KHR ®

The Khronos® OpenVX Working Group, Contributor: Steve Ramm

Version 1.3.1, Wed, 20 Nov 2024 17:10:13 +0000: Git branch information not available



Table of Contents

1. Purpose
2. Requirements
2.1. The vxGetRefAsSomeType functions.
2.1.1. Parameters
2.1.2. Successful operation
2.1.3. Unsuccessful operation
2.2. The vxGetRefFromSomeType functions.
2.2.1. Operation
2.3. The vxCastRefAsSomeType functions.
2.3.1. Parameters
2.3.2. Successful operation
2.3.3. Unsuccessful operation
2.4. The vxCastRefFromSomeType functions.
2.4.1. Operation
2.5. The vxCastRefFromSomeTypeP functions.
2.5.1. Operation
2.6. The vxCastRefFromSomeTypeConstP functions.
2.6.1. Operation
2.7. Scope: The types to be covered, requirement numbering
3. Usage
3.1. Reference counting

3.2. Status values

© © O 9 9 9 9 0o oo o0 oo o0 oo u;gour oo U N



penVX.

This specification is protected by copyright laws and contains material proprietary to Khronos. Except as described

Copyright 2013-2023 The Khronos Group Inc.

by these terms, it or any components may not be reproduced, republished, distributed, transmitted, displayed,

broadcast or otherwise exploited in any manner without the express prior written permission of Khronos.

This specification has been created under the Khronos Intellectual Property Rights Policy, which is Attachment A of
the Khronos Group Membership Agreement available at www.khronos.org/files/member_agreement.pdf. Khronos
Group grants a conditional copyright license to use and reproduce the unmodified specification for any purpose,
without fee or royalty, EXCEPT no licenses to any patent, trademark or other intellectual property rights are granted
under these terms. Parties desiring to implement the specification and make use of Khronos trademarks in relation
to that implementation, and receive reciprocal patent license protection under the Khronos IP Policy must become
Adopters and confirm the implementation as conformant under the process defined by Khronos for this

specification; see https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this
specification, including, without limitation: merchantability, fitness for a particular purpose, non-infringement of
any intellectual property, correctness, accuracy, completeness, timeliness, and reliability. Under no circumstances
will Khronos, or any of its Promoters, Contributors or Members, or their respective partners, officers, directors,
employees, agents or representatives be liable for any damages, whether direct, indirect, special or consequential

damages for lost revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos is a registered trademark, and OpenVX is a trademark of The Khronos Group Inc. OpenCL is a trademark of
Apple Inc., used under license by Khronos. All other product names, trademarks, and/or company names are used

solely for identification and belong to their respective owners.

Preface | 1


https://www.khronos.org/adopters

Chapter 1. Purpose

OpenVX was designed as a C API with an inheritance model.The specifications state that any OpenVX Object may be
cast to a reference, and certain reference attributes are always available.

However, in C we do not have inheritance as such, and casting between pointers of different types is not a safe
operation as defined by for example MISRA and a common static code analysis rule is to detect casts between
pointers to different types.

Since all the OpenVX objects are defined as pointers to incomplete and unrelated types, there is no difference
between casting a vx_image to a vx_reference, or the reverse operation, since C has no concept of "down-casts" or
"up-casts".

We could reasonably argue a waiver with a safety auditor for a cast from vx_image to vx_reference, since here we
logically have inheritance, but the reverse is not true. If we cast from vx_reference to vx_image, and this is often
necessary, for example when retrieving an item from an object array, then we have to show due care and diligence
and make sure that we check the run-time type information by querying the reference for its type before casting it.

This is all extra boiler plate code, potential for error, a lot of waivers and a lot of conversations with the auditor.

There are situations where we would like to create a new reference to the objects, with the correct type,
incrementing the reference count, and there are situations where we would like just to assert the type of the
reference "on the fly", for example when getting an item out of an object array - here we would not want to
increment the reference count.

Finally, some of the APIs take as their parameter a pointer to a vx_reference, or to an array of vx_references, and for
these APIs it would be useful to be able to cast safely from (vx_some_type *) to (vx_reference *), or to (const
vx_reference *). There does not seem to be a need for the reverse cast, nor one that increments the reference count.

