OpenXR™ Conformance Test Suite
Usage Instructions and Developer
Guide

The Khronos® OpenXR Working Group

Version 1.1.52: from git ref cts-1.1.52.0-20251016

Table of Contents

1. Introduction 1
2. Configuration 2
2.1. Instance Configuration 3
2.1.1. Minimum API Version 4
2.1.2. Graphics Plugin 4
2.1.3. Interaction Profiles 4
2.2. Optional Assertions 5
2.2.1. Handle Validation 5
2.2.2. Structure Type Enumerant Validation 5
2.3. Compatibility Options 5
3. Conformance Submissions 6
3.1. Platform, porting, and build considerations 6
3.2. Testing steps 6
3.2.1. Automated tests on each supported graphics API 7
3.2.2. Interactive composition tests on each supported graphics API 8
3.2.3. Interactive scenario tests, for at least one graphics API 10
3.2.4. Interactive action tests, for each generic interaction profile you can bind completely, and
each interaction profile whose concrete device/method is supported by your runtime. 11
3.3. Conformance Submission Package Requirements 14
3.3.1. XML files produced from test runs 14
3.3.2. The console output produced by the CTS runs 15
3.3.3. Information on the build of conformance used in generating the results 15
3.3.4. Conformance Statement 16
3.3.5. Waivers 16
3.4. Passing Criteria 16
4. Requirements/Assumptions for Testing 18
4.1. Requirements for non-interactive and interactive tests 18
4.1.1. System immediately available 18
4.1.2. Session state progress 18
4.1.3. Valid view pose in local space 18
4.1.4. No customized rebinding applied 18
4.2. Requirements for interactive tests 19
4.2.1. At least one controller/interaction method is available, by default two 19
4.2.2. Available interaction method supports /interaction_profile/khr/simple_controller 19
4.2.3. View reference space is tracked in local space 19

4.2.4. The "Menu" click input on the controller can be held without interrupting the application. 19

4.2.5. The controller or input method must be capable of being turned off/disconnected in
some way
4.2.6. A person must perform actions to evaluate the runtime behavior for several tests
5. Interactive Self Tests
6. Automating CTS for Internal Testing and Development
6.1. With Conformance Automation
6.2. Without Conformance Automation
7. Test Source Code
7.1. Assigning Tags

7.2. Choosing an assertion

20
20
21
23
23
25
28
28
28

Chapter 1. Introduction

The OpenXR Conformance Test Suite is a collection of tests covering the breadth of the OpenXR API
The primary purpose of the OpenXR Conformance Test Suite (CTS) is to verify that runtimes have
correctly implemented the standard as a part of the conformance process for specification adopters.
Additional purposes are:

* To promote consistent behavior among all runtimes, even from non-adopters, for the health of the
ecosystem.
* To provide an aid to runtime development.
* To provide a quality assurance tool for runtime vendors to integrate into their own processes.
It is not broadly intended to show examples of usage for application authors, in most cases, as the CTS

tests the runtime’s responses to incorrect and invalid behavior as well as intended application flow.
However, in the absence of other samples and sufficiently useful specification text, it can be used as an

additional reference.

Chapter 1. Introduction | 1

Chapter 2. Configuration

The canonical interface to the OpenXR CTS is through a command line application, conformance_cli.
This presents a modified version of the Catch2 command line interface that adds parameters. Other
frontends, such as the Android APK, internally convert their configuration into the equivalent
command line arguments to pass to the CTS shared library.

All shorthand versions of added options use capital (uppercase) letters, to avoid conflicting with the
underlying Catch2 options.

2 | Chapter 2. Configuration

https://github.com/catchorg/Catch2/blob/devel/docs/command-line.md

-G, --graphicsPlugin <Vulkan|Vulkan2
|OpenGLES |OpenGL|D3D11|D3D12|Metal>
--minApiVersion <1.0[1.1>

-S, --randSeed <uint64_t random seed>

-F, --formFactor <HMD|Handheld>
--hands <left|right|both>

-V, --viewConfiguration <Stereo|Mono>
-B, --environmentBlendMode <Opaque
|Additive|AlphaBlend>

-L, --enabledAPILayer <API layer name>

-E, --enabledInstanceExtension
<extension name>

-I, --interactionProfiles <interaction
profile>

-H, --invalidHandleValidation

-T, --invalidTypeValidation
--nonDisconnectableDevices

-F, --disableFilelLinelogging
--pollGetSystem

--autoSkipTimeout <uint64_t auto skip
timeout milliseconds>

-D, --debugMode

Specify a graphics plugin to use.
Required.

Specify the minimum (and default)
OpenXR API version to use.
Default is 1.0.

Specify a random seed to use
(decimal or hex). Default is a
dynamically chosen value.

Specify a form factor to use.
Default is HMD.

Choose which hands to test: left,
right, or both. Default is both.
Specify view configuration.
Default is Stereo.

Specify blend mode. Default is
Opaque.

Specify API layer. May repeat for
multiple layers. Default is none.
Specify instance extension. May
repeat for multiple extensions.
Default is none.

Specify interaction profiles. May
repeat for multiple profiles.
Default is /interaction_profiles/
khr/simple_controller.

Enables testing of invalid handle
checking.

Enables testing of invalid type
checking.

Disables tests that requires
disconnectable devices (for
debugging).

Disables logging file/line data.
Retry xrGetSystem until success
or timeout expires before running
tests.

Automatic Skip Timeout (in
milliseconds) for tests which
support it

Sets debug mode as enabled or
disabled.

2.1. Instance Configuration

The correct value to use for these options may be dictated by the testing step you are on and the

Chapter 2. Configuration | 3

features and versions of OpenXR you support. See Testing steps.

