
User Target Kernel Extension
The Khronos® OpenVX Working Group, Editors: Raphael Cano, Jesse Villarreal, Lucas Weaver

Version 1.0, Tue Sep 30 2025 17:31:08: 6419f26-dirty

1 User Target Kernel Extension 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Acknowledgements . 1

1.1.3 Background . 1

1.2 Design Overview . 2

1.2.1 User Target Kernel Callbacks . 2

1.2.2 User Target Kernel Registration . 5

1.2.3 Target-side Opaque Objects . 5

1.2.3.1 Accessing data from Objects . 6

1.2.4 Target Kernel Instance Context . 6

1.2.5 Memory Allocation . 6

1.3 Kernel Callback Developer Guidelines . 8

1.3.1 create_func . 8

1.3.1.1 Thread/blocking Implications . 8

1.3.1.2 Memory Implications . 8

1.3.2 process_func . 8

1.3.2.1 Thread/blocking Implications . 8

1.3.2.2 Memory Implications . 9

1.3.3 control_func . 9

1.3.3.1 Data Object Verification Implications . 9

1.3.3.2 Thread/blocking Implications: . 9

1.3.3.3 Memory Implications . 9

1.3.4 delete_func . 9

1.3.4.1 Thread/blocking Implications . 9

1.3.4.2 Memory Implications . 10

2 Requirements 11

3 API Documentation 13

3.1 User Target Kernel Extension . 13

3.1.1 Detailed Description . 14

3.1.2 Typedef Documentation . 14

3.1.2.1 vx_object_desc . 14

3.1.2.2 vx_target_kernel . 14

3.1.2.3 vx_target_kernel_instance . 14

3.1.2.4 vx_target_kernel_f . 14

3.1.2.5 vx_target_kernel_control_f . 15

3.1.3 Enumeration Type Documentation . 16

3.1.3.1 vx_target_kernel_mem_pool_enum_e . 16

3.1.3.2 vx_target_kernel_mem_pool_type_e . 17

3.1.4 Function Documentation . 17

3.1.4.1 vxMemTargetAlloc() . 17

3.1.4.2 vxMemTargetFree() . 17

3.1.4.3 vxAddTargetKernel() . 18

3.1.4.4 vxAddTargetKernelByName() . 19

3.1.4.5 vxRemoveTargetKernel() . 19

3.1.4.6 vxRemoveTargetKernelByName() . 20

3.1.4.7 vxSetTargetKernelInstanceContext() . 20

3.1.4.8 vxGetTargetKernelInstanceContext() . 21

i

Copyright ©2013-2025 The Khronos Group Inc.

This specification is protected by copyright laws and contains material proprietary to Khronos. Except as de-
scribed by these terms, it or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos.

This specification has been created under the Khronos Intellectual Property Rights Policy, which is Attachment A of
the Khronos Group Membership Agreement available at www.khronos.org/files/member_agreement.pdf. Khronos
Group grants a conditional copyright license to use and reproduce the unmodified specification for any purpose,
without fee or royalty, EXCEPT no licenses to any patent, trademark or other intellectual property rights are granted
under these terms. Parties desiring to implement the specification and make use of Khronos trademarks in relation
to that implementation, and receive reciprocal patent license protection under the Khronos IP Policy must become
Adopters and confirm the implementation as conformant under the process defined by Khronos for this specifica-
tion; see https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied, regarding
this specification, including, without limitation: merchantability, fitness for a particular purpose, non-infringement of
any intellectual property, correctness, accuracy, completeness, timeliness, and reliability. Under no circumstances
will Khronos, or any of its Promoters, Contributors or Members, or their respective partners, officers, directors,
employees, agents or representatives be liable for any damages, whether direct, indirect, special or consequential
damages for lost revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos is a registered trademark, and OpenVX is a trademark of The Khronos Group Inc. OpenCL is a
trademark of Apple Inc., used under license by Khronos. All other product names, trademarks, and/or company
names are used solely for identification and belong to their respective owners.

Chapter 1

User Target Kernel Extension

1.1 Introduction

1.1.1 Purpose

This document details an extension to any OpenVX version from 1.1 to 1.3, and references some APIs and symbols
that may be found in those APIs: https://www.khronos.org/registry/OpenVX/.

This extension is intended to define support for the user kernels which can be executed on remote targets in the
system, not just the host core.

1.1.2 Acknowledgements

This specification would not be possible without the contributions from this partial list of the following individuals
from the Khronos Working Group and the companies that they represented at the time:

• Kiriti Nagesh Gowda - AMD

• Raphael Cano - Robert Bosch GmbH

• Jesse Villarreal - TI

• Isaac Wong - Ambarella International LP

• Viktor Gyenes - AI Motive

1.1.3 Background

The main OpenVX specification includes APIs to support User Kernels, which enables users to plugin their
own kernels. However, this support is limited to user kernels which are executed on the host core, including host
core calls into an API such as OpenCL/Vulkan/OpenGL to dispatch to a hardware accelerator such as a GPU.

