The OpenXR[™] 1.1.36 Specification (with all KHR extensions)

The Khronos[®] OpenXR Working Group

Version 1.1.36: from git ref release-1.1.36

Table of Contents

Preamble	1
1. Introduction	3
1.1. What is OpenXR?	3
1.2. The Programmer's View of OpenXR	3
1.3. The Implementor's View of OpenXR	3
1.4. Our View of OpenXR	4
1.5. Filing Bug Reports	4
1.6. Document Conventions	4
2. Fundamentals	6
2.1. API Version Numbers and Semantics	6
2.2. String Encoding	8
2.3. Threading Behavior	8
2.4. Multiprocessing Behavior	9
2.5. Runtime	9
2.6. Extensions	9
2.7. API Layers	0
2.8. Type Aliasing	2
2.9. Valid Usage	3
2.10. Return Codes	7
2.11. Handles	4
2.12. Object Handle Types	4
2.13. Buffer Size Parameters	5
2.14. Time	8
2.15. Duration	9
2.16. Prediction Time Limits	9
2.17. Colors	0
2.18. Coordinate System	1
2.19. Common Data Types	4
2.20. Angles	0
2.21. Boolean Values	1
2.22. Events	1
2.23. System resource lifetime	6
3. API Initialization	8
3.1. Exported Functions	8
3.2. Function Pointers	8
3.3. Runtime Interface Negotiation	1

3.4. API Layer Interface Negotiation	57
4. Instance	6
4.1. API Layers and Extensions	6
4.2. Instance Lifecycle	'1
4.3. Instance Information	7
4.4. Platform-Specific Instance Creation	'9
4.5. Instance Enumerated Type String Functions	60
5. System	3
5.1. Form Factors	3
5.2. Getting the XrSystemId	34
5.3. System Properties	37
6. Path Tree and Semantic Paths)1
6.1. Path Atom Type)1
6.2. Well-Formed Path Strings)3
6.3. Reserved Paths)7
6.4. Interaction Profile Paths)3
7. Spaces	29
7.1. Reference Spaces	0
7.2. Action Spaces	6
7.3. Space Lifecycle	57
7.4. Locating Spaces	4
8. View Configurations 15	9
8.1. Primary View Configurations	59
8.2. View Configuration API	51
8.3. Example View Configuration Code	8
9. Session	'1
9.1. Session Lifecycle	'1
9.2. Session Creation	'3
9.3. Session Control	7
9.4. Session States	32
10. Rendering	37
10.1. Swapchain Image Management	37
10.2. View and Projection State)5
10.3. Frame Synchronization. 21	0
10.4. Frame Submission	4
10.5. Frame Rate	20
10.6. Compositing	21
11. Input and Haptics	

11.1. Action Overview	234
11.2. Action Sets	236
11.3. Creating Actions	240
11.4. Suggested Bindings	245
11.5. Current Interaction Profile	251
11.6. Reading Input Action State	255
11.7. Output Actions and Haptics	267
11.8. Input Action State Synchronization	272
11.9. Bound Sources	275
12. List of Current Extensions	282
12.1. XR_KHR_android_create_instance	283
12.2. XR_KHR_android_surface_swapchain	285
12.3. XR_KHR_android_thread_settings	288
12.4. XR_KHR_binding_modification	292
12.5. XR_KHR_composition_layer_color_scale_bias	295
12.6. XR_KHR_composition_layer_cube	298
12.7. XR_KHR_composition_layer_cylinder	301
12.8. XR_KHR_composition_layer_depth	305
12.9. XR_KHR_composition_layer_equirect	309
12.10. XR_KHR_composition_layer_equirect2	313
12.11. XR_KHR_convert_timespec_time	316
12.12. XR_KHR_D3D11_enable	319
12.13. XR_KHR_D3D12_enable	326
12.14. XR_KHR_loader_init	333
12.15. XR_KHR_loader_init_android	336
12.16. XR_KHR_opengl_enable	338
12.17. XR_KHR_opengl_es_enable	349
12.18. XR_KHR_swapchain_usage_input_attachment_bit.	356
12.19. XR_KHR_visibility_mask	357
12.20. XR_KHR_vulkan_enable	363
12.21. XR_KHR_vulkan_enable2	376
12.22. XR_KHR_vulkan_swapchain_format_list	393
12.23. XR_KHR_win32_convert_performance_counter_time	395
13. List of Deprecated Extensions	400
13.1. XR_KHR_locate_spaces	401
13.2. XR_KHR_maintenance1	411
14. Core Revisions (Informative).	415
14.1. Version 1.1	415

14.2. Loader Runtime and API Layer Negotiation Version 1.0	417
14.3. Version 1.0	418
Appendix	423
Code Style Conventions	423
Application Binary Interface	423
Android Notes	432
Glossary	433
Abbreviations	435
Dedication (Informative)	436
Contributors (Informative)	438
Index	442

Preamble

Copyright (c) 2017-2024, The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos. Except as described by these terms, it or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification for any purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other intellectual property rights are granted under these terms.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this Specification, including, without limitation: merchantability, fitness for a particular purpose, non-infringement of any intellectual property, correctness, accuracy, completeness, timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters, Contributors or Members, or their respective partners, officers, directors, employees, agents or representatives be liable for any damages, whether direct, indirect, special or consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with these materials.

This document contains extensions which are not ratified by Khronos, and as such is not a ratified Specification, though it contains text from (and is a superset of) the ratified OpenXR Specification that can be found at https://registry.khronos.org/OpenXR/specs/1.1-khr/html/xrspec.html (core with KHR extensions).

The Khronos Intellectual Property Rights Policy defines the terms 'Scope', 'Compliant Portion', and 'Necessary Patent Claims'.

Some parts of this Specification are purely informative and so are EXCLUDED from the Scope of this Specification. The Document Conventions section of the Introduction defines how these parts of the Specification are identified.

Where this Specification uses technical terminology, defined in the Glossary or otherwise, that refer to enabling technologies that are not expressly set forth in this Specification, those enabling technologies are EXCLUDED from the Scope of this Specification. For clarity, enabling technologies not disclosed with particularity in this Specification (e.g. semiconductor manufacturing technology, hardware architecture, processor architecture or microarchitecture, memory architecture, compiler technology, object oriented technology, basic operating system technology, compression technology, algorithms, and so on) are NOT to be considered expressly set forth; only those application program interfaces and data structures disclosed with particularity are included in the Scope of this Specification.

For purposes of the Khronos Intellectual Property Rights Policy as it relates to the definition of Necessary Patent Claims, all recommended or optional features, behaviors and functionality set forth in this Specification, if implemented, are considered to be included as Compliant Portions.

Khronos® and Vulkan® are registered trademarks, and glTF[™] is a trademark of The Khronos Group Inc. OpenXR[™] is a trademark owned by The Khronos Group Inc. and is registered as a trademark in China, the European Union, Japan and the United Kingdom. OpenGL® is a registered trademark and the OpenGL ES[™] and OpenGL SC[™] logos are trademarks of Hewlett Packard Enterprise used under license by Khronos. All other product names, trademarks, and/or company names are used solely for identification and belong to their respective owners.

Chapter 1. Introduction

This chapter is informative except for the section on Normative Terminology.

This document, referred to as the "OpenXR Specification" or just the "Specification" hereafter, describes OpenXR: what it is, how it acts, and what is required to implement it. We assume that the reader has a basic understanding of computer graphics and the technologies involved in virtual and augmented reality. This means familiarity with the essentials of computer graphics algorithms and terminology, modern GPUs (Graphic Processing Units), tracking technologies, head mounted devices, and input modalities.

The canonical version of the Specification is available in the official OpenXR Registry, located at URL

https://registry.khronos.org/OpenXR

1.1. What is OpenXR?

OpenXR is an API (Application Programming Interface) for XR applications. XR refers to a continuum of real-and-virtual combined environments generated by computers through human-machine interaction and is inclusive of the technologies associated with virtual reality (VR), augmented reality (AR) and mixed reality (MR). OpenXR is the interface between an application and an in-process or out-of-process "XR runtime system", or just "runtime" hereafter. The runtime may handle such functionality as frame composition, peripheral management, and raw tracking information.

Optionally, a runtime may support device layer plugins which allow access to a variety of hardware across a commonly defined interface.

1.2. The Programmer's View of OpenXR

To the application programmer, OpenXR is a set of functions that interface with a runtime to perform commonly required operations such as accessing controller/peripheral state, getting current and/or predicted tracking positions, and submitting rendered frames.

A typical OpenXR program begins with a call to create an instance which establishes a connection to a runtime. Then a call is made to create a system which selects for use a physical display and a subset of input, tracking, and graphics devices. Subsequently a call is made to create buffers into which the application will render one or more views using the appropriate graphics APIs for the platform. Finally calls are made to create a session and begin the application's XR rendering loop.

1.3. The Implementor's View of OpenXR

To the runtime implementor, OpenXR is a set of functions that control the operation of the XR system and establishes the lifecycle of a XR application.

The implementor's task is to provide a software library on the host which implements the OpenXR API, while mapping the work for each OpenXR function to the graphics hardware as appropriate for the capabilities of the device.

1.4. Our View of OpenXR

We view OpenXR as a mechanism for interacting with VR/AR/MR systems in a platform-agnostic way.

We expect this model to result in a specification that satisfies the needs of both programmers and runtime implementors. It does not, however, necessarily provide a model for implementation. A runtime implementation **must** produce results conforming to those produced by the specified methods, but **may** carry out particular procedures in ways that are more efficient than the one specified.

1.5. Filing Bug Reports

Issues with and bug reports on the OpenXR Specification and the API Registry **can** be filed in the Khronos OpenXR GitHub repository, located at URL

https://github.com/KhronosGroup/OpenXR-Docs

Please tag issues with appropriate labels, such as "Specification", "Ref Pages" or "Registry", to help us triage and assign them appropriately. Unfortunately, GitHub does not currently let users who do not have write access to the repository set GitHub labels on issues. In the meantime, they **can** be added to the title line of the issue set in brackets, e.g. "[Specification]".

1.6. Document Conventions

The OpenXR specification is intended for use by both implementors of the API and application developers seeking to make use of the API, forming a contract between these parties. Specification text may address either party; typically the intended audience can be inferred from context, though some sections are defined to address only one of these parties. (For example, Valid Usage sections only address application developers). Any requirements, prohibitions, recommendations or options defined by normative terminology are imposed only on the audience of that text.

1.6.1. Normative Terminology

The key words **must**, **required**, **should**, **may**, and **optional** in this document, when denoted as above, are to be interpreted as described in RFC 2119:

https://tools.ietf.org/html/rfc2119

must

When used alone, this word, or the term **required**, means that the definition is an absolute requirement of the specification. When followed by **not** ("**must** not"), the phrase means that the

definition is an absolute prohibition of the specification.

should

When used alone, this word means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course. When followed by **not** ("**should** not"), the phrase means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications **should** be understood and the case carefully weighed before implementing any behavior described with this label.

may

This word, or the adjective **optional**, means that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item.

The additional terms **can** and **cannot** are to be interpreted as follows:

can

This word means that the particular behavior described is a valid choice for an application, and is never used to refer to runtime behavior.

cannot

This word means that the particular behavior described is not achievable by an application, for example, an entry point does not exist.

There is an important distinction between **cannot** and **must not**, as used in this Specification. **Cannot** means something the application literally is unable to express or accomplish through the API, while **must not** means something that the application is capable of expressing through the API, but that the consequences of doing so are undefined and potentially unrecoverable for the runtime.

Chapter 2. Fundamentals

2.1. API Version Numbers and Semantics

Multi-part version numbers are used in several places in the OpenXR API.

// Provided by XR_VERSION_1_0
typedef uint64_t XrVersion;

In each such use, the API major version number, minor version number, and patch version number are packed into a 64-bit integer, referred to as XrVersion, as follows:

Version Numbers

- The major version number is a 16-bit integer packed into bits 63-48.
- The minor version number is a 16-bit integer packed into bits 47-32.
- The patch version number is a 32-bit integer packed into bits 31-0.

Differences in any of the version numbers indicate a change to the API, with each part of the version number indicating a different scope of change, as follows.

B

Note

The rules below apply to OpenXR versions 1.0 or later. Prerelease versions of OpenXR may use different rules for versioning.

A difference in patch version numbers indicates that some usually small part of the specification or header has been modified, typically to fix a bug, and **may** have an impact on the behavior of existing functionality. Differences in the patch version number **must** affect neither full compatibility nor backwards compatibility between two versions, nor **may** it add additional interfaces to the API. Runtimes **may** use patch version number to determine whether to enable implementation changes, such as bug fixes, that impact functionality. Runtimes **should** document any changes that are tied to the patch version. Application developers **should** retest their application on all runtimes they support after compiling with a new version.

A difference in minor version numbers indicates that some amount of new functionality has been added. This will usually include new interfaces in the header, and **may** also include behavior changes and bug fixes. Functionality **may** be deprecated in a minor revision, but **must** not be removed. When a new minor version is introduced, the patch version continues where the last minor version left off, making patch versions unique inside major versions. Differences in the minor version number **should**

not affect backwards compatibility, but will affect full compatibility.

A difference in major version numbers indicates a large set of changes to the API, potentially including new functionality and header interfaces, behavioral changes, removal of deprecated features, modification or outright replacement of any feature, and is thus very likely to break compatibility. Differences in the major version number will typically require significant modification to application code in order for it to function properly.

The following table attempts to detail the changes that **may** occur versus when they **must** not be updated during an update to any of the major, minor, or patch version numbers:

Reason	Major Version	Minor Version	Patch Version
Extensions Added/Removed*	may	may	may
Spec-Optional Behavior Changed*	may	may	may
Spec Required Behavior Changed*	may	may	must not
Core Interfaces Added*	may	may	must not
Weak Deprecation*	may	may	must not
Strong Deprecation*	may	must not	must not
Core Interfaces Changed/Removed*	may	must not	must not

Table 1. Scenarios Which May Cause a Version Change

In the above table, the following identify the various cases in detail:

Extensions Added/Removed	An extension may be added or removed with a change at this patch level.
Specification-Optional Behavior Changed	Some optional behavior laid out in this specification has changed. Usually this will involve a change in behavior that is marked with the normative language should or may . For example, a runtime that previously did not validate a particular use case may now begin validating that use case.
Specification-Required Behavior Changed	A behavior of runtimes that is required by this specification may have changed. For example, a previously optional validation may now have become mandatory for runtimes.
Core Interfaces Added	New interfaces may have been added to this specification (and to the OpenXR header file) in revisions at this level.

Weak Deprecation	An interface may have been weakly deprecated at this level. This may happen if there is now a better way to accomplish the same thing. Applications making this call should behave the same as before the deprecation, but following the new path may be more performant, lower latency, or otherwise yield better results. It is possible that some runtimes may choose to give run-time warnings that the feature has been weakly deprecated and will likely be strongly deprecated or removed in the future.
Strong Deprecation	An interface may have been strongly deprecated at this level. This means that the interface must still exist (so applications that are compiled against it will still run) but it may now be a no-op, or it may be that its behavior has been significantly changed. It may be that this functionality is no longer necessary, or that its functionality has been subsumed by another call. This should not break an application, but some behavior may be different or unanticipated.
Interfaces Changed/Removed	An interface may have been changed — with different parameters or return types — at this level. An interface or feature may also have been removed entirely. It is almost certain that rebuilding applications will be required.

2.2. String Encoding

This API uses strings as input and output for some functions. Unless otherwise specified, all such strings are NULL terminated UTF-8 encoded case-sensitive character arrays.

2.3. Threading Behavior

The OpenXR API is intended to provide scalable performance when used on multiple host threads. All functions **must** support being called concurrently from multiple threads, but certain parameters, or components of parameters are defined to be externally synchronized. This means that the caller **must** guarantee that no more than one thread is using such a parameter at a given time.

More precisely, functions use simple stores to update software structures representing objects. A parameter declared as externally synchronized **may** have its software structures updated at any time during the host execution of the function. If two functions operate on the same object and at least one of the functions declares the object to be externally synchronized, then the caller **must** guarantee not only that the functions do not execute simultaneously, but also that the two functions are separated by an appropriate memory barrier if needed.

For all functions which destroy an object handle, the application **must** externally synchronize the object handle parameter and any child handles.

Externally Synchronized Parameters

- The instance parameter, and any child handles, in xrDestroyInstance
- The session parameter, and any child handles, in xrDestroySession
- The space parameter, and any child handles, in xrDestroySpace
- The swapchain parameter, and any child handles, in xrDestroySwapchain
- The actionSet parameter, and any child handles, in xrDestroyActionSet
- The action parameter, and any child handles, in xrDestroyAction

Implicit Externally Synchronized Parameters

- The session parameter by any other xrWaitFrame call in xrWaitFrame
- The session parameter by any other xrBeginFrame or xrEndFrame call in xrBeginFrame
- The session parameter by any other xrBeginFrame or xrEndFrame call in xrEndFrame

2.4. Multiprocessing Behavior

The OpenXR API does not explicitly recognize nor require support for multiple processes using the runtime simultaneously, nor does it prevent a runtime from providing such support.

2.5. Runtime

An OpenXR runtime is software which implements the OpenXR API. There **may** be more than one OpenXR runtime installed on a system, but only one runtime can be active at any given time.

2.6. Extensions

OpenXR is an extensible API that grows through the addition of new features. Similar to other Khronos APIs, extensions **may** expose new OpenXR functions or modify the behavior of existing OpenXR functions. Extensions are **optional**, and therefore **must** be enabled by the application before the extended functionality is made available. Because extensions are **optional**, they **may** be implemented only on a subset of runtimes, graphics platforms, or operating systems. Therefore, an application **should** first query which extensions are available before enabling.

The application queries the available list of extensions using the xrEnumerateInstanceExtensionProperties function. Once an application determines which extensions are supported, it **can** enable some subset of them during the call to xrCreateInstance.

OpenXR extensions have unique names that convey information about what functionality is provided.

Extension Name Formatting

- The prefix "XR_" to identify this as an OpenXR extension
- A string identifier for the vendor tag, which corresponds to the company or group exposing the extension. The vendor tag **must** use only uppercase letters and decimal digits. Some examples include:
 - "KHR" for Khronos extensions, supported by multiple vendors.
 - "EXT" for non-Khronos extensions supported by multiple vendors.
- An underscore "_".
- A string uniquely identifying the extension. The string is a compound of substrings which **must** use only lower case letters and decimal digits. The substrings are delimited with single underscores.

For example: XR_KHR_composition_layer_cube is an OpenXR extension created by the Khronos (KHR) OpenXR Working Group to support cube composition layers.

The public list of available extensions known and configured for inclusion in this document at the time of this specification being generated appears in the List of Extensions appendix at the end of this document.

2.7. API Layers

OpenXR is designed to be a layered API, which means that a user or application **may** insert API layers between the application and the runtime implementation. These API layers provide additional functionality by intercepting OpenXR functions from the layer above and performing different operations than would otherwise be performed without the layer. In the simplest cases, the layer simply calls the next layer down with the same arguments, but a more complex layer **may** implement API functionality that is not present in the layers or runtime below it. This mechanism is essentially an architected "function shimming" or "intercept" feature that is designed into OpenXR and meant to replace more informal methods of "hooking" API calls.

2.7.1. Examples of API Layers

Validation Layer

The layered API approach employed by OpenXR allows for potentially expensive validation of correct API usage to be implemented in a "validation" layer. Such a layer allows the application developer to develop their application with a validation layer active to ensure that the application is using the API correctly. A validation layer confirms that the application has set up object state correctly, has provided the required data for each function, ensures that required resources are available, etc. If a validation

layer detects a problem, it issues an error message that **can** be logged or captured by the application via a callback. After the developer has determined that the application is correct, they turn off a validation layer to allow the application to run in a production environment without repeatedly incurring the validation expense. (Note that some validation of correct API usage is required to be implemented by the runtime.)

API Logging Layer

Another example of an API layer is an API logging layer that simply serializes all the API calls to an output sink in a text format, including printing out argument values and structure contents.

API Trace Layer

A related API trace layer produces a trace file that contains all the information provided to the API so that the trace file can be played back by a replay program.

2.7.2. Naming API Layers

To organize API layer names and prevent collisions in the API layer name namespace, API layers **must** be named using the following convention:

XR_APILAYER_<VENDOR-TAG>_short_name

Vendors are responsible for registering a vendor tag with the OpenXR working group, and just like for implementors, they must maintain their vendor namespace.

Example of an API layer name produced by the Acme company for the "check best practices" API layer:

XR_APILAYER_ACME_check_best_practices

2.7.3. Activating API Layers

Application Activation

Applications **can** determine the API layers that are available to them by calling the **xrEnumerateApiLayerProperties** function to obtain a list of available API layers. Applications then **can** select the desired API layers from this list and provide them to the **xrCreateInstance** function when creating an instance.

System Activation

Application users or users performing roles such as system integrator or system administrator **may** configure a system to activate API layers without involvement from the applications. These platformdependent steps **may** include the installation of API layer-related files, setting environment variables, or other platform-specific operations. The options that are available for configuring the API layers in this manner are also dependent on the platform and/or runtime.

2.7.4. API Layer Extensions

API layers **may** implement OpenXR functions that are not supported by the underlying runtime. In order to expose these new features, the API layer **must** expose this functionality in the form of an OpenXR extension. It **must** not expose new OpenXR functions without an associated extension.

For example, an OpenXR API-logging API layer might expose an API function to allow the application to turn logging on for only a portion of its execution. Since new functions **must** be exposed through an extension, the vendor has created an extension called XR_ACME_logging_on_off to contain these new functions. The application **should** query if the API layer supports the extension and then, only if it exists, enable both the extension and the API layer by name during xrCreateInstance.

To find out what extensions an API layer supports, an application **must** first verify that the API layer exists on the current system by calling xrEnumerateApiLayerProperties. After verifying an API layer of interest exists, the application then **should** call xrEnumerateInstanceExtensionProperties and provide the API layer name as the first parameter. This will return the list of extensions implemented by that API layer.

2.8. Type Aliasing

Type aliasing refers to the situation in which the actual type of a element does not match the declared type. Some C and C++ compilers assume that the actual type matches the declared type in some configurations, and may be so configured by default at common optimization levels. In such a compiler configured with that assumption, violating the assumption **may** produce undefined behavior. This compiler feature is typically referred to as "strict aliasing," and it **can** usually be enabled or disabled via compiler options. The OpenXR specification does not support strict aliasing, as there are some cases in which an application intentionally provides a struct with a type that differs from the XrFrameEndInfo::layers declared type. For example, is an array type of const XrCompositionLayerBaseHeader code:* const. However, each element of the array must be of one of the specific layer types, such as XrCompositionLayerQuad. Similarly, xrEnumerateSwapchainImages accepts an array of XrSwapchainImageBaseHeader, whereas the actual type passed **must** be an array of a type such as XrSwapchainImageVulkanKHR.

For OpenXR to work correctly, the compiler **must** support the type aliasing described here.

```
// Provided by XR_VERSION_1_0
#if !defined(XR_MAY_ALIAS)
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4))
#define XR_MAY_ALIAS __attribute__((__may_alias__))
#else
#define XR_MAY_ALIAS
#endif
#endif
```

As a convenience, some types and pointers that are known at specification time to alias values of different types have been annotated with the XR_MAY_ALIAS definition. If this macro is not defined before including OpenXR headers, and a new enough Clang or GCC compiler is used, it is defined to a compiler-specific attribute annotation to inform these compilers that those pointers **may** alias. However, there is no guarantee that all aliasing types or pointers have been correctly marked with this macro, so thorough testing is still recommended if you choose (at your own risk) to permit your compiler to perform type-based aliasing analysis.

2.9. Valid Usage

Valid usage defines a set of conditions which **must** be met in order to achieve well-defined run-time behavior in an application. These conditions depend only on API state, and the parameters or objects whose usage is constrained by the condition.

Some valid usage conditions have dependencies on runtime limits or feature availability. It is possible to validate these conditions against the API's minimum or maximum supported values for these limits and features, or some subset of other known values.

Valid usage conditions **should** apply to a function or structure where complete information about the condition would be known during execution of an application. This is such that a validation API layer or linter **can** be written directly against these statements at the point they are specified.

2.9.1. Implicit Valid Usage

Some valid usage conditions apply to all functions and structures in the API, unless explicitly denoted otherwise for a specific function or structure. These conditions are considered implicit. Implicit valid usage conditions are described in detail below.

2.9.2. Valid Usage for Object Handles

Any input parameter to a function that is an object handle **must** be a valid object handle, unless otherwise specified. An object handle is valid if and only if all of the following conditions hold:

Object Handle Validity Conditions

- It has been created or allocated by a previous, successful call to the API.
- It has not been destroyed by a previous call to the API.
- Its parent handle is also valid.

There are contexts in which an object handle is **optional** or otherwise unspecified. In those cases, the API uses XR_NULL_HANDLE, which has the integer value 0.

2.9.3. Valid Usage for Pointers

Any parameter that is a pointer **must** be a valid pointer when the specification indicates that the runtime uses the pointer. A pointer is valid if and only if it points at memory containing values of the number and type(s) expected by the function, and all fundamental types accessed through the pointer (e.g. as elements of an array or as members of a structure) satisfy the alignment requirements of the host processor.

2.9.4. Valid Usage for Enumerated Types

Any parameter of an enumerated type **must** be a valid enumerant for that type. An enumerant is valid if and only if the enumerant is defined as part of the enumerated type in question.

2.9.5. Valid Usage for Flags

A collection of flags is represented by a bitmask using the type XrFlags64:

typedef uint64_t XrFlags64;

Bitmasks are passed to many functions and structures to compactly represent options and are stored in memory defined by the XrFlags64 type. But the API does not use the XrFlags64 type directly. Instead, a Xr*Flags type is used which is an alias of the XrFlags64 type. The API also defines a set of constant bit definitions used to set the bitmasks.

Any Xr*Flags member or parameter used in the API **must** be a valid combination of bit flags. A valid combination is either zero or the bitwise OR of valid bit flags. A bit flag is valid if and only if:

Bit Flag Validity

- The bit flag is one of the constant bit definitions defined by the same Xr*Flags type as the Xr*Flags member or parameter. (Valid flag values **may** also be defined by extensions but will appear in the specification with all other valid flag values for that type.)
- The flag is allowed in the context in which it is being used. For example, in some cases, certain bit flags or combinations of bit flags are mutually exclusive.

2.9.6. Valid Usage for Structure Types

Any parameter that is a structure containing a type member **must** have a value of type which is a valid XrStructureType value matching the type of the structure. As a general rule, the name of this value is obtained by taking the structure name, stripping the leading Xr, prefixing each capital letter with an underscore, converting the entire resulting string to upper case, and prefixing it with XR_TYPE_.

The only exceptions to this rule are API and Operating System names which are converted in a way that produces a more readable value:

Structure Type Format Exceptions

- OpenGL \Rightarrow _OPENGL
- OpenGLES \Rightarrow _OPENGL_ES
- EGL \Rightarrow _EGL
- D3D \Rightarrow D3D

2.9.7. Valid Usage for Structure Pointer Chains

Any structure containing a void* next member **must** have a value of next that is either NULL, or points to a valid structure that also contains type and next member values. The set of structures connected by next pointers is referred to as a next chain.

In order to use a structure type defined by an extension in a next chain, the proper extension **must** have been previously enabled during xrCreateInstance. A runtime **must** ignore all unrecognized structures in a next chain, including those associated with an extension that has not been enabled.

Some structures for use in a chain are described in the core OpenXR specification and are mentioned in the Member Descriptions. Any structure described in this document intended for use in a chain is mentioned in a "See also" list in the implicit valid usage of the structure they chain to. Most chained structures are associated with extensions, and are described in the base OpenXR Specification under the List of Extensions. Vendor-specific extensions **may** be found there as well, or **may** only be available from the vendor's website or internal document repositories.

Unless otherwise specified: Chained structs which are output structs **may** be modified by the runtime with the exception of the type and next fields. Upon return from any function, all type and next fields in the chain **must** be unmodified.

Useful Base Structures

As a convenience to runtimes and layers needing to iterate through a structure pointer chain, the OpenXR API provides the following base structures:

The XrBaseInStructure structure is defined as:

```
// Provided by XR_VERSION_1_0
typedef struct XrBaseInStructure {
    XrStructureType type;
    const struct XrBaseInStructure* next;
} XrBaseInStructure;
```

Member Descriptions

- type is the XrStructureType of this structure. This base structure itself has no associated XrStructureType value.
- next is NULL or a pointer to the next structure in a structure chain.

XrBaseInStructure **can** be used to facilitate iterating through a read-only structure pointer chain.

The XrBaseOutStructure structure is defined as:

```
// Provided by XR_VERSION_1_0
typedef struct XrBaseOutStructure {
    XrStructureType type;
    struct XrBaseOutStructure* next;
} XrBaseOutStructure;
```

Member Descriptions

- type is the XrStructureType of this structure. This base structure itself has no associated XrStructureType value.
- next is NULL or a pointer to the next structure in a structure chain.

XrBaseOutStructure **can** be used to facilitate iterating through a structure pointer chain that returns data back to the application.

These structures allow for some type safety and can be used by OpenXR API functions that operate on generic inputs and outputs.

Next Chain Structure Uniqueness

Applications **should** ensure that they create and insert no more than one occurrence of each type of extension structure in a given next chain. Other components of OpenXR (such as the OpenXR loader or an API Layer) **may** insert duplicate structures into this chain. This provides those components the ability to update a structure that appears in the next chain by making a modified copy of that same structure and placing the new version at the beginning of the chain. The benefit of allowing this duplication is each component is no longer required to create a copy of the entire next chain just to update one structure. When duplication is present, all other OpenXR components **must** process only the first instance of a structure of a given type, and then ignore all instances of a structure of that same type.

If a component makes such a structure copy, and the original structure is also used to return content, then that component **must** copy the necessary content from the copied structure and into the original version of the structure upon completion of the function prior to proceeding back up the call stack. This is to ensure that OpenXR behavior is consistent whether or not that particular OpenXR component is present and/or enabled on the system.

2.9.8. Valid Usage for Nested Structures

The above conditions also apply recursively to members of structures provided as input to a function, either as a direct argument to the function, or themselves a member of another structure.

Specifics on valid usage of each function are covered in their individual sections.

2.10. Return Codes

The core API is designed to capture most, but not all, instances of incorrect usage. As such, most functions provide return codes. Functions in the API return their status via return codes that are in one of the two categories below.

Return Code Categories

- Successful completion codes are returned when a function needs to communicate success or status information. All successful completion codes are non-negative values.
- Run time error codes are returned when a function needs to communicate a failure that could only be detected at run time. All run time error codes are negative values.

```
typedef enum XrResult {
   XR_SUCCESS = 0,
    XR_TIMEOUT_EXPIRED = 1,
   XR_SESSION_LOSS_PENDING = 3,
   XR_EVENT_UNAVAILABLE = 4,
    XR_SPACE_BOUNDS_UNAVAILABLE = 7,
    XR_SESSION_NOT_FOCUSED = 8,
    XR_FRAME_DISCARDED = 9,
   XR_ERROR_VALIDATION_FAILURE = -1,
   XR_ERROR_RUNTIME_FAILURE = -2,
    XR_ERROR_OUT_OF_MEMORY = -3,
   XR_ERROR_API_VERSION_UNSUPPORTED = -4,
    XR_ERROR_INITIALIZATION_FAILED = -6,
   XR ERROR FUNCTION UNSUPPORTED = -7,
   XR_ERROR_FEATURE_UNSUPPORTED = -8,
   XR_ERROR_EXTENSION_NOT_PRESENT = -9,
   XR_ERROR_LIMIT_REACHED = -10,
    XR_ERROR_SIZE_INSUFFICIENT = -11,
   XR_ERROR_HANDLE_INVALID = -12,
   XR_ERROR_INSTANCE_LOST = -13,
    XR_ERROR_SESSION_RUNNING = -14,
   XR_ERROR_SESSION_NOT_RUNNING = -16,
   XR_ERROR_SESSION_LOST = -17,
   XR_ERROR_SYSTEM_INVALID = -18,
    XR_ERROR_PATH_INVALID = -19,
   XR ERROR PATH COUNT EXCEEDED = -20,
    XR_ERROR_PATH_FORMAT_INVALID = -21,
   XR_ERROR_PATH_UNSUPPORTED = -22,
   XR_ERROR_LAYER_INVALID = -23,
    XR_ERROR_LAYER_LIMIT_EXCEEDED = -24,
    XR_ERROR_SWAPCHAIN_RECT_INVALID = -25,
   XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED = -26,
   XR_ERROR_ACTION_TYPE_MISMATCH = -27,
   XR_ERROR_SESSION_NOT_READY = -28,
   XR_ERROR_SESSION_NOT_STOPPING = -29,
    XR_ERROR_TIME_INVALID = -30,
```

```
XR_ERROR_REFERENCE_SPACE_UNSUPPORTED = -31,
    XR_ERROR_FILE_ACCESS_ERROR = -32,
    XR_ERROR_FILE_CONTENTS_INVALID = -33,
    XR_ERROR_FORM_FACTOR_UNSUPPORTED = -34,
    XR ERROR FORM FACTOR UNAVAILABLE = -35,
    XR ERROR API LAYER NOT PRESENT = -36,
    XR_ERROR_CALL_ORDER_INVALID = -37,
    XR ERROR GRAPHICS DEVICE INVALID = -38,
    XR_ERROR_POSE_INVALID = -39,
    XR_ERROR_INDEX_OUT_OF_RANGE = -40,
    XR ERROR VIEW CONFIGURATION TYPE UNSUPPORTED = -41,
    XR ERROR ENVIRONMENT BLEND MODE UNSUPPORTED = -42,
    XR_ERROR_NAME_DUPLICATED = -44,
    XR ERROR NAME INVALID = -45,
    XR ERROR ACTIONSET NOT ATTACHED = -46,
    XR_ERROR_ACTIONSETS_ALREADY_ATTACHED = -47,
    XR_ERROR_LOCALIZED_NAME_DUPLICATED = -48,
    XR_ERROR_LOCALIZED_NAME_INVALID = -49,
    XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING = -50,
    XR ERROR RUNTIME UNAVAILABLE = -51,
  // Provided by XR_VERSION_1_1
    XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED = -1000710001,
  // Provided by XR VERSION 1 1
    XR_ERROR_PERMISSION_INSUFFICIENT = -1000710000,
  // Provided by XR_KHR_android_thread_settings
    XR ERROR ANDROID THREAD SETTINGS ID INVALID KHR = -1000003000,
  // Provided by XR_KHR_android_thread_settings
    XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR = -1000003001,
  // Provided by XR_KHR_maintenance1
    XR ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED_KHR =
XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED,
  // Provided by XR KHR maintenance1
    XR_ERROR_PERMISSION_INSUFFICIENT_KHR = XR_ERROR_PERMISSION_INSUFFICIENT,
    XR_RESULT_MAX_ENUM = 0x7FFFFFF
} XrResult;
```

All return codes in the API are reported via XrResult return values.

The following are common suffixes shared across many of the return codes:

- _INVALID: The specified handle, atom, or value is formatted incorrectly, or the specified handle was never created or has been destroyed.
- _UNSUPPORTED: The specified handle, atom, enumerant, or value is formatted correctly but cannot be used for the lifetime of this function's parent handle.
- _UNAVAILABLE: The specified handle, atom, enumerant, or value is supported by the handle taken by this function, but is not usable at this moment.

Success Codes

Enum	Description
XR_SUCCESS	Function successfully completed.
XR_TIMEOUT_EXPIRED	The specified timeout time occurred before the operation could complete.
XR_SESSION_LOSS_PENDING	The session will be lost soon.
XR_EVENT_UNAVAILABLE	No event was available.
XR_SPACE_BOUNDS_UNAVAILABLE	The space's bounds are not known at the moment.
XR_SESSION_NOT_FOCUSED	The session is not in the focused state.
XR_FRAME_DISCARDED	A frame has been discarded from composition.

Error Codes

Enum	Description
XR_ERROR_VALIDATION_FAILURE	The function usage was invalid in some way.
XR_ERROR_RUNTIME_FAILURE	The runtime failed to handle the function in an unexpected way that is not covered by another error result.
XR_ERROR_OUT_OF_MEMORY	A memory allocation has failed.
XR_ERROR_API_VERSION_UNSUPPORTED	The runtime does not support the requested API version.
XR_ERROR_INITIALIZATION_FAILED	Initialization of object could not be completed.
XR_ERROR_FUNCTION_UNSUPPORTED	The requested function was not found or is otherwise unsupported.
XR_ERROR_FEATURE_UNSUPPORTED	The requested feature is not supported.
XR_ERROR_EXTENSION_NOT_PRESENT	A requested extension is not supported.
XR_ERROR_LIMIT_REACHED	The runtime supports no more of the requested resource.
XR_ERROR_SIZE_INSUFFICIENT	The supplied size was smaller than required.
XR_ERROR_HANDLE_INVALID	A supplied object handle was invalid.
XR_ERROR_INSTANCE_LOST	The XrInstance was lost or could not be found. It will need to be destroyed and optionally recreated.
XR_ERROR_SESSION_RUNNING	The session is already running.
XR_ERROR_SESSION_NOT_RUNNING	The session is not yet running.

Enum	Description
XR_ERROR_SESSION_LOST	The XrSession was lost. It will need to be destroyed and optionally recreated.
XR_ERROR_SYSTEM_INVALID	The provided XrSystemId was invalid.
XR_ERROR_PATH_INVALID	The provided XrPath was not valid.
XR_ERROR_PATH_COUNT_EXCEEDED	The maximum number of supported semantic paths has been reached.
XR_ERROR_PATH_FORMAT_INVALID	The semantic path character format is invalid.
XR_ERROR_PATH_UNSUPPORTED	The semantic path is unsupported.
XR_ERROR_LAYER_INVALID	The layer was NULL or otherwise invalid.
XR_ERROR_LAYER_LIMIT_EXCEEDED	The number of specified layers is greater than the supported number.
XR_ERROR_SWAPCHAIN_RECT_INVALID	The image rect was negatively sized or otherwise invalid.
XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED	The image format is not supported by the runtime or platform.
XR_ERROR_ACTION_TYPE_MISMATCH	The API used to retrieve an action's state does not match the action's type.
XR_ERROR_SESSION_NOT_READY	The session is not in the ready state.
XR_ERROR_SESSION_NOT_STOPPING	The session is not in the stopping state.
XR_ERROR_TIME_INVALID	The provided XrTime was zero, negative, or out of range.
XR_ERROR_REFERENCE_SPACE_UNSUPPORTED	The specified reference space is not supported by the runtime or system.
XR_ERROR_FILE_ACCESS_ERROR	The file could not be accessed.
XR_ERROR_FILE_CONTENTS_INVALID	The file's contents were invalid.
XR_ERROR_FORM_FACTOR_UNSUPPORTED	The specified form factor is not supported by the current runtime or platform.
XR_ERROR_FORM_FACTOR_UNAVAILABLE	The specified form factor is supported, but the device is currently not available, e.g. not plugged in or powered off.
XR_ERROR_API_LAYER_NOT_PRESENT	A requested API layer is not present or could not be loaded.
XR_ERROR_CALL_ORDER_INVALID	The call was made without having made a previously required call.

Enum	Description
XR_ERROR_GRAPHICS_DEVICE_INVALID	The given graphics device is not in a valid state. The graphics device could be lost or initialized without meeting graphics requirements.
XR_ERROR_POSE_INVALID	The supplied pose was invalid with respect to the requirements.
XR_ERROR_INDEX_OUT_OF_RANGE	The supplied index was outside the range of valid indices.
XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED	The specified view configuration type is not supported by the runtime or platform.
XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED	The specified environment blend mode is not supported by the runtime or platform.
XR_ERROR_NAME_DUPLICATED	The name provided was a duplicate of an already- existing resource.
XR_ERROR_NAME_INVALID	The name provided was invalid.
XR_ERROR_ACTIONSET_NOT_ATTACHED	A referenced action set is not attached to the session.
XR_ERROR_ACTIONSETS_ALREADY_ATTACHED	The session already has attached action sets.
XR_ERROR_LOCALIZED_NAME_DUPLICATED	The localized name provided was a duplicate of an already-existing resource.
XR_ERROR_LOCALIZED_NAME_INVALID	The localized name provided was invalid.
XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING	The xrGetGraphicsRequirements* call was not made before calling xrCreateSession.
XR_ERROR_RUNTIME_UNAVAILABLE	The loader was unable to find or load a runtime.
XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED	One or more of the extensions being enabled has dependency on extensions that are not enabled.
XR_ERROR_PERMISSION_INSUFFICIENT	Insufficient permissions. This error is included for use by vendor extensions. The precise definition of XR_ERROR_PERMISSION_INSUFFICIENT and actions possible by the developer or user to resolve it can vary by platform, extension or function. The developer should refer to the documentation of the function that returned the error code and extension it was defined.
XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR	xrSetAndroidApplicationThreadKHR failed as thread id is invalid. (Added by the XR_KHR_android_thread_settings extension)

Enum	Description
XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR	xrSetAndroidApplicationThreadKHR failed setting the thread attributes/priority. (Added by the XR_KHR_android_thread_settings extension)

2.10.1. Convenience Macros

```
// Provided by XR_VERSION_1_0
#define XR_SUCCEEDED(result) ((result) >= 0)
```

A convenience macro that **can** be used to test if a function succeeded. Note that this evaluates to true for all success codes, including a qualified success such as XR_FRAME_DISCARDED.

```
// Provided by XR_VERSION_1_0
#define XR_FAILED(result) ((result) < 0)</pre>
```

A convenience macro that **can** be used to test if a function has failed in some way. It evaluates to true for all failure codes.

```
// Provided by XR_VERSION_1_0
#define XR_UNQUALIFIED_SUCCESS(result) ((result) == 0)
```

A convenience macro that can be used to test a function's failure. The XR_UNQUALIFIED_SUCCESS macro evaluates to true exclusively when the provided XrResult is equal to XR_SUCCESS (0).

2.10.2. Validation

Except as noted below or in individual API specifications, valid API usage **may** be required by the runtime. Runtimes **may** choose to validate some API usage and return an appropriate error code.

Application developers **should** use validation layers to catch and eliminate errors during development. Once validated, applications **should** not enable validation layers by default.

If a function returns a run time error, unless otherwise specified any output parameters will have undefined contents, except that if the output parameter is a structure with type and next fields, those fields will be unmodified. Any output structures chained from next will also have undefined contents, except that the type and next will be unmodified.

Unless otherwise specified, errors do not affect existing OpenXR objects. Objects that have already been successfully created **may** still be used by the application.

XrResult code returns **may** be added to a given function in future versions of the specification. Runtimes **must** return only XrResult codes from the set documented for the given application API version.

Runtimes **must** ensure that incorrect usage by an application does not affect the integrity of the operating system, the API implementation, or other API client applications in the system, and does not allow one application to access data belonging to another application.

2.11. Handles

Objects which are allocated by the runtime on behalf of applications are represented by handles. Handles are opaque identifiers for objects whose lifetime is controlled by applications via the create and destroy functions. Example handle types include XrInstance, XrSession, and XrSwapchain. Handles which have not been destroyed are unique for a given application process, but **may** be reused after being destroyed. Unless otherwise specified, a successful handle creation function call returns a new unique handle. Unless otherwise specified, handles are implicitly destroyed when their parent handle is destroyed. Applications **may** destroy handles explicitly before the parent handle is destroyed, and **should** do so if no longer needed, in order to conserve resources. Runtimes **may** detect XR_NULL_HANDLE and other invalid handles passed where a valid handle is required and return XR_ERROR_HANDLE_INVALID. However, runtimes are not required to do so unless otherwise specified, and so use of any invalid handle **may** result in undefined behavior. When a function has an **optional** handle parameter, XR_NULL_HANDLE **must** be passed by the application if it does not pass a valid handle.

All functions that take a handle parameter **may** return XR_ERROR_HANDLE_INVALID.

Handles form a hierarchy in which child handles fall under the validity and lifetime of parent handles. For example, to create an XrSwapchain handle, applications must call xrCreateSwapchain and pass an XrSession handle. Thus XrSwapchain is a child handle of XrSession.

2.12. Object Handle Types

The type of an object handle used in a function is usually determined by the specification of that function, as discussed in Valid Usage for Object Handles. However, some functions accept or return object handle parameters where the type of the object handle is unknown at execution time and is not specified in the description of the function itself. For these functions, the XrObjectType **may** be used to explicitly specify the type of a handle.

For example, an information-gathering or debugging mechanism implemented in a runtime extension or API layer extension **may** return a list of object handles that are generated by the mechanism's operation. The same mechanism **may** also return a parallel list of object handle types that allow the recipient of this information to easily determine the types of the handles. In general, anywhere an object handle of more than one type can occur, the object handle type **may** be provided to indicate its type.

```
// Provided by XR_VERSION_1_0
typedef enum XrObjectType {
    XR_OBJECT_TYPE_UNKNOWN = 0,
    XR_OBJECT_TYPE_INSTANCE = 1,
    XR_OBJECT_TYPE_SESSION = 2,
    XR_OBJECT_TYPE_SWAPCHAIN = 3,
    XR_OBJECT_TYPE_SPACE = 4,
    XR_OBJECT_TYPE_ACTION_SET = 5,
    XR_OBJECT_TYPE_ACTION = 6,
    XR_OBJECT_TYPE_MAX_ENUM = 0x7FFFFFFF
} XrObjectType;
```

The XrObjectType enumeration defines values, each of which corresponds to a specific OpenXR handle type. These values **can** be used to associate debug information with a particular type of object through one or more extensions.

The following table defines XrObjectType and OpenXR Handle relationships in the core specification:

XrObjectType	OpenXR Handle Type
XR_OBJECT_TYPE_UNKNOWN	Unknown/Undefined Handle
XR_OBJECT_TYPE_INSTANCE	XrInstance
XR_OBJECT_TYPE_SESSION	XrSession
XR_OBJECT_TYPE_SWAPCHAIN	XrSwapchain
XR_OBJECT_TYPE_SPACE	XrSpace
<pre>XR_OBJECT_TYPE_ACTION_SET</pre>	XrActionSet
XR_OBJECT_TYPE_ACTION	XrAction

2.13. Buffer Size Parameters

Functions with input/output buffer parameters take on either parameter form or structure form, as in one of the following examples, with the element type being float in this case:

Parameter form:

```
XrResult xrFunction(uint32_t elementCapacityInput, uint32_t* elementCountOutput, float*
elements);
```

Structure form:

```
XrResult xrFunction(XrBuffer* buffer);
struct XrBuffer {
    uint32_t elementCapacityInput;
    uint32_t elementCountOutput;
    float* elements;
};
```

A "two-call idiom" **should** be employed by the application, first calling xrFunction (with a valid elementCountOutput pointer if in parameter form), but passing NULL as elements and 0 as elementCapacityInput, to retrieve the required buffer size as number of elements (number of floats in this example). After allocating a buffer at least as large as elementCountOutput (in a structure) or the value pointed to by elementCountOutput (as parameters), a pointer to the allocated buffer **should** be passed as elements, along with the buffer's length in elementCapacityInput, to a second call to xrFunction to perform the retrieval of the data. If the element type of elements is a structure with type and next fields, the application **must** set the type to the correct value, and **must** set next to a valid value. A valid value for next is generally either NULL or another structure with related data, in which type and next are also valid, recursively. (See Valid Usage for Structure Pointer Chains for details.)

In the following discussion, "set elementCountOutput" should be interpreted as "set the value pointed to by elementCountOutput" in parameter form and "set the value of elementCountOutput" in struct form. These functions have the following behavior with respect to the array/buffer and its size parameters:

Buffer Size Parameter Behavior

- The elementCapacityInput and elementCountOutput arguments precede the array to which they refer, in argument order.
- elementCapacityInput specifies the capacity in number of elements of the buffer to be written, or 0 to indicate a request for the required buffer size.
- Independent of elementCapacityInput or elements parameters, the application **must** pass a valid pointer for elementCountOutput if the function uses parameter form.
- Independent of elementCapacityInput or elements parameters, the function sets elementCountOutput.
- The application **may** pass 0 for the **elementCapacityInput** parameter, to indicate a request for the required array size. That is, passing a capacity of 0 does not return XR_ERROR_SIZE_INSUFFICIENT. In this case, the following two points apply.

• The function **must** set **elementCountOutput** to the required size in number of elements.

- The elements parameter is ignored (any value passed is considered valid usage).
- If the elementCapacityInput is non-zero but less than required, the function nust: set elementCountOutput to the required capacity, and **must** return XR_ERROR_SIZE_INSUFFICIENT. After the function returns, the data in the array elements is undefined.
- If the elementCapacityInput is non-zero and the function returns successfully, the function sets elementCountOutput to the count of the elements that have been written to elements.
- If the function fails for reasons unrelated to the element array capacity, the contents of the values of (or pointed to by) elementCountOutput and elements are undefined.
- For clarity, if the element array refers to a string (element is of type char*), elementCapacityInput and elementCountOutput refer to the string strlen plus 1 for a NULL terminator.

Some functions have a given elementCapacityInput and elementCountOutput associated with more than one element array (i.e. parallel arrays). In this case, the capacity/count and all its associated arrays will share a common prefix. All of the preceding general requirements continue to apply.

Some functions fill multiple element arrays of varying sizes in one call. For these functions, the elementCapacityInput, elementCountOutput, and elements array parameters or fields are repeated with different prefixes. In this case, all of the preceding general requirements still apply, with these additional requirements:

- If the application sets **any elementCapacityInput** parameter or field to 0, the runtime **must** treat **all elementCapacityInput** values as if they were set to 0.
- If all elementCapacityInput values are non-zero but **any** is insufficient to fit all elements of its corresponding array, the runtime **must** return XR_ERROR_SIZE_INSUFFICIENT. As in the case of the single array, the data in all arrays is undefined when XR_ERROR_SIZE_INSUFFICIENT is returned.

2.14. Time

Time is represented by a 64-bit signed integer representing nanoseconds (XrTime). The passage of time **must** be monotonic and not real-time (i.e. wall clock time). Thus the time is always increasing at a constant rate and is unaffected by clock changes, time zones, daylight savings, etc.

2.14.1. XrTime

typedef int64_t XrTime;

XrTime is a base value type that represents time as a signed 64-bit integer, representing the monotonically-increasing count of nanoseconds that have elapsed since a runtime-chosen epoch. XrTime always represents the time elapsed since that constant epoch, rather than a duration or a time point relative to some moving epoch such as vsync time, etc. Durations are instead represented by XrDuration.

A single runtime **must** use the same epoch for all simultaneous applications. Time **must** be represented the same regardless of multiple processors or threads present in the system.

The period precision of time reported by the runtime is runtime-dependent, and **may** change. One nanosecond is the finest possible period precision. A runtime **may**, for example, report time progression with only microsecond-level granularity.

Time **must** not be assumed to correspond to a system clock time.

Unless specified otherwise, zero or a negative value is not a valid XrTime, and related functions **must** return error XR_ERROR_TIME_INVALID. Applications **must** not initialize such XrTime fields to a zero value. Instead, applications **should** always assign XrTime fields to the meaningful point in time they are choosing to reason about, such as a frame's predicted display time, or an action's last change time.

The behavior of a runtime is undefined when time overflows beyond the maximum positive value that can be represented by an XrTime. Runtimes **should** choose an epoch that minimizes the chance of overflow. Runtimes **should** also choose an epoch that minimizes the chance of underflow below 0 for applications performing a reasonable amount of historical pose lookback. For example, if the runtime chooses an epoch relative to its startup time, it **should** push the epoch into the past by enough time to avoid applications performing reasonable pose lookback from reaching a negative XrTime value.

An application cannot assume that the system's clock and the runtime's clock will maintain a constant relationship across frames and **should** avoid storing such an offset, as this may cause time drift. Applications **should** instead always use time interop functions to convert a relevant time point across the system's clock and the runtime's clock using extensions, for example, XR_KHR_win32_convert_performance_counter_time or XR_KHR_convert_timespec_time.

2.15. Duration

Duration refers to an elapsed period of time, as opposed to an absolute timepoint.

2.15.1. XrDuration

typedef int64_t XrDuration;

The difference between two timepoints is a duration, and thus the difference between two XrTime values is an XrDuration value. XrDuration is a base value type that represents duration as a signed 64-bit integer, representing the signed number of nanoseconds between two timepoints.

Functions that refer to durations use XrDuration as opposed to XrTime. When an XrDuration is used as a timeout parameter, the constants XR_NO_DURATION and XR_INFINITE_DURATION have special meaning. A timeout with a duration that refers to the past (that is, a negative duration) **must** be interpreted as a timeout of XR_NO_DURATION.

The interpretation of zero and negative durations in non-timeout uses is specified along with each such use.

// Provided by XR_VERSION_1_0
#define XR_NO_DURATION 0

For the case of timeout durations, XR_NO_DURATION **can** be used to indicate that the timeout is immediate.

XR_INFINITE_DURATION is a special value that **can** be used to indicate that the timeout never occurs.

2.16. Prediction Time Limits

Some functions involve prediction. For example, xrLocateViews accepts a display time for which to return the resulting data. Prediction times provided by applications may refer to time in the past or the future. Times in the past **may** be interpolated historical data. Runtimes have different practical limits with respect to how far forward or backward prediction times can be accurate. There is no prescribed

forward limit the application can successfully request predictions for, though predictions may become less accurate as they get farther into the future. With respect to backward prediction, the application can pass a prediction time equivalent to the timestamp of the most recently received pose plus as much as 50 milliseconds in the past to retrieve accurate historical data. Requested times predating this time window, or requested times predating the earliest received pose, **may** result in a best effort data whose accuracy reduced or unspecified.

2.17. Colors

The XrColor3f structure is defined as:

```
// Provided by XR_VERSION_1_1
typedef struct XrColor3f {
   float r;
   float g;
   float b;
} XrColor3f;
```

Member Descriptions

- r is the red component of the color.
- g is the green component of the color.
- **b** is the blue component of the color.

Unless otherwise specified, colors are encoded as linear (not with sRGB nor other gamma compression) values with individual components being in the range of 0.0 through 1.0.

The XrColor4f structure is defined as:

```
// Provided by XR_VERSION_1_0
typedef struct XrColor4f {
   float r;
   float g;
   float b;
   float a;
} XrColor4f;
```

Member Descriptions

- r is the red component of the color.
- g is the green component of the color.
- **b** is the blue component of the color.
- a is the alpha component of the color.

Unless otherwise specified, colors are encoded as linear (not with sRGB nor other gamma compression) values with individual components being in the range of 0.0 through 1.0, and without the RGB components being premultiplied by the alpha component.

If color encoding is specified as being premultiplied by the alpha component, the RGB components are set to zero if the alpha component is zero.

2.18. Coordinate System

This API uses a Cartesian right-handed coordinate system.

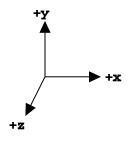


Figure 1. Right Handed Coordinate System

The conventions for mapping coordinate axes of any particular space to meaningful directions depend on and are documented with the description of the space.

The API uses 2D, 3D, and 4D floating-point vectors to describe points and directions in a space.

A two-dimensional vector is defined by the XrVector2f structure:

```
typedef struct XrVector2f {
    float x;
    float y;
} XrVector2f;
```

- x is the x coordinate of the vector.
- y is the y coordinate of the vector.

If used to represent physical distances (rather than e.g. normalized direction) and not otherwise specified, values **must** be in meters.

A three-dimensional vector is defined by the XrVector3f structure:

```
typedef struct XrVector3f {
    float x;
    float y;
    float z;
} XrVector3f;
```

Member Descriptions

- x is the x coordinate of the vector.
- y is the y coordinate of the vector.
- z is the z coordinate of the vector.

If used to represent physical distances (rather than e.g. velocity or angular velocity) and not otherwise specified, values **must** be in meters.

A four-dimensional or homogeneous vector is defined by the XrVector4f structure:

```
// Provided by XR_VERSION_1_0
typedef struct XrVector4f {
   float x;
   float y;
   float z;
   float w;
} XrVector4f;
```

- x is the x coordinate of the vector.
- y is the y coordinate of the vector.
- z is the z coordinate of the vector.
- w is the w coordinate of the vector.

If used to represent physical distances, x, y, and z values **must** be in meters.

Rotation is represented by a unit quaternion defined by the XrQuaternionf structure:

```
typedef struct XrQuaternionf {
   float x;
   float y;
   float z;
   float w;
} XrQuaternionf;
```

Member Descriptions

- x is the x coordinate of the quaternion.
- y is the y coordinate of the quaternion.
- z is the z coordinate of the quaternion.
- w is the w coordinate of the quaternion.

A pose is defined by the XrPosef structure:

```
typedef struct XrPosef {
    XrQuaternionf orientation;
    XrVector3f position;
} XrPosef;
```

- orientation is an XrQuaternionf representing the orientation within a space.
- position is an XrVector3f representing position within a space.

A construct representing a position and orientation within a space, with position expressed in meters, and orientation represented as a unit quaternion. When using XrPosef the rotation described by orientation is always applied before the translation described by position.

A runtime **must** return XR_ERROR_POSE_INVALID if the orientation norm deviates by more than 1% from unit length.

2.19. Common Data Types

Some OpenXR data types are used in multiple structures. Those include the XrVector*f family of types, the spatial types specified above, and the following categories of structures:

- offset
- extents
- rectangle
- field of view

Offsets are used to describe the direction and distance of an offset in two dimensions.

A floating-point offset is defined by the structure:

```
// Provided by XR_VERSION_1_0
typedef struct XrOffset2Df {
   float x;
   float y;
} XrOffset2Df;
```

Member Descriptions

- x is the floating-point offset in the x direction.
- y is the floating-point offset in the y direction.

This structure is used for component values that may be real numbers, represented with singleprecision floating point. For representing offsets in discrete values, such as texels, the integer variant XrOffset2Di is used instead.

If used to represent physical distances, values **must** be in meters.

An integer offset is defined by the structure:

```
typedef struct XrOffset2Di {
    int32_t x;
    int32_t y;
} XrOffset2Di;
```

Member Descriptions

- x is the integer offset in the x direction.
- y is the integer offset in the y direction.

This variant is for representing discrete values such as texels. For representing physical distances, the floating-point variant XrOffset2Df is used instead.

Extents are used to describe the size of a rectangular region in two or three dimensions.

A two-dimensional floating-point extent is defined by the structure:

```
// Provided by XR_VERSION_1_0
typedef struct XrExtent2Df {
   float width;
   float height;
} XrExtent2Df;
```

Member Descriptions

- width is the floating-point width of the extent.
- height is the floating-point height of the extent.

This structure is used for component values that may be real numbers, represented with singleprecision floating point. For representing extents in discrete values, such as texels, the integer variant XrExtent2Di is used instead. If used to represent physical distances, values **must** be in meters.

The width and height value **must** be non-negative.

The XrExtent3Df structure is defined as:

```
// Provided by XR_VERSION_1_1
typedef struct XrExtent3Df {
   float width;
   float height;
   float depth;
} XrExtent3Df;
```

Member Descriptions

- width is the floating-point width of the extent (x).
- height is the floating-point height of the extent (y).
- depth is the floating-point depth of the extent (z).

This structure is used for component values that may be real numbers, represented with single-precision floating point.

If used to represent physical distances, values **must** be in meters. The width, height, and depth values **must** be non-negative.

A two-dimensional integer extent is defined by the structure:

```
typedef struct XrExtent2Di {
    int32_t width;
    int32_t height;
} XrExtent2Di;
```

Member Descriptions

- width is the integer width of the extent.
- height is the integer height of the extent.

This variant is for representing discrete values such as texels. For representing physical distances, the floating-point variant XrExtent2Df is used instead.

The width and height value **must** be non-negative.

Rectangles are used to describe a specific rectangular region in two dimensions. Rectangles **must** include both an offset and an extent defined in the same units. For instance, if a rectangle is in meters, both offset and extent **must** be in meters.

A rectangle with floating-point values is defined by the structure:

```
// Provided by XR_VERSION_1_0
typedef struct XrRect2Df {
    XrOffset2Df offset;
    XrExtent2Df extent;
} XrRect2Df;
```

Member Descriptions

- offset is the XrOffset2Df specifying the rectangle offset.
- extent is the XrExtent2Df specifying the rectangle extent.

This structure is used for component values that may be real numbers, represented with single-precision floating point.

The offset is the position of the rectangle corner with minimum value coordinates. The other three corners are computed by adding the XrExtent2Df::width to the x offset, XrExtent2Df::height to the y offset, or both.

A rectangle with integer values is defined by the structure:

```
typedef struct XrRect2Di {
    XrOffset2Di offset;
    XrExtent2Di extent;
} XrRect2Di;
```

- offset is the XrOffset2Di specifying the integer rectangle offset.
- extent is the XrExtent2Di specifying the integer rectangle extent.

This variant is for representing discrete values such as texels. For representing physical distances, the floating-point variant XrRect2Df is used instead.

The offset is the position of the rectangle corner with minimum value coordinates. The other three corners are computed by adding the XrExtent2Di::width to the x offset, XrExtent2Di::height to the y offset, or both.

An XrSpheref structure describes the center and radius of a sphere bounds.

```
// Provided by XR_VERSION_1_1
typedef struct XrSpheref {
    XrPosef center;
    float radius;
} XrSpheref;
```

Member Descriptions

- center is an XrPosef representing the pose of the center of the sphere within the reference frame of the corresponding XrSpace.
- radius is the finite non-negative radius of the sphere.

The runtime **must** return XR_ERROR_VALIDATION_FAILURE if radius is not a finite positive value.

An XrBoxf structure describes the pose and extents of an oriented box.

```
// Provided by XR_VERSION_1_1
typedef struct XrBoxf {
    XrPosef center;
    XrExtent3Df extents;
} XrBoxf;
```

- center is an XrPosef defining the center position and orientation of the oriented bounding box bound within the reference frame of the corresponding XrSpace.
- extents is an XrExtent3Df defining the edge-to-edge length of the box along each dimension with center as the center.

The runtime **must** return XR_ERROR_VALIDATION_FAILURE if width, height or depth values are negative.