2.1.1. Minimum API Version

The same basic instance configuration is used across the test suite for a single execution, with
additional versions and extensions added as required. By default, all tests are run as OpenXR 1.0
except those that require a higher version. Tests whose behavior is expected to change between
versions are invoked from two separate test cases: one run as each version. In this way, a default run
will test all API versions reported to be supported by the runtime. In the rare case that you are testing a
runtime that is 1.1 conformant but not aiming to be 1.0 conformant (not recommended!), or if you
want to verify that even basic functionality works when running at the OpenXR 1.1 level, you can pass:

* --minApiVersion 1.1 - Create at least OpenXR 1.1.x XrInstance handles. (Do not run any tests as
OpenXR 1.0.x.)

2.1.2. Graphics Plugin
Specify with the --graphicsPlugin <plugin> or -G <plugin> option.

* vulkan - uses XR_KHR_vulkan_enable

e vulkan2 - uses XR_KHR_vulkan_enable2

* opengl - uses XR_KHR_opengl_enable

* opengles - uses XR_KHR_opengl_es_enable

* d3d11 - uses XR_KHR_D3D11_enable

* d3d12 - uses XR_KHR_D3D12_enable

e metal - uses XR_KHR_metal_enable
If a testing step does not require you to run every supported graphics plugin, you may select an
arbitrary one to use for that step. However, your runtime must: be able to pass all tests in that step

with any supported graphics plugin. The Working Group has simply designated the tests in that step as
not heavily depending on the graphics API.

The only case in which a graphics plugin is not specified, is if a "headless" or no-display extension is in
use (via the -E option) and is being tested.

2.1.3. Interaction Profiles
Some tests use a user-specified interaction profile.

Pass -I or --interactionProfiles followed by an interaction profile to test, without the leading
/interaction_profile/ (omitted due to technical reasons).

Any extension required to permit the use of a given interaction profile specified this way (but not any
additional binding paths in it) is automatically enabled, but only for the tests that use interaction

4 | Chapter 2. Configuration

profile specified in this way.

2.2. Optional Assertions

The Conformance Test Suite contains a variety of checks of optional runtime behavior, in addition to
the required behavior. This is primarily checking to see if a runtime validates application input in a
way that the specification permits but does not require. Performing this optional validation makes a
runtime more useful in the software development process and is generally encouraged from a
perspective of improving the health of the ecosystem. As these options only add assertions, they may
be used when running the CTS for submission purposes.

The subsequent documentation assumes the use of conformance_cli. If running on Android, these can
be appended to the comma-separated --esa args string array as shown in the example ADB command
lines. If using a different frontend, pass these to xrcRunConformanceTests as additional elements of the
argv/argc array in ConformancelaunchSettings.

2.2.1. Handle Validation

To verify that the runtime under test checks handle values for wvalidity and returns
XR_ERROR_INVALID_HANDLE if a handle provided is invalid, add --invalidHandleValidation (or -H, its
shorthand version) to your conformance_cli command line.

2.2.2. Structure Type Enumerant Validation

To verify that the runtime under test checks the type member of structures passed and returns
XR_ERROR_VALIDATION_FAILURE if the given enumerant is invalid, add --invalidTypeValidation (or -T, its
shorthand version) to your conformance_cli command line.

2.3. Compatibility Options

e --pollGetSystem - Will poll xrGetSystem at test suite startup until it succeeds, then proceeds with
tests as usual. As not all applications will perform this behavior, runtimes that require it may see
decreased compatibility. Must be called out and justified if used in a submission!

* --hands <left|right|both> - The test by default assumes there is a controller or other interaction
method available for both hands. (That is, this option defaults to both.) If there is only a single
controller/interaction method, pass this option and the hand that it is expected to be associated
with. If the controller can be used in both hands, run the "Interactive action tests" twice - once
with --hands left and once with --hands right. TODO improve this - https://gitlab.khronos.org/
openxr/openxr/-/issues/2385

* --nonDisconnectableDevices - If you cannot turn off or otherwise disconnect input devices on
request, this skips some assertions that requires a person to do that. Applies only to the interactive
tests tagged [actions] and [interactive]. Must be called out and justified if used in a
submission!

Chapter 2. Configuration | 5

https://gitlab.khronos.org/openxr/openxr/-/issues/2385
https://gitlab.khronos.org/openxr/openxr/-/issues/2385

Chapter 3. Conformance Submissions

The following sub-sections are focused primarily on the needs of someone preparing a conformance
submission for review.

3.1. Platform, porting, and build considerations

The core of the test suite is build into a conformance_test shared library.

conformance_cli, a command-line interface application, is provided for running on PCs and other
devices and platforms which support this form of application. conformance_cli also demonstrates how
to build an application which can interop with the conformance_test shared library. If the device being
tested does not support a command-line interface, a host application must be built for the device
which the OpenXR runtime will run on. The conformance host must invoke conformance_test, the test
suite shared library.

There is an Android application APK built from largely the same sources that provides similar
functionality. The role of command line arguments is served instead by "Intent Extras".

In addition to the main test shared library, use of the "Conformance Layer" is mandatory. This is an
OpenXR API layer that automatically checks the conformance of various aspects of runtime behavior.
This layer must be loaded and active for a test run to be considered valid.

When you plan to submit for conformance, please observe the following considerations to ensure that
the build system has accurate source code revision information available to embed in the test suite and
output reports. You must build from a git repo (forked from either the internal Gitlab or public
GitHub) with tags available (a full clone, not shallow). You also must either perform a clean build, from
an empty binary tree, or at least run cmake immediately before building to pick up current source tree
status. If your "porting" process (as described by the conformance process documents) involves
replacing the build system, you must populate the revision data constants in
utilities/git_revision.cpp.in accurately. The contents of that file affect all "ctsxml" format outputs, as
well as an automated "SourceCodeRevision" test that warns if it cannot identify an approved release.
(It only checks for the presence of an appropriately-named tag: it does not check for a signature on the
tag, so if you have added tags to your repo it may not warn if you are not on a release.)