Some systems include a variety of heterogeneous CPUs and hardware accelerators which can be leveraged by
nodes in OpenVX graphs. In such systems, the host can offload processing to dedicated hardware targets in the
system, freeing up cycles on the host processor for other tasks. This extension provides support for users to add
kernels on other targets in such systems.

https://www.khronos.org/registry/OpenVX/
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#sec_user_kernels

2 User Target Kernel Extension

The diagram below shows an example system which has several targets where user kernels can run. The left side of
this diagram can make use of the existing user kernel functionality from the main specification, where the host CPU
can either run CPU-based kernels, or potentially run an OpenCL kernel which can offload to a GPU, for example.
The right side of this diagram shows how OpenVX nodes can be executed on remote CPUs. These remote CPUs
can execute kernels which can run algorithms or host drivers to hardware accelerators.

graph

Node 1 Node 2 Node 3 Node 4

OS

OpenVX runtime

HW accelerator 2HW accelerator 1

CPUs

remote OS remote OS

CPUs

remote CPU remote CPU

inter processors callsdriver calls

enabled by user kernels from the current spec enabled by the user target kernel extension

CPU based algo

CPU based algo

Figure 1.1 Heterogeneous SoC Model

For this purpose, a new set of "Target Kernel" APIs has been designed.

1.2 Design Overview

1.2.1 User Target Kernel Callbacks

This extension builds on the existing pattern from the OpenVX specification. In the main specification, the vxAdd←↩

UserKernel API is defined, which allows the user to register the kernel (by name and enum) to the framework,
along with four kernel callback functions which are compiled and linked to run on the host processor:

• init: Kernel initialization function

• validate: Validation function, which validates parameters to the kernel

• func_ptr: Main processing function which is called each time the graph is executed.

• deinit: Kernel deinitialization function

This extension also leverages this same function to register the kernel and host-side callbacks on the host CPU,
however, if the user intends this kernel to execute on a remote target instead of the host CPU, the user should pass
a NULL pointer to the func_ptr callback pointer. This signals the framework that this kernel is expected to also be
registered on a remote CPU in the system using the vxAddTargetKernel or vxAddTargetKernelByName APIs, which
registers up to four additional target-side callbacks:

https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxAddUserKernel
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxAddUserKernel

1.2 Design Overview 3

• create_func: Called during graph verification, to perform any local memory setup or one-time configuration.

• process_func: Main processing function which is called each time the graph is executed.

• control_func: Can optionally be called asynchronously via vxNodeSendCommand from the application.

• delete_func: Called during graph release, to release local memory or tear-down any local setup.

The following diagram depicts these two sets of callbacks: one for the host, and one for the target. The reason for
the separation of these callbacks and associated registration functions is due to the fact that the target callbacks
typically are linked into the executable binaries of one or more remote core firmwares separate from the host
callbacks.

Target CPUHost CPU

- create_func()
- process_func()
- control_func()
- delete_func()

Application Interface

Kernel Plugin InterfaceKernel Plugin Interface

- init()
- validate()
- func_ptr() = NULL
- deinit()

OpenVX Framework
(Target)

OpenVX Framework
(Host)

Application

Kernel Plugin
Callbacks

Kernel Registration
Functions

vxAddUserKernel() vxAddTargetKernel()

Figure 1.2 User Kernel Callbacks

During graph verification, before the creation of individual nodes on the remote core(s) (see the relevant callbacks),
the host may validate the kernel parameters used to create each node. For this validation, the host may need to
access the complete set of OpenVX objects and this can be done within the original user node validate callback
which resides on the host.

The following call sequence shows the relative interaction between the host application and the target kernel
callbacks:

https://registry.khronos.org/OpenVX/extensions/vx_khr_node_send_command/1.0/vx_khr_node_send_command_1_0_0/vx_khr_node_send_command_1_0_0.html#vxNodeSendCommand

4 User Target Kernel Extension

client(Application)
Host user Kernel

Callback
OpenVX

Framework
Target user Kernel

Callback

Kernels Loaded

Graph Created

vxVerifyGraph(graph)

for each kernel {

vx_kernel_validate_f(node, ...)

vx_status

}

for each kernel {

vx_kernel_initialize_f(node, ...)

vx_status

}

for each kernel {

vx_target_kernel_f create_func(...)

vx_status

}

vx_status

Ready to Process or Send Control Commands

send node command asyncronously

vxNodeSendCommand(graph, ...)

vx_target_kernel_control_f control_func(...)

vx_status

vx_status

process graph

vxProcessGraph(graph)

for each kernel {

vx_target_kernel_f process_func(...)

vx_status

}

vx_status

Graphs Executed

vxReleaseGraph(&graph)

for each kernel {

vx_target_kernel_f delete_func(...)

vx_status

vxkernel_deinitialize_f(node, ...)

vx_status

}

vx_status

Figure 1.3 Sequence of Host/Target Kernel Interaction

1.2 Design Overview 5

1.2.2 User Target Kernel Registration

As mentioned earlier, the vxAddUserKernel function requires both a kernel name and a kernel enumeration
on the host. The enumeration may be statically defined, as in the case for the standard OpenVX vision kernels,
or it may be dynamically allocated using vxAllocateUserKernelId. These two ways of obtaining kernel
enumerations are the reason why this extension provides two separate options for registering user target kernels as
indicated below:

• vxAddTargetKernel : Can be used when the kernel enumeration is known on the target CPU at the time of
target kernel registration (for example, if it is statically assigned at build time)

• vxAddTargetKernelByName : Should be used when the kernel enumeration is NOT known on the target CPU
at the time of target kernel registration (for example, if it is dynamically assigned at run time on the host via
vxAllocateUserKernelId).

Kernel names are usually statically defined, so technically vxAddTargetKernelByName can also be used instead
of vxAddTargetKernel even if the kernel enumeration is known on the target CPU. However, both functions are
available in case a framework or kernel implementation is more optimal using vxAddTargetKernel when it can.