An XrFrustumf structure describes the pose, field of view, and far distance of a frustum.

```
// Provided by XR_VERSION_1_1
typedef struct XrFrustumf {
    XrPosef pose;
    XrFovf fov;
    float nearZ;
    float farZ;
} XrFrustumf;
```

Member Descriptions

- pose is an XrPosef defining the position and orientation of the tip of the frustum within the reference frame of the corresponding XrSpace.
- fov is an XrFovf for the four sides of the frustum where angleLeft and angleRight are along the X axis and angleUp and angleDown are along the Y axis of the frustum space.
- nearZ is the positive distance of the near plane of the frustum bound along the -Z direction of the frustum space.
- farZ is the positive distance of the far plane of the frustum bound along the -Z direction of the frustum space.

The runtime **must** return XR_ERROR_VALIDATION_FAILURE if farZ is less than or equal to zero.

The runtime **must** return XR_ERROR_VALIDATION_FAILURE if nearZ is less than zero.

See XrFovf for validity requirements on fov.

The XrUuid structure is a 128-bit Universally Unique Identifier and is defined as:

```
// Provided by XR_VERSION_1_1
typedef struct XrUuid {
    uint8_t data[XR_UUID_SIZE];
} XrUuid;
```

• data is a 128-bit Universally Unique Identifier.

The structure is composed of 16 octets, with the size and order of the fields defined in RFC 4122 section 4.1.2.

2.20. Angles

Where a value is provided as a function parameter or as a structure member and will be interpreted as an angle, the value is defined to be in radians.

Field of view (FoV) is defined by the structure:

```
typedef struct XrFovf {
   float angleLeft;
   float angleRight;
   float angleUp;
   float angleDown;
} XrFovf;
```

Member Descriptions

- angleLeft is the angle of the left side of the field of view. For a symmetric field of view this value is negative.
- angleRight is the angle of the right side of the field of view.
- angleUp is the angle of the top part of the field of view.
- angleDown is the angle of the bottom part of the field of view. For a symmetric field of view this value is negative.

Angles to the right of the center and upwards from the center are positive, and angles to the left of the center and down from the center are negative. The total horizontal field of view is angleRight minus angleLeft, and the total vertical field of view is angleUp minus angleDown. For a symmetric FoV,

angleRight and angleUp will have positive values, angleLeft will be -angleRight, and angleDown will be - angleUp.

The angles **must** be specified in radians, and **must** be between $-\pi/2$ and $\pi/2$ exclusively.

When angleLeft > angleRight, the content of the view **must** be flipped horizontally. When angleDown > angleUp, the content of the view **must** be flipped vertically.

2.21. Boolean Values

```
typedef uint32_t XrBool32;
```

Boolean values used by OpenXR are of type XrBool32 and are 32-bits wide as suggested by the name. The only valid values are the following:

Enumerant Descriptions

- XR_TRUE represents a true value.
- XR_FALSE represents a false value.

#define XR_TRUE	1	
#define XR_FALSE	0	

2.22. Events

Events are messages sent from the runtime to the application.

2.22.1. Event Polling

Events are placed in a queue within the runtime. The application **must** read from the queue with regularity. Events are read from the queue one at a time via xrPollEvent. Every type of event is identified by an individual structure type, with each such structure beginning with an XrEventDataBaseHeader.

```
XrInstance instance; // previously initialized
// Initialize an event buffer to hold the output.
XrEventDataBuffer event = {XR_TYPE_EVENT_DATA_BUFFER};
XrResult result = xrPollEvent(instance, &event);
if (result == XR_SUCCESS) {
    switch (event.type) {
        case XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED: {
            const XrEventDataSessionStateChanged& session state changed event =
              *reinterpret_cast<XrEventDataSessionStateChanged*>(&event);
            // ...
            break;
        }
        case XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING: {
            const XrEventDataInstanceLossPending& instance loss pending event =
              *reinterpret_cast<XrEventDataInstanceLossPending*>(&event);
            // ...
            break;
       }
   }
}
```

xrPollEvent

The **xrPollEvent** function is defined as:

```
// Provided by XR_VERSION_1_0
XrResult xrPollEvent(
    XrInstance
    XrEventDataBuffer*
```

instance,
eventData);

Parameter Descriptions

- instance is a valid XrInstance.
- eventData is a pointer to a valid XrEventDataBuffer.

xrPollEvent polls for the next event and returns an event if one is available. xrPollEvent returns immediately regardless of whether an event was available. The event (if present) is unilaterally

removed from the queue if a valid XrInstance is provided. On return, the eventData parameter is filled with the event's data and the type field is changed to the event's type. Runtimes **may** create valid next chains depending on enabled extensions, but they **must** guarantee that any such chains point only to objects which fit completely within the original XrEventDataBuffer pointed to by eventData.

The runtime **must** discard queued events which contain destroyed or otherwise invalid handles. The runtime **must** not return events containing handles that have been destroyed or are otherwise invalid at the time of the call to xrPollEvent.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- eventData must be a pointer to an XrEventDataBuffer structure

Return Codes

Success

- XR_SUCCESS
- XR_EVENT_UNAVAILABLE

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST

Table 2. Event Descriptions

Event	Description
XrEventDataEventsLost	event queue has overflowed and some events were lost
XrEventDataInstanceLossPending	application is about to lose the instance
XrEventDataInteractionProfileChanged	current interaction profile for one or more top level user paths has changed
XrEventDataReferenceSpaceChangePending	runtime will begin operating with updated definitions or bounds for a reference space
XrEventDataSessionStateChanged	the application's session has changed lifecycle state

The XrEventDataBaseHeader structure is defined as:

```
// Provided by XR_VERSION_1_0
typedef struct XrEventDataBaseHeader {
    XrStructureType type;
    const void* next;
} XrEventDataBaseHeader;
```

Parameter Descriptions

- type is the XrStructureType of this structure. This base structure itself has no associated XrStructureType value.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.

The XrEventDataBaseHeader is a generic structure used to identify the common event data elements.

Upon receipt, the XrEventDataBaseHeader pointer **should** be type-cast to a pointer of the appropriate event data type based on the type parameter.

Valid Usage (Implicit)

- type **must** be one of the following XrStructureType values: XR_TYPE_EVENT_DATA_EVENTS_LOST, XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING, XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED, XR_TYPE_EVENT_DATA_REFERENCE_SPACE_CHANGE_PENDING, XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED, XR_TYPE_EVENT_DATA_VISIBILITY_MASK_CHANGED_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

```
typedef struct XrEventDataBuffer {
    XrStructureType type;
    const void* next;
    uint8_t varying[4000];
} XrEventDataBuffer;
```

Parameter Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- varying is a fixed sized output buffer big enough to hold returned data elements for all specified event data types.

The XrEventDataBuffer is a structure passed to xrPollEvent large enough to contain any returned event data element. The maximum size is specified by XR_MAX_EVENT_DATA_SIZE.

An application **can** set (or reset) only the type member and clear the next member of an XrEventDataBuffer before passing it as an input to xrPollEvent. The runtime **must** ignore the contents of the varying field and overwrite it without reading it.

A pointer to an XrEventDataBuffer **may** be type-cast to an XrEventDataBaseHeader pointer, or a pointer to any other appropriate event data based on the type parameter.

Valid Usage (Implicit)

- type **must** be XR_TYPE_EVENT_DATA_BUFFER
- next **must** be NULL or a valid pointer to the next structure in a structure chain

// Provided by XR_VERSION_1_0
#define XR_MAX_EVENT_DATA_SIZE sizeof(XrEventDataBuffer)

XR_MAX_EVENT_DATA_SIZE is the size of XrEventDataBuffer, including the size of the XrEventDataBuffer::type and XrEventDataBuffer::next members.

XrEventDataEventsLost

The XrEventDataEventsLost structure is defined as:

```
// Provided by XR_VERSION_1_0
typedef struct XrEventDataEventsLost {
    XrStructureType type;
    const void* next;
    uint32_t lostEventCount;
} XrEventDataEventsLost;
```

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- lostEventCount is the number of events which have overflowed since the last call to xrPollEvent.

Receiving the <u>XrEventDataEventsLost</u> event structure indicates that the event queue overflowed and some events were removed at the position within the queue at which this event was found.

Valid Usage (Implicit)

- type must be XR_TYPE_EVENT_DATA_EVENTS_LOST
- next must be NULL or a valid pointer to the next structure in a structure chain

Other event structures are defined in later chapters in the context where their definition is most relevant.

2.23. System resource lifetime

The creator of an underlying system resource is responsible for ensuring the resource's lifetime matches the lifetime of the associated OpenXR handle.

Resources passed as inputs from the application to the runtime when creating an OpenXR handle **should** not be freed while that handle is valid. A runtime **must** not free resources passed as inputs or decrease their reference counts (if applicable) from the initial value. For example, the graphics device handle (or pointer) passed in to xrCreateSession in XrGraphicsBinding* structure **should** be kept alive when the corresponding XrSession handle is valid, and **should** be freed by the application after the XrSession handle is destroyed.

Resources created by the runtime should not be freed by the application, and the application **should** maintain the same reference count (if applicable) at the destruction of the OpenXR handle as it had at its creation. For example, the ID3D*Texture2D objects in the XrSwapchainImageD3D* are created by the

runtime and associated with the lifetime of the XrSwapchain handle. The application **should** not keep additional reference counts on any ID3D*Texture2D objects past the lifetime of the XrSwapchain handle, or make extra reference count decrease after destroying the XrSwapchain handle.

Chapter 3. API Initialization

Before using an OpenXR runtime, an application **must** initialize it by creating an XrInstance object. The following functions are useful for gathering information about the API layers and extensions installed on the system and creating the instance.

Instance Creation Functions

- xrEnumerateApiLayerProperties
- xrEnumerateInstanceExtensionProperties
- xrCreateInstance

xrEnumerateApiLayerProperties and xrEnumerateInstanceExtensionProperties **can** be called before calling xrCreateInstance.

3.1. Exported Functions

A dynamically linked library (.dll or .so) that implements the API loader **must** export all core OpenXR API functions. However, the application **can** gain access to extension functions by obtaining pointers to these functions through the use of xrGetInstanceProcAddr.

3.2. Function Pointers

Function pointers for all OpenXR functions **can** be obtained with the function **xrGetInstanceProcAddr**.

```
// Provided by XR_VERSION_1_0
XrResult xrGetInstanceProcAddr(
    XrInstance
    const char*
    PFN_xrVoidFunction*
```

instance, name, function);

Parameter Descriptions

- **instance** is the instance that the function pointer will be compatible with, or NULL for functions not dependent on any instance.
- name is the name of the function to obtain.
- function is the address of the function pointer to get.

xrGetInstanceProcAddr itself is obtained in a platform- and loader- specific manner. Typically, the loader library will export this function as a function symbol, so applications **can** link against the loader library, or load it dynamically and look up the symbol using platform-specific APIs. Loaders **must** export function symbols for all core OpenXR functions. Because of this, applications that use only the core OpenXR functions have no need to use xrGetInstanceProcAddr.

Because an application **can** call **xrGetInstanceProcAddr** before creating an instance, **xrGetInstanceProcAddr** returns a valid function pointer when the **instance** parameter is **XR_NULL_HANDLE** and the **name** parameter is one of the following strings:

No Instance Required

- xrEnumerateInstanceExtensionProperties
- xrEnumerateApiLayerProperties
- xrCreateInstance

xrGetInstanceProcAddr **must** return XR_ERROR_HANDLE_INVALID if name is not one of the above strings and instance is XR_NULL_HANDLE. xrGetInstanceProcAddr **may** return XR_ERROR_HANDLE_INVALID if name is not one of the above strings and instance is invalid but not XR_NULL_HANDLE.

xrGetInstanceProcAddr **must** return XR_ERROR_FUNCTION_UNSUPPORTED if instance is a valid instance and the string specified in name is not the name of an OpenXR core or enabled extension function.

If name is the name of an extension function, then the result returned by xrGetInstanceProcAddr will depend upon how the instance was created. If instance was created with the related extension's name appearing in the XrInstanceCreateInfo::enabledExtensionNames array, then xrGetInstanceProcAddr returns a valid function pointer. If the related extension's name did not appear in the XrInstanceCreateInfo::enabledExtensionNames array during the creation of instance, then xrGetInstanceProcAddr returns XR_ERROR_FUNCTION_UNSUPPORTED. Because of this, function pointers returned by xrGetInstanceProcAddr using one XrInstance may not be valid when used with objects related to a different XrInstance.

The returned function pointer is of type PFN_xrVoidFunction, and must be cast to the type of the function being queried.

The table below defines the various use cases for xrGetInstanceProcAddr and return value ("fp" is "function pointer") for each case.

instance parameter	name parameter	return value
*	NULL	undefined
invalid instance	*	undefined

Table 3. xrGetInstanceProcAddr behavior

instance parameter	name parameter	return value
NULL	xrEnumerateInstanceExte nsionProperties	fp
NULL	xrEnumerateApiLayerPro perties	fp
NULL	xrCreateInstance	fp
NULL	* (any name not covered above)	NULL
instance	core OpenXR function	fp^1
instance	enabled extension function for instance	fp^1
instance	* (any name not covered above)	NULL

1

The returned function pointer **must** only be called with a handle (the first parameter) that is **instance** or a child of **instance**.

Valid Usage (Implicit)

- If instance is not XR_NULL_HANDLE, instance must be a valid XrInstance handle
- name must be a null-terminated UTF-8 string
- function must be a pointer to a PFN_xrVoidFunction value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_OUT_OF_MEMORY

typedef void (XRAPI_PTR *PFN_xrVoidFunction)(void);

Parameter Descriptions

• no parameters.

PFN_xrVoidFunction is a generic function pointer type returned by queries, specifically those to xrGetInstanceProcAddr.

typedef XrResult (XRAPI_PTR *PFN_xrGetInstanceProcAddr)(XrInstance instance, const char*
name, PFN_xrVoidFunction* function);

PFN_xrGetInstanceProcAddr is a function pointer type for xrGetInstanceProcAddr.

PFN_xrCreateApiLayerInstance is a function pointer type for xrCreateApiLayerInstance.

Note: This function pointer type is only used by an OpenXR loader library, and never by an application.

3.3. Runtime Interface Negotiation

In order to negotiate the runtime interface version with the loader, the runtime **must** implement the xrNegotiateLoaderRuntimeInterface function.

Note

The API described in this section is solely intended for use between an OpenXR loader and a runtime (and/or an API layer, where noted). Applications use the appropriate loader library for their platform to load the active runtime and configured API layers, rather than making these calls directly. This section is included in the specification to ensure consistency between runtimes in their interactions with the loader.

Be advised that as this is not application-facing API, some of the typical OpenXR API conventions are not followed in this section.

The xrNegotiateLoaderRuntimeInterface function is defined as:

// Provided by XR_LOADER_VERSION_1_0
XrResult xrNegotiateLoaderRuntimeInterface(
 const XrNegotiateLoaderInfo*
 XrNegotiateRuntimeRequest*

loaderInfo,
runtimeRequest);

Parameter Descriptions

- loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure.
- runtimeRequest **must** be a valid pointer to an XrNegotiateRuntimeRequest structure, with minimal initialization, as subsequently described, to be fully populated by the called runtime.

xrNegotiateLoaderRuntimeInterface **should** be directly exported by a runtime so that using e.g. GetProcAddress on Windows or dlsym on POSIX platforms returns a valid function pointer to it.

The runtime **must** return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on loaderInfo are true:

- XrNegotiateLoaderInfo::structType is not XR_LOADER_INTERFACE_STRUCT_LOADER_INFO
- XrNegotiateLoaderInfo::structVersion is not XR_LOADER_INFO_STRUCT_VERSION
- XrNegotiateLoaderInfo::structSize is not sizeof(XrNegotiateLoaderInfo)

The runtime **must** also return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on runtimeRequest are true:

- XrNegotiateRuntimeRequest::structType is not XR_LOADER_INTERFACE_STRUCT_RUNTIME_REQUEST
- XrNegotiateRuntimeRequest::structVersion is not XR_RUNTIME_INFO_STRUCT_VERSION
- XrNegotiateRuntimeRequest::structSize is not sizeof(XrNegotiateRuntimeRequest)

The runtime **must** determine if it supports the loader's request. The runtime does not support the loader's request if either of the following is true:

- the runtime does not support the interface versions supported by the loader as specified by the parameters XrNegotiateLoaderInfo::minInterfaceVersion and XrNegotiateLoaderInfo ::maxInterfaceVersion
- the runtime does not support the API versions supported by the loader as specified by the parameters XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

The runtime **must** return XR_ERROR_INITIALIZATION_FAILED if it does not support the loader's request.

If the function succeeds, the runtime **must** set the XrNegotiateRuntimeRequest ::runtimeInterfaceVersion with the runtime interface version it desires to support. The XrNegotiateRuntimeRequest::runtimeInterfaceVersion set **must** be between XrNegotiateLoaderInfo ::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion.

If the function succeeds, the runtime **must** set the XrNegotiateRuntimeRequest::runtimeApiVersion with the API version of OpenXR it will execute under. The XrNegotiateRuntimeRequest::runtimeApiVersion set **must** be between XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

If the function succeeds, the runtime **must** set the XrNegotiateRuntimeRequest::getInstanceProcAddr with a valid function pointer for the loader to use to query function pointers to the remaining OpenXR functions supported by the runtime.

If the function succeeds, the runtime **must** return XR_SUCCESS.

Valid Usage (Implicit)

- The XR_LOADER_VERSION_1_0 extension **must** be enabled prior to calling xrNegotiateLoaderRuntimeInterface
- loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure
- runtimeRequest **must** be a pointer to an XrNegotiateRuntimeRequest structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_INITIALIZATION_FAILED

The XrNegotiateLoaderInfo structure is used to pass information about the loader to a runtime or an API layer.

The XrNegotiateLoaderInfo structure is defined as:

typedef struct XrNegotiateLoad	erInfo {
XrLoaderInterfaceStructs	<pre>structType;</pre>
uint32_t	<pre>structVersion;</pre>
size_t	<pre>structSize;</pre>
uint32_t	<pre>minInterfaceVersion;</pre>
uint32_t	<pre>maxInterfaceVersion;</pre>
XrVersion	<pre>minApiVersion;</pre>
XrVersion	<pre>maxApiVersion;</pre>
<pre>} XrNegotiateLoaderInfo;</pre>	

Member Descriptions

- structType **must** be XR_LOADER_INTERFACE_STRUCT_LOADER_INFO.
- structVersion **must** be a valid version of the structure. The value XR_LOADER_INFO_STRUCT_VERSION describes the current latest version of this structure.
- structSize must be the size in bytes of the current version of the structure (i.e. sizeof(XrNegotiateLoaderInfo)).
- minInterfaceVersion is the minimum runtime or API layer interface version supported by the loader.
- maxInterfaceVersion is the maximum valid version of the runtime or API layer interface version supported by the loader, currently defined using XR_CURRENT_LOADER_RUNTIME_VERSION or XR_CURRENT_LOADER_API_LAYER_VERSION.
- minApiVersion is the minimum supported version of the OpenXR API by the loader as formatted by XR_MAKE_VERSION. Patch is ignored.
- maxApiVersion is the maximum supported version of the OpenXR API by the loader as formatted by XR_MAKE_VERSION. Patch is ignored.

This structure is an input from the loader to the runtime in an xrNegotiateLoaderRuntimeInterface call, as well as from the loader to an API layer in an xrNegotiateLoaderApiLayerInterface call.

Valid Usage (Implicit)

- The XR_LOADER_VERSION_1_0 extension **must** be enabled prior to using XrNegotiateLoaderInfo
- structType must be a valid XrLoaderInterfaceStructs value

The XrLoaderInterfaceStructs enumeration is defined as:

typedef enum XrLoaderInterfaceStructs {
 XR_LOADER_INTERFACE_STRUCT_UNINTIALIZED = 0,
 XR_LOADER_INTERFACE_STRUCT_LOADER_INFO = 1,
 XR_LOADER_INTERFACE_STRUCT_API_LAYER_REQUEST = 2,
 XR_LOADER_INTERFACE_STRUCT_RUNTIME_REQUEST = 3,
 XR_LOADER_INTERFACE_STRUCT_API_LAYER_CREATE_INFO = 4,
 XR_LOADER_INTERFACE_STRUCT_API_LAYER_NEXT_INFO = 5,
 XR_LOADER_INTERFACE_STRUCTS_MAX_ENUM = 0x7FFFFFFF
} XrLoaderInterfaceStructs;

This enumeration serves a similar purpose in the runtime and API layer interface negotiation (loader) API as XrStructureType serves in the application-facing API.

// Provided by XR_LOADER_VERSION_1_0
#define XR_LOADER_INFO_STRUCT_VERSION 1

XR_LOADER_INFO_STRUCT_VERSION is the current version of the XrNegotiateLoaderInfo structure. It is used to populate the XrNegotiateLoaderInfo::structVersion field.

// Provided by XR_LOADER_VERSION_1_0
#define XR_CURRENT_LOADER_RUNTIME_VERSION 1

XR_CURRENT_LOADER_RUNTIME_VERSION is the current version of the overall OpenXR Loader Runtime interface. It is used to populate maximum and minimum interface version fields in XrNegotiateLoaderInfo when loading a runtime.

// Provided by XR_LOADER_VERSION_1_0
#define XR_CURRENT_LOADER_API_LAYER_VERSION 1

XR_CURRENT_LOADER_API_LAYER_VERSION is the current version of the overall OpenXR Loader API Layer interface. It is used to populate maximum and minimum interface version fields in XrNegotiateLoaderInfo when loading an API layer.

The XrNegotiateRuntimeRequest structure is used to pass information about the runtime back to the loader.

The XrNegotiateRuntimeRequest structure is defined as:

typedef struct XrNegotiateRunti	meRequest {
XrLoaderInterfaceStructs	<pre>structType;</pre>
uint32_t	structVersion;
size_t	<pre>structSize;</pre>
uint32_t	<pre>runtimeInterfaceVersion;</pre>
XrVersion	<pre>runtimeApiVersion;</pre>
PFN_xrGetInstanceProcAddr	getInstanceProcAddr;
<pre>} XrNegotiateRuntimeRequest;</pre>	

Member Descriptions

- structType **must** be XR_LOADER_INTERFACE_STRUCT_RUNTIME_REQUEST.
- structVersion must be a valid version of the structure. The value XR_RUNTIME_INFO_STRUCT_VERSION is used to describe the current version of this structure.
- structSize must be the size in bytes of the current version of the structure (i.e. sizeof(XrNegotiateRuntimeRequest))
- runtimeInterfaceVersion is the version of the runtime interface version being requested by the runtime. Must: not be outside of the bounds of the XrNegotiateLoaderInfo ::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion values (inclusive).
- runtimeApiVersion is the version of the OpenXR API supported by this runtime as formatted by XR_MAKE_VERSION. Patch is ignored.
- getInstanceProcAddr is a pointer to the runtime's xrGetInstanceProcAddr implementation that will be used by the loader to populate a dispatch table of OpenXR functions supported by the runtime.

This is an output structure from runtime negotiation. The loader **must** populate structType, structVersion, and structSize to ensure correct interpretation by the runtime, while the runtime populates the rest of the fields in a successful call to xrNegotiateLoaderRuntimeInterface.

Valid Usage (Implicit)

- The XR_LOADER_VERSION_1_0 extension **must** be enabled prior to using XrNegotiateRuntimeRequest
- structType **must** be a valid XrLoaderInterfaceStructs value
- getInstanceProcAddr must be a valid PFN_xrGetInstanceProcAddr value

// Provided by XR_LOADER_VERSION_1_0
#define XR_RUNTIME_INF0_STRUCT_VERSION 1

XR_RUNTIME_INFO_STRUCT_VERSION is the current version of the XrNegotiateRuntimeRequest structure. It is used to populate the XrNegotiateRuntimeRequest::structVersion field.

3.4. API Layer Interface Negotiation

In order to negotiate the API layer interface version with the loader, an OpenXR API layer **must** implement the xrNegotiateLoaderApiLayerInterface function.

Note

The API described in this section is solely intended for use between an OpenXR loader and an API layer. Applications use the appropriate loader library for their platform to load the active runtime and configured API layers, rather than making these calls directly. This section is included in the specification to ensure consistency between runtimes in their interactions with the loader.

Be advised that as this is not application-facing API, some of the typical OpenXR API conventions are not followed in this section.

The xrNegotiateLoaderApiLayerInterface function is defined as:

// Provided by XR_LOADER_VERSION_1_0
XrResult xrNegotiateLoaderApiLayerInterface(
 const XrNegotiateLoaderInfo*
 const char*
 XrNegotiateApiLayerRequest*

loaderInfo, layerName, apiLayerRequest);

Parameter Descriptions

- loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure.
- layerName **must** be NULL or a valid C-style NULL-terminated string listing the name of an API layer which the loader is attempting to negotiate with.
- apiLayerRequest **must** be a valid pointer to an XrNegotiateApiLayerRequest structure, with minimal initialization, as subsequently described, to be fully populated by the called API layer.

xrNegotiateLoaderApiLayerInterface **should** be directly exported by an API layer so that using e.g. GetProcAddress on Windows or dlsym on POSIX platforms returns a valid function pointer to it.

The API layer **must** return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on loaderInfo are true:

- XrNegotiateLoaderInfo::structType is not XR_LOADER_INTERFACE_STRUCT_LOADER_INFO
- XrNegotiateLoaderInfo::structVersion is not XR_LOADER_INFO_STRUCT_VERSION
- XrNegotiateLoaderInfo::structSize is not sizeof(XrNegotiateLoaderInfo)

The API layer **must** also return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on apiLayerRequest are true:

- XrNegotiateApiLayerRequest::structType is not XR_LOADER_INTERFACE_STRUCT_API_LAYER_REQUEST
- XrNegotiateApiLayerRequest::structVersion is not XR_API_LAYER_INFO_STRUCT_VERSION
- XrNegotiateApiLayerRequest::structSize is not sizeof(XrNegotiateApiLayerRequest)

The API layer **must** determine if it supports the loader's request. The API layer does not support the loader's request if either of the following is true:

- the API layer does not support the interface versions supported by the loader as specified by the parameters XrNegotiateLoaderInfo::minInterfaceVersion and XrNegotiateLoaderInfo ::maxInterfaceVersion
- the API layer does not support the API versions supported by the loader as specified by the parameters XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

The API layer **must** return XR_ERROR_INITIALIZATION_FAILED if it does not support the loader's request.

If the function succeeds, the API layer **must** set the XrNegotiateApiLayerRequest ::layerInterfaceVersion with the API layer interface version it desires to support. The XrNegotiateApiLayerRequest::layerInterfaceVersion set **must** be between XrNegotiateLoaderInfo ::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion.

If the function succeeds, the API layer **must** set the XrNegotiateApiLayerRequest::layerApiVersion with

the API version of OpenXR it will execute under. The XrNegotiateApiLayerRequest::layerApiVersion set **must** be between XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

If the function succeeds, the API layer **must** set the XrNegotiateApiLayerRequest::getInstanceProcAddr with a valid function pointer for the loader to use to query function pointers to the remaining OpenXR functions supported by the API layer.

If the function succeeds. the API layer must set the XrNegotiateApiLayerRequest with valid function pointer ::createApiLayerInstance а to an implementation of xrCreateApiLayerInstance for the loader to use to create the instance through the API layer call chain.

If the function succeeds, the API layer **must** return XR_SUCCESS.

The API layer **must** not call into another API layer from its implementation of the xrNegotiateLoaderApiLayerInterface function. The loader **must** handle all API layer negotiations with each API layer individually.

Valid Usage (Implicit)

- The XR_LOADER_VERSION_1_0 extension **must** be enabled prior to calling xrNegotiateLoaderApiLayerInterface
- loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure
- layerName must be a null-terminated UTF-8 string
- apiLayerRequest must be a pointer to an XrNegotiateApiLayerRequest structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_INITIALIZATION_FAILED

The XrNegotiateApiLayerRequest structure is used to pass information about the API layer back to the loader.

The XrNegotiateApiLayerRequest structure is defined as:

<pre>typedef struct XrNegotiateApiLayerRequest {</pre>	
XrLoaderInterfaceStructs	structType;
uint32_t	structVersion;
size_t	structSize;
uint32_t	layerInterfaceVersion;
XrVersion	layerApiVersion;
PFN_xrGetInstanceProcAddr	getInstanceProcAddr;
PFN_xrCreateApiLayerInstance	createApiLayerInstance;
<pre>} XrNegotiateApiLayerRequest;</pre>	

- structType **must** be XR_LOADER_INTERFACE_STRUCT_API_LAYER_REQUEST.
- structVersion must be a valid version of the structure. The value XR_API_LAYER_INFO_STRUCT_VERSION is used to describe the current latest version of this structure.
- structSize must be the size in bytes of the current version of the structure (i.e. sizeof(XrNegotiateApiLayerRequest)).
- layerInterfaceVersion is the version of the API layer interface version being requested by the API layer. Should not be outside of the bounds of the XrNegotiateLoaderInfo ::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion values (inclusive).
- layerApiVersion is the version of the OpenXR API supported by this API layer as formatted by XR_MAKE_VERSION. Patch is ignored.
- getInstanceProcAddr is a pointer to the API layer's xrGetInstanceProcAddr implementation that will be used by the loader to populate a dispatch table of OpenXR functions supported by the API layer.
- createApiLayerInstance is a pointer to the API layer's xrCreateApiLayerInstance implementation that will be used by the loader during a call to xrCreateInstance when an API layer is active. This is used because API layers need additional information at xrCreateInstance time.

This is an output structure from API layer negotiation. The loader **must** populate structType, structVersion, and structSize before calling to ensure correct interpretation by the API layer, while the API layer populates the rest of the fields in a successful call to xrNegotiateLoaderApiLayerInterface.

Valid Usage (Implicit)

- The XR_LOADER_VERSION_1_0 extension **must** be enabled prior to using XrNegotiateApiLayerRequest
- structType **must** be a valid XrLoaderInterfaceStructs value
- getInstanceProcAddr must be a valid PFN_xrGetInstanceProcAddr value
- createApiLayerInstance must be a valid PFN_xrCreateApiLayerInstance value

```
// Provided by XR_LOADER_VERSION_1_0
#define XR_API_LAYER_INF0_STRUCT_VERSION 1
```

XR_API_LAYER_INFO_STRUCT_VERSION is the current version of the XrNegotiateApiLayerRequest structure. It is used to populate the XrNegotiateApiLayerRequest::structVersion field.

The xrCreateApiLayerInstance function is defined as:

```
// Provided by XR_LOADER_VERSION_1_0
XrResult xrCreateApiLayerInstance(
    const XrInstanceCreateInfo* info,
    const XrApiLayerCreateInfo* layerInfo,
    XrInstance* instance);
```

Parameter Descriptions

- info is a pointer to the XrInstanceCreateInfo information passed by the application into the outer xrCreateInstance function.
- layerInfo is a pointer to an XrApiLayerCreateInfo structure that contains special information required by a API layer during its create instance process. This is generated by the loader.
- instance is a pointer to store the returned instance in, just as in the standard xrCreateInstance function.

An API layer's implementation of the xrCreateApiLayerInstance function is invoked during the loader's implementation of xrCreateInstance, if the layer in question is enabled.

An API layer needs additional information during xrCreateInstance calls, so each API layer **must** implement the xrCreateApiLayerInstance function, which is a special API layer function.

An API layer **must** not implement xrCreateInstance.

xrCreateApiLayerInstance **must** be called by the loader during its implementation of the xrCreateInstance function.

The loader **must** call the first API layer's xrCreateApiLayerInstance function passing in the pointer to the created XrApiLayerCreateInfo.

The XrApiLayerCreateInfo::nextInfo **must** be a linked-list of XrApiLayerNextInfo structures with information about each of the API layers that are to be enabled. Note that this does not operate like a next chain in the OpenXR application API, but instead describes the enabled API layers from outermost to innermost.

The API layer **may** validate that it is getting the correct next information by checking that the XrApiLayerNextInfo::layerName matches the expected value.

The API layer **must** use the information in its XrApiLayerNextInfo to call down the call chain to the next xrCreateApiLayerInstance:

- The API layer **must** copy the XrApiLayerCreateInfo structure into its own structure.
- The API layer **must** then update its copy of the XrApiLayerCreateInfo structure, setting XrApiLayerCreateInfo::XrApiLayerCreateInfo::nextInfo to point to the XrApiLayerNextInfo for the next API layer (e.g. layerInfoCopy→nextInfo = layerInfo→nextInfo→next;).
- The API layer **must** then use the pointer to its XrApiLayerCreateInfo structure (instead of the one that was passed in) when it makes a call to the xrCreateApiLayerInstance function.
- If the nested xrCreateApiLayerInstance call succeeds, the API layer **may** choose to setup its own dispatch table to the next API layer's functions using the returned XrInstance and the next API layer's xrGetInstanceProcAddr.
- The API layer **must** return the XrResult returned from the next API layer.

Valid Usage (Implicit)

- The XR_LOADER_VERSION_1_0 extension **must** be enabled prior to calling xrCreateApiLayerInstance
- info must be a pointer to a valid XrInstanceCreateInfo structure
- layerInfo must be a pointer to a valid XrApiLayerCreateInfo structure
- instance must be a pointer to an XrInstance handle

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_INITIALIZATION_FAILED

The XrApiLayerCreateInfo structure contains special information required by a API layer during its create instance process.

The XrApiLayerCreateInfo structure is defined as:

```
typedef struct XrApiLayerCreateInfo {
    XrLoaderInterfaceStructs structType;
    uint32_t structVersion;
    size_t structSize;
    void* loaderInstance;
    char settings_file_location
[XR_API_LAYER_MAX_SETTINGS_PATH_SIZE];
    XrApiLayerNextInfo* nextInfo;
} XrApiLayerCreateInfo;
```

Member Descriptions

- structType **must** be XR_LOADER_INTERFACE_STRUCT_API_LAYER_CREATE_INFO.
- structVersion is the version of the structure being supplied by the loader (i.e. XR_API_LAYER_CREATE_INFO_STRUCT_VERSION)
- structSize must be the size in bytes of the current version of the structure (i.e. sizeof(XrApiLayerCreateInfo))
- loaderInstance is deprecated and **must** be ignored.
- settings_file_location is the location of any usable API layer settings file. The size of settings_file_location is given by XR_API_LAYER_MAX_SETTINGS_PATH_SIZE. This is currently unused.
- nextInfo is a pointer to the XrApiLayerNextInfo structure which contains information to work with the next API layer in the chain.

Valid Usage (Implicit)

- The XR_LOADER_VERSION_1_0 extension **must** be enabled prior to using XrApiLayerCreateInfo
- structType **must** be a valid XrLoaderInterfaceStructs value
- loaderInstance must be a pointer value
- settings_file_location must be a null-terminated UTF-8 string whose length is less than or equal to XR_API_LAYER_MAX_SETTINGS_PATH_SIZE
- nextInfo must be a pointer to an XrApiLayerNextInfo structure

// Provided by XR_LOADER_VERSION_1_0
#define XR_API_LAYER_CREATE_INFO_STRUCT_VERSION 1

XR_API_LAYER_CREATE_INFO_STRUCT_VERSION is the current version of the XrApiLayerCreateInfo structure. It is used to populate the XrApiLayerCreateInfo::structVersion field.

// Provided by XR_LOADER_VERSION_1_0
#define XR_API_LAYER_MAX_SETTINGS_PATH_SIZE 512

XR_API_LAYER_MAX_SETTINGS_PATH_SIZE is the size of the XrApiLayerCreateInfo
::settings_file_location field.

The XrApiLayerNextInfo structure:

The XrApiLayerNextInfo structure is defined as:

typedef struct XrApiLayerNextInfo	{
XrLoaderInterfaceStructs uint32_t size_t	<pre>structType; structVersion; structSize;</pre>
<pre>char PFN_xrGetInstanceProcAddr PFN_xrCreateApiLayerInstance struct XrApiLayerNextInfo* } XrApiLayerNextInfo;</pre>	<pre>layerName[XR_MAX_API_LAYER_NAME_SIZE]; nextGetInstanceProcAddr; nextCreateApiLayerInstance; next;</pre>

- structType **must** be XR_LOADER_INTERFACE_STRUCT_API_LAYER_NEXT_INFO
- **structVersion must** be a valid version of the structure and the version being supplied by the loader (i.e. XR_API_LAYER_NEXT_INFO_STRUCT_VERSION).
- structSize must be the size in bytes of the current version of the structure (i.e. sizeof(XrApiLayerNextInfo))
- layerName is the name of the intended next API layer, used to verify and debug the API layer chain.
- nextGetInstanceProcAddr is a pointer to the next API layer's xrGetInstanceProcAddr. This is intended for use in populating a dispatch table to the next implementations in the chain.
- nextCreateApiLayerInstance is a pointer to the xrCreateApiLayerInstance function implementation in the next API layer. This is to be called **after** the API layer has done any localized creation, but **before** the API layer records any function addresses from the next API layer using xrGetInstanceProcAddr.
- next is a pointer to the XrApiLayerNextInfo for the next API layer. If no API layer is after this, it will be NULL.

Valid Usage (Implicit)

- The XR_LOADER_VERSION_1_0 extension **must** be enabled prior to using XrApiLayerNextInfo
- structType **must** be a valid XrLoaderInterfaceStructs value
- layerName **must** be a null-terminated UTF-8 string whose length is less than or equal to XR_MAX_API_LAYER_NAME_SIZE
- nextGetInstanceProcAddr must be a valid PFN_xrGetInstanceProcAddr value
- nextCreateApiLayerInstance must be a valid PFN_xrCreateApiLayerInstance value
- next must be a pointer to an XrApiLayerNextInfo structure

// Provided by XR_LOADER_VERSION_1_0
#define XR_API_LAYER_NEXT_INFO_STRUCT_VERSION 1

XR_API_LAYER_NEXT_INFO_STRUCT_VERSION is the current version of the XrApiLayerNextInfo structure. It is used to populate the XrApiLayerNextInfo::structVersion field.

Chapter 4. Instance

XR_DEFINE_HANDLE(XrInstance)

An OpenXR instance is an object that allows an OpenXR application to communicate with an OpenXR runtime. The application accomplishes this communication by calling xrCreateInstance and receiving a handle to the resulting XrInstance object.

The XrInstance object stores and tracks OpenXR-related application state, without storing any such state in the application's global address space. This allows the application to create multiple instances as well as safely encapsulate the application's OpenXR state since this object is opaque to the application. OpenXR runtimes **may** limit the number of simultaneous XrInstance objects that may be created and used, but they **must** support the creation and usage of at least one XrInstance object per process.

Physically, this state **may** be stored in any of the OpenXR loader, OpenXR API layers or the OpenXR runtime components. The exact storage and distribution of this saved state is implementation-dependent, except where indicated by this specification.

The tracking of OpenXR state in the instance allows the streamlining of the API, where the intended instance is inferred from the highest ascendant of an OpenXR function's target object. For example, in:

```
myResult = xrEndFrame(mySession, &myEndFrameDescription);
```

the XrSession object was created from an XrInstance object. The OpenXR loader typically keeps track of the XrInstance that is the parent of the XrSession object in this example and directs the function to the runtime associated with that instance. This tracking of OpenXR objects eliminates the need to specify an XrInstance in every OpenXR function.

4.1. API Layers and Extensions

Additional functionality **may** be provided by API layers or extensions. An API layer **must** not add or modify the definition of OpenXR functions, while an extension **may** do so.

The set of API layers to enable is specified when creating an instance, and those API layers are able to intercept any functions dispatched to that instance or any of its child objects.

Example API layers **may** include (but are not limited to):

- an API layer to dump out OpenXR API calls
- an API layer to perform OpenXR validation

To determine what set of API layers are available, OpenXR provides the xrEnumerateApiLayerProperties function:

```
// Provided by XR_VERSION_1_0
XrResult xrEnumerateApiLayerProperties(
    uint32_t
    uint32_t*
    XrApiLayerProperties*
```

propertyCapacityInput, propertyCountOutput, properties);

Parameter Descriptions

- propertyCapacityInput is the capacity of the properties array, or 0 to indicate a request to retrieve the required capacity.
- propertyCountOutput is a pointer to the count of properties written, or a pointer to the required capacity in the case that propertyCapacityInput is insufficient.
- properties is a pointer to an array of XrApiLayerProperties structures, but **can** be NULL if propertyCapacityInput is 0.
- See the Buffer Size Parameters section for a detailed description of retrieving the required properties size.

The list of available layers may change at any time due to actions outside of the OpenXR runtime, so two calls to xrEnumerateApiLayerProperties with the same parameters **may** return different results, or retrieve different propertyCountOutput values or properties contents.

Once an instance has been created, the layers enabled for that instance will continue to be enabled and valid for the lifetime of that instance, even if some of them become unavailable for future instances.

Valid Usage (Implicit)

- propertyCountOutput must be a pointer to a uint32_t value
- If propertyCapacityInput is not 0, properties **must** be a pointer to an array of propertyCapacityInput XrApiLayerProperties structures

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_SIZE_INSUFFICIENT

The XrApiLayerProperties structure is defined as:

<pre>typedef struct XrApiLayerProperties {</pre>			
XrStructureType	type;		
void*	next;		
char	layerName[XR_MAX_API_LAYER_NAME_SIZE];		
XrVersion	specVersion;		
uint32_t	layerVersion;		
char	<pre>description[XR_MAX_API_LAYER_DESCRIPTION_SIZE];</pre>		
<pre>} XrApiLayerPropertie</pre>	s;		

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- layerName is a string specifying the name of the API layer. Use this name in the XrInstanceCreateInfo::enabledApiLayerNames array to enable this API layer for an instance.
- specVersion is the API version the API layer was written to, encoded as described in the API Version Numbers and Semantics section.
- layerVersion is the version of this API layer. It is an integer, increasing with backward compatible changes.
- description is a string providing additional details that **can** be used by the application to identify the API layer.

Valid Usage (Implicit)

- type **must** be XR_TYPE_API_LAYER_PROPERTIES
- next must be NULL or a valid pointer to the next structure in a structure chain

To enable a layer, the name of the layer **should** be added to XrInstanceCreateInfo ::enabledApiLayerNames when creating an XrInstance.

Loader implementations **may** provide mechanisms outside this API for enabling specific API layers. API layers enabled through such a mechanism are implicitly enabled, while API layers enabled by including the API layer name in <u>XrInstanceCreateInfo::enabledApiLayerNames</u> are explicitly enabled. Except where otherwise specified, implicitly enabled and explicitly enabled API layers differ only in the way they are enabled. Explicitly enabling an API layer that is implicitly enabled has no additional effect.

Instance extensions are able to affect the operation of the instance and any of its child objects. As stated earlier, extensions can expand the OpenXR API and provide new functions or augment behavior.

Examples of extensions **may** be (but are not limited to):

Extension Examples

- an extension to include OpenXR functions to work with a new graphics API
- an extension to expose debug information via a callback

The application can determine the available instance extensions by calling xrEnumerateInstanceExtensionProperties:

<pre>// Provided by XR_VERSION_1_0 XrResult xrEnumerateInstanceExtensionPro</pre>	operties(
const char*	layerName,
uint32_t	<pre>propertyCapacityInput,</pre>
uint32_t*	propertyCountOutput,
XrExtensionProperties*	properties);

Parameter Descriptions

- layerName is either NULL or a pointer to a string naming the API layer to retrieve extensions from, as returned by xrEnumerateApiLayerProperties.
- propertyCapacityInput is the capacity of the properties array, or 0 to indicate a request to retrieve the required capacity.
- propertyCountOutput is a pointer to the count of properties written, or a pointer to the required capacity in the case that propertyCapacityInput is insufficient.
- properties is a pointer to an array of XrExtensionProperties structures, but **can** be NULL if propertyCapacityInput is 0.
- See the Buffer Size Parameters section for a detailed description of retrieving the required properties size.

Because the list of available layers may change externally between calls to xrEnumerateInstanceExtensionProperties, two calls **may** retrieve different results if a layerName is available in one call but not in another. The extensions supported by a layer may also change between two calls, e.g. if the layer implementation is replaced by a different version between those calls.

Valid Usage (Implicit)

- If layerName is not NULL, layerName must be a null-terminated UTF-8 string
- propertyCountOutput must be a pointer to a uint32_t value
- If propertyCapacityInput is not 0, properties **must** be a pointer to an array of propertyCapacityInput XrExtensionProperties structures

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_RUNTIME_UNAVAILABLE
- XR_ERROR_API_LAYER_NOT_PRESENT

The XrExtensionProperties structure is defined as:

<pre>typedef struct XrExtensionProperties {</pre>		
XrStructureType	type;	
void*	next;	
char	extensionName[XR_MAX_EXTENSION_NAME_SIZE];	
uint32_t	extensionVersion;	
<pre>} XrExtensionProperties;</pre>		

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- extensionName is a NULL terminated string specifying the name of the extension.
- extensionVersion is the version of this extension. It is an integer, incremented with backward compatible changes.

Valid Usage (Implicit)

- type must be XR_TYPE_EXTENSION_PROPERTIES
- next must be NULL or a valid pointer to the next structure in a structure chain

4.2. Instance Lifecycle

The xrCreateInstance function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrCreateInstance(
 const XrInstanceCreateInfo*
 XrInstance*

createInfo,
instance);

Parameter Descriptions

- createInfo points to an instance of XrInstanceCreateInfo controlling creation of the instance.
- instance points to an XrInstance handle in which the resulting instance is returned.

xrCreateInstance creates the XrInstance, then enables and initializes global API layers and extensions requested by the application. If an extension is provided by an API layer, both the API layer and extension **must** be specified at xrCreateInstance time. If a specified API layer cannot be found, no XrInstance will be created and the function will return XR_ERROR_API_LAYER_NOT_PRESENT. Likewise, if a specified extension cannot be found, the call **must** return XR_ERROR_EXTENSION_NOT_PRESENT and no XrInstance will be created. Additionally, some runtimes **may** limit the number of concurrent instances that may be in use. If the application attempts to create more instances than a runtime can simultaneously support, xrCreateInstance **may** return XR_ERROR_LIMIT_REACHED.

If the XrApplicationInfo::applicationName is the empty string the runtime **must** return XR_ERROR_NAME_INVALID.

If the XrInstanceCreateInfo structure contains a platform-specific extension for a platform other than the target platform, XR_ERROR_INITIALIZATION_FAILED **may** be returned. If a mandatory platform-specific extension is defined for the target platform but no matching extension struct is provided in XrInstanceCreateInfo the runtime **must** return XR_ERROR_INITIALIZATION_FAILED.

- createInfo must be a pointer to a valid XrInstanceCreateInfo structure
- instance must be a pointer to an XrInstance handle

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED
- XR_ERROR_RUNTIME_UNAVAILABLE
- XR_ERROR_NAME_INVALID
- XR_ERROR_INITIALIZATION_FAILED
- XR_ERROR_EXTENSION_NOT_PRESENT
- XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED
- XR_ERROR_API_VERSION_UNSUPPORTED
- XR_ERROR_API_LAYER_NOT_PRESENT

The XrInstanceCreateInfo structure is defined as:

typedef struct XrInstanceCr	eateInfo {
XrStructureType	type;
const void*	next;
XrInstanceCreateFlags	<pre>createFlags;</pre>
XrApplicationInfo	applicationInfo;
uint32_t	<pre>enabledApiLayerCount;</pre>
const char* const*	<pre>enabledApiLayerNames;</pre>
uint32_t	<pre>enabledExtensionCount;</pre>
const char* const*	<pre>enabledExtensionNames;</pre>
<pre>} XrInstanceCreateInfo;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- createFlags is a bitmask of XrInstanceCreateFlags that identifies options that apply to the creation.
- applicationInfo is an instance of XrApplicationInfo. This information helps runtimes recognize behavior inherent to classes of applications. XrApplicationInfo is defined in detail below.
- enabledApiLayerCount is the number of global API layers to enable.
- enabledApiLayerNames is a pointer to an array of enabledApiLayerCount strings containing the names of API layers to enable for the created instance. See the API Layers and Extensions section for further details.
- enabledExtensionCount is the number of global extensions to enable.
- enabledExtensionNames is a pointer to an array of enabledExtensionCount strings containing the names of extensions to enable.

Valid Usage (Implicit)

- type must be XR_TYPE_INSTANCE_CREATE_INFO
- next **must** be NULL or a valid pointer to the next structure in a structure chain. See also: XrInstanceCreateInfoAndroidKHR
- createFlags **must** be 0
- applicationInfo must be a valid XrApplicationInfo structure
- If enabledApiLayerCount is not 0, enabledApiLayerNames **must** be a pointer to an array of enabledApiLayerCount null-terminated UTF-8 strings
- If enabledExtensionCount is not 0, enabledExtensionNames **must** be a pointer to an array of enabledExtensionCount null-terminated UTF-8 strings

The XrInstanceCreateInfo::createFlags member is of the following type, and contains a bitwise-OR of zero or more of the bits defined in XrInstanceCreateFlagBits.

typedef XrFlags64 XrInstanceCreateFlags;

Valid bits for XrInstanceCreateFlags are defined by XrInstanceCreateFlagBits.

// Flag bits for XrInstanceCreateFlags

There are currently no instance creation flag bits defined. This is reserved for future use.

The XrApplicationInfo structure is defined as:

```
typedef struct XrApplicationInfo {
    char applicationName[XR_MAX_APPLICATION_NAME_SIZE];
    uint32_t applicationVersion;
    char engineName[XR_MAX_ENGINE_NAME_SIZE];
    uint32_t engineVersion;
    XrVersion apiVersion;
} XrApplicationInfo;
```

Member Descriptions

- applicationName is a non-empty string containing the name of the application.
- applicationVersion is an unsigned integer variable containing the developer-supplied version number of the application.
- engineName is a string containing the name of the engine (if any) used to create the application. It may be empty to indicate no specified engine.
- engineVersion is an unsigned integer variable containing the developer-supplied version number of the engine used to create the application. May be zero to indicate no specified engine.
- apiVersion is the version of this API against which the application will run, encoded as described in the API Version Numbers and Semantics section. If the runtime does not support the requested apiVersion it must return XR_ERROR_API_VERSION_UNSUPPORTED.

- applicationName **must** be a null-terminated UTF-8 string whose length is less than or equal to XR_MAX_APPLICATION_NAME_SIZE
- engineName **must** be a null-terminated UTF-8 string whose length is less than or equal to XR_MAX_ENGINE_NAME_SIZE

Note

When using the OpenXR API to implement a reusable engine that will be used by many applications, engineName **should** be set to a unique string that identifies the engine, and engineVersion **should** encode a representation of the engine's version. This way, all applications that share this engine version will provide the same engineName and engineVersion to the runtime. The engine **should** then enable individual applications to choose their specific applicationName and applicationVersion, enabling one application to be distinguished from another application.

When using the OpenXR API to implement an individual application without a shared engine, the input engineName should be left empty and engineVersion should be set to 0. The applicationName should then be filled in with a unique string that identifies the app and the applicationVersion should encode a representation of the application's version.

The xrDestroyInstance function is defined as:

instance);

The xrDestroyInstance function is used to destroy an XrInstance.

Parameter Descriptions

• **instance** is the handle to the instance to destroy.

XrInstance handles are destroyed using xrDestroyInstance. When an XrInstance is destroyed, all handles that are children of that XrInstance are also destroyed.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

Thread Safety

• Access to instance, and any child handles, **must** be externally synchronized

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

4.3. Instance Information

The xrGetInstanceProperties function provides information about the instance and the associated runtime.

// Provided by XR_VERSION_1_0
XrResult xrGetInstanceProperties(
 XrInstance
 XrInstanceProperties*

instance, instanceProperties);

Parameter Descriptions

- instance is a handle to an XrInstance previously created with xrCreateInstance.
- instanceProperties points to an XrInstanceProperties which describes the instance.

The instanceProperties parameter **must** be filled out by the runtime in response to this call, with information as defined in XrInstanceProperties.

- instance must be a valid XrInstance handle
- instanceProperties must be a pointer to an XrInstanceProperties structure

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST

The XrInstanceProperties structure is defined as:

```
typedef struct XrInstanceProperties {
    XrStructureType type;
    void* next;
    XrVersion runtimeVersion;
    char runtimeName[XR_MAX_RUNTIME_NAME_SIZE];
} XrInstanceProperties;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- runtimeVersion is the runtime's version (not necessarily related to an OpenXR API version), expressed in the format of XR_MAKE_VERSION.
- runtimeName is the name of the runtime.

- type must be XR_TYPE_INSTANCE_PROPERTIES
- next must be NULL or a valid pointer to the next structure in a structure chain

4.4. Platform-Specific Instance Creation

Some amount of data required for instance creation is exposed through chained structures defined in extensions. These structures may be **optional** or even **required** for instance creation on specific platforms, but not on other platforms. Separating off platform-specific functionality into extension structures prevents the primary XrInstanceCreateInfo structure from becoming too bloated with unnecessary information.

See the List of Extensions appendix for the list of available extensions and their related structures. These structures expand the XrInstanceCreateInfo parent struct using the XrInstanceCreateInfo::next member. The specific list of structures that may be used for extending XrInstanceCreateInfo::next can be found in the "Valid Usage (Implicit)" block immediately following the definition of the structure.

4.4.1. The Instance Lost Error

The XR_ERROR_INSTANCE_LOST error indicates that the XrInstance has become unusable. This **can** happen if a critical runtime process aborts, if the connection to the runtime is otherwise no longer available, or if the runtime encounters an error during any function execution which prevents it from being able to support further function execution. Once XR_ERROR_INSTANCE_LOST is first returned, it **must** henceforth be returned by all non-destroy functions that involve an XrInstance or child handle type until the instance is destroyed. Applications **must** destroy the XrInstance. Applications **may** then attempt to continue by recreating all relevant OpenXR objects, starting with a new XrInstance. A runtime **may** generate an XrEventDataInstanceLossPending event when instance loss is detected.

4.4.2. XrEventDataInstanceLossPending

// Provided by	<pre>XR_VERSION_1_0</pre>	
typedef struct	XrEventDataInstanceLossPendin	i g {
XrStructure	Type type;	
const void*	next;	
XrTime	lossTime;	
<pre>} XrEventDataInstanceLossPending;</pre>		

Receiving the XrEventDataInstanceLossPending event structure indicates that the application is about to lose the indicated XrInstance at the indicated lossTime in the future. The application should call xrDestroyInstance and relinquish any instance-specific resources. This typically occurs to make way for a replacement of the underlying runtime, such as via a software update.

After the application has destroyed all of its instances and their children and waited past the specified time, it may then re-try **xrCreateInstance** in a loop waiting for whatever maintenance the runtime is performing to complete. The runtime will return **XR_ERROR_RUNTIME_UNAVAILABLE** from **xrCreateInstance** as long as it is unable to create the instance. Once the runtime has returned and is able to continue, it

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- **lossTime** is the absolute time at which the indicated instance will be considered lost and become unusable.

Valid Usage (Implicit)

- type must be XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING
- next must be NULL or a valid pointer to the next structure in a structure chain

4.5. Instance Enumerated Type String Functions

Applications often want to turn certain enum values from the runtime into strings for use in log messages, to be localized in UI, or for various other reasons. OpenXR provides functions that turn common enum types into UTF-8 strings for use in applications.

// Provided by XR_VERSION_1_0
<pre>XrResult xrResultToString(</pre>
XrInstance
XrResult
char

instance, value, buffer[XR_MAX_RESULT_STRING_SIZE]);

Parameter Descriptions

- instance is the handle of the instance to ask for the string.
- value is the XrResult value to turn into a string.
- buffer is the buffer that will be used to return the string in.

Returns the text version of the provided XrResult value as a UTF-8 string.

In all cases the returned string **must** be one of:

Result String Return Values

- The literal string defined for the provide numeric value in the core spec or extension. (e.g. the value 0 results in the string XR_SUCCESS)
- XR_UNKNOWN_SUCCESS_ concatenated with the positive result number expressed as a decimal number.
- XR_UNKNOWN_FAILURE_ concatenated with the negative result number expressed as a decimal number.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- value must be a valid XrResult value
- buffer **must** be a character array of length XR_MAX_RESULT_STRING_SIZE

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST

The xrStructureTypeToString function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrStructureTypeToString(
 XrInstance
 XrStructureType
 char

instance, value, buffer[XR_MAX_STRUCTURE_NAME_SIZE]);

Parameter Descriptions

- **instance** is the handle of the instance to ask for the string.
- value is the XrStructureType value to turn into a string.
- buffer is the buffer that will be used to return the string in.

Returns the text version of the provided XrStructureType value as a UTF-8 string.

In all cases the returned string **must** be one of:

Structure Type String Return Values

- The literal string defined for the provide numeric value in the core spec or extension. (e.g. the value of XR_TYPE_INSTANCE_CREATE_INFO results in the string XR_TYPE_INSTANCE_CREATE_INFO)
- XR_UNKNOWN_STRUCTURE_TYPE_ concatenated with the structure type number expressed as a decimal number.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- value must be a valid XrStructureType value
- buffer **must** be a character array of length XR_MAX_STRUCTURE_NAME_SIZE

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST

Chapter 5. System

This API separates the concept of physical systems of XR devices from the logical objects that applications interact with directly. A system represents a collection of related devices in the runtime, often made up of several individual hardware components working together to enable XR experiences. An XrSystemId is returned by xrGetSystem representing the system of devices the runtime will use to support a given form factor. Each system may include: a VR/AR display, various forms of input (gamepad, touchpad, motion controller), and other trackable objects.

The application uses the system to create a session, which can then be used to accept input from the user and output rendered frames. The application also provides suggested bindings from its actions to any number of input sources. The runtime **may** use this action information to activate only a subset of devices and avoid wasting resources on devices that are not in use. Exactly which devices are active once an XR system is selected will depend on the features provided by the runtime, and **may** vary from runtime to runtime. For example, a runtime that is capable of mapping from one tracking system's space to another's **may** support devices from multiple tracking systems simultaneously.

5.1. Form Factors

The first step in selecting a system is for the application to request its desired **form factor**. The form factor defines how the display(s) moves in the environment relative to the user's head and how the user will interact with the XR experience. A runtime **may** support multiple form factors, such as on a mobile phone that supports both slide-in VR headset experiences and handheld AR experiences.

While an application's core XR rendering may span across form factors, its user interface will often be written to target a particular form factor, requiring explicit tailoring to function well on other form factors. For example, screen-space UI designed for a handheld phone will produce an uncomfortable experience for users if presented in screen-space on an AR headset.