3.2. Testing steps
The tests are marked with tags to accomplish several objectives.

* selecting a subset of tests to run with different arguments (graphics API, preferred interaction
profile, API version) to ensure maximum coverage when running the CTS to make a conformance
submission.

* selecting a related subset of tests to use as an aid during runtime development.

* selecting those tests that may be run in a scheduled or continuous testing setup for runtime quality

6 | Chapter 3. Conformance Submissions

assurance.
The following text lays out the steps to running conformance for submission.

Note: If you do not support OpenXR 1.0, you must supply the --minApiVersion argument to specify the
lowest OpenXR API version you support, e.g. --minApiVersion 1.7. Some tests will automatically test
behavior on higher API versions if your runtime supports them, but most tests will run on
minApiVersion, which defaults to 1.0.

Please be aware that depending on how you view these instructions, the (very long) sample command
lines may be wrapped automatically. All the desktop command lines start with conformance_cli, while
all the Android ones start with adb shell am.

3.2.1. Automated tests on each supported graphics API
One run and result file for the each graphics API supported by your runtime.

When using the following examples, omit any graphics API binding extensions your runtime does not
support.

Example command lines

conformance_cli "exclude:[interactive]" -G d3d11 --reporter ctsxml::out
=automated_d3d11.xml --reporter console

conformance_cli "exclude:[interactive]" -G d3d12 --reporter ctsxml::out
=automated_d3d12.xml --reporter console

conformance_cli "exclude:[interactive]" -G vulkan --reporter ctsxml::out
=automated_vulkan.xml --reporter console

conformance_cli "exclude:[interactive]" -G vulkan2 --reporter ctsxml::out
=automated_vulkan2.xml --reporter console

conformance_cli "exclude:[interactive]" -G opengl --reporter ctsxml::out
=automated_opengl.xml --reporter console

conformance_cli "exclude:[interactive]" -G metal --reporter ctsxml::out
=automated_metal.xml --reporter console

Chapter 3. Conformance Submissions | 7

Corresponding ADB commands to launch on Android

Omit any graphics API binding extensions your runtime does not support. These commands do
not match one-to-one with the desktop examples due to different graphics API availability on
Android.

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "exclude:[interactive]" -e graphicsPlugin vulkan -e xmlFilename
automated_vulkan.xml

Wait until tests complete, then retrieve results with
adb pull /sdcard/Android/data/org.khronos.openxr.cts/files/automated_vulkan.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "exclude:[interactive]" -e graphicsPlugin vulkan2 -e xmlFilename
automated_vulkan2.xml

Wait until tests complete, then retrieve results with
adb pull /sdcard/Android/data/org.khronos.openxr.cts/files/automated_vulkan2.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "exclude:[interactive]" -e graphicsPlugin opengles -e xmlFilename
automated_opengles.xml

Wait until tests complete, then retrieve results with
adb pull /sdcard/Android/data/org.khronos.openxr.cts/files/automated_opengles.xml

3.2.2. Interactive composition tests on each supported graphics API

These are separate as a tester must evaluate the results and determine if each test is passed or failed.

These tests use the khr/simple_controller interaction profile to review instructions and sample output,
as well as to indicate pass or fail.

One run and result file for the each graphics API supported by your runtime.

As previously, when using these examples, omit any graphics API binding extensions your runtime
does not support.

8 | Chapter 3. Conformance Submissions

Example command lines

conformance_cli "[composition][interactive]" -G d3d11 --reporter ctsxml::out
=interactive_composition_d3d11.xml --reporter console

conformance_cli "[composition][interactive]"” -G d3d12 --reporter ctsxml::out
=interactive_composition_d3d12.xml --reporter console

conformance_cli "[composition][interactive]"” -G vulkan --reporter ctsxml::out
=interactive_composition_vulkan.xml --reporter console

conformance_cli "[composition][interactive]" -G vulkan2 --reporter ctsxml::out
=interactive_composition_vulkan2.xml --reporter console

conformance_cli "[composition][interactive]" -G opengl --reporter ctsxml::out
=interactive_composition_opengl.xml --reporter console

conformance_cli "[composition][interactive]"” -G metal --reporter ctsxml::out
=interactive_composition_metal.xml --reporter console

Chapter 3. Conformance Submissions | 9

Corresponding ADB commands to launch on Android

Omit any graphics API binding extensions your runtime does not support. These commands do
not match one-to-one with the desktop examples due to different graphics API availability on
Android.

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[composition][interactive]" -e graphicsPlugin vulkan -e xmlFilename
interactive_composition_vulkan.xml

Wait until tests complete, then retrieve results with
adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_composition_vulkan.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[composition][interactive]" -e graphicsPlugin vulkan2 -e xmlFilename
interactive_composition_vulkan2.xml

Wait until tests complete, then retrieve results with
adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_composition_vulkan2.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[composition][interactive]"” -e graphicsPlugin opengles -e xmlFilename
interactive_composition_opengles.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_composition_opengles.xm
1

3.2.3. Interactive scenario tests, for at least one graphics API

These tests focus on interactive behavior of the runtime and are generally undemanding on the
graphics API. While they should be possible to pass on all graphics APIs, a conformance submission
only requires a report showing an overall pass on a single API.

These tests use the khr/simple_controller interaction profile to perform actions and indicate pass or
fail.