1.2.3 Target-side Opaque Objects

As illustrated in the Heterogeneous SoC Model from the "Background" section, the host and target model requires
sharing only a minimal set of data to allow the remote kernel to access essential information, such as:

• Inputs

• Outputs

• Kernel parameters

• Other relevant metadata

While it is technically possible to exchange complete set of OpenVX objects between the host and targets, doing so
may significantly increase memory usage and result in unnecessary data transfer. To address this, this extension
prioritizes minimizing the memory footprint by exchanging only the essential subset of information:

• vx_target_kernel : Opaque target kernel object (target-side equivalent of vx_kernel object)

– Used when adding and removing the target kernel

• vx_target_kernel_instance : Opaque target kernel instance passed to the kernel callbacks (target-side equiv-
alent of vx_node object)

– Used, if needed, to set and get the kernel instance context that can be shared between callbacks
(described below)

• vx_object_desc : Opaque target input and output data object information (target-side equivalent to vx_←↩

reference object for data objects)

– Used to access node parameters within the target callbacks

– Must be shared between the host and (possibly multiple) remote cores in a manner that prevents con-
current read/write access

• The number of parameters.

• And some additional optional data.

These objects are designed to contain just enough data to enable the invocation and execution of the four callback
functions described earlier, specifically on a dedicated target. As a trade-off, the target kernel will not have access
to the full set of OpenVX APIs. However, this is not required, since kernel implementations do not interact with the
graph or other abstract objects.

https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxAddUserKernel
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxAllocateUserKernelId
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxAllocateUserKernelId

6 User Target Kernel Extension

1.2.3.1 Accessing data from Objects

The actual contents of vx_target_kernel_instance and vx_object_desc, and the mechanism by which the writers of
the user target kernels can access required information (such as image width/height, buffer addresses, etc) are not
specified in this extension. These details are implementation dependent. The rationale for this are as follows:

• The priority for this extension is a lightweight implementation on targets to optimize for memory and speed.
Therefore, reusing the existing data object access functions, or creating target-side equivalents may violate
this priority.

• Unlike host-only user kernels, target kernels are more often then not, vendor specific. For example, they
include categories of algorithms optimized for remote targets like specific DSPs, or hardware drivers specific
to vendors' IP. Therefore, portability of the actual user target kernels is not as high of a priority for this extension
as compared to remote core code size.

Therefore, this extension focuses on providing the high level mechanism of registration functions for specific call-
backs, saving and accessing context between callbacks, and memory allocations specific for the target.

1.2.4 Target Kernel Instance Context

In many cases, there may be some context information that needs to be shared between the callbacks of a kernel.
For example, if a kernel instance needs some scratch memory, the create callback can allocate it, the process
callback can utilize it, and the delete callback can free it. Additionally, there may be some parameters that are
calculated or setup in the create callback, and are tracked and updated in the process callback. This context is
kernel-specific, typically using a custom structure that can contain all the pointers, sizes, and parameters that needs
to be maintained and shared between the callbacks. Once a buffer of the size of this context structure is allocated
in the create callback, it can be initialized and then finally registered and retrieved using the following calls:

• vxSetTargetKernelInstanceContext typically called from the create callback to save off the pointer to an in-
stance context that can be retrieved from other callbacks

• vxGetTargetKernelInstanceContext called from kernel callbacks to retrieve the kernel instance context for
reading or updating

1.2.5 Memory Allocation

OpenVX does not dictate any requirements on memory allocation methods or the layout of opaque memory objects
and it does not dictate byte packing or alignment for structures on architectures. This extension introduces a
feature that allows users to implement specific functions for dedicated hardware accelerators or CPUs, which may

1.2 Design Overview 7

run remotely on separate operating systems and hardware infrastructures. In such cases, it can be beneficial to
allocate "local" memory dedicated to these subsystems.

CPU1

L3 RAM

CPU2 CPU3

CPU1 L2 RAM CPU2 L2 RAM CPU3 L2 RAM

Shared CPU1 Scratch CPU2 Scratch CPU3 Scratch

External DDRAM

Shared Cached Shared Noncached CPU1 Persistent CPU2 Persistent CPU3 Persistent

Figure 1.4 Example SoC Memory Hierarchy Diagram

Therefore, it is necessary to add a standard generic OpenVX memory allocator to support new types of memory
pools tailored for target-specific allocations. This enables efficient and flexible memory management for remote
cores, ensuring that each subsystem can utilize memory resources optimized for its unique requirements. This
extension introduces a memory allocator function, vxMemTargetAlloc, which is intended for exclusive use by the
user node. It allows the allocation of memory blocks of specific sizes from designated memory pools.

This extension only defines a single generic enumeration to be used with this allocator: VX_MEM_POOL_ANY.
Since the specific available memory pools in a system are highly system specific, it is expected that a vendor may
define extension memory pool enumerations which can be used by user kernels implemented for their systems.

For example, the following table could be an example of a vendor extension list of memory pools based on the
arbitrary example given in the above diagram: Example SoC Memory Hierarchy Diagram

Note

This table is just an example for how a specific system may choose to define different mempools.

