
The OpenVX
™
 Swap and Move kernel

Extension

The Khronos
®
 OpenVX Working Group, Contributor: Steve Ramm

Version 1.3.1, Mon, 02 Oct 2023 15:00:59 +0000: Git branch information not available

Table of Contents

1. OpenVX 1.3.1: SWAP and MOVE: New kernels with bidirectional parameters . 2

1.1. Purpose . 2

1.1.1. The SWAP kernel. 2

1.1.2. The MOVE kernel. 2

1.2. Example Use Cases . 2

1.3. Acknowledgements. 2

2. Requirements . 4

2.1. Enumeration constants . 4

2.2. Function definitions . 4

2.2.1. vxSwapNode - insert a SWAP node. 4

2.2.2. vxMoveNode - insert a MOVE node . 5

2.2.3. Immediate mode SWAP and MOVE . 5

2.2.4. Additional requirements and restrictions . 6

2.2.5. Performance note . 7

Copyright 2013-2023 The Khronos Group Inc.

This specification is protected by copyright laws and contains material proprietary to Khronos. Except as described

by these terms, it or any components may not be reproduced, republished, distributed, transmitted, displayed,

broadcast or otherwise exploited in any manner without the express prior written permission of Khronos.

This specification has been created under the Khronos Intellectual Property Rights Policy, which is Attachment A of

the Khronos Group Membership Agreement available at www.khronos.org/files/member_agreement.pdf. Khronos

Group grants a conditional copyright license to use and reproduce the unmodified specification for any purpose,

without fee or royalty, EXCEPT no licenses to any patent, trademark or other intellectual property rights are granted

under these terms. Parties desiring to implement the specification and make use of Khronos trademarks in relation

to that implementation, and receive reciprocal patent license protection under the Khronos IP Policy must become

Adopters and confirm the implementation as conformant under the process defined by Khronos for this

specification; see https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this

specification, including, without limitation: merchantability, fitness for a particular purpose, non-infringement of

any intellectual property, correctness, accuracy, completeness, timeliness, and reliability. Under no circumstances

will Khronos, or any of its Promoters, Contributors or Members, or their respective partners, officers, directors,

employees, agents or representatives be liable for any damages, whether direct, indirect, special or consequential

damages for lost revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos is a registered trademark, and OpenVX is a trademark of The Khronos Group Inc. OpenCL is a trademark of

Apple Inc., used under license by Khronos. All other product names, trademarks, and/or company names are used

solely for identification and belong to their respective owners.

Preface | 1

https://www.khronos.org/adopters

Chapter 1. OpenVX 1.3.1: SWAP and MOVE: New

kernels with bidirectional parameters

1.1. Purpose

Bidirectional parameters are re-introduced to OpenVX with the bidirectional parameters extension. This extension

introduces two new generic kernels that require specific support in the framework and introduce significant graph

functionality by exploiting the properties of bidirectional parameters.

1.1.1. The SWAP kernel.

The SWAP kernel has two bidirectional parameters, 'first' and 'second', and it is used to swap the data contents of

two references. The references must be of the same type, and attributes must match sufficiently that after swapping

their data consistency of meaning in the data is preserved. For the purposes of graph traversal during verification,

'first' may be regarded as an input in that if 'second' is a virtual object, undefined metadata in 'second' may be

propagated from 'first'.

Because both parameters are bidirectional, nodes with a SWAP kernel must obey the rules for execution order

determined by both of the parameter connections, for example if one of the objects connected is virtual, it must be

also connected to another node as an output.

1.1.2. The MOVE kernel.

The MOVE kernel has one bidirectional parameter, and one output parameter. It performs essentially the same

operation as the SWAP kernel, but because one parameter is an output, the graph connections allowed and the

sequence of execution of nodes is different to the SWAP kernel. After execution of the MOVE kernel, the data pointed

to by the reference connected to the bidirectional parameter is not defined.