* One graphics API

10 | Chapter 3. Conformance Submissions

Example command lines

conformance_cli "[scenario][interactive]" -G opengl --reporter ctsxml::out
=interactive_scenarios.xml --reporter console

Corresponding ADB commands to launch on Android

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[scenario][interactive]" -e xmlFilename interactive_scenarios.xml

Wait until tests complete, then retrieve results with
adb pull /sdcard/Android/data/org.khronos.openxr.cts/files/interactive_scenarios.xml

3.2.4. Interactive action tests, for each generic interaction profile you can bind
completely, and each interaction profile whose concrete device/method is
supported by your runtime.

These tests are selected with [actions][interactive]. Pass the interaction profile to test, without the
leading /interaction_profile/, with the option -I

* One graphics API

* Each interaction profile that is either:

o A generic interaction profile (such as khr/simple_controller) for which all inputs can be
activated.

o The interaction profile with which the device/input method is most closely associated.

= If more than one interaction profile is closely associated with the device/method, e.g in the
case of evolutionary upgrades to controllers, it is recommended to run specifying each of
those interaction profiles.

Note that if any extension or extensions are required for a specified interaction profile to be available,
the CTS will automatically enable them for the appropriate tests.

One of these tests requires being able to activate all inputs specified (and not marked as "system") for
an interaction profile.

For any supported interaction profiles that are valid for /user/gamepad rather than /user/hand/left and
/user/hand/right, further filter the tests by specifying the tag [gamepad].

To clarify, if you support providing input for all components of one of the following interaction
profiles, specify them as well.

Chapter 3. Conformance Submissions | 11

* /interaction_profiles/khr/simple_controller
e /interaction_profiles/ext/hand_interaction_ext

o /interaction_profiles/ext/eye_gaze_interaction

Example command lines

Select the interaction profiles to test based on the preceding description.

Generic: Simple controller
conformance_cli "[actions][interactive]" -G d3d11 -I "khr/simple_controller"
--reporter ctsxml::out=interactive_action_simple_controller.xml --reporter console

Generic: Hand interaction (whether via hand tracking or controller)
conformance_cli "[actions][interactive]" -G d3d11 -I "ext/hand_interaction_ext"
--reporter ctsxml::out=interactive_action_ext_hand_interaction_interaction.xml
--reporter console

Generic: Eye gaze

conformance_cli "[actions][interactive]" -G d3d11 -I "ext/eye_gaze_interaction"
--reporter ctsxml::out=interactive_action_ext_eye_gaze_interaction.xml --reporter
console

Sample device-associated profiles

conformance_cli "[actions][interactive]" -G d3d11 -I "microsoft/motion_controller"
--reporter ctsxml::out=interactive_action_microsoft_motion_controller.xml --reporter
console

conformance_cli "[actions][interactive]" -G d3d11 -I "oculus/touch_controller"
--reporter ctsxml::out=interactive_action_oculus_touch_controller.xml --reporter

console

conformance_cli "[actions][interactive]" -G d3d11 -I "htc/vive_controller" --reporter
ctsxml::out=interactive_action_htc_vive_controller.xml --reporter console

Example command lines for a gamepad

conformance_cli "[gamepad]" -G d3d11 -I "microsoft/xbox_controller" --reporter
ctsxml::out=interactive_action_microsoft_xbox_controller.xml --reporter console

12 | Chapter 3. Conformance Submissions

Corresponding ADB commands to launch on Android

Select the interaction profiles to test based on the preceding description.

Generic: Simple controller

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[actions][interactive],-I,khr/simple_controller" -e xmlFilename
interactive_action_simple_controller.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_action_simple_controlle
r.xml

Generic: Hand interaction (whether via hand tracking or controller)

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[actions][interactive],-I,ext/hand_interaction_ext" -e xmlFilename
interactive_action_ext_hand_interaction.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_action_ext_hand_interac
tion.xml

Generic: Eye gaze interaction

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[actions][interactive],-I,ext/eye_gaze_interaction" -e xmlFilename
interactive_action_ext_eye_gaze_interaction.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_action_ext_eye_gaze_int
eraction.xml

Sample device-associated profile

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[actions][interactive],-I,oculus/touch_controller" -e xmlFilename
interactive_action_oculus_touch controller.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_action_oculus_touch_con
troller.xml

Chapter 3. Conformance Submissions | 13

Sample gamepad profile

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[qgamepad],-I,microsoft/xbox_controller" -e xmlFilename
interactive_action_microsoft_xbox_controller.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_action_microsoft_xbox_c
ontroller.xml

3.3. Conformance Submission Package Requirements

The submission package must include each of the following:

1. XML files produced from test runs
2. The console output produced by the CTS runs above.
3. Information on the build of conformance used in generating the results

4, Conformance Statement

3.3.1. XML files produced from test runs

One or more automated test result XML files, 1 per graphics API supported, therefore one or more of
the following generated output files:

e gutomated _d3d11.xml

e gutomated _d3d12.xml

* automated_opengl.xml

* automated_gles.xml

e gutomated_vulkan.xml

e gutomated_vulkan2.xml
The output XML file(s) from running the interactive tests, 1 per supported graphics API, therefore one
or more of the following generated output files:

* interactive_composition_d3d11.xml

e interactive_composition_d3d12.xml

* interactive_composition_opengl.xml

* interactive_composition_gles.xml

* interactive_composition_vulkan.xml

14 | Chapter 3. Conformance Submissions

* interactive_composition_vulkan2.xml

At least one output file from running the interactive scenario tests on a single graphics API (more is
better):

e interactive_scenarios.xml

The output XML file(s) from running the interactive action tests, 1 per supported interaction profile,
therefore one or more of the following generated output files. This list below are example files, each
platform may have their own controllers though simple_controller is expected to be supported at a
minimum.