Mempool Categories Mempool Name Comments

Standard/Portable Memory Pool VX_MEM_POOL_ANY Unspecified memory pool

CPU-Dedicated Memory Pools
(memory mapped to specific cores
they are dedicated to)

XYZ_MEM_POOL_L2 Memory pool associated with the
L2 RAM of a specific CPU core

XYZ_MEM_POOL_L3_SCRATCH Scratchpad memory in L3 RAM,
typically used for temporary or
high-speed data storage

XYZ_MEM_POOL_EXT_←↩

PERSISTENT
External persistent memory pool
for long-term data storage

Remote/Shared Memory Pools
(Memory pools shared across
remote cores or systems)

XYZ_MEM_POOL_L3_SHARED Shared L3 cache memory pool ac-
cessible by remote cores/systems

XYZ_MEM_POOL_EXT_←↩

SHARED_CACHED
External shared memory pool with
caching enabled

XYZ_MEM_POOL_P_EXT_←↩

SHARED_NONCACHED
External shared memory pool with
caching disabled

During release graph, the memory allocated on each remote core must be freed via the vxMemTargetFree within
the corresponding node delete_func callback.

8 User Target Kernel Extension

1.3 Kernel Callback Developer Guidelines

When a framework includes user callbacks, there are usually assumptions that the framework makes about how
those callbacks are implemented. OpenVX is no exception. The following sections contain guidelines and assump-
tions that User Target Kernel callback implementers should follow for proper usage when using both the default
behavior of the OpenVX framework as well as some additional considerations when using graph or node level
timeouts.

1.3.1 create_func

1.3.1.1 Thread/blocking Implications

The vxVerifyGraph function is a blocking function which runs to completion before returning. It calls the
create_func callback for each node and then doesn't return until all node create function callbacks return. There-
fore, the following guidelines shall be followed:

• There shall not be any dependency on another node's create callback since it may not have executed yet in
the sequence of calls to each node.

• There shall not be any dependency on some action that the application does after returning from vx←↩

VerifyGraph. For example, a blocking call called from within the create_func will result in blocking the
full vxVerifyGraph, potentially causing a deadlock if the create_func is waiting for further action from
the same thread in the application which called vxVerifyGraph, or from another node's create function.

1.3.1.2 Memory Implications

If there is some context which needs to be accessed for the other target-side callbacks for a given kernel, it should
be created in the create_func since memory allocations are not allowed in any callback except the create_func
callback.

• The context pointer can be allocated using vxMemTargetAlloc. This allocator allows the user to allocate
memory on the remote core where the kernel will run and will be seen by this specific kernel instance only.
The following is an example of the allocation of the vxCannyParams data structure context:
vxCannyParams prms = vxMemTargetAlloc(sizeof(vxCannyParams), VX_MEM_POOL_ANY);

• The allocated context shall be added to the target kernel instance using the vxSetTargetKernelInstanceContext
function (so the other callbacks can retrieve it via vxGetTargetKernelInstanceContext. For example for the
canny edge parameters:
vx_status status = vxSetTargetKernelInstanceContext(kernel, prms, sizeof(vxCannyParams));

• If the node instance needs additional memory, then it should allocate it in the create_func callback using
the vxMemTargetAlloc with the appropriate memory pool needed based on what is made available in the
system by the vendor. Then the corresponding pointers and sizes can be added to the context structure to
be accessed by the other callbacks.

1.3.2 process_func

1.3.2.1 Thread/blocking Implications

The process_func callback is called for each node in order of graph dependency. Therefore, upon returning from a
process function, the framework shall assume that the operations are complete and the inputs are no longer being
read, and the outputs are no longer being updated. Therefore the process function should ensure completion of the
job before returning.

https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxVerifyGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxVerifyGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxVerifyGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxVerifyGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxVerifyGraph

1.3 Kernel Callback Developer Guidelines 9

1.3.2.2 Memory Implications

• No memory allocations should be made in the process_func callback. Any memory allocations should have
been created in the create_func (see above).

• If there is some context which needs to be accessed/updated from the create_func callback, it can be re-
trieved from the kernel instance using the vxGetTargetKernelInstanceContext function:
status = vxGetTargetKernelInstanceContext(kernel, (void **)&prms, &size);

1.3.3 control_func

1.3.3.1 Data Object Verification Implications

Since the objects being used with the control callback are not necessarily node parameters, the parameters are not
subject to the validate callback checks being done during the call to vxVerifyGraph. Therefore, if an object is
to be used within a control callback, it is necessary for the control callback (or some other mechanism within the
application, etc) to perform validation of the parameters being used within the callback.

1.3.3.2 Thread/blocking Implications:

The control_func callback (if implemented) is triggered from the application by calling vxNodeSendCommand.
The call to vxNodeSendCommand is blocked until the target can complete execution of the corresponding
control_func callback.

Note

Since the call to vxNodeSendCommand is made asynchronous to the process_func, there is no guarantee
on the order or exact time the command will get executed (i.e. it could get executed a few frames after it was
called depending on the implementation).

1.3.3.3 Memory Implications

• No memory allocations should happen in the control_func callback. Any memory allocations should have
been created in the create_func (see above).

• If there is some context which needs to be accessed/updated from the create_func callback, it can be re-
trieved from the kernel instance using the vxGetTargetKernelInstanceContext function:
status = vxGetTargetKernelInstanceContext(kernel, (void **)&prms, &size);

• The control_func callback (if implemented) should only be called after vxVerifyGraph and before vx←↩

ReleaseGraph, since it may need to access the kernel instance context, which only exists in the time
between these two calls.

