointers to basic machine units’.

It is acceptable for generic vertex attribute arrays to be sourced from any com-
bination of client memory and various buffer objects during a single rendering
operation.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT_ARRAY_BUFFER, indicating that DrawElements is to source its indices
from arrays passed as the indices parameters.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with farget set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

The commands BufferData and BufferSubData may be used with target
set to ELEMENT_ARRAY_BUFFER. In such event, these commands operate in the
same fashion as described in section 2.9, but on the buffer currently bound to the
ELEMENT ARRAY BUFFER target.

While a non-zero buffer object name is bound to ELEMENT_ARRAY_BUFFER,
DrawElements sources its indices from that buffer object, using elements of the
indices parameter as offsets into the buffer object in the same fashion as described
in section 2.9.1.

Buffer objects created by binding an unused name to ARRAY_BUFFER and to
ELEMENT_ARRAY_ BUFFER are formally equivalent, but the GL may make different

2 To resume using client-side vertex arrays after a buffer object has been bound, call Bind-
Buffer(ARRAY_BUFFER,0) and then specify the client vertex array pointer using the appropriate
command from section 2.8.
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choices about storage implementation based on the initial binding. In some cases
performance will be optimized by storing indices and array data in separate buffer
objects, and by creating those buffer objects with the corresponding binding points.

2.10 Vertex Shaders

Vertices specified with DrawArrays or DrawElements are processed by the vertex
shader. Each vertex attribute consumed by the vertex shader (see section 2.10.4) is
set to the corresponding generic vertex attribute value from the array element being
processed, or from the corresponding current generic attribute if no vertex array is
bound for that attribute.

After shader execution, processed vertices are passed on to primitive assembly
(see section 2.11).

A vertex shader is defined by an array of strings containing source code for
the operations that are meant to occur on each vertex that is processed. The lan-
guage used for vertex shaders is described in the OpenGL ES Shading Language
Specification.

To use a vertex shader, shader source code is first loaded into a shader object
and then compiled. Alternatively, pre-compiled shader binary code may be directly
loaded into a shader object. An OpenGL ES implementation must support one of
these methods for loading shaders. If the boolean value SHADER_COMPILER is
TRUE, then the shader compiler is supported. If the integer value NUM_SHADER_-
BINARY_FORMATS is greater than zero, then shader binary loading is supported.

A vertex shader object is then attached to a program object. A program object is
then linked, which generates executable code from all the compiled shader objects
attached to the program. When a linked program object is used as the current
program object, the executable code for the vertex shaders it contains is used to
process vertices.

In addition to vertex shaders, fragment shaders can be created, compiled, and
linked into program objects. Fragment shaders affect the processing of fragments
during rasterization, and are described in section 3.8. A single program object must
contain both a vertex and a fragment shader.

The vertex shader attached to the program object in use by the GL is considered
active, and is used to process vertices. If no program object is currently in use, the
results of vertex shader execution are undefined.
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2.10.1 Loading and Compiling Shader Source

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or more shader objects.

The name space for shader objects is the unsigned integers, with zero reserved
for the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects by name. Commands
that accept shader or program object names will generate the error INVALID_—
VALUE if the provided name is not the name of either a shader or program object
and INVALID_OPERATION if the provided name identifies an object that is not the
expected type.

To create a shader object, use the command

uint CreateShader( enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created. For vertex shaders, fype must be VERTEX_SHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource( uint shader, sizei count, const
char **string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string
(the string length). If an element in length is negative, its accompanying string is
null-terminated; in this case only the sign of the element in /length is considered.
If length is NULL, all strings in the string argument are considered null-terminated.
The ShaderSource command sets the source code for the shader to the text strings
in the string array. If shader previously had source code loaded into it, the exist-
ing source code is completely replaced. Any length passed in excludes the null
terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL ES Shading Language Specifica-
tion.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader( uint shader);
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Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.8). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL ES Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfolLog to obtain more information about the compilation attempt (see
section 6.1.8).

Resources allocated by the shader compiler may be released with the command

void ReleaseShaderCompiler( void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShaderCompiler
has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 6.1.8).

Shader objects can be deleted with the command

void DeleteShader( uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 6.1.8). DeleteShader will silently ignore
the value zero.

If the value of SHADER_COMPILER is not TRUE, then the error INVALID_-
OPERATION is generated for any call to ShaderSource, CompileShader, or Re-
leaseShaderCompiler.

2.10.2 Loading Shader Binaries

Precompiled shader binaries may be loaded with the command
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void ShaderBinary( sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type (vertex shader or fragment shader). binary points to length
bytes of pre-compiled binary shader code in client memory, and binaryformat de-
note the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. OpenGL ES defines no specific binary for-
mats, but does provide a mechanism to obtain token values for such formats pro-
vided by extensions. The number of shader binary formats supported can be ob-
tained by querying the value of NUM_SHADER_BINARY_FORMATS. The list of spe-
cific binary formats supported can be obtained by querying the value of SHADER_—
BINARY_FORMATS.

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary vertex or fragment shaders, or load an executable binary
that contains an optimized pair of vertex and fragment shaders stored in the same
binary.

An INVALID_ENUM error is generated if binaryformat is not a supported format
returned in SHADER_BINARY_ FORMATS. An INVALID_VALUE error is generated
if the data pointed to by binary does not match the specified binaryformat. Addi-
tional errors corresponding to specific binary formats may be generated as specified
by the extensions defining those formats. An INVALID_OPERATION error is gen-
erated if more than one of the handles refers to the same type of shader (vertex or
fragment shader.)

If ShaderBinary fails, the old state of shader objects for which the binary was
being loaded will not be restored.

Note that if shader binary interfaces are supported, then an OpenGL ES imple-
mentation may require that an optimized pair of vertex and fragment shader bina-
ries that were compiled together be specified to LinkProgram. Not specifying an
optimized pair may cause LinkProgram to fail.

2.10.3 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by
these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram( void);
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Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, O will be
returned.

To attach a shader object to a program object, use the command

void AttachShader( uint program, uint shader);

Shader objects may be attached to program objects before source code has been
loaded into the shader object, or before the shader object has been compiled. Multi-
ple shader objects of the same type may not be attached to a single program object.
However, a single shader object may be attached to more than one program object.
The error INVALID_OPERATION is generated if shader is already attached to pro-
gram, or if another shader object of the same type as shader is already attached to
program.

To detach a shader object from a program object, use the command

void DetachShader( uint program, uint shader);

If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

The error INVALID_OPERATION is generated if shader is not attached to pro-
gram. The error INVALID_VALUE is generated if program is not a valid program
object created with CreateProgram.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram( uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.8). This status will be set to TRUE if a
valid executable is created, and FALSE otherwise. Linking can fail for a variety of
reasons as specified in the OpenGL ES Shading Language Specification. Linking
will also fail if one or more of the shader objects, attached to program are not com-
piled successfully, if program does not contain both a vertex shader and a fragment
shader, or if more active uniform or active sampler variables are used in program
than allowed (see section 2.10.4). If LinkProgram failed, any information about a
previous link of that program object is lost. Thus, a failed link does not restore the
old state of program. The error INVALID_VALUE is generated if program is not a
valid program object created with CreateProgram.
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Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 6.1.8).

If a valid executable is created, it can be made part of the current rendering
state with the command

void UseProgram( uint program);

This command will install the executable code as part of current rendering state if
the program object program contains valid executable code, i.e. has been linked
successfully. If UseProgram is called with program set to zero, then the current
rendering state refers to an invalid program object, and the results of vertex and
fragment shader execution due to any DrawArrays or DrawElements commands
are undefined. However, this is not an error. If program has not been successfully
linked, the error INVALID_OPERATION is generated and the current rendering state
is not modified.

While a valid program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If the program object that is in use is re-linked successfully, the LinkProgram
command will install the generated executable code as part of the current rendering
state if the specified program object was already in use as a result of a previous call
to UseProgram.

If that program object that is in use is re-linked unsuccessfully, the link status
will be set to FALSE, but existing executable and associated state will remain part
of the current rendering state until a subsequent call to UseProgram removes it
from use. After such a program is removed from use, it can not be made part of the
current rendering state until it is successfully re-linked.

Program objects can be deleted with the command

void DeleteProgram( uint program);

If program is not the current program for any GL context, it is deleted immediately.
Otherwise, program is flagged for deletion and will be deleted when it is no longer
the current program for any context. When a program object is deleted, all shader
objects attached to it are detached. DeleteProgram will silently ignore the value
Zero.
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2.10.4 Shader Variables

A vertex shader can reference a number of variables as it executes. Vertex attributes
are the per-vertex values specified in section 2.7. Uniforms are per-program vari-
ables that are constant during program execution. Samplers are a special form of
uniform used for texturing (section 3.7). Varying variables hold the results of ver-
tex shader execution that are used later in the pipeline. The following sections
describe each of these variable types.

Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to the generic
vertex attributes that are set by VertexAttrib*. This binding can be specified by
the application before the program is linked, or automatically assigned by the GL
when the program is linked.