```
typedef enum XrFormFactor {
    XR_FORM_FACTOR_HEAD_MOUNTED_DISPLAY = 1,
    XR_FORM_FACTOR_HANDHELD_DISPLAY = 2,
    XR_FORM_FACTOR_MAX_ENUM = 0x7FFFFFFF
} XrFormFactor;
```

The predefined form factors which **may** be supported by OpenXR runtimes are:

Enumerant Descriptions

- XR_FORM_FACTOR_HEAD_MOUNTED_DISPLAY. The tracked display is attached to the user's head. The user cannot touch the display itself. A VR headset would be an example of this form factor.
- XR_FORM_FACTOR_HANDHELD_DISPLAY. The tracked display is held in the user's hand, independent from the user's head. The user **may** be able to touch the display, allowing for screen-space UI. A mobile phone running an AR experience using pass-through video would be an example of this form factor.

5.2. Getting the XrSystemId

XR_DEFINE_ATOM(XrSystemId)

An XrSystemId is an opaque atom used by the runtime to identify a system. The value XR_NULL_SYSTEM_ID is considered an invalid system.

// Provided by XR_VERSION_1_0
#define XR_NULL_SYSTEM_ID 0

The only XrSystemId value defined to be constant across all instances is the invalid system XR_NULL_SYSTEM_ID. No supported system is associated with XR_NULL_SYSTEM_ID. Unless explicitly permitted, it **should** not be passed to API calls or used as a structure attribute when a valid XrSystemId is required.

The xrGetSystem function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrGetSystem(
 XrInstance
 const XrSystemGetInfo*
 XrSystemId*

instance, getInfo, systemId);

Parameter Descriptions

- **instance** is the handle of the instance from which to get the information.
- getInfo is a pointer to an XrSystemGetInfo structure containing the application's requests for a system.
- systemId is the returned XrSystemId.

To get an XrSystemId, an application specifies its desired form factor to xrGetSystem and gets the runtime's XrSystemId associated with that configuration.

If the form factor is supported but temporarily unavailable, xrGetSystem **must** return XR_ERROR_FORM_FACTOR_UNAVAILABLE. A runtime **may** return XR_SUCCESS on a subsequent call for a form factor it previously returned XR_ERROR_FORM_FACTOR_UNAVAILABLE. For example, connecting or warming up hardware might cause an unavailable form factor to become available.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- getInfo must be a pointer to a valid XrSystemGetInfo structure
- systemId must be a pointer to an XrSystemId value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_FORM_FACTOR_UNSUPPORTED
- XR_ERROR_FORM_FACTOR_UNAVAILABLE

The XrSystemGetInfo structure is defined as:

typedef struct XrSys	<pre>stemGetInfo {</pre>
XrStructureType	type;
const void*	next;
XrFormFactor	formFactor;
<pre>} XrSystemGetInfo;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- formFactor is the XrFormFactor requested by the application.

The XrSystemGetInfo structure specifies attributes about a system as desired by an application.

Valid Usage (Implicit)

- type must be XR_TYPE_SYSTEM_GET_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- formFactor must be a valid XrFormFactor value

XrInstance instance; // previously initialized

XrSystemGetInfo system_get_info = {XR_TYPE_SYSTEM_GET_INFO}; system_get_info.formFactor = XR_FORM_FACTOR_HEAD_MOUNTED_DISPLAY;

XrSystemId systemId; CHK_XR(xrGetSystem(instance, &system_get_info, &systemId));

```
// create session
// create swapchains
// begin session
// main loop
// end session
// destroy session
// no access to hardware after this point
```

5.3. System Properties

The xrGetSystemProperties function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrGetSystemProperties(
 XrInstance
 XrSystemId
 XrSystemProperties*

instance, systemId, properties);

Parameter Descriptions

- **instance** is the instance from which **systemId** was retrieved.
- **systemId** is the XrSystemId whose properties will be queried.
- properties points to an instance of the XrSystemProperties structure, that will be filled with returned information.

An application **can** call **xrGetSystemProperties** to retrieve information about the system such as vendor ID, system name, and graphics and tracking properties.

- instance must be a valid XrInstance handle
- properties **must** be a pointer to an XrSystemProperties structure

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_SYSTEM_INVALID

The XrSystemProperties structure is defined as:

typedef struct XrSystemProperties	{
XrStructureType	type;
void*	next;
XrSystemId	systemId;
uint32_t	vendorId;
char	<pre>systemName[XR_MAX_SYSTEM_NAME_SIZE];</pre>
XrSystemGraphicsProperties	graphicsProperties;
XrSystemTrackingProperties	trackingProperties;
<pre>} XrSystemProperties;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain.
- vendorId is a unique identifier for the vendor of the system.
- systemId is the XrSystemId identifying the system.
- systemName is a string containing the name of the system.
- graphicsProperties is an XrSystemGraphicsProperties structure specifying the system graphics properties.
- trackingProperties is an XrSystemTrackingProperties structure specifying system tracking properties.

Valid Usage (Implicit)

- type **must** be XR_TYPE_SYSTEM_PROPERTIES
- next must be NULL or a valid pointer to the next structure in a structure chain

The runtime **must** report a valid vendor ID for the system. The vendor ID **must** be either the USB vendor ID defined for the physical device or a Khronos vendor ID.

The XrSystemGraphicsProperties structure is defined as:

```
typedef struct XrSystemGraphicsProperties {
    uint32_t maxSwapchainImageHeight;
    uint32_t maxSwapchainImageWidth;
    uint32_t maxLayerCount;
} XrSystemGraphicsProperties;
```

Member Descriptions

- maxSwapchainImageHeight is the maximum swapchain image pixel height supported by this system.
- maxSwapchainImageWidth is the maximum swapchain image pixel width supported by this system.
- maxLayerCount is the maximum number of composition layers supported by this system. The runtime **must** support at least XR_MIN_COMPOSITION_LAYERS_SUPPORTED layers.

// Provided by XR_VERSION_1_0
#define XR_MIN_COMPOSITION_LAYERS_SUPPORTED 16

XR_MIN_COMPOSITION_LAYERS_SUPPORTED defines the minimum number of composition layers that a conformant runtime must support. A runtime **must** return the XrSystemGraphicsProperties ::maxLayerCount at least the value of XR_MIN_COMPOSITION_LAYERS_SUPPORTED.

The XrSystemTrackingProperties structure is defined as:

typedef struct XrSystemTrackingProperties { XrBool32 orientationTracking; XrBool32 positionTracking; } XrSystemTrackingProperties;

Member Descriptions

- orientationTracking is set to XR_TRUE to indicate the system supports orientational tracking of the view pose(s), XR_FALSE otherwise.
- positionTracking is set to XR_TRUE to indicate the system supports positional tracking of the view pose(s), XR_FALSE otherwise.

Chapter 6. Path Tree and Semantic Paths

OpenXR incorporates an internal *semantic path tree* model, also known as the *path tree*, with entities associated with nodes organized in a logical tree and referenced by path name strings structured like a filesystem path or URL. The path tree unifies a number of concepts used in this specification and a runtime **may** add additional nodes as implementation details. As a general design principle, the most application-facing paths **should** have semantic and hierarchical meaning in their name. Thus, these paths are often referred to as *semantic paths*. However, path names in the path tree model **may** not all have the same level or kind of semantic meaning.

In regular use in an application, path name strings are converted to instance-specific XrPath values which are used in place of path strings. The mapping between XrPath values and their corresponding path name strings **may** be considered to be tracked by the runtime in a one-to-one mapping in addition to the natural tree structure of the referenced entities. Runtimes **may** use any internal implementation that satisfies the requirements.

Formally, the runtime maintains an instance-specific bijective mapping between well-formed path name strings and valid XrPath (uint64_t) values. These XrPath values are only valid within a single XrInstance, and applications **must** not share these values between instances. Applications **must** instead use the string representation of a path in their code and configuration, and obtain the correct corresponding XrPath at runtime in each XrInstance. The term *path* or *semantic path* **may** refer interchangeably to either the path name string or its associated XrPath value within an instance when context makes it clear which type is being discussed.

Given that path trees are a unifying model in this specification, the entities referenced by paths **can** be of diverse types. For example, they **may** be used to represent physical device or sensor *components*, which **may** be of various *component types*. They **may** also be used to represent frames of reference that are understood by the application and the runtime, as defined by an XrSpace. Additionally, to permit runtime re-configuration and support hardware-independent development, any syntactically-valid path string **may** be used to retrieve a corresponding XrPath without error given sufficient resources, *even if* no logical or hardware entity currently corresponds to that path at the time of the call. Later retrieval of the associated path string of such an XrPath using xrPathToString **should** succeed if the other requirements of that call are met. However, using such an XrPath in a later call to any other API function **may** result in an error if no entity of the type required by the call is available at the path at that later time. A runtime **should** permit the entity referenced by a path to vary over time to naturally reflect varying system configuration and hardware availability.

6.1. Path Atom Type

XR_DEFINE_ATOM(XrPath)

The XrPath is an atom that connects an application with a single path, within the context of a single instance. There is a bijective mapping between well-formed path strings and atoms in use. This atom is used — in place of the path name string it corresponds to — to retrieve state and perform other operations.

As an XrPath is only shorthand for a well-formed path string, they have no explicit life cycle.

Lifetime is implicitly managed by the XrInstance. An XrPath **must** not be used unless it is received at execution time from the runtime in the context of a particular XrInstance. Therefore, with the exception of XR_NULL_PATH, XrPath values **must** not be specified as constant values in applications: the corresponding path string **should** be used instead. During the lifetime of a given XrInstance, the XrPath associated with that instance with any given well-formed path **must** not vary, and similarly the well-formed path string that corresponds to a given XrPath in that instance **must** not vary. An XrPath that is received from one XrInstance **may** not be used with another. Such an invalid use **may** be detected and result in an error being returned, or it **may** result in undefined behavior.

Well-written applications **should** typically use a small, bounded set of paths in practice. However, the runtime **should** support looking up the XrPath for a large number of path strings for maximum compatibility. Runtime implementers **should** keep in mind that applications supporting diverse systems **may** look up path strings in a quantity exceeding the number of non-empty entities predicted or provided by any one runtime's own path tree model, and this is not inherently an error. However, system resources are finite and thus runtimes **may** signal exhaustion of resources dedicated to these associations under certain conditions.

When discussing the behavior of runtimes at these limits, a *new* XrPath refers to an XrPath value that, as of some point in time, has neither been received by the application nor tracked internally by the runtime. In this case, since an application has not yet received the value of such an XrPath, the runtime has not yet made any assertions about its association with any path string. In this context, *new* only refers to the fact that the mapping has not necessarily been made constant for a given value/path string pair for the remaining life of the associated instance by being revealed to the application. It does not necessarily imply creation of the entity, if any, referred to by such a path. Similarly, it does not imply the absence of such an entity prior to that point. Entities in the path tree have varied lifetime that is independent from the duration of the mapping from path string to XrPath.

For flexibility, the runtime **may** internally track or otherwise make constant, in instance or larger scope, any mapping of a path string to an XrPath value even before an application would otherwise receive that value, thus making it no longer *new* by the above definition.

When the runtime's resources to track the path string-XrPath mapping are exhausted, and the application makes an API call that would have otherwise retrieved a *new* XrPath as defined above, the runtime **must** return XR_ERROR_PATH_COUNT_EXCEEDED. This includes both explicit calls to xrStringToPath as well as other calls that retrieve an XrPath in any other way.

The runtime **should** support creating as many paths as memory will allow and **must** return XR_ERROR_PATH_COUNT_EXCEEDED from relevant functions when no more can be created.

// Provided by XR_VERSION_1_0
#define XR_NULL_PATH 0

The only XrPath value defined to be constant across all instances is the invalid path XR_NULL_PATH. No well-formed path string is associated with XR_NULL_PATH. Unless explicitly permitted, it **should** not be passed to API calls or used as a structure attribute when a valid XrPath is required.

6.2. Well-Formed Path Strings

Even though they look similar, semantic paths are not file paths. To avoid confusion with file path directory traversal conventions, many file path conventions are explicitly disallowed from well-formed path name strings.

A well-formed path name string **must** conform to the following rules:

- Path name strings **must** be constructed entirely from characters on the following list.
 - Lower case ASCII letters: a-z
 - Numeric digits: 0-9
 - Dash: -
 - Underscore: _
 - Period:.
 - Forward Slash: /
- Path name strings **must** start with a single forward slash character.
- Path name strings **must** not end with a forward slash character.
- Path name strings **must** not contain two or more adjacent forward slash characters.
- Path name strings **must** not contain two forward slash characters that are separated by only period characters.
- Path name strings **must** not contain only period characters following the final forward slash character in the string.
- The maximum string length for a path name string, including the terminating \0 character, is defined by XR_MAX_PATH_LENGTH.

6.2.1. xrStringToPath

The xrStringToPath function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrStringToPath(
 XrInstance
 const char*
 XrPath*

instance,
pathString,
path);

Parameter Descriptions

- **instance** is an instance previously created.
- pathString is the path name string to retrieve the associated XrPath for.
- path is the output parameter, which **must** point to an XrPath. Given a well-formed path name string, this will be populated with an opaque value that is constant for that path string during the lifetime of that instance.

xrStringToPath retrieves the XrPath value for a well-formed path string. If such a value had not yet been assigned by the runtime to the provided path string in this XrInstance, one **must** be assigned at this point. All calls to this function with the same XrInstance and path string **must** retrieve the same XrPath value. Upon failure, xrStringToPath **must** return an appropriate XrResult, and **may** set the output parameter to XR_NULL_PATH. See Path Atom Type for the conditions under which an error **may** be returned when this function is given a valid XrInstance and a well-formed path string.

If the runtime's resources are exhausted and it cannot create the path, a return value of XR_ERROR_PATH_COUNT_EXCEEDED **must** be returned. If the application specifies a string that is not a well-formed path string, XR_ERROR_PATH_FORMAT_INVALID **must** be returned.

A return value of XR_SUCCESS from xrStringToPath **may** not necessarily imply that the runtime has a component or other source of data that will be accessible through that semantic path. It only means that the path string supplied was well-formed and that the retrieved XrPath maps to the given path string within and during the lifetime of the XrInstance given.

- instance must be a valid XrInstance handle
- pathString must be a null-terminated UTF-8 string
- path must be a pointer to an XrPath value

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_PATH_FORMAT_INVALID
- XR_ERROR_PATH_COUNT_EXCEEDED

6.2.2. xrPathToString

// Provided by XR_VERSION_1_0
XrResult xrPathToString(
 XrInstance
 XrPath
 uint32_t
 uint32_t*
 char*

instance,
path,
bufferCapacityInput,
bufferCountOutput,
buffer);

Parameter Descriptions

- **instance** is an instance previously created.
- path is the valid XrPath value to retrieve the path string for.
- **bufferCapacityInput** is the capacity of the buffer, or 0 to indicate a request to retrieve the required capacity.
- bufferCountOutput is a pointer to the count of characters written to buffer (including the terminating '\0'), or a pointer to the required capacity in the case that bufferCapacityInput is insufficient.
- **buffer** is a pointer to an application-allocated buffer that will be filled with the semantic path string. It **can** be NULL if **bufferCapacityInput** is 0.
- See the Buffer Size Parameters section for a detailed description of retrieving the required buffer size.

xrPathToString retrieves the path name string associated with an XrPath, in the context of a given XrInstance, in the form of a NULL terminated string placed into a *caller-allocated* buffer. Since the mapping between a well-formed path name string and an XrPath is bijective, there will always be exactly one string for each valid XrPath value. This can be useful if the calling application receives an XrPath value that they had not previously retrieved via xrStringToPath. During the lifetime of the given XrInstance, the path name string retrieved by this function for a given valid XrPath will not change. For invalid paths, including XR_NULL_PATH, XR_ERROR_PATH_INVALID **must** be returned.

- instance must be a valid XrInstance handle
- bufferCountOutput must be a pointer to a uint32_t value
- If bufferCapacityInput is not 0, buffer **must** be a pointer to an array of bufferCapacityInput char values

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_PATH_INVALID

6.3. Reserved Paths

In order for some uses of semantic paths to work consistently across runtimes, it is necessary to standardize several paths and require each runtime to use the same paths or patterns of paths for certain classes of usage. Those paths are as follows.

6.3.1. /user paths

Some paths are used to refer to entities that are filling semantic roles in the system. These paths are all under the */user* subtree.

The reserved user paths are:

Reserved Semantic Paths

- */user/hand/left* represents the user's left hand. It might be tracked using a controller or other device in the user's left hand, or tracked without the user holding anything, e.g. using computer vision.
- /user/hand/right represents the user's right hand in analog to the left hand.
- */user/head* represents inputs on the user's head, often from a device such as a head-mounted display. To reason about the user's head, see the XR_REFERENCE_SPACE_TYPE_VIEW reference space.
- */user/gamepad* is a two-handed gamepad device held by the user.
- */user/treadmill* is a treadmill or other locomotion-targeted input device.

Runtimes are not required to provide interaction at all of these paths. For instance, in a system with no

hand tracking, only */user/head* would be active for interaction. In a system with only one controller, the runtime **may** provide access to that controller via either */user/hand/left* or */user/hand/right* as it deems appropriate.

The runtime **may** change the devices referred to by */user/hand/left* and */user/hand/right* at any time.

If more than two hand-held controllers or devices are active, the runtime **must** determine which two are accessible as */user/hand/left* and */user/hand/right*.

6.3.2. Input subpaths

Devices on the source side of the input system need to define paths for each component that can be bound to an action. This section describes the naming conventions for those input components. Runtimes **must** ignore input source paths that use identifiers and component names that do not appear in this specification or otherwise do not follow the pattern specified below.

Each input source path **must** match the following pattern:

.../input/<identifier>[_<location>][/<component>]

Identifiers are often the label on the component or related to the type and location of the component.

When specifying a suggested binding there are several cases where the component part of the path can be determined automatically. See Suggested Bindings for more details.

See Interaction Profiles for examples of input subpaths.

Standard identifiers

- trackpad A 2D input source that usually includes click and touch component.
- thumbstick A small 2D joystick that is meant to be used with the user's thumb. These sometimes include click and/or touch components.
- joystick A 2D joystick that is meant to be used with the user's entire hand, such as a flight stick. These generally do not have click component, but might have touch components.
- trigger A 1D analog input component that returns to a rest state when the user stops interacting with it. These sometime include touch and/or click components.
- throttle A 1D analog input component that remains in position when the user stops interacting with it.
- trackball A 2D relative input source. These sometimes include click components.
- pedal A 1D analog input component that is similar to a trigger but meant to be operated by a foot
- system A button with the specialised meaning that it enables the user to access system-level functions and UI. Input data from system buttons is generally used internally by runtimes and **may** not be available to applications.
- dpad_up, dpad_down, dpad_left, and dpad_right A set of buttons arranged in a plus shape.

- diamond_up, diamond_down, diamond_left, and diamond_right Gamepads often have a set of four buttons arranged in a diamond shape. The labels on those buttons vary from gamepad to gamepad, but their arrangement is consistent. These names are used for the A/B/X/Y buttons on a Xbox controller, and the square/cross/circle/triangle button on a PlayStation controller.
- a, b, x, y, start, home, end, select Standalone buttons are named for their physical labels. These are the standard identifiers for such buttons. Extensions **may** add new identifiers as detailed in the next section. Groups of four buttons in a diamond shape **should** use the diamond-prefix names above instead of using the labels on the buttons themselves.
- volume_up, volume_down, mute_mic, play_pause, menu, view, back Some other standard controls are often identified by icons. These are their standard names.
- thumbrest Some controllers have a place for the user to rest their thumb.
- shoulder A button that is usually pressed with the index finger and is often positioned above a trigger.
- squeeze An input source that indicates that the user is squeezing their fist closed. This could be a simple button or act more like a trigger. Sources with this identifier **should** either follow button or trigger conventions for their components.
- wheel A steering wheel.
- thumb_resting_surfaces Any surfaces that a thumb may naturally rest on. This may include, but is not limited to, face buttons, thumbstick, and thumbrest (Provided by XR_VERSION_1_1)
- stylus Tip that can be used for writing or drawing. May be able to detect various pressure levels (Provided by XR_VERSION_1_1)
- trigger_curl This sensor detects how pointed or curled the user's finger is on the trigger: 0 = fully pointed, 1 = finger flat on surface (Provided by XR_VERSION_1_1)
- trigger_slide This sensor represents how far the user is sliding their index finger along the surface of the trigger: 0 = finger flat on the surface, 1 = finger fully drawn back (Provided by XR_VERSION_1_1)

Standard pose identifiers

Input sources whose orientation and/or position are tracked also expose pose identifiers.

Standard pose identifiers for tracked hands or motion controllers as represented by */user/hand/left* and */user/hand/right* are:

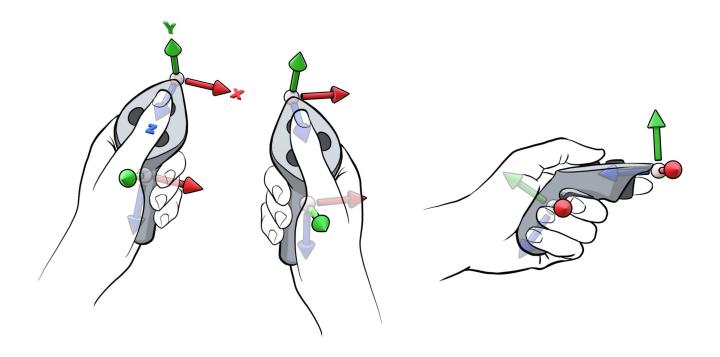
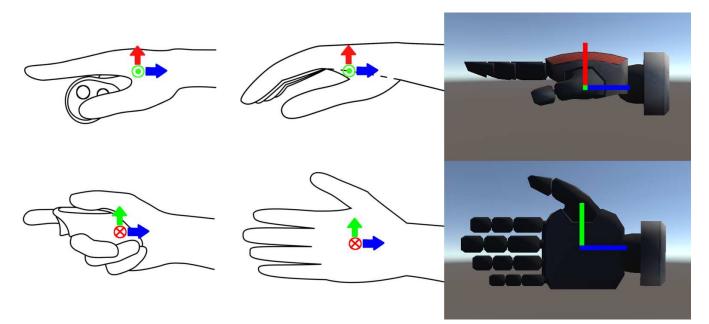



Figure 2. Example grip and aim poses for generic motion controllers

- grip A pose that allows applications to reliably render a virtual object held in the user's hand, whether it is tracked directly or by a motion controller. The grip pose is defined as follows:
 - The grip position:
 - For tracked hands: The user's palm centroid when closing the fist, at the surface of the palm.
 - For handheld motion controllers: A fixed position within the controller that generally lines up with the palm centroid when held by a hand in a neutral position. This position should be adjusted left or right to center the position within the controller's grip.
 - The grip orientation's +X axis: When you completely open your hand to form a flat 5-finger pose, the ray that is normal to the user's palm (away from the palm in the left hand, into the palm in the right hand).
 - The grip orientation's -Z axis: When you close your hand partially (as if holding the controller), the ray that goes through the center of the tube formed by your non-thumb fingers, in the direction of little finger to thumb.
 - $\,\circ\,$ The grip orientation's +Y axis: orthogonal to +Z and +X using the right-hand rule.
- aim A pose that allows applications to point in the world using the input source, according to the platform's conventions for aiming with that kind of source. The aim pose is defined as follows:
 - For tracked hands: The ray that follows platform conventions for how the user aims at objects in the world with their entire hand, with +Y up, +X to the right, and -Z forward. The ray chosen will be runtime-dependent, often a ray emerging from the hand at a target pointed by moving the forearm.

- For handheld motion controllers: The ray that follows platform conventions for how the user targets objects in the world with the motion controller, with +Y up, +X to the right, and -Z forward. This is usually for applications that are rendering a model matching the physical controller, as an application rendering a virtual object in the user's hand likely prefers to point based on the geometry of that virtual object. The ray chosen will be runtime-dependent, although this will often emerge from the frontmost tip of a motion controller.
- grip_surface (Provided by XR_VERSION_1_1) A pose that allows applications to reliably anchor visual content relative to the user's physical hand, whether the user's hand is tracked directly or its position and orientation is inferred by a physical controller. The grip_surface pose is defined as follows:
 - The grip_surface position: The user's physical palm centroid, at the surface of the palm. For the avoidance of doubt, the palm does not include fingers.
 - The grip_surface orientation's +X axis: When a user is holding the controller and straightens their index fingers pointing forward, the ray that is normal (perpendicular) to the user's palm (away from the palm in the left hand, into the palm in the right hand).
 - The grip_surface orientation's -Z axis: When a user is holding the controller and straightens their index finger, the ray that is parallel to their finger's pointing direction.
 - The grip_surface orientation's +Y axis: orthogonal to +Z and +X using the right-hand rule.

Figure 3. Example grip_surface pose for (from left to right) a generic motion controller, tracked hand, and a digital hand avatar. The X axis is depicted in red. The Y axis is depicted in green. The Z axis is depicted in blue.

Standard locations

When a single device contains multiple input sources that use the same identifier, a location suffix is added to create a unique identifier for that input source.

Standard locations are:

- left
- right
- left_upper
- left_lower
- right_upper
- right_lower
- upper
- lower

Standard components

Components are named for the specific boolean, scalar, or other value of the input source. Standard components are:

- click A physical switch has been pressed by the user. This is valid for all buttons, and is common for trackpads, thumbsticks, triggers, and dpads. "click" components are always boolean.
- touch The user has touched the input source. This is valid for all trackpads, and **may** be present for any other kind of input source if the device includes the necessary sensor. "touch" components are always boolean.
- force A 1D scalar value that represents the user applying force to the input. It varies from 0 to 1, with 0 being the rest state. This is present for any input source with a force sensor.
- value A 1D scalar value that varies from 0 to 1, with 0 being the rest state. This is present for triggers, throttles, and pedals. It **may** also be present for squeeze or other components.
- x, y scalar components of 2D values. These vary in value from -1 to 1. These represent the 2D position of the input source with 0 being the rest state on each axis. -1 means all the way left for x axis or all the way down for y axis. +1 means all the way right for x axis or all the way up for y axis. x and y components are present for trackpads, thumbsticks, and joysticks.
- twist Some sources, such as flight sticks, have a sensor that allows the user to twist the input left or right. For this component -1 means all the way left and 1 means all the way right.
- pose The orientation and/or position of this input source. This component **may** exist for dedicated pose identifiers like grip and aim, or **may** be defined on other identifiers such as trackpad to let applications reason about the surface of that part.
- proximity The user is in physical proximity of input source. This **may** be present for any kind of input source representing a physical component, such as a button, if the device includes the necessary sensor. The state of a "proximity" component **must** be XR_TRUE if the same input source is returning XR_TRUE for either a "touch" or any other component that implies physical contact. The runtime **may** return XR_TRUE for "proximity" when "touch" returns XR_FALSE which would indicate that the user is hovering just above, but not touching the input source in question. "proximity" components are always boolean. (Provided by XR_VERSION_1_1)

Output paths

Many devices also have subpaths for output features such as haptics. The runtime **must** ignore output component paths that do not follow the pattern:

.../output/<output_identifier>[_<location>]

Standard output identifiers are:

- haptic A haptic element like an LRA (Linear Resonant Actuator) or vibration motor
- haptic_trigger A haptic element located in the trigger (Provided by XR_VERSION_1_1)
- haptic_thumb A haptic element located in the resting place of the thumb, like under the touchpad (Provided by XR_VERSION_1_1)

Devices which contain multiple haptic elements with the same output identifier must use a location suffix as specified above.

6.3.3. Adding input sources via extensions

Extensions **may** enable input source path identifiers, output source path identifiers, and component names that are not included in the core specification, subject to the following conditions:

- EXT extensions **must** include the _ext suffix on any identifier or component name. E.g. .../input/newidentifier_ext/newcomponent_ext
- Vendor extensions **must** include the vendor's tag as a suffix on any identifier or component name. E.g. .../input/newidentifier_vendor/newcomponent_vendor (where "vendor" is replaced with the vendor's actual extension tag.)
- Khronos (KHR) extensions **may** add undecorated identifier or component names.

These rules are in place to prevent extensions from adding first class undecorated names that become defacto standards. Runtimes **must** ignore input source paths that do not follow the restrictions above.

Extensions **may** also add new location suffixes, and **may** do so by adding a new identifier and location combination using the appropriate suffix. E.g. *.../input/newidentifier_newlocation_ext*

6.4. Interaction Profile Paths

An interaction profile path identifies a collection of buttons and other input sources in a physical arrangement to allow applications and runtimes to coordinate action bindings.

Interaction profile paths are of the form:

/interaction_profiles/<vendor_name>/<type_name>

6.4.1. Khronos Simple Controller Profile

Path: /interaction_profiles/khr/simple_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile provides basic pose, button, and haptic support for applications with simple input needs. There is no hardware associated with the profile, and runtimes which support this profile **should** map the input paths provided to whatever the appropriate paths are on the actual hardware.

Supported component paths:

- .../input/select/click
- .../input/menu/click
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.2. Bytedance PICO Neo 3 controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/bytedance/pico_neo3_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Bytedance PICO Neo3 Controller.

- On /user/hand/left only:
 - .../input/x/click
 - .../input/x/touch
 - .../input/y/click
 - .../input/y/touch
- On /user/hand/right only:
 - .../input/a/click
 - .../input/a/touch
 - .../input/b/click
 - .../input/b/touch
- .../input/menu/click
- .../input/system/click (may not be available for application use)
- .../input/trigger/click
- .../input/trigger/value
- .../input/trigger/touch
- .../input/thumbstick/y
- .../input/thumbstick/x
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/squeeze/click
- .../input/squeeze/value
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.3. Bytedance PICO 4 controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/bytedance/pico4_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Bytedance PICO 4 Controller.

- On /user/hand/left only:
 - .../input/x/click
 - .../input/x/touch
 - .../input/y/click
 - .../input/y/touch
 - .../input/menu/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/a/touch
 - .../input/b/click
 - .../input/b/touch
- .../input/system/click (may not be available for application use)
- .../input/trigger/click
- .../input/trigger/value
- .../input/trigger/touch
- .../input/thumbstick/y
- .../input/thumbstick/x
- .../input/thumbstick/click
- .../input/thumbstick/touch

- .../input/squeeze/click
- .../input/squeeze/value
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

F

1

Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.4. Bytedance PICO G3 controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/bytedance/pico_g3_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Bytedance PICO G3 Controller.

- .../input/trigger/click
- .../input/trigger/value
- .../input/menu/click
- .../input/grip/pose
- .../input/aim/pose
- .../input/thumbstick
- .../input/thumbstick/click

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When designing suggested bindings for this interaction profile, you **may** suggest bindings for both */user/hand/left* and */user/hand/right*. However, only one of them will be active at a given time, so do not design interactions that require simultaneous use of both hands.

6.4.5. Google Daydream Controller Profile

Path: /interaction_profiles/google/daydream_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources on the Google Daydream Controller.

- .../input/select/click
- .../input/trackpad/x
- .../input/trackpad/y
- .../input/trackpad/click
- .../input/trackpad/touch
- .../input/grip/pose
- .../input/aim/pose

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.6. HP Mixed Reality Motion Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/hp/mixed_reality_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the HP Mixed Reality Motion Controller.

- On */user/hand/left* only:
 - .../input/x/click
 - .../input/y/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/b/click
- .../input/menu/click
- .../input/squeeze/value
- .../input/trigger/value
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/grip/pose
- .../input/aim/pose

• .../output/haptic

Note

B

1

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.7. HTC Vive Controller Profile

Path: /interaction_profiles/htc/vive_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Vive Controller.

- .../input/system/click (may not be available for application use)
- .../input/squeeze/click
- .../input/menu/click
- .../input/trigger/click
- .../input/trigger/value
- .../input/trackpad/x
- .../input/trackpad/y
- .../input/trackpad/click
- .../input/trackpad/touch
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.8. HTC Vive Cosmos Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/htc/vive_cosmos_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Vive Cosmos Controller.

- On /user/hand/left only:
 - .../input/x/click
 - .../input/y/click
 - .../input/menu/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/b/click
 - .../input/system/click (may not be available for application use)
- .../input/shoulder/click
- .../input/squeeze/click
- .../input/trigger/click
- .../input/trigger/value
- .../input/thumbstick/x

- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.9. HTC Vive Focus 3 Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/htc/vive_focus3_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Vive Focus 3 Controller.

- On /user/hand/left only:
 - .../input/x/click
 - .../input/y/click
 - .../input/menu/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/b/click
 - .../input/system/click (may not be available for application use)

- .../input/squeeze/click
- .../input/squeeze/touch
- .../input/squeeze/value
- .../input/trigger/click
- .../input/trigger/touch
- .../input/trigger/value
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/thumbrest/touch
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

6

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.10. HTC Vive Pro Profile

Path: /interaction_profiles/htc/vive_pro

Valid for user paths:

• /user/head

This interaction profile represents the input sources on the Vive Pro headset.

Supported component paths:

• .../input/system/click (may not be available for application use)

- .../input/volume_up/click
- .../input/volume_down/click
- .../input/mute_mic/click

6.4.11. Magic Leap 2 Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/ml/ml2_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Magic Leap 2 controller.

Supported component paths:

- .../input/menu/click
- .../input/home/click (may not be available for application use)
- .../input/trigger/click
- .../input/trigger/value
- .../input/trackpad/y
- .../input/trackpad/x
- .../input/trackpad/click
- .../input/trackpad/force
- .../input/trackpad/touch
- .../input/aim/pose
- .../input/grip/pose
- .../input/shoulder/click
- .../output/haptic

Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.12. Microsoft Mixed Reality Motion Controller Profile

Path: /interaction_profiles/microsoft/motion_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Microsoft Mixed Reality Controller.

Supported component paths:

- .../input/menu/click
- .../input/squeeze/click
- .../input/trigger/value
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/trackpad/x
- .../input/trackpad/y
- .../input/trackpad/click
- .../input/trackpad/touch
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.13. Microsoft Xbox Controller Profile

Path: /interaction_profiles/microsoft/xbox_controller

Valid for user paths:

• /user/gamepad

This interaction profile represents the input sources and haptics on the Microsoft Xbox Controller.

- .../input/menu/click
- .../input/view/click
- .../input/a/click
- .../input/b/click
- .../input/x/click
- .../input/y/click
- .../input/dpad_down/click
- .../input/dpad_right/click
- .../input/dpad_up/click
- .../input/dpad_left/click
- .../input/shoulder_left/click
- .../input/shoulder_right/click
- .../input/thumbstick_left/click
- .../input/thumbstick_right/click
- .../input/trigger_left/value
- .../input/trigger_right/value
- .../input/thumbstick_left/x
- .../input/thumbstick_left/y
- .../input/thumbstick_right/x
- .../input/thumbstick_right/y

- .../output/haptic_left
- .../output/haptic_right
- .../output/haptic_left_trigger
- .../output/haptic_right_trigger

6.4.14. Oculus Go Controller Profile

Path: /interaction_profiles/oculus/go_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources on the Oculus Go controller.

Supported component paths:

- .../input/system/click (may not be available for application use)
- .../input/trigger/click
- .../input/back/click
- .../input/trackpad/x
- .../input/trackpad/y
- .../input/trackpad/click
- .../input/trackpad/touch
- .../input/grip/pose
- .../input/aim/pose

Note

B

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.15. Oculus Touch Controller Profile

Path: /interaction_profiles/oculus/touch_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller.

- On /user/hand/left only:
 - .../input/x/click
 - .../input/x/touch
 - .../input/y/click
 - .../input/y/touch
 - .../input/menu/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/a/touch
 - .../input/b/click
 - .../input/b/touch
 - .../input/system/click (may not be available for application use)
- .../input/squeeze/value
- .../input/trigger/value
- .../input/trigger/touch
- .../input/trigger/proximity (Provided by XR_VERSION_1_1)
- .../input/thumb_resting_surfaces/proximity (Provided by XR_VERSION_1_1)
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/thumbrest/touch
- .../input/grip/pose
- .../input/aim/pose

• .../output/haptic

Note

£

i

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.16. Meta Touch Pro Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_pro_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Meta Touch Pro controller.

- On /user/hand/left only:
 - .../input/x/click
 - .../input/x/touch
 - .../input/y/click
 - .../input/y/touch
 - .../input/menu/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/a/touch
 - .../input/b/click
 - .../input/b/touch
 - .../input/system/click (may not be available for application use)

- .../input/squeeze/value
- .../input/trigger/value
- .../input/trigger/touch
- .../input/trigger/proximity
- .../input/trigger_curl/value
- .../input/trigger_slide/value
- .../input/thumb_resting_surfaces/proximity
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/thumbrest/touch
- .../input/thumbrest/force
- .../input/stylus/force
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic
- .../output/haptic_trigger
- .../output/haptic_thumb

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

.../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.17. Meta Touch Plus Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_plus_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Meta Touch Plus controller.

- On /user/hand/left only:
 - .../input/x/click
 - .../input/x/touch
 - .../input/y/click
 - .../input/y/touch
 - .../input/menu/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/a/touch
 - .../input/b/click
 - .../input/b/touch
 - .../input/system/click (may not be available for application use)
- .../input/squeeze/value
- .../input/trigger/value
- .../input/trigger/touch
- .../input/trigger/force
- .../input/trigger/proximity
- .../input/trigger_curl/value
- .../input/trigger_slide/value
- .../input/thumb_resting_surfaces/proximity
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/thumbrest/touch
- .../input/grip/pose

- .../input/aim/pose
- .../output/haptic

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

H

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.18. Meta Touch Controller (Rift CV1) Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_controller_rift_cv1

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller and is a legacy profile added to specifically represent the controller shipped with the Rift CV1.

- On /user/hand/left only:
 - .../input/x/click
 - .../input/x/touch
 - .../input/y/click
 - .../input/y/touch
 - .../input/menu/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/a/touch
 - .../input/b/click

- .../input/b/touch
- .../input/system/click (may not be available for application use)
- .../input/squeeze/value
- .../input/trigger/value
- .../input/trigger/touch
- .../input/trigger/proximity
- .../input/thumb_resting_surfaces/proximity
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/thumbrest/touch
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.19. Meta Touch Controller (Rift S / Quest 1) Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_controller_quest_1_rift_s

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller and is a legacy profile added to specifically represent the controller shipped with the Rift S and Quest 1.

Supported component paths:

- On /user/hand/left only:
 - .../input/x/click
 - .../input/x/touch
 - .../input/y/click
 - .../input/y/touch
 - .../input/menu/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/a/touch
 - .../input/b/click
 - .../input/b/touch
 - .../input/system/click (may not be available for application use)
- .../input/squeeze/value
- .../input/trigger/value
- .../input/trigger/touch
- .../input/trigger/proximity
- .../input/thumb_resting_surfaces/proximity
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.20. Meta Touch Controller (Quest 2) Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_controller_quest_2

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller and is a legacy profile added to specifically represent the controller shipped with the Quest 2.

- On /user/hand/left only:
 - .../input/x/click
 - .../input/x/touch
 - .../input/y/click
 - .../input/y/touch
 - .../input/menu/click
- On /user/hand/right only:
 - .../input/a/click
 - .../input/a/touch
 - .../input/b/click
 - .../input/b/touch
 - .../input/system/click (may not be available for application use)
- .../input/squeeze/value
- .../input/trigger/value
- .../input/trigger/touch
- .../input/trigger/proximity
- .../input/thumb_resting_surfaces/proximity

- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/thumbrest/touch
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

8

H

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.21. Samsung Odyssey Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/samsung/odyssey_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Samsung Odyssey Controller. It is exactly the same, with the exception of the name of the interaction profile, as the Microsoft Mixed Reality Controller interaction profile. It enables the application to differentiate the newer form factor of motion controller released with the Samsung Odyssey headset. It enables the application to customize the appearance and experience of the controller differently from the original mixed reality motion controller.

Supported component paths:

• .../input/menu/click

- .../input/squeeze/click
- .../input/trigger/value
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/trackpad/x
- .../input/trackpad/y
- .../input/trackpad/click
- .../input/trackpad/touch
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

6.4.22. Valve Index Controller Profile

Path: /interaction_profiles/valve/index_controller

Valid for user paths:

- /user/hand/left
- /user/hand/right

This interaction profile represents the input sources and haptics on the Valve Index controller.

- *.../input/system/click* (**may** not be available for application use)
- .../input/system/touch (**may** not be available for application use)

- .../input/a/click
- .../input/a/touch
- .../input/b/click
- .../input/b/touch
- .../input/squeeze/value
- .../input/squeeze/force
- .../input/trigger/click
- .../input/trigger/value
- .../input/trigger/touch
- .../input/thumbstick/x
- .../input/thumbstick/y
- .../input/thumbstick/click
- .../input/thumbstick/touch
- .../input/trackpad/x
- .../input/trackpad/y
- .../input/trackpad/force
- .../input/trackpad/touch
- .../input/grip/pose
- .../input/aim/pose
- .../output/haptic

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the application, this interaction profile **must** also support

• .../input/grip_surface/pose

Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction profile **must** also support

• .../input/grip_surface/pose

Chapter 7. Spaces

Across both virtual reality and augmented reality, XR applications have a core need to map the location of virtual objects to the corresponding real-world locations where they will be rendered. **Spaces** allow applications to explicitly create and specify the frames of reference in which they choose to track the real world, and then determine how those frames of reference move relative to one another over time.

XR_DEFINE_HANDLE(XrSpace)

Spaces are represented by XrSpace handles, which the application creates and then uses in API calls. Whenever an application calls a function that returns coordinates, it provides an XrSpace to specify the frame of reference in which those coordinates will be expressed. Similarly, when providing coordinates to a function, the application specifies which XrSpace the runtime should use to interpret those coordinates.

OpenXR defines a set of well-known **reference spaces** that applications use to bootstrap their spatial reasoning. These reference spaces are: VIEW, LOCAL, LOCAL_FLOOR, and STAGE. Each reference space has a well-defined meaning, which establishes where its origin is positioned and how its axes are oriented.

Runtimes whose tracking systems improve their understanding of the world over time **may** track spaces independently. For example, even though a LOCAL space and a STAGE space each map their origin to a static position in the world, a runtime with an inside-out tracking system **may** introduce slight adjustments to the origin of each space on a continuous basis to keep each origin in place.

Beyond well-known reference spaces, runtimes expose other independently-tracked spaces, such as a pose action space that tracks the pose of a motion controller over time.

When one or both spaces are tracking a dynamic object, passing in an updated time to xrLocateSpace each frame will result in an updated relative pose. For example, the location of the left hand's pose action space in the STAGE reference space will change each frame as the user's hand moves relative to the stage's predefined origin on the floor. In other XR APIs, it is common to report the "pose" of an object relative to some presumed underlying global space. This API is careful to not explicitly define such an underlying global space, because it does not apply to all systems. Some systems will support no STAGE space, while others may support a STAGE space that switches between various physical stages with dynamic availability. To satisfy this wide variability, "poses" are always described as the relationship between two spaces.

Some devices improve their understanding of the world as the device is used. The location returned by xrLocateSpace in later frames **may** change over time, even for spaces that track static objects, as either the target space or base space adjusts its origin.

Composition layers submitted by the application include an XrSpace for the runtime to use to position that layer over time. Composition layers whose XrSpace is relative to the VIEW reference space are

implicitly "head-locked", even if they may not be "display-locked" for non-head-mounted form factors.

7.1. Reference Spaces

The XrReferenceSpaceType enumeration is defined as:

typedef enum XrReferenceSpaceType {
 XR_REFERENCE_SPACE_TYPE_VIEW = 1,
 XR_REFERENCE_SPACE_TYPE_LOCAL = 2,
 XR_REFERENCE_SPACE_TYPE_STAGE = 3,
 // Provided by XR_VERSION_1_1
 XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR = 1000426000,
 XR_REFERENCE_SPACE_TYPE_MAX_ENUM = 0x7FFFFFFF
} XrReferenceSpaceType;

Brief introductions to core reference space types follow. Each has full requirements in a subsequent section, linked from these descriptions.

Enumerant Descriptions

• XR_REFERENCE_SPACE_TYPE_VIEW. The VIEW reference space tracks the view origin used to generate view transforms for the primary viewer (or centroid of view origins if stereo), with +Y up, +X to the right, and -Z forward. This space points in the forward direction for the viewer without incorporating the user's eye orientation, and is not gravity-aligned.

Runtimes **must** support **VIEW** reference space.

• XR_REFERENCE_SPACE_TYPE_LOCAL. The LOCAL reference space establishes a world-locked origin, gravity-aligned to exclude pitch and roll, with +Y up, +X to the right, and -Z forward. This space locks in both its initial position and orientation, which the runtime **may** define to be either the initial position at application launch or some other calibrated zero position.

Runtimes **must** support LOCAL reference space.

• XR_REFERENCE_SPACE_TYPE_STAGE. The STAGE reference space is a runtime-defined flat, rectangular space that is empty and can be walked around on. The origin is on the floor at the center of the rectangle, with +Y up, and the X and Z axes aligned with the rectangle edges. The runtime **may** not be able to locate spaces relative to the STAGE reference space if the user has not yet defined one within the runtime-specific UI. Applications **can** use xrGetReferenceSpaceBoundsRect to determine the extents of the STAGE reference space's XZ bounds rectangle, if defined.

Support for the **STAGE** reference space is **optional**.

• XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR (provided by XR_VERSION_1_1) Similar to LOCAL space, the LOCAL_FLOOR reference space establishes a world-locked origin, gravity-aligned to exclude pitch and roll, with +Y up, +X to the right, and -Z forward. However, the origin of this space is defined to be on an estimate of the floor level.

Runtimes **must** support LOCAL_FLOOR reference space.

An XrSpace handle for a reference space is created using xrCreateReferenceSpace, by specifying the chosen reference space type and a pose within the natural reference frame defined for that reference space type.

Runtimes implement well-known reference spaces from XrReferenceSpaceType if they support tracking of that kind. Available reference space types are indicated by xrEnumerateReferenceSpaces. Note that other spaces can be created as well, such as pose action spaces created by xrCreateActionSpace, which are not enumerated by that API.

7.1.1. View Reference Space

The XR_REFERENCE_SPACE_TYPE_VIEW or VIEW reference space tracks the view origin used to generate view

transforms for the primary viewer (or centroid of view origins if stereo), with +Y up, +X to the right, and -Z forward. This space points in the forward direction for the viewer without incorporating the user's eye orientation, and is not gravity-aligned.

The VIEW space is primarily useful when projecting from the user's perspective into another space to obtain a targeting ray, or when rendering small head-locked content such as a reticle. Content rendered in the VIEW space will stay at a fixed point on head-mounted displays and may be uncomfortable to view if too large. To obtain the ideal view and projection transforms to use each frame for rendering world content, applications should call xrLocateViews instead of using this space.

7.1.2. Local Reference Space

The XR_REFERENCE_SPACE_TYPE_LOCAL or LOCAL reference space establishes a world-locked origin, gravityaligned to exclude pitch and roll, with +Y up, +X to the right, and -Z forward. This space locks in both its initial position and orientation, which the runtime **may** define to be either the initial position at application launch or some other calibrated zero position.

When a user needs to recenter the LOCAL space, a runtime **may** offer some system-level recentering interaction that is transparent to the application, but which causes the current leveled head space to become the new LOCAL space. When such a recentering occurs, the runtime **must** queue the XrEventDataReferenceSpaceChangePending event, with the recentered LOCAL space origin only taking effect for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal to the XrEventDataReferenceSpaceChangePending::changeTime in that event.

When views, controllers or other spaces experience tracking loss relative to the LOCAL space, runtimes **should** continue to provide inferred or last-known **position** and **orientation** values. These inferred poses can, for example, be based on neck model updates, inertial dead reckoning, or a last-known position, so long as it is still reasonable for the application to use that pose. While a runtime is providing position data, it **must** continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_VIEW_STATE_POSITION_VALID_BIT but it **can** clear XR_SPACE_LOCATION_POSITION_TRACKED_BIT and XR_VIEW_STATE_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this way.

When tracking is recovered, runtimes **should** snap the pose of other spaces back into position relative to the original origin of LOCAL space.

7.1.3. Stage Reference Space

The STAGE reference space is a runtime-defined flat, rectangular space that is empty and can be walked around on. The origin is on the floor at the center of the rectangle, with +Y up, and the X and Z axes aligned with the rectangle edges. The runtime **may** not be able to locate spaces relative to the STAGE reference space if the user has not yet defined one within the runtime-specific UI. Applications **can** use **xrGetReferenceSpaceBoundsRect** to determine the extents of the STAGE reference space's XZ bounds rectangle, if defined.

The STAGE space is useful when an application needs to render **standing-scale** content (no bounds) or **room-scale** content (with bounds) that is relative to the physical floor.

When the user redefines the origin or bounds of the current STAGE space, or the runtime otherwise switches to а new STAGE space definition, the runtime must queue the XrEventDataReferenceSpaceChangePending event, with the new STAGE space origin only taking effect for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal to the XrEventDataReferenceSpaceChangePending::changeTime in that event.

When views, controllers, or other spaces experience tracking loss relative to the STAGE space, runtimes **should** continue to provide inferred or last-known **position** and **orientation** values. These inferred poses can, for example, be based on neck model updates, inertial dead reckoning, or a last-known position, so long as it is still reasonable for the application to use that pose. While a runtime is providing position data, it **must** continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_VIEW_STATE_POSITION_VALID_BIT but it **can** clear XR_SPACE_LOCATION_POSITION_TRACKED_BIT and XR_VIEW_STATE_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this way. When tracking is recovered, runtimes **should** snap the pose of other spaces back into position relative to the original origin of the STAGE space.

7.1.4. Local Floor Reference Space

Local floor reference space, indicated by XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR, is closely related to the LOCAL reference space. It always aligns with the LOCAL space, and matches it in X and Z position. However, unlike the LOCAL space, the LOCAL_FLOOR space has its Y axis origin on the runtime's best estimate of the floor level under the origin of the LOCAL space.

The location of the origin of the LOCAL_FLOOR space **must** match the LOCAL space in the X and Z coordinates but not in the Y coordinate.

The orientation of the LOCAL_FLOOR space **must** match the LOCAL space.

The runtime **must** establish the Y axis origin at its best estimate of the floor level under the origin of the LOCAL space space, subject to requirements under the following conditions to match the floor level of the STAGE space.

If all of the following conditions are true, the Y axis origin of the LOCAL_FLOOR space **must** match the Y axis origin of the STAGE space:

- the STAGE space is supported
- the location of the LOCAL space relative to the STAGE space has valid position (XR_SPACE_LOCATION_POSITION_VALID_BIT is set)
- bounds are available from xrGetReferenceSpaceBoundsRect for the STAGE space
- the position of the LOCAL space relative to the STAGE space is within the STAGE space XZ bounds

That is, if there is a stage with bounds, and if the local space and thus the local floor is logically within the stage, the local floor and the stage share the same floor level.

When the origin of the LOCAL space is changed in orientation or XZ position, the origin of the

LOCAL_FLOOR space **must** also change accordingly.

When a change in origin of the LOCAL_FLOOR space occurs, the runtime **must** queue the XrEventDataReferenceSpaceChangePending event, with the changed LOCAL_FLOOR space origin only taking effect for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal to the XrEventDataReferenceSpaceChangePending::changeTime in that event.

The xrGetReferenceSpaceBoundsRect function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrGetReferenceSpaceBoundsRect(
 XrSession
 XrReferenceSpaceType
 XrExtent2Df*

session,
referenceSpaceType,
bounds);

Parameter Descriptions

- session is a handle to an XrSession previously created with xrCreateSession.
- referenceSpaceType is the reference space type whose bounds should be retrieved.
- bounds is the returned space extents.

XR systems **may** have limited real world spatial ranges in which users can freely move around while remaining tracked. Applications sometimes wish to query these boundaries and alter application behavior or content placement to ensure the user can complete the experience while remaining within the boundary. Applications **can** query this information using **xrGetReferenceSpaceBoundsRect**.

When called, xrGetReferenceSpaceBoundsRect should return the extents of a rectangle that is clear of obstacles down to the floor, allowing where the user can freely move while remaining tracked, if available for that reference space. The returned extent represents the dimensions of an axis-aligned bounding box where the XrExtent2Df::width and XrExtent2Df::height fields correspond to the X and Z axes of the provided space, with the extents centered at the origin of the space. Not all systems or spaces support boundaries. If a runtime is unable to provide bounds for a given space, XR_SPACE_BOUNDS_UNAVAILABLE must be returned and all fields of bounds must be set to 0.

The returned extents are expressed relative to the natural origin of the provided XrReferenceSpaceType and **must** not incorporate any origin offsets specified by the application during calls to xrCreateReferenceSpace.

The runtime **must** return XR_ERROR_REFERENCE_SPACE_UNSUPPORTED if the XrReferenceSpaceType passed in referenceSpaceType is not supported by this session.

When a runtime will begin operating with updated space bounds, the runtime must queue a

Valid Usage (Implicit)

- session must be a valid XrSession handle
- referenceSpaceType **must** be a valid XrReferenceSpaceType value
- bounds must be a pointer to an XrExtent2Df structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING
- XR_SPACE_BOUNDS_UNAVAILABLE

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_REFERENCE_SPACE_UNSUPPORTED

The XrEventDataReferenceSpaceChangePending event structure is defined as:

// Provided by XR_VERSION_1_0	
<pre>typedef struct XrEventDataReferenceSpaceChangePending {</pre>	
XrStructureType	type;
const void*	next;
XrSession	session;
XrReferenceSpaceType	<pre>referenceSpaceType;</pre>
XrTime	changeTime;
XrBool32	poseValid;
XrPosef	<pre>poseInPreviousSpace;</pre>
<pre>} XrEventDataReferenceSpaceChangePending;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- session is the XrSession for which the reference space is changing.
- referenceSpaceType is the XrReferenceSpaceType that is changing.
- changeTime is the target XrTime after which xrLocateSpace or xrLocateViews will return values that respect this change.
- poseValid is true if the runtime can determine the poseInPreviousSpace of the new space in the previous space before the change.
- poseInPreviousSpace is an XrPosef defining the position and orientation of the new reference space's natural origin within the natural reference frame of its previous space.

The XrEventDataReferenceSpaceChangePending event is sent to the application to notify it that the origin (and perhaps the bounds) of a reference space is changing. This may occur due to the user recentering the space explicitly, or the runtime otherwise switching to a different space definition.

The reference space change **must** only take effect for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal to the changeTime provided in that event. Runtimes **should** provide a changeTime to applications that allows for a deep render pipeline to present frames that are already in flight using the previous definition of the space. Runtimes **should** choose a changeTime that is midway between the XrFrameState::predictedDisplayTime of future frames to avoid threshold issues with applications that calculate future frame times using XrFrameState::predictedDisplayPeriod.

The poseInPreviousSpace provided here **must** only describe the change in the natural origin of the reference space and **must** not incorporate any origin offsets specified by the application during calls to xrCreateReferenceSpace. If the runtime does not know the location of the space's new origin relative to its previous origin, poseValid **must** be false, and the position and orientation of poseInPreviousSpace are undefined. .Valid Usage (Implicit)

- type **must** be XR_TYPE_EVENT_DATA_REFERENCE_SPACE_CHANGE_PENDING
- next must be NULL or a valid pointer to the next structure in a structure chain

7.2. Action Spaces

An XrSpace handle for a pose action is created using xrCreateActionSpace, by specifying the chosen pose action and a pose within the action's natural reference frame.

Runtimes support suggested pose action bindings to well-known user paths with .../pose subpaths if

they support tracking for that particular identifier.

Some example well-known pose action paths:

- /user/hand/left/input/grip
- /user/hand/left/input/aim
- /user/hand/right/input/grip
- /user/hand/right/input/aim

For definitions of these well-known pose device paths, see the discussion of device input subpaths in the Semantic Paths chapter.

7.2.1. Action Spaces Lifetime

XrSpace handles created for a pose action **must** be unlocatable unless the action set that contains the corresponding pose action was set as active via the most recent xrSyncActions call. If the underlying device that is active for the action changes, the device this space is tracking **must** only change to track the new device when xrSyncActions is called.

If xrLocateSpace is called with an unlocatable action space, the implementation **must** return no position or orientation and both XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT **must** be unset. If XrSpaceVelocity is also supplied, XR_SPACE_VELOCITY_LINEAR_VALID_BIT and XR_SPACE_VELOCITY_ANGULAR_VALID_BIT **must** be unset. If xrLocateViews is called with an unlocatable action space, the implementation **must** return no position or orientation and both XR_VIEW_STATE_POSITION_VALID_BIT and XR_VIEW_STATE_ORIENTATION_VALID_BIT **must** be unset.

7.3. Space Lifecycle

There are a small set of core APIs that allow applications to reason about reference spaces, action spaces, and their relative locations.

7.3.1. xrEnumerateReferenceSpaces

The xrEnumerateReferenceSpaces function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrEnumerateReferenceSpaces(
 XrSession
 uint32_t
 uint32_t*
 XrReferenceSpaceType*

session,
spaceCapacityInput,
spaceCountOutput,
spaces);

Parameter Descriptions

- session is a handle to an XrSession previously created with xrCreateSession.
- spaceCapacityInput is the capacity of the spaces array, or 0 to indicate a request to retrieve the required capacity.
- spaceCountOutput is a pointer to the count of spaces written, or a pointer to the required
 capacity in the case that spaceCapacityInput is insufficient.
- **spaces** is a pointer to an application-allocated array that will be filled with the enumerant of each supported reference space. It **can** be NULL if **spaceCapacityInput** is 0.
- See the Buffer Size Parameters section for a detailed description of retrieving the required spaces size.

Enumerates the set of reference space types that this runtime supports for a given session. Runtimes **must** always return identical buffer contents from this enumeration for the lifetime of the session.

If a session enumerates support for a given reference space type, calls to xrCreateReferenceSpace **must** succeed for that session, with any transient unavailability of poses expressed later during calls to xrLocateSpace.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- spaceCountOutput must be a pointer to a uint32_t value
- If spaceCapacityInput is not 0, spaces **must** be a pointer to an array of spaceCapacityInput XrReferenceSpaceType values

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SIZE_INSUFFICIENT

7.3.2. xrCreateReferenceSpace

The xrCreateReferenceSpace function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrCreateReferenceSpace(
 XrSession
 const XrReferenceSpaceCreateInfo*
 XrSpace*

session,
createInfo,
space);

Parameter Descriptions

- session is a handle to an XrSession previously created with xrCreateSession.
- createInfo is the XrReferenceSpaceCreateInfo used to specify the space.
- **space** is the returned space handle.

Creates an XrSpace handle based on a chosen reference space. Application **can** provide an XrPosef to define the position and orientation of the new space's origin within the natural reference frame of the reference space.

Multiple XrSpace handles may exist simultaneously, up to some limit imposed by the runtime. The XrSpace handle **must** be eventually freed via the xrDestroySpace function.

The runtime **must** return XR_ERROR_REFERENCE_SPACE_UNSUPPORTED if the given reference space type is not supported by this session.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- createInfo must be a pointer to a valid XrReferenceSpaceCreateInfo structure
- space **must** be a pointer to an XrSpace handle

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED
- XR_ERROR_REFERENCE_SPACE_UNSUPPORTED
- XR_ERROR_POSE_INVALID

The XrReferenceSpaceCreateInfo structure is defined as:

<pre>typedef struct XrReferenceSpaceCreateInfo {</pre>		
XrStructureType	type;	
const void*	next;	
XrReferenceSpaceType	referenceSpaceType;	
XrPosef	<pre>poseInReferenceSpace;</pre>	
<pre>} XrReferenceSpaceCreateInfo;</pre>		

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- referenceSpaceType is the chosen XrReferenceSpaceType.
- poseInReferenceSpace is an XrPosef defining the position and orientation of the new space's origin within the natural reference frame of the reference space.

Valid Usage (Implicit)

- type **must** be XR_TYPE_REFERENCE_SPACE_CREATE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- referenceSpaceType **must** be a valid XrReferenceSpaceType value

7.3.3. xrCreateActionSpace

The xrCreateActionSpace function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrCreateActionSpace(
 XrSession
 const XrActionSpaceCreateInfo*
 XrSpace*

session,
createInfo,
space);

Parameter Descriptions

- session is the XrSession to create the action space in.
- createInfo is the XrActionSpaceCreateInfo used to specify the space.
- **space** is the returned space handle.

Creates an XrSpace handle based on a chosen pose action. Application **can** provide an XrPosef to define the position and orientation of the new space's origin within the natural reference frame of the action space.

Multiple XrSpace handles may exist simultaneously, up to some limit imposed by the runtime. The

XrSpace handle must be eventually freed via the xrDestroySpace function or by destroying the parent XrAction handle.

The runtime **must** return XR_ERROR_ACTION_TYPE_MISMATCH if the action provided in XrActionSpaceCreateInfo::action is not of type XR_ACTION_TYPE_POSE_INPUT.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- createInfo must be a pointer to a valid XrActionSpaceCreateInfo structure
- space **must** be a pointer to an XrSpace handle

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED
- XR_ERROR_POSE_INVALID
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTION_TYPE_MISMATCH

The XrActionSpaceCreateInfo structure is defined as:

typedef struct XrActionSpaceCreateInfo {
 XrStructureType type;
 const void* next;
 XrAction action;
 XrPath subactionPath;
 XrPosef poseInActionSpace;
} XrActionSpaceCreateInfo:

} XrActionSpaceCreateInfo;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- action is a handle to a pose XrAction previously created with xrCreateAction.
- subactionPath is XR_NULL_PATH or an XrPath that was specified when the action was created. If subactionPath is a valid path not specified when the action was created the runtime must return XR_ERROR_PATH_UNSUPPORTED. If this parameter is set, the runtime must create a space that is relative to only that subaction's pose binding.
- poseInActionSpace is an XrPosef defining the position and orientation of the new space's origin within the natural reference frame of the pose action.

Valid Usage (Implicit)

- type must be XR_TYPE_ACTION_SPACE_CREATE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- action must be a valid XrAction handle

7.3.4. xrDestroySpace

The xrDestroySpace function is defined as:

space);

Parameter Descriptions

• space is a handle to an XrSpace previously created by a function such as xrCreateReferenceSpace.

XrSpace handles are destroyed using xrDestroySpace. The runtime **may** still use this space if there are active dependencies (e.g, compositions in progress).

Valid Usage (Implicit)

• space must be a valid XrSpace handle

Thread Safety

• Access to space, and any child handles, **must** be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

7.4. Locating Spaces

Applications use the xrLocateSpace function to find the pose of an XrSpace's origin within a base XrSpace at a given historical or predicted time. If an application wants to know the velocity of the space's origin, it **can** chain an XrSpaceVelocity structure to the next pointer of the XrSpaceLocation structure when calling the xrLocateSpace function. Applications **should** inspect the output XrSpaceLocationFlagBits and XrSpaceVelocityFlagBits to determine the validity and tracking status of the components of the location.

7.4.1. xrLocateSpace

xrLocateSpace provides the physical location of a space in a base space at a specified time, if currently known by the runtime.

space, baseSpace, time, location);

Parameter Descriptions

- space identifies the target space to locate.
- baseSpace identifies the underlying space in which to locate space.
- time is the time for which the location should be provided.
- location provides the location of space in baseSpace.

For a time in the past, the runtime **should** locate the spaces based on the runtime's most accurate current understanding of how the world was at that historical time.

For a time in the future, the runtime **should** locate the spaces based on the runtime's most up-to-date prediction of how the world will be at that future time.

The minimum valid range of values for time are described in Prediction Time Limits. For values of time outside this range, xrLocateSpace may return a location with no position and XR_SPACE_LOCATION_POSITION_VALID_BIT unset.

Some devices improve their understanding of the world as the device is used. The location returned by xrLocateSpace for a given space, baseSpace and time **may** change over time, even for spaces that track static objects, as one or both spaces adjust their origins.

During tracking loss of space relative to baseSpace, runtimes **should** continue to provide inferred or last-known XrPosef::position and XrPosef::orientation values. These inferred poses can, for example, be based on neck model updates, inertial dead reckoning, or a last-known position, so long as it is still reasonable for the application to use that pose. While a runtime is providing position data, it **must** continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT but it **can** clear XR_SPACE_LOCATION_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this way.

If the runtime has not yet observed even a last-known pose for how to locate space in baseSpace (e.g. one space is an action space bound to a motion controller that has not yet been detected, or the two spaces are in disconnected fragments of the runtime's tracked volume), the runtime **should** return a location with no position and XR_SPACE_LOCATION_POSITION_VALID_BIT unset.

The runtime **must** return a location with both XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_SPACE_LOCATION_POSITION_TRACKED_BIT set when locating space and baseSpace if both spaces were

created relative to the same entity (e.g. two action spaces for the same action), even if the entity is currently untracked. The location in this case is the difference in the two spaces' application-specified transforms relative to that common entity.

During tracking loss, the runtime **should** return a location with XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT set and XR_SPACE_LOCATION_POSITION_TRACKED_BIT and XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT unset for spaces tracking two static entities in the world when their relative pose is known to the runtime. This enables applications to continue to make use of the runtime's latest knowledge of the world.

If an XrSpaceVelocity structure is chained to the XrSpaceLocation::next pointer, and the velocity is observed or can be calculated by the runtime, the runtime **must** fill in the linear velocity of the origin of space within the reference frame of baseSpace and set the XR_SPACE_VELOCITY_LINEAR_VALID_BIT. Similarly, if an XrSpaceVelocity structure is chained to the XrSpaceLocation::next pointer, and the angular velocity is observed or can be calculated by the runtime, the runtime **must** fill in the angular velocity of the origin of space within the reference frame of baseSpace and set the XR_SPACE_VELOCITY_ANGULAR_VALID_BIT.

The following example code shows how an application can get both the location and velocity of a space within a base space using the xrLocateSpace function by chaining an XrSpaceVelocity to the next pointer of XrSpaceLocation and calling xrLocateSpace.

XrSpace space; // previously initialized XrSpace baseSpace; // previously initialized XrTime time; // previously initialized

XrSpaceVelocity velocity {XR_TYPE_SPACE_VELOCITY}; XrSpaceLocation location {XR_TYPE_SPACE_LOCATION, &velocity}; xrLocateSpace(space, baseSpace, time, &location);

Valid Usage (Implicit)

- space must be a valid XrSpace handle
- baseSpace must be a valid XrSpace handle
- location must be a pointer to an XrSpaceLocation structure
- Both of baseSpace and space **must** have been created, allocated, or retrieved from the same XrSession

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_TIME_INVALID

The XrSpaceLocation structure is defined as:

<pre>typedef struct XrSpaceLocation {</pre>	
XrStructureType	type;
void*	next;
XrSpaceLocationFlags	locationFlags;
XrPosef	pose;
<pre>} XrSpaceLocation;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain, such as XrSpaceVelocity.
- locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits, to indicate which members contain valid data. If none of the bits are set, no other fields in this structure **should** be considered to be valid or meaningful.
- pose is an XrPosef defining the position and orientation of the origin of xrLocateSpace::space within the reference frame of xrLocateSpace::baseSpace.

Valid Usage (Implicit)

- type must be XR_TYPE_SPACE_LOCATION
- next **must** be NULL or a valid pointer to the next structure in a structure chain. See also: XrSpaceVelocity
- locationFlags must be 0 or a valid combination of XrSpaceLocationFlagBits values

The XrSpaceLocation::locationFlags member is of the following type, and contains a bitwise-OR of zero or more of the bits defined in XrSpaceLocationFlagBits.

typedef XrFlags64 XrSpaceLocationFlags;

Valid bits for XrSpaceLocationFlags are defined by XrSpaceLocationFlagBits, which is specified as:

// Flag bits for XrSpaceLocationFlags
static const XrSpaceLocationFlags XR_SPACE_LOCATION_ORIENTATION_VALID_BIT = 0x00000001;
static const XrSpaceLocationFlags XR_SPACE_LOCATION_POSITION_VALID_BIT = 0x00000002;
static const XrSpaceLocationFlags XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT = 0x00000004;
static const XrSpaceLocationFlags XR_SPACE_LOCATION_POSITION_TRACKED_BIT = 0x0000008;

The flag bits have the following meanings:

Flag Descriptions

- XR_SPACE_LOCATION_ORIENTATION_VALID_BIT indicates that the pose field's orientation field contains valid data. For a space location tracking a device with its own inertial tracking, XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT **should** remain set when this bit is set. Applications **must** not read the pose field's orientation if this flag is unset.
- XR_SPACE_LOCATION_POSITION_VALID_BIT indicates that the pose field's position field contains valid data. When a space location loses tracking, runtimes **should** continue to provide valid but untracked position values that are inferred or last-known, so long as it's still meaningful for the application to use that position, clearing XR_SPACE_LOCATION_POSITION_TRACKED_BIT until positional tracking is recovered. Applications **must** not read the pose field's position if this flag is unset.
- XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT indicates that the pose field's orientation field represents an actively tracked orientation. For a space location tracking a device with its own inertial tracking, this bit **should** remain set when XR_SPACE_LOCATION_ORIENTATION_VALID_BIT is set. For a space location tracking an object whose orientation is no longer known during tracking loss (e.g. an observed QR code), runtimes **should** continue to provide valid but untracked orientation values, so long as it's still meaningful for the application to use that orientation.
- XR_SPACE_LOCATION_POSITION_TRACKED_BIT indicates that the pose field's position field represents an actively tracked position. When a space location loses tracking, runtimes **should** continue to provide valid but untracked **position** values that are inferred or last-known, e.g. based on neck model updates, inertial dead reckoning, or a last-known position, so long as it's still meaningful for the application to use that position.

The XrSpaceVelocity structure is defined as:

// Provided by XR_VERSION_	1_0
typedef struct XrSpaceVelo	city {
XrStructureType	type;
void*	next;
XrSpaceVelocityFlags	velocityFlags;
XrVector3f	linearVelocity;
XrVector3f	angularVelocity;
<pre>} XrSpaceVelocity;</pre>	

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- velocityFlags is a bitfield, with bit masks defined in XrSpaceVelocityFlagBits, to indicate which members contain valid data. If none of the bits are set, no other fields in this structure **should** be considered to be valid or meaningful.
- linearVelocity is the relative linear velocity of the origin of xrLocateSpace::space with respect to and expressed in the reference frame of xrLocateSpace::baseSpace, in units of meters per second.
- angularVelocity is the relative angular velocity of xrLocateSpace::space with respect to xrLocateSpace::baseSpace. The vector's direction is expressed in the reference frame of xrLocateSpace::baseSpace and is parallel to the rotational axis of xrLocateSpace::space. The vector's magnitude is the relative angular speed of xrLocateSpace::space in radians per second. The vector follows the right-hand rule for torque/rotation.

Valid Usage (Implicit)

- type must be XR_TYPE_SPACE_VELOCITY
- next **must** be NULL or a valid pointer to the next structure in a structure chain
- velocityFlags must be 0 or a valid combination of XrSpaceVelocityFlagBits values

The XrSpaceVelocity::velocityFlags member is of the following type, and contains a bitwise-OR of zero or more of the bits defined in XrSpaceVelocityFlagBits.

typedef XrFlags64 XrSpaceVelocityFlags;

Valid bits for XrSpaceVelocityFlags are defined by XrSpaceVelocityFlagBits, which is specified as:

```
// Flag bits for XrSpaceVelocityFlags
static const XrSpaceVelocityFlags XR_SPACE_VELOCITY_LINEAR_VALID_BIT = 0x00000001;
static const XrSpaceVelocityFlags XR_SPACE_VELOCITY_ANGULAR_VALID_BIT = 0x00000002;
```

The flag bits have the following meanings:

Flag Descriptions

- XR_SPACE_VELOCITY_LINEAR_VALID_BIT Indicates that the linearVelocity member contains valid data. Applications **must** not read the linearVelocity field if this flag is unset.
- XR_SPACE_VELOCITY_ANGULAR_VALID_BIT Indicates that the angularVelocity member contains valid data. Applications **must** not read the angularVelocity field if this flag is unset.

7.4.2. Locate spaces

Applications **can** use **xrLocateSpaces** function to locate an array of spaces.

The xrLocateSpaces function is defined as:

// Provided by XR_VERSION_1_1
XrResult xrLocateSpaces(
 XrSession
 const XrSpacesLocateInfo*
 XrSpaceLocations*

session, locateInfo, spaceLocations);

Parameter Descriptions

- session is an XrSession handle previously created with xrCreateSession.
- **locateInfo** is a pointer to an XrSpacesLocateInfo that provides the input information to locate spaces.
- **spaceLocations** is a pointer to an **XrSpaceLocations** for the runtime to return the locations of the specified spaces in the base space.

xrLocateSpaces provides the physical location of one or more spaces in a base space at a specified time, if currently known by the runtime.

The XrSpacesLocateInfo::time, the XrSpacesLocateInfo::baseSpace, and each space in XrSpacesLocateInfo::spaces, in the locateInfo parameter, all follow the same specifics as the corresponding inputs to the xrLocateSpace function.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- locateInfo must be a pointer to a valid XrSpacesLocateInfo structure
- spaceLocations must be a pointer to an XrSpaceLocations structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_TIME_INVALID

The XrSpacesLocateInfo structure is defined as:

```
// Provided by XR_VERSION_1_1
typedef struct XrSpacesLocateInfo {
    XrStructureType type;
    const void* next;
    XrSpace baseSpace;
    XrTime time;
    uint32_t spaceCount;
    const XrSpace* spaces;
} XrSpacesLocateInfo;
```

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- baseSpace identifies the underlying space in which to locate spaces.
- time is the time for which the location is requested.
- **spaceCount** is a **uint32_t** specifying the count of elements in the **spaces** array.
- spaces is an array of valid XrSpace handles to be located.

The time, the baseSpace, and each space in spaces all follow the same specifics as the corresponding inputs to the xrLocateSpace function.

The baseSpace and all of the XrSpace handles in the spaces array **must** be valid and share the same parent XrSession.

If the time is invalid, the xrLocateSpaces **must** return XR_ERROR_TIME_INVALID.

The spaceCount **must** be a positive number, i.e. the array spaces **must** not be empty. Otherwise, the runtime **must** return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

- type **must** be XR_TYPE_SPACES_LOCATE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- baseSpace must be a valid XrSpace handle
- spaces **must** be a pointer to an array of spaceCount valid XrSpace handles
- The spaceCount parameter **must** be greater than 0
- Both of baseSpace and the elements of spaces **must** have been created, allocated, or retrieved from the same XrSession

The XrSpaceLocations structure is defined as:

// Provided by XR_VERSION_1_1	
typedef struct XrSpaceLocat	ions {
XrStructureType	type;
void*	next;
uint32_t	locationCount;
XrSpaceLocationData*	locations;
<pre>} XrSpaceLocations;</pre>	

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain, such as XrSpaceVelocities.
- locationCount is a uint32_t specifying the count of elements in the locations array.
- locations is an array of XrSpaceLocations for the runtime to populate with the locations of the specified spaces in the XrSpacesLocateInfo::baseSpace at the specified XrSpacesLocateInfo::time.

The XrSpaceLocations structure contains an array of space locations in the member locations, to be used as output for xrLocateSpaces. The application **must** allocate this array to be populated with the function output. The locationCount value **must** be the same as XrSpacesLocateInfo::spaceCount, otherwise, the xrLocateSpaces function **must** return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

- type must be XR_TYPE_SPACE_LOCATIONS
- next **must** be NULL or a valid pointer to the next structure in a structure chain. See also: XrSpaceVelocities
- locations must be a pointer to an array of locationCount XrSpaceLocationData structures
- The locationCount parameter **must** be greater than 0

The XrSpaceLocationData structure is defined as:

// Provided by XR_VERSION_1_1
typedef struct XrSpaceLocationData {
 XrSpaceLocationFlags locationFlags;
 XrPosef pose;
} XrSpaceLocationData;

- locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits. It behaves the same as XrSpaceLocation::locationFlags.
- pose is an XrPosef that behaves the same as XrSpaceLocation::pose.

This is a single element of the array in XrSpaceLocations::locations, and is used to return the pose and location flags for a single space with respect to the specified base space from a call to xrLocateSpaces. It does not accept chained structures to allow for easier use in dynamically allocated container datatypes. Chained structures are possible with the XrSpaceLocations that describes an array of these elements.

7.4.3. Locate space velocities

Applications **can** request the velocities of spaces by chaining the XrSpaceVelocities structure to the next pointer of XrSpaceLocations when calling xrLocateSpaces.

The XrSpaceVelocities structure is defined as:

```
// Provided by XR_VERSION_1_1
typedef struct XrSpaceVelocities {
    XrStructureType type;
    void* next;
    uint32_t velocityCount;
    XrSpaceVelocityData* velocities;
} XrSpaceVelocities;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain.
- velocityCount is a uint32_t specifying the count of elements in the velocities array.
- velocities is an array of XrSpaceVelocityData for the runtime to populate with the velocities of the specified spaces in the XrSpacesLocateInfo::baseSpace at the specified XrSpacesLocateInfo::time.

The velocities member contains an array of space velocities in the member velocities, to be used as output for xrLocateSpaces. The application **must** allocate this array to be populated with the function output. The velocityCount value **must** be the same as XrSpacesLocateInfo::spaceCount, otherwise, the

Valid Usage (Implicit)

- type must be XR_TYPE_SPACE_VELOCITIES
- next must be NULL or a valid pointer to the next structure in a structure chain
- velocities **must** be a pointer to an array of velocityCount XrSpaceVelocityData structures
- The velocityCount parameter must be greater than 0

The XrSpaceVelocityData structure is defined as:

Member Descriptions

- velocityFlags is a bitfield, with bit values defined in XrSpaceVelocityFlagBits. It behaves the same as XrSpaceVelocity::velocityFlags.
- linearVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::linearVelocity.
- angularVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::angularVelocity.

This is a single element of the array in XrSpaceVelocities::velocities, and is used to return the linear and angular velocity and velocity flags for a single space with respect to the specified base space from a call to xrLocateSpaces. It does not accept chained structures to allow for easier use in dynamically allocated container datatypes.

7.4.4. Example code for xrLocateSpaces

The following example code shows how an application retrieves both the location and velocity of one or more spaces in a base space at a given time using the xrLocateSpaces function.

XrInstance instance; // previously initialized XrSession session; // previously initialized XrSpace baseSpace; // previously initialized

```
std::vector<XrSpace> spacesToLocate; // previously initialized
// Prepare output buffers to receive data and get reused in frame loop.
std::vector<XrSpaceLocationData> locationBuffer(spacesToLocate.size());
std::vector<XrSpaceVelocityData> velocityBuffer(spacesToLocate.size());
// Get function pointer for xrLocateSpaces.
PFN xrLocateSpaces xrLocateSpaces;
CHK_XR(xrGetInstanceProcAddr(instance, "xrLocateSpaces",
                             reinterpret_cast<PFN_xrVoidFunction*>(
                             &xrLocateSpaces)));
// application frame loop
while (1) {
    // Typically the time is the predicted display time returned from xrWaitFrame.
    XrTime displayTime; // previously initialized.
    XrSpacesLocateInfo locateInfo{XR_TYPE_SPACES_LOCATE_INFO};
    locateInfo.baseSpace = baseSpace;
    locateInfo.time = displayTime;
    locateInfo.spaceCount = (uint32_t)spacesToLocate.size();
    locateInfo.spaces = spacesToLocate.data();
    XrSpaceLocations locations{XR_TYPE_SPACE_LOCATIONS};
    locations.locationCount = (uint32_t)locationBuffer.size();
    locations.locations = locationBuffer.data();
    XrSpaceVelocities velocities{XR_TYPE_SPACE_VELOCITIES};
    velocities.velocityCount = (uint32_t)velocityBuffer.size();
    velocities.velocities = velocityBuffer.data();
    locations.next = &velocities;
    CHK_XR(xrLocateSpaces(session, &locateInfo, &locations));
    for (uint32 t i = 0; i < spacesToLocate.size(); i++) {</pre>
        const auto positionAndOrientationTracked =
          XR_SPACE_LOCATION_POSITION_TRACKED_BIT |
XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;
        const auto orientationOnlyTracked = XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;
        if ((locationBuffer[i].locationFlags & positionAndOrientationTracked) ==
positionAndOrientationTracked) {
            // if the location is 6dof tracked
            do_something(locationBuffer[i].pose.position);
            do_something(locationBuffer[i].pose.orientation);
            const auto velocityValidBits =
              XR_SPACE_VELOCITY_LINEAR_VALID_BIT | XR_SPACE_VELOCITY_ANGULAR_VALID_BIT;
```

```
if ((velocityBuffer[i].velocityFlags & velocityValidBits) ==
velocityValidBits) {
                do_something(velocityBuffer[i].linearVelocity);
                do_something(velocityBuffer[i].angularVelocity);
            }
        }
        else if ((locationBuffer[i].locationFlags & orientationOnlyTracked) ==
orientationOnlyTracked) {
            // if the location is 3dof tracked
            do_something(locationBuffer[i].pose.orientation);
            if ((velocityBuffer[i].velocityFlags & XR_SPACE_VELOCITY_ANGULAR_VALID_BIT)
== XR_SPACE_VELOCITY_ANGULAR_VALID_BIT) {
                do_something(velocityBuffer[i].angularVelocity);
            }
       }
    }
}
```

Chapter 8. View Configurations

A **view configuration** is a semantically meaningful set of one or more views for which an application can render images. A **primary view configuration** is a view configuration intended to be presented to the viewer interacting with the XR application. This distinction allows the later addition of additional views, for example views which are intended for spectators.

A typical head-mounted VR system has a view configuration with two views, while a typical phonebased AR system has a view configuration with a single view. A simple multi-wall projection-based (CAVE-like) VR system may have a view configuration with at least one view for each display surface (wall, floor, ceiling) in the room.

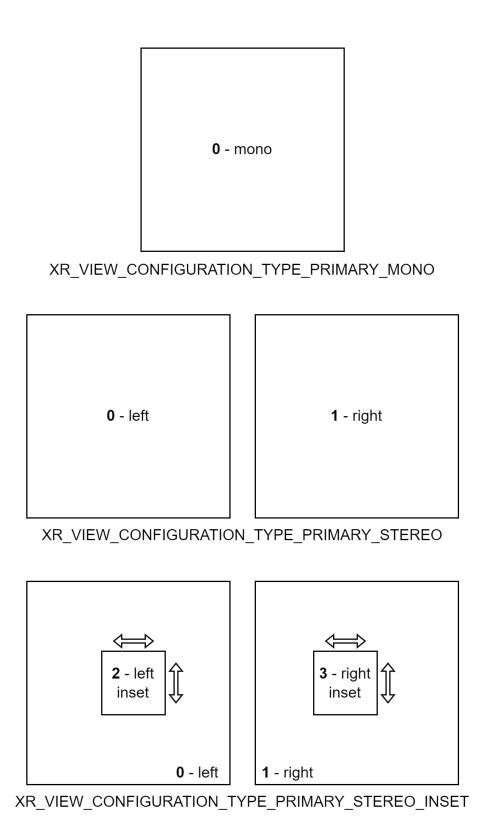
For any supported form factor, a system will support one or more primary view configurations. Supporting more than one primary view configuration can be useful if a system supports a special view configuration optimized for the hardware but also supports a more broadly used view configuration as a compatibility fallback.

View configurations are identified with an XrViewConfigurationType.

8.1. Primary View Configurations

```
typedef enum XrViewConfigurationType {
    XR_VIEW_CONFIGURATION_TYPE_PRIMARY_MONO = 1,
    XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO = 2,
    // Provided by XR_VERSION_1_1
    XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET = 1000037000,
    XR_VIEW_CONFIGURATION_TYPE_MAX_ENUM = 0x7FFFFFFF
} XrViewConfigurationType;
```

The application selects its primary view configuration type when calling xrBeginSession, and that configuration remains constant for the lifetime of the session, until xrEndSession is called.


The number of views and the semantic meaning of each view index within a given view configuration is well-defined, specified below for all core view configurations. The predefined primary view configuration types are:

Enumerant Descriptions

- XR_VIEW_CONFIGURATION_TYPE_PRIMARY_MONO. One view representing the form factor's one primary display. For example, an AR phone's screen. This configuration requires one element in XrViewConfigurationProperties and one projection in each XrCompositionLayerProjection layer.
- XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO. Two views representing the form factor's two primary displays, which map to a left-eye and right-eye view. This configuration requires two views in XrViewConfigurationProperties and two views in each XrCompositionLayerProjection layer. View index 0 must represent the left eye and view index 1 must represent the right eye.
- XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET. Four views representing the form factor's primary stereo displays. This view configuration type represents a hardware independent way of providing foveated rendering. The view configuration adds two foveated inset views for the left and right eye separately to the already defined two views specified in the XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO view configuration. View index 0 must represent the left eye and view index 1 must represent the right eye as specified in XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO view configuration, and view index 2 must represent the left eye inset view and view index 3 **must** represent the right eye inset view. The new inset view 2 and view 3 **must**, after applying the pose and FoV projection to same plane, be contained within view 0 and 1 respectively. The inset views **may** have a higher resolution with respect to the same field of view as the corresponding wide FoV view for each eye. The runtime **may** blend between the views at the edges, so the application **must** not omit the inner field of view from being rendered in the outer view. The fov returned by xrLocateViews for each inset view relative to the corresponding outer stereo view may change at run-time, the pose for inset view and stereo view for each eye respectively **must** have the same values.

The benefits of the XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET view configuration type can be demonstrated by looking at the rendered pixel count. For example, a Varjo Aero requires a pair of stereo views rendered at 4148 x 3556 (14.7 million pixels) to achieve a pixel density of 35 pixels per degree. By using four views, with an eye-tracked foveated inset covering about 1/9th of the full FoV and rendered with the same 35 pixels per degree and while the remaining views are dropped to 14 pixels per degree, the resolution of the inset is 1076 x 1076 (1.1 million pixels) and the resolution of the stereo views is 1660 x 1420 (2.3 million pixels). The total pixel count is 75% less with XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET the over XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO view configuration type.

Figure 4. View configurations. The numbers in the figure is the view indices of the specific view.

8.2. View Configuration API

First an application needs to select which primary view configuration it wants to use. If it supports multiple configurations, an application **can** call <u>xrEnumerateViewConfigurations</u> before creating an

XrSession to get a list of the view configuration types supported for a given system.

TheapplicationcanthencallxrGetViewConfigurationPropertiesandxrEnumerateViewConfigurationViewsto get detailed information about each view configuration typeand its individual views.

8.2.1. xrEnumerateViewConfigurations

The xrEnumerateViewConfigurations function is defined as:

// Provided by XR_VERSION_1_0	
XrResult xrEnumerateViewConfigurations(
XrInstance	instance,
XrSystemId	systemId,
uint32_t	<pre>viewConfigurationTypeCapacityInput,</pre>
uint32_t*	<pre>viewConfigurationTypeCountOutput,</pre>
XrViewConfigurationType*	<pre>viewConfigurationTypes);</pre>

Parameter Descriptions

- **instance** is the instance from which **systemId** was retrieved.
- systemId is the XrSystemId whose view configurations will be enumerated.
- viewConfigurationTypeCapacityInput is the capacity of the viewConfigurationTypes array, or 0 to indicate a request to retrieve the required capacity.
- viewConfigurationTypeCountOutput is a pointer to the count of viewConfigurationTypes written, or a pointer to the required capacity in the case that viewConfigurationTypeCapacityInput is insufficient.
- viewConfigurationTypes is a pointer to an array of XrViewConfigurationType values, but **can** be NULL if viewConfigurationTypeCapacityInput is 0.
- See the Buffer Size Parameters section for a detailed description of retrieving the required viewConfigurationTypes size.

xrEnumerateViewConfigurations enumerates the view configuration types supported by the XrSystemId. The supported set for that system **must** not change during the lifetime of its XrInstance. The returned list of primary view configurations **should** be in order from what the runtime considered highest to lowest user preference. Thus the first enumerated view configuration type **should** be the one the runtime prefers the application to use if possible.

Runtimes **must** always return identical buffer contents from this enumeration for the given systemId and for the lifetime of the instance.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- viewConfigurationTypeCountOutput must be a pointer to a uint32_t value
- If viewConfigurationTypeCapacityInput is not 0, viewConfigurationTypes **must** be a pointer to an array of viewConfigurationTypeCapacityInput XrViewConfigurationType values

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_SYSTEM_INVALID

8.2.2. xrGetViewConfigurationProperties

The xrGetViewConfigurationProperties function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrGetViewConfigurationProperties(
 XrInstance instance,
 XrSystemId systemId,
 XrViewConfigurationType viewConfigurationType,
 XrViewConfigurationProperties* configurationProperties);

Parameter Descriptions

- **instance** is the instance from which **systemId** was retrieved.
- systemId is the XrSystemId whose view configuration is being queried.
- viewConfigurationType is the XrViewConfigurationType of the configuration to get.
- configurationProperties is a pointer to view configuration properties to return.

xrGetViewConfigurationProperties queries properties of an individual view configuration. Applications **must** use one of the supported view configuration types returned by xrEnumerateViewConfigurations. If viewConfigurationType is not supported by this XrInstance the runtime **must** return XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- viewConfigurationType **must** be a valid XrViewConfigurationType value
- configurationProperties must be a pointer to an XrViewConfigurationProperties structure

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED
- XR_ERROR_SYSTEM_INVALID

8.2.3. XrViewConfigurationProperties

The XrViewConfigurationProperties structure is defined as:

typedef struct XrViewConfigurationProperties {
 XrStructureType type;
 void* next;
 XrViewConfigurationType viewConfigurationType;
 XrBool32 fovMutable;
} XrViewConfigurationProperties:

} XrViewConfigurationProperties;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- viewConfigurationType is the XrViewConfigurationType of the configuration.
- fovMutable indicates if the view field of view can be modified by the application.

Valid Usage (Implicit)

- type **must** be XR_TYPE_VIEW_CONFIGURATION_PROPERTIES
- next must be NULL or a valid pointer to the next structure in a structure chain
- viewConfigurationType must be a valid XrViewConfigurationType value

8.2.4. xrEnumerateViewConfigurationViews

The xrEnumerateViewConfigurationViews function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrEnumerateViewConfigurationViews(
 XrInstance instance,
 XrSystemId systemId,
 XrViewConfigurationType viewConfigurationType,
 uint32_t viewCapacityInput,
 uint32_t* viewConfigurationView* views);

Parameter Descriptions

- **instance** is the instance from which **systemId** was retrieved.
- **systemId** is the XrSystemId whose view configuration is being queried.
- viewConfigurationType is the XrViewConfigurationType of the configuration to get.
- viewCapacityInput is the capacity of the views array, or 0 to indicate a request to retrieve the required capacity.
- viewCountOutput is a pointer to the count of views written, or a pointer to the required capacity in the case that viewCapacityInput is 0.
- views is a pointer to an array of XrViewConfigurationView values, but **can** be NULL if viewCapacityInput is 0.

Each XrViewConfigurationType defines the number of views associated with it. Applications can query more details of each view element using xrEnumerateViewConfigurationViews. If the supplied viewConfigurationType is not supported by this XrInstance and XrSystemId, the runtime **must** return XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

Runtimes **must** always return identical buffer contents from this enumeration for the given systemId and viewConfigurationType for the lifetime of the instance.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- viewConfigurationType must be a valid XrViewConfigurationType value
- viewCountOutput must be a pointer to a uint32_t value
- If viewCapacityInput is not 0, views **must** be a pointer to an array of viewCapacityInput XrViewConfigurationView structures

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED
- XR_ERROR_SYSTEM_INVALID

8.2.5. XrViewConfigurationView

Each XrViewConfigurationView specifies properties related to rendering of an individual view within a view configuration.

The XrViewConfigurationView structure is defined as:

<pre>typedef struct XrViewConfigurationView {</pre>	
XrStructureType	type;
void*	next;
uint32_t	recommendedImageRectWidth;
uint32_t	<pre>maxImageRectWidth;</pre>
uint32_t	recommendedImageRectHeight;
uint32_t	<pre>maxImageRectHeight;</pre>
uint32_t	recommendedSwapchainSampleCount;
uint32_t	<pre>maxSwapchainSampleCount;</pre>
<pre>} XrViewConfiguration</pre>	/iew;

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- recommendedImageRectWidth is the optimal width of XrSwapchainSubImage::imageRect to use when rendering this view into a swapchain.
- maxImageRectWidth is the maximum width of XrSwapchainSubImage::imageRect supported when rendering this view into a swapchain.
- recommendedImageRectHeight is the optimal height of XrSwapchainSubImage::imageRect to use when rendering this view into a swapchain.
- maxImageRectHeight is the maximum height of XrSwapchainSubImage::imageRect supported when rendering this view into a swapchain.
- recommendedSwapchainSampleCount is the recommended number of sub-data element samples to create for each swapchain image that will be rendered into for this view.
- maxSwapchainSampleCount is the maximum number of sub-data element samples supported for swapchain images that will be rendered into for this view.

See XrSwapchainSubImage for more information about XrSwapchainSubImage::imageRect values, and XrSwapchainCreateInfo for more information about creating swapchains appropriately sized to support those XrSwapchainSubImage::imageRect values.

The array of XrViewConfigurationView returned by the runtime **must** adhere to the rules defined in XrViewConfigurationType, such as the count and association to the left and right eyes.

Valid Usage (Implicit)

- type must be XR_TYPE_VIEW_CONFIGURATION_VIEW
- next must be NULL or a valid pointer to the next structure in a structure chain

8.3. Example View Configuration Code

XrInstance instance; // previously initialized XrSystemId system; // previously initialized XrSession session; // previously initialized XrSpace sceneSpace; // previously initialized

// Enumerate the view configurations paths.
uint32_t configurationCount;

CHK_XR(xrEnumerateViewConfigurations(instance, system, 0, &configurationCount, nullptr));

```
std::vector<XrViewConfigurationType> configurationTypes(configurationCount);
CHK_XR(xrEnumerateViewConfigurations(instance, system, configurationCount,
&configurationCount, configurationTypes.data()));
bool configFound = false;
v via a figuration type to view configuration type may formula.
```

```
XrViewConfigurationType viewConfig = XR VIEW CONFIGURATION TYPE MAX ENUM;
for(uint32_t i = 0; i < configurationCount; ++i)</pre>
{
    if (configurationTypes[i] == XR VIEW CONFIGURATION TYPE PRIMARY STEREO)
    {
        configFound = true;
        viewConfig = configurationTypes[i];
        break; // Pick the first supported, i.e. preferred, view configuration.
    }
}
if (!configFound)
              // Cannot support any view configuration of this system.
    return;
// Get detailed information of each view element.
uint32 t viewCount;
CHK_XR(xrEnumerateViewConfigurationViews(instance, system,
    viewConfig,
    0,
    &viewCount,
    nullptr));
std::vector<XrViewConfigurationView> configViews(viewCount,
{XR_TYPE_VIEW_CONFIGURATION_VIEW});
CHK XR(xrEnumerateViewConfigurationViews(instance, system,
    viewConfig,
    viewCount,
    &viewCount,
    configViews.data()));
// Set the primary view configuration for the session.
XrSessionBeginInfo beginInfo = {XR TYPE SESSION BEGIN INFO};
beginInfo.primaryViewConfigurationType = viewConfig;
CHK_XR(xrBeginSession(session, &beginInfo));
// Allocate a buffer according to viewCount.
std::vector<XrView> views(viewCount, {XR_TYPE_VIEW});
// Run a per-frame loop.
```

while (!quit)

{

```
// Wait for a new frame.
    XrFrameWaitInfo frameWaitInfo{XR_TYPE_FRAME_WAIT_INFO};
    XrFrameState frameState{XR_TYPE_FRAME_STATE};
    CHK_XR(xrWaitFrame(session, &frameWaitInfo, &frameState));
    // Begin frame immediately before GPU work
    XrFrameBeginInfo frameBeginInfo { XR_TYPE_FRAME_BEGIN_INFO };
    CHK XR(xrBeginFrame(session, &frameBeginInfo));
    std::vector<XrCompositionLayerBaseHeader*> layers;
    XrCompositionLayerProjectionView projViews[2] = { /*...*/ };
    XrCompositionLayerProjection layerProj{ XR TYPE COMPOSITION LAYER PROJECTION};
    if (frameState.shouldRender) {
        XrViewLocateInfo viewLocateInfo{XR TYPE VIEW LOCATE INFO};
        viewLocateInfo.viewConfigurationType = viewConfig;
        viewLocateInfo.displayTime = frameState.predictedDisplayTime;
        viewLocateInfo.space = sceneSpace;
        XrViewState viewState{XR TYPE VIEW STATE};
        XrView views[2] = { {XR_TYPE_VIEW}, {XR_TYPE_VIEW}};
        uint32_t viewCountOutput;
        CHK XR(xrLocateViews(session, &viewLocateInfo, &viewState, configViews.size(),
&viewCountOutput, views));
        // ...
        // Use viewState and frameState for scene render, and fill in projViews[2]
        // ...
        // Assemble composition layers structure
        layerProj.layerFlags = XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT;
        layerProj.space = sceneSpace;
        layerProj.viewCount = 2;
        layerProj.views = projViews;
        layers.push_back(reinterpret_cast<XrCompositionLayerBaseHeader*>(&layerProj));
    }
    // End frame and submit layers, even if layers is empty due to shouldRender = false
    XrFrameEndInfo frameEndInfo{ XR_TYPE_FRAME_END_INFO};
    frameEndInfo.displayTime = frameState.predictedDisplayTime;
    frameEndInfo.environmentBlendMode = XR_ENVIRONMENT_BLEND_MODE_OPAQUE;
    frameEndInfo.layerCount = (uint32 t)layers.size();
    frameEndInfo.layers = layers.data();
    CHK_XR(xrEndFrame(session, &frameEndInfo));
}
```

Chapter 9. Session

XR_DEFINE_HANDLE(XrSession)

A session represents an application's intention to display XR content to the user.

9.1. Session Lifecycle

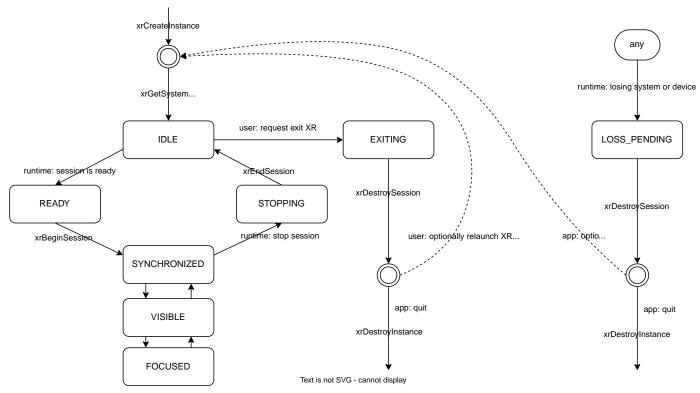


Figure 5. Session Life-cycle

A typical XR session coordinates the application and the runtime through session control functions and session state events.

- 1. The application creates a session by choosing a system and a graphics API and passing them into xrCreateSession. The newly created session is in the XR_SESSION_STATE_IDLE state.
- 2. The application can regularly call xrPollEvent to monitor for session state changes via XrEventDataSessionStateChanged events.
- 3. When the runtime determines that the system is ready to start transitioning to this session's XR content, the application receives a notification of session state change to XR_SESSION_STATE_READY. Once the application is also ready to proceed and display its XR content, it calls xrBeginSession and starts its frame loop, which
- i

begins a running session.

- 4. While the session is running, the application is expected to continuously execute its frame loop by calling xrWaitFrame, xrBeginFrame and xrEndFrame each frame, establishing synchronization with the runtime. Once the runtime is synchronized with the application's frame loop and ready to display application's frames, the session moves into the XR_SESSION_STATE_SYNCHRONIZED state. In this state, the submitted frames will not be displayed or visible to the user yet.
- 5. When the runtime intends to display frames from the application, it notifies with XR_SESSION_STATE_VISIBLE state, and sets XrFrameState::shouldRender to true in xrWaitFrame. The application should render XR content and submit the composition layers to xrEndFrame.
- 6. When the runtime determines the application is eligible to receive XR inputs, e.g. motion controller or hand tracking inputs, it notifies with XR_SESSION_STATE_FOCUSED state. The application can expect to receive active action inputs.
- 7. When the runtime determines the application has lost XR input focus, it moves the session state from XR_SESSION_STATE_FOCUSED to XR_SESSION_STATE_VISIBLE state. The application may need to change its own internal state while input is unavailable. Since the session is still visible, the application needs to render and submit frames at full frame rate, but may wish to change visually to indicate its input suspended state. When the runtime returns XR focus back to the application, it moves the session state back to XR_SESSION_STATE_FOCUSED.
- 8. When the runtime needs to end a running session due to the user closing or switching the application, the runtime will change the session state through appropriate intermediate ones and finally to XR_SESSION_STATE_STOPPING. When the application receives the XR_SESSION_STATE_STOPPING event, it should stop its frame loop and then call xrEndSession to tell the runtime to stop the running session.
- xrEndSession, 9. After the runtime transitions the session state to XR_SESSION_STATE_IDLE. If the XR session is temporarily paused in the background, the runtime will keep the session state at XR_SESSION_STATE_IDLE and later transition the session state back to XR SESSION STATE READY when the XR session is resumed. If the runtime determines that its use of this XR session has concluded, it transition the session state from XR SESSION STATE IDLE will to XR SESSION STATE EXITING.
- 10. When the application receives the XR_SESSION_STATE_EXITING event, it releases the resources related to the session and calls xrDestroySession.

A session is considered **running** after a successful call to xrBeginSession and remains running until any call is made to xrEndSession. Certain functions are only valid to call when a session is running, such as xrWaitFrame, or else the XR_ERROR_SESSION_NOT_RUNNING error **must** be returned by the runtime.

A session is considered not running before a successful call to xrBeginSession and becomes not

running again after any call is made to xrEndSession. Certain functions are only valid to call when a session is not running, such as xrBeginSession, or else the XR_ERROR_SESSION_RUNNING error **must** be returned by the runtime.

If an error is returned from xrBeginSession, the session remains in its current running or not running state. Calling xrEndSession always transitions a session to the not running state, regardless of any errors returned.

Only running sessions may become focused sessions that receive XR input. When a session is not running, the application **must** not submit frames. This is important because without a running session, the runtime no longer has to spend resources on sub-systems (tracking etc.) that are no longer needed by the application.

An application **must** call **xrBeginSession** when the session is in the XR_SESSION_STATE_READY state, or XR_ERROR_SESSION_NOT_READY will be returned; it **must** call **xrEndSession** when the session is in the XR_SESSION_STATE_STOPPING state, otherwise XR_ERROR_SESSION_NOT_STOPPING will be returned. This is to allow the runtimes to seamlessly transition from one application's session to another.

The application **can** call **xrDestroySession** at any time during the session life cycle, however, it **must** stop using the **XrSession** handle immediately in all threads and stop using any related resources. Therefore, it's typically undesirable to destroy a running session and instead it's recommended to wait for XR_SESSION_STATE_EXITING to destroy a session.

9.2. Session Creation

To present graphical content on an output device, OpenXR applications need to pick a graphics API which is supported by the runtime. Unextended OpenXR does not support any graphics APIs natively but provides a number of extensions of which each runtime can support any subset. These extensions can be activated during XrInstance create time.

During XrSession creation the application **must** provide information about which graphics API it intends to use by adding an XrGraphicsBinding* struct of one (and only one) of the enabled graphics API extensions to the next chain of XrSessionCreateInfo. The application **must** call the xrGet*GraphicsRequirements method (where * is a placeholder) provided by the chosen graphics API extension before attempting to create the session (for example, xrGetD3D11GraphicsRequirementsKHR xrGetD3D12GraphicsRequirementsKHR xrGetVulkanGraphicsRequirementsZKHR).

Unless specified differently in the graphics API extension, the application is responsible for creating a valid graphics device binding based on the requirements returned by xrGet*GraphicsRequirements methods (for details refer to the extension specification of the graphics API).

The xrCreateSession function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrCreateSession(
 XrInstance
 const XrSessionCreateInfo*
 XrSession*

instance, createInfo, session);

Parameter Descriptions

- instance is the instance from which XrSessionCreateInfo::systemId was retrieved.
- createInfo is a pointer to an XrSessionCreateInfo structure containing information about how to create the session.
- session is a pointer to a handle in which the created XrSession is returned.

Creates a session using the provided createInfo and returns a handle to that session. This session is created in the XR_SESSION_STATE_IDLE state, and a corresponding XrEventDataSessionStateChanged event to the XR_SESSION_STATE_IDLE state **must** be generated as the first such event for the new session.

The runtime **must** return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to legacy behavior) on calls to xrCreateSession if a function named like xrGet*GraphicsRequirements has not been called for the same instance and XrSessionCreateInfo ::systemId. (See graphics binding extensions for details.)

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- createInfo must be a pointer to a valid XrSessionCreateInfo structure
- session must be a pointer to an XrSession handle

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED
- XR_ERROR_SYSTEM_INVALID
- XR_ERROR_INITIALIZATION_FAILED
- XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING
- XR_ERROR_GRAPHICS_DEVICE_INVALID

The XrSessionCreateInfo structure is defined as:

<pre>typedef struct XrSessionCreateInfo {</pre>	
XrStructureType	type;
const void*	next;
XrSessionCreateFlags	createFlags;
XrSystemId	systemId;
<pre>} XrSessionCreateInfo;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR. Note that in most cases one graphics API extension specific struct needs to be in this next chain.
- createFlags identifies XrSessionCreateFlags that apply to the creation.
- systemId is the XrSystemId representing the system of devices to be used by this session.

Valid Usage

- systemId **must** be a valid XrSystemId or XR_ERROR_SYSTEM_INVALID **must** be returned.
- next, unless otherwise specified via an extension, must contain exactly one graphics API binding structure (a structure whose name begins with "XrGraphicsBinding") or XR_ERROR_GRAPHICS_DEVICE_INVALID must be returned.

Valid Usage (Implicit)

- type **must** be XR_TYPE_SESSION_CREATE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain. See also: XrGraphicsBindingD3D11KHR,
 XrGraphicsBindingOpenGLESAndroidKHR,
 XrGraphicsBindingOpenGLWin32KHR,
 XrGraphicsBindingOpenGLXlibKHR, XrGraphicsBindingOpenGLXcbKHR,
- createFlags **must** be 0

The XrSessionCreateInfo::createFlags member is of the following type, and contains a bitwise-OR of zero or more of the bits defined in XrSessionCreateFlagBits.

typedef XrFlags64 XrSessionCreateFlags;

Valid bits for XrSessionCreateFlags are defined by XrSessionCreateFlagBits.

// Flag bits for XrSessionCreateFlags

There are currently no session creation flags. This is reserved for future use.

The xrDestroySession function is defined as.

```
// Provided by XR_VERSION_1_0
XrResult xrDestroySession(
    XrSession
```

session);

Parameter Descriptions

• **session** is the session to destroy.

XrSession handles are destroyed using xrDestroySession. When an XrSession is destroyed, all handles that are children of that XrSession are also destroyed.

The application is responsible for ensuring that it has no calls using session in progress when the session is destroyed.

xrDestroySession can be called when the session is in any session state.

Valid Usage (Implicit)

• session must be a valid XrSession handle

Thread Safety

• Access to session, and any child handles, **must** be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

9.3. Session Control

The xrBeginSession function is defined as:

session,
beginInfo);

Parameter Descriptions

- session is a valid XrSession handle.
- beginInfo is a pointer to an XrSessionBeginInfo structure.

When the application receives XrEventDataSessionStateChanged event with the XR_SESSION_STATE_READY state, the application **should** then call xrBeginSession to start rendering frames for display to the user.

After this function successfully returns, the session is considered to be running. The application **should** then start its frame loop consisting of some sequence of xrWaitFrame/xrBeginFrame /xrEndFrame calls.

If the session is already running when the application calls xrBeginSession, the runtime **must** return error XR_ERROR_SESSION_RUNNING. If the session is not running when the application calls xrBeginSession, but the session is not yet in the XR_SESSION_STATE_READY state, the runtime **must** return error XR_ERROR_SESSION_NOT_READY.

Note that a runtime **may** decide not to show the user any given frame from a session at any time, for example if the user has switched to a different application's running session. The application should check whether xrWaitFrame returns XrFrameState::shouldRender set to true before rendering a given frame to determine whether that frame will be visible to the user.

Runtime session frame state **must** start in a reset state when a session transitions to running so that no state is carried over from when the same session was previously running. Frame state in this context includes xrWaitFrame, xrBeginFrame, and xrEndFrame call order enforcement.

If XrSessionBeginInfo::primaryViewConfigurationType in beginInfo is not supported by the XrSystemId used to create the session, the runtime **must** return XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

- session must be a valid XrSession handle
- beginInfo must be a pointer to a valid XrSessionBeginInfo structure

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED
- XR_ERROR_SESSION_RUNNING
- XR_ERROR_SESSION_NOT_READY

The XrSessionBeginInfo structure is defined as:

typedef struct XrSessionBeginInfo { XrStructureType type; const void* next; XrViewConfigurationType primaryViewConfigurationType; } XrSessionBeginInfo;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- primaryViewConfigurationType is the XrViewConfigurationType to use during this session to provide images for the form factor's primary displays.

Valid Usage (Implicit)

- type **must** be XR_TYPE_SESSION_BEGIN_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- primaryViewConfigurationType must be a valid XrViewConfigurationType value

The xrEndSession function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrEndSession(
 XrSession

session);

Parameter Descriptions

• session is a handle to a running XrSession.

When the application receives XrEventDataSessionStateChanged event with the XR_SESSION_STATE_STOPPING state, the application should stop its frame loop and then call xrEndSession to end the running session. This function signals to the runtime that the application will no longer call xrWaitFrame, xrBeginFrame or xrEndFrame from any thread allowing the runtime to safely transition the session to XR_SESSION_STATE_IDLE. The application **must** also avoid reading input state or sending haptic output after calling xrEndSession.

If the session is not running when the application calls xrEndSession, the runtime **must** return error XR_ERROR_SESSION_NOT_RUNNING. If the session is still running when the application calls xrEndSession, but the session is not yet in the XR_SESSION_STATE_STOPPING state, the runtime **must** return error XR_ERROR_SESSION_NOT_STOPPING.

If the application wishes to exit a running session, the application can call xrRequestExitSession so that the session transitions from XR_SESSION_STATE_IDLE to XR_SESSION_STATE_EXITING.

Valid Usage (Implicit)

• session **must** be a valid XrSession handle

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SESSION_NOT_STOPPING
- XR_ERROR_SESSION_NOT_RUNNING

When an application wishes to exit a running session, it **can** call xrRequestExitSession, requesting that the runtime transition through the various intermediate session states including XR_SESSION_STATE_STOPPING to XR_SESSION_STATE_EXITING.

On platforms where an application's lifecycle is managed by the system, session state changes may be implicitly triggered by application lifecycle state changes. On such platforms, using platform-specific methods to alter application lifecycle state may be the preferred method of provoking session state changes. The behavior of xrRequestExitSession is not altered, however explicit session exit **may** not interact with the platform-specific application lifecycle.

The xrRequestExitSession function is defined as:

session);

Parameter Descriptions

• session is a handle to a running XrSession.

If session is not running when xrRequestExitSession is called, XR_ERROR_SESSION_NOT_RUNNING **must** be returned.

Valid Usage (Implicit)

• session must be a valid XrSession handle

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SESSION_NOT_RUNNING

9.4. Session States

While events can be expanded upon, there are a minimum set of lifecycle events which can occur which all OpenXR applications must be aware of. These events are detailed below.

9.4.1. XrEventDataSessionStateChanged

The XrEventDataSessionStateChanged structure is defined as:

```
// Provided by XR_VERSION_1_0
typedef struct XrEventDataSessionStateChanged {
    XrStructureType type;
    const void* next;
    XrSession session;
    XrSessionState state;
    XrTime time;
} XrEventDataSessionStateChanged;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- session is the XrSession which has changed state.
- state is the current XrSessionState of the session.
- time is an XrTime which indicates the time of the state change.

Receiving the XrEventDataSessionStateChanged event structure indicates that the application has changed lifecycle state.

Valid Usage (Implicit)

- type **must** be XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrSessionState enumerates the possible session lifecycle states:

Enumerant Descriptions

- XR_SESSION_STATE_UNKNOWN. An unknown state. The runtime **must** not return this value in an XrEventDataSessionStateChanged event.
- XR_SESSION_STATE_IDLE. The initial state after calling xrCreateSession or returned to after calling xrEndSession.
- XR_SESSION_STATE_READY. The application is ready to call xrBeginSession and sync its frame loop with the runtime.
- XR_SESSION_STATE_SYNCHRONIZED. The application has synced its frame loop with the runtime but is not visible to the user.
- XR_SESSION_STATE_VISIBLE. The application has synced its frame loop with the runtime and is visible to the user but cannot receive XR input.
- XR_SESSION_STATE_FOCUSED. The application has synced its frame loop with the runtime, is visible to the user and can receive XR input.
- XR_SESSION_STATE_STOPPING. The application should exit its frame loop and call xrEndSession.
- XR_SESSION_STATE_LOSS_PENDING. The session is in the process of being lost. The application should destroy the current session and can optionally recreate it.
- XR_SESSION_STATE_EXITING. The application should end its XR experience and not automatically restart it.

The XR_SESSION_STATE_UNKNOWN state **must** not be returned by the runtime, and is only defined to avoid 0 being a valid state.

Receiving the XR_SESSION_STATE_IDLE state indicates that the runtime considers the session is idle. Applications in this state **should** minimize resource consumption but continue to call xrPollEvent at some reasonable cadence.

Receiving the XR_SESSION_STATE_READY state indicates that the runtime desires the application to prepare rendering resources, begin its session and synchronize its frame loop with the runtime.

The application does this by successfully calling xrBeginSession and then running its frame loop by calling xrWaitFrame, xrBeginFrame and xrEndFrame in a loop. If the runtime wishes to return the session to the XR_SESSION_STATE_IDLE state, it **must** wait until the application calls xrBeginSession. After returning from the xrBeginSession call, the runtime may then immediately transition forward through the XR_SESSION_STATE_SYNCHRONIZED state to the XR_SESSION_STATE_STOPPING state, to request that the application end this session. If the system supports a user engagement sensor and runtime is in XR_SESSION_STATE_IDLE state, the runtime **may** wait until the user starts engaging with the device before transitioning to the XR_SESSION_STATE_READY state.

Receiving the XR_SESSION_STATE_SYNCHRONIZED state indicates that the application has synchronized its frame loop with the runtime, but its frames are not visible to the user. The application **should** continue

running its frame loop by calling xrWaitFrame, xrBeginFrame and xrEndFrame, although it should avoid heavy GPU work so that other visible applications can take CPU and GPU precedence. The application can save resources here by skipping rendering and not submitting any composition layers until xrWaitFrame returns an XrFrameState with shouldRender set to true. A runtime **may** use this frame synchronization to facilitate seamless switching from a previous XR application to this application on a frame boundary.

Receiving the XR_SESSION_STATE_VISIBLE state indicates that the application has synchronized its frame loop with the runtime, and the session's frames will be visible to the user, but the session is not eligible to receive XR input. An application may be visible but not have focus, for example when the runtime is composing a modal pop-up on top of the application's rendered frames. The application **should** continue running its frame loop, rendering and submitting its composition layers, although it may wish to pause its experience, as users cannot interact with the application at this time. It is important for applications to continue rendering when visible, even when they do not have focus, so the user continues to see something reasonable underneath modal pop-ups. Runtimes **should** make input actions inactive while the application is unfocused, and applications should react to an inactive input action by skipping rendering of that action's input avatar (depictions of hands or other tracked objects controlled by the user).

Receiving the XR_SESSION_STATE_FOCUSED state indicates that the application has synchronized its frame loop with the runtime, the session's frames will be visible to the user, and the session is eligible to receive XR input. The runtime **should** only give one session XR input focus at any given time. The application **should** be running its frame loop, rendering and submitting composition layers, including input avatars (depictions of hands or other tracked objects controlled by the user) for any input actions that are active. The runtime **should** avoid rendering its own input avatars when an application is focused, unless input from a given source is being captured by the runtime at the moment.

Receiving the XR_SESSION_STATE_STOPPING state indicates that the runtime has determined that the application should halt its rendering loop. Applications **should** exit their rendering loop and call xrEndSession when in this state. A possible reason for this would be to minimize contention between multiple applications. If the system supports a user engagement sensor and the session is running, the runtime **may** transition to the XR_SESSION_STATE_STOPPING state when the user stops engaging with the device.

Receiving the XR_SESSION_STATE_EXITING state indicates the runtime wishes the application to terminate its XR experience, typically due to a user request via a runtime user interface. Applications **should** gracefully end their process when in this state if they do not have a non-XR user experience.

Receiving the XR_SESSION_STATE_LOSS_PENDING state indicates the runtime is no longer able to operate with the current session, for example due to the loss of a display hardware connection. An application **should** call xrDestroySession and **may** end its process or decide to poll xrGetSystem at some reasonable cadence to get a new XrSystemId, and re-initialize all graphics resources related to the new system, and then create a new session using xrCreateSession. After the event is queued, subsequent calls to functions that accept XrSession parameters **must** no longer return any success code other than XR_SESSION_LOSS_PENDING for the given XrSession handle. The XR_SESSION_LOSS_PENDING success result is returned for an unspecified grace period of time, and the functions that return it simulate success in their behavior. If the runtime has no reasonable way to successfully complete a given function (e.g. xrCreateSwapchain) when a lost session is pending, or if the runtime is not able to provide the application a grace period, the runtime **may** return XR_ERROR_SESSION_LOST. Thereafter, functions which accept XrSession parameters for the lost session **may** return XR_ERROR_SESSION_LOST to indicate that the function failed and the given session was lost. The XrSession handle and child handles are henceforth unusable and **should** be destroyed by the application in order to immediately free up resources associated with those handles.

Chapter 10. Rendering

10.1. Swapchain Image Management

XR_DEFINE_HANDLE(XrSwapchain)

Normal XR applications will want to present rendered images to the user. To allow this, the runtime provides images organized in swapchains for the application to render into. The runtime **must** allow applications to create multiple swapchains.

Swapchain image format support by the runtime is specified by the xrEnumerateSwapchainFormats function. Runtimes **should** support R8G8B8A8 and R8G8B8A8 sRGB formats if possible.

Swapchain images **can** be 2D or 2D Array.

Rendering operations involving composition of submitted layers are assumed to be internally performed by the runtime in linear color space. Images submitted in sRGB color space **must** be created using an API-specific sRGB format (e.g. DXGI_FORMAT_R8G8B8A8_UNORM_SRGB, GL_SRGB8_ALPHA8, VK_FORMAT_R8G8B8A8_SRGB) to apply automatic sRGB-to-linear conversion when read by the runtime. All other formats will be treated as linear values.

Note

i

i

OpenXR applications **should** avoid submitting linear encoded 8 bit color data (e.g. DXGI_FORMAT_R8G8B8A8_UNORM) whenever possible as it **may** result in color banding.

Gritz, L. and d'Eon, E. 2007. The Importance of Being Linear. In: H. Nguyen, ed., *GPU Gems 3*. Addison-Wesley Professional. https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-24-importance-being-linear

Note

DXGI resources will be created with their associated TYPELESS format, but the runtime will use the application-specified format for reading the data.

The xrEnumerateSwapchainFormats function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrEnumerateSwapchainFormats(
 XrSession
 uint32_t
 uint32_t*
 int64_t*

session, formatCapacityInput, formatCountOutput, formats);

Parameter Descriptions

- session is the session that enumerates the supported formats.
- formatCapacityInput is the capacity of the formats, or 0 to retrieve the required capacity.
- formatCountOutput is a pointer to the count of uint64_t formats written, or a pointer to the required capacity in the case that formatCapacityInput is insufficient.
- formats is a pointer to an array of int64_t format ids, but can be NULL if formatCapacityInput is
 0. The format ids are specific to the specified graphics API.
- See the Buffer Size Parameters section for a detailed description of retrieving the required formats size.

xrEnumerateSwapchainFormats enumerates the texture formats supported by the current session. The type of formats returned are dependent on the graphics API specified in xrCreateSession. For example, if a DirectX graphics API was specified, then the enumerated formats correspond to the DXGI formats, such as DXGI_FORMAT_R8G8B8A8_UNORM_SRGB. Texture formats **should** be in order from highest to lowest runtime preference. The application **should** use the highest preference format that it supports for optimal performance and quality.

With an OpenGL-based graphics API, the texture formats correspond to OpenGL internal formats.

With a Direct3D-based graphics API, xrEnumerateSwapchainFormats never returns typeless formats (e.g. DXGI_FORMAT_R8G8B8A8_TYPELESS). Only concrete formats are returned, and only concrete formats **may** be specified by applications for swapchain creation.

Runtimes **must** always return identical buffer contents from this enumeration for the lifetime of the session.

- session must be a valid XrSession handle
- formatCountOutput must be a pointer to a uint32_t value
- If formatCapacityInput is not 0, formats **must** be a pointer to an array of formatCapacityInput int64_t values

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SIZE_INSUFFICIENT

The xrCreateSwapchain function is defined as:

<pre>// Provided by XR_VERSION_1_0 XrResult xrCreateSwapchain(</pre>		
XrSession	session,	
<pre>const XrSwapchainCreateInfo*</pre>	createInfo,	
XrSwapchain*	swapchain);	

Parameter Descriptions

- **session** is the session that creates the image.
- createInfo is a pointer to an XrSwapchainCreateInfo structure containing parameters to be used to create the image.
- swapchain is a pointer to a handle in which the created XrSwapchain is returned.

Creates an XrSwapchain handle. The returned swapchain handle **may** be subsequently used in API calls. Multiple XrSwapchain handles **may** exist simultaneously, up to some limit imposed by the runtime. The XrSwapchain handle **must** be eventually freed via the xrDestroySwapchain function. The runtime **must** return XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED if the image format specified in the XrSwapchainCreateInfo is unsupported. The runtime **must** return XR_ERROR_FEATURE_UNSUPPORTED if any bit of the create or usage flags specified in the XrSwapchainCreateInfo is unsupported.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- createInfo must be a pointer to a valid XrSwapchainCreateInfo structure
- swapchain **must** be a pointer to an XrSwapchain handle

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED
- XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED
- XR_ERROR_FEATURE_UNSUPPORTED

The XrSwapchainCreateInfo structure is defined as:

<pre>(rStructureType</pre>	type;	
const void*	next;	
XrSwapchainCreateFlags	<pre>createFlags;</pre>	
XrSwapchainUsageFlags	usageFlags;	
int64_t	format;	
uint32_t	<pre>sampleCount;</pre>	
uint32_t	width;	
uint32_t	height;	
uint32_t	faceCount;	
uint32_t	arraySize;	
uint32_t	<pre>mipCount;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- createFlags is a bitmask of XrSwapchainCreateFlagBits describing additional properties of the swapchain.
- usageFlags is a bitmask of XrSwapchainUsageFlagBits describing the intended usage of the swapchain's images. The usage flags define how the corresponding graphics API objects are created. A mismatch **may** result in swapchain images that do not support the application's usage.
- format is a graphics API-specific texture format identifier. For example, if the graphics API specified in xrCreateSession is Vulkan, then this format is a Vulkan format such as VK_FORMAT_R8G8B8A8_SRGB. The format identifies the format that the runtime will interpret the texture as upon submission. Valid formats are indicated by xrEnumerateSwapchainFormats.
- sampleCount is the number of sub-data element samples in the image, **must** not be 0 or greater than the graphics API's maximum limit.
- width is the width of the image, **must** not be 0 or greater than the graphics API's maximum limit.
- height is the height of the image, must not be 0 or greater than the graphics API's maximum limit.
- faceCount is the number of faces, which **must** be either 6 (for cubemaps) or 1.
- arraySize is the number of array layers in the image or 1 for a 2D image, **must** not be 0 or greater than the graphics API's maximum limit.
- mipCount describes the number of levels of detail available for minified sampling of the image, **must** not be 0 or greater than the graphics API's maximum limit.

Valid Usage (Implicit)

- type must be XR_TYPE_SWAPCHAIN_CREATE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- createFlags must be 0 or a valid combination of XrSwapchainCreateFlagBits values
- usageFlags must be 0 or a valid combination of XrSwapchainUsageFlagBits values

The XrSwapchainCreateInfo::createFlags member is of the following type, and contains a bitwise-OR of zero or more of the bits defined in XrSwapchainCreateFlagBits.

typedef XrFlags64 XrSwapchainCreateFlags;

Valid bits for XrSwapchainCreateFlags are defined by XrSwapchainCreateFlagBits, which is specified as:

// Flag bits for XrSwapchainCreateFlags
static const XrSwapchainCreateFlags XR_SWAPCHAIN_CREATE_PROTECTED_CONTENT_BIT =
0x00000001;
static const XrSwapchainCreateFlags XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT = 0x00000002;

The flag bits have the following meanings:

Flag Descriptions

- XR_SWAPCHAIN_CREATE_PROTECTED_CONTENT_BIT indicates that the swapchain's images will be protected from CPU access, using a mechanism such as Vulkan protected memory.
- XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT indicates that the application will acquire and release only one image to this swapchain over its entire lifetime. The runtime **must** allocate only one swapchain image.

A runtime **may** implement any of these, but is not required to. A runtime **must** return XR_ERROR_FEATURE_UNSUPPORTED from xrCreateSwapchain if an XrSwapchainCreateFlags bit is requested but not implemented.

XrSwapchainUsageFlags specify the intended usage of the swapchain images. The XrSwapchainCreateInfo::usageFlags member is of this type, and contains a bitwise-OR of one or more of the bits defined in XrSwapchainUsageFlagBits.

typedef XrFlags64 XrSwapchainUsageFlags;

When images are created, the runtime needs to know how the images are used in a way that requires more information than simply the image format. The XrSwapchainCreateInfo passed to xrCreateSwapchain **must** match the intended usage.

Flags include:

// Flag bits for XrSwapchainUsageFlags
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT = 0x0000001;
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT =
0x00000002;
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT = 0x00000004;
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT = 0x00000008;
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT = 0x000000010;
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT = 0x00000010;
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_SAMPLED_BIT = 0x00000020;
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT = 0x00000040;
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND =
0x00000080;
static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR =
0x00000080; // alias of XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND

The flag bits have the following meanings:

Flag Descriptions

- XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT Specifies that the image **may** be a color rendering target.
- XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT Specifies that the image **may** be a depth/stencil rendering target.
- XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT Specifies that the image **may** be accessed out of order and that access **may** be via atomic operations.
- XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT Specifies that the image **may** be used as the source of a transfer operation.
- XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT Specifies that the image **may** be used as the destination of a transfer operation.
- XR_SWAPCHAIN_USAGE_SAMPLED_BIT Specifies that the image **may** be sampled by a shader.
- XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT Specifies that the image **may** be reinterpreted as another image format.
- XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND Specifies that the image **may** be used as a input attachment. (Added by the XR_MND_swapchain_usage_input_attachment_bit extension)
- XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR Specifies that the image **may** be used as a input attachment. (Added by the XR_KHR_swapchain_usage_input_attachment_bit extension)

The number of images in each swapchain is implementation-defined except in the case of a static swapchain. To obtain the number of images actually allocated, call xrEnumerateSwapchainImages.

With a Direct3D-based graphics API, the swapchain returned by xrCreateSwapchain will be a typeless

format if the requested format has a typeless analogue. Applications are required to reinterpret the swapchain as a compatible non-typeless type. Upon submitting such swapchains to the runtime, they are interpreted as the format specified by the application in the XrSwapchainCreateInfo.

Swapchains will be created with graphics API-specific flags appropriate to the type of underlying image and its usage.

Runtimes **must** honor underlying graphics API limits when creating resources.

xrEnumerateSwapchainFormats never returns typeless formats (e.g. DXGI_FORMAT_R868B8A8_TYPELESS). Only concrete formats are returned, and only concrete formats **may** be specified by applications for swapchain creation.

The xrDestroySwapchain function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrDestroySwapchain(
 XrSwapchain

swapchain);

Parameter Descriptions

• swapchain is the swapchain to destroy.

All submitted graphics API commands that refer to swapchain **must** have completed execution. Runtimes **may** continue to utilize swapchain images after xrDestroySwapchain is called.

Valid Usage (Implicit)

• swapchain **must** be a valid XrSwapchain handle

Thread Safety

• Access to swapchain, and any child handles, **must** be externally synchronized

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

Swapchain images are acquired, waited on, and released by index, but the number of images in a swapchain is implementation-defined. Additionally, rendering to images requires access to the underlying image primitive of the graphics API being used. Applications **may** query and cache the images at any time after swapchain creation.

The xrEnumerateSwapchainImages function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrEnumerateSwapchainImages(
 XrSwapchain
 uint32_t
 uint32_t*
 XrSwapchainImageBaseHeader*

swapchain, imageCapacityInput, imageCountOutput, images);

Parameter Descriptions

- swapchain is the XrSwapchain to get images from.
- imageCapacityInput is the capacity of the images array, or 0 to indicate a request to retrieve the required capacity.
- imageCountOutput is a pointer to the count of images written, or a pointer to the required capacity in the case that imageCapacityInput is insufficient.
- images is a pointer to an array of graphics API-specific XrSwapchainImage structures, all of the same type, based on XrSwapchainImageBaseHeader. It **can** be NULL if imageCapacityInput is 0.
- See the Buffer Size Parameters section for a detailed description of retrieving the required images size.

Fills an array of graphics API-specific XrSwapchainImage structures. The resources **must** be constant and valid for the lifetime of the XrSwapchain.

Runtimes **must** always return identical buffer contents from this enumeration for the lifetime of the swapchain.

Note: images is a pointer to an array of structures of graphics API-specific type, not an array of structure pointers.

The pointer submitted as images will be treated as an array of the expected graphics API-specific type based on the graphics API used at session creation time. If the type member of any array element accessed in this way does not match the expected value, the runtime **must** return XR_ERROR_VALIDATION_FAILURE.

Note

Under a typical memory model, a runtime **must** treat the supplied pointer as an opaque blob beginning with XrSwapchainImageBaseHeader, until after it has verified the XrSwapchainImageBaseHeader::type.

Valid Usage (Implicit)

- swapchain must be a valid XrSwapchain handle
- imageCountOutput must be a pointer to a uint32_t value
- If imageCapacityInput is not 0, images **must** be a pointer to an array of imageCapacityInput XrSwapchainImageBaseHeader-based structures. See also: XrSwapchainImageD3D11KHR, XrSwapchainImageD3D12KHR, XrSwapchainImageOpenGLESKHR, XrSwapchainImageOpenGLKHR, XrSwapchainImageVulkanKHR

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SIZE_INSUFFICIENT

The XrSwapchainImageBaseHeader structure is defined as:

typedef struct XrSwapchainImageBaseHeader {
 XrStructureType type;
 void* next;
} XrSwapchainImageBaseHeader;

Member Descriptions

- type is the XrStructureType of this structure. This base structure itself has no associated XrStructureType value.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.

The XrSwapchainImageBaseHeader is a base structure that is extended by graphics API-specific XrSwapchainImage* child structures.

Valid Usage (Implicit)

- type **must** be one of the following XrStructureType values: XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR, XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR, XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR, XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR,
- next must be NULL or a valid pointer to the next structure in a structure chain

Before an application builds graphics API command buffers that refer to an image in a swapchain, it **must** acquire the image from the swapchain. The acquire operation determines the index of the next image to be used in the swapchain. The order in which images are acquired is undefined. The runtime **must** allow the application to acquire more than one image from a single (non-static) swapchain at a time, for example if the application implements a multiple frame deep rendering pipeline.

The xrAcquireSwapchainImage function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrAcquireSwapchainImage(
 XrSwapchain
 const XrSwapchainImageAcquireInfo* acquireInfo,
 uint32_t* index);

Parameter Descriptions

- swapchain is the swapchain from which to acquire an image.
- acquireInfo exists for extensibility purposes, it is NULL or a pointer to a valid XrSwapchainImageAcquireInfo.
- index is the returned image index that has been acquired.

Acquires the image corresponding to the index position in the array returned by xrEnumerateSwapchainImages. The runtime **must** return XR ERROR CALL ORDER INVALID if the next available index has already been acquired and not yet released with xrReleaseSwapchainImage. If the swapchain was created with the XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT set in XrSwapchainCreateInfo ::createFlags, this function **must** not have been previously called for this swapchain. The runtime must XR_ERROR_CALL_ORDER_INVALID if swapchain created with the return а XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT set in XrSwapchainCreateInfo::createFlags and this function has been successfully called previously for this swapchain.

This function only provides the index of the swapchain image, for example for use in recording command buffers. It does not wait for the image to be usable by the application. The application **must** call xrWaitSwapchainImage for each "acquire" call before submitting graphics commands that write to the image.

- swapchain must be a valid XrSwapchain handle
- If acquireInfo is not NULL, acquireInfo **must** be a pointer to a valid XrSwapchainImageAcquireInfo structure
- index must be a pointer to a uint32_t value

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_CALL_ORDER_INVALID

The XrSwapchainImageAcquireInfo structure is defined as:

```
typedef struct XrSwapchainImageAcquireInfo {
    XrStructureType type;
    const void* next;
} XrSwapchainImageAcquireInfo;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrAcquireSwapchainImage will accept a NULL argument for xrAcquireSwapchainImage::acquireInfo for applications that are not using any relevant extensions.