* interactive_action_simple_controller.xml

e interactive_action_microsoft_xbox controller.xml

e interactive_action_microsoft_motion_controller.xml
e interactive_action_oculus_touch_controller.xml

e interactive_action_valve_index_controller.xml

e interactive_action_htc_vive_controller.xml

3.3.2. The console output produced by the CTS runs

Note
o Can we drop this requirement? https://gitlab.khronos.org/openxr/openxr/-/issues/2386

Each test suite run starts by printing test configuration data, and ends by printing a "Report" showing
details of the runtime and environment (extensions, etc) used in that run. A few tests produce console
output in-between that does not show up in the result XML. It is important to have this data for the
interpretation of the results.

3.3.3. Information on the build of conformance used in generating the results
Files containing the result of the commands git status and git log from the CTS directory:

» git_status.txt

* git_log.txt

If there were changes required to pass the conformance test suite, a diff of the changes from a tagged
approved release of the suite must be included as well:

o git_diff.txt
Alternately, the diff may be supplied in git format-patch format.

Note that only the tagged releases on the OpenXR-CTS repo are accepted without a diff: the latest

Chapter 3. Conformance Submissions | 15

https://gitlab.khronos.org/openxr/openxr/-/issues/2386

such release will always be on the approved branch. The default devel branch is useful during
development, but has not yet been voted on by the working group and is thus ineligible for
submissions without a full diff. If the devel branch works better for you, you may consider encouraging
the working group to tag a new release of conformance.

3.3.4. Conformance Statement

A file containing information regarding the submission called statement-<adopter>.txt

CONFORM_VERSION: <git tag of (TS release>
PRODUCT : <string-value>
CPU: <string-value>
0S: <string-value>

WARNING_EXPLANATIONS: <optional> <paragraph describing why the warnings present in the
conformance logs are not indications of conformance failure>

WAIVERS: <optional> <paragraph describing waiver requests for non-
conformant test results>

The actual submission package consists of the above set of files which must be bundled into a gzipped
tar file named XR<API major><API minor>_<adopter><_info>.tgz. <API major> is the major version of the
OpenXR API specification, <API minor> is the minor version of the OpenXR API specification. <adopter>
is the name of the Adopting member company, or some recognizable abbreviation. The <_info> field is
optional. It may be used to uniquely identify a submission by OS, platform, date, or other criteria when
making multiple submissions. For example, a company XYZ may make a submission for an OpenXR 1.1
implementation named XR11_XYZ_PRODUCTA_Windows10. tgz.

3.3.5. Waivers

Any test failures due to presumed bugs in the conformance tests not matching specification behavior
should be submitted as issues with potential fixes against the conformance suite. Waivers are
requested for test failures where the underlying platform fails to meet the expected specification
behavior. These are requested in the statement file as described above. Enough detail should be
provided such that submission reviewers can judge the potential impact and risk to the ecosystem of
approving the submission.

3.4. Passing Criteria

A conformance run is considered passing if all tests required by the testing steps finish with allowed
result codes (pass or skip as appropriate), and all warnings are acceptably explained to describe why
they are not a conformance failure. XR_EXT_conformance_automation must not be used for conformance
submission.

16 | Chapter 3. Conformance Submissions

Any error or failure when testing functionality means your runtime is not
conformant.

Any warnings may indicate non-conformance and must be explained in the
submission package.

Test results are contained in the output XML files, which are an extension of the common "*Unit"
schema with some custom elements. Each test case leaf section is reached by a run of its own, and is
recorded with a testcase tag, e.g.:

<testcase classname="global" name="Swapchains/Swapchain creation test parameters"
time="1.207" status="run">

If all assertions in that case passed, there are no child elements to the testcase tag. However, testcase
tags can contain a warning, failure, or error:

<cts:warning type="WARN">
or

<failure message="..." type="...
or

<error message="..." type="...">
With the results of the entire run summarized in testsuite tag (listing the number of assertions):

<testsuite errors="0" failures="0" tests="<number of successful assertions>" time=
"1.407">

as well as in the cts:results tag in cts:ctsConformanceReport (listing the number of top level test cases):

<cts:results testSuccessCount="1" testFailureCount="0"/>

Chapter 3. Conformance Submissions | 17

Chapter 4. Requirements/Assumptions for
Testing

While the specification defines behavior over a wide range of possible scenarios, the CTS requires
some assumptions to be satisfied before running in various modes. They are broadly meant to be
representative of nominal usage of an XR system operating as expected without special configuration
by the user or per-application. If you are unable to satisfy these requirements, you may modify the CTS
according to the Conformance Process Document and the "Porting" process detailed therein. Early and
frequent discussion with the Working Group is encouraged in this case.

Some of these assumptions can be bypassed or automated away by implementing
XR_EXT_conformance_automation and passing -E XR_EXT_conformance_automation to the test suite.
However, this is intended only for automated testing, and not for conformance submission. A
conformant runtime must be able to pass the tests without this extension.

4.1. Requirements for non-interactive and interactive
tests

All test cases depend on these requirements. Some have exceptions or workarounds available as
options.

4.1.1. System immediately available

Command line argument --pollGetSystem is available to retry xrGetSystem at startup of the CTS.
Subsequent XrInstance creation is assumed to immediately have access to a system after this initial
poll.

4.1.2. Session state progress

Some tests require that a begun session progresses through the lifecycle to XR_SESSION_STATE_FOCUSED
without user interaction. These tests will synchronize their frame loop and start submitting frames and
expect to proceed to FOCUSED. This may require donning a device or otherwise triggering a user
presence sensor, for these tests to run fully automatedly.

4.1.3. Valid view pose in local space

Some tests require valid view pose (XR_VIEW_STATE_ORIENTATION_VALID_BIT &
XR_VIEW_STATE_POSITION_VALID_BIT), though not necessarily tracked view position, relative to LOCAL
reference space (XR_REFERENCE_SPACE_TYPE_LOCAL).