When an attribute variable declared as a float, vec?2, vec3 or vec4 is bound
to a generic attribute index 4, its value(s) are taken from the x, (z,y), (z,y, z), or
(x,y, z, w) components, respectively, of the generic attribute <. When an attribute
variable is declared as a mat2, its matrix columns are taken from the (z,y) com-
ponents of generic attributes ¢ and ¢ + 1. When an attribute variable is declared
as a mat 3, its matrix columns are taken from the (x,y, z) components of generic
attributes ¢ through ¢ + 2. When an attribute variable is declared as a mat4, its
matrix columns are taken from the (x,y, z, w) components of generic attributes 4
through 7 4 3.

A generic attribute variable is considered active if it is determined by the com-
piler and linker that the attribute may be accessed when the shader is executed.
Attribute variables that are declared in a vertex shader but never used are not con-
sidered active. In cases where the compiler and linker cannot make a conclusive
determination, an attribute will be considered active. A program object will fail to
link if the number of active vertex attributes exceeds MAX_VERTEX_ATTRIBS.

To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib( uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name );

This command provides information about the attribute selected by index. An in-
dex of 0 selects the first active attribute, and an index of ACTIVE_ATTRIBUTES — 1
selects the last active attribute. The value of ACTIVE_ATTRIBUTES can be queried
with GetProgramiv (see section 6.1.8). If index is greater than or equal to

Version 2.0.25 (November 2, 2010)



2.10. VERTEX SHADERS 33

ACTIVE_ATTRIBUTES, the error INVALID_VALUE is generated. Note that index
simply identifies a member in a list of active attributes, and has no relation to the
generic attribute that the corresponding variable is bound to.

The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. It is not necessary for program to
have been linked successfully. The link could have failed because the number of
active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null termina-
tor, is specified by bufSize. The returned attribute name must be the name of a
generic attribute. The length of the longest attribute name in program is given by
ACTIVE_ATTRIBUTE_MAX_LENGTH, which can be queried with GetProgramiv
(see section 6.1.8).

For the selected attribute, the type of the attribute is returned into fype. The
size of the attribute is returned into size. The value in size is in units of the type
returned in type. The type returned can be any of FLOAT, FLOAT_VEC2, FLOAT_—
VEC3, FLOAT_VEC4, FLOAT_MAT2, FLOAT_MAT3, or FLOAT_MATA4.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

This command will return as much information about active attributes as pos-
sible. If no information is available, length will be set to zero and name will be an
empty string. This situation could arise if GetActiveAttrib is issued after a failed
link.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation( uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound
to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation
returns the index of the first column of that matrix. If program has not been suc-
cessfully linked, the error INVALID_OPERATION is generated. If name is not an
active attribute, or if an error occurs, -1 will be returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation( uint program, uint index, const
char *name);
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specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null terminated string. The error INVALID_VALUE is generated if index is equal or
greater than MAX_VERTEX_ATTRIBS. BindAttribLocation has no effect until the
program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

The error INVALID_OPERATION is generated if name starts with the reserved
"gl_" prefix.

When a program is linked, any active attributes without a binding specified
through BindAttribLocation will be automatically be bound to vertex attributes
by the GL. Such bindings can be queried using the command GetAttribLocation.
LinkProgram will fail if the assigned binding of an active attribute variable would
cause the GL to reference a non-existant generic attribute (one greater than or equal
to MAX_VERTEX_ATTRIBS). LinkProgram will fail if the attribute bindings as-
signed by BindAttribLocation do not leave enough space to assign a location for
an active matrix attribute, which requires multiple contiguous generic attributes.

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name (except a name
starting with "gl_") to an index, including a name that is never used as an at-
tribute in any vertex shader object. Assigned bindings for attribute variables that
do not exist or are not active are ignored.

The values of generic attributes sent to generic attribute index ¢ are part of
current state. If a new program object has been made active, then these values
will be tracked by the GL in such a way that the same values will be observed by
attributes in the new program object that are also bound to index .

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing.

Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL ES
Shading Language Specification. Values for these uniforms are constant over a

Version 2.0.25 (November 2, 2010)



2.10. VERTEX SHADERS

primitive, and typically they are constant across many primitives. Uniforms are
program object-specific state. They retain their values once loaded, and their values
are restored whenever a program object is used, as long as the program object
has not been re-linked. A uniform is considered active if it is determined by the
compiler and linker that the uniform will actually be accessed when the executable
code is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

The amount of storage available for uniform variables accessed by a vertex
shader is specified by the implementation-dependent constant MAX_VERTEX_—
UNIFORM_VECTORS. This value represents the number of four-element floating-
point, integer, or boolean vectors that can be held in uniform variable storage for a
vertex shader. A link error will be generated if an attempt is made to utilize more
than the space available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object are initialized to zero (FALSE for booleans). A successful link will
also generate a location for each active uniform. The values of active uniforms can
be changed using this location and the appropriate Uniform* command (see be-
low). These locations are invalidated and new ones assigned after each successful
re-link.

To find the location of an active uniform variable within a program object, use
the command

int GetUniformLocation( uint program, const
char *name );

This command will return the location of uniform variable name. name must be a
null terminated string, without white space. The value -1 will be returned if name
does not correspond to an active uniform variable name in program or if name starts
with the reserved prefix "gl_". If program has not been successfully linked, the
error INVALID_OPERATION is generated. After a program is linked, the location
of a uniform variable will not change, unless the program is re-linked.

A valid name cannot be a structure, an array of structures, or any portion of
a single vector or a matrix. In order to identify a valid name, the " . " (dot) and
" [ 1" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with " [0] ". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with " [0] ".
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To determine the set of active uniform attributes used by a program, and to
determine their sizes and types, use the command:

void GetActiveUniform( uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name );

This command provides information about the uniform selected by index. An index
of 0 selects the first active uniform, and an index of ACTIVE_UNIFORMS — 1 se-
lects the last active uniform. The value of ACTIVE_UNIFORMS can be queried with
GetProgramiv (see section 6.1.8). If index is greater than or equal to ACTIVE_-
UNIFORMS, the error INVALID_VALUE is generated. Note that index simply iden-
tifies a member in a list of active uniforms, and has no relation to the location
assigned to the corresponding uniform variable.

The parameter program is a name of a program object for which the command
LinkProgram has been issued in the past. It is not necessary for program to have
been linked successfully. The link could have failed because the number of active
uniforms exceeded the limit.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

For the selected uniform, the uniform name is returned into name. The string
name will be null terminated. The actual number of characters written into name,
excluding the null terminator, is returned in length. If length is NULL, no length
is returned. The maximum number of characters that may be written into name,
including the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-in
uniform state is described in section 7.5 of the OpenGL ES Shading Language
specification. The length of the longest uniform name in program is given by
ACTIVE_UNIFORM_MAX_LENGTH, which can be queried with GetProgramiv (see
section 6.1.8).

Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [ ] " operators, if necessary, to the point that it
is legal to pass each string back into GetUniformLocation. Each of these strings
constitutes one active uniform, and each string is assigned an index.

If the active uniform is an array, the uniform name returned in name will always
be the name of the uniform array appended with " [0 ] ".

For the selected uniform, the type of the uniform is returned into fype. The
size of the uniform is returned into size. The value in size is in units of the
type returned in zype. The type returned can be any of FLOAT, FLOAT_VEC2,
FLOAT_VEC3, FLOAT_VEC4, INT, INT_VEC2, INT_VEC3, INT_VEC4, BOOL,
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BOOL_VEC2, BOOL_VEC3, BOOL_VEC4, FLOAT_MAT2, FLOAT_MAT3, FLOAT_-
MAT4, SAMPLER_2D, or SAMPLER_CUBE.

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in type. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

GetActiveUniform will return as much information about active uniforms as
possible. If no information is available, length will be set to zero and name will be
an empty string. This situation could arise if GetActiveUniform is issued after a
failed link.

To load values into the uniform variables of the program object that is currently
in use, use the commands

void Uniform{1234}{if}( int location, T value );

void Uniform{1234}{if}v( int location, sizei count,
T value );

void UniformMatrix{234}fv( int location, sizei count,
boolean transpose, const float *value);

The given values are loaded into the uniform variable location identified by loca-
tion.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The UniformMatrix{234 }fv commands will load count 2 x 2,3 x 3, or 4 x 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. The matrix is
specified in column-major order. transpose must be FALSE.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, both the Uniform*i{v} and
Uniform*f{v} set of commands can be used to load boolean values. Type conver-
sion is done by the GL. The uniform is set to FALSE if the input value is 0 or 0.0f,
and set to TRUE otherwise. The Uniform* command used must match the size of
the uniform, as declared in the shader. For example, to load a uniform declared
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as a bvec2, either Uniform2i{v} or Uniform2f{v} can be used. An INVALID_-
OPERATION error will be generated if an attempt is made to use a non-matching
Uniform* command. In this example using Uniform1iv would generate an error.

For all other uniform types the Uniform* command used must match the size
and type of the uniform, as declared in the shader. No type conversions are
done. For example, to load a uniform declared as a vec4, Uniform4f{v} must
be used. To load a 3x3 matrix, UniformMatrix3fv must be used. An INVALID_—
OPERATION error will be generated if an attempt is made to use a non-matching
Uniform* command. In this example, using Uniformd4i{v} would generate an
erTor.