1.3.4 delete_func

1.3.4.1 Thread/blocking Implications

The vxReleaseGraph function is a blocking function which runs to completion before returning. It calls the
delete_func callback for each node one by one (sequentially) and then doesn't return until all node delete function
callbacks return. Therefore, the following guidelines shall be followed:

• There shall not be any dependency on another node's delete function since it may not have executed yet in
the sequence of calls to each node.

• There shall not be any dependency on some action that the application does after returning from vx←↩

ReleaseGraph. For example, a blocking call called from within the delete_func will result in blocking the
full vxReleaseGraph, potentially causing a deadlock if the delete_func is waiting for further action from
the same thread in the application which called vxReleaseGraph, or from another node's delete function.

https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxVerifyGraph
https://registry.khronos.org/OpenVX/extensions/vx_khr_node_send_command/1.0/vx_khr_node_send_command_1_0_0/vx_khr_node_send_command_1_0_0.html#vxNodeSendCommand
https://registry.khronos.org/OpenVX/extensions/vx_khr_node_send_command/1.0/vx_khr_node_send_command_1_0_0/vx_khr_node_send_command_1_0_0.html#vxNodeSendCommand
https://registry.khronos.org/OpenVX/extensions/vx_khr_node_send_command/1.0/vx_khr_node_send_command_1_0_0/vx_khr_node_send_command_1_0_0.html#vxNodeSendCommand
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxVerifyGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxReleaseGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxReleaseGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxReleaseGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxReleaseGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxReleaseGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxReleaseGraph
https://registry.khronos.org/OpenVX/specs/1.3_08Aug2019/html/OpenVX_Specification_1_3.html#vxReleaseGraph

10 User Target Kernel Extension

1.3.4.2 Memory Implications

All memory buffers allocated during the create_func should be freed in the delete_func:

• If there is some context which was allocated in the create_func callback, it can be retrieved from the kernel
instance using the vxGetTargetKernelInstanceContext function:
status = vxGetTargetKernelInstanceContext(kernel, (void **)&prms, &size);

• If the kernel instance context included pointers/sizes to additional scratch or persistent memory allocated in
the create_func callback, it should be freed in the delete_func callback using the vxMemTargetFree function
with the dedicated mempool.

• If the create_func allocated kernel instance context, it should be freed from the kernel instance using the
vxMemTargetFree function:
vxMemTargetFree(prms, sizeof(vxCannyParams), VX_MEM_POOL_ANY);

Chapter 2

Requirements

Global VX_MEM_POOL_ANY

[REQ-USERKERNEL-01]: VX_MEM_POOL_ANY

Global vx_object_desc

[REQ-USERKERNEL-02]: vx_object_desc

Global vx_target_kernel

[REQ-USERKERNEL-03]: vx_target_kernel

Global vx_target_kernel_control_f)(vx_target_kernel_instance kernel, vx_uint32 node_cmd_id,
vx_object_desc obj_desc[], vx_uint16 num_params, void ∗priv_arg)

[REQ-USERKERNEL-08]: vx_target_kernel_control_f

Global vx_target_kernel_f)(vx_target_kernel_instance kernel, vx_object_desc obj_desc[], vx_uint16 num←↩

_params, void ∗priv_arg)

[REQ-USERKERNEL-07]: vx_target_kernel_f

Global vx_target_kernel_instance

[REQ-USERKERNEL-04]: vx_target_kernel_instance

Global vxAddTargetKernel (vx_enum kernel_id, const vx_char ∗target_name, vx_target_kernel_f process←↩

_func, vx_target_kernel_f create_func, vx_target_kernel_f delete_func, vx_target_kernel_control_f
control_func, void ∗priv_arg)

[REQ-USERKERNEL-09]: vxAddTargetKernel

Global vxAddTargetKernelByName (const vx_char ∗kernel_name, const vx_char ∗target_name,
vx_target_kernel_f process_func, vx_target_kernel_f create_func, vx_target_kernel_f delete_func,
vx_target_kernel_control_f control_func, void ∗priv_arg)

[REQ-USERKERNEL-10]: vxAddTargetKernelByName

Global vxGetTargetKernelInstanceContext (vx_target_kernel_instance target_kernel_instance, void
∗∗kernel_context, vx_uint32 ∗kernel_context_size)

[REQ-USERKERNEL-14]: vxGetTargetKernelInstanceContext

Global vxMemTargetAlloc (vx_uint32 size, vx_enum mem_pool)

[REQ-USERKERNEL-05]: vxMemTargetAlloc

12 Requirements

Global vxMemTargetFree (void ∗ptr, vx_uint32 size, vx_enum mem_pool)

[REQ-USERKERNEL-06]: vxMemTargetFree

Global vxRemoveTargetKernel (vx_target_kernel target_kernel)

[REQ-USERKERNEL-11]: vxRemoveTargetKernel

Global vxRemoveTargetKernelByName (const vx_char ∗kernel_name, const vx_char ∗target_name)

[REQ-USERKERNEL-12]: vxRemoveTargetKernelByName

Global vxSetTargetKernelInstanceContext (vx_target_kernel_instance target_kernel_instance, void
∗kernel_context, vx_uint32 kernel_context_size)

[REQ-USERKERNEL-13]: vxSetTargetKernelInstanceContext

Chapter 3

API Documentation

3.1 User Target Kernel Extension

Typedefs

• typedef struct _vx_object_desc ∗ vx_object_desc
• typedef struct _vx_target_kernel ∗ vx_target_kernel
• typedef struct _vx_target_kernel_instance ∗ vx_target_kernel_instance
• typedef vx_status(∗ vx_target_kernel_f) (vx_target_kernel_instance kernel, vx_object_desc obj_desc[], vx←↩