The following table summarises the known functions in the main specification and various extensions that require
the conversion between vx_reference and other object types. Please note that this may not be an exhaustive list, and
the functions may be used in many other ways than the examples given:

Function or function type Notes Example use of cast function
vxQueryReference, Downcast required for all objects status =

vxSetReferenceName, vxGetStatus, vxGetStatus(vxCastRefFromImage(im
vxRetainReference, vxGetContext, age))

vxAddLogEntry, vxHint, vxDirective

vxReleaseReference Downcast required for pointer to vxReleaseReference(vxCastRefFrom
vx_meta_format object MetaFormatP(&meta_format_variabl
e))
vxSelectNode, vxCopyNode, vxuCopy, Downcasts required for all data node =
vxMoveNode, vxSwapNode, objects vxCopyNode(vxCastRefFromTensor(t
vxuSwap, vxSetParameterByIndex, ensor_in),
vxSetParameterByReference, vxCastRefFromTensor(tensor_out))

vxSetGraphParameterByIndex,
vxSetMetaFormatFromReference

2 | Chapter 1. Purpose



Function or function type

vxCreateObjectArray,
vxCreateVirtualObjectArray

vxCreateDelay

vxGetObjectArrayltem

vxGetReferenceFromDelay

vxQueryParameter

vx_kernel_f, vx_kernel_deinitialize_f,
vx_kernel initialize f,

vx_kernel_validate_f

vx_graph_parameter_queue_params_
t,

vxGraphParameterEnqueueReadyRef
, vxGraphParameterDequeueDoneRef

vxRegisterEvent

vxExportObjectsToMemory

vxGetImportReferenceByName

vxImportObjectsFromMemory

vxGetImportReferenceByIndex,
vxGetImportReferenceByName

Notes

Downcasts required for all data
objects except delay and object array

Downcasts required for all data
objects except delay

Upcasts required for all data objects
except delay and object array

Upcasts required for all data objects
except delay

Downcasts potentially required for
pointer to all data objects that could
be retrieved via
VX_PARAMETER_REF

Upcasts required for all data objects

Downcasts for pointers to and
upcasts required for all data objects

Downcasts required for vx_graph,

vX_parameter, vx_node

Downcasts required for const
pointers to all exportable objects of
the IX extension (not vx_context,
vx_import, vx_node, vx_kernel,

vx_parameter or vx_meta_format)

Upcasts required for all importable
objects of the IX extension (not
vx_context, vx_import, vx_node,
vx_kernel, vx_parameter or

vx_meta_format)

Downcasts for pointers and upcasts
required for all importable objects of
the IX extension

Upcasts required for all objects
except vx_context, vx_import and

vx_meta_format (XML extension)

Example use of cast function

array =
vxCreateObjectArray(vxCastRefFrom

Matrix(matrix));

lut_delay =
vxCreateDelay(vxCastRefFromLUT(lu
)

image =
vxCastRefAsImage(vxGetObjectArray
Item(object_array, 2), &status)

tensor =
vxCastRefAsTensor(vxGetReferenceF
romDelay(delay, 1), &status)

status = vxQueryParameter(param,
VX_PARAMETER_REF,
vxCastRefFromImageP(&image),
sizeof(vx_reference))

vX_image input_image =
vxCastRefAsImage(parameters[0],
&status)

status =
vxGraphParameterEnqueueReadyRef
(graph, graph_parameter_index,
vxCastRefFromImageP(&image), 1)

vxRegisterEvent(vxCastRefFromNode
(node1),
VX_EVENT NODE_COMPLETED, 0, 0)

vxExportObjectsToMemory(context,
1,
vxCastRefFromGraphConstP(&graph)
, &uses, &ptr, &size)

image =
vxCastRefAsImage(vxGetImportRefer
enceByName(import,
"input_image_0"), & status)

vxImportObjectsFromMemory(...);
vX_image image_55 =
vxGetRefAsImage(&refs[55], &status);

image =
vxCastRefAsImage(vxGetImportRefer
enceByIndex(import, 12), &status)

Chapter 1. Purpose | 3



This extension, with a full set of functions to suit every eventuality, seeks to remove all the SCA warnings into one
place. Better still, the warnings are all in the implementation, so the user of the OpenVX library does not need to use

any casts at all.

As can be seen from the table above, upcasts are not required for vx_context, vx_import or vx_meta_format. There
are also some types where downcasts of pointers or const pointers are not strictly required, however since the

implementation cost is low these are kept.