4.1.4. No customized rebinding applied

Unless otherwise specified, the behavior of the runtime must match the "when following suggested

18 | Chapter 4. Requirements/Assumptions for Testing

bindings" case. Any manual rebindings necessary to pass the tests must be discussed with the Working
Group.

4.2. Requirements for interactive tests

4.2.1. At least one controller/interaction method is available, by default two

Assumes both a left and right hand input device (controller, hand interaction) is available unless
arguments are specified to switch to a single hand mode.

Tests without the [interactive] flag do not depend on the presence of a controller.

4.2.2. Available interaction method supports
/interaction_profile/khr/simple_controller

The runtime must support khr/simple_controller to manually pass or fail each test through the -
/input/menu/click and --/input/select/click input paths. The tester must evaluate the composed
output and pass or fail the tests by comparing it to the provided expected result image. While
/interaction_profile/khr/simple_controller is not formally required for conformance as of OpenXR
1.1, it is strongly encouraged. If it cannot be included for some reason, use of another interaction
profile may be performed through the porting process.

4.2.3. View reference space is tracked in local space

Some interactive tests require tracked pose (XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT &
XR_SPACE_LOCATION_POSITION_TRACKED_BIT) of VIEW reference space relative to LOCAL reference space
(XR_REFERENCE_SPACE_TYPE_LOCAL). They must remain tracked throughout the test: if tracking is lost
during the test, a spurious failure may be recorded, requiring a re-run of the tests.

4.2.4. The "Menu" click input on the controller can be held without
interrupting the application

Interactive tests typically show their instructions and sample output only while a boolean action, with
suggested bindings for left and right ---/input/menu/click, is "true". Additionally, a boolean action with
suggested bindings for left and right ---/input/select/click is typically used to report pass or fail, with
both of those actions being "true" indicating failure. If pressing or holding the "menu" button brings up
system UI, reviewing the instructions and expected behavior for interactive tests may be difficult. (It
would be possible to remove this assumption through the porting process or other CTS development.)
If pressing "select" while holding "menu" is not possible, it will be impossible to record an interactive
test failure.

(Tests using InteractivelayerManager have this behavior.)

Chapter 4. Requirements/Assumptions for Testing | 19

4.2.5. The controller or input method must be capable of being turned
off/disconnected in some way

A command line flag is available, --nonDisconnectableDevices, although it is primarily for debugging.
Submissions that require it must explain their use of this flag in the conformance statement.

4.2.6. A person must perform actions to evaluate the runtime behavior for
several tests

For some interactive tests, a person operating the test suite must use the in-test instructions to evaluate
whether the behavior of the runtime matches the expected behavior according to the specification. If
there is any doubt about whether the behavior in a test is conformant, consult with the Working
Group.

* [scenario] tests - the tester must perform a certain set of actions to pass the test. The runtime must
additionally behave as described in the instructions, which involves some subjective judgement,
even if semi-automated requirements are met.

* [composition][interactive] tests - the visible rendering result must be compared against a
reference image.

* [actions] tests - in at least one interactive test, you have to wait for haptic feedback and confirm it,
in addition to performing input actions requested.

20 | Chapter 4. Requirements/Assumptions for Testing

Chapter 5. Interactive Self Tests

Some interactive tests are primarily a test of mechanisms within the CTS, rather than runtime
functionality. These are labeled with the tag [self_test] rather than [scenario], [actions], or
[composition]. While it is good to run these, and doing so may help troubleshoot failures with tests that
build on them, submission of a CTS results package does not require them. Currently, the only self-tests
tagged in this way are for the PBR/gITF rendering subsystem. They (asynchronously) load very large,
artificial test assets, originally from the "glTF-Sample-Models" repository, to test specific details of the
renderer.

To run the self-tests, commands similar to the following can be used:

Example command lines

Omit any graphics API binding extensions your runtime does not support.

conformance_cli "[self_test][interactive]" -G d3d11 --reporter ctsxml::out
=interactive_self_test_d3d11.xml --reporter console

conformance_cli "[self_test][interactive]" -G d3d12 --reporter ctsxml::out
=interactive_self_test_d3d12.xml --reporter console

conformance_cli "[self_test][interactive]" -G vulkan --reporter ctsxml::out
=interactive_self_test_vulkan.xml --reporter console

conformance_cli "[self_test][interactive]" -G vulkan2 --reporter ctsxml::out
=interactive_self_test_vulkan2.xml --reporter console

conformance_cli "[self_test][interactive]" -G opengl --reporter ctsxml::out
=interactive_self_test_opengl.xml --reporter console

Chapter 5. Interactive Self Tests | 21

Corresponding ADB commands to launch on Android

Omit any graphics API binding extensions your runtime does not support. These commands do
not match one-to-one with the desktop examples due to different graphics API availability on
Android.

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[self_test][interactive]" -e graphicsPlugin vulkan -e xmlFilename
interactive_self_test_vulkan.xml

Wait until tests complete, then retrieve results with
adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_self_test_vulkan.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[self_test][interactive]"” -e graphicsPlugin vulkan2 -e xmlFilename
interactive_self_test_vulkan2.xml

Wait until tests complete, then retrieve results with
adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_self_test_vulkan2.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[self_test][interactive]" -e graphicsPlugin opengles -e xmlFilename
interactive_self_test_opengles.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_self_test_opengles.xml

22 | Chapter 5. Interactive Self Tests

Chapter 6. Automating CTS for Internal
Testing and Development

As the CTS can be a useful tool when developing and maintaining a runtime, there are ways to run it
that are amenable to automation

6.1. With Conformance Automation

If your runtime implements XR_EXT_conformance_automation, you can run a large number of tests
without actually interacting.