_uint16 num_params, void ∗priv_arg)
• typedef vx_status(∗ vx_target_kernel_control_f) (vx_target_kernel_instance kernel, vx_uint32 node_cmd_id,

vx_object_desc obj_desc[], vx_uint16 num_params, void ∗priv_arg)

Enumerations

• enum vx_target_kernel_mem_pool_enum_e
• enum vx_target_kernel_mem_pool_type_e

Functions

• void ∗ vxMemTargetAlloc (vx_uint32 size, vx_enum mem_pool)
• void vxMemTargetFree (void ∗ptr, vx_uint32 size, vx_enum mem_pool)
• vx_target_kernel vxAddTargetKernel (vx_enum kernel_id, const vx_char ∗target_name, vx_target_kernel_f

process_func, vx_target_kernel_f create_func, vx_target_kernel_f delete_func, vx_target_kernel_control_f
control_func, void ∗priv_arg)

• vx_target_kernel vxAddTargetKernelByName (const vx_char ∗kernel_name, const vx_char ∗target_←↩

name, vx_target_kernel_f process_func, vx_target_kernel_f create_func, vx_target_kernel_f delete_func,
vx_target_kernel_control_f control_func, void ∗priv_arg)

• vx_status vxRemoveTargetKernel (vx_target_kernel target_kernel)
• vx_status vxRemoveTargetKernelByName (const vx_char ∗kernel_name, const vx_char ∗target_name)
• vx_status vxSetTargetKernelInstanceContext (vx_target_kernel_instance target_kernel_instance, void
∗kernel_context, vx_uint32 kernel_context_size)

• vx_status vxGetTargetKernelInstanceContext (vx_target_kernel_instance target_kernel_instance, void
∗∗kernel_context, vx_uint32 ∗kernel_context_size)

14 API Documentation

3.1.1 Detailed Description

This section lists the APIs required for User Target Kernels.

3.1.2 Typedef Documentation

3.1.2.1 vx_object_desc

typedef struct _vx_object_desc∗ vx_object_desc

A generic opaque reference that encapsulates all data necessary for node execution on a target hardware.

the object must be shared between the host and (possibly multiple) remote cores in a manner that prevents concur-
rent read/write access

Requirement [REQ-USERKERNEL-02]: vx_object_desc

Definition at line 65 of file vx_khr_target_kernel.h.

3.1.2.2 vx_target_kernel

typedef struct _vx_target_kernel∗ vx_target_kernel

Handle to kernel on a target.

Requirement [REQ-USERKERNEL-03]: vx_target_kernel

Definition at line 73 of file vx_khr_target_kernel.h.

3.1.2.3 vx_target_kernel_instance

typedef struct _vx_target_kernel_instance∗ vx_target_kernel_instance

Handle to instance of a kernel on a target.

Requirement [REQ-USERKERNEL-04]: vx_target_kernel_instance

Definition at line 80 of file vx_khr_target_kernel.h.

3.1.2.4 vx_target_kernel_f

typedef vx_status(∗ vx_target_kernel_f) (vx_target_kernel_instance kernel, vx_object_desc

obj_desc[], vx_uint16 num_params, void ∗priv_arg)

The target kernel callbacks prototype.

For create_func, delete_func, and process_func callbacks 'obj_desc' points to array of data object descriptor pa-
rameters

3.1 User Target Kernel Extension 15

Parameters

in kernel The kernel for which the callback is called
in obj_desc Object descriptor passed as input to this callback

in num_params valid entries in object descriptor (obj_desc) array

in priv_arg additional private argument passed to the callback

Returns

A vx_status_e enumeration.

Return values

VX_SUCCESS No errors; any other value indicates failure.

Requirement [REQ-USERKERNEL-07]: vx_target_kernel_f

Definition at line 134 of file vx_khr_target_kernel.h.

3.1.2.5 vx_target_kernel_control_f

typedef vx_status(∗ vx_target_kernel_control_f) (vx_target_kernel_instance kernel, vx_uint32

node_cmd_id, vx_object_desc obj_desc[], vx_uint16 num_params, void ∗priv_arg)

The target kernel callback for control command.

Used for control_func, 'obj_desc' points to array of objects descriptors for control parameter. It could be any vx_←↩

(object)

Parameters

in kernel The kernel for which the callback is called
in node_cmd←↩

_id
Command ID to be processed in the given node

in obj_desc Object descriptor passed as input to this callback

in num_params valid entries in object descriptor (obj_desc) array

in priv_arg additional private argument passed to the callback

Returns

A vx_status_e enumeration.

Return values

VX_SUCCESS No errors; any other value indicates failure.

Requirement [REQ-USERKERNEL-08]: vx_target_kernel_control_f

Definition at line 158 of file vx_khr_target_kernel.h.

16 API Documentation

3.1.3 Enumeration Type Documentation

3.1.3.1 vx_target_kernel_mem_pool_enum_e

enum vx_target_kernel_mem_pool_enum_e

Extra enums.

3.1 User Target Kernel Extension 17

Enumerator

VX_ENUM_MEM_POOL Memory pool type enumeration.

Definition at line 36 of file vx_khr_target_kernel.h.