The style of the six functions to be implemented for each type is as follows:

vx_some_type vxGetRefAsSomeType(const vx_reference *ref, vx_status *status);
vx_some_type vxCastRefAsSomeType(vx_reference ref, vx_status *status);
vx_reference vxGetRefFromSomeType(const vx_some_type *some_type);

vx_reference vxCastRefFromSomeType(vx_some_type some_type);

vx_reference *vxCastRefFromSomeTypeP(vx_some_type *p_some_type);

const vx_reference *vxCastRefFromSomeTypeConstP(const vx_some_type *p_some_type);

The "vxGet" form of the functions will increment the reference count on success and are intended to be used with
variables as parameters (hence the pointers), whereas the "vxCast" form of the functions will not increment the

reference count and so are intended to be used directly in the place of casts.

All the functions will return an error object in the event of failure, and none of the functions will update the status

variable if it is already non-zero.

4 | Chapter 1. Purpose



Chapter 2. Requirements

2.1. The vxGetRefAsSomeType functions.

For example:

vx_object_array vxGetRefAsObjectArray(const vx_reference *ref, vx_status *status);

2.1.1. Parameters

[REQ-SCF01]

These functions take a pointer to a vx_reference as their first parameter, and deliver a vx_some_type as their result.

They all have a second parameter, which is a pointer to a vx_status variable, which shall be ignored if NULL.

2.1.2. Successful operation
[REQ-SCF02]

The functions check that their reference is valid, and that the type of the reference matches the type required. If all
is good, then the reference count of the object is incremented, and the pointer returned as a pointer to the correct
type. Note that the vx_status variable will not be updated at all, allowing any error to propagated from the previous
operation.

2.1.3. Unsuccessful operation

[REQ-SCF03]

If the checks fail, then the vx_status variable will be updated with an error code only if the pointer is not NULL and
the value was initially zero, in other words, a previous error will not be over-written. An error object will be

returned.

2.2. The vxGetRefFromSomeType functions.

For example:

vx_reference vxGetRefFromImage(const vx_image *image);

2.2.1. Operation

[REQ-SCF04]

These functions take a pointer to a vx_some_type as their parameter, and deliver a vx_reference as a result. The
reference count is incremented. As this is a simple down-cast, no checks are done and if an invalid object was
passed an invalid object will be returned.

Chapter 2. Requirements | 5



2.3. The vxCastRefAsSomeType functions.

For example:

vx_object_array vxCastRefAsObjectArray(vx_reference ref, vx_status *status);

2.3.1. Parameters

[REQ-SCF@5]

These functions take a vx_reference as their first parameter, and deliver a vx_some_type as their result. They all
have a second parameter, which is a pointer to a vx_status variable that shall ignored if NULL.

2.3.2. Successful operation

[REQ-SCF06]

The functions check that their reference is valid, and that the type of the reference matches the type required. If all
is good, then the pointer is returned as a pointer to the correct type. The references count is not incremented. Note
that the vx_status variable will not be updated at all, allowing any error to propagated from the previous operation.

2.3.3. Unsuccessful operation

[REQ-SCF07]

If the checks fail, then the vx_status variable will be updated with an error code only if the pointer is not NULL and
the value was initially zero, in other words, a previous error will not be over-written. An error object will be

returned.

2.4. The vxCastRefFromSomeType functions.

For example:

vx_reference vxCastRefFromImage(vx_image image);

2.4.1. Operation

[REQ-SCF08]

These functions take a vx_some_type as their parameter, and deliver a vx_reference as a result. The reference count
is not incremented. As this is a simple down-cast, no checks are done and if an invalid object was passed an invalid
object will be returned.

2.5. The vxCastRefFromSomeTypeP functions.

For example:

vx_reference *vxCastRefFromTensorP(vx_tensor *p_tensor);

6 | Chapter 2. Requirements



2.5.1. Operation

[REQ-SCF09]

These functions take a pointer to vx_some_type as their parameter, and deliver a pointer to vx_reference as a result.
As this is a simple down-cast, no checks are done and if a pointer to an invalid reference was passed then a pointer

to an invalid reference will be returned.