When loading N elements starting at an arbitrary position k& in a uniform de-
clared as an array, elements k£ through k + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If the transpose parameter to any of the UniformMatrix* commands is
not FALSE, an INVALID_VALUE error is generated, and no uniform values are
changed.

If any of the following conditions occur, an INVALID_OPERATION error is
generated by the Uniform* commands, and no uniform values are changed:

e if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

e if count is greater than one, and the uniform declared in the shader is not an
array variable,

e if no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

o if there is no program object currently in use.

Samplers

Samplers are special uniforms used in the OpenGL ES Shading Language to
identify the texture object used for each texture lookup. The value of a sam-
pler indicates the texture image unit being accessed. Setting a sampler’s value
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to ¢ selects texture image unit number ¢. The values of ¢ range from zero to the
implementation-dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D
on its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform™* entry points is not allowed and
will result in an INVALID_OPERATION €ITor.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link
fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit. If this cannot be determined at link time, then it will be deter-
mined at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

Varying Variables

A vertex shader may define one or more varying variables (see the OpenGL ES
Shading Language specification). These values are expected to be interpolated
across the primitive being rendered. The OpenGL ES Shading Language specifi-
cation defines a set of built-in varying variables for vertex shaders corresponding
to values required for rasterization following vertex processing.

The number of interpolators available for processing varying variables is given
by the implementation-dependent constant MAX_VARYING_VECTORS. This value
represents the number of four-element floating-point vectors that can be interpo-
lated; varying variables declared as matrices or arrays will consume multiple in-
terpolators. When a program is linked, any varying variable written by a vertex
shader, or read by a fragment shader, will count against this limit. The transformed
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vertex position (gl_Position) is not a varying variable and does not count
against this limit. A program whose shaders access more than MAX_VARYING_-
VECTORS worth of varying variables may fail to link, unless device-dependent op-
timizations are able to make the program fit within available hardware resources.

2.10.5 Shader Execution

If a successfully linked program object that contains a vertex shader is made current
by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values.

There are several special considerations for vertex shader execution described
in the following sections.

Texture Access

Vertex shaders have the ability to do a lookup into a texture map, if supported by
the GL implementation. The maximum number of texture image units available to
a vertex shader is MAX_VERTEX_TEXTURE_IMAGE_UNITS; a maximum number of
zero indicates that the GL implemenation does not support texture accesses in ver-
tex shaders. The maximum number of texture image units available to the fragment
stage of the GL is MAX_TEXTURE_IMAGE_UNITS. Both the vertex shader and frag-
ment processing combined cannot use more than MAX_COMBINED_TEXTURE_—
IMAGE_UNITS texture image units. If both the vertex shader and the fragment
processing stage access the same texture image unit, then that counts as using two
texture image units against the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a vertex shader, the filtered texture value
T is computed in the manner described in sections 3.7.7 and 3.7.8, and converted to
a texture source color C according to table 3.12 (section 3.8.2). A four-component
vector (R, Gs, Bs, As) is returned to the vertex shader.

In a vertex shader, it is not possible to perform automatic level-of-detail calcu-
lations using partial derivatives of the texture coordinates with respect to window
coordinates as described in section 3.7.7. Hence, there is no automatic selection of
an image array level. Minification or magnification of a texture map is controlled
by a level-of-detail value optionally passed as an argument in the texture lookup
functions. If the texture lookup function supplies an explicit level-of-detail value /,
then the pre-bias level-of-detail value A\pqse(x,y) = I (replacing equation 3.11). If
the texture lookup function does not supply an explicit level-of-detail value, then
Mpase(z,y) = 0. The scale factor p(z,y) and its approximation function f(z,y)
(see equation 3.12) are ignored.
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Using a sampler in a vertex shader will return (R, G, B, A) = (0,0, 0, 1) under
the same conditions as defined for fragment shaders under “Texture Access” in
section 3.8.2.

Validation

It is not always possible to determine at link time if a program object actually will
execute. Therefore validation is done when the first rendering command (DrawAr-
rays or DrawElements) is issued, to determine if the currently active program ob-
ject can be executed. If it cannot be executed then no fragments will be rendered,
and the rendering command will generate the error INVALID_OPERATION.

This error is generated if:

e any two active samplers in the current program object are of different types,
but refer to the same texture image unit,

The INVALID_OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram( uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 6.1.8). If
validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all the conditions that could lead to an
INVALID_OPERATION error when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. An empty program will always fail validation. The
information log of program is overwritten with information on the results of the
validation, which could be an empty string. The results written to the information
log are typically only useful during application development; an application should
not expect different GL implementations to produce identical information.
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A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds accesses have undefined behavior, and system er-
rors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

2.10.6 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

e An unsigned integer specifying the shader object name.

e An integer holding the value of SHADER_TYPE.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last compile, initially FALSE.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.

e An array of type char containing the concatenated shader string, initially
empty.

e An integer holding the length of the concatenated shader string.

The state required per program object consists of:

e An unsigned integer indicating the program object name.
e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last link attempt, initially FALSE.
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A boolean holding the status of the last validation attempt, initially FALSE.
An integer holding the number of attached shader objects.

A list of unsigned integers to keep track of the names of the shader objects
attached.

An array of type char containing the information log, initially empty.
An integer holding the length of the information log.
An integer holding the number of active uniforms.

For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

An array of words that hold the values of each active uniform.
An integer holding the number of active attributes.

For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object. Initially the current program object is invalid, as if UseProgram had
been called with program set to zero.

2.11 Primitive Assembly and Post-Shader Vertex Process-

ing

Following vertex processing, vertices are assembled into primitives according to
the mode argument of the drawing command (see sections 2.6.1 and 2.8). The
steps of primitive assembly are described in the remaining sections of this chapter
and include

e Perspective division on clip coordinates (section 2.12).

e Viewport mapping, including depth range scaling (section 2.12.1).

e Primitive clipping (section 2.13).

e Clipping varying outputs (section 2.13.1).
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Normalized Window
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Viewport .
Transformation

Clip Coordinates .
Perspective
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Figure 2.4. Vertex transformation sequence.

2.12 Coordinate Transformations

Vertex shader execution yields a vertex coordinate gl_Position which is as-
sumed to be in clip coordinates. Perspective division is carried out on clip coordi-
nates to yield normalized device coordinates, followed by a viewport transforma-
tion to convert these coordinates into window coordinates (see figure 2.4).

Clip coordinates are four-dimensional homogeneous vectors consisting of x, ¥,
z, and w coordinates (in that order). If a vertex’s clip coordinates are

then the vertex’s normalized device coordinates are

Lc

Td we
— Ye

Ya | = | w.
Ze

Zd o

2.12.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels, p, and p,, respectively, and its center (0., 0,) (also in pixels). The vertex’s
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Lw
window coordinates, | vy, | , are given by
Zw
Loy %El‘d + 0z
p
Yw | = 5 Yd + oy
2w f%n zq+ L-gf

The factor and offset applied to z4 encoded by n and f are set using
void DepthRangef( clampf n, clampf f);

Each of n and f are clamped to lie within [0, 1], as are all arguments of type
clampf. z, is taken to be represented in fixed-point with at least as many bits
as there are in the depth buffer of the framebuffer, as described for framebuffer
components in section 2.1.2.

Viewport transformation parameters are specified using

void Viewport( int x, inty, sizeiw, sizeih);

where x and y give the x and y window coordinates of the viewport’s lower left
corner and w and & give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values as 0, = r+%
andoy:y+%;px =w, py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriate Get command (see Chapter 6). The maximum viewport dimen-
sions must be greater than or equal to the visible dimensions of the display being
rendered to. INVALID_VALUE is generated if either w or 4 is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and h are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. o, and o, are set to 5 and %, respectively. n and f are set to 0.0 and 1.0,
respectively.

2.13 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the clip volume is
defined by

—We < Te < We

—We < Ye < We

—We < Ze < We.
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If the primitive under consideration is a point, then clipping discards it if it lies
outside the near or far clip plane; otherwise it is passed unchanged.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely inside the near and far clip planes, and discards it if it lies entirely outside
these planes.

If part of the line segment lies between the near and far clip planes, and part
lies outside, then the line segment is clipped against these planes and new vertex
coordinates are computed for one or both vertices.

This clipping produces a value, 0 < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P
and Ps, then ¢ is given by

P=iP + (1 — t)P2.

If the primitive is a triangle, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Clip-
ping may cause triangle edges to be clipped, but because connectivity must be
maintained, these clipped edges are connected by new edges that lie along the clip
volume’s boundary. Thus, clipping may require the introduction of new vertices
into a triangle, creating a more general polygon.

If it happens that a triangle intersects an edge of the clip volume’s boundary,
then the clipped triangle must include a point on this boundary edge.

A line segment or triangle whose vertices have w, values of differing signs may
generate multiple connected components after clipping. GL implementations are
not required to handle this situation. That is, only the portion of the primitive that
lies in the region of w. > 0 need be produced by clipping.

2.13.1 Clipping Varying Outputs

Next, vertex shader varying variables are clipped. The varying values associated
with a vertex that lies within the clip volume are unaffected by clipping. If a prim-
itive is clipped, however, the varying values assigned to vertices produced by clip-
ping are clipped values.