3.1.3.2 vx_target_kernel_mem_pool_type_e

enum vx_target_kernel_mem_pool_type_e

Type of memory pool.

See vxMemTargetAlloc and vxMemTargetFree

Enumerator

VX_MEM_POOL_ANY Allocate memory in any memory pool.

Requirement [REQ-USERKERNEL-01]: VX_MEM_POOL_ANY

Definition at line 47 of file vx_khr_target_kernel.h.

3.1.4 Function Documentation

3.1.4.1 vxMemTargetAlloc()

void ∗ vxMemTargetAlloc (

vx_uint32 size,

vx_enum mem_pool)

Allocates memory of given size in the specified memory pool on a target.

Parameters

in size size of the memory to be allocated

in mem_pool dedicated memory pool to allocate from

See also

vx_target_kernel_mem_pool_type_e

memory allocator function, which is intended for exclusive use by the user node. It allows the allocation of memory
blocks of specific sizes from designated memory pools. The memory allocation should happen during the node
create phase

Returns

Pointer to the allocated memory

Requirement [REQ-USERKERNEL-05]: vxMemTargetAlloc

3.1.4.2 vxMemTargetFree()

void vxMemTargetFree (

void ∗ ptr,

vx_uint32 size,

vx_enum mem_pool)

Frees already allocated memory.

18 API Documentation

Parameters

in ptr Pointer to the memory

in size size of the memory to be freed

in mem_pool Memory pool from which the memory was allocated

See also

vx_target_kernel_mem_pool_type_e

During release graph, the memory allocated on each remote core must be freed by the corresponding node during
the node delete phase.

Requirement [REQ-USERKERNEL-06]: vxMemTargetFree

3.1.4.3 vxAddTargetKernel()

vx_target_kernel vxAddTargetKernel (

vx_enum kernel_id,

const vx_char ∗ target_name,

vx_target_kernel_f process_func,

vx_target_kernel_f create_func,

vx_target_kernel_f delete_func,

vx_target_kernel_control_f control_func,

void ∗ priv_arg)

Allows users to add native kernels implementation to specific targets.

This is different from vxAddUserKernel() in that this is called on the target CPU and it allows users to implement
plugin specific kernels An equivalent vxAddUserKernel is typically called to pair the target kernel with OpenVX user
kernel.

Same as vxAddTargetKernelByName except that it take a kernel_id as input instead of a string name

Parameters

in kernel_id Unique identifier for the kernel, based on the vx_kernel_e enumeration

in target_name Name of the target

in process_func Function pointer for the kernel processing function

in create_func Function pointer for the kernel creation function

in delete_func Function pointer for the kernel deletion function

in control_func Function pointer for the kernel control function

in priv_arg Private argument passed to the kernel

Returns

A target kernel reference.

Requirement [REQ-USERKERNEL-09]: vxAddTargetKernel

3.1 User Target Kernel Extension 19

3.1.4.4 vxAddTargetKernelByName()

vx_target_kernel vxAddTargetKernelByName (

const vx_char ∗ kernel_name,

const vx_char ∗ target_name,

vx_target_kernel_f process_func,

vx_target_kernel_f create_func,

vx_target_kernel_f delete_func,

vx_target_kernel_control_f control_func,

void ∗ priv_arg)

Allows users to add native kernels implementation to specific targets.

This is different from vxAddUserKernel() in that this is called on the target CPU and it allows users to implement
plugin specific kernels An equivalent vxAddUserKernel is typically called to pair the target kernel with OpenVX user
kernel.

Same as vxAddTargetKernel except that it take a string name as input instead of kernel_id

Important Note: The user must ensure all kernel names are unique on a given core.

Parameters

in kernel_name Name of the target kernel

in target_name Name of the target

in process_func Function pointer for the kernel processing function

in create_func Function pointer for the kernel creation function

in delete_func Function pointer for the kernel deletion function

in control_func Function pointer for the kernel control function

in priv_arg Private argument passed to the kernel

Returns

A target kernel reference.

Requirement [REQ-USERKERNEL-10]: vxAddTargetKernelByName

3.1.4.5 vxRemoveTargetKernel()

vx_status vxRemoveTargetKernel (

vx_target_kernel target_kernel)

Allows users to remove a user kernel.

Parameters

in target_kernel Handle to the target kernel to be removed

Returns

A vx_status_e enumeration.

20 API Documentation

Return values

VX_SUCCESS No errors; any other value indicates failure.

Requirement [REQ-USERKERNEL-11]: vxRemoveTargetKernel

3.1.4.6 vxRemoveTargetKernelByName()

vx_status vxRemoveTargetKernelByName (

const vx_char ∗ kernel_name,

const vx_char ∗ target_name)

Allows users to remove a user kernel from a specific target by providing a kernel name and a target name.

Parameters

in kernel_name Name of the target kernel

in target_name Name of the target

Returns

A vx_status_e enumeration.

Return values

VX_SUCCESS No errors; any other value indicates failure.

Requirement [REQ-USERKERNEL-12]: vxRemoveTargetKernelByName

3.1.4.7 vxSetTargetKernelInstanceContext()

vx_status vxSetTargetKernelInstanceContext (

vx_target_kernel_instance target_kernel_instance,

void ∗ kernel_context,

vx_uint32 kernel_context_size)

Associate a kernel context or handle with a target kernel instance Typically set by the kernel function during the
node create phase.