1.2. Example Use Cases

• Move data from an image into an element of a delay or object array

• Swap data buffers of two references (useful when feeding data from one graph to another)

• A move node (expected to execute very quickly) can be used as the head node in a pipelined graph so that an

object may be dequeued very soon after enqueueing, freeing it up for new data acquisition

Move

(<1ms)

Process

Image (8ms)

Acquire image

(10ms)

Image repetition time < 11ms; without the move node it would be 18ms; the frame is ready earlier without

increasing the pipeline depth.

1.3. Acknowledgements

This specification would not be possible without the contributions from this partial list of the following individuals

from the Khronos Working Group and the companies that they represented at the time:

• Simon Barfield - ETAS (Robert Bosch GmbH)

2 | Chapter 1. OpenVX 1.3.1: SWAP and MOVE: New kernels with bidirectional parameters

• Raphael Cano - Robert Bosch GmbH

• Radhakrishna Giduthuri - Intel

• Andrew Graves - ETAS (Robert Bosch GmbH)

• Viktor Gyenes - AI Motive

• Kiriti Nagesh Gowda - AMD

• Stephen Ramm - ETAS (Robert Bosch GmbH)

• Jesse Villarreal - TI

Chapter 1. OpenVX 1.3.1: SWAP and MOVE: New kernels with bidirectional parameters | 3

Chapter 2. Requirements

2.1. Enumeration constants

[REQ-SWP01]

The following enumeration constants are defined:

enum vx_kernel_e {

 /*! \brief The data object swap kernel. (If implemented)

 * \see group_vision_function_swap

 */

 VX_KERNEL_SWAP = VX_KERNEL_BASE(VX_ID_KHRONOS, VX_LIBRARY_KHR_BASE) + 0x41,

 /*! \brief The data object move kernel. (If implemented)

 * \see group_vision_function_move

 */

 VX_KERNEL_MOVE = VX_KERNEL_BASE(VX_ID_KHRONOS, VX_LIBRARY_KHR_BASE) + 0x42,

};

2.2. Function definitions

2.2.1. vxSwapNode - insert a SWAP node

[REQ-SWP02] Insert a SWAP kernel into a graph.

vx_node vxSwapNode(vx_graph graph, vx_reference first, vx_reference second);

Parameters

• [in] graph - The reference to the graph

• [in, out] first - Reference to the first bidirectional parameter

• [in, out] second - Reference to the second bidirectional parameter

Return value

• vx_node - A node reference. Any possible errors preventing a successful creation can be checked using

vxGetStatus()

Requirements during verification and execution of the graph

[REQ-SWP03]

During graph verification, the first parameter will be treated as containing the metadata to propagate in the case

that second is a virtual data object.

[REQ-SWP04]

Both parameters must be of the same type and have the same metadata, or the graph will fail to verify.

4 | Chapter 2. Requirements

[REQ-SWP05]

After execution of the kernel, the first reference will contain data previously held in second, and vice-versa.

2.2.2. vxMoveNode - insert a MOVE node

[REQ-SWP06] Insert a MOVE kernel into a graph.

vx_node vxMoveNode(vx_graph graph, vx_reference first, vx_reference second);

Parameters

• [in] graph - The reference to the graph

• [in, out] first - Reference to the first bidirectional parameter

• [out] second - Reference to the output parameter

Return value

• vx_node - A node reference. Any possible errors preventing a successful creation can be checked using

vxGetStatus()

Requirements during verification and execution of the graph

[REQ-SWP07]

During graph verification, the first parameter will be treated as containing the metadata to propagate in the case

that second is a virtual data object.

[REQ-SWP08]

Both parameters must be of the same type and have the same metadata, or the graph will fail to verify.

[REQ-SWP09]

After execution of the kernel, the second reference will contain data previously held in first, and the data held in the

first reference is not defined.

[REQ-SWP10]

If a MOVE node has its bidirectional parameter attached to the input of another node, the graph will fail to verify;

the rule that virtual bidirectional parameters must be attached to at least one input does not apply to the MOVE

node.