Let the varying values assigned to the two vertices P; and P of an unclipped
edge be c; and co. The value of ¢ (section 2.13) for a clipped point P is used to
obtain the value associated with P as®

c=tcy + (1 —1t)co.

3 Since this computation is performed in clip space before division by w., clipped varying values
are perspective-correct.
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(Multiplying a varying value by a scalar means multiplying each of z, y, z, and w
by the scalar.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Varying value
clipping is done in the same way, so that clipped points always occur at the intersec-
tion of polygon edges (possibly already clipped) with the clip volume’s boundary.
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Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a color and a depth value to each such square. The results
of this process are passed on to the next stage of the GL (per-fragment operations),
which uses the information to update the appropriate locations in the framebuffer.
Figure 3.1 diagrams the rasterization process. The color values assigned to a frag-
ment are determined by a fragment shader (as defined in section 3.8), which uses
varying values generated by rasterization operations (sections 3.3 through 3.6.2).
The final depth value is determined by the rasterization operations. The results
from rasterizing a point, line, or polygon are routed through a fragment shader.

A grid square along with its parameters of assigned z (depth) and varying data
is called a fragment; the parameters are collectively dubbed the fragment’s asso-
ciated data. A fragment is located by its lower left corner, which lies on integer
grid coordinates. Rasterization operations also refer to a fragment’s center, which
is offset by (1/2,1/2) from its lower left corner (and so lies on half-integer coor-
dinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Points may be given differing diameters and
line segments differing widths. Multisampling must be used to rasterize antialiased
primitives (see section 3.2).
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Figure 3.1. Rasterization.

3.1 Invariance

Consider a primitive p’ obtained by translating a primitive p through an offset (z, y)
in window coordinates, where x and y are integers. As long as neither p’ nor p is
clipped, it must be the case that each fragment f’ produced from p’ is identical to
a corresponding fragment f from p except that the center of f’ is offset by (z,y)
from the center of f.

3.2 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, and tri-
angles. The technique is to sample all primitives multiple times at each pixel. The
color sample values are resolved to a single, displayable color each time a pixel
is updated, so the antialiasing appears to be automatic at the application level.
Because each sample includes color, depth, and stencil information, the color (in-
cluding texture operation), depth, and stencil functions perform equivalently to the
single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. When the framebuffer includes a multisample buffer, it does not include
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depth or stencil buffers, even if the multisample buffer does not store depth or
stencil values. The color buffer coexists with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering triangles, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
triangles, object silhouettes, and even intersecting triangles.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, primitive
rasterization is referred to as single-sample rasterization. The value of SAMPLE_ -
BUFFERS is queried by calling GetIntegerv with pname set to SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

Second, each fragment includes SAMPLES depth values, and sets of varying
values, instead of the single depth value and set of varying values that is main-
tained in single-sample rendering mode. An implementation may choose to assign
the same set of varying values to more than one sample. The location for evalu-
ating the varying values can be anywhere within the pixel including the fragment
center or any of the sample locations. The varying values need not be evaluated at
the same location . Each pixel fragment thus consists of integer x and y grid coor-
dinates, SAMPLES sets of varying values, and a coverage value with a maximum of
SAMPLES bits.

Multisample rasterization cannot be enabled or disabled after a GL context
is created. It is enabled if the value of SAMPLE_BUFFERS is one, and disabled
otherwise .

Multisample rasterization of all primitives differs substantially from single-
sample rasterization. It is understood that each pixel in the framebuffer has
SAMPLES locations associated with it. These locations are exact positions, rather
than regions or areas, and each is referred to as a sample point. The sample points
associated with a pixel may be located inside or outside of the unit square that is
considered to bound the pixel. Furthermore, the relative locations of sample points
may be identical for each pixel in the framebuffer, or they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.1 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

"When using EGL to create OpenGL ES context and surfaces, for example, multisample rasteri-
zation is enabled when the EGLConfig used to create a context and surface supports a multisample
buffer.
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It is not possible to query the actual sample locations of a pixel.

3.3 Points

Point size is taken from the shader builtin g1_PointSize and clamped to the
implementation-dependent point size range. If the value writtento g1_PointSize
is less than or equal to zero, results are undefined. The range is determined by the
ALIASED_POINT_SIZE_RANGE and may be queried as described in chapter 6.
The maximum point size supported must be at least one.

Point rasterization produces a fragment for each framebuffer pixel whose cen-
ter lies inside a square centered at the point’s (., ¥ ), with side length equal to
the point size.

All fragments produced in rasterizing a point are assigned the same associated
data, which are those of the vertex corresponding to the point. However, the g1_—
PointCoord fragment shader input defines a per-fragment coordinate space (s, t)
where s varies from 0 to 1 across the point horizontally left-to-right, and ¢ ranges
from O to 1 across the point vertically top-to-bottom.

The following formulas are used to evaluate (s, t) values:

s_l :L‘f—l—%—:nw

2 size

RNl St
2 size

where size is the point’s size, x y and y are the (integral) window coordinates
of the fragment, and x,, and y,, are the exact, unrounded window coordinates of
the vertex for the point.

3.3.1 Point Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then points are rasterized using the fol-
lowing algorithm. Point rasterization produces a fragment for each framebuffer
pixel with one or more sample points that intersect a region centered at the point’s
(Zw, Yw)- This region is a square with side length equal to the point size. Coverage
bits that correspond to sample points that intersect the region are 1, other cover-
age bits are 0. All data associated with each sample for the fragment are the data
associated with the point being rasterized.

The set of point sizes supported is equivalent to those for points without multi-
sample.
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3.4 Line Segments

A line segment results from a line strip, a line loop, or a series of separate line
segments. Line width may be set by calling

void LineWidth( £float width);

with an appropriate positive width to control the width of rasterized line seg-
ments. The default width is 1.0. Values less than or equal to 0.0 generate the
error INVALID_VALUE.

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [—1,1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for z-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates x s and y, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) ||z —zpl + |y —ysl <1/2.}

Essentially, a line segment starting at p, and ending at p; produces those frag-
ments f for which the segment intersects ¢, except if py, is contained in Ry. See
figure 3.2.

To avoid difficulties when an endpoint lies on a boundary of R we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let p, and p; have window
coordinates (x4, y,) and (z, yp), respectively. Obtain the perturbed endpoints p/,
given by (24,Ya) — (€, €?) and pj, given by (xp, y») — (€, €%). Rasterizing the line
segment starting at p, and ending at p; produces those fragments f for which the
segment starting at p/, and ending on pj intersects R, except if pj is contained in
Ry. € is chosen to be so small that rasterizing the line segment produces the same
fragments when ¢ is substituted for € for any 0 < § < e.

When p, and p; lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pp)
is not drawn. This means that when rasterizing a series of connected line segments,
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Figure 3.2. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult

to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by

more than one unit in either = or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

. For an xz-major line, no two fragments may be produced that lie in the same

window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
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duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (24,y4) and let pg, = (24, ya) and pp = (zs, yp). Set

(pr - pa) ) (pb - pa)
1Py — Pall?
(Note that ¢ = 0 at p, and t = 1 at p;.) The value of an associated datum f for
the fragment, whether it be the clip w coordinate or an element of a vertex shader

varying output, is found as

t= (3.1)

(1 - t)fa/wa + tfb/wb
(1 —1t)/wq +t/wp
where f, and fj, are the data associated with the starting and ending endpoints of
the segment, respectively; w, and wy are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, the depth value, window

z, must be found using linear interpolation:

f=

(3.2)

f=0=t)fattfo (3.3)

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one. We now describe the rasterization of line segments for general values of the
line segment rasterization parameters.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than one. If rounding the specified width results in the value 0, then it is
as if the value were 1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for an z-major line, the minor direction is
y, and for a y-major line, the minor direction is x) and replicating fragments in
the minor direction (see figure 3.3). Let w be the width rounded to the nearest
integer (if w = O, then it is as if w = 1). If the line segment has endpoints
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width =2 width =3

Figure 3.3. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

given by (z,yo) and (x1,y1) in window coordinates, the segment with endpoints
(xo,yo — (w—1)/2) and (x1,y; — (w — 1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height w (a row of fragments of length w for
a y-major segment) is produced at each = (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates.

3.4.3 Line Rasterization State
The state required for line rasterization consists of the floating-point line width.
The initial value of the line width is 1.0.

3.4.4 Line Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then lines are rasterized using the follow-
ing algorithm. line rasterization produces a fragment for each framebuffer pixel
with one or more sample points that intersect a rectangle centered on the line seg-
ment (see figure 3.4). Two of the edges are parallel to the specified line segment;
each is at a distance of one-half the line width from that segment: one above the
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Figure 3.4. The region used in rasterizing a multisampled line segment (an x-major
line segment is shown).

segment and one below it. The other two edges pass through the line endpoints and
are perpendicular to the direction of the specified line segment.

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Vertex shader varying outputs and depth are
interpolated by substituting the corresponding sample location into equation 3.1,
then using the result to evaluate equation 3.2. An implementation may choose to
assign the same varying values to more than one sample.

Not all widths need be supported for multisampled line segments, but width
1.0 segments must be provided. As with the point width, the GL implementation
may be queried for the range and number of gradations of available multisampled
line widths.