The key parts to the command line here are:
e -E XR_EXT_conformance_automation - Force enable the conformance automation extension. This is

detected and used to replace user input in many tests.

» --autoSkipTimeout 3000 - Proceeds without interaction (via a test "skip") through tests awaiting user
judgement, after 3 seconds (3000ms). This mainly affects the interactive composition tests. This is
primarily to exercise runtime behavior incidentally triggered by these tests.

» exclude:[no_auto] - the [no_auto] tag is applied to test cases that support neither conformance
automation nor the auto-skip timeout.

Chapter 6. Automating CTS for Internal Testing and Development | 23

Example command lines

conformance_cli "exclude:[no_auto]" -E XR_EXT _conformance_automation
--autoSkipTimeout 3000 -G d3d11 --reporter ctsxml::out
=conformance_automation_d3d11.xml --reporter console

conformance cli "exclude:[no_auto]" -E XR_EXT conformance_automation
--autoSkipTimeout 3000 -G d3d12 --reporter ctsxml::out
=conformance_automation_d3d12.xml --reporter console

conformance_cli "exclude:[no_auto]" -E XR_EXT _conformance_automation
--autoSkipTimeout 3000 -G vulkan --reporter ctsxml::out
=conformance_automation_vulkan.xml --reporter console

conformance_cli "exclude:[no_auto]" -E XR_EXT _conformance_automation
--autoSkipTimeout 3000 -G vulkan2 --reporter ctsxml::out
=conformance_automation_vulkan2.xml --reporter console

conformance cli "exclude:[no_auto]" -E XR_EXT conformance_automation
--autoSkipTimeout 3000 -G opengl --reporter ctsxml::out
=conformance_automation_opengl.xml --reporter console

conformance_cli "exclude:[no_auto]" -E XR_EXT _conformance_automation

--autoSkipTimeout 3000 -G metal --reporter ctsxml::out
=conformance_automation_metal.xml --reporter console

24 | Chapter 6. Automating CTS for Internal Testing and Development

Corresponding ADB commands to launch on Android

Omit any graphics API binding extensions your runtime does not support. These commands do
not match one-to-one with the desktop examples due to different graphics API availability on
Android.

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "exclude:[no_auto],-E,XR_EXT_conformance_automation, --
autoSkipTimeout,3000" -e graphicsPlugin vulkan -e xmlFilename
conformance_automation_vulkan.xml

Wait until tests complete, then retrieve results with
adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/conformance_automation_vulkan.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "exclude:[no_auto],-E,XR_EXT_conformance_automation,--
autoSkipTimeout,3000" -e graphicsPlugin vulkan2 -e xmlFilename
conformance_automation_vulkan2.xml

Wait until tests complete, then retrieve results with
adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/conformance_automation_vulkan2.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "exclude:[no_auto],-E,XR_EXT_conformance_automation,--
autoSkipTimeout,3000" -e graphicsPlugin opengles -e xmlFilename
conformance_automation_opengles.xml

Wait until tests complete, then retrieve results with
adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/conformance_automation_opengles.xml

6.2. Without Conformance Automation

If your runtime does not implement XR_EXT_conformance_automation, fewer tests are available for
automatic use.

The first collection of such tests are the non-interactive (automated) tests: see Testing steps.

The second collection are the interactive composition tests, configured in auto-skip mode as previously
discussed. The key parts to the command line here are:

Chapter 6. Automating CTS for Internal Testing and Development | 25

* "[composition][interactive]"” - Select only the interactive composition tests, which are all
compatible with auto-skip timeouts.

» --autoSkipTimeout 3000 - Proceeds without interaction (via a test "skip") through tests awaiting user
judgement, after 3 seconds (3000ms). This is primarily to exercise runtime behavior incidentally
triggered by these tests.

Example command lines
conformance_cli "[composition][interactive]" --autoSkipTimeout 3000 -G d3d11
--reporter ctsxml::out=interactive_composition_autoskip_d3d11.xml --reporter console

conformance_cli "[composition][interactive]" --autoSkipTimeout 3000 -G d3d12
--reporter ctsxml::out=interactive_composition_autoskip_d3d12.xml --reporter console

conformance_cli "[composition][interactive]” --autoSkipTimeout 3000 -G vulkan
--reporter ctsxml::out=interactive_composition_autoskip_vulkan.xml --reporter console

conformance_cli "[composition][interactive]" --autoSkipTimeout 3000 -G vulkan2
--reporter ctsxml::out=interactive_composition_autoskip_vulkan2.xml --reporter

console

conformance_cli "[composition][interactive]"” --autoSkipTimeout 3000 -G opengl
--reporter ctsxml::out=interactive_composition_autoskip_opengl.xml --reporter console

conformance_cli "[composition][interactive]" --autoSkipTimeout 3000 -G metal
--reporter ctsxml::out=interactive_composition_autoskip_metal.xml --reporter console

26 | Chapter 6. Automating CTS for Internal Testing and Development

Corresponding ADB commands to launch on Android

Omit any graphics API binding extensions your runtime does not support. These commands do
not match one-to-one with the desktop examples due to different graphics API availability on
Android.

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[composition][interactive],--autoSkipTimeout,3000" -e graphicsPlugin
vulkan -e xmlFilename interactive_composition_autoskip_vulkan.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_composition_autoskip_vu
lkan.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[composition][interactive],--autoSkipTimeout,3000" -e graphicsPlugin
vulkan2 -e xmlFilename interactive_composition_autoskip_vulkan2.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_composition_autoskip_vu
lkan2.xml

adb shell am start-activity -S -n org.khronos.openxr.cts/android.app.NativeActivity
--esa args "[composition][interactive],--autoSkipTimeout,3000" -e graphicsPlugin
opengles -e xmlFilename interactive_composition_autoskip_opengles.xml

Wait until tests complete, then retrieve results with

adb pull
/sdcard/Android/data/org.khronos.openxr.cts/files/interactive_composition_autoskip_op
engles.xml

Chapter 6. Automating CTS for Internal Testing and Development | 27

Chapter 7. Test Source Code

The CTS uses Catch2 as the testing framework. In addition to mechanisms provided by Catch2, the
conformance framework provides substantial features both for testing as well as for setting up
preconditions to be able to test OpenXR functionality.