- type **must** be XR_TYPE_SWAPCHAIN_IMAGE_ACQUIRE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain

The xrWaitSwapchainImage function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrWaitSwapchainImage(
 XrSwapchain
 const XrSwapchainImageWaitInfo*

swapchain, waitInfo);

Parameter Descriptions

- swapchain is the swapchain from which to wait for an image.
- waitInfo is a pointer to an XrSwapchainImageWaitInfo structure.

Before an application begins writing to a swapchain image, it **must** first wait on the image, to avoid writing to it before the compositor has finished reading from it. xrWaitSwapchainImage will implicitly wait on the oldest acquired swapchain image which has not yet been successfully waited on. Once a swapchain image has been successfully waited on without timeout, the app **must** release before waiting on the next acquired swapchain image.

This function **may** block for longer than the timeout specified in XrSwapchainImageWaitInfo due to scheduling or contention.

If the timeout expires without the image becoming available for writing, XR_TIMEOUT_EXPIRED **must** be returned. If xrWaitSwapchainImage returns XR_TIMEOUT_EXPIRED, the next call to xrWaitSwapchainImage will wait on the same image index again until the function succeeds with XR_SUCCESS. Note that this is not an error code; XR_SUCCEEDED(XR_TIMEOUT_EXPIRED) is true.

The runtime **must** eventually relinquish ownership of a swapchain image to the application and **must** not block indefinitely.

The runtime **must** return XR_ERROR_CALL_ORDER_INVALID if no image has been acquired by calling xrAcquireSwapchainImage.

- swapchain must be a valid XrSwapchain handle
- waitInfo must be a pointer to a valid XrSwapchainImageWaitInfo structure

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING
- XR_TIMEOUT_EXPIRED

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_CALL_ORDER_INVALID

The XrSwapchainImageWaitInfo structure describes a swapchain image wait operation. It is defined as:

```
typedef struct XrSwapchainImageWaitInfo {
    XrStructureType type;
    const void* next;
    XrDuration timeout;
} XrSwapchainImageWaitInfo;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- **timeout** indicates how many nanoseconds the call **may** block waiting for the image to become available for writing.

Valid Usage (Implicit)

- type must be XR_TYPE_SWAPCHAIN_IMAGE_WAIT_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain

Once an application is done submitting commands that reference the swapchain image, the application **must** release the swapchain image. **xrReleaseSwapchainImage** will implicitly release the oldest swapchain image which has been acquired. The swapchain image **must** have been successfully waited on without timeout before it is released. **xrEndFrame** will use the most recently released swapchain image. In each frame submitted to the compositor, only one image index from each swapchain will be used. Note that in case the swapchain contains 2D image arrays, one array is referenced per swapchain index and thus the whole image array **may** be used in one frame.

The xrReleaseSwapchainImage function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrReleaseSwapchainImage(
 XrSwapchain
 const XrSwapchainImageReleaseInfo*

swapchain, releaseInfo);

Parameter Descriptions

- swapchain is the XrSwapchain from which to release an image.
- releaseInfo exists for extensibility purposes, it is NULL or a pointer to a valid XrSwapchainImageReleaseInfo.

If the swapchain was created with the XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT set in XrSwapchainCreateInfo::createFlags structure, this function **must** not have been previously called for this swapchain.

The runtime **must** return XR_ERROR_CALL_ORDER_INVALID if no image has been waited on by calling xrWaitSwapchainImage.

- swapchain must be a valid XrSwapchain handle
- If releaseInfo is not NULL, releaseInfo **must** be a pointer to a valid XrSwapchainImageReleaseInfo structure

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_CALL_ORDER_INVALID

The XrSwapchainImageReleaseInfo structure is defined as:

```
typedef struct XrSwapchainImageReleaseInfo {
    XrStructureType type;
    const void* next;
} XrSwapchainImageReleaseInfo;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrReleaseSwapchainImage will accept a NULL argument for xrReleaseSwapchainImage::releaseInfo for applications that are not using any relevant extensions.

- type **must** be XR_TYPE_SWAPCHAIN_IMAGE_RELEASE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain

10.2. View and Projection State

An application uses <u>xrLocateViews</u> to retrieve the viewer pose and projection parameters needed to render each view for use in a composition projection layer.

The xrLocateViews function is defined as:

```
// Provided by XR_VERSION_1_0
XrResult xrLocateViews(
    XrSession
    const XrViewLocateInfo*
    XrViewState*
    uint32_t
    uint32_t*
    XrView*
```

session, viewLocateInfo, viewState, viewCapacityInput, viewCountOutput, views);

Parameter Descriptions

- session is a handle to the provided XrSession.
- viewLocateInfo is a pointer to a valid XrViewLocateInfo structure.
- **viewState** is the output structure with the viewer state information.
- viewCapacityInput is an input parameter which specifies the capacity of the views array. The required capacity **must** be same as defined by the corresponding XrViewConfigurationType.
- viewCountOutput is an output parameter which identifies the valid count of views.
- views is an array of XrView.
- See the Buffer Size Parameters section for a detailed description of retrieving the required views size.

The xrLocateViews function returns the view and projection info for a particular display time. This time is typically the target display time for a given frame. Repeatedly calling xrLocateViews with the same time **may** not necessarily return the same result. Instead the prediction gets increasingly accurate as the function is called closer to the given time for which a prediction is made. This allows an application to get the predicted views as late as possible in its pipeline to get the least amount of latency and prediction error.

xrLocateViews returns an array of XrView elements, one for each view of the specified view configuration type, along with an XrViewState containing additional state data shared across all views. The eye each view corresponds to is statically defined in XrViewConfigurationType in case the application wants to apply eye-specific rendering traits. The XrViewState and XrView member data

may change on subsequent calls to <u>xrLocateViews</u>, and so applications **must** not assume it to be constant.

If an application gives a viewLocateInfo with a XrViewLocateInfo::viewConfigurationType that was not passed in the session's call to xrBeginSession via the XrSessionBeginInfo:: primaryViewConfigurationType, or enabled though an extension, then the runtime **must** return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- viewLocateInfo must be a pointer to a valid XrViewLocateInfo structure
- viewState must be a pointer to an XrViewState structure
- viewCountOutput must be a pointer to a uint32_t value
- If viewCapacityInput is not 0, views **must** be a pointer to an array of viewCapacityInput XrView structures

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED
- XR_ERROR_TIME_INVALID

The XrViewLocateInfo structure is defined as:

typedef struct XrViewLocateInfo {
 XrStructureType type;
 const void* next;
 XrViewConfigurationType viewConfigurationType;
 XrTime displayTime;
 XrSpace space;
} XrViewLocateInfo;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain.
- viewConfigurationType is XrViewConfigurationType to query for.
- **displayTime** is the time for which the view poses are predicted.
- space is the XrSpace in which the pose in each XrView is expressed.

The XrViewLocateInfo structure contains the display time and space used to locate the view XrView structures.

The runtime **must** return error XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED if the given viewConfigurationType is not one of the supported type reported by xrEnumerateViewConfigurations.

Valid Usage (Implicit)

- type must be XR_TYPE_VIEW_LOCATE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- viewConfigurationType must be a valid XrViewConfigurationType value
- space must be a valid XrSpace handle

The XrView structure is defined as:

typedef struct XrView	{
XrStructureType	type;
void*	next;
XrPosef	pose;
XrFovf	fov;
<pre>} XrView;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- pose is an XrPosef defining the location and orientation of the view in the space specified by the xrLocateViews function.
- fov is the XrFovf for the four sides of the projection.

The XrView structure contains view pose and projection state necessary to render a single projection view in the view configuration.

Valid Usage (Implicit)

- type must be XR_TYPE_VIEW
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrViewState structure is defined as:

```
typedef struct XrViewState {
    XrStructureType type;
    void* next;
    XrViewStateFlags viewStateFlags;
} XrViewState;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- viewStateFlags is a bitmask of XrViewStateFlagBits indicating state for all views.

The XrViewState contains additional view state from xrLocateViews common to all views of the active view configuration.

Valid Usage (Implicit)

- type must be XR_TYPE_VIEW_STATE
- next must be NULL or a valid pointer to the next structure in a structure chain
- viewStateFlags must be 0 or a valid combination of XrViewStateFlagBits values

The XrViewStateFlags specifies the validity and quality of the corresponding XrView array returned by xrLocateViews. The XrViewState::viewStateFlags member is of this type, and contains a bitwise-OR of zero or more of the bits defined in XrViewStateFlagBits.

typedef XrFlags64 XrViewStateFlags;

Valid bits for XrViewStateFlags are defined by XrViewStateFlagBits, which is specified as:

// Flag bits for XrViewStateFlags
static const XrViewStateFlags XR_VIEW_STATE_ORIENTATION_VALID_BIT = 0x00000001;
static const XrViewStateFlags XR_VIEW_STATE_POSITION_VALID_BIT = 0x00000002;
static const XrViewStateFlags XR_VIEW_STATE_ORIENTATION_TRACKED_BIT = 0x00000004;
static const XrViewStateFlags XR_VIEW_STATE_POSITION_TRACKED_BIT = 0x00000008;

The flag bits have the following meanings:

Flag Descriptions

- XR_VIEW_STATE_ORIENTATION_VALID_BIT indicates whether all XrView orientations contain valid data. Applications **must** not read any of the XrView pose orientation fields if this flag is unset. XR_VIEW_STATE_ORIENTATION_TRACKED_BIT **should** generally remain set when this bit is set for views on a tracked headset or handheld device.
- XR_VIEW_STATE_POSITION_VALID_BIT indicates whether all XrView positions contain valid data. Applications **must** not read any of the XrView::pose position fields if this flag is unset. When a view loses tracking, runtimes **should** continue to provide valid but untracked view position values that are inferred or last-known, so long as it's still meaningful for the application to render content using that position, clearing XR_VIEW_STATE_POSITION_TRACKED_BIT until tracking is recovered.
- XR_VIEW_STATE_ORIENTATION_TRACKED_BIT indicates whether all XrView orientations represent an actively tracked orientation. This bit **should** generally remain set when XR_VIEW_STATE_ORIENTATION_VALID_BIT is set for views on a tracked headset or handheld device.
- XR_VIEW_STATE_POSITION_TRACKED_BIT indicates whether all XrView positions represent an actively tracked position. When a view loses tracking, runtimes **should** continue to provide valid but untracked view **position** values that are inferred or last-known, e.g. based on neck model updates, inertial dead reckoning, or a last-known position, so long as it's still meaningful for the application to render content using that position.

10.3. Frame Synchronization

An application synchronizes its rendering loop to the runtime by calling xrWaitFrame.

The xrWaitFrame function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrWaitFrame(
 XrSession
 const XrFrameWaitInfo*
 XrFrameState*

session,
frameWaitInfo,
frameState);

Parameter Descriptions

- session is a valid XrSession handle.
- frameWaitInfo exists for extensibility purposes, it is NULL or a pointer to a valid XrFrameWaitInfo.
- frameState is a pointer to a valid XrFrameState, an output parameter.

xrWaitFrame throttles the application frame loop in order to synchronize application frame submissions with the display. xrWaitFrame returns a predicted display time for the next time that the runtime predicts a composited frame will be displayed. The runtime **may** affect this computation by changing the return values and throttling of xrWaitFrame in response to feedback from frame submission and completion times in xrEndFrame. A subsequent xrWaitFrame call **must** block until the previous frame has been begun with xrBeginFrame and **must** unblock independently of the corresponding call to xrEndFrame. Refer to xrBeginSession for details on how a transition to session running resets the frame function call order.

When less than one frame interval has passed since the previous return from xrWaitFrame, the runtime **should** block until the beginning of the next frame interval. If more than one frame interval has passed since the last return from xrWaitFrame, the runtime **may** return immediately or block until the beginning of the next frame interval.

In the case that an application has pipelined frame submissions, the application **should** compute the appropriate target display time using both the predicted display time and predicted display interval. The application **should** use the computed target display time when requesting space and view locations for rendering.

The XrFrameState::predictedDisplayTime returned by xrWaitFrame must be monotonically increasing.

The runtime **may** dynamically adjust the start time of the frame interval relative to the display hardware's refresh cycle to minimize graphics processor contention between the application and the compositor.

xrWaitFrame **must** be callable from any thread, including a different thread than xrBeginFrame /xrEndFrame are being called from.

Calling xrWaitFrame **must** be externally synchronized by the application, concurrent calls **may** result in undefined behavior.

The runtime **must** return XR_ERROR_SESSION_NOT_RUNNING if the session is not running.

Note

The engine simulation **should** advance based on the display time. Every stage in the engine pipeline **should** use the exact same display time for one particular applicationgenerated frame. An accurate and consistent display time across all stages and threads in the engine pipeline is important to avoid object motion judder. If the application has multiple pipeline stages, the application **should** pass its computed display time through its pipeline, as **xrWaitFrame must** be called only once per frame.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- If frameWaitInfo is not NULL, frameWaitInfo **must** be a pointer to a valid XrFrameWaitInfo structure
- frameState must be a pointer to an XrFrameState structure

Thread Safety

• Access to the session parameter by any other xrWaitFrame call **must** be externally synchronized

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SESSION_NOT_RUNNING

The XrFrameWaitInfo structure is defined as:

```
typedef struct XrFrameWaitInfo {
    XrStructureType type;
    const void* next;
} XrFrameWaitInfo;
```

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrWaitFrame **must** accept a NULL argument for xrWaitFrame::frameWaitInfo for applications that are not using any relevant extensions.

Valid Usage (Implicit)

- type **must** be XR_TYPE_FRAME_WAIT_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrFrameState structure is defined as:

<pre>typedef struct XrFrameState {</pre>	
XrStructureType	type;
void*	next;
XrTime	<pre>predictedDisplayTime;</pre>
XrDuration	<pre>predictedDisplayPeriod;</pre>
XrBool32	<pre>shouldRender;</pre>
<pre>} XrFrameState;</pre>	

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- predictedDisplayTime is the anticipated display XrTime for the next application-generated frame.
- predictedDisplayPeriod is the XrDuration of the display period for the next applicationgenerated frame, for use in predicting display times beyond the next one.
- shouldRender is XR_TRUE if the application should render its layers as normal and submit them to xrEndFrame. When this value is XR_FALSE, the application should avoid heavy GPU work where possible, for example by skipping layer rendering and then omitting those layers when calling xrEndFrame.

XrFrameState describes the time at which the next frame will be displayed to the user. predictedDisplayTime must refer to the midpoint of the interval during which the frame is displayed. The runtime may report a different predictedDisplayPeriod from the hardware's refresh cycle.

For any frame where shouldRender is XR_FALSE, the application should avoid heavy GPU work for that frame, for example by not rendering its layers. This typically happens when the application is transitioning into or out of a running session, or when some system UI is fully covering the application at the moment. As long as the session is running, the application should keep running the frame loop to maintain the frame synchronization to the runtime, even if this requires calling xrEndFrame with all layers omitted.

Valid Usage (Implicit)

- type **must** be XR_TYPE_FRAME_STATE
- next must be NULL or a valid pointer to the next structure in a structure chain

10.4. Frame Submission

Every application **must** call xrBeginFrame before calling xrEndFrame, and **should** call xrEndFrame before calling xrBeginFrame again. Calling xrEndFrame again without a prior call to xrBeginFrame **must** result in XR_ERROR_CALL_ORDER_INVALID being returned by xrEndFrame. An application **may** call xrBeginFrame again if the prior xrEndFrame fails or if the application wishes to discard an in-progress frame. A successful call to xrBeginFrame again with no intervening xrEndFrame call **must** result in the success code XR_FRAME_DISCARDED being returned from xrBeginFrame. In this case it is assumed that the xrBeginFrame refers to the next frame and the previously begun frame is forfeited by the application. An application **may** call xrEndFrame without having called xrReleaseSwapchainImage since the previous call to xrEndFrame for any swapchain passed to xrEndFrame. Applications **should** call xrBeginFrame right before executing any graphics device work for a given frame, as opposed to calling it afterwards. The runtime **must** only compose frames whose xrBeginFrame and xrEndFrame both return success codes. While xrBeginFrame and xrEndFrame do not need to be called on the same thread, the application **must** handle synchronization if they are called on separate threads.

The xrBeginFrame function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrBeginFrame(
 XrSession
 const XrFrameBeginInfo*

session,
frameBeginInfo);

Parameter Descriptions

- session is a valid XrSession handle.
- frameBeginInfo exists for extensibility purposes, it is NULL or a pointer to a valid XrFrameBeginInfo.

xrBeginFrame is called prior to the start of frame rendering. The application **should** still call xrBeginFrame but omit rendering work for the frame if XrFrameState::shouldRender is XR_FALSE.

Runtimes **must** not perform frame synchronization or throttling through the xrBeginFrame function and **should** instead do so through xrWaitFrame.

The runtime **must** return the error code XR_ERROR_CALL_ORDER_INVALID if there was no corresponding successful call to xrWaitFrame. The runtime **must** return the success code XR_FRAME_DISCARDED if a prior xrBeginFrame has been called without an intervening call to xrEndFrame. Refer to xrBeginSession for details on how a transition to session running resets the frame function call order.

The runtime **must** return XR_ERROR_SESSION_NOT_RUNNING if the session is not running.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- If frameBeginInfo is not NULL, frameBeginInfo **must** be a pointer to a valid XrFrameBeginInfo structure

Thread Safety

• Access to the session parameter by any other xrBeginFrame or xrEndFrame call **must** be externally synchronized

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING
- XR_FRAME_DISCARDED

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SESSION_NOT_RUNNING
- XR_ERROR_CALL_ORDER_INVALID

The XrFrameBeginInfo structure is defined as:

typedef struct XrFrameBeginInfo {
 XrStructureType type;
 const void* next;
} XrFrameBeginInfo;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrBeginFrame will accept a

NULL argument for xrBeginFrame::frameBeginInfo for applications that are not using any relevant extensions.

Valid Usage (Implicit)

- type **must** be XR_TYPE_FRAME_BEGIN_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain

The **xrEndFrame** function is defined as:

```
// Provided by XR_VERSION_1_0
XrResult xrEndFrame(
    XrSession
    const XrFrameEndInfo*
```

session,
frameEndInfo);

Parameter Descriptions

- session is a valid XrSession handle.
- frameEndInfo is a pointer to a valid XrFrameEndInfo.

xrEndFrame **may** return immediately to the application. XrFrameEndInfo::displayTime **should** be computed using values returned by xrWaitFrame. The runtime **should** be robust against variations in the timing of calls to xrWaitFrame, since a pipelined system may call xrWaitFrame on a separate thread from xrBeginFrame and xrEndFrame without any synchronization guarantees.

Note

1

An accurate predicted display time is very important to avoid black pull-in by reprojection and to reduce motion judder in case the runtime does not implement a translational reprojection. Reprojection **should** never display images before the display refresh period they were predicted for, even if they are completed early, because this will cause motion judder just the same. In other words, the better the predicted display time, the less latency experienced by the user.

Every call to xrEndFrame **must** be preceded by a successful call to xrBeginFrame. Failure to do so **must** result in XR_ERROR_CALL_ORDER_INVALID being returned by xrEndFrame. Refer to xrBeginSession for details on how a transition to session running resets the frame function call order. XrFrameEndInfo **may** reference swapchains into which the application has rendered for this frame. From each XrSwapchain only one image index is implicitly referenced per frame, the one corresponding to the last call to xrReleaseSwapchainImage. However, a specific swapchain (and by extension a specific

swapchain image index) **may** be referenced in XrFrameEndInfo multiple times. This **can** be used for example to render a side by side image into a single swapchain image and referencing it twice with differing image rectangles in different layers.

If no layers are provided then the display **must** be cleared.

XR_ERROR_LAYER_INVALID **must** be returned if an unknown, unsupported layer type, or NULL pointer is passed as one of the XrFrameEndInfo::layers.

XR_ERROR_LAYER_INVALID **must** be returned if a layer references a swapchain that has no released swapchain image.

XR_ERROR_LAYER_LIMIT_EXCEEDED **must** be returned if XrFrameEndInfo::layerCount exceeds XrSystemGraphicsProperties::maxLayerCount or if the runtime is unable to composite the specified layers due to resource constraints.

XR_ERROR_SWAPCHAIN_RECT_INVALID **must** be returned if XrFrameEndInfo::layers contains a composition layer which references pixels outside of the associated swapchain image or if negatively sized.

XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTEDmustbereturnedifXrFrameEndInfo::environmentBlendMode is not supported.

XR_ERROR_SESSION_NOT_RUNNING must be returned if the session is not running.

Note

Applications should discard frames for which <u>xrEndFrame</u> returns a recoverable error over attempting to resubmit the frame with different frame parameters to provide a more consistent experience across different runtime implementations.

Valid Usage (Implicit)

- session **must** be a valid XrSession handle
- frameEndInfo must be a pointer to a valid XrFrameEndInfo structure

Thread Safety

• Access to the session parameter by any other xrBeginFrame or xrEndFrame call **must** be externally synchronized

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_TIME_INVALID
- XR_ERROR_SWAPCHAIN_RECT_INVALID
- XR_ERROR_SESSION_NOT_RUNNING
- XR_ERROR_POSE_INVALID
- XR_ERROR_LAYER_LIMIT_EXCEEDED
- XR_ERROR_LAYER_INVALID
- XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED
- XR_ERROR_CALL_ORDER_INVALID

The XrFrameEndInfo structure is defined as:

<pre>typedef struct XrFrameEndInfo {</pre>	
XrStructureType	type;
const void*	next;
XrTime	displayTime;
XrEnvironmentBlendMode	environmentBlendMode;
uint32_t	layerCount;
<pre>const XrCompositionLayerBaseHeader* const*</pre>	layers;
<pre>} XrFrameEndInfo;</pre>	

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- **displayTime** is the XrTime at which this frame **should** be displayed.
- environmentBlendMode is the XrEnvironmentBlendMode value representing the desired environment blend mode for this frame.
- layerCount is the number of composition layers in this frame. The maximum supported layer count is identified by XrSystemGraphicsProperties::maxLayerCount. If layerCount is greater than the maximum supported layer count then XR_ERROR_LAYER_LIMIT_EXCEEDED **must** be returned.
- layers is a pointer to an array of XrCompositionLayerBaseHeader pointers.

Valid Usage (Implicit)

- type **must** be XR_TYPE_FRAME_END_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- environmentBlendMode must be a valid XrEnvironmentBlendMode value
- If layerCount is not 0, layers **must** be a pointer to an array of layerCount valid XrCompositionLayerBaseHeader-based structures. See also: XrCompositionLayerCubeKHR, XrCompositionLayerCylinderKHR, XrCompositionLayerEquirect2KHR, XrCompositionLayerEquirectKHR, XrCompositionLayerProjection, XrCompositionLayerQuad

All layers submitted to xrEndFrame will be presented to the primary view configuration of the running session.

10.5. Frame Rate

For every application-generated frame, the application **may** call **xrEndFrame** to submit the applicationgenerated composition layers. In addition, the application **must** call **xrWaitFrame** when the application is ready to begin preparing the next set of frame layers. **xrEndFrame may** return immediately to the application, but **xrWaitFrame must** block for an amount of time that depends on throttling of the application by the runtime. The earliest the runtime will return from **xrWaitFrame** is when it determines that the application **should** start drawing the next frame.

10.6. Compositing

Composition layers are submitted by the application via the xrEndFrame call. All composition layers to be drawn **must** be submitted with every xrEndFrame call. A layer that is omitted in this call will not be drawn by the runtime layer compositor. All views associated with projection layers **must** be supplied, or XR_ERROR_VALIDATION_FAILURE **must** be returned by xrEndFrame.

Composition layers **must** be drawn in the same order as they are specified in via XrFrameEndInfo, with the 0th layer drawn first. Layers **must** be drawn with a "painter's algorithm," with each successive layer potentially overwriting the destination layers whether or not the new layers are virtually closer to the viewer.

10.6.1. Composition Layer Flags

XrCompositionLayerFlags specifies options for individual composition layers, and contains a bitwise-OR of zero or more of the bits defined in XrCompositionLayerFlagBits.

typedef XrFlags64 XrCompositionLayerFlags;

Valid bits for XrCompositionLayerFlags are defined by XrCompositionLayerFlagBits, which is specified as:

// Flag bits for XrCompositionLayerFlags
static const XrCompositionLayerFlags
XR_COMPOSITION_LAYER_CORRECT_CHROMATIC_ABERRATION_BIT = 0x00000001;
static const XrCompositionLayerFlags XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT
= 0x00000002;
static const XrCompositionLayerFlags XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT =
0x00000004;

The flag bits have the following meanings:

Flag Descriptions

- XR_COMPOSITION_LAYER_CORRECT_CHROMATIC_ABERRATION_BIT (*deprecated*—*ignored*) Enables chromatic aberration correction when not done by default. This flag has no effect on any known conformant runtime, and is officially deprecated in OpenXR 1.1.
- XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT Enables the layer texture alpha channel.
- XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT Indicates the texture color channels have not been premultiplied by the texture alpha channel.

10.6.2. Composition Layer Blending

All types of composition layers are subject to blending with other layers. Blending of layers can be controlled by layer per-texel source alpha. Layer swapchain textures may contain an alpha channel, depending on the image format. If a submitted swapchain's texture format does not include an alpha channel or if the XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT is unset, then the layer alpha is initialized to one.

If the swapchain texture format color encoding is other than RGBA, it is converted to RGBA.

If the texture color channels are encoded without premultiplying by alpha, the XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT **should** be set. The effect of this bit alters the layer color as follows:

LayerColor.RGB *= LayerColor.A

LayerColor is then clamped to a range of [0.0, 1.0].

The layer blending operation is defined as:

```
CompositeColor = LayerColor + CompositeColor * (1 - LayerColor.A)
```

Before the first layer is composited, all components of CompositeColor are initialized to zero.

10.6.3. Composition Layer Types

Composition layers allow an application to offload the composition of the final image to a runtimesupplied compositor. This reduces the application's rendering complexity since details such as framerate interpolation and distortion correction can be performed by the runtime. The core specification defines XrCompositionLayerProjection and XrCompositionLayerQuad layer types.

The projection layer type represents planar projected images rendered from the eye point of each eye

using a perspective projection. This layer type is typically used to render the virtual world from the user's perspective.

The quad layer type describes a posable planar rectangle in the virtual world for displaying twodimensional content. Quad layers can subtend a smaller portion of the display's field of view, allowing a better match between the resolutions of the XrSwapchain image and footprint of that image in the final composition. This improves legibility for user interface elements or heads-up displays and allows optimal sampling during any composition distortion corrections the runtime might employ.

The classes below describe the layer types in the layer composition system.

The XrCompositionLayerBaseHeader structure is defined as:

<pre>typedef struct XrCompositionLayerBaseHeader {</pre>	
XrStructureType	type;
const void*	next;
XrCompositionLayerFlags	layerFlags;
XrSpace	space;
<pre>} XrCompositionLayerBaseHeader;</pre>	

Member Descriptions

- type is the XrStructureType of this structure. This base structure itself has no associated XrStructureType value.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.
- space is the XrSpace in which the layer will be kept stable over time.

begin with described All composition layer structures the elements in the XrCompositionLayerBaseHeader. The XrCompositionLayerBaseHeader structure is not intended to be directly used, but forms a basis for defining current and future structures containing composition layer information. The XrFrameEndInfo structure contains an array of pointers to these polymorphic header structures. All composition layer type pointers **must** be type-castable as an XrCompositionLayerBaseHeader pointer.

Valid Usage (Implicit)

- type **must** be one of the following XrStructureType values: XR_TYPE_COMPOSITION_LAYER_CUBE_KHR, XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR, XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR, XR_TYPE_COMPOSITION_LAYER_PROJECTION, XR_TYPE_COMPOSITION_LAYER_QUAD
- next **must** be NULL or a valid pointer to the next structure in a structure chain. See also: XrCompositionLayerColorScaleBiasKHR
- layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values
- space must be a valid XrSpace handle

Many composition layer structures also contain one or more references to generic layer data stored in an XrSwapchainSubImage structure.

The XrSwapchainSubImage structure is defined as:

typedef struct XrSwapchainSubImage {
 XrSwapchain swapchain;
 XrRect2Di imageRect;
 uint32_t imageArrayIndex;
} XrSwapchainSubImage;

Member Descriptions

- swapchain is the XrSwapchain to be displayed.
- imageRect is an XrRect2Di representing the valid portion of the image to use, in pixels. It also implicitly defines the transform from normalized image coordinates into pixel coordinates. The coordinate origin depends on which graphics API is being used. See the graphics API extension details for more information on the coordinate origin definition. Note that the compositor **may** bleed in pixels from outside the bounds in some cases, for instance due to mipmapping.
- imageArrayIndex is the image array index, with 0 meaning the first or only array element.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

Runtimes **must** return XR_ERROR_VALIDATION_FAILURE if the XrSwapchainSubImage::imageArrayIndex is equal to or greater than the XrSwapchainCreateInfo::arraySize that the XrSwapchainSubImage ::swapchain was created with.

Projection Composition

The XrCompositionLayerProjection layer represents planar projected images rendered from the eye point of each eye using a standard perspective projection.

The XrCompositionLayerProjection structure is defined as:

// Provided by XR_VERSION_1_0	
<pre>typedef struct XrCompositionLayerProjection {</pre>	
XrStructureType	type;
const void*	next;
XrCompositionLayerFlags	layerFlags;
XrSpace	space;
uint32_t	<pre>viewCount;</pre>
<pre>const XrCompositionLayerProjectionView*</pre>	views;
<pre>} XrCompositionLayerProjection;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.
- space is the XrSpace in which the pose of each XrCompositionLayerProjectionView is evaluated over time by the compositor.
- viewCount is the count of views in the views array. This **must** be equal to the number of view poses returned by xrLocateViews.
- views is the array of type XrCompositionLayerProjectionView containing each projection layer view.

Note

Because a runtime may reproject the layer over time, a projection layer should specify an XrSpace in which to maximize stability of the layer content. For example, a projection layer containing world-locked content should use an XrSpace which is also world-locked, such as the LOCAL or STAGE reference spaces. In the case that the projection layer should be head-locked, such as a heads up display, the VIEW reference space would provide the highest quality layer reprojection.

Valid Usage (Implicit)

- type must be XR_TYPE_COMPOSITION_LAYER_PROJECTION
- next must be NULL or a valid pointer to the next structure in a structure chain
- layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values
- space must be a valid XrSpace handle
- views must be a pointer to an array of viewCount valid XrCompositionLayerProjectionView structures
- The viewCount parameter **must** be greater than 0

The XrCompositionLayerProjectionView structure is defined as:

typedef struct XrCompositionLayerProjectionView {
 XrStructureType type;
 const void* next;
 XrPosef pose;
 XrFovf fov;
 XrSwapchainSubImage subImage;
} XrCompositionLayerProjectionView;

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- pose is an XrPosef defining the location and orientation of this projection element in the space of the corresponding XrCompositionLayerProjectionView.
- fov is the XrFovf for this projection element.
- subImage is the image layer XrSwapchainSubImage to use. The swapchain **must** have been created with a XrSwapchainCreateInfo::faceCount of 1.

The count and order of view poses submitted with XrCompositionLayerProjection **must** be the same order as that returned by xrLocateViews. The XrCompositionLayerProjectionView::pose and XrCompositionLayerProjectionView::fov **should** almost always derive from XrView::pose and XrView ::fov as found in the xrLocateViews::views array. However, applications **may** submit an XrCompositionLayerProjectionView which has a different view or FOV than that from xrLocateViews. In this case, the runtime will map the view and FOV to the system display appropriately. In the case that two submitted views within a single layer overlap, they **must** be composited in view array order.

Valid Usage (Implicit)

- type **must** be XR_TYPE_COMPOSITION_LAYER_PROJECTION_VIEW
- next **must** be NULL or a valid pointer to the next structure in a structure chain. See also: XrCompositionLayerDepthInfoKHR
- subImage must be a valid XrSwapchainSubImage structure

Quad Layer Composition

The XrCompositionLayerQuad structure defined as:

// Provided by XR_VERSION_1_0		
typedef struct XrCompositionL	.ayerQuad {	
XrStructureType	type;	
const void*	next;	
XrCompositionLayerFlags	layerFlags;	
XrSpace	space;	
XrEyeVisibility	eyeVisibility;	
XrSwapchainSubImage	subImage;	
XrPosef	pose;	
XrExtent2Df	size;	
<pre>} XrCompositionLayerQuad;</pre>		

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.
- space is the XrSpace in which the pose of the quad layer is evaluated over time.
- eyeVisibility is the XrEyeVisibility for this layer.
- subImage is the image layer XrSwapchainSubImage to use. The swapchain **must** have been created with a XrSwapchainCreateInfo::faceCount of 1.
- pose is an XrPosef defining the position and orientation of the quad in the reference frame of the space.
- size is the width and height of the quad in meters.

The XrCompositionLayerQuad layer is useful for user interface elements or 2D content rendered into the virtual world. The layer's XrSwapchainSubImage::swapchain image is applied to a quad in the virtual world space. Only front face of the quad surface is visible; the back face is not visible and **must** not be drawn by the runtime. A quad layer has no thickness; it is a two-dimensional object positioned and oriented in 3D space. The position of a quad refers to the center of the quad within the given XrSpace. The orientation of the quad refers to the orientation of the normal vector from the front face. The size of a quad refers to the quad's size in the x-y plane of the given XrSpace's coordinate system. A quad with a position of {0,0,0}, rotation of {0,0,0,1} (no rotation), and a size of {1,1} refers to a 1 meter x 1 meter quad centered at {0,0,0} with its front face normal vector coinciding with the +z axis.

Valid Usage (Implicit)

- type must be XR_TYPE_COMPOSITION_LAYER_QUAD
- next must be NULL or a valid pointer to the next structure in a structure chain
- layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values
- space must be a valid XrSpace handle
- eyeVisibility must be a valid XrEyeVisibility value
- subImage must be a valid XrSwapchainSubImage structure

The XrEyeVisibility enum selects which of the viewer's eyes to display a layer to:

```
typedef enum XrEyeVisibility {
    XR_EYE_VISIBILITY_BOTH = 0,
    XR_EYE_VISIBILITY_LEFT = 1,
    XR_EYE_VISIBILITY_RIGHT = 2,
    XR_EYE_VISIBILITY_MAX_ENUM = 0x7FFFFFFF
} XrEyeVisibility;
```

Enumerant Descriptions

- XR_EYE_VISIBILITY_BOTH displays the layer to both eyes.
- XR_EYE_VISIBILITY_LEFT displays the layer to the viewer's physical left eye.
- XR_EYE_VISIBILITY_RIGHT displays the layer to the viewer's physical right eye.

10.6.4. Environment Blend Mode

After the compositor has blended and flattened all layers (including any layers added by the runtime itself), it will then present this image to the system's display. The composited image will then blend with the user's view of the physical world behind the displays in one of three modes, based on the application's chosen **environment blend mode**. VR applications will generally choose the XR_ENVIRONMENT_BLEND_MODE_OPAQUE blend mode, while AR applications will generally choose either the XR_ENVIRONMENT_BLEND_MODE_ADDITIVE or XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND mode.

Applications select their environment blend mode each frame as part of their call to xrEndFrame. The application can inspect the set of supported environment blend modes for a given system using xrEnumerateEnvironmentBlendModes, and prepare their assets and rendering techniques differently based on the blend mode they choose. For example, a black shadow rendered using the

XR_ENVIRONMENT_BLEND_MODE_ADDITIVE blend mode will appear transparent, and so an application in that mode **may** render a glow as a grounding effect around the black shadow to ensure the shadow can be seen. Similarly, an application designed for XR_ENVIRONMENT_BLEND_MODE_OPAQUE or XR_ENVIRONMENT_BLEND_MODE_ADDITIVE rendering **may** choose to leave garbage in their alpha channel as a side effect of a rendering optimization, but this garbage would appear as visible display artifacts if the environment blend mode was instead XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND.

Not all systems will support all environment blend modes. For example, a VR headset may not support the XR_ENVIRONMENT_BLEND_MODE_ADDITIVE or XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND modes unless it has video passthrough, while an AR headset with an additive display may not support the XR_ENVIRONMENT_BLEND_MODE_OPAQUE or XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND modes.

For devices that can support multiple environment blend modes, such as AR phones with video passthrough, the runtime may optimize power consumption on the device in response to the environment blend mode that the application chooses each frame. For example, if an application on a video passthrough phone knows that it is currently rendering a 360-degree background covering all with blend screen pixels, it can submit frames an environment mode of XR ENVIRONMENT BLEND MODE OPAQUE, saving the runtime the cost of compositing a camera-based underlay of the physical world behind the application's layers.

The xrEnumerateEnvironmentBlendModes function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrEnumerateEnvironmentBlendModes(
 XrInstance
 XrSystemId
 XrViewConfigurationType
 uint32_t
 uint32_t*
 XrEnvironmentBlendMode*

instance, systemId, viewConfigurationType, environmentBlendModeCapacityInput, environmentBlendModeCountOutput, environmentBlendModes);

Parameter Descriptions

- **instance** is the instance from which **systemId** was retrieved.
- systemId is the XrSystemId whose environment blend modes will be enumerated.
- viewConfigurationType is the XrViewConfigurationType to enumerate.
- environmentBlendModeCapacityInput is the capacity of the environmentBlendModes array, or 0 to indicate a request to retrieve the required capacity.
- environmentBlendModeCountOutput is a pointer to the count of environmentBlendModes written, or a pointer to the required capacity in the case that environmentBlendModeCapacityInput is insufficient.
- environmentBlendModes is a pointer to an array of XrEnvironmentBlendMode values, but can be NULL if environmentBlendModeCapacityInput is 0.
- See the Buffer Size Parameters section for a detailed description of retrieving the required environmentBlendModes size.

Enumerates the set of environment blend modes that this runtime supports for a given view configuration of the system. Environment blend modes **should** be in order from highest to lowest runtime preference.

Runtimes **must** always return identical buffer contents from this enumeration for the given systemId and viewConfigurationType for the lifetime of the instance.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- viewConfigurationType must be a valid XrViewConfigurationType value
- environmentBlendModeCountOutput must be a pointer to a uint32_t value
- If environmentBlendModeCapacityInput is not 0, environmentBlendModes **must** be a pointer to an array of environmentBlendModeCapacityInput XrEnvironmentBlendMode values

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED
- XR_ERROR_SYSTEM_INVALID

The possible blend modes are specified by the <u>XrEnvironmentBlendMode</u> enumeration:

typedef enum XrEnvironmentBlendMode {
 XR_ENVIRONMENT_BLEND_MODE_OPAQUE = 1,
 XR_ENVIRONMENT_BLEND_MODE_ADDITIVE = 2,
 XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND = 3,
 XR_ENVIRONMENT_BLEND_MODE_MAX_ENUM = 0x7FFFFFF
} XrEnvironmentBlendMode;

Enumerant Descriptions

- XR_ENVIRONMENT_BLEND_MODE_OPAQUE. The composition layers will be displayed with no view of the physical world behind them. The composited image will be interpreted as an RGB image, ignoring the composited alpha channel. This is the typical mode for VR experiences, although this mode can also be supported on devices that support video passthrough.
- XR_ENVIRONMENT_BLEND_MODE_ADDITIVE. The composition layers will be additively blended with the real world behind the display. The composited image will be interpreted as an RGB image, ignoring the composited alpha channel during the additive blending. This will cause black composited pixels to appear transparent. This is the typical mode for an AR experience on a see-through headset with an additive display, although this mode can also be supported on devices that support video passthrough.
- XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND. The composition layers will be alpha-blended with the real world behind the display. The composited image will be interpreted as an RGBA image, with the composited alpha channel determining each pixel's level of blending with the real world behind the display. This is the typical mode for an AR experience on a phone or headset that supports video passthrough.

Chapter 11. Input and Haptics

11.1. Action Overview

OpenXR applications communicate with input devices using XrActions. Actions are created at initialization time and later used to request input device state, create action spaces, or control haptic events. Input action handles represent 'actions' that the application is interested in obtaining the state of, not direct input device hardware. For example, instead of the application directly querying the state of the A button when interacting with a menu, an OpenXR application instead creates a menu_select action at startup then asks OpenXR for the state of the action.

The application recommends that the action be assigned to a specific input source on the input device for a known interaction profile, but runtimes have the ability to choose a different control depending on user preference, input device availability, or any other reason. This abstraction ensures that applications can run on a wide variety of input hardware and maximize user accessibility.

Example usage:

```
XrInstance instance; // previously initialized
XrSession session; // previously initialized
// Create an action set
XrActionSetCreateInfo actionSetInfo{XR TYPE ACTION SET CREATE INFO};
strcpy(actionSetInfo.actionSetName, "gameplay");
strcpy(actionSetInfo.localizedActionSetName, "Gameplay");
actionSetInfo.priority = 0;
XrActionSet inGameActionSet:
CHK_XR(xrCreateActionSet(instance, &actionSetInfo, &inGameActionSet));
// create a "teleport" input action
XrActionCreateInfo actioninfo{XR_TYPE_ACTION_CREATE_INFO};
strcpy(actioninfo.actionName, "teleport");
actioninfo.actionType = XR ACTION TYPE BOOLEAN INPUT;
strcpy(actioninfo.localizedActionName, "Teleport");
XrAction teleportAction;
CHK_XR(xrCreateAction(inGameActionSet, &actioninfo, &teleportAction));
// create a "player_hit" output action
XrActionCreateInfo hapticsactioninfo{XR_TYPE_ACTION_CREATE_INFO};
strcpy(hapticsactioninfo.actionName, "player_hit");
hapticsactioninfo.actionType = XR_ACTION_TYPE_VIBRATION_OUTPUT;
strcpy(hapticsactioninfo.localizedActionName, "Player hit");
XrAction hapticsAction;
CHK_XR(xrCreateAction(inGameActionSet, &hapticsactioninfo, &hapticsAction));
```

```
XrPath triggerClickPath, hapticPath;
CHK_XR(xrStringToPath(instance, "/user/hand/right/input/trigger/click",
&triggerClickPath));
CHK_XR(xrStringToPath(instance, "/user/hand/right/output/haptic", &hapticPath))
XrPath interactionProfilePath;
CHK_XR(xrStringToPath(instance, "/interaction_profiles/vendor_x/profile_x",
&interactionProfilePath));
XrActionSuggestedBinding bindings[2];
bindings[0].action = teleportAction;
bindings[0].binding = triggerClickPath;
bindings[1].action = hapticsAction;
bindings[1].binding = hapticPath;
XrInteractionProfileSuggestedBinding
suggestedBindings{XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING};
suggestedBindings.interactionProfile = interactionProfilePath;
suggestedBindings.suggestedBindings = bindings;
suggestedBindings.countSuggestedBindings = 2;
CHK_XR(xrSuggestInteractionProfileBindings(instance, &suggestedBindings));
XrSessionActionSetsAttachInfo attachInfo{XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO};
attachInfo.countActionSets = 1;
attachInfo.actionSets = &inGameActionSet;
CHK_XR(xrAttachSessionActionSets(session, &attachInfo));
// application main loop
while (1)
{
    // sync action data
    XrActiveActionSet activeActionSet{inGameActionSet, XR NULL PATH};
    XrActionsSyncInfo syncInfo{XR_TYPE_ACTIONS_SYNC_INFO};
    syncInfo.countActiveActionSets = 1;
    syncInfo.activeActionSets = &activeActionSet;
    CHK_XR(xrSyncActions(session, &syncInfo));
    // query input action state
    XrActionStateBoolean teleportState{XR_TYPE_ACTION_STATE_BOOLEAN};
    XrActionStateGetInfo getInfo{XR TYPE ACTION STATE GET INFO};
    getInfo.action = teleportAction;
    CHK_XR(xrGetActionStateBoolean(session, &getInfo, &teleportState));
    if (teleportState.changedSinceLastSync && teleportState.currentState)
    {
        // fire haptics using output action
        XrHapticVibration vibration{XR_TYPE_HAPTIC_VIBRATION};
        vibration.amplitude = 0.5;
```

```
vibration.duration = 300;
vibration.frequency = 3000;
XrHapticActionInfo hapticActionInfo{XR_TYPE_HAPTIC_ACTION_INFO};
hapticActionInfo.action = hapticsAction;
CHK_XR(xrApplyHapticFeedback(session, &hapticActionInfo, (const
XrHapticBaseHeader*)&vibration));
}
}
```

11.2. Action Sets

XR_DEFINE_HANDLE(XrActionSet)

Action sets are application-defined collections of actions. They are attached to a given XrSession with a xrAttachSessionActionSets call. They are enabled or disabled by the application via xrSyncActions depending on the current application context. For example, a game may have one set of actions that apply to controlling a character and another set for navigating a menu system. When these actions are grouped into two XrActionSet handles they can be selectively enabled and disabled using a single function call.

Actions are passed a handle to their XrActionSet when they are created.

Action sets are created by calling xrCreateActionSet:

The xrCreateActionSet function is defined as:

<pre>// Provided by XR_VERSION_1_0 XrResult xrCreateActionSet(</pre>	
XrInstance	instance,
<mark>const</mark> XrActionSetCreateInfo*	createInfo,
XrActionSet*	actionSet);

Parameter Descriptions

- instance is a handle to an XrInstance.
- createInfo is a pointer to a valid XrActionSetCreateInfo structure that defines the action set being created.
- actionSet is a pointer to an XrActionSet where the created action set is returned.

The xrCreateActionSet function creates an action set and returns a handle to the created action set.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- createInfo must be a pointer to a valid XrActionSetCreateInfo structure
- actionSet must be a pointer to an XrActionSet handle

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED
- XR_ERROR_PATH_FORMAT_INVALID
- XR_ERROR_NAME_INVALID
- XR_ERROR_NAME_DUPLICATED
- XR_ERROR_LOCALIZED_NAME_INVALID
- XR_ERROR_LOCALIZED_NAME_DUPLICATED

The XrActionSetCreateInfo structure is defined as:

<pre>typedef struct XrActionSetCreateInfo {</pre>		
XrStructureType	type;	
const void*	next;	
char	actionSetName[XR_MAX_ACTION_SET_NAME_SIZE];	
char	localizedActionSetName[XR_MAX_LOCALIZED_ACTION_SET_NAME_SIZE];	
uint32_t	priority;	
<pre>} XrActionSetCreateInfo;</pre>		

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- actionSetName is an array containing a NULL terminated non-empty string with the name of this action set.
- localizedActionSetName is an array containing a NULL terminated UTF-8 string that can be presented to the user as a description of the action set. This string should be presented in the system's current active locale.
- priority defines which action sets' actions are active on a given input source when actions on multiple active action sets are bound to the same input source. Larger priority numbers take precedence over smaller priority numbers.

When multiple actions are bound to the same input source, the priority of each action set determines which bindings are suppressed. Runtimes **must** ignore input sources from action sets with a lower priority number if those specific input sources are also present in active actions within a higher priority action set. If multiple action sets with the same priority are bound to the same input source and that is the highest priority number, runtimes **must** process all those bindings at the same time.

Two actions are considered to be bound to the same input source if they use the same identifier and optional location path segments, even if they have different component segments.

When runtimes are ignoring bindings because of priority, they **must** treat the binding to that input source as though they do not exist. That means the isActive field **must** be XR_FALSE when retrieving action data, and that the runtime **must** not provide any visual, haptic, or other feedback related to the binding of that action to that input source. Other actions in the same action set which are bound to input sources that do not collide are not affected and are processed as normal.

If actionSetName or localizedActionSetName are empty strings, the runtime **must** return XR_ERROR_NAME_INVALID or XR_ERROR_LOCALIZED_NAME_INVALID respectively. If actionSetName or localizedActionSetName are duplicates of the corresponding field for any existing action set in the specified instance, the runtime **must** return XR_ERROR_NAME_DUPLICATED or XR_ERROR_LOCALIZED_NAME_DUPLICATED respectively. If the conflicting action set is destroyed, the

conflicting field is no longer considered duplicated. If actionSetName contains characters which are not allowed in a single level of a well-formed path string, the runtime **must** return XR_ERROR_PATH_FORMAT_INVALID.

Valid Usage (Implicit)

- type **must** be XR_TYPE_ACTION_SET_CREATE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- actionSetName must be a null-terminated UTF-8 string whose length is less than or equal to XR_MAX_ACTION_SET_NAME_SIZE
- localizedActionSetName **must** be a null-terminated UTF-8 string whose length is less than or equal to XR_MAX_LOCALIZED_ACTION_SET_NAME_SIZE

The xrDestroyActionSet function is defined as:

actionSet);

Parameter Descriptions

• actionSet is the action set to destroy.

Action set handles **can** be destroyed by calling **xrDestroyActionSet**. When an action set handle is destroyed, all handles of actions in that action set are also destroyed.

The implementation **must** not free underlying resources for the action set while there are other valid handles that refer to those resources. The implementation **may** release resources for an action set when all of the action spaces for actions in that action set have been destroyed. See Action Spaces Lifetime for details.

Resources for all action sets in an instance **must** be freed when the instance containing those actions sets is destroyed.

Valid Usage (Implicit)

• actionSet **must** be a valid XrActionSet handle

Thread Safety

• Access to actionSet, and any child handles, **must** be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

11.3. Creating Actions

XR_DEFINE_HANDLE(XrAction)

Action handles are used to refer to individual actions when retrieving action data, creating action spaces, or sending haptic events.

The xrCreateAction function is defined as:

```
// Provided by XR_VERSION_1_0
XrResult xrCreateAction(
    XrActionSet
    const XrActionCreateInfo*
    XrAction*
```

actionSet, createInfo, action);

Parameter Descriptions

- actionSet is a handle to an XrActionSet.
- createInfo is a pointer to a valid XrActionCreateInfo structure that defines the action being created.
- action is a pointer to an XrAction where the created action is returned.

xrCreateAction creates an action and returns its handle.

If actionSet has been included in a call to xrAttachSessionActionSets, the implementation **must** return XR_ERROR_ACTIONSETS_ALREADY_ATTACHED.

Valid Usage (Implicit)

- actionSet must be a valid XrActionSet handle
- createInfo must be a pointer to a valid XrActionCreateInfo structure
- action must be a pointer to an XrAction handle

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_PATH_FORMAT_INVALID
- XR_ERROR_NAME_INVALID
- XR_ERROR_NAME_DUPLICATED
- XR_ERROR_LOCALIZED_NAME_INVALID
- XR_ERROR_LOCALIZED_NAME_DUPLICATED
- XR_ERROR_ACTIONSETS_ALREADY_ATTACHED

The XrActionCreateInfo structure is defined as:

typedef struct XrActio	nCreateInfo {
XrStructureType	type;
const void*	next;
char	actionName[XR_MAX_ACTION_NAME_SIZE];
XrActionType	actionType;
uint32_t	countSubactionPaths;
<pre>const XrPath*</pre>	subactionPaths;
char	localizedActionName[XR_MAX_LOCALIZED_ACTION_NAME_SIZE];
<pre>} XrActionCreateInfo;</pre>	

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- actionName is an array containing a NULL terminated string with the name of this action.
- actionType is the XrActionType of the action to be created.
- countSubactionPaths is the number of elements in the subactionPaths array. If subactionPaths is NULL, this parameter must be 0.
- subactionPaths is an array of XrPath or NULL. If this array is specified, it contains one or more subaction paths that the application intends to query action state for.
- localizedActionName is an array containing a NULL terminated UTF-8 string that can be presented to the user as a description of the action. This string should be in the system's current active locale.

Subaction paths are a mechanism that enables applications to use the same action name and handle on multiple devices. Applications can query action state using subaction paths that differentiate data coming from each device. This allows the runtime to group logically equivalent actions together in system UI. For instance, an application could create a single pick_up action with the */user/hand/left* and */user/hand/right* subaction paths and use the subaction paths to independently query the state of pick_up_with_left_hand and pick_up_with_right_hand.

Applications **can** create actions with or without the subactionPaths set to a list of paths. If this list of paths is omitted (i.e. subactionPaths is set to NULL, and countSubactionPaths is set to 0), the application is opting out of filtering action results by subaction paths and any call to get action data must also omit subaction paths.

If subactionPaths is specified and any of the following conditions are not satisfied, the runtime **must** return XR_ERROR_PATH_UNSUPPORTED:

• Each path provided is one of:

- /user/head
- /user/hand/left
- /user/hand/right
- /user/gamepad
- No path appears in the list more than once

Extensions **may** append additional top level user paths to the above list.

Note

Earlier revisions of the spec mentioned */user* but it could not be implemented as specified and was removed as errata.

The runtime **must** return XR_ERROR_PATH_UNSUPPORTED in the following circumstances:

- The application specified subaction paths at action creation and the application called xrGetActionState* or a haptic function with an empty subaction path array.
- The application called xrGetActionState* or a haptic function with a subaction path that was not specified when the action was created.

If actionName or localizedActionName are empty strings, the runtime **must** return XR_ERROR_NAME_INVALID or XR_ERROR_LOCALIZED_NAME_INVALID respectively. If actionName or localizedActionName are duplicates of the corresponding field for any existing action in the specified action set, the runtime **must** return XR_ERROR_NAME_DUPLICATED or XR_ERROR_LOCALIZED_NAME_DUPLICATED respectively. If the conflicting action is destroyed, the conflicting field is no longer considered duplicated. If actionName contains characters which are not allowed in a single level of a well-formed path string, the runtime **must** return XR_ERROR_PATH_FORMAT_INVALID.

Valid Usage (Implicit)

- type must be XR_TYPE_ACTION_CREATE_INFO
- next **must** be NULL or a valid pointer to the next structure in a structure chain
- actionName must be a null-terminated UTF-8 string whose length is less than or equal to XR_MAX_ACTION_NAME_SIZE
- actionType must be a valid XrActionType value
- If countSubactionPaths is not 0, subactionPaths **must** be a pointer to an array of countSubactionPaths valid XrPath values
- localizedActionName **must** be a null-terminated UTF-8 string whose length is less than or equal to XR_MAX_LOCALIZED_ACTION_NAME_SIZE

The XrActionType parameter takes one of the following values:

typedef enum XrActionType {
 XR_ACTION_TYPE_BOOLEAN_INPUT = 1,
 XR_ACTION_TYPE_FLOAT_INPUT = 2,
 XR_ACTION_TYPE_VECTOR2F_INPUT = 3,
 XR_ACTION_TYPE_POSE_INPUT = 4,
 XR_ACTION_TYPE_VIBRATION_OUTPUT = 100,
 XR_ACTION_TYPE_MAX_ENUM = 0x7FFFFFFF
} XrActionType;

Enumerant Descriptions

- XR_ACTION_TYPE_BOOLEAN_INPUT. The action can be passed to xrGetActionStateBoolean to retrieve a boolean value.
- XR_ACTION_TYPE_FLOAT_INPUT. The action can be passed to xrGetActionStateFloat to retrieve a float value.
- XR_ACTION_TYPE_VECTOR2F_INPUT. The action can be passed to xrGetActionStateVector2f to retrieve a 2D float vector.
- XR_ACTION_TYPE_POSE_INPUT. The action can can be passed to xrCreateActionSpace to create a space.
- XR_ACTION_TYPE_VIBRATION_OUTPUT. The action can be passed to xrApplyHapticFeedback to send a haptic event to the runtime.

The xrDestroyAction function is defined as:

action);

Parameter Descriptions

• action is the action to destroy.

Action handles **can** be destroyed by calling <u>xrDestroyAction</u>. Handles for actions that are part of an action set are automatically destroyed when the action set's handle is destroyed.

The implementation **must** not destroy the underlying resources for an action when xrDestroyAction is

called. Those resources are still used to make action spaces locatable and when processing action priority in xrSyncActions. Destroying the action handle removes the application's access to these resources, but has no other change on actions.

Resources for all actions in an instance **must** be freed when the instance containing those actions sets is destroyed.

Valid Usage (Implicit)

• action must be a valid XrAction handle

Thread Safety

• Access to action, and any child handles, **must** be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

11.3.1. Input Actions & Output Actions

Input actions are used to read sensors like buttons or joysticks while output actions are used for triggering haptics or motion platforms. The type of action created by xrCreateAction depends on the value of the XrActionType argument.

A given action can either be used for either input or output, but not both. Input actions are queried using one of the xrGetActionState* function calls, while output actions are set using the haptics calls. If either call is used with an action of the wrong type XR_ERROR_ACTION_TYPE_MISMATCH **must** be returned.

11.4. Suggested Bindings

Applications suggest bindings for their actions to runtimes so that raw input data is mapped appropriately to the application's actions. Suggested bindings also serve as a signal indicating the hardware that has been tested by the application developer. Applications **can** suggest bindings by calling xrSuggestInteractionProfileBindings for each interaction profile that the application is developed and tested with. If bindings are provided for an appropriate interaction profile, the runtime **may** select one and input will begin to flow. Interaction profile selection changes **must** only happen

when xrSyncActions is called. Applications **can** call xrGetCurrentInteractionProfile during on a running session to learn what the active interaction profile are for a top level user path. If this value ever changes, the runtime **must** send an XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED event to the application to indicate that the value should be queried again.

The bindings suggested by this system are only a hint to the runtime. Some runtimes **may** choose to use a different device binding depending on user preference, accessibility settings, or for any other reason. If the runtime is using the values provided by suggested bindings, it **must** make a best effort to convert the input value to the created action and apply certain rules to that use so that suggested bindings function in the same way across runtimes. If an input value cannot be converted to the type of the action, the value **must** be ignored and not contribute to the state of the action.

For actions created with XR_ACTION_TYPE_BOOLEAN_INPUT when the runtime is obeying suggested bindings: Boolean input sources **must** be bound directly to the action. If the path is to a scalar value, a threshold **must** be applied to the value and values over that threshold will be XR_TRUE. The runtime **should** use hysteresis when applying this threshold. The threshold and hysteresis range **may** vary from device to device or component to component and are left as an implementation detail. If the path refers to the parent of input values instead of to an input value itself, the runtime **must** use *.../example/path/click* instead of *.../example/path* if it is available. If a parent path does not have a *.../click* subpath, the runtime **must** use *.../value* and apply the same thresholding that would be applied to any scalar input. In any other situation the runtime **may** provide an alternate binding for the action or it will be unbound.

For actions created with XR_ACTION_TYPE_FLOAT_INPUT when the runtime is obeying suggested bindings: If the input value specified by the path is scalar, the input value **must** be bound directly to the float. If the path refers to the parent of input values instead of to an input value itself, the runtime **must** use *.../example/path/value* instead of *.../example/path* as the source of the value. If a parent path does not have a *.../value* subpath, the runtime **must** use *.../click*. If the input value is boolean, the runtime **must** supply 0.0 or 1.0 as a conversion of the boolean value. In any other situation, the runtime **may** provide an alternate binding for the action or it will be unbound.

For actions created with XR_ACTION_TYPE_VECTOR2F_INPUT when the runtime is obeying suggested bindings: The suggested binding path **must** refer to the parent of input values instead of to the input values themselves, and that parent path **must** contain subpaths .../x and .../y. .../x and .../y **must** be bound to 'x' and 'y' of the vector, respectively. In any other situation, the runtime **may** provide an alternate binding for the action or it will be unbound.

For actions created with XR_ACTION_TYPE_POSE_INPUT when the runtime is obeying suggested bindings: Pose input sources **must** be bound directly to the action. If the path refers to the parent of input values instead of to an input value itself, the runtime **must** use *.../example/path/pose* instead of *.../example/path* if it is available. In any other situation the runtime **may** provide an alternate binding for the action or it will be unbound.

The xrSuggestInteractionProfileBindings function is defined as:

Parameter Descriptions

- instance is the XrInstance for which the application would like to set suggested bindings
- suggestedBindings is the XrInteractionProfileSuggestedBinding that the application would like to set

The xrSuggestInteractionProfileBindings function provides action bindings for a single interaction profile. The application **can** call xrSuggestInteractionProfileBindings once per interaction profile that it supports.

The application **can** provide any number of bindings for each action.

If the application successfully calls xrSuggestInteractionProfileBindings more than once for an interaction profile, the runtime **must** discard the previous suggested bindings and replace them with the new suggested bindings for that profile.

If the interaction profile path does not follow the structure defined in Interaction Profiles or suggested bindings contain paths that do not follow the format defined in Input subpaths (further described in XrActionSuggestedBinding), the runtime **must** return XR_ERROR_PATH_UNSUPPORTED. If the interaction profile or input source for any of the suggested bindings does not exist in the allowlist defined in Interaction Profile Paths, the runtime **must** return XR_ERROR_PATH_UNSUPPORTED. A runtime **must** accept every valid binding in the allowlist though it is free to ignore any of them.

If the action set for any action referenced in the suggestedBindings parameter has been included in a call to xrAttachSessionActionSets, the implementation **must** return XR_ERROR_ACTIONSETS_ALREADY_ATTACHED.

Valid Usage (Implicit)

- instance must be a valid XrInstance handle
- suggestedBindings must be a pointer to a valid XrInteractionProfileSuggestedBinding structure

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTIONSETS_ALREADY_ATTACHED

The XrInteractionProfileSuggestedBinding structure is defined as:

<pre>typedef struct XrInteractionProfileSuggestedBinding {</pre>		
XrStructureType	type;	
const void*	next;	
XrPath	interactionProfile;	
uint32_t	countSuggestedBindings;	
<pre>const XrActionSuggestedBinding*</pre>	<pre>suggestedBindings;</pre>	
<pre>} XrInteractionProfileSuggestedBinding;</pre>		

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- interactionProfile is the XrPath of an interaction profile.
- countSuggestedBindings is the number of suggested bindings in the array pointed to by suggestedBindings.
- suggestedBindings is a pointer to an array of XrActionSuggestedBinding structures that define all of the application's suggested bindings for the specified interaction profile.

Valid Usage (Implicit)

- type **must** be XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING
- next **must** be NULL or a valid pointer to the next structure in a structure chain. See also: XrBindingModificationsKHR
- suggestedBindings **must** be a pointer to an array of countSuggestedBindings valid XrActionSuggestedBinding structures
- The countSuggestedBindings parameter **must** be greater than 0

The XrActionSuggestedBinding structure is defined as:

typedef struct XrActionSuggestedBinding {
 XrAction action;
 XrPath binding;
} XrActionSuggestedBinding;

Member Descriptions

- action is the XrAction handle for an action
- **binding** is the XrPath of a binding for the action specified in action. This path is any top level user path plus input source path, for example /user/hand/right/input/trigger/click. See suggested bindings for more details.

Valid Usage (Implicit)

• action must be a valid XrAction handle

The xrAttachSessionActionSets function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrAttachSessionActionSets(
 XrSession
 const XrSessionActionSetsAttachInfo*
 attachInfo);

Parameter Descriptions

- session is the XrSession to attach the action sets to.
- attachInfo is the XrSessionActionSetsAttachInfo to provide information to attach action sets to the session.

xrAttachSessionActionSets attaches the XrActionSet handles in XrSessionActionSetsAttachInfo ::actionSets to the session. Action sets **must** be attached in order to be synchronized with xrSyncActions.

When an action set is attached to a session, that action set becomes immutable. See xrCreateAction and xrSuggestInteractionProfileBindings for details.

After action sets are attached to a session, if any unattached actions are passed to functions for the same session, then for those functions the runtime **must** return XR_ERROR_ACTIONSET_NOT_ATTACHED.

The runtime **must** return XR_ERROR_ACTIONSETS_ALREADY_ATTACHED if xrAttachSessionActionSets is called more than once for a given session.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- attachInfo must be a pointer to a valid XrSessionActionSetsAttachInfo structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_ACTIONSETS_ALREADY_ATTACHED

The XrSessionActionSetsAttachInfo structure is defined as:

typedef struct XrSessionActionSetsAttachInfo {
 XrStructureType type;
 const void* next;
 uint32_t countActionSets;
 const XrActionSet* actionSets;
} XrSessionActionSetsAttachInfo;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- countActionSets is an integer specifying the number of valid elements in the actionSets array.
- actionSets is a pointer to an array of one or more XrActionSet handles to be attached to the session.

Valid Usage (Implicit)

- type **must** be XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- actionSets must be a pointer to an array of countActionSets valid XrActionSet handles
- The countActionSets parameter must be greater than 0

11.5. Current Interaction Profile

The xrGetCurrentInteractionProfile function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrGetCurrentInteractionProfile(
 XrSession
 XrPath
 XrInteractionProfileState*

session, topLevelUserPath, interactionProfile);

Parameter Descriptions

- session is the XrSession for which the application would like to retrieve the current interaction profile.
- topLevelUserPath is the top level user path the application would like to retrieve the interaction profile for.
- interactionProfile is a pointer to an XrInteractionProfileState structure to receive the current interaction profile.

xrGetCurrentInteractionProfile retrieves the current interaction profile for a top level user path.

The runtime **must** return only interaction profiles for which the application has provided suggested bindings with xrSuggestInteractionProfileBindings or XR_NULL_PATH. The runtime **may** return interaction profiles that do not represent physically present hardware, for example if the runtime is using a known interaction profile to bind to hardware that the application is not aware of. The runtime **may** return the last-known interaction profile in the event that no controllers are active.

If xrAttachSessionActionSets has not yet been called for the session, the runtime **must** return XR_ERROR_ACTIONSET_NOT_ATTACHED. If topLevelUserPath is not one of the top level user paths described in /user paths, the runtime **must** return XR_ERROR_PATH_UNSUPPORTED.

- session must be a valid XrSession handle
- interactionProfile **must** be a pointer to an XrInteractionProfileState structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrInteractionProfileState structure is defined as:

typedef struct XrInteractionProfileState {
 XrStructureType type;
 void* next;
 XrPath interactionProfile;
} XrInteractionProfileState;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- interactionProfile is the XrPath of the interaction profile path for the xrGetCurrentInteractionProfile::topLevelUserPath used to retrieve this state, or XR_NULL_PATH if there is no active interaction profile at that top level user path.

The runtime **must** only include interaction profiles that the application has provided bindings for via xrSuggestInteractionProfileBindings or XR_NULL_PATH. If the runtime is rebinding an interaction profile provided by the application to a device that the application did not provide bindings for, it

must return the interaction profile path that it is emulating. If the runtime is unable to provide input because it cannot emulate any of the application-provided interaction profiles, it **must** return XR_NULL_PATH.

Valid Usage (Implicit)

- type **must** be XR_TYPE_INTERACTION_PROFILE_STATE
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataInteractionProfileChanged structure is defined as:

```
// Provided by XR_VERSION_1_0
typedef struct XrEventDataInteractionProfileChanged {
    XrStructureType type;
    const void* next;
    XrSession session;
} XrEventDataInteractionProfileChanged;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- session is the XrSession for which at least one of the interaction profiles for a top level path has changed.

The XrEventDataInteractionProfileChanged event is queued to notify the application that the current interaction profile for one or more top level user paths has changed. This event **must** only be sent for interaction profiles that the application indicated its support for via xrSuggestInteractionProfileBindings. This event **must** only be queued for running sessions.

Upon receiving this event, an application **can** call **xrGetCurrentInteractionProfile** for each top level user path in use, if its behavior depends on the current interaction profile.

- type **must** be XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED
- next must be NULL or a valid pointer to the next structure in a structure chain

11.6. Reading Input Action State

The current state of an input action can be obtained by calling the xrGetActionState* function call that matches the XrActionType provided when the action was created. If a mismatched call is used to retrieve the state XR_ERROR_ACTION_TYPE_MISMATCH **must** be returned. xrGetActionState* calls for an action in an action set never bound to the session with xrAttachSessionActionSets **must** return XR_ERROR_ACTIONSET_NOT_ATTACHED.

The result of calls to xrGetActionState* for an XrAction and subaction path **must** not change between calls to xrSyncActions. When the combination of the parent XrActionSet and subaction path for an action is passed to xrSyncActions, the runtime **must** update the results from xrGetActionState* after this call with any changes to the state of the underlying hardware. When the parent action set and subaction path for an action is removed from or added to the list of active action sets passed to xrSyncActions, the runtime **must** update isActive to reflect the new active state after this call. In all cases the runtime **must** not change the results of xrGetActionState* calls between calls to xrSyncActions.

When xrGetActionState* or haptic output functions are called while the session is not focused, the runtime **must** set the isActive value to XR_FALSE and suppress all haptic output. Furthermore, the runtime should stop all in-progress haptic events when a session loses focus.

When retrieving action state, lastChangeTime **must** be set to the runtime's best estimate of when the physical state of the part of the device bound to that action last changed.

The currentState value is computed based on the current sync, combining the underlying input sources bound to the provided subactionPaths within this action.

The changedSinceLastSync value **must** be XR_TRUE if the computed currentState value differs from the currentState value that would have been computed as of the previous sync for the same subactionPaths. If there is no previous sync, or the action was not active for the previous sync, the changedSinceLastSync value **must** be set to XR_FALSE.

The isActive value **must** be XR_TRUE whenever an action is bound and a source is providing state data for the current sync. If the action is unbound or no source is present, the isActive value **must** be XR_FALSE. For any action which is inactive, the runtime **must** return zero (or XR_FALSE) for state, XR_FALSE for changedSinceLastSync, and 0 for lastChangeTime.

11.6.1. Resolving a single action bound to multiple inputs or outputs

It is often the case that a single action will be bound to multiple physical inputs simultaneously. In these circumstances, the runtime **must** resolve the ambiguity in that multiple binding as follows:

The current state value is selected based on the type of the action:

- Boolean actions The current state **must** be the result of a boolean OR of all bound inputs
- Float actions The current state **must** be the state of the input with the largest absolute value

- Vector2 actions The current state **must** be the state of the input with the longest length
- Pose actions The current state **must** be the state of a single pose source. The source of the pose **must** only be changed during a call to xrSyncAction. The runtime **should** only change the source in response to user actions, such as picking up a new controller, or external events, such as a controller running out of battery.
- Haptic actions The runtime **must** send output events to all bound haptic devices

11.6.2. Structs to describe action and subaction paths

The XrActionStateGetInfo structure is used to provide action and subaction paths when calling xrGetActionState* function. It is defined as:

```
typedef struct XrActionStateGetInfo {
    XrStructureType type;
    const void* next;
    XrAction action;
    XrPath subactionPath;
} XrActionStateGetInfo;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- action is the XrAction being queried.
- subactionPath is the subaction path XrPath to query data from, or XR_NULL_PATH to specify all subaction paths. If the subaction path is specified, it is one of the subaction paths that were specified when the action was created. If the subaction path was not specified when the action was created, the runtime **must** return XR_ERROR_PATH_UNSUPPORTED. If this parameter is specified, the runtime **must** return data that originates only from the subaction paths specified.

See XrActionCreateInfo for a description of subaction paths, and the restrictions on their use.

Valid Usage (Implicit)

- type **must** be XR_TYPE_ACTION_STATE_GET_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- action must be a valid XrAction handle

The XrHapticActionInfo structure is used to provide action and subaction paths when calling xr*HapticFeedback function. It is defined as:

```
typedef struct XrHapticActionInfo {
    XrStructureType type;
    const void* next;
    XrAction action;
    XrPath subactionPath;
} XrHapticActionInfo;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- action is the XrAction handle for the desired output haptic action.
- subactionPath is the subaction path XrPath of the device to send the haptic event to, or XR_NULL_PATH to specify all subaction paths. If the subaction path is specified, it is one of the subaction paths that were specified when the action was created. If the subaction path was not specified when the action was created, the runtime **must** return XR_ERROR_PATH_UNSUPPORTED. If this parameter is specified, the runtime **must** trigger the haptic events only on the device from the subaction path.

See XrActionCreateInfo for a description of subaction paths, and the restrictions on their use.

- type must be XR_TYPE_HAPTIC_ACTION_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- action must be a valid XrAction handle

11.6.3. Boolean Actions

xrGetActionStateBoolean retrieves the current state of a boolean action. It is defined as:

```
// Provided by XR_VERSION_1_0
XrResult xrGetActionStateBoolean(
    XrSession
    const XrActionStateGetInfo*
    XrActionStateBoolean*
```

Parameter Descriptions

session,

getInfo,

state);

- session is the XrSession to query.
- getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths information.
- state is a pointer to a valid XrActionStateBoolean into which the state will be placed.

- session must be a valid XrSession handle
- getInfo must be a pointer to a valid XrActionStateGetInfo structure
- state must be a pointer to an XrActionStateBoolean structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTION_TYPE_MISMATCH
- XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStateBoolean structure is defined as:

<pre>typedef struct XrActionStateBoolean {</pre>		
XrStructureType	type;	
void*	next;	
XrBool32	currentState;	
XrBool32	changedSinceLastSync;	
XrTime	lastChangeTime;	
XrBool32	isActive;	
<pre>} XrActionStateBoolea</pre>	in;	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- currentState is the current state of the action.
- changedSinceLastSync is XR_TRUE if the value of currentState is different than it was before the most recent call to xrSyncActions. This parameter can be combined with currentState to detect rising and falling edges since the previous call to xrSyncActions. E.g. if both changedSinceLastSync and currentState are XR_TRUE then a rising edge (XR_FALSE to XR_TRUE) has taken place.
- **lastChangeTime** is the XrTime associated with the most recent change to this action's state.
- isActive is XR_TRUE if and only if there exists an input source that is contributing to the current state of this action.

When multiple input sources are bound to this action, the currentState follows the previously defined rule to resolve ambiguity.

Valid Usage (Implicit)

- type **must** be XR_TYPE_ACTION_STATE_BOOLEAN
- next must be NULL or a valid pointer to the next structure in a structure chain

11.6.4. Scalar and Vector Actions

xrGetActionStateFloat retrieves the current state of a floating-point action. It is defined as:

// Provided by XR_VERSION_1_0
XrResult xrGetActionStateFloat(
 XrSession
 const XrActionStateGetInfo*
 XrActionStateFloat*

session, getInfo, state);

Parameter Descriptions

- session is the XrSession to query.
- getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths information.
- state is a pointer to a valid XrActionStateFloat into which the state will be placed.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- getInfo must be a pointer to a valid XrActionStateGetInfo structure
- state must be a pointer to an XrActionStateFloat structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTION_TYPE_MISMATCH
- XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStateFloat structure is defined as:

typedef struct XrActionStateFloat { XrStructureType type; void* next; float currentState; XrBool32 changedSinceLastSync; XrTime lastChangeTime; XrBool32 isActive; } XrActionStateFloat;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- currentState is the current state of the Action.
- changedSinceLastSync is XR_TRUE if the value of currentState is different than it was before the most recent call to xrSyncActions.
- lastChangeTime is the XrTime associated with the most recent change to this action's state.
- isActive is XR_TRUE if and only if there exists an input source that is contributing to the current state of this action.

When multiple input sources are bound to this action, the currentState follows the previously defined rule to resolve ambiguity.

Valid Usage (Implicit)

- type must be XR_TYPE_ACTION_STATE_FLOAT
- next must be NULL or a valid pointer to the next structure in a structure chain

xrGetActionStateVector2f retrieves the current state of a two-dimensional vector action. It is defined as:

```
// Provided by XR_VERSION_1_0
XrResult xrGetActionStateVector2f(
    XrSession session,
    const XrActionStateGetInfo* getInfo,
    XrActionStateVector2f* state);
```

Parameter Descriptions

- session is the XrSession to query.
- getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths information.
- state is a pointer to a valid XrActionStateVector2f into which the state will be placed.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- getInfo must be a pointer to a valid XrActionStateGetInfo structure
- state must be a pointer to an XrActionStateVector2f structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTION_TYPE_MISMATCH
- XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStateVector2f structure is defined as:

typedef struct XrActionStateVector2f { XrStructureType type; void* next; XrVector2f currentState; XrBool32 changedSinceLastSync; XrTime lastChangeTime; XrBool32 isActive; } XrActionStateVector2f;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- currentState is the current XrVector2f state of the Action.
- changedSinceLastSync is XR_TRUE if the value of currentState is different than it was before the most recent call to xrSyncActions.
- **lastChangeTime** is the XrTime associated with the most recent change to this action's state.
- isActive is XR_TRUE if and only if there exists an input source that is contributing to the current state of this action.

When multiple input sources are bound to this action, the currentState follows the previously defined rule to resolve ambiguity.

Valid Usage (Implicit)

- type must be XR_TYPE_ACTION_STATE_VECTOR2F
- next must be NULL or a valid pointer to the next structure in a structure chain

11.6.5. Pose Actions

The xrGetActionStatePose function is defined as:

session,
getInfo,
state);

Parameter Descriptions

- session is the XrSession to query.
- getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths information.
- state is a pointer to a valid XrActionStatePose into which the state will be placed.

xrGetActionStatePose returns information about the binding and active state for the specified action. To determine the pose of this action at a historical or predicted time, the application **can** create an action space using xrCreateActionSpace. Then, after each sync, the application **can** locate the pose of this action space within a base space using xrLocateSpace.

- session must be a valid XrSession handle
- getInfo must be a pointer to a valid XrActionStateGetInfo structure
- state must be a pointer to an XrActionStatePose structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTION_TYPE_MISMATCH
- XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStatePose structure is defined as:

```
typedef struct XrActionStatePose {
    XrStructureType type;
    void* next;
    XrBool32 isActive;
} XrActionStatePose;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- isActive is XR_TRUE if and only if there exists an input source that is being tracked by this pose action.

A pose action **must** not be bound to multiple input sources, according to the previously defined rule.

Valid Usage (Implicit)

- type must be XR_TYPE_ACTION_STATE_POSE
- next must be NULL or a valid pointer to the next structure in a structure chain

11.7. Output Actions and Haptics

Haptic feedback is sent to a device using the xrApplyHapticFeedback function. The hapticEvent points to a supported event structure. All event structures have in common that the first element is an XrHapticBaseHeader which can be used to determine the type of the haptic event.

Haptic feedback may be immediately halted for a haptic action using the xrStopHapticFeedback function.

Output action requests activate immediately and **must** not wait for the next call to xrSyncActions.

If a haptic event is sent to an action before a previous haptic event completes, the latest event will take precedence and the runtime **must** cancel all preceding incomplete haptic events on that action.

Output action requests **must** be discarded and have no effect on hardware if the application's session is not focused.

Output action requests for an action in an action set never attached to the session with xrAttachSessionActionSets **must** return XR_ERROR_ACTIONSET_NOT_ATTACHED.

The only haptics type supported by unextended OpenXR is XrHapticVibration.

The xrApplyHapticFeedback function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrApplyHapticFeedback(
 XrSession
 const XrHapticActionInfo*
 const XrHapticBaseHeader*

session, hapticActionInfo, hapticFeedback);

Parameter Descriptions

- session is the XrSession to start outputting to.
- hapticActionInfo is a pointer to XrHapticActionInfo to provide action and subaction paths information.
- hapticFeedback is a pointer to a haptic event structure which starts with an XrHapticBaseHeader.

Triggers a haptic event through the specified action of type XR_ACTION_TYPE_VIBRATION_OUTPUT. The runtime **should** deliver this request to the appropriate device, but exactly which device, if any, this event is sent to is up to the runtime to decide. If an appropriate device is unavailable the runtime **may** ignore this request for haptic feedback.

If session is not focused, the runtime **must** return XR_SESSION_NOT_FOCUSED, and not trigger a haptic event.

If another haptic event from this session is currently happening on the device bound to this action, the runtime **must** interrupt that other event and replace it with the new one.

- session must be a valid XrSession handle
- hapticActionInfo must be a pointer to a valid XrHapticActionInfo structure
- hapticFeedback must be a pointer to a valid XrHapticBaseHeader-based structure. See also: XrHapticVibration

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING
- XR_SESSION_NOT_FOCUSED

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTION_TYPE_MISMATCH
- XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrHapticBaseHeader structure is defined as:

typedef struct XrHapticBaseHeader { XrStructureType type; const void* next; } XrHapticBaseHeader;

Member Descriptions

- type is the XrStructureType of this structure. This base structure itself has no associated XrStructureType value.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.

Valid Usage (Implicit)

- type must be XR_TYPE_HAPTIC_VIBRATION
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrHapticVibration structure is defined as:

```
// Provided by XR_VERSION_1_0
typedef struct XrHapticVibration {
    XrStructureType type;
    const void* next;
    XrDuration duration;
    float frequency;
    float amplitude;
} XrHapticVibration;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- duration is the number of nanoseconds the vibration **should** last. If XR_MIN_HAPTIC_DURATION is specified, the runtime **must** produce a short haptics pulse of minimal supported duration for the haptic device.
- **frequency** is the frequency of the vibration in Hz. If XR_FREQUENCY_UNSPECIFIED is specified, it is left to the runtime to decide the optimal frequency value to use.
- amplitude is the amplitude of the vibration between 0.0 and 1.0.

The XrHapticVibration is used in calls to xrApplyHapticFeedback that trigger vibration output actions.

The duration, and frequency parameters **may** be clamped to implementation-dependent ranges.

- type must be XR_TYPE_HAPTIC_VIBRATION
- next must be NULL or a valid pointer to the next structure in a structure chain

XR_MIN_HAPTIC_DURATION is used to indicate to the runtime that a short haptic pulse of the minimal supported duration for the haptic device.

// Provided by XR_VERSION_1_0
#define XR_MIN_HAPTIC_DURATION -1

XR_FREQUENCY_UNSPECIFIED is used to indicate that the application wants the runtime to decide what the optimal frequency is for the haptic pulse.

// Provided by XR_VERSION_1_0
#define XR_FREQUENCY_UNSPECIFIED 0

The xrStopHapticFeedback function is defined as:

// Provided by XR_VERSION_1_0
XrResult xrStopHapticFeedback(
 XrSession
 const XrHapticActionInfo*

session,
hapticActionInfo);

Parameter Descriptions

- session is the XrSession to stop outputting to.
- hapticActionInfo is a pointer to an XrHapticActionInfo to provide action and subaction path information.

If a haptic event from this XrAction is in progress, when this function is called the runtime **must** stop that event.

If session is not focused, the runtime **must** return XR_SESSION_NOT_FOCUSED.

- session must be a valid XrSession handle
- hapticActionInfo must be a pointer to a valid XrHapticActionInfo structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING
- XR_SESSION_NOT_FOCUSED

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTION_TYPE_MISMATCH
- XR_ERROR_ACTIONSET_NOT_ATTACHED

11.8. Input Action State Synchronization

The xrSyncActions function is defined as:

```
// Provided by XR_VERSION_1_0
XrResult xrSyncActions(
    XrSession session,
    const XrActionsSyncInfo* syncInfo);
```

Parameter Descriptions

- session is a handle to the XrSession that all provided action set handles belong to.
- syncInfo is an XrActionsSyncInfo providing information to synchronize action states.

xrSyncActions updates the current state of input actions. Repeated input action state queries between subsequent synchronization calls **must** return the same values. The XrActionSet structures referenced in the XrActionsSyncInfo::activeActionSets **must** have been previously attached to the session via xrAttachSessionActionSets. If any action sets not attached to this session are passed to xrSyncActions it **must** return XR_ERROR_ACTIONSET_NOT_ATTACHED. Subsets of the bound action sets **can** be synchronized in order to control which actions are seen as active.

If session is not focused, the runtime **must** return XR_SESSION_NOT_FOCUSED, and all action states in the session **must** be inactive.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- syncInfo must be a pointer to a valid XrActionsSyncInfo structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING
- XR_SESSION_NOT_FOCUSED

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionsSyncInfo structure is defined as:

<pre>typedef struct XrActionsSyncInfo {</pre>		
XrStructureType	type;	
const void*	next;	
uint32_t	<pre>countActiveActionSets;</pre>	
<pre>const XrActiveActionSet*</pre>	activeActionSets;	
<pre>} XrActionsSyncInfo;</pre>		

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- countActiveActionSets is an integer specifying the number of valid elements in the activeActionSets array.
- activeActionSets is NULL or a pointer to an array of one or more XrActiveActionSet structures that should be synchronized.

Valid Usage (Implicit)

- type must be XR_TYPE_ACTIONS_SYNC_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- If countActiveActionSets is not 0, activeActionSets **must** be a pointer to an array of countActiveActionSets valid XrActiveActionSet structures

The XrActiveActionSet structure is defined as:

typedef struct XrActiveActionSet {
 XrActionSet actionSet;
 XrPath subactionPath;
} XrActiveActionSet;

Member Descriptions

- actionSet is the handle of the action set to activate.
- subactionPath is a subaction path that was declared when one or more actions in the action set was created or XR_NULL_PATH. If the application wants to activate the action set on more than one subaction path, it can include additional XrActiveActionSet structs with the other subactionPath values. Using XR_NULL_PATH as the value for subactionPath, acts as a wildcard for all subaction paths on the actions in the action set. If the subaction path was not specified on any of the actions in the actionSet when that action was created, the runtime must return XR_ERROR_PATH_UNSUPPORTED.

This structure defines a single active action set and subaction path combination. Applications **can** provide a list of these structures to the xrSyncActions function.

Valid Usage (Implicit)

actionSet must be a valid XrActionSet handle

11.9. Bound Sources

An application **can** use the xrEnumerateBoundSourcesForAction and xrGetInputSourceLocalizedName calls to prompt the user which physical inputs to use in order to perform an action. The bound sources are XrPath semantic paths representing the physical controls that an action is bound to. An action **may** be bound to multiple sources at one time, for example an action named **hold** could be bound to both the X and A buttons.

Once the bound sources for an action are obtained, the application **can** gather additional information about it. **xrGetInputSourceLocalizedName** returns a localized human-readable string describing the bound physical control, e.g. 'A Button'.

The xrEnumerateBoundSourcesForAction function is defined as:

<pre>// Provided by XR_VERSION_1_0 XrResult xrEnumerateBoundSourcesForAction(</pre>	
XrSession	session,
<pre>const XrBoundSourcesForActionEnumerateInfo*</pre>	enumerateInfo,
uint32_t	sourceCapacityInput,
uint32_t*	sourceCountOutput,
XrPath*	sources);

Parameter Descriptions

- session is the XrSession being queried.
- enumerateInfo is an XrBoundSourcesForActionEnumerateInfo providing the query information.
- **sourceCapacityInput** is the capacity of the array, or 0 to indicate a request to retrieve the required capacity.
- sourceCountOutput is a pointer to the count of sources, or a pointer to the required capacity in the case that sourceCapacityInput is insufficient.
- sources is a pointer to an application-allocated array that will be filled with the XrPath values for all bound sources. It **can** be NULL if sourceCapacityInput is 0.
- See the Buffer Size Parameters section for a detailed description of retrieving the required sources size.

If an action is unbound, xrEnumerateBoundSourcesForAction **must** assign 0 to the value pointed-to by sourceCountOutput and not modify the array.

xrEnumerateBoundSourcesForAction **must** return XR_ERROR_ACTIONSET_NOT_ATTACHED if passed an action in an action set never attached to the session with xrAttachSessionActionSets.

As bindings for actions do not change between calls to xrSyncActions, xrEnumerateBoundSourcesForAction **must** enumerate the same set of bound sources, or absence of bound sources, for a given query (defined by the enumerateInfo parameter) between any two calls to xrSyncActions.

Note

The XrPath bound sources returned by the runtime are opaque values and **should** not be inspected or persisted. They are only intended for use in conjunction with xrGetInputSourceLocalizedName.

- session must be a valid XrSession handle
- enumerateInfo **must** be a pointer to a valid XrBoundSourcesForActionEnumerateInfo structure
- sourceCountOutput must be a pointer to a uint32_t value
- If sourceCapacityInput is not 0, sources **must** be a pointer to an array of sourceCapacityInput XrPath values

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrBoundSourcesForActionEnumerateInfo structure is defined as:

typedef struct XrBoundSourcesForActionEnumerateInfo {
 XrStructureType type;
 const void* next;
 XrAction action;
} XrBoundSourcesForActionEnumerateInfo;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- action is the handle of the action to query.

Valid Usage (Implicit)

- type **must** be XR_TYPE_BOUND_SOURCES_FOR_ACTION_ENUMERATE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- action must be a valid XrAction handle

The xrGetInputSourceLocalizedName function is defined as:

```
// Provided by XR_VERSION_1_0
XrResult xrGetInputSourceLocalizedName(
    XrSession session,
    const XrInputSourceLocalizedNameGetInfo*
    uint32_t
    uint32_t*
    char*
    bufferCountOutput,
    buffer);
```

Parameter Descriptions

- session is a handle to the XrSession associated with the action that reported this bound source.
- getInfo is an XrInputSourceLocalizedNameGetInfo providing the query information.
- **bufferCapacityInput** is the capacity of the **buffer**, or 0 to indicate a request to retrieve the required capacity.
- bufferCountOutput is a pointer to the count of name characters written to buffer (including the terminating \0), or a pointer to the required capacity in the case that bufferCapacityInput is insufficient.
- **buffer** is a pointer to an application-allocated buffer that will be filled with the bound source name. It **can** be NULL if **bufferCapacityInput** is 0.
- See the Buffer Size Parameters section for a detailed description of retrieving the required buffer size.

xrGetInputSourceLocalizedName returns a string for the bound source in the current system locale.

If xrAttachSessionActionSets has not yet been called for the session, the runtime **must** return XR_ERROR_ACTIONSET_NOT_ATTACHED.

Valid Usage (Implicit)

- session must be a valid XrSession handle
- getInfo must be a pointer to a valid XrInputSourceLocalizedNameGetInfo structure
- bufferCountOutput must be a pointer to a uint32_t value
- If bufferCapacityInput is not 0, buffer **must** be a pointer to an array of bufferCapacityInput char values

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_PATH_UNSUPPORTED
- XR_ERROR_PATH_INVALID
- XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrInputSourceLocalizedNameGetInfo structure is defined as:

<pre>typedef struct XrInputSourceLocalizedNameGetInfo {</pre>		
XrStructureType	type;	
const void*	next;	
XrPath	sourcePath;	
XrInputSourceLocalizedNameFlags	whichComponents;	
<pre>} XrInputSourceLocalizedNameGetInfo;</pre>		

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR.
- sourcePath is an XrPath representing a bound source returned by xrEnumerateBoundSourcesForAction.
- whichComponents is any set of flags from XrInputSourceLocalizedNameFlagBits.

The result of passing an XrPath sourcePath **not** retrieved from xrEnumerateBoundSourcesForAction is not specified.

Valid Usage (Implicit)

- type **must** be XR_TYPE_INPUT_SOURCE_LOCALIZED_NAME_GET_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- whichComponents must be a valid combination of XrInputSourceLocalizedNameFlagBits values
- whichComponents must not be 0

The XrInputSourceLocalizedNameGetInfo::whichComponents parameter is of the following type, and contains a bitwise-OR of one or more of the bits defined in XrInputSourceLocalizedNameFlagBits.

typedef XrFlags64 XrInputSourceLocalizedNameFlags;

// Flag bits for XrInputSourceLocalizedNameFlags
static const XrInputSourceLocalizedNameFlags XR_INPUT_SOURCE_LOCALIZED_NAME_USER_PATH_BIT
= 0x00000001;
static const XrInputSourceLocalizedNameFlags
XR_INPUT_SOURCE_LOCALIZED_NAME_INTERACTION_PROFILE_BIT = 0x00000002;
static const XrInputSourceLocalizedNameFlags XR_INPUT_SOURCE_LOCALIZED_NAME_COMPONENT_BIT
= 0x00000004;

The flag bits have the following meanings:

Flag Descriptions

- XR_INPUT_SOURCE_LOCALIZED_NAME_USER_PATH_BIT indicates that the runtime **must** include the user path portion of the string in the result, if available. E.g. Left Hand.
- XR_INPUT_SOURCE_LOCALIZED_NAME_INTERACTION_PROFILE_BIT indicates that the runtime **must** include the interaction profile portion of the string in the result, if available. E.g. Vive Controller.
- XR_INPUT_SOURCE_LOCALIZED_NAME_COMPONENT_BIT indicates that the runtime **must** include the input component portion of the string in the result, if available. E.g. Trigger.

Chapter 12. List of Current Extensions

- XR_KHR_android_create_instance
- XR_KHR_android_surface_swapchain
- XR_KHR_android_thread_settings
- XR_KHR_binding_modification
- XR_KHR_composition_layer_color_scale_bias
- XR_KHR_composition_layer_cube
- XR_KHR_composition_layer_cylinder
- XR_KHR_composition_layer_depth
- XR_KHR_composition_layer_equirect
- XR_KHR_composition_layer_equirect2
- XR_KHR_convert_timespec_time
- XR_KHR_D3D11_enable
- XR_KHR_D3D12_enable
- XR_KHR_loader_init
- XR_KHR_loader_init_android
- XR_KHR_opengl_enable
- XR_KHR_opengl_es_enable
- XR_KHR_swapchain_usage_input_attachment_bit
- XR_KHR_visibility_mask
- XR_KHR_vulkan_enable
- XR_KHR_vulkan_enable2
- XR_KHR_vulkan_swapchain_format_list
- XR_KHR_win32_convert_performance_counter_time

12.1. XR_KHR_android_create_instance

Name String

XR_KHR_android_create_instance

Extension Type

Instance extension

Registered Extension Number

9

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-07-17

IP Status

No known IP claims.

Contributors

Robert Menzel, NVIDIA Martin Renschler, Qualcomm Krzysztof Kosiński, Google

Overview

When the application creates an XrInstance object on Android systems, additional information from the application has to be provided to the XR runtime.

The Android XR runtime **must** return error XR_ERROR_VALIDATION_FAILURE if the additional information is not provided by the application or if the additional parameters are invalid.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_INSTANCE_CREATE_INFO_ANDROID_KHR

New Enums

New Structures

The XrInstanceCreateInfoAndroidKHR structure is defined as:

// Provided by XR_KHR_android_create_instance
typedef struct XrInstanceCreateInfoAndroidKHR {
 XrStructureType type;
 const void* next;
 void* applicationVM;
 void* applicationActivity;
} XrInstanceCreateInfoAndroidKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- applicationVM is a pointer to the JNI's opaque JavaVM structure, cast to a void pointer.
- applicationActivity is a JNI reference to an android.app.Activity that will drive the session lifecycle of this instance, cast to a void pointer.

XrInstanceCreateInfoAndroidKHR contains additional Android specific information needed when calling xrCreateInstance. The applicationVM field should be populated with the JavaVM structure received by the JNI_OnLoad function, while the applicationActivity field will typically contain a reference to a Java activity object received through an application-specific native method. The XrInstanceCreateInfoAndroidKHR structure **must** be provided in the next chain of the XrInstanceCreateInfo structure when calling xrCreateInstance.

Valid Usage (Implicit)

- The XR_KHR_android_create_instance extension **must** be enabled prior to using XrInstanceCreateInfoAndroidKHR
- type **must** be XR_TYPE_INSTANCE_CREATE_INFO_ANDROID_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- applicationVM must be a pointer value
- applicationActivity must be a pointer value

New Functions

Issues

Version History

- Revision 1, 2017-05-26 (Robert Menzel)
 - Initial draft
- Revision 2, 2019-01-24 (Martin Renschler)
 - Added error code, reformatted
- Revision 3, 2019-07-17 (Krzysztof Kosiński)
 - Non-substantive clarifications.

12.2. XR_KHR_android_surface_swapchain

Name String

XR_KHR_android_surface_swapchain

Extension Type

Instance extension

Registered Extension Number

5

Revision

4

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-05-30

IP Status

No known IP claims.

Contributors

Krzysztof Kosiński, Google Johannes van Waveren, Oculus Martin Renschler, Qualcomm

Overview

A common activity in XR is to view an image stream. Image streams are often the result of camera

previews or decoded video streams. On Android, the basic primitive representing the producer end of an image queue is the class android.view.Surface. This extension provides a special swapchain that uses an android.view.Surface as its producer end.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

To create an XrSwapchain object and an Android Surface object call:

// Provided by XR_KHR_android_surface_swapchai	N
<pre>XrResult xrCreateSwapchainAndroidSurfaceKHR(</pre>	
XrSession	session,
<pre>const XrSwapchainCreateInfo*</pre>	info,
XrSwapchain*	swapchain,
jobject*	<pre>surface);</pre>

Parameter Descriptions

- session is an XrSession handle previously created with xrCreateSession.
- info is a pointer to an XrSwapchainCreateInfo structure.
- swapchain is a pointer to a handle in which the created XrSwapchain is returned.
- surface is a pointer to a jobject where the created Android Surface is returned.

xrCreateSwapchainAndroidSurfaceKHR creates an XrSwapchain object returned in swapchain and an Android Surface jobject returned in surface. The jobject **must** be valid to be passed back to Java code using JNI and **must** be valid to be used with ordinary Android APIs for submitting images to Surfaces. The returned XrSwapchain **must** be valid to be referenced in XrSwapchainSubImage structures to show content on the screen. The width and height passed in XrSwapchainCreateInfo **may** not be persistent throughout the life cycle of the created swapchain, since on Android, the size of the images is controlled by the producer and possibly changes at any time.

The only function that is allowed to be called on the XrSwapchain returned from this function is xrDestroySwapchain. For example, calling any of the functions xrEnumerateSwapchainImages,

xrAcquireSwapchainImage, xrWaitSwapchainImage or xrReleaseSwapchainImage is invalid.

When the application receives the XrEventDataSessionStateChanged event with the XR_SESSION_STATE_STOPPING state, it **must** ensure that no threads are writing to any of the Android surfaces created with this extension before calling xrEndSession. The effect of writing frames to the Surface when the session is in states other than XR_SESSION_STATE_VISIBLE or XR_SESSION_STATE_FOCUSED is undefined.

xrCreateSwapchainAndroidSurfaceKHR **must** return the same set of error codes as xrCreateSwapchain under the same circumstances, plus XR_ERROR_FUNCTION_UNSUPPORTED in case the function is not supported.

Valid Usage of XrSwapchainCreateInfo members

 The XrSwapchainCreateInfo::format, XrSwapchainCreateInfo::sampleCount, XrSwapchainCreateInfo::faceCount, XrSwapchainCreateInfo::arraySize and XrSwapchainCreateInfo::mipCount members of the structure passed as the info parameter must be zero.

Valid Usage (Implicit)

- The XR_KHR_android_surface_swapchain extension **must** be enabled prior to calling xrCreateSwapchainAndroidSurfaceKHR
- session must be a valid XrSession handle
- info must be a pointer to a valid XrSwapchainCreateInfo structure
- swapchain must be a pointer to an XrSwapchain handle
- surface must be a pointer to a jobject value

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED

Issues

Version History

- Revision 1, 2017-01-17 (Johannes van Waveren)
 - Initial draft
- Revision 2, 2017-10-30 (Kaye Mason)
 - Changed images to swapchains, used snippet includes. Added issue for Surfaces.
- Revision 3, 2018-05-16 (Krzysztof Kosiński)
 - Refactored to use Surface instead of SurfaceTexture.
- Revision 4, 2019-01-24 (Martin Renschler)
 - Refined the specification of the extension

12.3. XR_KHR_android_thread_settings

Name String

XR_KHR_android_thread_settings

Extension Type

Instance extension

Registered Extension Number

4

Revision

6

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-12-04

IP Status

No known IP claims.

Contributors

Cass Everitt, Oculus Johannes van Waveren, Oculus Martin Renschler, Qualcomm Krzysztof Kosiński, Google Xiang Wei, Meta

Overview

For XR to be comfortable, it is important for applications to deliver frames quickly and consistently. In order to make sure the important application threads get their full share of time, these threads must be identified to the system, which will adjust their scheduling priority accordingly.

New Object Types

New Flag Types

New Enum Constants

XrResult enumeration is extended with:

- XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR
- XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR

New Enums

The possible thread types are specified by the XrAndroidThreadTypeKHR enumeration:

// Provided by XR_KHR_android_thread_settings
typedef enum XrAndroidThreadTypeKHR {
 XR_ANDROID_THREAD_TYPE_APPLICATION_MAIN_KHR = 1,
 XR_ANDROID_THREAD_TYPE_APPLICATION_WORKER_KHR = 2,
 XR_ANDROID_THREAD_TYPE_RENDERER_MAIN_KHR = 3,
 XR_ANDROID_THREAD_TYPE_RENDERER_WORKER_KHR = 4,
 XR_ANDROID_THREAD_TYPE_MAX_ENUM_KHR = 0x7FFFFFFF
} XrAndroidThreadTypeKHR;

Enumerants

- XR_ANDROID_THREAD_TYPE_APPLICATION_MAIN_KHR hints the XR runtime that the thread is doing time critical CPU tasks
- XR_ANDROID_THREAD_TYPE_APPLICATION_WORKER_KHR hints the XR runtime that the thread is doing background CPU tasks
- XR_ANDROID_THREAD_TYPE_RENDERER_MAIN_KHR hints the XR runtime that the thread is doing time critical graphics device tasks
- XR_ANDROID_THREAD_TYPE_RENDERER_WORKER_KHR hints the XR runtime that the thread is doing background graphics device tasks

New Structures

New Functions

To declare a thread to be of a certain XrAndroidThreadTypeKHR type call:

session,
threadType,
threadId);

Parameter Descriptions

- session is a valid XrSession handle.
- threadType is a classification of the declared thread allowing the XR runtime to apply the relevant priority and attributes. If such settings fail, the runtime **must** return XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR.
- threadId is the kernel thread ID of the declared thread, as returned by gettid() or android.os.process.myTid(). If the thread ID is invalid, the runtime **must** return XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR.

xrSetAndroidApplicationThreadKHR allows to declare an XR-critical thread and to classify it.

Valid Usage (Implicit)

- The XR_KHR_android_thread_settings extension **must** be enabled prior to calling xrSetAndroidApplicationThreadKHR
- session must be a valid XrSession handle
- threadType must be a valid XrAndroidThreadTypeKHR value

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR
- XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR

Version History

- Revision 1, 2017-01-17 (Johannes van Waveren)
 - Initial draft.
- Revision 2, 2017-10-31 (Armelle Laine)
 - $\,\circ\,$ Move the performance settings to EXT extension.
- Revision 3, 2018-12-20 (Paul Pedriana)
 - \circ Revised the error code naming to use KHR and renamed xrSetApplicationThreadKHR \rightarrow xrSetAndroidApplicationThreadKHR.
- Revision 4, 2019-01-24 (Martin Renschler)
 - Added enum specification, reformatting
- Revision 5, 2019-07-17 (Krzysztof Kosiński)
 - $\,\circ\,$ Clarify the type of thread identifier used by the extension.
- Revision 6, 2023-12-04 (Xiang Wei)
 - Revise/fix the hints of enum specification

12.4. XR_KHR_binding_modification

Name String

XR_KHR_binding_modification

Extension Type

Instance extension

Registered Extension Number

121

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-07-29

IP Status

No known IP claims.

Contributors

Joe Ludwig, Valve

Contacts

Joe Ludwig, Valve

Overview

This extension adds an optional structure that can be included on the XrInteractionProfileSuggestedBinding::next chain passed to xrSuggestInteractionProfileBindings to specify additional information to modify default binding behavior.

This extension does not define any actual modification structs, but includes the list of modifications and the XrBindingModificationBaseHeaderKHR structure to allow other extensions to provide specific modifications.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

- XR_TYPE_BINDING_MODIFICATIONS_KHR
- **New Enums**

New Structures

The XrBindingModificationsKHR structure is defined as:

<pre>// Provided by XR_KHR_binding_modification typedef struct XrBindingModificationsKHR {</pre>	
XrStructureType	type;
const void*	next;
uint32_t	<pre>bindingModificationCount;</pre>
<pre>const XrBindingModificationBaseHeaderKHR* const*</pre>	<pre>bindingModifications;</pre>
<pre>} XrBindingModificationsKHR;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain.
- bindingModificationCount is the number of binding modifications in the array pointed to by bindingModifications.
- **bindingModifications** is a pointer to an array of pointers to binding modification structures based on XrBindingModificationBaseHeaderKHR, that define all of the application's suggested binding modifications for the specified interaction profile.

Valid Usage (Implicit)

- The XR_KHR_binding_modification extension **must** be enabled prior to using XrBindingModificationsKHR
- type **must** be XR_TYPE_BINDING_MODIFICATIONS_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- If bindingModificationCount is not 0, bindingModifications **must** be a pointer to an array of bindingModificationCount valid XrBindingModificationBaseHeaderKHR-based structures

The XrBindingModificationBaseHeaderKHR structure is defined as:

```
// Provided by XR_KHR_binding_modification
typedef struct XrBindingModificationBaseHeaderKHR {
    XrStructureType type;
    const void* next;
}
```

} XrBindingModificationBaseHeaderKHR;

Member Descriptions

- type is the XrStructureType of this structure. This base structure itself has no associated XrStructureType value.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or in this extension.

The XrBindingModificationBaseHeaderKHR is a base structure is overridden by XrBindingModification* child structures.

Valid Usage (Implicit)

- The XR_KHR_binding_modification extension **must** be enabled prior to using XrBindingModificationBaseHeaderKHR
- next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

- Revision 1, 2020-08-06 (Joe Ludwig)
 - Initial draft.

12.5. XR_KHR_composition_layer_color_scale_bias

Name String

XR_KHR_composition_layer_color_scale_bias

Extension Type

Instance extension

Registered Extension Number

35

Revision

5

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-28

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus Cass Everitt, Oculus Martin Renschler, Qualcomm

Overview

Color scale and bias are applied to a layer color during composition, after its conversion to premultiplied alpha representation.

If specified, colorScale and colorBias **must** be used to alter the LayerColor as follows:

- colorScale = max(vec4(0, 0, 0, 0), colorScale)
- LayerColor.RGB = LayerColor.A > 0 ? LayerColor.RGB / LayerColor.A : vec3(0, 0, 0)
- LayerColor = LayerColor * colorScale + colorBias
- LayerColor.RGB *= LayerColor.A

This extension specifies the XrCompositionLayerColorScaleBiasKHR structure, which, if present in the XrCompositionLayerBaseHeader::next chain, **must** be applied to the composition layer.

This extension does not define a new composition layer type, but rather it defines a transform that may be applied to the color derived from existing composition layer types.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_COLOR_SCALE_BIAS_KHR

New Enums

New Structures

The XrCompositionLayerColorScaleBiasKHR structure is defined as:

```
// Provided by XR_KHR_composition_layer_color_scale_bias
typedef struct XrCompositionLayerColorScaleBiasKHR {
    XrStructureType type;
    const void* next;
    XrColor4f colorScale;
    XrColor4f colorBias;
} XrCompositionLayerColorScaleBiasKHR;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- colorScale is an XrColor4f which will modulate the color sourced from the images.
- colorBias is an XrColor4f which will offset the color sourced from the images.

XrCompositionLayerColorScaleBiasKHR contains the information needed to scale and bias the color of layer textures.

The XrCompositionLayerColorScaleBiasKHR structure **can** be applied by applications to composition layers by adding an instance of the struct to the XrCompositionLayerBaseHeader::next list.

Valid Usage (Implicit)

- The XR_KHR_composition_layer_color_scale_bias extension **must** be enabled prior to using XrCompositionLayerColorScaleBiasKHR
- type **must** be XR_TYPE_COMPOSITION_LAYER_COLOR_SCALE_BIAS_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

- Revision 1, 2017-09-13 (Paul Pedriana)
 - Initial implementation.
- Revision 2, 2019-01-24 (Martin Renschler)
 - Formatting, spec language changes
- Revision 3, 2019-01-28 (Paul Pedriana)
 - \circ Revised math to remove premultiplied alpha before applying color scale and offset, then restoring.
- Revision 4, 2019-07-17 (Cass Everitt)
 - Non-substantive updates to the spec language and equations.
- Revision 5, 2020-05-20 (Cass Everitt)
 - Changed extension name, simplified language.

12.6. XR_KHR_composition_layer_cube

Name String

XR_KHR_composition_layer_cube

Extension Type

Instance extension

Registered Extension Number

7

Revision

8

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Johannes van Waveren, Oculus Cass Everitt, Oculus Paul Pedriana, Oculus Gloria Kennickell, Oculus Sam Martin, ARM Kaye Mason, Google, Inc. Martin Renschler, Qualcomm

Contacts

Cass Everitt, Oculus Paul Pedriana, Oculus

Overview

This extension adds an additional layer type that enables direct sampling from cubemaps.

The cube layer is the natural layer type for hardware accelerated environment maps. Without updating the image source, the user can look all around, and the compositor can display what they are looking at without intervention from the application.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_CUBE_KHR

New Enums

New Structures

The XrCompositionLayerCubeKHR structure is defined as:

// Provided by XR_KHR_composit	ion_layer_cube
typedef struct XrCompositionLa	yerCubeKHR {
XrStructureType	type;
const void*	next;
XrCompositionLayerFlags	layerFlags;
XrSpace	space;
XrEyeVisibility	eyeVisibility;
XrSwapchain	swapchain;
uint32_t	<pre>imageArrayIndex;</pre>
XrQuaternionf	orientation;
<pre>} XrCompositionLayerCubeKHR;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- layerFlags is any flags to apply to this layer.
- space is the XrSpace in which the orientation of the cube layer is evaluated over time.
- eyeVisibility is the eye represented by this layer.
- swapchain is the swapchain, which **must** have been created with a XrSwapchainCreateInfo ::faceCount of 6.
- imageArrayIndex is the image array index, with 0 meaning the first or only array element.
- orientation is the orientation of the environment map in the space.

XrCompositionLayerCubeKHR contains the information needed to render a cube map when calling

xrEndFrame. XrCompositionLayerCubeKHR is an alias type for the base struct XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

- The XR_KHR_composition_layer_cube extension **must** be enabled prior to using XrCompositionLayerCubeKHR
- type must be XR_TYPE_COMPOSITION_LAYER_CUBE_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values
- space must be a valid XrSpace handle
- eyeVisibility must be a valid XrEyeVisibility value
- swapchain must be a valid XrSwapchain handle
- Both of space and swapchain **must** have been created, allocated, or retrieved from the same XrSession

New Functions

Issues

Version History

- Revision 0, 2017-02-01 (Johannes van Waveren)
 - Initial draft.
- Revision 1, 2017-05-19 (Sam Martin)
 - Initial draft, moving the 3 layer types to an extension.
- Revision 2, 2017-08-30 (Paul Pedriana)
 - Updated the specification.
- Revision 3, 2017-10-12 (Cass Everitt)
 - Updated to reflect per-eye structs and the change to swapchains
- Revision 4, 2017-10-18 (Kaye Mason)
 - $\,\circ\,$ Update to flatten structs to remove per-eye arrays.
- Revision 5, 2017-12-05 (Paul Pedriana)
 - Updated to break out the cylinder and equirect features into separate extensions.
- Revision 6, 2017-12-07 (Paul Pedriana)
 - Updated to use transform components instead of transform matrices.

- Revision 7, 2017-12-07 (Paul Pedriana)
 - Updated to convert XrPosef to XrQuaternionf (there's no position component).
- Revision 8, 2019-01-24 (Martin Renschler)
 - Updated struct to use XrSwapchainSubImage, reformat and spec language changes, eye parameter description update

12.7. XR_KHR_composition_layer_cylinder

Name String

XR_KHR_composition_layer_cylinder

Extension Type

Instance extension

Registered Extension Number

18

Revision

4

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

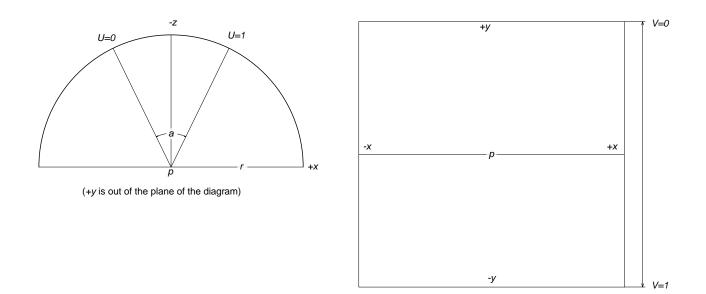
No known IP claims.

Contributors

James Hughes, Oculus Paul Pedriana, Oculus Martin Renschler, Qualcomm

Contacts

Paul Pedriana, Oculus Cass Everitt, Oculus


Overview

This extension adds an additional layer type where the XR runtime **must** map a texture stemming from a swapchain onto the inside of a cylinder section. It can be imagined much the same way a curved television display looks to a viewer. This is not a projection type of layer but rather an object-inworld type of layer, similar to XrCompositionLayerQuad. Only the interior of the cylinder surface **must** be visible; the exterior of the cylinder is not visible and **must** not be drawn by the runtime.

The cylinder characteristics are specified by the following parameters:

X D f		
XrPosef	pose;	
float	radius;	
float	centralAngle;	
float	aspectRatio;	

These can be understood via the following diagram, which is a top-down view of a horizontally oriented cylinder. The aspect ratio drives how tall the cylinder will appear based on the other parameters. Typically the aspectRatio would be set to be the aspect ratio of the texture being used, so that it looks the same within the cylinder as it does in 2D.

Figure 6. Cylinder Layer Parameters

- *r*—Radius
- a Central angle in (0, 2π)
- p Origin of pose transform
- *U*/*V*—UV coordinates

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR

New Enums

New Structures

The XrCompositionLayerCylinderKHR structure is defined as:

// Provided by XR_KHR_composit	tion_layer_cylinder
typedef struct XrCompositionLa	ayerCylinderKHR {
XrStructureType	type;
const void*	next;
XrCompositionLayerFlags	layerFlags;
XrSpace	space;
XrEyeVisibility	<pre>eyeVisibility;</pre>
XrSwapchainSubImage	subImage;
XrPosef	pose;
float	radius;
float	<pre>centralAngle;</pre>
float	aspectRatio;
<pre>} XrCompositionLayerCylinderKi</pre>	HR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- layerFlags specifies options for the layer.
- space is the XrSpace in which the pose of the cylinder layer is evaluated over time.
- eyeVisibility is the eye represented by this layer.
- subImage identifies the image XrSwapchainSubImage to use. The swapchain **must** have been created with a XrSwapchainCreateInfo::faceCount of 1.
- pose is an XrPosef defining the position and orientation of the center point of the view of the cylinder within the reference frame of the space.
- radius is the non-negative radius of the cylinder. Values of zero or floating point positive infinity are treated as an infinite cylinder.
- centralAngle is the angle of the visible section of the cylinder, based at 0 radians, in the range of $[0, 2\pi)$. It grows symmetrically around the 0 radian angle.
- aspectRatio is the ratio of the visible cylinder section width / height. The height of the cylinder is given by: (cylinder radius × cylinder angle) / aspectRatio.

XrCompositionLayerCylinderKHR contains the information needed to render a texture onto a cylinder when calling xrEndFrame. XrCompositionLayerCylinderKHR is an alias type for the base struct XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

- The XR_KHR_composition_layer_cylinder extension **must** be enabled prior to using XrCompositionLayerCylinderKHR
- type **must** be XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values
- space must be a valid XrSpace handle
- eyeVisibility must be a valid XrEyeVisibility value
- subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

Version History

- Revision 1, 2017-05-19 (Paul Pedriana)
 - Initial version. This was originally part of a single extension which supported multiple such extension layer types.
- Revision 2, 2017-12-07 (Paul Pedriana)
 - Updated to use transform components instead of transform matrices.
- Revision 3, 2018-03-05 (Paul Pedriana)
 - Added improved documentation and brought the documentation in line with the existing core spec.
- Revision 4, 2019-01-24 (Martin Renschler)
 - Reformatted, spec language changes, eye parameter description update

12.8. XR_KHR_composition_layer_depth

Name String

XR_KHR_composition_layer_depth

Extension Type

Instance extension

Registered Extension Number

11

Revision

6

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus Bryce Hutchings, Microsoft Andreas Loeve Selvik, Arm Martin Renschler, Qualcomm

Overview

This extension defines an extra layer type which allows applications to submit depth images along with color images in projection layers, i.e. XrCompositionLayerProjection.

The XR runtime **may** use this information to perform more accurate reprojections taking depth into account. Use of this extension does not affect the order of layer composition as described in Compositing.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR

New Enums

New Structures

When submitting depth images along with projection layers, add the XrCompositionLayerDepthInfoKHR to the next chain for all XrCompositionLayerProjectionView structures in the given layer.

The XrCompositionLayerDepthInfoKHR structure is defined as:

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- subImage identifies the depth image XrSwapchainSubImage to be associated with the color swapchain. The swapchain **must** have been created with a XrSwapchainCreateInfo ::faceCount of 1.
- minDepth and maxDepth are the window space depths that correspond to the near and far frustum planes, respectively. minDepth must be less than maxDepth. minDepth and maxDepth must be in the range [0, 1].
- nearZ and farZ are the positive distances in meters to the near and far frustum planes, respectively. nearZ and farZ must not be equal. nearZ and farZ must be in the range (0, +infinity].

Note

i

i

The window space depth values minDepth and maxDepth are akin to the parameters of glDepthRange that specify the mapping from normalized device coordinates into window space.

Note

A reversed mapping of depth, such that points closer to the view have a window space depth that is greater than points further away can be achieved by making nearZ > farZ.

XrCompositionLayerDepthInfoKHR contains the information needed to associate depth with the color information in a projection layer. When submitting depth images along with projection layers, add the XrCompositionLayerDepthInfoKHR to the next chain for all XrCompositionLayerProjectionView structures in the given layer.

The homogeneous transform from view space z to window space depth is given by the following matrix, where a = minDepth, b = maxDepth, n = nearZ, and f = farZ.

$$\mathbf{T} = \begin{bmatrix} b - a & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{f}{f-n} & -\frac{fn}{f-n} \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -\frac{bf-an}{f-n} & -\frac{fn(b-a)}{f-n} \\ -1 & 0 \end{bmatrix}$$
$$\mathbf{p}_{w} = \mathbf{T}\mathbf{p}_{v}$$
$$\mathbf{p}_{w} = \begin{bmatrix} z_{w} & w_{w} \end{bmatrix}^{t}, \text{ homogeneous window space depth}$$
$$\mathbf{p}_{v} = \begin{bmatrix} z_{v} & w_{v} \end{bmatrix}^{t}, \text{ homogeneous view space depth}$$
Figure 7. Homogeneous transform from view space to window space depth

Homogeneous values are constructed from real values by appending a w component with value 1.0.

General homogeneous values are projected back to real space by dividing by the w component.

Valid Usage (Implicit)

- The XR_KHR_composition_layer_depth extension **must** be enabled prior to using XrCompositionLayerDepthInfoKHR
- type **must** be XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

1. Should the range of minDepth and maxDepth be constrained to [0,1]?

RESOLVED: Yes.

There is no compelling mathematical reason for this constraint, however, it does not impose any hardship currently, and the constraint could be relaxed in a future version of the extension if needed.

2. Should we require minDepth be less than maxDepth?

RESOLVED: Yes.

There is no compelling mathematical reason for this constraint, however, it does not impose any

hardship currently, and the constraint could be relaxed in a future version of the extension if needed. Reverse z mappings can be achieved by making near Z > far Z.

3. Does this extension support view space depth images?

RESOLVED: No.

The formulation of the transform between view and window depths implies projected depth. A different extension would be needed to support a different interpretation of depth.

4. Is there any constraint on the resolution of the depth subimage?

RESOLVED: No.

The resolution of the depth image need not match that of the corresponding color image.

Version History

- Revision 1, 2017-08-18 (Paul Pedriana)
 - Initial proposal.
- Revision 2, 2017-10-30 (Kaye Mason)
 - Migration from Images to Swapchains.
- Revision 3, 2018-07-20 (Bryce Hutchings)
 - Support for swapchain texture arrays
- Revision 4, 2018-12-17 (Andreas Loeve Selvik)
 - depthImageRect in pixels instead of UVs
- Revision 5, 2019-01-24 (Martin Renschler)
 - changed depthSwapchain/depthImageRect/depthImageArrayIndex to XrSwapchainSubImage
 - reformat and spec language changes
 - removed vendor specific terminology
- Revision 6, 2022-02-16 (Cass Everitt)
 - Provide homogeneous transform as function of provided parameters

12.9. XR_KHR_composition_layer_equirect

Name String

XR_KHR_composition_layer_equirect

Extension Type

Instance extension

Registered Extension Number

19

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Johannes van Waveren, Oculus Cass Everitt, Oculus Paul Pedriana, Oculus Gloria Kennickell, Oculus Martin Renschler, Qualcomm

Contacts

Cass Everitt, Oculus Paul Pedriana, Oculus

Overview

This extension adds an additional layer type where the XR runtime must map an equirectangular coded image stemming from a swapchain onto the inside of a sphere.

The equirect layer type provides most of the same benefits as a cubemap, but from an equirect 2D image source. This image source is appealing mostly because equirect environment maps are very common, and the highest quality you can get from them is by sampling them directly in the compositor.

This is not a projection type of layer but rather an object-in-world type of layer, similar to XrCompositionLayerQuad. Only the interior of the sphere surface **must** be visible; the exterior of the sphere is not visible and **must** not be drawn by the runtime.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR

New Enums

New Structures

The XrCompositionLayerEquirectKHR structure is defined as:

// Provided by XR_KHR_composi	tion_layer_equirect
typedef struct XrCompositionL	ayerEquirectKHR {
XrStructureType	type;
const void*	next;
XrCompositionLayerFlags	layerFlags;
XrSpace	space;
XrEyeVisibility	eyeVisibility;
XrSwapchainSubImage	subImage;
XrPosef	pose;
float	radius;
XrVector2f	scale;
XrVector2f	bias;
<pre>} XrCompositionLayerEquirectK</pre>	HR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- layerFlags specifies options for the layer.
- space is the XrSpace in which the pose of the equirect layer is evaluated over time.
- eyeVisibility is the eye represented by this layer.
- subImage identifies the image XrSwapchainSubImage to use. The swapchain **must** have been created with a XrSwapchainCreateInfo::faceCount of 1.
- pose is an XrPosef defining the position and orientation of the center point of the sphere onto which the equirect image data is mapped, relative to the reference frame of the space.
- radius is the non-negative radius of the sphere onto which the equirect image data is mapped. Values of zero or floating point positive infinity are treated as an infinite sphere.
- scale is an XrVector2f indicating a scale of the texture coordinates after the mapping to 2D.
- bias is an XrVector2f indicating a bias of the texture coordinates after the mapping to 2D.

XrCompositionLayerEquirectKHR contains the information needed to render an equirectangular image onto a sphere when calling xrEndFrame. XrCompositionLayerEquirectKHR is an alias type for the base struct XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

- The XR_KHR_composition_layer_equirect extension **must** be enabled prior to using XrCompositionLayerEquirectKHR
- type **must** be XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values
- space must be a valid XrSpace handle
- eyeVisibility must be a valid XrEyeVisibility value
- subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

Version History

- Revision 1, 2017-05-19 (Paul Pedriana)
 - Initial version. This was originally part of a single extension which supported multiple such extension layer types.
- Revision 2, 2017-12-07 (Paul Pedriana)
 - Updated to use transform components instead of transform matrices.
- Revision 3, 2019-01-24 (Martin Renschler)
 - Reformatted, spec language changes, eye parameter description update

12.10. XR_KHR_composition_layer_equirect2

Name String

XR_KHR_composition_layer_equirect2

Extension Type

Instance extension

Registered Extension Number

92

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Johannes van Waveren, Oculus Cass Everitt, Oculus Paul Pedriana, Oculus Gloria Kennickell, Oculus Martin Renschler, Qualcomm

Contacts

Cass Everitt, Oculus

Overview

This extension adds an additional layer type where the XR runtime must map an equirectangular coded image stemming from a swapchain onto the inside of a sphere.

The equirect layer type provides most of the same benefits as a cubemap, but from an equirect 2D image source. This image source is appealing mostly because equirect environment maps are very common, and the highest quality you can get from them is by sampling them directly in the compositor.

This is not a projection type of layer but rather an object-in-world type of layer, similar to XrCompositionLayerQuad. Only the interior of the sphere surface **must** be visible; the exterior of the sphere is not visible and **must** not be drawn by the runtime.

This extension uses a different parameterization more in keeping with the formulation of KHR_composition_layer_cylinder but is functionally equivalent to KHR_composition_layer_equirect.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR

New Enums

New Structures

The XrCompositionLayerEquirect2KHR structure is defined as:

pedef struct XrCompositionL	
XrStructureType	type;
const void*	next;
XrCompositionLayerFlags	layerFlags;
XrSpace	space;
XrEyeVisibility	eyeVisibility;
XrSwapchainSubImage	subImage;
XrPosef	pose;
float	radius;
float	centralHorizontalAngle;
float	upperVerticalAngle;
float	lowerVerticalAngle;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- layerFlags specifies options for the layer.
- space is the XrSpace in which the pose of the equirect layer is evaluated over time.
- eyeVisibility is the eye represented by this layer.
- subImage identifies the image XrSwapchainSubImage to use. The swapchain **must** have been created with a XrSwapchainCreateInfo::faceCount of 1.
- pose is an XrPosef defining the position and orientation of the center point of the sphere onto which the equirect image data is mapped, relative to the reference frame of the space.
- radius is the non-negative radius of the sphere onto which the equirect image data is mapped. Values of zero or floating point positive infinity are treated as an infinite sphere.
- centralHorizontalAngle defines the visible horizontal angle of the sphere, based at 0 radians, in the range of $[0, 2\pi]$. It grows symmetrically around the 0 radian angle.
- upperVerticalAngle defines the upper vertical angle of the visible portion of the sphere, in the range of $[-\pi/2, \pi/2]$.
- lowerVerticalAngle defines the lower vertical angle of the visible portion of the sphere, in the range of $[-\pi/2, \pi/2]$.

XrCompositionLayerEquirect2KHR contains the information needed to render an equirectangular image onto a sphere when calling xrEndFrame. XrCompositionLayerEquirect2KHR is an alias type for the base struct XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

- The XR_KHR_composition_layer_equirect2 extension **must** be enabled prior to using XrCompositionLayerEquirect2KHR
- type **must** be XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values
- space must be a valid XrSpace handle
- eyeVisibility must be a valid XrEyeVisibility value
- subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

Version History

- Revision 1, 2020-05-08 (Cass Everitt)
 - Initial version.
 - Kept contributors from the original equirect extension.

12.11. XR_KHR_convert_timespec_time

Name String

XR_KHR_convert_timespec_time

Extension Type

Instance extension

Registered Extension Number

37

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Overview

This extension provides two functions for converting between timespec monotonic time and XrTime. The xrConvertTimespecTimeToTimeKHR function converts from timespec time to XrTime, while the xrConvertTimeToTimespecTimeKHR function converts XrTime to timespec monotonic time. The primary use case for this functionality is to be able to synchronize events between the local system and the OpenXR system.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

To convert from timespec monotonic time to XrTime, call:

```
// Provided by XR_KHR_convert_timespec_time
XrResult xrConvertTimespecTimeToTimeKHR(
    XrInstance
    const struct timespec*
    XrTime*
```

instance, timespecTime, time);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- timespecTime is a timespec obtained from clock_gettime with CLOCK_MONOTONIC.
- time is the resulting XrTime that is equivalent to the timespecTime.

The xrConvertTimespecTimeToTimeKHR function converts a time obtained by the clock_gettime function to the equivalent XrTime.

If the output time cannot represent the input timespecTime, the runtime **must** return XR_ERROR_TIME_INVALID.

Valid Usage (Implicit)

- The XR_KHR_convert_timespec_time extension **must** be enabled prior to calling xrConvertTimespecTimeToTimeKHR
- instance must be a valid XrInstance handle
- timespecTime must be a pointer to a valid timespec value
- time must be a pointer to an XrTime value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_TIME_INVALID

To convert from XrTime to timespec monotonic time, call:

// Provided by XR_KHR_convert_timespec_time
XrResult xrConvertTimeToTimespecTimeKHR(
 XrInstance
 XrTime
 struct timespec*

instance, time, timespecTime);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- time is an XrTime.
- timespecTime is the resulting timespec time that is equivalent to a timespec obtained from clock_gettime with CLOCK_MONOTONIC.

The xrConvertTimeToTimespecTimeKHR function converts an XrTime to time as if generated by clock_gettime.

If the output timespecTime cannot represent the input time, the runtime **must** return XR_ERROR_TIME_INVALID.

Valid Usage (Implicit)

- The XR_KHR_convert_timespec_time extension **must** be enabled prior to calling xrConvertTimeToTimespecTimeKHR
- instance must be a valid XrInstance handle
- timespecTime must be a pointer to a timespec value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_TIME_INVALID

Issues

Version History

- Revision 1, 2019-01-24 (Paul Pedriana)
 - Initial draft

12.12. XR_KHR_D3D11_enable

Name String

XR_KHR_D3D11_enable

Extension Type

Instance extension

Registered Extension Number

28

Revision

9

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2018-11-16

IP Status

No known IP claims.

Contributors

Bryce Hutchings, Microsoft Paul Pedriana, Oculus Mark Young, LunarG Minmin Gong, Microsoft Matthieu Bucchianeri, Microsoft

Overview

This extension enables the use of the D3D11 graphics API in an OpenXR runtime. Without this extension, the OpenXR runtime may not be able to use any D3D11 swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid XrGraphicsBindingD3D11KHR structure in order to create a D3D11-based XrSession. Note that during this process the application is responsible for creating all the required D3D11 objects, including a graphics device to be used for rendering.

This extension also provides mechanisms for the application to interact with images acquired by calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you **must** define XR_USE_GRAPHICS_API_D3D11 before including the OpenXR platform header openxr_platform.h, in all portions of your library or application that include it. **Swapchain Flag Bits**

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingD3D11KHR **must** be interpreted as follows by the runtime, so that the returned swapchain images used by the application may be used as if they were created with the corresponding D3D11_BIND_FLAG flags. The runtime **may** set additional bind flags but **must** not restrict usage.

XrSwapchainUsageFlagBits	Corresponding D3D11 bind flag bits
XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT	D3D11_BIND_RENDER_TARGET
XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT	D3D11_BIND_DEPTH_STENCIL
XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT	D3D11_BIND_UNORDERED_ACCESS

XrSwapchainUsageFlagBits	Corresponding D3D11 bind flag bits
<pre>XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT</pre>	ignored
<pre>XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT</pre>	ignored
XR_SWAPCHAIN_USAGE_SAMPLED_BIT	D3D11_BIND_SHADER_RESOURCE
<pre>XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT</pre>	ignored
<pre>XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR (Added by XR_KHR_swapchain_usage_input_attachment_bit and only available when that extension is enabled)</pre>	ignored

All D3D11 swapchain textures are created with D3D11_USAGE_DEFAULT usage.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

- XR_TYPE_GRAPHICS_REQUIREMENTS_D3D11_KHR
- XR_TYPE_GRAPHICS_BINDING_D3D11_KHR
- XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information required to work with the D3D11 API executing on certain operating systems.

The XrGraphicsBindingD3D11KHR structure is defined as:

// Provided by XR_KHR_D3D11_enable
typedef struct XrGraphicsBindingD3D11KHR {
 XrStructureType type;
 const void* next;
 ID3D11Device* device;
} XrGraphicsBindingD3D11KHR;

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- device is a pointer to a valid ID3D11Device to use.

When creating a D3D11-backed XrSession, the application will provide a pointer to an XrGraphicsBindingD3D11KHR in the XrSessionCreateInfo::next field of structure passed to xrCreateSession. The D3D11 device specified in XrGraphicsBindingD3D11KHR::device must be created in accordance with the requirements retrieved through xrGetD3D11GraphicsRequirementsKHR, otherwise xrCreateSession must return XR_ERROR_GRAPHICS_DEVICE_INVALID.

Valid Usage (Implicit)

- The XR_KHR_D3D11_enable extension **must** be enabled prior to using XrGraphicsBindingD3D11KHR
- type **must** be XR_TYPE_GRAPHICS_BINDING_D3D11_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- device **must** be a pointer to an **ID3D11Device** value

The XrSwapchainImageD3D11KHR structure is defined as:

```
// Provided by XR_KHR_D3D11_enable
typedef struct XrSwapchainImageD3D11KHR {
     XrStructureType type;
     void* next;
     ID3D11Texture2D* texture;
} XrSwapchainImageD3D11KHR;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- texture is a pointer to a valid ID3D11Texture2D to use.

If a given session was created with XrGraphicsBindingD3D11KHR, the following conditions must apply.

- Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session **must** return an array of XrSwapchainImageD3D11KHR structures.
- Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter in that session, the runtime **must** also accept a pointer to an XrSwapchainImageD3D11KHR.

The OpenXR runtime **must** interpret the top-left corner of the swapchain image as the coordinate origin unless specified otherwise by extension functionality.

The OpenXR runtime **must** interpret the swapchain images in a clip space of positive Y pointing up, near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

- The XR_KHR_D3D11_enable extension must be enabled prior using to XrSwapchainImageD3D11KHR
- type must be XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsD3D11KHR structure is defined as:

```
// Provided by XR KHR D3D11 enable
typedef struct XrGraphicsRequirementsD3D11KHR {
   XrStructureType
                         type;
    void*
                         next;
   LUID
                         adapterLuid;
    D3D_FEATURE_LEVEL
                         minFeatureLevel;
```

} XrGraphicsRequirementsD3D11KHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- adapterLuid identifies what graphics device needs to be used.
- minFeatureLevel is the minimum feature level that the D3D11 device must be initialized with.

XrGraphicsRequirementsD3D11KHR is populated by xrGetD3D11GraphicsRequirementsKHR.

Valid Usage (Implicit)

- The XR_KHR_D3D11_enable extension **must** be enabled prior to using XrGraphicsRequirementsD3D11KHR
- type **must** be XR_TYPE_GRAPHICS_REQUIREMENTS_D3D11_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- adapterLuid must be a valid LUID value
- minFeatureLevel must be a valid D3D_FEATURE_LEVEL value

New Functions

Some computer systems may have multiple graphics devices, each of which may have independent external display outputs. XR systems that connect to such graphics devices are typically connected to a single device. Applications need to know what graphics device the XR system is connected to so that they can use that graphics device to generate XR images.

To retrieve the D3D11 feature level and graphics device for an instance and system, call:

// Provided by XR_KHR_D3D11_enable
XrResult xrGetD3D11GraphicsRequirementsKHR(
 XrInstance
 XrSystemId
 XrGraphicsRequirementsD3D11KHR*

instance, systemId, graphicsRequirements);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- graphicsRequirements is the XrGraphicsRequirementsD3D11KHR output structure.

The xrGetD3D11GraphicsRequirementsKHR function identifies to the application what graphics device (Windows LUID) needs to be used and the minimum feature level to use. The runtime **must** return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to legacy behavior) on calls to xrCreateSession if xrGetD3D11GraphicsRequirementsKHR has not been called instance LUID for the same and systemId. The and feature level that xrGetD3D11GraphicsRequirementsKHR returns **must** be used to create the ID3D11Device that the application passes to xrCreateSession in the XrGraphicsBindingD3D11KHR.

Valid Usage (Implicit)

- The XR_KHR_D3D11_enable extension **must** be enabled prior to calling xrGetD3D11GraphicsRequirementsKHR
- instance must be a valid XrInstance handle
- graphicsRequirements must be a pointer to an XrGraphicsRequirementsD3D11KHR structure

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SYSTEM_INVALID

Issues

Version History

- Revision 1, 2018-05-07 (Mark Young)
 - Initial draft
- Revision 2, 2018-06-21 (Bryce Hutchings)
 - Split XR_KHR_D3D_enable into XR_KHR_D3D11_enable
 - Rename and expand xrGetD3DGraphicsDeviceKHR functionality to xrGetD3D11GraphicsRequirementsKHR
- Revision 3, 2018-11-15 (Paul Pedriana)
 - Specified the swapchain texture coordinate origin.
- Revision 4, 2018-11-16 (Minmin Gong)
 - Specified Y direction and Z range in clip space
- Revision 5, 2020-08-06 (Bryce Hutchings)
 - Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

- Revision 8, 2021-09-09 (Bryce Hutchings)
 - Document mapping for XrSwapchainUsageFlags
- Revision 9, 2021-12-28 (Matthieu Bucchianeri)
 - Added missing XR_ERROR_GRAPHICS_DEVICE_INVALID error condition

12.13. XR_KHR_D3D12_enable

Name String

XR_KHR_D3D12_enable

Extension Type

Instance extension

Registered Extension Number

29

Revision

9

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date 2020-03-18

IP Status

No known IP claims.

Contributors

Bryce Hutchings, Microsoft Paul Pedriana, Oculus Mark Young, LunarG Minmin Gong, Microsoft Dan Ginsburg, Valve Matthieu Bucchianeri, Microsoft

Overview

This extension enables the use of the D3D12 graphics API in an OpenXR runtime. Without this extension, the OpenXR runtime may not be able to use any D3D12 swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid XrGraphicsBindingD3D12KHR structure in order to create a D3D12-based XrSession. Note that during this process the application is responsible for creating all the required D3D12 objects, including a

graphics device and queue to be used for rendering.

This extension also provides mechanisms for the application to interact with images acquired by calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you **must** define XR_USE_GRAPHICS_API_D3D12 before including the OpenXR platform header openxr_platform.h, in all portions of your library or application that include it.

Swapchain Image Resource State

When an application acquires a swapchain image by calling <u>xrAcquireSwapchainImage</u> in a session create using <u>XrGraphicsBindingD3D12KHR</u>, the OpenXR runtime **must** guarantee that:

- The color rendering target image has a resource state match with D3D12_RESOURCE_STATE_RENDER_TARGET
- The depth rendering target image has a resource state match with D3D12_RESOURCE_STATE_DEPTH_WRITE
- The ID3D12CommandQueue specified in XrGraphicsBindingD3D12KHR can write to the image.

When an application releases a swapchain image by calling xrReleaseSwapchainImage, in a session create using XrGraphicsBindingD3D12KHR, the OpenXR runtime **must** interpret the image as:

- Having a resource state match with D3D12_RESOURCE_STATE_RENDER_TARGET if the image is a color rendering target
- Having a resource state match with D3D12_RESOURCE_STATE_DEPTH_WRITE if the image is a depth rendering target
- Being available for read/write on the ID3D12CommandQueue specified in XrGraphicsBindingD3D12KHR.

The application is responsible for transitioning the swapchain image back to the resource state and queue availability that the OpenXR runtime requires. If the image is not in a resource state match with the above specifications the runtime **may** exhibit undefined behavior.

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingD3D12KHR **must** be interpreted as follows by the runtime, so that the returned swapchain images used by the application may be used as if they were created with the corresponding D3D12_BIND_FLAG flags and heap type. The runtime **may** set additional resource flags but **must** not restrict usage.

XrSwapchainUsageFlagBits	Corresponding D3D12 resource flag bits
XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT	D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET
XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT	D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL
XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT	D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS
XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT	ignored
<pre>XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT</pre>	ignored

XrSwapchainUsageFlagBits	Corresponding D3D12 resource flag bits
XR_SWAPCHAIN_USAGE_SAMPLED_BIT omitted	D3D12_RESOURCE_FLAG_DENY_SHADER_RESOURCE
<pre>XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT</pre>	ignored
<pre>XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR (Added by XR_KHR_swapchain_usage_input_attachment_bit and only available when that extension is enabled)</pre>	ignored

All D3D12 swapchain textures are created with D3D12_HEAP_TYPE_DEFAULT usage.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

- XR_TYPE_GRAPHICS_REQUIREMENTS_D3D12_KHR
- XR_TYPE_GRAPHICS_BINDING_D3D12_KHR
- XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information required to work with the D3D12 API executing on certain operating systems.

The XrGraphicsBindingD3D12KHR structure is defined as:

```
// Provided by XR_KHR_D3D12_enable
typedef struct XrGraphicsBindingD3D12KHR {
    XrStructureType type;
    const void* next;
    ID3D12Device* device;
    ID3D12CommandQueue* queue;
} XrGraphicsBindingD3D12KHR;
```

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- device is a pointer to a valid ID3D12Device to use.
- queue is a pointer to a valid ID3D12CommandQueue to use.

When creating a D3D12-backed XrSession, the application will provide a pointer to an XrGraphicsBindingD3D12KHR in the XrSessionCreateInfo::next field of structure passed to xrCreateSession. The D3D12 device specified in XrGraphicsBindingD3D12KHR::device must be created in accordance with the requirements retrieved through xrGetD3D12GraphicsRequirementsKHR, otherwise xrCreateSession must return XR_ERROR_GRAPHICS_DEVICE_INVALID.

Valid Usage (Implicit)

- The XR_KHR_D3D12_enable extension **must** be enabled prior to using XrGraphicsBindingD3D12KHR
- type **must** be XR_TYPE_GRAPHICS_BINDING_D3D12_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- device must be a pointer to an ID3D12Device value
- queue **must** be a pointer to an **ID3D12CommandQueue** value

The XrSwapchainImageD3D12KHR structure is defined as:

// Provided by XR_KHR_D3D12_enable
typedef struct XrSwapchainImageD3D12KHR {
 XrStructureType type;
 void* next;
 ID3D12Resource* texture;
} XrSwapchainImageD3D12KHR;

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- texture is a pointer to a valid ID3D12Texture2D to use.

If a given session was created with XrGraphicsBindingD3D12KHR, the following conditions **must** apply.

- Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session **must** return an array of XrSwapchainImageD3D12KHR structures.
- Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter in that session, the runtime **must** also accept a pointer to an XrSwapchainImageD3D12KHR.

The OpenXR runtime **must** interpret the top-left corner of the swapchain image as the coordinate origin unless specified otherwise by extension functionality.

The OpenXR runtime **must** interpret the swapchain images in a clip space of positive Y pointing up, near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

- The XR_KHR_D3D12_enable extension **must** be enabled prior to using XrSwapchainImageD3D12KHR
- type **must** be XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsD3D12KHR structure is defined as:

// Provided by XR_KHR_D3D12_enable
typedef struct XrGraphicsRequirementsD3D12KHR {
 XrStructureType type;
 void* next;
 LUID adapterLuid;
 D3D_FEATURE_LEVEL minFeatureLevel;
} XrGraphicsRequirementsD3D12KHR;

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- adapterLuid identifies what graphics device needs to be used.
- minFeatureLevel is the minimum feature level that the D3D12 device must be initialized with.

XrGraphicsRequirementsD3D12KHR is populated by xrGetD3D12GraphicsRequirementsKHR.

Valid Usage (Implicit)

- The XR_KHR_D3D12_enable extension **must** be enabled prior to using XrGraphicsRequirementsD3D12KHR
- type **must** be XR_TYPE_GRAPHICS_REQUIREMENTS_D3D12_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- adapterLuid must be a valid LUID value
- minFeatureLevel must be a valid D3D_FEATURE_LEVEL value

New Functions

Some computer systems may have multiple graphics devices, each of which may have independent external display outputs. XR systems that connect to such graphics devices are typically connected to a single device. Applications need to know what graphics device the XR system is connected to so that they can use that graphics device to generate XR images.

To retrieve the D3D12 feature level and graphics device for an instance and system, call:

// Provided by XR_KHR_D3D12_enable
XrResult xrGetD3D12GraphicsRequirementsKHR(
 XrInstance
 XrSystemId
 XrGraphicsRequirementsD3D12KHR*

instance, systemId, graphicsRequirements);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- graphicsRequirements is the XrGraphicsRequirementsD3D12KHR output structure.

The xrGetD3D12GraphicsRequirementsKHR function identifies to the application what graphics device (Windows LUID) needs to be used and the minimum feature level to use. The runtime **must** return XR ERROR GRAPHICS REQUIREMENTS CALL MISSING (XR ERROR VALIDATION FAILURE may be returned due to legacy behavior) on calls to xrCreateSession if xrGetD3D12GraphicsRequirementsKHR has not been for instance systemId. The LUID and feature level that called the same and xrGetD3D12GraphicsRequirementsKHR returns must be used to create the ID3D12Device that the application passes to xrCreateSession in the XrGraphicsBindingD3D12KHR.

Valid Usage (Implicit)

- The XR_KHR_D3D12_enable extension **must** be enabled prior to calling xrGetD3D12GraphicsRequirementsKHR
- instance must be a valid XrInstance handle
- graphicsRequirements must be a pointer to an XrGraphicsRequirementsD3D12KHR structure

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SYSTEM_INVALID

Issues

Version History

- Revision 1, 2018-05-07 (Mark Young)
 - Initial draft
- Revision 2, 2018-06-21 (Bryce Hutchings)
 - Split XR_KHR_D3D_enable into XR_KHR_D3D12_enable
 - Rename and expand xrGetD3DGraphicsDeviceKHR functionality to xrGetD3D12GraphicsRequirementsKHR
- Revision 3, 2018-11-15 (Paul Pedriana)
 - Specified the swapchain texture coordinate origin.
- Revision 4, 2018-11-16 (Minmin Gong)
 - Specified Y direction and Z range in clip space
- Revision 5, 2019-01-29 (Dan Ginsburg)
 - Added swapchain image resource state details.
- Revision 6, 2020-03-18 (Minmin Gong)
 - Specified depth swapchain image resource state.
- Revision 7, 2020-08-06 (Bryce Hutchings)
 - Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code
- Revision 8, 2021-09-09 (Bryce Hutchings)
 - Document mapping for XrSwapchainUsageFlags
- Revision 9, 2021-12-28 (Matthieu Bucchianeri)
 - Added missing XR_ERROR_GRAPHICS_DEVICE_INVALID error condition

12.14. XR_KHR_loader_init

Name String

XR_KHR_loader_init

Extension Type

Instance extension

Registered Extension Number

89

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-05-08

IP Status

No known IP claims.

Contributors

Cass Everitt, Facebook Robert Blenkinsopp, Ultraleap

Overview

On some platforms, before loading can occur the loader must be initialized with platform-specific parameters.

Unlike other extensions, the presence of this extension is signaled by a successful call to xrGetInstanceProcAddr to retrieve the function pointer for xrInitializeLoaderKHR using XR_NULL_HANDLE as the instance parameter.

If this extension is supported, its use **may** be required on some platforms and the use of the xrInitializeLoaderKHR function **must** precede other OpenXR calls except xrGetInstanceProcAddr.

This function exists as part of the loader library that the application is using and the loader **must** pass calls to xrInitializeLoaderKHR to the active runtime, and all enabled API layers that expose a xrInitializeLoaderKHR function exposed either through their manifest, or through their implementation of xrGetInstanceProcAddr.

If the xrInitializeLoaderKHR function is discovered through the manifest, xrInitializeLoaderKHR will be called before xrNegotiateLoaderRuntimeInterface or xrNegotiateLoaderApiLayerInterface has been called on the runtime or layer respectively.

New Object Types New Flag Types New Enum Constants New Enums New Structures

The XrLoaderInitInfoBaseHeaderKHR structure is defined as:

```
// Provided by XR_KHR_loader_init
typedef struct XrLoaderInitInfoBaseHeaderKHR {
    XrStructureType type;
    const void* next;
} XrLoaderInitInfoBaseHeaderKHR;
```

- type is the XrStructureType of this structure. This base structure itself has no associated XrStructureType value.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.

Valid Usage (Implicit)

- The XR_KHR_loader_init extension **must** be enabled prior to using XrLoaderInitInfoBaseHeaderKHR
- type must be XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To initialize an OpenXR loader with platform or implementation-specific parameters, call:

loaderInitInfo);

Parameter Descriptions

• loaderInitInfo is a pointer to an XrLoaderInitInfoBaseHeaderKHR structure, which is a polymorphic type defined by other platform- or implementation-specific extensions.

Issues

Version History

- Revision 2, 2023-05-08 (Robert Blenkinsoppp)
 - Explicitly state that the call to xrInitializeLoaderKHR should be passed to the runtime and enabled API layers.
- Revision 1, 2020-05-07 (Cass Everitt)
 - Initial draft

12.15. XR_KHR_loader_init_android

Name String

XR_KHR_loader_init_android

Extension Type

Instance extension

Registered Extension Number

90

Revision

1

Extension and Version Dependencies

OpenXR 1.0 and XR_KHR_loader_init

Last Modified Date

2020-05-07

IP Status

No known IP claims.

Contributors

Cass Everitt, Facebook

Overview

On Android, some loader implementations need the application to provide additional information on initialization. This extension defines the parameters needed by such implementations. If this is available on a given implementation, an application **must** make use of it.

On implementations where use of this is required, the following condition **must** apply:

• Whenever an OpenXR function accepts an XrLoaderInitInfoBaseHeaderKHR pointer, the runtime (and loader) **must** also accept a pointer to an XrLoaderInitInfoAndroidKHR.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR

New Enums

New Structures

The XrLoaderInitInfoAndroidKHR structure is defined as:

```
// Provided by XR_KHR_loader_init_android
typedef struct XrLoaderInitInfoAndroidKHR {
    XrStructureType type;
    const void* next;
    void* applicationVM;
    void* applicationContext;
} XrLoaderInitInfoAndroidKHR;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- applicationVM is a pointer to the JNI's opaque JavaVM structure, cast to a void pointer.
- applicationContext is a JNI reference to an android.content.Context associated with the application, cast to a void pointer.

Valid Usage (Implicit)

- The XR_KHR_loader_init_android extension **must** be enabled prior to using XrLoaderInitInfoAndroidKHR
- type **must** be XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- applicationVM must be a pointer value
- applicationContext must be a pointer value

New Functions

Issues

Version History

- Revision 1, 2020-05-07 (Cass Everitt)
 - Initial draft

12.16. XR_KHR_opengl_enable

Name String

XR_KHR_opengl_enable

Extension Type

Instance extension

Registered Extension Number

24

Revision

10

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-07-02

IP Status

No known IP claims.

Contributors

Mark Young, LunarG Bryce Hutchings, Microsoft Paul Pedriana, Oculus Minmin Gong, Microsoft Robert Menzel, NVIDIA Jakob Bornecrantz, Collabora Paulo Gomes, Samsung Electronics

Overview

This extension enables the use of the OpenGL graphics API in an OpenXR runtime. Without this extension, the OpenXR runtime **may** not be able to provide any OpenGL swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid XrGraphicsBindingOpenGL*KHR structure in order to create an OpenGL-based XrSession. Note that during this process the application is responsible for creating an OpenGL context to be used for rendering. The runtime however will provide the OpenGL textures to render into in the form of a swapchain.

This extension provides mechanisms for the application to interact with images acquired by calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, the application **must** define XR_USE_GRAPHICS_API_OPENGL, as well as an appropriate window system define supported by this extension, before including the OpenXR platform header openxr_platform.h, in all portions of the library or application that include it. The window system defines currently supported by this extension are:

- XR_USE_PLATFORM_WIN32
- XR_USE_PLATFORM_XLIB
- XR_USE_PLATFORM_XCB
- XR_USE_PLATFORM_WAYLAND

Note that a runtime implementation of this extension is only required to support the structs introduced by this extension which belong to the platform it is running on.

Note that the OpenGL context given to the call xrCreateSession **must** not be bound in another thread when calling the functions: xrCreateSession, xrDestroySession, xrBeginFrame, xrEndFrame, xrCreateSwapchain, xrDestroySwapchain, xrEnumerateSwapchainImages, xrAcquireSwapchainImage, xrWaitSwapchainImage and xrReleaseSwapchainImage. It **may** be bound in the thread calling those functions. The runtime **must** not access the context from any other function. In particular the application must be able to call xrWaitFrame from a different thread than the rendering thread.

Swapchain Flag Bits

AllXrSwapchainUsageFlagsvalidvaluespassedinasessioncreatedusingXrGraphicsBindingOpenGLWin32KHR,XrGraphicsBindingOpenGLXibKHR,XrGraphicsBindingOpenGLXibKHR,XrGraphicsBindingOpenGLXibKHR,XrGraphicsBindingOpenGLXcbKHR orXrGraphicsBindingOpenGLWaylandKHRshouldbeignoredasthere is no mapping to OpenGL texture settings.

Note

In such a session, a runtime **may** use a supporting graphics API, such as Vulkan, to allocate images that are intended to alias with OpenGL textures, and be part of an XrSwapchain. A runtime which allocates the texture with a different graphics API **may** need to enable several usage flags on the underlying native texture resource to ensure compatibility with OpenGL.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

- XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_KHR
- XR_TYPE_GRAPHICS_BINDING_OPENGL_WIN32_KHR
- XR_TYPE_GRAPHICS_BINDING_OPENGL_XLIB_KHR
- XR_TYPE_GRAPHICS_BINDING_OPENGL_XCB_KHR
- XR_TYPE_GRAPHICS_BINDING_OPENGL_WAYLAND_KHR
- XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information required to work with the OpenGL API executing on certain operating systems.

These structures are only available when the corresponding XR_USE_PLATFORM_ macro is defined before including openxr_platform.h.

The XrGraphicsBindingOpenGLWin32KHR structure is defined as:

// Provided by XR_KHR_opengl_enable
typedef struct XrGraphicsBindingOpenGLWin32KHR {
 XrStructureType type;
 const void* next;
 HDC hDC;
 HGLRC hGLRC;
} XsGraphicsBindingOpenGLWin22KHD;

} XrGraphicsBindingOpenGLWin32KHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- hDC is a valid Windows HW device context handle.
- hGLRC is a valid Windows OpenGL rendering context handle.

When creating an OpenGL-backed XrSession on Microsoft Windows, the application will provide a pointer to an XrGraphicsBindingOpenGLWin32KHR in the next chain of the XrSessionCreateInfo. As no standardized way exists for OpenGL to create the graphics context on a specific GPU, the runtime **must** assume that the application uses the operating systems default GPU. If the GPU used by the runtime does not match the GPU on which the OpenGL context of the application got created, xrCreateSession **must** return XR_ERROR_GRAPHICS_DEVICE_INVALID.

The required window system configuration define to expose this structure type is XR_USE_PLATFORM_WIN32.

Valid Usage (Implicit)

- The XR_KHR_opengl_enable extension **must** be enabled prior to using XrGraphicsBindingOpenGLWin32KHR
- type **must** be XR_TYPE_GRAPHICS_BINDING_OPENGL_WIN32_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- hDC must be a valid HDC value
- hGLRC must be a valid HGLRC value

The XrGraphicsBindingOpenGLXlibKHR structure is defined as:

// Provided by XR_KHR_opengl_enable
typedef struct XrGraphicsBindingOpenGLXlibKHR {
 XrStructureType type;

vistingratetybe	type,
const void*	next;
Display*	xDisplay;
uint32_t	visualid;
GLXFBConfig	glxFBConfig;
GLXDrawable	glxDrawable;
GLXContext	glxContext;
/cGraphiacPindingOppoCLV1ih/UD	

} XrGraphicsBindingOpenGLXlibKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- xDisplay is a valid X11 Display.
- visualid is a valid X11 visual identifier.
- glxFBConfig is a valid X11 OpenGL GLX GLXFBConfig.
- glxDrawable is a valid X11 OpenGL GLX GLXDrawable.
- glxContext is a valid X11 OpenGL GLX GLXContext.

When creating an OpenGL-backed XrSession on any Linux/Unix platform that utilizes X11 and GLX, via the Xlib library, the application will provide a pointer to an XrGraphicsBindingOpenGLXlibKHR in the next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is XR_USE_PLATFORM_XLIB.

Valid Usage (Implicit)

- The XR_KHR_opengl_enable extension **must** be enabled prior to using XrGraphicsBindingOpenGLXlibKHR
- type **must** be XR_TYPE_GRAPHICS_BINDING_OPENGL_XLIB_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- xDisplay **must** be a pointer to a Display value
- glxFBConfig must be a valid GLXFBConfig value
- glxDrawable must be a valid GLXDrawable value
- glxContext must be a valid GLXContext value

The XrGraphicsBindingOpenGLXcbKHR structure is defined as:

// Provided by XR_KHR_ope	ngl_enable
typedef struct XrGraphics	BindingOpenGLXcbKHR {
XrStructureType	type;
const void*	next;
xcb_connection_t*	connection;
uint32_t	<pre>screenNumber;</pre>
xcb_glx_fbconfig_t	fbconfigid;
xcb_visualid_t	visualid;
xcb_glx_drawable_t	glxDrawable;
<pre>xcb_glx_context_t</pre>	glxContext;
<pre>} XrGraphicsBindingOpenGLXcbKHR;</pre>	

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- connection is a valid xcb_connection_t.
- screenNumber is an index indicating which screen should be used for rendering.
- fbconfigid is a valid XCB OpenGL GLX xcb_glx_fbconfig_t.
- visualid is a valid XCB OpenGL GLX xcb_visualid_t.
- glxDrawable is a valid XCB OpenGL GLX xcb_glx_drawable_t.
- glxContext is a valid XCB OpenGL GLX xcb_glx_context_t.

When creating an OpenGL-backed XrSession on any Linux/Unix platform that utilizes X11 and GLX, via the Xlib library, the application will provide a pointer to an XrGraphicsBindingOpenGLXcbKHR in the next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is XR_USE_PLATFORM_XCB.

Valid Usage (Implicit)

- The XR_KHR_opengl_enable extension **must** be enabled prior to using XrGraphicsBindingOpenGLXcbKHR
- type **must** be XR_TYPE_GRAPHICS_BINDING_OPENGL_XCB_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- connection **must** be a pointer to an xcb_connection_t value
- fbconfigid must be a valid xcb_glx_fbconfig_t value
- visualid must be a valid xcb_visualid_t value
- glxDrawable **must** be a valid xcb_glx_drawable_t value
- glxContext must be a valid xcb_glx_context_t value

The XrGraphicsBindingOpenGLWaylandKHR structure is defined as:

// Provided by XR_KHR_opengl_enable
typedef struct XrGraphicsBindingOpenGLWaylandKHR {
 XrStructureType type;
 const void* next;
 struct wl_display* display;
} XrGraphicsBindingOpenGLWaylandKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- display is a valid Wayland wl_display.

When creating an OpenGL-backed XrSession on any Linux/Unix platform that utilizes the Wayland protocol with its compositor, the application will provide a pointer to an XrGraphicsBindingOpenGLWaylandKHR in the next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is XR_USE_PLATFORM_WAYLAND.

Valid Usage (Implicit)

- The XR_KHR_opengl_enable extension **must** be enabled prior to using XrGraphicsBindingOpenGLWaylandKHR
- type **must** be XR_TYPE_GRAPHICS_BINDING_OPENGL_WAYLAND_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- display must be a pointer to a wl_display value

The XrSwapchainImageOpenGLKHR structure is defined as:

// Provided by XR_KHR_opengl_enable
typedef struct XrSwapchainImageOpenGLKHR {
 XrStructureType type;
 void* next;
 uint32_t image;
} XrSwapchainImageOpenGLKHR;

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- image is the OpenGL texture handle associated with this swapchain image.

If a given session was created with a XrGraphicsBindingOpenGL*KHR, the following conditions **must** apply.

- Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session **must** return an array of XrSwapchainImageOpenGLKHR structures.
- Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter in that session, the runtime **must** also accept a pointer to an XrSwapchainImageOpenGLKHR.

The OpenXR runtime **must** interpret the bottom-left corner of the swapchain image as the coordinate origin unless specified otherwise by extension functionality.

The OpenXR runtime **must** interpret the swapchain images in a clip space of positive Y pointing up, near Z plane at -1, and far Z plane at 1.

Valid Usage (Implicit)

- The XR_KHR_opengl_enable extension **must** be enabled prior to using XrSwapchainImageOpenGLKHR
- type must be XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsOpenGLKHR structure is defined as:

// Provided by XR_KHR_opengl_enable
typedef struct XrGraphicsRequirementsOpenGLKHR {
 XrStructureType type;
 void* next;
 XrVersion minApiVersionSupported;
 XrVersion maxApiVersionSupported;
} XrGraphicsRequirementsOpenGLKHR;

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- minApiVersionSupported is the minimum version of OpenGL that the runtime supports. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.
- maxApiVersionSupported is the maximum version of OpenGL that the runtime has been tested on and is known to support. Newer OpenGL versions might work if they are compatible. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

XrGraphicsRequirementsOpenGLKHR is populated by xrGetOpenGLGraphicsRequirementsKHR with the runtime's OpenGL API version requirements.

Valid Usage (Implicit)

- The XR_KHR_opengl_enable extension **must** be enabled prior to using XrGraphicsRequirementsOpenGLKHR
- type **must** be XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To query OpenGL API version requirements for an instance and system, call:

<pre>// Provided by XR_KHR_opengl_enable XrResult xrGetOpenGLGraphicsRequirementsKHR(</pre>	
XrInstance	instance,
XrSystemId	systemId,
XrGraphicsRequirementsOpenGLKHR*	graphicsRequirements);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- graphicsRequirements is the XrGraphicsRequirementsOpenGLKHR output structure.

The xrGetOpenGLGraphicsRequirementsKHR function identifies to the application the minimum OpenGL version requirement and the highest known tested OpenGL version. The runtime **must** return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE **may** be returned due to legacy behavior) on calls to xrCreateSession if xrGetOpenGLGraphicsRequirementsKHR has not been called for the same instance and systemId.

Valid Usage (Implicit)

- The XR_KHR_opengl_enable extension **must** be enabled prior to calling xrGetOpenGLGraphicsRequirementsKHR
- instance must be a valid XrInstance handle
- graphicsRequirements must be a pointer to an XrGraphicsRequirementsOpenGLKHR structure

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SYSTEM_INVALID

Issues

Version History

- Revision 1, 2018-05-07 (Mark Young)
 - Initial draft
- Revision 2, 2018-06-21 (Bryce Hutchings)
 - Add new xrGetOpenGLGraphicsRequirementsKHR
- Revision 3, 2018-11-15 (Paul Pedriana)
 - $\circ~$ Specified the swapchain texture coordinate origin.
- Revision 4, 2018-11-16 (Minmin Gong)
 - $\,\circ\,$ Specified Y direction and Z range in clip space

- Revision 5, 2019-01-25 (Robert Menzel)
 - Description updated
- Revision 6, 2019-07-02 (Robert Menzel)
 - Minor fixes
- Revision 7, 2019-07-08 (Rylie Pavlik)
 - Adjusted member name in XCB struct
- Revision 8, 2019-11-28 (Jakob Bornecrantz)
 - Added note about context not allowed to be current in a different thread.
- Revision 9, 2020-08-06 (Bryce Hutchings)
 - Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code
- Revision 10, 2021-08-31 (Paulo F. Gomes)
 - Document handling of XrSwapchainUsageFlags

12.17. XR_KHR_opengl_es_enable

Name String

XR_KHR_opengl_es_enable

Extension Type

Instance extension

Registered Extension Number

25

Revision

8

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-07-12

IP Status

No known IP claims.

Contributors

Mark Young, LunarG Bryce Hutchings, Microsoft Paul Pedriana, Oculus Minmin Gong, Microsoft Robert Menzel, NVIDIA Martin Renschler, Qualcomm Paulo Gomes, Samsung Electronics

Overview

This extension must be provided by runtimes supporting applications using OpenGL ES APIs for rendering. OpenGL ES applications need this extension to obtain compatible swapchain images which the runtime is required to supply. The runtime needs the following OpenGL ES objects from the application in order to interact properly with the OpenGL ES driver: EGLDisplay, EGLConfig and EGLContext.

These are passed from the application to the runtime in a XrGraphicsBindingOpenGLESAndroidKHR structure when creating the XrSession. Although not restricted to Android, the OpenGL ES extension is currently tailored for Android.

Note that the application is responsible for creating the required OpenGL ES objects, including an OpenGL ES context to be used for rendering.

This extension also provides mechanisms for the application to interact with images acquired by calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, the application source code **must** define XR_USE_GRAPHICS_API_OPENGL_ES, as well as an appropriate window system define, before including the OpenXR platform header openxr_platform.h, in all portions of your library or application that include it. The only window system define currently supported by this extension is:

• XR_USE_PLATFORM_ANDROID

Swapchain Flag Bits

All XrSwapchainUsageFlags valid values passed in a session created using XrGraphicsBindingOpenGLESAndroidKHR **should** be ignored as there is no mapping to OpenGL ES texture settings.

Note

i

In such a session, a runtime **may** use a supporting graphics API, such as Vulkan, to allocate images that are intended to alias with OpenGLES textures, and be part of an XrSwapchain. A runtime which allocates the texture with a different graphics API **may** need to enable several usage flags on the underlying native texture resource to ensure compatibility with OpenGLES.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

- XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_ES_KHR
- XR_TYPE_GRAPHICS_BINDING_OPENGL_ES_ANDROID_KHR
- XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information required to work with the OpenGL ES API executing on certain operating systems.

These structures are only available when the corresponding XR_USE_PLATFORM_ macro is defined before including openxr_platform.h.

The XrGraphicsBindingOpenGLESAndroidKHR structure is defined as:

<pre>// Provided by XR_KHR_opengl_es_enable typedef struct XrGraphicsBindingOpenGLESAndroidKHR {</pre>	
XrStructureType	type;
const void*	next;
EGLDisplay	display;
EGLConfig	config;
EGLContext	context;
<pre>} XrGraphicsBindingOpenGLESAndroidKHR;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- display is a valid Android OpenGL ES EGLDisplay.
- config is a valid Android OpenGL ES EGLConfig.
- context is a valid Android OpenGL ES EGLContext.

When creating an OpenGL ES-backed XrSession on Android, the application will provide a pointer to an XrGraphicsBindingOpenGLESAndroidKHR structure in the next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is XR_USE_PLATFORM_ANDROID.

Valid Usage (Implicit)

- The XR_KHR_opengl_es_enable extension **must** be enabled prior to using XrGraphicsBindingOpenGLESAndroidKHR
- type **must** be XR_TYPE_GRAPHICS_BINDING_OPENGL_ES_ANDROID_KHR
- next **must** be NULL or a valid pointer to the next structure in a structure chain
- display must be a valid EGLDisplay value
- config must be a valid EGLConfig value
- context must be a valid EGLContext value

The XrSwapchainImageOpenGLESKHR structure is defined as:

// Provided by XR_KHR_opengl_es_enable
typedef struct XrSwapchainImageOpenGLESKHR {
 XrStructureType type;
 void* next;
 uint32_t image;
} XrSwapchainImageOpenGLESKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- image is an index indicating the current OpenGL ES swapchain image to use.

If a given session was created with a XrGraphicsBindingOpenGLES*KHR, the following conditions **must** apply.

- Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session **must** return an array of XrSwapchainImageOpenGLESKHR structures.
- Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter in that session, the runtime **must** also accept a pointer to an XrSwapchainImageOpenGLESKHR structure.

The OpenXR runtime **must** interpret the bottom-left corner of the swapchain image as the coordinate origin unless specified otherwise by extension functionality.

The OpenXR runtime **must** interpret the swapchain images in a clip space of positive Y pointing up, near Z plane at -1, and far Z plane at 1.

Valid Usage (Implicit) • The XR_KHR_opengl_es_enable extension must be enabled prior to using XrSwapchainImageOpenGLESKHR

- type must be XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsOpenGLESKHR structure is defined as:

// Provided by XR_KHR_opengl_es_enable
typedef struct XrGraphicsRequirementsOpenGLESKHR {
 XrStructureType type;
 void* next;
 XrVersion minApiVersionSupported;
 XrVersion maxApiVersionSupported;
} XrGraphicsRequirementsOpenGLESKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- minApiVersionSupported is the minimum version of OpenGL ES that the runtime supports. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.
- maxApiVersionSupported is the maximum version of OpenGL ES that the runtime has been tested on and is known to support. Newer OpenGL ES versions might work if they are compatible. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

XrGraphicsRequirementsOpenGLESKHR is populated by xrGetOpenGLESGraphicsRequirementsKHR with the runtime's OpenGL ES API version requirements.

Valid Usage (Implicit)

- The XR_KHR_opengl_es_enable extension **must** be enabled prior to using XrGraphicsRequirementsOpenGLESKHR
- type **must** be XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_ES_KHR
- next **must** be NULL or a valid pointer to the next structure in a structure chain

New Functions

To query OpenGL ES API version requirements for an instance and system, call:

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- graphicsRequirements is the XrGraphicsRequirementsOpenGLESKHR output structure.

The xrGetOpenGLESGraphicsRequirementsKHR function identifies to the application the minimum OpenGL ES version requirement and the highest known tested OpenGL ES version. The runtime **must** return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE **may** be returned due to legacy behavior) on calls to xrCreateSession if xrGetOpenGLESGraphicsRequirementsKHR has not been called for the same instance and systemId.

Valid Usage (Implicit)

- The XR_KHR_opengl_es_enable extension **must** be enabled prior to calling xrGetOpenGLESGraphicsRequirementsKHR
- instance must be a valid XrInstance handle
- graphicsRequirements **must** be a pointer to an XrGraphicsRequirementsOpenGLESKHR structure

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SYSTEM_INVALID

Issues

Version History

- Revision 1, 2018-05-07 (Mark Young)
 - Initial draft
- Revision 2, 2018-06-21 (Bryce Hutchings)
 - Add new xrGetOpenGLESGraphicsRequirementsKHR
- Revision 3, 2018-11-15 (Paul Pedriana)
 - Specified the swapchain texture coordinate origin.
- Revision 4, 2018-11-16 (Minmin Gong)
 - Specified Y direction and Z range in clip space
- Revision 5, 2019-01-25 (Robert Menzel)
 - Description updated
- Revision 6, 2019-07-12 (Martin Renschler)
 - Description updated
- Revision 7, 2020-08-06 (Bryce Hutchings)
 - $\circ~Added~new~XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING~error~code$
- Revision 8, 2021-08-27 (Paulo F. Gomes)
 - Document handling of XrSwapchainUsageFlags

12.18. XR_KHR_swapchain_usage_input_attachment_bit

Name String

XR_KHR_swapchain_usage_input_attachment_bit

Extension Type

Instance extension

Registered Extension Number

166

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-05-11

IP Status

No known IP claims.

Contributors

Jakob Bornecrantz, Collabora Rylie Pavlik, Collabora

Overview

This extension enables an application to specify that swapchain images should be created in a way so that they can be used as input attachments. At the time of writing this bit only affects Vulkan swapchains.

New Object Types

New Flag Types

New Enum Constants

XrSwapchainUsageFlagBits enumeration is extended with:

• XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR - indicates that the image format **may** be used as an input attachment.

New Enums

New Structures

New Functions

Issues

Version History

- Revision 1, 2020-07-23 (Jakob Bornecrantz)
 - Initial draft
- Revision 2, 2020-07-24 (Jakob Bornecrantz)
 - Added note about only affecting Vulkan
 - $\circ~$ Changed from MNDX to MND
- Revision 3, 2021-05-11 (Rylie Pavlik, Collabora, Ltd.)
 - $\,\circ\,$ Updated for promotion from MND to KHR

12.19. XR_KHR_visibility_mask

Name String

XR_KHR_visibility_mask

Extension Type

Instance extension

Registered Extension Number

32

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2018-07-05

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus Alex Turner, Microsoft

Contacts

Paul Pedriana, Oculus

Overview

This extension support the providing of a per-view drawing mask for applications. The primary purpose of this is to enable performance improvements that result from avoiding drawing on areas that are not visible to the user. A common occurrence in head-mounted VR hardware is that the optical system's frustum does not intersect precisely with the rectangular display it is viewing. As a result, it may be that there are parts of the display that are not visible to the user, such as the corners of the display. In such cases it would be unnecessary for the application to draw into those parts.

New Object Types

New Flag Types

New Enum Constants

New Enums

XrVisibilityMaskTypeKHR identifies the different types of mask specification that is supported. The application **can** request a view mask in any of the formats identified by these types.

// Provided by XR_KHR_visibility_mask
typedef enum XrVisibilityMaskTypeKHR {
 XR_VISIBILITY_MASK_TYPE_HIDDEN_TRIANGLE_MESH_KHR = 1,
 XR_VISIBILITY_MASK_TYPE_VISIBLE_TRIANGLE_MESH_KHR = 2,
 XR_VISIBILITY_MASK_TYPE_LINE_LOOP_KHR = 3,
 XR_VISIBILITY_MASK_TYPE_MAX_ENUM_KHR = 0x7FFFFFFF
} XrVisibilityMaskTypeKHR;

Enumerant Descriptions

- XR_VISIBILITY_MASK_TYPE_HIDDEN_TRIANGLE_MESH_KHR refers to a two dimensional triangle mesh on the view surface which **should** not be drawn to by the application. XrVisibilityMaskKHR refers to a set of triangles identified by vertices and vertex indices. The index count will thus be a multiple of three. The triangle vertices will be returned in counter-clockwise order as viewed from the user perspective.
- XR_VISIBILITY_MASK_TYPE_VISIBLE_TRIANGLE_MESH_KHR refers to a two dimensional triangle mesh on the view surface which **should** be drawn to by the application. XrVisibilityMaskKHR refers to a set of triangles identified by vertices and vertex indices. The index count will thus be a multiple of three. The triangle vertices will be returned in counter-clockwise order as viewed from the user perspective.
- XR_VISIBILITY_MASK_TYPE_LINE_LOOP_KHR refers to a single multi-segmented line loop on the view surface which encompasses the view area which **should** be drawn by the application. It is the border that exists between the visible and hidden meshes identified by XR_VISIBILITY_MASK_TYPE_HIDDEN_TRIANGLE_MESH_KHR and XR_VISIBILITY_MASK_TYPE_VISIBLE_TRIANGLE_MESH_KHR. The line is counter-clockwise, contiguous, and non-self crossing, with the last point implicitly connecting to the first point. There is one vertex per point, the index count will equal the vertex count, and the indices will refer to the vertices.

New Structures

The XrVisibilityMaskKHR structure is an input/output struct which specifies the view mask.

// Provided by XR_KHR_	visibility_mask
<pre>typedef struct XrVisibilityMaskKHR {</pre>	
XrStructureType	type;
void*	next;
uint32_t	vertexCapacityInput;
uint32_t	vertexCountOutput;
XrVector2f*	vertices;
uint32_t	indexCapacityInput;
uint32_t	indexCountOutput;
uint32_t*	indices;
<pre>} XrVisibilityMaskKHR;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- vertexCapacityInput is the capacity of the vertices array, or 0 to indicate a request to retrieve the required capacity.
- vertexCountOutput is filled in by the runtime with the count of vertices written or the required capacity in the case that vertexCapacityInput or indexCapacityInput is insufficient.
- vertices is an array of vertices filled in by the runtime that specifies mask coordinates in the z=-1 plane of the rendered view—i.e. one meter in front of the view. When rendering the mask for use in a projection layer, these vertices must be transformed by the application's projection matrix used for the respective XrCompositionLayerProjectionView.
- indexCapacityInput is the capacity of the indices array, or 0 to indicate a request to retrieve the required capacity.
- indexCountOutput is filled in by the runtime with the count of indices written or the required capacity in the case that vertexCapacityInput or indexCapacityInput is insufficient.
- indices is an array of indices filled in by the runtime, specifying the indices of the mask geometry in the vertices array.

Valid Usage (Implicit)

- The XR_KHR_visibility_mask extension **must** be enabled prior to using XrVisibilityMaskKHR
- type **must** be XR_TYPE_VISIBILITY_MASK_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- If vertexCapacityInput is not 0, vertices **must** be a pointer to an array of vertexCapacityInput XrVector2f structures
- If indexCapacityInput is not 0, indices **must** be a pointer to an array of indexCapacityInput uint32_t values

The XrEventDataVisibilityMaskChangedKHR structure specifies an event which indicates that a given view mask has changed. The application **should** respond to the event by calling xrGetVisibilityMaskKHR to retrieve the updated mask. This event is per-view, so if the masks for multiple views in a configuration change then multiple instances of this event will be sent to the application, one per view.

// Provided by XR_KHR_visibility_mask
typedef struct XrEventDataVisibilityMaskChangedKHR {
 XrStructureType type;
 const void* next;
 XrSession session;
 XrViewConfigurationType viewConfigurationType;
 uint32_t viewIndex;
} XrEventDataVisibilityMaskChangedKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- session is the XrSession for which the view mask has changed.
- viewConfigurationType is the view configuration whose mask has changed.
- **viewIndex** is the individual view within the view configuration to which the change refers.

Valid Usage (Implicit)

- The XR_KHR_visibility_mask extension **must** be enabled prior to using XrEventDataVisibilityMaskChangedKHR
- type **must** be XR_TYPE_EVENT_DATA_VISIBILITY_MASK_CHANGED_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrGetVisibilityMaskKHR function is defined as:

XrViewConfigurationType uint32_t XrVisibilityMaskTypeKHR XrVisibilityMaskKHR* session, viewConfigurationType, viewIndex, visibilityMaskType, visibilityMask);

Parameter Descriptions

- session is an XrSession handle previously created with xrCreateSession.
- viewConfigurationType is the view configuration from which to retrieve mask information.
- **viewIndex** is the individual view within the view configuration from which to retrieve mask information.
- visibilityMaskType is the type of visibility mask requested.
- visibilityMask is an input/output struct which specifies the view mask.

xrGetVisibilityMaskKHR retrieves the view mask for a given view. This function follows the two-call idiom for filling multiple buffers in a struct. Specifically, if either XrVisibilityMaskKHR ::vertexCapacityInput or XrVisibilityMaskKHR::indexCapacityInput is 0, the runtime must respond as if both fields were set to 0, returning the vertex count and index count through XrVisibilityMaskKHR ::vertexCountOutput or XrVisibilityMaskKHR::indexCountOutput respectively. If a view mask for the specified view isn't available, the returned vertex and index counts must be 0.

Valid Usage (Implicit)

- The XR_KHR_visibility_mask extension **must** be enabled prior to calling xrGetVisibilityMaskKHR
- session must be a valid XrSession handle
- viewConfigurationType **must** be a valid XrViewConfigurationType value
- visibilityMaskType must be a valid XrVisibilityMaskTypeKHR value
- visibilityMask must be a pointer to an XrVisibilityMaskKHR structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

Issues

Version History

- Revision 1, 2018-07-05 (Paul Pedriana)
 - Initial version.
- Revision 2, 2019-07-15 (Alex Turner)
 - Adjust two-call idiom usage.

12.20. XR_KHR_vulkan_enable

Name String

XR_KHR_vulkan_enable

Extension Type

Instance extension

Registered Extension Number

26

Revision

8

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-25

IP Status

No known IP claims.

Contributors

Mark Young, LunarG Paul Pedriana, Oculus Ed Hutchins, Oculus Andres Rodriguez, Valve Dan Ginsburg, Valve Bryce Hutchings, Microsoft Minmin Gong, Microsoft Robert Menzel, NVIDIA Paulo Gomes, Samsung Electronics

Overview

This extension enables the use of the Vulkan graphics API in an OpenXR runtime. Without this extension, the OpenXR runtime may not be able to use any Vulkan swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid XrGraphicsBindingVulkanKHR structure in order to create a Vulkan-based XrSession. Note that during this process the application is responsible for creating all the required Vulkan objects.

This extension also provides mechanisms for the application to interact with images acquired by calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you **must** define XR_USE_GRAPHICS_API_VULKAN before including the OpenXR platform header openxr_platform.h, in all portions of your library or application that include it.

Initialization

Some of the requirements for creating a valid XrGraphicsBindingVulkanKHR include correct initialization of a VkInstance, VkPhysicalDevice, and VkDevice.

A runtime **may** require that the VkInstance be initialized to a specific Vulkan API version. Additionally, the runtime **may** require a set of instance extensions to be enabled in the VkInstance. These requirements can be queried by the application using xrGetVulkanGraphicsRequirementsKHR and xrGetVulkanInstanceExtensionsKHR, respectively.

Similarly, the runtime **may** require the VkDevice to have a set of device extensions enabled, which can

be queried using xrGetVulkanDeviceExtensionsKHR.

In order to satisfy the VkPhysicalDevice requirements, the application can query xrGetVulkanGraphicsDeviceKHR to identify the correct VkPhysicalDevice.

Populating an XrGraphicsBindingVulkanKHR with a VkInstance, VkDevice, or VkPhysicalDevice that does not meet the requirements outlined by this extension **may** result in undefined behavior by the OpenXR runtime.

The API version, instance extension, device extension and physical device requirements only apply to the VkInstance, VkDevice, and VkPhysicalDevice objects which the application wishes to associate with an XrGraphicsBindingVulkanKHR.

Concurrency

Vulkan requires that concurrent access to a VkQueue from multiple threads be externally synchronized. Therefore, OpenXR functions that may access the VkQueue specified in the XrGraphicsBindingVulkanKHR must also be externally synchronized.

The list of OpenXR functions where the OpenXR runtime **may** access the VkQueue are:

- xrBeginFrame
- xrEndFrame
- xrAcquireSwapchainImage
- xrReleaseSwapchainImage

The runtime **must** not access the VkQueue in any OpenXR function that is not listed above or in an extension definition.

Swapchain Image Layout

When an application acquires a swapchain image by calling xrAcquireSwapchainImage in a session created using XrGraphicsBindingVulkanKHR, the OpenXR runtime **must** guarantee that:

- The image has a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for color images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.
- The VkQueue specified in XrGraphicsBindingVulkanKHR has ownership of the image.

When an application releases a swapchain image by calling xrReleaseSwapchainImage, in a session created using XrGraphicsBindingVulkanKHR, the OpenXR runtime **must** interpret the image as:

- Having a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for color images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.
- Being owned by the VkQueue specified in XrGraphicsBindingVulkanKHR.

The application is responsible for transitioning the swapchain image back to the image layout and

queue ownership that the OpenXR runtime requires. If the image is not in a layout compatible with the above specifications the runtime **may** exhibit undefined behavior.

Swapchain Flag Bits

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingVulkanKHR **must** be interpreted as follows by the runtime, so that the returned swapchain images used by the application may be used as if they were created with at least the specified VkImageUsageFlagBits or VkImageCreateFlagBits set.

XrSwapchainUsageFlagBits	Corresponding Vulkan flag bit
XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT	VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT	VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT	VK_IMAGE_USAGE_STORAGE_BIT
XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT	VK_IMAGE_USAGE_TRANSFER_SRC_BIT
XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT	VK_IMAGE_USAGE_TRANSFER_DST_BIT
XR_SWAPCHAIN_USAGE_SAMPLED_BIT	VK_IMAGE_USAGE_SAMPLED_BIT
XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT	VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR (Added by	VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT
XR_KHR_swapchain_usage_input_attachment_bit and only available when that extension is enabled)	

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

- XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR
- XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR
- XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information required to work with the Vulkan API executing on certain operating systems.

The XrGraphicsBindingVulkanKHR structure is defined as:

// Provided by XR_KHR_vulkan_enable
typedef struct XrGraphicsBindingVulkanKHR {

XrStructureType	type;
const void*	next;
VkInstance	instance;
VkPhysicalDevice	physicalDevice;
VkDevice	device;
uint32_t	<pre>queueFamilyIndex;</pre>
uint32_t	<pre>queueIndex;</pre>

} XrGraphicsBindingVulkanKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- instance is a valid Vulkan VkInstance.
- physicalDevice is a valid Vulkan VkPhysicalDevice.
- device is a valid Vulkan VkDevice.
- queueFamilyIndex is a valid queue family index on device.
- queueIndex is a valid queue index on device to be used for synchronization.

When creating a Vulkan-backed XrSession, the application will provide a pointer to an XrGraphicsBindingVulkanKHR in the next chain of the XrSessionCreateInfo.

Valid Usage

- instance **must** have enabled a Vulkan API version in the range specified by XrGraphicsBindingVulkanKHR
- instance **must** have enabled all the instance extensions specified by xrGetVulkanInstanceExtensionsKHR
- physicalDevice VkPhysicalDevice must match the device specified by xrGetVulkanGraphicsDeviceKHR
- device **must** have enabled all the device extensions specified by xrGetVulkanDeviceExtensionsKHR

- The XR_KHR_vulkan_enable extension **must** be enabled prior to using XrGraphicsBindingVulkanKHR
- type must be XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR
- next **must** be NULL or a valid pointer to the next structure in a structure chain
- instance must be a valid VkInstance value
- physicalDevice **must** be a valid VkPhysicalDevice value
- device must be a valid VkDevice value

The XrSwapchainImageVulkanKHR structure is defined as:

```
// Provided by XR_KHR_vulkan_enable
typedef struct XrSwapchainImageVulkanKHR {
    XrStructureType type;
    void* next;
    VkImage image;
} XrSwapchainImageVulkanKHR;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- image is a valid Vulkan VkImage to use.