2.6. The vxCastRefFromSomeTypeConstP functions.

For example:

const vx_reference *vxCastRefFromTensorConstP(const vx_tensor *p_tensor);

2.6.1. Operation

[REQ-SCF10]

These functions take a pointer to const vx_some_type as their parameter, and deliver a pointer to const vx_reference
as a result. As this is a simple down-cast, no checks are done and if a pointer to an invalid reference was passed then

a pointer to an invalid reference will be returned.

2.7. Scope: The types to be covered, requirement numbering

Requirements are identified by two numbers, one from the list above (SCFxx) and one from the list below (SCTxx)

Object type to be supported Requirement number Note

array [REQ-SCTO1]

context [REQ-SCTO3] Upcast not required

convolution [REQ-SCTO2]

delay [REQ-SCT04]

distribution [REQ-SCT05]

graph [REQ-SCTO6] Upcast required only if XML or IX

extension supported

image [REQ-SCTO7]

import [REQ-SCT08] Upcast not required, downcast
required only if XML or IX supported

kernel [REQ-SCTO9] Upcast required only if XML
extension supported

lut [REQ-SCT10]

matrix [REQ-SCT11]

meta_format [REQ-SCT12] Upcast not required

node [REQ-SCT13] Upcast required only if XML

extension supported

Chapter 2. Requirements | 7



Object type to be supported Requirement number Note

object_array [REQ-SCT14]
parameter [REQ-SCT15] Upcast required only if XML
extension supported

pyramid [REQ-SCT16]

remap [REQ-SCT17]

scalar [REQ-SCT18]

tensor [REQ-SCT19]

threshold [REQ-SCT20]

user_data_object [REQ-SCT21] If vx_khr_user_data_object supported

8 | Chapter 2. Requirements



Chapter 3. Usage

Hints and cautions for usage.

3.1. Reference counting

Where a variable is being copied, use the "vxGet" form of conversion (passing a pointer to that variable), but where
a value is being modified inside an expression, i.e. the reference will be thrown away by the compiler, use the
"vxCast" form of conversion, for example:

vx_status status = VX_SUCCESS;

vx_image image = vxCreateImage(context, 1200, 600, VX_DF_IMAGE_RGB);
/* New variable, reference count will be incremented */
vx_reference ref = vxGetRefFromImage(&image, &status);

vx_object_array obj_array = vxCreateObjectArray(image, 10);

/* Don't increment the ref count of a transient object */

vx_image item5 = vxCastRefAsImage(vxGetObjectArrayItem(obj_array, 5), &status);
vxSetReferenceName(vxCastRefFromImage(item5), "my_image");

vxReleaseImage(&item5);
vxReleaseReference(&ref);
vxReleaseImage(&image);
vxReleaseObjectArray(&obj_array);

3.2. Status values

Non-zero status values are always propagated.

vx_status status = VX_SUCCESS;

vx_image good_image = vxCreateImage(context, 1200, 600, VX_DF_IMAGE_US8);
vx_image bad_image = vxCreateImage(context, 1200, 600, -1);

status = vxGetStatus(vxCastRefFromImage(bad_image));

/* New variable, reference count will be incremented */
vx_reference refl = vxGetRefFromImage(&bad_image, &status);
vx_reference ref2 = vxGetRefFromImage(&good_image, &status);

if (VX_ERROR_INVALID_FORMAT == status)
{

/* When vxGetReferenceFromImage was called, the status was not updated, neither for the invalid nor the
valid
image, because it was already non-zero. So the original bad image creation error is still there... */

}

Chapter 3. Usage | 9



	The OpenVX™ Safe Casts Extension
	Table of Contents
	Chapter 1. Purpose
	Chapter 2. Requirements
	2.1. The vxGetRefAsSomeType functions.
	2.1.1. Parameters
	2.1.2. Successful operation
	2.1.3. Unsuccessful operation

	2.2. The vxGetRefFromSomeType functions.
	2.2.1. Operation

	2.3. The vxCastRefAsSomeType functions.
	2.3.1. Parameters
	2.3.2. Successful operation
	2.3.3. Unsuccessful operation

	2.4. The vxCastRefFromSomeType functions.
	2.4.1. Operation

	2.5. The vxCastRefFromSomeTypeP functions.
	2.5.1. Operation

	2.6. The vxCastRefFromSomeTypeConstP functions.
	2.6.1. Operation

	2.7. Scope: The types to be covered, requirement numbering

	Chapter 3. Usage
	3.1. Reference counting
	3.2. Status values