7.1. Assigning Tags
Tests should be categorized using tags. The following common tags are used:

» [interactive]: indicates that a larger set of requirements apply, requiring interaction at some level.
o Each test labeled interactive must have one of the following tags in addition.

= [actions]: indicates that this test is an "Action" test. The additional tag [gamepad] selects only
the tests relevant to testing a gamepad (rather than a handed motion controller).

= [composition]: indicates that this test requires the tester to do a visual comparison.
= [scenario]: indicates that the tester must perform a certain set of actions to pass the test.

= [self_test]: indicates that the test is primarily a test of mechanisms within the CTS, rather
than runtime functionality, and are not required in a conformance submission. See
Interactive Self Tests

o A test labeled "interactive" may have the following tag to assist running tests in unattended
environments:

= [no_auto]: indicates that this interactive test cannot be automated by the
XR_EXT_conformance_automation extension nor by the --autoSkipTimeout argument..

* The name of an extension whose behavior is tested, e.g. [XR_KHR_visibility_mask]. This may be a
required extension for the test, or simply an extension that modifies the behavior and thus
interacts with the test. These tags are not used in conformance submissions but are useful in
development and testing.

* [XR_VERSION_1_1]: indicates a test evaluates functionality specific to OpenXR 1.1. This tag is not used
in conformance submissions but is useful in development and testing.

7.2. Choosing an assertion

It provides CHECK, REQUIRE, and WARN families of macros, among others. In addition, the CTS framework
provides a collection of XRC_THROW_--- macros. When should each be used?
* All of these assertions except for WARN are considered a conformance failure.

» The difference between CHECK and REQUIRE is whether the current test case run (that is, a run
through a test case up to a given leaf in the section tree) continues after a failed assertion.

o If it makes no sense for the test to continue (e.g. because preconditions have failed), use REQUIRE.

28 | Chapter 7. Test Source Code

https://github.com/catchorg/Catch2

o Otherwise, use CHECK: this still fails the test but allows more than one failure to be logged from a
single pass, making it easier in many cases to diagnose and fix the failure.

* Both CHECK and REQUIRE are considered testing assertions, so they should only be used when the
check is relevant to the subject of a given test. That is, they both increment the logged assertion
count, and both will log the assertion even if passed if the appropriate command line arguments
are passed.

> For other preconditions, or shared helper code, use an XRC_THROW macro: throwing an exception
works just like REQUIRE (halting that test case run) but checking with them or throwing does not
increment the assertion count or log all the data associated with an assertion.

So, to summarize:

WARN

For a check relevant to the current test that requires an explanation by the runtime vendor, as it
might be non-conformant.

CHECK...

For most assertions relevant to the current test that should not immediately halt execution of a test
case.

REQUIRE...

For assertions relevant to the current test that do require immediately halting execution of a test
case.

XRC_THROW_...

For things that require stopping the test if they fail, but are not directly relevant to the current test,
such as setup code or shared helpers.

See also:

e Catch2 assertion documentation

Chapter 7. Test Source Code | 29

https://github.com/catchorg/Catch2/blob/devel/docs/assertions.md

	OpenXR™ Conformance Test Suite Usage Instructions and Developer Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Configuration
	2.1. Instance Configuration
	2.1.1. Minimum API Version
	2.1.2. Graphics Plugin
	2.1.3. Interaction Profiles

	2.2. Optional Assertions
	2.2.1. Handle Validation
	2.2.2. Structure Type Enumerant Validation

	2.3. Compatibility Options

	Chapter 3. Conformance Submissions
	3.1. Platform, porting, and build considerations
	3.2. Testing steps
	3.2.1. Automated tests on each supported graphics API
	3.2.2. Interactive composition tests on each supported graphics API
	3.2.3. Interactive scenario tests, for at least one graphics API
	3.2.4. Interactive action tests, for each generic interaction profile you can bind completely, and each interaction profile whose concrete device/method is supported by your runtime.

	3.3. Conformance Submission Package Requirements
	3.3.1. XML files produced from test runs
	3.3.2. The console output produced by the CTS runs
	3.3.3. Information on the build of conformance used in generating the results
	3.3.4. Conformance Statement
	3.3.5. Waivers

	3.4. Passing Criteria

	Chapter 4. Requirements/Assumptions for Testing
	4.1. Requirements for non-interactive and interactive tests
	4.1.1. System immediately available
	4.1.2. Session state progress
	4.1.3. Valid view pose in local space
	4.1.4. No customized rebinding applied

	4.2. Requirements for interactive tests
	4.2.1. At least one controller/interaction method is available, by default two
	4.2.2. Available interaction method supports /interaction_profile/khr/simple_controller
	4.2.3. View reference space is tracked in local space
	4.2.4. The "Menu" click input on the controller can be held without interrupting the application
	4.2.5. The controller or input method must be capable of being turned off/disconnected in some way
	4.2.6. A person must perform actions to evaluate the runtime behavior for several tests

	Chapter 5. Interactive Self Tests
	Chapter 6. Automating CTS for Internal Testing and Development
	6.1. With Conformance Automation
	6.2. Without Conformance Automation

	Chapter 7. Test Source Code
	7.1. Assigning Tags
	7.2. Choosing an assertion