3.5 Polygons
A polygon results from a triangle strip, triangle fan, or series of separate trian-

gles. Like points and line segments, polygon rasterization is controlled by several
variables.
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3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back facing
or front facing. This determination is made based on the sign of the (clipped or
unclipped) polygon’s area computed in window coordinates. One way to compute
this area is

1 n—1 ) ' 4
0= lew T (3.4)
=0

where x!, and ! are the z and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of this
computation) and @1 is (i+ 1) mod n. The interpretation of the sign of this value
is controlled with

void FrontFace( enum dir);

Setting dir to cCw (corresponding to counter-clockwise orientation of the pro-
jected polygon in window coordinates) indicates that the sign of a should be re-
versed prior to use. Setting dir to CW (corresponding to clockwise orientation)
uses the sign of a is as computed above. Front face determination requires one bit
of state, and is initially set to CCw.

If the sign of the area computed by equation 3.4 (including the possible reversal
of this sign as indicated by the last call to FrontFace) is positive, the polygon is
front facing; otherwise, it is back facing. This determination is used in conjunction
with the CullFace enable bit and mode value to decide whether or not a particular
polygon is rasterized. The CullFace mode is set by calling

void CullFace( enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant CULL_-
FACE. Front facing polygons are rasterized if either culling is disabled or the Cull-
Face mode is BACK while back facing polygons are rasterized only if either culling
is disabled or the CullFace mode is FRONT. The initial setting of the CullFace
mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In
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such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and ¢, each in the range [0, 1], witha + b+ ¢ = 1.
These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

P = apq + bpy + cpe,

where pg, py, and p, are the vertices of the triangle. a, b, and ¢ can be found as

_ A(ppbpc) h— A(ppapc) _ A(ppapb)

A(papbpe)’ A(papbpe)’ A(papvpe)’

where A (Imn) denotes the area in window coordinates of the triangle with vertices
[, m, and n.

Denote a datum at p,, pp, Or pe as fq, fp, or fe, respectively. Then the value f
of a datum at a fragment produced by rasterizing a triangle is given by

afa/wa + bfb/wb + Cfc/wc

a/wg + b/wp + ¢/w,
where w,, w, and w, are the clip w coordinates of p,, py, and p., respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and ¢ must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center.

Just as with line segment rasterization, the depth value, window z, must be
found using linear interpolation:

f=

(3.5)

f=afa+bfp+cfe

3.5.2 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset( float factor, float units);
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factor scales the maximum depth slope of the polygon, and units scales an
implementation-dependent constant that relates to the usable resolution of the
depth buffer. The resulting values are summed to produce the polygon offset value.
Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

0z 2 0z 2
m—\/ (a) *(ay> G0

where (., Yw, 2w) i a point on the triangle. m may be approximated as
0 0
m = max {‘ v v } . (3.7)

Oy OYw
The minimum resolvable difference r is an implementation-dependent con-
stant. It is the smallest difference in window coordinate z values that is guaranteed
to remain distinct throughout polygon rasterization and in the depth buffer. All
pairs of fragments generated by the rasterization of two polygons with otherwise
identical vertices, but z,, values that differ by r, will have distinct depth values.
The offset value o for a polygon is

Y

0 = m % factor + r x units. (3.8)

m is computed as described above, as a function of depth values in the range [0,1],
and o is applied to depth values in the same range.

Boolean state value POLYGON_OFFSET_FILL determines whether o is applied
during the rasterization of polygons. This boolean state value is enabled and dis-
abled using the commands Enable and Disable. If POLYGON_OFFSET_FILL is
enabled, o is added to the depth value of each fragment produced by the rasteriza-
tion of a polygon.

Fragment depth values are always limited to the range [0,1], either by clamping
after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.3 Polygon Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then polygons are rasterized using the
following algorithm. Polygon rasterization produces a fragment for each frame-
buffer pixel with one or more sample points that satisfy the point sampling criteria
described in section 3.5.1, including the special treatment for sample points that lie
on a polygon boundary edge. If a polygon is culled, based on its orientation and
the CullFace mode, then no fragments are produced during rasterization.
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Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Vertex shader varying outputs and depth are
interpolated by substituting the corresponding sample location into the barycentric
equations described in section 3.5.1, using equation 3.5 or its approximation that
omits w components. An implementation may choose to assign the same set of
varying values to more than one sample by barycentric evaluation using any loca-
tion within the pixel including the fragment center or one of the sample locations.

3.5.4 Polygon Rasterization State

The state required for polygon rasterization consists of the factor and bias values
of the polygon offset equation. The initial polygon offset factor and bias values are
both 0; initially polygon offset is disabled.

3.6 Pixel Rectangles

Rectangles of color values may be specified to the GL using TexImage2D and
related commands described in section 3.7.1. Some of the parameters and opera-
tions governing the operation of TexImage2D are shared by ReadPixels (used to
obtain pixel values from the framebuffer); the discussion of ReadPixels, however,
is deferred until section 4.3, after the framebuffer has been discussed in detail.
Nevertheless, we note in this section when parameters and state pertaining to Tex-
Image2D also pertain to ReadPixels.

This section describes only how these rectangles are defined in client memory,
and the steps involved in transferring pixel rectangles from client memory to the
GL or vice-versa.

Parameters controlling the encoding of pixels in client memory (for reading
and writing) are set with the command PixelStorei.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operation of TexImage2D and ReadPixels (as well
as other commands; see section 3.7) when one of these commands is issued. Pixel
storage modes are set with the command

void PixelStorei( enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Table 3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the error INVALID_VALUE.
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’ Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘

| UNPACK_ALIGNMENT | integer | 4 | 1248 |

Table 3.1: PixelStore parameters pertaining to one or more of TexImage2D, and
TexSubImage2D.

byte, short, or packed
pixel component data stream I
Y

Unpack

c . Pixel Storage

onvert to Float Operat’ons
Convert L to RGB

! Final
ina
Clamp to [0,1] .
P Conversion

RGBA pixel data outl

Figure 3.5. Transfer of pixel rectangles to the GL. Output is RGBA pixels.

3.6.2 Transfer of Pixel Rectangles

The process of transferring pixels encoded in client memory to the GL is dia-
grammed in figure 3.5. We describe the stages of this process in the order in which
they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

format is a symbolic constant indicating what the values in memory represent.

width and height are the width and height, respectively, of the pixel rectangle
to be drawn.

data is a pointer to the data to be drawn. These data are represented with one
of two GL data types, specified by type. The correspondence between the four fype
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type Parameter Corresponding Special
Token Name GL Data Type | Interpretation
UNSIGNED_BYTE ubyte No
UNSIGNED_SHORT_5_6_5 ushort Yes
UNSIGNED_SHORT_4_4_4_4 ushort Yes
UNSIGNED_SHORT_5_5_5_1 ushort Yes

Table 3.2: TexImage2D and ReadPixels rype parameter values and the corre-
sponding GL data types. Refer to table 2.2 for definitions of GL data types. Special
interpretations are described near the end of section 3.6.2. ReadPixels accepts only
a subset of these types (see section 4.3.1).

Format Name H Element Meaning and Order | Target Buffer
ALPHA A Color
RGB R,G,B Color
RGBA R,G,B, A Color
LUMINANCE Luminance Color
LUMINANCE_ALPHA Luminance, A Color

Table 3.3: TexImage2D and ReadPixels formats. The second column gives a de-
scription of and the number and order of elements in a group. ReadPixels accepts
only a subset of these formats (see section 4.3.1).

token values and the GL data types they indicate is given in table 3.2.

Unpacking

Data are taken from client memory as a sequence of unsigned bytes or unsigned
shorts (GL data types ubyte and ushort). These elements are grouped into
sets of one, two, three, or four values, depending on the format, to form a group.
Table 3.3 summarizes the format of groups obtained from memory.

The values of each GL data type are interpreted as they would be specified in
the language of the client’s GL binding.

Not all combinations of format and type are valid. The combinations accepted
by the GL are defined in table 3.4. Additional restrictions may be imposed by
specific commands.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the first
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Format Type Bytes per Pixel
RGBA UNSIGNED_BYTE 4
RGB UNSIGNED_BYTE 3
RGBA UNSIGNED_SHORT_4_4_4_4 2
RGBA UNSIGNED_SHORT_5_5_5_1 2
RGB UNSIGNED_SHORT_5_6_5 2
LUMINANCE_ALPHA | UNSIGNED_BYTE 2
LUMINANCE UNSIGNED_BYTE 1
ALPHA UNSIGNED_BYTE 1

Table 3.4: Valid pixel format and type combinations.

row pointed to by the data pointer passed to TexImage2D. The number of groups
in a row is width; If p indicates the location in memory of the first element of the
first row, then the first element of the Nth row is indicated by

p+ Nk (3.9)

where N is the row number (counting from zero) and k is defined as

nl s> a,

b= { a/s[snlja] s<a (3-10)

where n is the number of elements in a group, [ is the number of groups in

the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL

ubytes, of an element. If the number of bits per element is not 1, 2, 4, or 8 times
the number of bits in a GL ubyte, then k = nl for all values of a.