The kernel context is typically a buffer containing a kernel specific data structure which may include pointers to
locally allocated memory and/or parameters that need to be shared between kernel callbacks.

Parameters

in target_kernel_instance Target Kernel Instance

in kernel_context Pointer to the kernel context to be set
in kernel_context_size Size of the kernel context

Returns

A vx_status_e enumeration.

3.1 User Target Kernel Extension 21

Return values

VX_SUCCESS No errors; any other value indicates failure.

Requirement [REQ-USERKERNEL-13]: vxSetTargetKernelInstanceContext

3.1.4.8 vxGetTargetKernelInstanceContext()

vx_status vxGetTargetKernelInstanceContext (

vx_target_kernel_instance target_kernel_instance,

void ∗∗ kernel_context,

vx_uint32 ∗ kernel_context_size)

Get a kernel context or handle with a target kernel instance Typically used by the kernel function during run, control,
delete phases.

The kernel context is typically a buffer containing a kernel specific data structure which may include pointers to
locally allocated memory and/or parameters that need to be shared between kernel callbacks.

Parameters

in target_kernel_instance Handle to the target kernel instance from which to retrieve the context

out kernel_context Pointer to the kernel context to be retrieved
out kernel_context_size Size of the kernel context

Returns

A vx_status_e enumeration.

Return values

VX_SUCCESS No errors; any other value indicates failure.

Requirement [REQ-USERKERNEL-14]: vxGetTargetKernelInstanceContext

22 API Documentation

Index

Requirements, 11

User Target Kernel Extension, 1, 13
VX_ENUM_MEM_POOL, 17
VX_MEM_POOL_ANY, 17
vx_object_desc, 14
vx_target_kernel, 14
vx_target_kernel_control_f, 15
vx_target_kernel_f, 14
vx_target_kernel_instance, 14
vx_target_kernel_mem_pool_enum_e, 16
vx_target_kernel_mem_pool_type_e, 17
vxAddTargetKernel, 18
vxAddTargetKernelByName, 18
vxGetTargetKernelInstanceContext, 21
vxMemTargetAlloc, 17
vxMemTargetFree, 17
vxRemoveTargetKernel, 19
vxRemoveTargetKernelByName, 20
vxSetTargetKernelInstanceContext, 20

VX_ENUM_MEM_POOL
User Target Kernel Extension, 17

VX_MEM_POOL_ANY
User Target Kernel Extension, 17

vx_object_desc
User Target Kernel Extension, 14

vx_target_kernel
User Target Kernel Extension, 14

vx_target_kernel_control_f
User Target Kernel Extension, 15

vx_target_kernel_f
User Target Kernel Extension, 14

vx_target_kernel_instance
User Target Kernel Extension, 14

vx_target_kernel_mem_pool_enum_e
User Target Kernel Extension, 16

vx_target_kernel_mem_pool_type_e
User Target Kernel Extension, 17

vxAddTargetKernel
User Target Kernel Extension, 18

vxAddTargetKernelByName
User Target Kernel Extension, 18

vxGetTargetKernelInstanceContext
User Target Kernel Extension, 21

vxMemTargetAlloc
User Target Kernel Extension, 17

vxMemTargetFree
User Target Kernel Extension, 17

vxRemoveTargetKernel

User Target Kernel Extension, 19
vxRemoveTargetKernelByName

User Target Kernel Extension, 20
vxSetTargetKernelInstanceContext

User Target Kernel Extension, 20

	1 User Target Kernel Extension
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Acknowledgements
	1.1.3 Background

	1.2 Design Overview
	1.2.1 User Target Kernel Callbacks
	1.2.2 User Target Kernel Registration
	1.2.3 Target-side Opaque Objects
	1.2.3.1 Accessing data from Objects

	1.2.4 Target Kernel Instance Context
	1.2.5 Memory Allocation

	1.3 Kernel Callback Developer Guidelines
	1.3.1 create_func
	1.3.1.1 Thread/blocking Implications
	1.3.1.2 Memory Implications

	1.3.2 process_func
	1.3.2.1 Thread/blocking Implications
	1.3.2.2 Memory Implications

	1.3.3 control_func
	1.3.3.1 Data Object Verification Implications
	1.3.3.2 Thread/blocking Implications:
	1.3.3.3 Memory Implications

	1.3.4 delete_func
	1.3.4.1 Thread/blocking Implications
	1.3.4.2 Memory Implications

	2 Requirements
	3 API Documentation
	3.1 User Target Kernel Extension
	3.1.1 Detailed Description
	3.1.2 Typedef Documentation
	3.1.2.1 vx_object_desc
	3.1.2.2 vx_target_kernel
	3.1.2.3 vx_target_kernel_instance
	3.1.2.4 vx_target_kernel_f
	3.1.2.5 vx_target_kernel_control_f

	3.1.3 Enumeration Type Documentation
	3.1.3.1 vx_target_kernel_mem_pool_enum_e
	3.1.3.2 vx_target_kernel_mem_pool_type_e

	3.1.4 Function Documentation
	3.1.4.1 vxMemTargetAlloc()
	3.1.4.2 vxMemTargetFree()
	3.1.4.3 vxAddTargetKernel()
	3.1.4.4 vxAddTargetKernelByName()
	3.1.4.5 vxRemoveTargetKernel()
	3.1.4.6 vxRemoveTargetKernelByName()
	3.1.4.7 vxSetTargetKernelInstanceContext()
	3.1.4.8 vxGetTargetKernelInstanceContext()