2.2.3. Immediate mode SWAP and MOVE

[REQ-SWP11]

The functions vxuSwap and vxuMove are similar in signature.

vx_status vxuSwap(vx_context context, vx_reference first, vx_reference second);

vx_status vxuMove(vx_context context, vx_reference first, vx_reference second);

Chapter 2. Requirements | 5

[REQ-SWP12]

Both parameters must be valid references of the same type and have the same metadata, or the function will return

an error code.

[REQ-SWP13]

After execution of the vxuSwap function, the first reference will contain data previously held in second, and vice-

versa.

[REQ-SWP14]

After execution of the vxuMove function, the second reference will contain data previously held in first, and the data

held in first is not defined.

2.2.4. Additional requirements and restrictions

Note that from definitions elsewhere in the OpenVX specification, using the kernel VX_KERNEL_COPY may affect not

only the destination object but other related objects in the following ways:

• If the destination object has any sub-objects (for example images created from ROI or channel, tensors created

from view, etc..) then these objects will be affected as expected by the specification of the corresponding

creation function (vxCreateImageFromROI etc…).

• If the destination object is a sub-object of another parent object (for example images created from ROI or

channel, tensors created from view, etc..), then the parent object will be affected as expected by the specification

of the corresponding creation function (vxCreateImageFromROI etc…).

There are related effects and restrictions for using the kernels VX_KERNEL_SWAP and VX_KERNEL_MOVE, as

follows:

[REQ-SWP15]

For the SWAP and MOVE kernels, neither parameter may be a image or tensor created as a region of interest or

channel of another image or tensor. For example if image1 is created using vxCreateImageFromChannel, then it

may not be SWAPped with any other object, nor MOVEd to or from any other object. (Similar restrictions are implicit

in the specification of vxSwapImageHandle and vxSwapTensorHandle)

[REQ-SWP16]

For the SWAP and MOVE kernels, if either parameter has any sub-objects (for example images created from ROI or

channel, tensors created from view, etc..) then these objects will be affected as expected by the specification of the

corresponding creation function (vxCreateImageFromROI etc…).

[REQ-SWP17]

If a reference Ref1 is taken from a container object (object array or pyramid) and the container is swapped or moved

with another, then the data pointed to by Ref1 will be changed to the data of the new container. This implies that

each member of the container is swapped or moved, rather than the references stored in the containers being

swapped or moved.

[REQ-SWP18]

6 | Chapter 2. Requirements

If images or tensors match in attributes but differ in allocated memory size, then they can still be swapped, unless

they have sub-objects (created from channel, ROI, or view), in which case the operation need not be supported.

2.2.5. Performance note

For the SWAP and MOVE kernels, we do not demand that both parameters must have been created using the same

memory type. In some implementations this may result in inefficient code for swapping, and users should check

with their implementation to determine if there will be a performance penalty when swapping certain objects.

Unlike for the APIs vxSwapImageHandles and vxSwapTensorHandle, we do not demand that in the case of images

and tensors that they have been created using vxCreateImageFromHandle or vxCreateTensorFromHandle.

Implementers should consider how to make images and tensors truly swappable whether they have been created

"from handle" or not.

Usage

Users should avoid using MOVE or COPY where objects are in different memory areas (implementation-dependent).

Chapter 2. Requirements | 7

	The OpenVX™ Swap and Move kernel Extension
	Table of Contents
	Chapter 1. OpenVX 1.3.1: SWAP and MOVE: New kernels with bidirectional parameters
	1.1. Purpose
	1.1.1. The SWAP kernel.
	1.1.2. The MOVE kernel.

	1.2. Example Use Cases
	1.3. Acknowledgements

	Chapter 2. Requirements
	2.1. Enumeration constants
	2.2. Function definitions
	2.2.1. vxSwapNode - insert a SWAP node
	2.2.2. vxMoveNode - insert a MOVE node
	2.2.3. Immediate mode SWAP and MOVE
	2.2.4. Additional requirements and restrictions
	2.2.5. Performance note