A type of UNSIGNED_SHORT_5_6_5, UNSIGNED_SHORT_4_4_4_4, or
UNSIGNED_SHORT_5_5_5_1 is a special case in which all the components of
each group are packed into a single unsigned short. The number of components
per packed pixel is fixed by the type, and must match the number of components
per group indicated by the format parameter, as listed in table 3.5. The error
INVALID_OPERATION is generated if a mismatch occurs. This constraint also
holds for all other functions that accept or return pixel data using fype and format
parameters to define the type and format of that data.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in table 3.6. Each bitfield is interpreted as an un-
signed integer value. If the base GL type is supported with more than the minimum
precision (e.g. a 9-bit byte) the packed components are right-justified in the pixel.
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type Parameter GL Data | Number of Matching
Token Name Type Components | Pixel Formats
UNSIGNED_SHORT_5_6_5 ushort 3 RGB
UNSIGNED_SHORT_4_4_4_4 || ushort 4 RGBA
UNSIGNED_SHORT_5_5_5_1 || ushort 4 RGBA

Table 3.5: Packed pixel formats.

Components are packed with the first component in the most significant bits
of the bitfield, and successive component occupying progressively less significant
locations. The most significant bit of each component is packed in the most signif-
icant bit location of its location in the bitfield.

UNSIGNED_SHORT_5_6_5:

15 14 13 12 11 10 9

1st Component

2nd

3rd

UNSIGNED_SHORT_4_4_4_ 4:

15 14 13 12 11 10 9

1st Component 2nd

3rd

4th

UNSIGNED_SHORT_5_5_5_1:

15 14 13 12 11 10 9

8 7

1st Component

2nd

Table 3.6: UNSIGNED_SHORT formats
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Format First Second Third Fourth
Component | Component | Component | Component
RGB red green blue
RGBA red green blue alpha

Table 3.7: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 3.7

The above discussions of row length and image extraction are valid for packed
pixels, if “group” is substituted for “component” and the number of components
per group is understood to be one.

Conversion to floating-point

Each element in a group is converted to a floating-point value according to the
appropriate formula as described in section 2.1.2 for the corresponding integer,
unsigned integer, or unsigned integer bitfield type of that element.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE_ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a group
of R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE_ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

Each group is converted to a group of 4 elements as follows: if a group does not
contain an A element, then A is added and set to 1.0. If any of R, G, or B is missing
from the group, each missing element is added and assigned a value of 0.0.

3.7 Texturing

Texture lookups map a portion of one or more specified images onto a fragment
or vertex. This mapping is accomplished in shaders by sampling the color of an
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image at the location indicated by specified (s, t,7) texture coordinates. Texture
lookups are typically used to modify a fragment’s RGBA color but may be used
for any purpose in a shader.

Shaders support texturing using at least MAX_VERTEX_TEXTURE_IMAGE_-
UNITS images for vertex shaders (see section 2.10.5) and at least MAX_TEXTURE_ —
IMAGE_UNITS images for fragment shaders (see section 3.8.2). Multiple sets of
texture coordinates may be specified in generic vertex attributes or computed by
the shader; these coordinates are used to sample separate images.

The following subsections (up to and including section 3.7.7) specify GL op-
eration with a single texture, including specification of the image to be texture
mapped and the means by which the image is filtered when sampled. The opera-
tions described here are applied separately for each texture sampled by a shader.

The details of sampling a texture within a shader are described in the OpenGL
ES Shading Language Specification.

The command

void ActiveTexture( enum rexture );

specifies the active texture image unit selector, ACTIVE_TEXTURE. Each texture
image unit consists of all the texture state defined in section 3.7.

The active texture unit selector selects the texture image unit accessed by
commands involving texture image processing defined in section 3.7. Such
commands include all variants of TexImage commands, BindTexture, and
queries of all such state. If the texture image unit number corresponding
to the current value of ACTIVE_TEXTURE is greater than or equal to the
implementation-dependent constant MAX_COMBINED_TEXTURE_IMAGE_UNITS,
the error INVALID_OPERATION is generated by any such command.

ActiveTexture generates the error INVALID_ENUM if an invalid fexture is spec-
ified. fexture is a symbolic constant of the form TEXTURE4, indicating that texture
image unit ¢ is to be modified. The constants obey TEXTURE: = TEXTUREO + ¢,
where 7 is in the range 0 to MAX_COMBINED_TEXTURE_IMAGE_UNITS — 1.

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTUREO.

3.7.1 Texture Image Specification

The command

void TexImage2D( enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data);
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is used to specify a texture image. target must be one of TEXTURE_2D for a two-
dimensional texture, or one of TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_-
CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_-
Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, Or
TEXTURE_CUBE_MAP_NEGATIVE_Z for a cube map texture. format, type, and
data specify the format of the image data, the type of those data, and a pointer to
the image data in client memory, as described in section 3.6.2.

A two-dimensional texture consists of a single two-dimensional texture image.
A cube map texture is a set of six two-dimensional texture images. The six cube
map texture targets form a single cube map texture though each target names a
distinct face of the cube map. The TEXTURE_CUBE_MAP_ « targets listed above
update their appropriate cube map face 2D texture image. Note that the six cube
map two-dimensional image tokens such as TEXTURE_CUBE_MAP_POSITIVE_X
are used when specifying, updating, or querying one of a cube map’s six two-
dimensional images, but when enabling cube map texturing or binding to a cube
map texture object (that is when the cube map is accessed as a whole as opposed to
a particular two-dimensional image), the TEXTURE_CUBE_MAP target is specified.

When the target parameter to TexImage2D is one of the six cube map two-
dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

The groups in memory are treated as being arranged in a rectangle. The rectan-
gle is an image, whose size and organization are specified by the width and height
parameters to TexImage2D.

The selected groups are processed as described in section 3.6.2, stopping after
final expansion to RGBA. Each R, G, B, or A value so generated is clamped to
[0, 1].

Components are then selected from the resulting R, G, B, or A values to obtain
a texture with the base internal format specified by internalformat, which must
match format; no conversions between formats are supported during texture im-
age processing.” Table 3.8 summarizes the mapping of R, G, B, and A values to
texture components, as a function of the base internal format of the texture image.
internalformat may be one of the five internal format symbolic constants listed in
table 3.8. Specifying a value for internalformat that is not one of the above values
generates the error INVALID_VALUE. If internalformat does not match format, the
error INVALID_OPERATION is generated.

>When a non-RGBA format and internalformat are specified, implementations are not required to
actually create and then discard unnecessary R, G, B, or A components. The abstract model defined
by section 3.6.2 is used only for consistency and ease of description.
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Base Internal Format | RGBA ‘ Internal Components
ALPHA A A

LUMINANCE R L
LUMINANCE_ALPHA | R,A LA

RGB R,G,B R,G,B

RGBA R,GBA | R,G,B,A

Table 3.8: Conversion from RGBA pixel components to internal texture compo-
nents. Texture components R, G, B, A, and L are converted back to RGBA colors
during filtering as shown in table 3.12.

The GL stores the resulting texture with internal component resolutions of its
own choosing. The allocation of internal component resolution may vary based
on any TexImage2D parameter (except farget), but the allocation must not be a
function of any other state and cannot be changed once established. Allocation
must be invariant; the same allocation must be chosen each time a texture image is
specified with the same parameter values.

The image itself (pointed to by data) is a sequence of groups of values. The
first group is the lower left corner of the texture image. Subsequent groups fill
out rows of width width from left to right; height rows are stacked from bottom
to top forming the image. When the final R, G, B, and A components have been
computed for a group, they are assigned to components of a fexel as described by
table 3.8. Counting from zero, each resulting /Vth texel is assigned internal integer
coordinates (i, j), where

i = (N mod width)

j= (L%J mod height)
Thus the last row of the image is indexed with the highest value of j.

Each color component is converted (by rounding to nearest) to a fixed-point
value with n bits, where n is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-point representation used
represents each value k/(2™ — 1), where k € {0,1,...,2" —1},as k (e.g. 1.0is
represented in binary as a string of all ones).

The level argument to TexImage2D is an integer level-of-detail number. Levels
of detail are discussed below, under Mipmapping. The main texture image has a
level of detail number of 0 and is known as the level zero array (or the image array
of level zero). If level is less than zero, the error INVALID_VALUE is generated. If

Version 2.0.25 (November 2, 2010)



3.7. TEXTURING

level is greater than zero, and either width or height is not a power of two, the error
INVALID_VALUE is generated.

If the border argument to TexImage2D is not zero, then the error INVALID_-
VALUE is generated.

If w; and h; are the specified image width and height, and if either w; or h; are
less than zero, then the error INVALID_VALUE is generated.

The maximum allowable width and height of a two-dimensional texture image
must be at least 2°~/° for image arrays of level zero through k, where k is the log
base 2 of MAX_TEXTURE_SIZE. and lod is the level-of-detail of the image array.
It may be zero for image arrays of any level-of-detail greater than k. The error
INVALID_VALUE is generated if the specified image is too large to be stored under
any conditions.

The maximum allowable width and height of a cube map texture must be the
same, and must be at least 2¥7°¢ for image arrays of level zero through k, where
k is the log base 2 of MAX_CUBE_MAP_TEXTURE_SIZE.

An implementation may allow an image array of level zero to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level one or greater are described in more detail in section 3.7.10.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory.

We shall refer to the decoded image as the texture array. A texture array has
width and height w; and h; as defined above.

An element (4, j) of the texture array is called a rexel. The texture value used in
texturing a fragment is determined by that fragment’s associated (s, t) coordinates,
but does not necessarily correspond to any actual texel. See figure 3.6.

If the data argument of TexImage2D is a null pointer (a zero-valued pointer
in the C implementation), a texture array is created with the specified rarget, level,
internalformat, width, and height, but with unspecified image contents. In this
case no pixel values are accessed in client memory, and no pixel processing is
performed. Errors are generated, however, exactly as though the dara pointer were
valid.

3.7.2 Alternate Texture Image Specification Commands

Texture images may also be specified using image data taken directly from the
framebuffer, and rectangular subregions of existing texture images may be respec-
ified.

The command

void CopyTexImage2D( enum target, int level,
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Figure 3.6. A texture image and the coordinates used to access it. This is a texture
with w; = 8 and h; = 4. a and 3, values used in blending adjacent texels to obtain
a texture value, are also shown.
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‘ Texture Format
Color Buffer | A | L [ LA | RGB | RGBA

A JT-] - - _
RGB N VN I BV _
RGBA SN v

Table 3.9: CopyTexImage internal format/color buffer combinations.

enum internalformat, int x, inty, sizei width,
sizei height, int border);

defines a texture array in exactly the manner of TexImage2D, except that the im-
age data are taken from the framebuffer rather than from client memory. farget
must be one of TEXTURE_2D, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_-
CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_-
Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, Or
TEXTURE_CUBE_MAP_NEGATIVE_Z. X, y, width, and height correspond precisely
to the corresponding arguments to ReadPixels (refer to section 4.3.1); they specify
the image’s width and height, and the lower left (x,y) coordinates of the frame-
buffer region to be copied. The image is taken from the color buffer of the frame-
buffer exactly as if these arguments were passed to ReadPixels with argument for-
mat set to RGBA, stopping after conversion of RGBA values. Subsequent processing
is identical to that described for TexImage2D, beginning with clamping of the R,
G, B, and A values from the resulting pixel groups. Parameters level, internalfor-
mat, and border are specified using the same values, with the same meanings, as the
equivalent arguments of TexImage2D. internalformat is further constrained such
that color buffer components can be dropped during the conversion to internalfor-
mat, but new components cannot be added. For example, an RGB color buffer can
be used to create LUMINANCE or RGB textures, but not ALPHA, LUMINANCE_ALPHA,
or RGBA textures. Table 3.9 summarizes the allowable framebuffer and base inter-
nal format combinations. If the framebuffer format is not compatible with the base
texture format, an INVALID_OPERATION error is generated. The constraints on
width, height, and border are exactly those for the equivalent arguments of TexIm-
age2D.

When the farget parameter to CopyTexImage2D is one of the six cube map
two-dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

Two additional commands,
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void TexSubImage2D( enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, void *data);

void CopyTexSublmage2D( enum farget, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

respecify only a rectangular subregion of an existing texture array. No change
is made to the internalformat, width, or height, parameters of the specified tex-
ture array, nor is any change made to texel values outside the specified subre-
gion. The rarget arguments of TexSubImage2D and CopyTexSubIlmage2D must
be one of TEXTURE_2D, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_-
MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_-
Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_ Z, Or
TEXTURE_CUBE_MAP_NEGATIVE_Z. The level parameter of each command spec-
ifies the level of the texture array that is modified. If /evel is less than zero or
greater than the base 2 logarithm of the maximum texture width or height, the error
INVALID_VALUE is generated.

TexSubImage2D arguments width, height, format, type, and data match the
corresponding arguments to TexImage2D, meaning that they are specified using
the same values, and have the same meanings.

CopyTexSubImage2D arguments x, y, width, and height match the corre-
sponding arguments to CopyTexImage2D. Each of the TexSubImage commands
interprets and processes pixel groups in exactly the manner of its TexImage coun-
terpart, except that the assignment of R, G, B, and A pixel group values to the
texture components is controlled by the internalformat of the texture array, not
by an argument to the command. The same constraints and errors apply to the
TexSubImage commands’ argument format and the internalformat of the texture
array being respecified as apply to the format and internalformat arguments of its
TexImage counterparts.

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangular
subregion of the texture array, address as in figure 3.6. Taking w; and h; to be
the specified width and height of the texture array, and taking x, y, w, and h to
be the xoffset, yoffset, width, and height argument values, any of the following
relationships generates the error INVALID_VALUE:

z <0

T4+ w > w
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y <0
y+h>ht

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i =x + (n mod w)
j=y+ (=] mod h)

Calling CopyTexImage2D or CopyTexSubImage2D will
result in an INVALID_FRAMEBUFFER_OPERATION error if the object bound to
FRAMEBUFFER_BINDING is not framebuffer complete (see section 4.4.5).

Texture Copying Feedback Loops

Calling CopyTexImage2D or CopyTexSubImage2D will result in undefined be-
havior if the destination texture image level is also bound to the selected read buffer
(see section 4.3.1) of the read framebuffer. This situation is discussed in more de-
tail in the description of feedback loops in section 4.4.4.

3.7.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL defines no specific compressed
formats, but compressed formats may be defined by GL extensions. There is a
mechanism to obtain token values for compressed formats; the number of spe-
cific compressed internal formats supported can be obtained by querying the value
of NUM_COMPRESSED_TEXTURE_FORMATS. The set of specific compressed inter-
nal formats supported by the renderer can be obtained by querying the value of
COMPRESSED_TEXTURE_FORMATS. The only values returned by this query are
those corresponding to internalformat parameters accepted by CompressedTex-
Image2D and suitable for general-purpose usage. The renderer will not enumerate
formats with restrictions that need to be specifically understood prior to use.
The command

void CompressedTexImage2D( enum target, int level,

enum internalformat, sizei width, sizei height,
int border, sizei imageSize, void *data);

Version 2.0.25 (November 2, 2010)



3.7. TEXTURING 74

defines a texture image, with incoming data stored in a specific compressed image
format. The rarget, level, internalformat, width, height, and border parameters
have the same meaning as in TexImage2D. data points to compressed image data
stored in the compressed image format corresponding to internalformat.

For all compressed internal formats, the compressed image will be decoded ac-
cording to the definition of internalformat. Compressed texture images are treated
as an array of imageSize ubytes beginning at address data. All pixel storage and
pixel transfer modes are ignored when decoding a compressed texture image. If the
imageSize parameter is not consistent with the format, dimensions, and contents of
the compressed image, an INVALID_VALUE error results. If the compressed image
is not encoded according to the defined image format, the results of the call are
undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might not allow width or height values that are not a
multiple of 4. Any such restrictions will be documented in the extension specifica-
tion defining the compressed internal format; violating these restrictions will result
in an INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores
a texture image in compressed form, CompressedTexImage2D will accept any
properly encoded compressed texture image of the same width, height, compressed
image size, and compressed internal format for storage at the same texture level.

Respecifying Subimages of Compressed Textures

The command

void CompressedTexSublmage2D( enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, void *data);

respecifies only a rectangular region of an existing texture array, with incoming
data stored in a known compressed image format. The target, level, xoffset, yoffset,
width, height, and format parameters have the same meaning as in TexSubIm-
age2D. data points to compressed image data stored in the compressed image for-
mat corresponding to format.

The image pointed to by data and the imageSize parameter is interpreted as
though it was provided to Compressed TexImage2D. This command does not pro-
vide for image format conversion, so an INVALID_OPERATION error results if
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format does not match the internal format of the texture image being modified. If
the imageSize parameter is not consistent with the format, dimensions, and con-
tents of the compressed image (too little or too much data), an INVALID_VALUE
error results.

As with CompressedTexImage calls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores a
texture image in compressed form, Compressed TexSubImage2D will accept any
properly encoded compressed texture image of the same width, height, compressed
image size, and compressed internal format for storage at the same texture level.

Calling Compressed TexSubImage2D will result in an INVALID_OPERATION
error if xoffset or yoffset is not equal to zero, or if width and height do not match
the width and height of the texture, respectively. The contents of any texel outside
the region modified by the call are undefined. These restrictions may be relaxed
for specific compressed internal formats whose images are easily modified.

3.7.4 Texture Parameters

Various parameters control how the texture array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{if}( enum target, enum pname, T param);
void TexParameter{if}v( enum target, enum pname,
T params );

target is the target, which must be TEXTURE_2D or TEXTURE_CUBE_MAP. pname
is a symbolic constant indicating the parameter to be set; the possible constants
and corresponding parameters are summarized in table 3.10. In the first form of
the command, param is a value to which to set a single-valued parameter; in the
second form of the command, params is an array of parameters whose type depends
on the parameter being set.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.
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Name Type | Legal Values

TEXTURE_WRAP_S integer | CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT

TEXTURE_WRAP_T integer CLAMP_TO_EDGE, REPEAT,

MIRRORED_REPEAT
TEXTURE_MIN_FILTER | integer | NEAREST,

LINEAR,

NEAREST MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,
TEXTURE_MAG_FILTER | integer | NEAREST,

LINEAR

Table 3.10: Texture parameters and their values.

3.7.5 Cube Map Texture Selection

When a cube map sampler is used in a shader, the (s t r) texture coordinates
are treated as a direction vector (rw Ty rz) emanating from the center of a cube
(the g coordinate can be ignored, since it merely scales the vector without affecting
the direction.) At texture application time, the interpolated per-fragment direction
vector selects one of the cube map face’s two-dimensional images based on the
largest magnitude coordinate direction (the major axis direction). If two or more
coordinates have the identical magnitude, the implementation may define the rule
to disambiguate this situation. The rule must be deterministic and depend only
on (ry 1y r.). The target column in table 3.11 explains how the major axis
direction maps to the two-dimensional image of a particular cube map target.

Using the s, t., and m, determined by the major axis direction as specified in
table 3.11, an updated (s t) is calculated as follows:

1/ s, >
s = — +1
2<’ma|
1 t.
t=— +1
2<|ma >

This new (s t) is used to find a texture value in the determined face’s two-
dimensional texture image using the rules given in sections 3.7.6 through 3.7.8.
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Major Axis Direction | Target \ Se \ te \ o \
+7ry TEXTURE_CUBE_MAP_POSITIVE_X | —T, | —Ty | 7%
—Ty TEXTURE_CUBE_MAP_NEGATIVE_X | 1, —Ty | Tz
+7y TEXTURE_CUBE_MAP_POSITIVE_Y | 7y T, Ty
—Ty TEXTURE_CUBE_MAP_NEGATIVE_Y | 7y —T, | Ty
+r, TEXTURE_CUBE_MAP_POSITIVE_ Z | 7y —Ty | T2
—r, TEXTURE_CUBE_MAP_NEGATIVE_Z | =Ty | —Ty | T

Table 3.11: Selection of cube map images based on major axis direction of texture
coordinates.

3.7.6 Texture Wrap Modes

Wrap modes defined by the values of TEXTURE_WRAP_S or TEXTURE_WRAP_T
respectively affect the interpretation of s and ¢ texture coordinates. The effect of
each mode is described below.

Wrap Mode REPEAT

Wrap mode REPEAT ignores the integer part of texture coordinates, using only the
fractional part. (For a number f, the fractional part is f — | f], regardless of the
sign of f; recall that the | | function truncates towards —o0.)

REPEAT is the default behavior for all texture coordinates.

Wrap Mode CL.AMP_TO_EDGE

Wrap mode CLAMP_TO_EDGE clamps texture coordinates at all mipmap levels such
that the texture filter never samples outside the texture image. The color returned
when clamping is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the range [min, maz|. The minimum value
is defined as

min = ——
2N

where N is the size of the texture image in the direction of clamping. The maxi-
mum value is defined as

maxr =1 — min

so that clamping is always symmetric about the [0, 1] mapped range of a texture
coordinate.
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Wrap Mode MIRRORED_REPEAT

Wrap mode MIRRORED_REPEAT first mirrors the texture coordinate, where mirror-
ing a value f computes

' =1 | ] is even
mirror(f) = { 1= (f=f]), Lf]isodd

The mirrored coordinate is then clamped as described above for wrap mode
CLAMP_TO_EDGE.

3.7.7 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor p(x,y) and the level of detail parameter
A(z,y), defined as

)\(m,y) = logQ[p(xvy)] (3.11)

If \(z,y) is less than or equal to the constant ¢ (described below in sec-
tion 3.7.8) the texture is said to be magnified; if it is greater, the texture is minified.

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (z, y) that lie within a primitive; define ¢(x, y) analogously.
Letu(x,y) = wy x s(x,y) and v(z,y) = hy X t(z,y), where w; and h; are equal to
the width and height of the level zero array. For a polygon, p is given at a fragment
with window coordinates (z, y) by

ou\? v\ ? ou\? o\ >
— == -~ — — 3.12
e () ()G < (5) ] e
where Ju/Ox indicates the derivative of u with respect to window z, and similarly
for the other derivatives.
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For a line, the formula is

ou ou 2 ov ov 2
= —A —A —A —A l 3.13
’ /¢<3w oy y> +(3$ Ty y)//7 G139
where Az = x9 — x1 and Ay = yo — y1 with (z1,y1) and (x2,y2) being the

segment’s window coordinate endpoints and [ = \/Axz? 4+ Ay?2. For a point, p =
1.

While it is generally agreed that equations 3.12 and 3.13 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal p with a function f(x,y) subject to these
conditions:

1. f(z,y) is continuous and monotonically increasing in each of |Ju/0x|,
|0u/By|, [9v/dz|, |Ov /By,

2. Let

" e ou| |0u
= X —_— —_—
“ ox |’ |0y
m, = ma v\ |ov

v T WA 9z oy

Then max{m,, my,} < f(z,y) < my + my.

When ) indicates minification, the value assigned to TEXTURE_MIN_FILTER
is used to determine how the texture value for a fragment is selected. When
TEXTURE_MIN_FILTER is NEAREST, the texel in the level zero array that is near-
est (in Manhattan distance) to that specified by (s, ¢) is obtained. This means the
texel at location (¢, j) becomes the texture value, with i given by

i:{LM’ s<1 (3.14)

’U}t—l, s=1

(Recall that if TEXTURE_WRAP_S is REPEAT, then 0 < s < 1.) Similarly, j is
found as

. ], t<1
j—{m_Ltzl (3.15)
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When TEXTURE_MIN_FILTERiS LINEAR, a 2 X 2 square of texels in the level
zero array is selected. This square is obtained by first wrapping texture coordinates
as described in section 3.7.6, then computing

. { |u —1/2] mod wy, TEXTURE_WRAP_S iS REPEAT
M0 =

lu—1/2], otherwise
and
.| |v—1/2] mod hy, TEXTURE_WRAP_T is REPEAT
=N o -1/2], otherwise
Then
. (ip + 1) mod wy, TEXTURE_WRAP_S iS REPEAT
11 = . .
19 + 1, otherwise
and
. (jo+1)mod hy, TEXTURE_WRAP_T iS REPEAT
1= jo+1, otherwise
Let

a = frac(u — 1/2)
B = frac(v —1/2)

where frac(z) denotes the fractional part of x.
The texture value 7 is found as

T=(1-a)(1- B)Tiojo +a(l - /B)Tiu'o + (1 - a)/BTioﬁ +afr;,  (3.16)

where 7;; is the texel at location (z, j) in the texture image.

Rendering Feedback Loops

A rendering feedback loop can occur when a texture is attached to an attach-
ment point of the currently bound framebuffer object. In this case rendering results
are undefined. The exact conditions are detailed in section 4.4.4.

Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_ -
MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR
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each require the use of a mipmap. A mipmap is an ordered set of arrays represent-
ing the same image; each array has a resolution lower than the previous one. If the
level zero array has dimensions wy, X hy, then there are |log, (max(wy, hy)) | + 1
image arrays in the mipmap. Each array subsequent to the level zero array has
dimensions

max(1, [ %2]) x max(1, [ 2]

until the last array is reached with dimension 1 x 1.

Each array in a mipmap is defined using TexImage2D or CopyTexImage2D;
the array being set is indicated with the level-of-detail argument level. Level-
of-detail numbers proceed from zero for the original texture array through q =
|logy(max(wp, hy))| with each unit increase indicating an array of half the di-
mensions of the previous one (rounded down to the next integer if fractional) as
already described. All arrays from zero through ¢ must be defined, as discussed in
section 3.7.10.

If any dimension of any array in a mipmap is not a power of two (e.g. if
rounding down as described above is performed), then the mipmap is described as
a non-power-of-two texture. Non-power-of-two textures have restrictions on the
allowed texture wrap modes and filters, as described in section 3.8.2.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Let ¢ be the value
of A at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values of A\ where
A > o).

For mipmap filters NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_-—
NEAREST, the dth mipmap array is selected, where

0, Ag%
d=<{ A+31-1, A>1A<qg+] (3.17)
q, )\>q+%

The rules for NEAREST or LINEAR filtering are then applied to the selected
array.

For mipmap filters NEAREST_MIPMAP_LINEAR and LINEAR MIPMAP_-
LINEAR, the level d; and do mipmap arrays are selected, where

_ q, A>q
= { |[A], otherwise (3.18)
_J 9 A>q
t = { di +1, otherwise (3.19)
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The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values 7; and 7». The final
texture value is then found as

7 = [1 — frac(\)]m + frac(\) 7.

3.7.8 Texture Magnification

When ) indicates magnification, the value assigned to TEXTURE_MAG_FILTER
determines how the texture value is obtained. There are two possible values
for TEXTURE_MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_MIN_FILTER (equations 3.14 and 3.15 are used); LINEAR
behaves exactly as LINEAR for TEXTURE_MIN_FILTER (equation 3.16 is used).
The level zero array is always used for magnification.

Finally, there is the choice of ¢, the minification vs. magnification switch-over
point. If the magnification filter is given by LINEAR and the minification filter is
given by NEAREST_MIPMAP_NEAREST or NEAREST_MIPMAP_LINEAR, then ¢ =
0.5. This is done to ensure that a minified texture does not appear “sharper” than a
magnified texture. Otherwise ¢ = 0.

3.7.9 Texture Framebuffer Attachment

The texture values are considered undefined if all of the following conditions are
true:

e The current FRAMEBUFFER_BINDING names an application-cr