If a given session was created with XrGraphicsBindingVulkanKHR, the following conditions **must** apply.

- Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session **must** return an array of XrSwapchainImageVulkanKHR structures.
- Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter in that session, the runtime **must** also accept a pointer to an XrSwapchainImageVulkanKHR.

The OpenXR runtime **must** interpret the top-left corner of the swapchain image as the coordinate origin unless specified otherwise by extension functionality.

The OpenXR runtime **must** interpret the swapchain images in a clip space of positive Y pointing down,

- XR KHR vulkan enable extension enabled • The must be prior to using **XrSwapchainImageVulkanKHR**
- type **must** be XR TYPE SWAPCHAIN IMAGE VULKAN KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsVulkanKHR structure is defined as:

// Provided by XR	_KHR_vulkan_enable
typedef struct Xr	<pre>GraphicsRequirementsVulkanKHR {</pre>
XrStructureTy	pe type;
void*	next;
XrVersion	<pre>minApiVersionSupported;</pre>
XrVersion	<pre>maxApiVersionSupported;</pre>
<pre>} XrGraphicsRequi</pre>	rementsVulkanKHR:

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- minApiVersionSupported is the minimum Vulkan Instance API version that the runtime supports. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.
- maxApiVersionSupported is the maximum Vulkan Instance API version that the runtime has been tested on and is known to support. Newer Vulkan Instance API versions might work if they are compatible. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

XrGraphicsRequirementsVulkanKHR is populated by xrGetVulkanGraphicsRequirementsKHR with the runtime's Vulkan API version requirements.

- The XR_KHR_vulkan_enable extension **must** be enabled prior to using XrGraphicsRequirementsVulkanKHR
- type **must** be XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To query Vulkan API version requirements, call:

// Provided by XR_KHR_vulkan_enable
XrResult xrGetVulkanGraphicsRequirementsKHR(
 XrInstance in
 XrSystemId sy
 XrGraphicsRequirementsVulkanKHR* gr

instance, systemId, graphicsRequirements);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- graphicsRequirements is the XrGraphicsRequirementsVulkanKHR output structure.

The xrGetVulkanGraphicsRequirementsKHR function identifies to the application the minimum Vulkan version requirement and the highest known tested Vulkan version. The runtime **must** return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE **may** be returned due to legacy behavior) on calls to xrCreateSession if xrGetVulkanGraphicsRequirementsKHR has not been called for the same instance and systemId.

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable extension **must** be enabled prior to calling xrGetVulkanGraphicsRequirementsKHR
- instance must be a valid XrInstance handle
- graphicsRequirements must be a pointer to an XrGraphicsRequirementsVulkanKHR structure

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SYSTEM_INVALID

Some computer systems may have multiple graphics devices, each of which may have independent external display outputs. XR systems that connect to such graphics devices are typically connected to a single device. Applications need to know what graphics device the XR system is connected to so that they can use that graphics device to generate XR images.

To identify what graphics device needs to be used for an instance and system, call:

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- vkInstance is a valid Vulkan VkInstance.
- vkPhysicalDevice is a pointer to a VkPhysicalDevice value to populate.

xrGetVulkanGraphicsDeviceKHR function identifies to the application what graphics device (Vulkan VkPhysicalDevice) needs to be used. xrGetVulkanGraphicsDeviceKHR **must** be called prior to calling xrCreateSession, and the VkPhysicalDevice that xrGetVulkanGraphicsDeviceKHR returns should be

- The XR_KHR_vulkan_enable extension **must** be enabled prior to calling xrGetVulkanGraphicsDeviceKHR
- instance must be a valid XrInstance handle
- vkInstance must be a valid VkInstance value
- vkPhysicalDevice **must** be a pointer to a VkPhysicalDevice value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SYSTEM_INVALID

// Provided by XR_KHR_vulkan_enable
<pre>XrResult xrGetVulkanInstanceExtensionsKHR(</pre>
XrInstance
XrSystemId
uint32_t
uint32_t*
char*

instance, systemId, bufferCapacityInput, bufferCountOutput, buffer);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- **bufferCapacityInput** is the capacity of the **buffer**, or 0 to indicate a request to retrieve the required capacity.
- bufferCountOutput is a pointer to the count of characters written (including terminating \0), or a pointer to the required capacity in the case that bufferCapacityInput is insufficient.
- **buffer** is a pointer to an array of characters, but **can** be NULL if **bufferCapacityInput** is 0. The format of the output is a single space (ASCII 0x20) delimited string of extension names.
- See the Buffer Size Parameters section for a detailed description of retrieving the required buffer size.

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable extension **must** be enabled prior to calling xrGetVulkanInstanceExtensionsKHR
- instance must be a valid XrInstance handle
- bufferCountOutput must be a pointer to a uint32_t value
- If bufferCapacityInput is not 0, buffer **must** be a pointer to an array of bufferCapacityInput char values

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_SYSTEM_INVALID

// Provided by XR_KHR_vulkan_enable
XrResult xrGetVulkanDeviceExtensionsKHR(
 XrInstance
 XrSystemId
 uint32_t
 uint32_t*
 char*

instance, systemId, bufferCapacityInput, bufferCountOutput, buffer);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- **bufferCapacityInput** is the capacity of the **buffer**, or 0 to indicate a request to retrieve the required capacity.
- bufferCountOutput is a pointer to the count of characters written (including terminating \0), or a pointer to the required capacity in the case that bufferCapacityInput is insufficient.
- **buffer** is a pointer to an array of characters, but **can** be NULL if **bufferCapacityInput** is 0. The format of the output is a single space (ASCII 0x20) delimited string of extension names.
- See the Buffer Size Parameters section for a detailed description of retrieving the required buffer size.

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable extension **must** be enabled prior to calling xrGetVulkanDeviceExtensionsKHR
- instance must be a valid XrInstance handle
- bufferCountOutput must be a pointer to a uint32_t value
- If bufferCapacityInput is not 0, buffer **must** be a pointer to an array of bufferCapacityInput char values

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_SYSTEM_INVALID

Issues

Version History

- Revision 1, 2018-05-07 (Mark Young)
 - Initial draft
- Revision 2, 2018-06-21 (Bryce Hutchings)
 - Replace session parameter with instance and systemId parameters.
 - Move xrGetVulkanDeviceExtensionsKHR, xrGetVulkanInstanceExtensionsKHR and xrGetVulkanGraphicsDeviceKHR functions into this extension
 - Add new XrGraphicsRequirementsVulkanKHR function.
- Revision 3, 2018-11-15 (Paul Pedriana)
 - Specified the swapchain texture coordinate origin.
- Revision 4, 2018-11-16 (Minmin Gong)
 - $\,\circ\,$ Specified Y direction and Z range in clip space
- Revision 5, 2019-01-24 (Robert Menzel)
 - Description updated
- Revision 6, 2019-01-25 (Andres Rodriguez)
 - $\circ\,$ Reword sections of the spec to shift requirements on to the runtime instead of the app
- Revision 7, 2020-08-06 (Bryce Hutchings)
 - Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

- Revision 8, 2021-01-21 (Rylie Pavlik, Collabora, Ltd.)
 - Document mapping for XrSwapchainUsageFlags

12.21. XR_KHR_vulkan_enable2

Name String

XR_KHR_vulkan_enable2

Extension Type

Instance extension

Registered Extension Number

91

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-05-04

IP Status

No known IP claims.

Contributors

Mark Young, LunarG Paul Pedriana, Oculus Ed Hutchins, Oculus Andres Rodriguez, Valve Dan Ginsburg, Valve Bryce Hutchings, Microsoft Minmin Gong, Microsoft Robert Menzel, NVIDIA Paulo Gomes, Samsung Electronics

12.21.1. Overview

This extension enables the use of the Vulkan graphics API in an OpenXR runtime. Without this extension, the OpenXR runtime may not be able to use any Vulkan swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid XrGraphicsBindingVulkan2KHR structure in order to create a Vulkan-based XrSession.

This extension also provides mechanisms for the application to interact with images acquired by calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you **must** define XR_USE_GRAPHICS_API_VULKAN before including the OpenXR platform header openxr_platform.h, in all portions of your library or application that include it.

Note

This extension is intended as an alternative to XR_KHR_vulkan_enable, and does not depend on it.

12.21.2. Initialization

When operating in Vulkan mode, the OpenXR runtime and the application will share the Vulkan queue described in the XrGraphicsBindingVulkan2KHR structure. This section of the document describes the mechanisms this extension exposes to ensure the shared Vulkan queue is compatible with the runtime and the application's requirements.

Vulkan Version Requirements

First, a compatible Vulkan version **must** be agreed upon. To query the runtime's Vulkan API version requirements an application will call:

// Provided by XR_KHR_vulkan_enable2 XrResult xrGetVulkanGraphicsRequirements2KHR(
XrInstance	instance,
XrSystemId	systemId,
XrGraphicsRequirementsVulkanKHR*	graphicsRequirements);

The xrGetVulkanGraphicsRequirements2KHR function identifies to the application the runtime's minimum Vulkan version requirement and the highest known tested Vulkan version. xrGetVulkanGraphicsRequirements2KHR **must** be called prior to calling xrCreateSession. The runtime **must** return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING on calls to xrCreateSession if xrGetVulkanGraphicsRequirements2KHR has not been called for the same instance and systemId.

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- graphicsRequirements is the XrGraphicsRequirementsVulkan2KHR output structure.

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to calling xrGetVulkanGraphicsRequirements2KHR
- instance must be a valid XrInstance handle
- graphicsRequirements **must** be a pointer to an XrGraphicsRequirementsVulkanKHR structure

Return Cod	les		
Success			
• XR_SUCCESS			
Failure			
 XR_ERROR_FUNCTION_UNSUPPORTED 			
• XR_ERROR_VALIDATION_FAILURE			
• XR_ERROR_RUNTIME_FAILURE			
• XR_ERROR_HANDLE_INVALID			
• XR_ERROR_INSTANCE_LOST			
• XR_ERROR_SYSTEM_INVALID			
The XrGraphicsRequirementsVulkan2KHR xrGetVulkanGraphicsRequirements2KHR is defined as:	structure	populated	by

// Provided by XR_KHR_vulkan_enable2 // XrGraphicsRequirementsVulkan2KHR is an alias for XrGraphicsRequirementsVulkanKHR		
<pre>typedef struct XrGraphicsRequirementsVulkanKHR {</pre>		
XrStructureType	type;	
void*	next;	
XrVersion	minApiVersionSupported;	
XrVersion	<pre>maxApiVersionSupported;</pre>	
<pre>} XrGraphicsRequirementsVulkanKHR;</pre>		
<pre>typedef XrGraphicsRequirementsVulkanKHR XrGraphicsRequirementsVulkan2KHR;</pre>		

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- minApiVersionSupported is the minimum version of Vulkan that the runtime supports. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.
- maxApiVersionSupported is the maximum version of Vulkan that the runtime has been tested on and is known to support. Newer Vulkan versions might work if they are compatible. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to using XrGraphicsRequirementsVulkan2KHR
- Note: XrGraphicsRequirementsVulkan2KHR is an alias for XrGraphicsRequirementsVulkanKHR, so the following items replicate the implicit valid usage for XrGraphicsRequirementsVulkanKHR
- type **must** be XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

Vulkan Instance Creation

Second, a compatible VkInstance **must** be created. The xrCreateVulkanInstanceKHR entry point is a wrapper around vkCreateInstance intended for this purpose. When called, the runtime **must** aggregate the requirements specified by the application with its own requirements and forward the VkInstance creation request to the vkCreateInstance function pointer returned by pfnGetInstanceProcAddr.

// Provided by XR_KHR_vulkan_enable2
XrResult xrCreateVulkanInstanceKHR(
 XrInstance
 const XrVulkanInstanceCreateInfoKHR*
 VkInstance*
 VkResult*

instance, createInfo, vulkanInstance, vulkanResult);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- createInfo extensible input struct of type XrVulkanInstanceCreateInfoKHR
- vulkanInstance points to a VkInstance handle to populate with the new Vulkan instance.
- vulkanResult points to a VkResult to populate with the result of the vkCreateInstance operation as returned by XrVulkanInstanceCreateInfoKHR::pfnGetInstanceProcAddr.

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to calling xrCreateVulkanInstanceKHR
- instance must be a valid XrInstance handle
- createInfo must be a pointer to a valid XrVulkanInstanceCreateInfoKHR structure
- vulkanInstance must be a pointer to a VkInstance value
- vulkanResult must be a pointer to a VkResult value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED
- XR_ERROR_SYSTEM_INVALID

The XrVulkanInstanceCreateInfoKHR structure contains the input parameters to xrCreateVulkanInstanceKHR.

// Provided by XR_KHR_vulkan_enable2	
typedef struct XrVulkanInstanceCreat	eInfoKHR {
XrStructureType	type;
const void*	next;
XrSystemId	systemId;
XrVulkanInstanceCreateFlagsKHR	createFlags;
PFN_vkGetInstanceProcAddr	<pre>pfnGetInstanceProcAddr;</pre>
<pre>const VkInstanceCreateInfo*</pre>	vulkanCreateInfo;
<pre>const VkAllocationCallbacks*</pre>	vulkanAllocator;
<pre>} XrVulkanInstanceCreateInfoKHR;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension
- systemId is an XrSystemId handle for the system which will be used to create a session.
- createFlags is a bitmask of XrVulkanInstanceCreateFlagBitsKHR
- pfnGetInstanceProcAddr is a function pointer to vkGetInstanceProcAddr or a compatible entry point.
- vulkanCreateInfo is the VkInstanceCreateInfo as specified by Vulkan.
- vulkanAllocator is the VkAllocationCallbacks as specified by Vulkan.

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to using XrVulkanInstanceCreateInfoKHR
- type **must** be XR_TYPE_VULKAN_INSTANCE_CREATE_INFO_KHR
- next **must** be NULL or a valid pointer to the next structure in a structure chain
- createFlags **must** be 0
- pfnGetInstanceProcAddr **must** be a valid PFN_vkGetInstanceProcAddr value
- vulkanCreateInfo must be a pointer to a valid VkInstanceCreateInfo value
- If vulkanAllocator is not NULL, vulkanAllocator **must** be a pointer to a valid VkAllocationCallbacks value

The XrVulkanInstanceCreateInfoKHR::createFlags member is of the following type, and contains a bitwise-OR of zero or more of the bits defined in XrVulkanInstanceCreateFlagBitsKHR.

typedef XrFlags64 XrVulkanInstanceCreateFlagsKHR;

Valid bits for XrVulkanInstanceCreateFlagsKHR are defined by XrVulkanInstanceCreateFlagBitsKHR.

// Flag bits for XrVulkanInstanceCreateFlagsKHR

There are currently no Vulkan instance creation flag bits defined. This is reserved for future use.

Physical Device Selection

Third, a VkPhysicalDevice **must** be chosen. Some computer systems may have multiple graphics devices, each of which may have independent external display outputs. The runtime **must** report a VkPhysicalDevice that is compatible with the OpenXR implementation when xrGetVulkanGraphicsDevice2KHR is invoked. The application will use this VkPhysicalDevice to interact with the OpenXR runtime.

// Provided by XR_KHR_vulkan_enable2
XrResult xrGetVulkanGraphicsDevice2KHR(
 XrInstance
 const XrVulkanGraphicsDeviceGetInfoKHR*
 VkPhysicalDevice*

instance, getInfo, vulkanPhysicalDevice);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- getInfo extensible input struct of type XrVulkanGraphicsDeviceGetInfoKHR
- vulkanPhysicalDevice is a pointer to a VkPhysicalDevice handle to populate.

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to calling xrGetVulkanGraphicsDevice2KHR
- instance must be a valid XrInstance handle
- getInfo must be a pointer to a valid XrVulkanGraphicsDeviceGetInfoKHR structure
- vulkanPhysicalDevice must be a pointer to a VkPhysicalDevice value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SYSTEM_INVALID

The XrVulkanGraphicsDeviceGetInfoKHR structure contains the input parameters to xrCreateVulkanInstanceKHR.

// Provided by XR_KHR_v	/ulkan_enable2
typedef struct XrVulkar	hGraphicsDeviceGetInfoKHR {
XrStructureType	type;
const void*	next;
XrSystemId	systemId;
VkInstance	vulkanInstance;
<pre>} XrVulkanGraphicsDevic</pre>	ceGetInfoKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- vulkanInstance is a valid Vulkan VkInstance.

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to using XrVulkanGraphicsDeviceGetInfoKHR
- type **must** be XR_TYPE_VULKAN_GRAPHICS_DEVICE_GET_INFO_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- vulkanInstance **must** be a valid VkInstance value

Vulkan Device Creation

Fourth, a compatible VkDevice **must** be created. The xrCreateVulkanDeviceKHR entry point is a wrapper around vkCreateDevice intended for this purpose. When called, the runtime **must** aggregate the requirements specified by the application with its own requirements and forward the VkDevice creation request to the vkCreateDevice function pointer returned by XrVulkanInstanceCreateInfoKHR ::pfnGetInstanceProcAddr.

<pre>// Provided by XR_KHR_vulkan_enable2 XrResult xrCreateVulkanDeviceKHR(</pre>	
XrInstance	instance,
<pre>const XrVulkanDeviceCreateInfoKHR*</pre>	createInfo,
VkDevice*	vulkanDevice,
VkResult*	vulkanResult);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- createInfo extensible input struct of type XrCreateVulkanDeviceCreateInfoKHR
- vulkanDevice points to a VkDevice handle to populate with the new Vulkan device.
- vulkanResult points to a VkResult to populate with the result of the vkCreateDevice operation as returned by XrVulkanInstanceCreateInfoKHR::pfnGetInstanceProcAddr.

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to calling xrCreateVulkanDeviceKHR
- instance must be a valid XrInstance handle
- createInfo must be a pointer to a valid XrVulkanDeviceCreateInfoKHR structure
- vulkanDevice must be a pointer to a VkDevice value
- vulkanResult must be a pointer to a VkResult value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_OUT_OF_MEMORY
- XR_ERROR_LIMIT_REACHED
- XR_ERROR_SYSTEM_INVALID

The XrVulkanDeviceCreateInfoKHR structure contains the input parameters to xrCreateVulkanDeviceKHR.

// Provided by XR_KHR_vulkan_enabl	e2
typedef struct XrVulkanDeviceCreat	
XrStructureType	type;
const void*	next;
XrSystemId	systemId;
XrVulkanDeviceCreateFlagsKHR	createFlags;
PFN_vkGetInstanceProcAddr	pfnGetInstanceProcAddr;
VkPhysicalDevice	vulkanPhysicalDevice;
<pre>const VkDeviceCreateInfo*</pre>	vulkanCreateInfo;
<pre>const VkAllocationCallbacks*</pre>	vulkanAllocator;
<pre>} XrVulkanDeviceCreateInfoKHR;</pre>	

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain.
- systemId is an XrSystemId handle for the system which will be used to create a session.
- createFlags is a bitmask of XrVulkanDeviceCreateFlagBitsKHR
- pfnGetInstanceProcAddr is a function pointer to vkGetInstanceProcAddr or a compatible entry point.
- vulkanPhysicalDevice must match xrGetVulkanGraphicsDeviceKHR.
- vulkanCreateInfo is the VkDeviceCreateInfo as specified by Vulkan.
- vulkanAllocator is the VkAllocationCallbacks as specified by Vulkan.

If the vulkanPhysicalDevice parameter does not match the output of xrGetVulkanGraphicsDeviceKHR, then the runtime **must** return XR_ERROR_HANDLE_INVALID.

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to using XrVulkanDeviceCreateInfoKHR
- type **must** be XR_TYPE_VULKAN_DEVICE_CREATE_INFO_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- createFlags **must** be 0
- pfnGetInstanceProcAddr **must** be a valid PFN_vkGetInstanceProcAddr value
- vulkanPhysicalDevice **must** be a valid VkPhysicalDevice value
- vulkanCreateInfo must be a pointer to a valid VkDeviceCreateInfo value
- If vulkanAllocator is not NULL, vulkanAllocator **must** be a pointer to a valid VkAllocationCallbacks value

XrVulkanDeviceCreateFlagsKHRspecifydetailsofdevicecreation.TheXrVulkanDeviceCreateInfoKHR::createFlagsmember is of the following type, and contains a bitwise-OR of zero or more of the bits defined in XrVulkanDeviceCreateFlagBitsKHR.

typedef XrFlags64 XrVulkanDeviceCreateFlagsKHR;

Valid bits for XrVulkanDeviceCreateFlagsKHR are defined by XrVulkanDeviceCreateFlagBitsKHR.

// Flag bits for XrVulkanDeviceCreateFlagsKHR

There are currently no Vulkan device creation flag bits defined. This is reserved for future use.

Queue Selection

Last, the application selects a VkQueue from the VkDevice that has the VK_QUEUE_GRAPHICS_BIT set.

Note

The runtime may schedule work on the VkQueue specified in the binding, or it may schedule work on any hardware queue in a foreign logical device.

Vulkan Graphics Binding

When creating a Vulkan-backed XrSession, the application will chain a pointer to an XrGraphicsBindingVulkan2KHR to the XrSessionCreateInfo parameter of xrCreateSession. With the data collected in the previous sections, the application now has all the necessary information to populate an XrGraphicsBindingVulkan2KHR structure for session creation.

// Provided by XR KHR vulkan enable2 // XrGraphicsBindingVulkan2KHR is an alias for XrGraphicsBindingVulkanKHR typedef struct XrGraphicsBindingVulkanKHR { XrStructureType type; const void* next; VkInstance instance; VkPhysicalDevice physicalDevice; VkDevice device; uint32_t queueFamilyIndex; uint32 t queueIndex;

} XrGraphicsBindingVulkanKHR;

typedef XrGraphicsBindingVulkanKHR XrGraphicsBindingVulkan2KHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- instance is a valid Vulkan VkInstance.
- physicalDevice is a valid Vulkan VkPhysicalDevice.
- device is a valid Vulkan VkDevice.
- queueFamilyIndex is a valid queue family index on device.
- queueIndex is a valid queue index on device to be used for synchronization.

Valid Usage

- instance **must** have enabled a Vulkan API version in the range specified by xrGetVulkanGraphicsRequirements2KHR
- instance must have been created using xrCreateVulkanInstanceKHR
- physicalDevice VkPhysicalDevice **must** match the device specified by xrGetVulkanGraphicsDevice2KHR
- device must have been created using xrCreateVulkanDeviceKHR

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to using XrGraphicsBindingVulkan2KHR
- Note: XrGraphicsBindingVulkan2KHR is an alias for XrGraphicsBindingVulkanKHR, so the following items replicate the implicit valid usage for XrGraphicsBindingVulkanKHR
- type **must** be XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- instance must be a valid VkInstance value
- physicalDevice **must** be a valid VkPhysicalDevice value
- device must be a valid VkDevice value

Populating an XrGraphicsBindingVulkan2KHR structure with a member that does not meet the requirements outlined by this extension **may** result in undefined behavior by the OpenXR runtime.

The requirements outlined in this extension only apply to the VkInstance, VkDevice, VkPhysicalDevice and VkQueue objects which the application wishes to associate with an XrGraphicsBindingVulkan2KHR.

12.21.3. Concurrency

Vulkan requires that concurrent access to a VkQueue from multiple threads be externally synchronized. Therefore, OpenXR functions that may access the VkQueue specified in the XrGraphicsBindingVulkan2KHR **must** also be externally synchronized by the OpenXR application.

The list of OpenXR functions where the OpenXR runtime **may** access the VkQueue are:

- xrBeginFrame
- xrEndFrame
- xrAcquireSwapchainImage
- xrReleaseSwapchainImage

The runtime **must** not access the VkQueue in any OpenXR function that is not listed above or in an extension definition.

Failure by the application to synchronize access to VkQueue **may** result in undefined behavior in the OpenXR runtime.

12.21.4. Swapchain Interactions

Swapchain Images

When an application interacts with XrSwapchainImageBaseHeader structures in a Vulkan-backed XrSession, the application can interpret these to be XrSwapchainImageVulkan2KHR structures. These are defined as:

typedef XrSwapchainImageVulkanKHR XrSwapchainImageVulkan2KHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- image is a valid Vulkan VkImage to use.

If a given session was created with XrGraphicsBindingVulkan2KHR, the following conditions **must** apply.

- Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session **must** return an array of XrSwapchainImageVulkan2KHR structures.
- Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter in that session, the runtime **must** also accept a pointer to an XrSwapchainImageVulkan2KHR.

The OpenXR runtime **must** interpret the top-left corner of the swapchain image as the coordinate origin unless specified otherwise by extension functionality.

The OpenXR runtime **must** interpret the swapchain images in a clip space of positive Y pointing down, near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

- The XR_KHR_vulkan_enable2 extension **must** be enabled prior to using XrSwapchainImageVulkan2KHR
- Note: XrSwapchainImageVulkan2KHR is an alias for XrSwapchainImageVulkanKHR, so the following items replicate the implicit valid usage for XrSwapchainImageVulkanKHR
- type **must** be XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain

Swapchain Image Layout

When an application acquires a swapchain image by calling xrAcquireSwapchainImage in a session created using XrGraphicsBindingVulkan2KHR, the OpenXR runtime **must** guarantee that:

- The image has a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for color images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.
- The VkQueue specified in XrGraphicsBindingVulkan2KHR has ownership of the image.

When an application releases a swapchain image by calling xrReleaseSwapchainImage, in a session created using XrGraphicsBindingVulkan2KHR, the OpenXR runtime **must** interpret the image as:

- Having a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for color images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.
- Being owned by the VkQueue specified in XrGraphicsBindingVulkan2KHR.
- Being referenced by command buffers submitted to the VkQueue specified in XrGraphicsBindingVulkan2KHR which have not yet completed execution.

The application is responsible for transitioning the swapchain image back to the image layout and queue ownership that the OpenXR runtime requires. If the image is not in a layout compatible with the above specifications the runtime **may** exhibit undefined behavior.

Swapchain Flag Bits

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingVulkan2KHR **must** be interpreted as follows by the runtime, so that the returned swapchain images used by the application may be used as if they were created with at least the specified VkImageUsageFlagBits or VkImageCreateFlagBits set.

XrSwapchainUsageFlagBits	Corresponding Vulkan flag bit
XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT	VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT	VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT	VK_IMAGE_USAGE_STORAGE_BIT
XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT	VK_IMAGE_USAGE_TRANSFER_SRC_BIT
<pre>XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT</pre>	VK_IMAGE_USAGE_TRANSFER_DST_BIT
XR_SWAPCHAIN_USAGE_SAMPLED_BIT	VK_IMAGE_USAGE_SAMPLED_BIT
<pre>XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT</pre>	VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
<pre>XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR (Added by XR_KHR_swapchain_usage_input_attachment_bit and only available when that extension is enabled)</pre>	VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

12.21.5. Appendix

Questions

- 1. Should the xrCreateVulkanDeviceKHR and xrCreateVulkanInstanceKHR functions have an output parameter that returns the combined list of parameters used to create the Vulkan device/instance?
 - No. If the application is interested in capturing this data it can set the pfnGetInstanceProcAddr parameter to a local callback that captures the relevant information.

Quick Reference

New Enum Constants

XrStructureType enumeration is extended with:

- XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN2_KHR (alias of XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR)
- XR_TYPE_GRAPHICS_BINDING_VULKAN2_KHR (alias of XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR)
- XR_TYPE_SWAPCHAIN_IMAGE_VULKAN2_KHR (alias of XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR)

New Structures

- XrVulkanInstanceCreateInfoKHR
- XrVulkanDeviceCreateInfoKHR
- XrVulkanGraphicsDeviceGetInfoKHR
- XrGraphicsBindingVulkan2KHR (alias of XrGraphicsBindingVulkanKHR)
- XrSwapchainImageVulkan2KHR (alias of XrSwapchainImageVulkanKHR)
- XrGraphicsRequirementsVulkan2KHR (alias of XrGraphicsRequirementsVulkanKHR)

New Functions

- xrCreateVulkanInstanceKHR
- xrCreateVulkanDeviceKHR
- xrGetVulkanGraphicsDevice2KHR
- xrGetVulkanGraphicsRequirements2KHR

Version History

- Revision 1, 2020-05-04 (Andres Rodriguez)
 - Initial draft
- Revision 2, 2021-01-21 (Rylie Pavlik, Collabora, Ltd.)
 - Document mapping for XrSwapchainUsageFlags

12.22. XR_KHR_vulkan_swapchain_format_list

Name String

XR_KHR_vulkan_swapchain_format_list

Extension Type

Instance extension

Registered Extension Number

15

Revision

4

Extension and Version Dependencies

OpenXR 1.0 and XR_KHR_vulkan_enable

Last Modified Date

2020-01-01

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus Dan Ginsburg, Valve

Overview

Vulkan has the VK_KHR_image_format_list extension which allows applications to tell the vkCreateImage function which formats the application intends to use when VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT is specified. This OpenXR extension exposes that Vulkan extension to OpenXR applications. In the same way that a Vulkan-based application can pass a VkImageFormatListCreateInfo struct to the vkCreateImage function, an OpenXR application can pass an identically configured XrVulkanSwapchainFormatListCreateInfoKHR structure to xrCreateSwapchain.

Applications using this extension to specify more than one swapchain format must create OpenXR swapchains with the XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT bit set.

Runtimes implementing this extension **must** support the XR_KHR_vulkan_enable or the XR_KHR_vulkan_enable2 extension. When XR_KHR_vulkan_enable is used, the runtime **must** add VK_KHR_image_format_list to the list of extensions enabled in xrCreateVulkanDeviceKHR.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

XR_TYPE_VULKAN_SWAPCHAIN_FORMAT_LIST_CREATE_INFO_KHR

New Enums

New Structures

// Provided by XR_KHR_vulkan_swapchain_format_list
typedef struct XrVulkanSwapchainFormatListCreateInfoKHR {
 XrStructureType type;
 const void* next;
 uint32_t viewFormatCount;
 const VkFormat* viewFormats;
} XrVulkanSwapchainFormatListCreateInfoKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- viewFormatCount is the number of view formats passed in viewFormats.
- viewFormats is an array of VkFormat.

Valid Usage (Implicit)

- The XR_KHR_vulkan_swapchain_format_list extension **must** be enabled prior to using XrVulkanSwapchainFormatListCreateInfoKHR
- type **must** be XR_TYPE_VULKAN_SWAPCHAIN_FORMAT_LIST_CREATE_INFO_KHR
- next must be NULL or a valid pointer to the next structure in a structure chain
- If viewFormatCount is not 0, viewFormats **must** be a pointer to an array of viewFormatCount valid VkFormat values

New Functions

Issues

Version History

- Revision 1, 2017-09-13 (Paul Pedriana)
 - Initial proposal.
- Revision 2, 2018-06-21 (Bryce Hutchings)
 - Update reference of XR_KHR_vulkan_extension_requirements to XR_KHR_vulkan_enable
- Revision 3, 2020-01-01 (Andres Rodriguez)
 - Update for XR_KHR_vulkan_enable2
- Revision 4, 2021-01-21 (Rylie Pavlik, Collabora, Ltd.)
 - $\circ~$ Fix reference to the mutable-format bit in Vulkan.

12.23. XR_KHR_win32_convert_performance_counter_time

Name String

XR_KHR_win32_convert_performance_counter_time

Extension Type

Instance extension

Registered Extension Number

36

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus Bryce Hutchings, Microsoft

Overview

This extension provides two functions for converting between the Windows performance counter (QPC) time stamps and XrTime. The xrConvertWin32PerformanceCounterToTimeKHR function converts from Windows performance counter time stamps to XrTime, while the xrConvertTimeToWin32PerformanceCounterKHR function converts XrTime to Windows performance counter time stamps. The primary use case for this functionality is to be able to synchronize events between the local system and the OpenXR system.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

To convert from a Windows performance counter time stamp to XrTime, call:

// Provided by XR_KHR_win32_convert_performance_counter_time
XrResult xrConvertWin32PerformanceCounterToTimeKHR(

XrInstance
const LARGE_INTEGER*
XrTime*

instance,
performanceCounter,
time);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- performanceCounter is a time returned by QueryPerformanceCounter.
- time is the resulting XrTime that is equivalent to the performanceCounter.

The xrConvertWin32PerformanceCounterToTimeKHR function converts a time stamp obtained by the QueryPerformanceCounter Windows function to the equivalent XrTime.

If the output time cannot represent the input performanceCounter, the runtime **must** return XR_ERROR_TIME_INVALID.

Valid Usage (Implicit)

- The XR_KHR_win32_convert_performance_counter_time extension **must** be enabled prior to calling xrConvertWin32PerformanceCounterToTimeKHR
- instance must be a valid XrInstance handle
- performanceCounter must be a pointer to a valid LARGE_INTEGER value
- time must be a pointer to an XrTime value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_TIME_INVALID

To convert from XrTime to a Windows performance counter time stamp, call:

// Provided by XR_KHR_win32_convert_performance_counter_time
XrResult xrConvertTimeToWin32PerformanceCounterKHR(
 XrInstance instance,
 XrTime time,
 LARGE_INTEGER* performanceCounter);

Parameter Descriptions

- instance is an XrInstance handle previously created with xrCreateInstance.
- time is an XrTime.
- performanceCounter is the resulting Windows performance counter time stamp that is equivalent to the time.

The xrConvertTimeToWin32PerformanceCounterKHR function converts an XrTime to time as if generated by the QueryPerformanceCounter Windows function.

If the output performanceCounter cannot represent the input time, the runtime **must** return XR_ERROR_TIME_INVALID.

Valid Usage (Implicit)

- The XR_KHR_win32_convert_performance_counter_time extension **must** be enabled prior to calling xrConvertTimeToWin32PerformanceCounterKHR
- instance must be a valid XrInstance handle
- performanceCounter must be a pointer to a LARGE_INTEGER value

Return Codes

Success

• XR_SUCCESS

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_TIME_INVALID

Issues

Version History

- Revision 1, 2019-01-24 (Paul Pedriana)
 - Initial draft

Chapter 13. List of Deprecated Extensions

- XR_KHR_locate_spaces
- XR_KHR_maintenance1

13.1. XR_KHR_locate_spaces

Name String

XR_KHR_locate_spaces

Extension Type

Instance extension

Registered Extension Number

472

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2024-01-19

IP Status

No known IP claims.

Contributors

Yin Li, Microsoft Bryce Hutchings, Microsoft Andreas Loeve Selvik, Meta Platforms John Kearney, Meta Platforms Robert Blenkinsopp, Ultraleap Rylie Pavlik, Collabora Ron Bessems, Magic Leap Jakob Bornecrantz, NVIDIA

13.1.1. Overview

This extension introduces the xrLocateSpacesKHR function, which enables applications to locate an array of spaces in a single function call. Runtimes **may** provide performance benefits for applications that use many spaces.

Compared to the xrLocateSpace function, the new xrLocateSpacesKHR function also provides extensible input parameters for future extensions to extend using additional chained structures.

13.1.2. Locate spaces

Applications **can** use <u>xrLocateSpacesKHR</u> function to locate an array of spaces.

The xrLocateSpacesKHR function is defined as:

// Provided by XR_KHR_locate_spaces
XrResult xrLocateSpacesKHR(
 XrSession
 const XrSpacesLocateInfo*
 XrSpaceLocations*

session, locateInfo, spaceLocations);

Parameter Descriptions

- session is an XrSession handle previously created with xrCreateSession.
- **locateInfo** is a pointer to an XrSpacesLocateInfoKHR that provides the input information to locate spaces.
- spaceLocations is a pointer to an XrSpaceLocationsKHR for the runtime to return the locations of the specified spaces in the base space.

xrLocateSpacesKHR provides the physical location of one or more spaces in a base space at a specified time, if currently known by the runtime.

The XrSpacesLocateInfoKHR::time, the XrSpacesLocateInfoKHR::baseSpace, and each space in XrSpacesLocateInfoKHR::spaces, in the locateInfo parameter, all follow the same specifics as the corresponding inputs to the xrLocateSpace function.

Valid Usage (Implicit)

- The XR_KHR_locate_spaces extension **must** be enabled prior to calling xrLocateSpacesKHR
- session must be a valid XrSession handle
- locateInfo must be a pointer to a valid XrSpacesLocateInfo structure
- spaceLocations **must** be a pointer to an XrSpaceLocations structure

Return Codes

Success

- XR_SUCCESS
- XR_SESSION_LOSS_PENDING

Failure

- XR_ERROR_FUNCTION_UNSUPPORTED
- XR_ERROR_VALIDATION_FAILURE
- XR_ERROR_RUNTIME_FAILURE
- XR_ERROR_HANDLE_INVALID
- XR_ERROR_INSTANCE_LOST
- XR_ERROR_SESSION_LOST
- XR_ERROR_SIZE_INSUFFICIENT
- XR_ERROR_TIME_INVALID

The XrSpacesLocateInfoKHR structure is defined as:

```
// Provided by XR_KHR_locate_spaces
// XrSpacesLocateInfoKHR is an alias for XrSpacesLocateInfo
typedef struct XrSpacesLocateInfo {
   XrStructureType
                      type;
    const void*
                      next;
   XrSpace
                       baseSpace;
   XrTime
                       time;
    uint32_t
                       spaceCount;
    const XrSpace*
                       spaces;
} XrSpacesLocateInfo;
typedef XrSpacesLocateInfo XrSpacesLocateInfoKHR;
```

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain. No such structures are defined in core OpenXR or this extension.
- baseSpace identifies the underlying space in which to locate spaces.
- time is the time for which the location is requested.
- **spaceCount** is a **uint32_t** specifying the count of elements in the **spaces** array.
- spaces is an array of valid XrSpace handles to be located.

The time, the baseSpace, and each space in spaces all follow the same specifics as the corresponding inputs to the xrLocateSpace function.

The baseSpace and all of the XrSpace handles in the spaces array **must** be valid and share the same parent XrSession.

If the time is invalid, the xrLocateSpacesKHR must return XR_ERROR_TIME_INVALID.

The spaceCount **must** be a positive number, i.e. the array spaces **must** not be empty. Otherwise, the runtime **must** return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

- The XR_KHR_locate_spaces extension **must** be enabled prior to using XrSpacesLocateInfoKHR
- Note: XrSpacesLocateInfoKHR is an alias for XrSpacesLocateInfo, so the following items replicate the implicit valid usage for XrSpacesLocateInfo
- type must be XR_TYPE_SPACES_LOCATE_INFO
- next must be NULL or a valid pointer to the next structure in a structure chain
- baseSpace must be a valid XrSpace handle
- spaces must be a pointer to an array of spaceCount valid XrSpace handles
- The spaceCount parameter **must** be greater than 0
- Both of baseSpace and the elements of spaces **must** have been created, allocated, or retrieved from the same XrSession

The XrSpaceLocationsKHR structure is defined as:

// Provided by XR_KHR_locate_spaces
// XrSpaceLocationsKHR is an alias for XrSpaceLocations
typedef struct XrSpaceLocations {
 XrStructureType type;
 void* next;
 uint32_t locationCount;
 XrSpaceLocationData* locations;
} XrSpaceLocations;

typedef XrSpaceLocations XrSpaceLocationsKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain, such as XrSpaceVelocitiesKHR.
- locationCount is a uint32_t specifying the count of elements in the locations array.
- locations is an array of XrSpaceLocationsKHR for the runtime to populate with the locations of the specified spaces in the XrSpacesLocateInfoKHR::baseSpace at the specified XrSpacesLocateInfoKHR::time.

The XrSpaceLocationsKHR structure contains an array of space locations in the member locations, to be used as output for xrLocateSpacesKHR. The application **must** allocate this array to be populated with the function output. The locationCount value **must** be the same as XrSpacesLocateInfoKHR ::spaceCount, otherwise, the xrLocateSpacesKHR function **must** return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

- The XR_KHR_locate_spaces extension **must** be enabled prior to using XrSpaceLocationsKHR
- Note: XrSpaceLocationsKHR is an alias for XrSpaceLocations, so the following items replicate the implicit valid usage for XrSpaceLocations
- type must be XR_TYPE_SPACE_LOCATIONS
- next **must** be NULL or a valid pointer to the next structure in a structure chain. See also: XrSpaceVelocities
- locations **must** be a pointer to an array of locationCount XrSpaceLocationData structures
- The locationCount parameter **must** be greater than 0

The XrSpaceLocationDataKHR structure is defined as:

// Provided by XR_KHR_locate_spaces
// XrSpaceLocationDataKHR is an alias for XrSpaceLocationData
typedef struct XrSpaceLocationData {
 XrSpaceLocationFlags locationFlags;
 XrPosef pose;
} XrSpaceLocationData;

typedef XrSpaceLocationData XrSpaceLocationDataKHR;

Member Descriptions

- locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits. It behaves the same as XrSpaceLocation::locationFlags.
- pose is an XrPosef that behaves the same as XrSpaceLocation::pose.

This is a single element of the array in XrSpaceLocationsKHR::locations, and is used to return the pose and location flags for a single space with respect to the specified base space from a call to xrLocateSpacesKHR. It does not accept chained structures to allow for easier use in dynamically allocated container datatypes. Chained structures are possible with the XrSpaceLocationsKHR that describes an array of these elements.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension **must** be enabled prior to using XrSpaceLocationDataKHR

13.1.3. Locate space velocities

Applications **can** request the velocities of spaces by chaining the XrSpaceVelocitiesKHR structure to the next pointer of XrSpaceLocationsKHR when calling xrLocateSpacesKHR.

The XrSpaceVelocitiesKHR structure is defined as:

// Provided by XR_KHR_locate_spaces
// XrSpaceVelocitiesKHR is an alias for XrSpaceVelocities
typedef struct XrSpaceVelocities {
 XrStructureType type;
 void* next;
 uint32_t velocityCount;
 XrSpaceVelocityData* velocities;
} XrSpaceVelocities;

typedef XrSpaceVelocities XrSpaceVelocitiesKHR;

Member Descriptions

- type is the XrStructureType of this structure.
- next is NULL or a pointer to the next structure in a structure chain.
- velocityCount is a uint32_t specifying the count of elements in the velocities array.
- velocities is an array of XrSpaceVelocityDataKHR for the runtime to populate with the velocities of the specified spaces in the XrSpacesLocateInfoKHR::baseSpace at the specified XrSpacesLocateInfoKHR::time.

The velocities member contains an array of space velocities in the member velocities, to be used as output for xrLocateSpacesKHR. The application **must** allocate this array to be populated with the function output. The velocityCount value **must** be the same as XrSpacesLocateInfoKHR::spaceCount, otherwise, the xrLocateSpacesKHR function **must** return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

- The XR_KHR_locate_spaces extension **must** be enabled prior to using XrSpaceVelocitiesKHR
- Note: XrSpaceVelocitiesKHR is an alias for XrSpaceVelocities, so the following items replicate the implicit valid usage for XrSpaceVelocities
- type must be XR_TYPE_SPACE_VELOCITIES
- next must be NULL or a valid pointer to the next structure in a structure chain
- velocities **must** be a pointer to an array of velocityCount XrSpaceVelocityData structures
- The velocityCount parameter **must** be greater than 0

The XrSpaceVelocityDataKHR structure is defined as:

```
// Provided by XR_KHR_locate_spaces
// XrSpaceVelocityDataKHR is an alias for XrSpaceVelocityData
typedef struct XrSpaceVelocityData {
    XrSpaceVelocityFlags velocityFlags;
    XrVector3f linearVelocity;
    XrVector3f angularVelocity;
} XrSpaceVelocityData;
```

typedef XrSpaceVelocityData XrSpaceVelocityDataKHR;

Member Descriptions

- velocityFlags is a bitfield, with bit values defined in XrSpaceVelocityFlagBits. It behaves the same as XrSpaceVelocity::velocityFlags.
- linearVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::linearVelocity.
- angularVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::angularVelocity.

This is a single element of the array in XrSpaceVelocitiesKHR::velocities, and is used to return the linear and angular velocity and velocity flags for a single space with respect to the specified base space from a call to xrLocateSpacesKHR. It does not accept chained structures to allow for easier use in dynamically allocated container datatypes.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension **must** be enabled prior to using XrSpaceVelocityDataKHR

13.1.4. Example code for xrLocateSpacesKHR

The following example code shows how an application retrieves both the location and velocity of one or more spaces in a base space at a given time using the xrLocateSpacesKHR function.

```
XrInstance instance; // previously initialized
XrSession session; // previously initialized
XrSpace baseSpace; // previously initialized
std::vector<XrSpace> spacesToLocate; // previously initialized
// Prepare output buffers to receive data and get reused in frame loop.
std::vector<XrSpaceLocationDataKHR> locationBuffer(spacesToLocate.size());
std::vector<XrSpaceVelocityDataKHR> velocityBuffer(spacesToLocate.size());
// Get function pointer for xrLocateSpacesKHR.
```

```
PFN_xrLocateSpacesKHR xrLocateSpacesKHR;
CHK_XR(xrGetInstanceProcAddr(instance, "xrLocateSpacesKHR",
                             reinterpret_cast<PFN_xrVoidFunction*>(
                             &xrLocateSpacesKHR)));
// application frame loop
while (1) {
   // Typically the time is the predicted display time returned from xrWaitFrame.
    XrTime displayTime; // previously initialized.
    XrSpacesLocateInfoKHR locateInfo{XR TYPE SPACES LOCATE INFO KHR};
    locateInfo.baseSpace = baseSpace;
    locateInfo.time = displayTime;
    locateInfo.spaceCount = (uint32 t)spacesToLocate.size();
    locateInfo.spaces = spacesToLocate.data();
    XrSpaceLocationsKHR locations{XR_TYPE_SPACES_LOCATE_INFO_KHR};
    locationS.locationCount = (uint32_t)locationBuffer.size();
    locations.locations = locationBuffer.data();
    XrSpaceVelocitiesKHR velocities{XR_TYPE_SPACE_VELOCITIES_KHR};
    velocities.velocityCount = (uint32_t)velocityBuffer.size();
    velocities.velocities = velocityBuffer.data();
    locations.next = &velocities;
    CHK_XR(xrLocateSpacesKHR(session, &locateInfo, &locations));
    for (uint32_t i = 0; i < spacesToLocate.size(); i++) {</pre>
        const auto positionAndOrientationTracked =
          XR_SPACE_LOCATION_POSITION_TRACKED_BIT
XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;
        const auto orientationOnlyTracked = XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;
        if ((locationBuffer[i].locationFlags & positionAndOrientationTracked) ==
positionAndOrientationTracked) {
            // if the location is 6dof tracked
            do_something(locationBuffer[i].pose.position);
            do_something(locationBuffer[i].pose.orientation);
            const auto velocityValidBits =
              XR_SPACE_VELOCITY_LINEAR_VALID_BIT | XR_SPACE_VELOCITY_ANGULAR_VALID_BIT;
            if ((velocityBuffer[i].velocityFlags & velocityValidBits) ==
velocityValidBits) {
                do_something(velocityBuffer[i].linearVelocity);
                do_something(velocityBuffer[i].angularVelocity);
            }
        else if ((locationBuffer[i].locationFlags & orientationOnlyTracked) ==
```

```
orientationOnlyTracked) {
    // if the location is 3dof tracked
    do_something(locationBuffer[i].pose.orientation);
    if ((velocityBuffer[i].velocityFlags & XR_SPACE_VELOCITY_ANGULAR_VALID_BIT)
== XR_SPACE_VELOCITY_ANGULAR_VALID_BIT) {
        do_something(velocityBuffer[i].angularVelocity);
        }
    }
}
```

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

- XR_TYPE_SPACES_LOCATE_INFO_KHR
- XR_TYPE_SPACE_LOCATIONS_KHR
- XR_TYPE_SPACE_VELOCITIES_KHR

New Enums

New Structures

- XrSpacesLocateInfoKHR
- XrSpaceLocationsKHR
- XrSpaceLocationDataKHR
- XrSpaceVelocitiesKHR
- XrSpaceVelocityDataKHR

New Functions

• xrLocateSpacesKHR

Issues

Version History

- Revision 1, 2023-04-22 (Yin LI)
 - Initial extension description

13.2. XR_KHR_maintenance1

Name String

XR_KHR_maintenance1

Extension Type

Instance extension

Registered Extension Number

711

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

- Interacts with XR_BD_controller_interaction
- Interacts with XR_EXT_hp_mixed_reality_controller
- Interacts with XR_EXT_samsung_odyssey_controller
- Interacts with XR_FB_touch_controller_pro
- Interacts with XR_HTCX_vive_tracker_interaction
- Interacts with XR_HTC_hand_interaction
- Interacts with XR_HTC_vive_cosmos_controller_interaction
- Interacts with XR_HTC_vive_focus3_controller_interaction
- Interacts with XR_HUAWEI_controller_interaction
- Interacts with XR_META_touch_controller_plus
- Interacts with XR_ML_ml2_controller_interaction
- Interacts with XR_MSFT_hand_interaction
- Interacts with XR_OPPO_controller_interaction
- Interacts with XR_YVR_controller_interaction

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2023-10-25

IP Status

No known IP claims.

Contributors

Ron Bessems, Magic Leap Karthik Kadappan, Magic Leap Rylie Pavlik, Collabora Nihav Jain, Google Lachlan Ford, Google John Kearney, Meta Yin Li, Microsoft Robert Blenkinsopp, Ultraleap

13.2.1. Overview

XR_KHR_maintenance1 adds a collection of minor features that were intentionally left out or overlooked from the original OpenXR 1.0 release. All are promoted to the OpenXR 1.1 release.

// Provided by XR_KHR_maintenance1
// XrColor3fKHR is an alias for XrColor3f
typedef struct XrColor3f {
 float r;
 float g;
 float b;
} XrColor3f;
typedef XrColor3f XrColor3fKHR;

```
// Provided by XR_KHR_maintenance1
// XrExtent3DfKHR is an alias for XrExtent3Df
typedef struct XrExtent3Df {
    float width;
    float height;
    float depth;
} XrExtent3Df;
typedef XrExtent3Df XrExtent3DfKHR;
```

```
// Provided by XR_KHR_maintenance1
// XrSpherefKHR is an alias for XrSpheref
typedef struct XrSpheref {
    XrPosef center;
    float radius;
} XrSpheref;
typedef XrSpheref XrSpherefKHR;
```

```
// Provided by XR_KHR_maintenance1
// XrBoxfKHR is an alias for XrBoxf
typedef struct XrBoxf {
    XrPosef center;
    XrExtent3Df extents;
} XrBoxf;
```

typedef XrBoxf XrBoxfKHR;

```
// Provided by XR_KHR_maintenance1
// XrFrustumfKHR is an alias for XrFrustumf
typedef struct XrFrustumf {
    XrPosef pose;
    XrFovf fov;
    float nearZ;
    float farZ;
} XrFrustumf;
typedef XrFrustumf XrFrustumfKHR;
```

13.2.2. New Structures

- XrBoxfKHR
- XrColor3fKHR
- XrExtent3DfKHR
- XrFrustumfKHR
- XrSpherefKHR

13.2.3. New Enum Constants

- XR_KHR_MAINTENANCE1_EXTENSION_NAME
- XR_KHR_maintenance1_SPEC_VERSION
- Extending XrResult:
 - XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED_KHR
 - XR_ERROR_PERMISSION_INSUFFICIENT_KHR

13.2.4. Version History

- Revision 1, 2023-10-25 (Ron Bessems)
 - Initial extension description

Chapter 14. Core Revisions (Informative)

New minor versions of the OpenXR API are defined periodically by the Khronos OpenXR Working Group. These consist of some amount of additional functionality added to the core API, potentially including both new functionality and functionality promoted from extensions.

14.1. Version 1.1

14.1.1. OpenXR 1.1 Promotions

OpenXR version 1.1 promoted a number of key extensions into the core API:

- XR_KHR_locate_spaces
- XR_KHR_maintenance1
- XR_EXT_hp_mixed_reality_controller
- XR_EXT_local_floor
- XR_EXT_palm_pose
- XR_EXT_samsung_odyssey_controller
- XR_EXT_uuid
- XR_BD_controller_interaction
- XR_HTC_vive_cosmos_controller_interaction
- XR_HTC_vive_focus3_controller_interaction
- XR_ML_ml2_controller_interaction
- XR_VARJO_quad_views

All differences in behavior between these extensions and the corresponding OpenXR 1.1 functionality are summarized below.

Differences Relative to XR_EXT_local_floor

The definition of this space was made more precise, and it was clarified that the mandatory support of this space does **not** dictate any particular quality of floor level estimation. Applications that can provide a head-relative interaction experience in the absence of a defined stage continue to use LOCAL space, while those that need higher quality assertions about floor level continue to use STAGE space or scene understanding extensions to detect floor level. The (mandatory) presence of this space when enumerating reference spaces is a convenience for portability rather than an assertion that e.g. floor detection scene understanding has taken place or that the floor is inherently walkable.

Differences Relative to XR_EXT_palm_pose

The input identifier palm_ext defined in the extension has been renamed to grip_surface to more clearly describe its intended use and distinguish it from hand tracking.

Differences Relative to XR_VARJO_quad_views

The view configuration type enumerant XR_VIEW_CONFIGURATION_TYPE_PRIMARY_QUAD_VARJO was renamed to XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET, to clarify that it is not vendor-specific nor the only way four views are possible. In OpenXR 1.1, a runtime **may** support XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET, but this is **optional** like the other view configuration types. Use xrEnumerateViewConfigurations to determine if it is provided, rather than using the presence or absence of the extension.

14.1.2. Additional OpenXR 1.1 Changes

In addition to the promoted extensions described above, OpenXR 1.1 changed the following:

- Substantial clarifications in the input and fundamentals chapters, intended to be non-substantive.
- Added the following legacy interaction profiles to represent specific controllers shipped under the Oculus/Meta Touch name and previously grouped into a single Oculus Touch interaction profile:
 - /interaction_profiles/meta/touch_controller_rift_cv1 Meta Touch Controller (Rift CV1) Profile
 - /interaction_profiles/meta/touch_controller_quest_1_rift_s Meta Touch Controller (Rift S / Quest 1) Profile
 - /interaction_profiles/meta/touch_controller_quest_2 Meta Touch Controller (Quest 2) Profile

14.1.3. New Commands

• xrLocateSpaces

14.1.4. New Structures

- XrBoxf
- XrColor3f
- XrExtent3Df
- XrFrustumf
- XrSpaceLocationData
- XrSpaceLocations
- XrSpaceVelocityData
- XrSpacesLocateInfo
- XrSpheref

- XrUuid
- Extending XrSpaceLocations:
 - XrSpaceVelocities

14.1.5. New Enum Constants

- XR_UUID_SIZE
- Extending XrReferenceSpaceType:
 - XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR
- Extending XrResult:
 - XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED
 - XR_ERROR_PERMISSION_INSUFFICIENT
- Extending XrStructureType:
 - XR_TYPE_SPACES_LOCATE_INFO
 - XR_TYPE_SPACE_LOCATIONS
 - XR_TYPE_SPACE_VELOCITIES
- Extending XrViewConfigurationType:
 - XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET

14.2. Loader Runtime and API Layer Negotiation Version1.0

The OpenXR version 1.0.33 patch release included ratification of the runtime and API layer negotiation API, associated with the identifier XR_LOADER_VERSION_1_0, substantially unchanged from the unratified form previously described in the loader design document. This interface is intended for use only between the loader, runtimes, and API layers, and is not typically directly used by an application.

14.2.1. New Macros

- XR_API_LAYER_CREATE_INFO_STRUCT_VERSION
- XR_API_LAYER_INFO_STRUCT_VERSION
- XR_API_LAYER_MAX_SETTINGS_PATH_SIZE
- XR_API_LAYER_NEXT_INFO_STRUCT_VERSION
- XR_CURRENT_LOADER_API_LAYER_VERSION
- XR_CURRENT_LOADER_RUNTIME_VERSION
- XR_LOADER_INFO_STRUCT_VERSION

• XR_RUNTIME_INFO_STRUCT_VERSION

14.2.2. New Commands

- xrCreateApiLayerInstance
- xrNegotiateLoaderApiLayerInterface
- xrNegotiateLoaderRuntimeInterface

14.3. Version 1.0

OpenXR version 1.0 defined the initial core API.

14.3.1. New Macros

- XR_CURRENT_API_VERSION
- XR_DEFINE_HANDLE
- XR_DEFINE_OPAQUE_64
- XR_EXTENSION_ENUM_BASE
- XR_EXTENSION_ENUM_STRIDE
- XR_FAILED
- XR_FREQUENCY_UNSPECIFIED
- XR_INFINITE_DURATION
- XR_MAX_EVENT_DATA_SIZE
- XR_MAY_ALIAS
- XR_MIN_COMPOSITION_LAYERS_SUPPORTED
- XR_MIN_HAPTIC_DURATION
- XR_NO_DURATION
- XR_NULL_HANDLE
- XR_NULL_PATH
- XR_NULL_SYSTEM_ID
- XR_SUCCEEDED
- XR_UNQUALIFIED_SUCCESS
- XR_VERSION_MAJOR
- XR_VERSION_MINOR
- XR_VERSION_PATCH

14.3.2. New Base Types

• XrVersion

14.3.3. New Commands

- xrAcquireSwapchainImage
- xrApplyHapticFeedback
- xrAttachSessionActionSets
- xrBeginFrame
- xrBeginSession
- xrCreateAction
- xrCreateActionSet
- xrCreateActionSpace
- xrCreateInstance
- xrCreateReferenceSpace
- xrCreateSession
- xrCreateSwapchain
- xrDestroyAction
- xrDestroyActionSet
- xrDestroyInstance
- xrDestroySession
- xrDestroySpace
- xrDestroySwapchain
- xrEndFrame
- xrEndSession
- xrEnumerateApiLayerProperties
- xrEnumerateBoundSourcesForAction
- xrEnumerateEnvironmentBlendModes
- xrEnumerateInstanceExtensionProperties
- xrEnumerateReferenceSpaces
- xrEnumerateSwapchainFormats
- xrEnumerateSwapchainImages
- xrEnumerateViewConfigurationViews

- xrEnumerateViewConfigurations
- xrGetActionStateBoolean
- xrGetActionStateFloat
- xrGetActionStatePose
- xrGetActionStateVector2f
- xrGetCurrentInteractionProfile
- xrGetInputSourceLocalizedName
- xrGetInstanceProcAddr
- xrGetInstanceProperties
- xrGetReferenceSpaceBoundsRect
- xrGetSystem
- xrGetSystemProperties
- xrGetViewConfigurationProperties
- xrLocateSpace
- xrLocateViews
- xrPathToString
- xrPollEvent
- xrReleaseSwapchainImage
- xrRequestExitSession
- xrResultToString
- xrStopHapticFeedback
- xrStringToPath
- xrStructureTypeToString
- xrSuggestInteractionProfileBindings
- xrSyncActions
- xrWaitFrame
- xrWaitSwapchainImage

14.3.4. New Structures

- XrBaseInStructure
- XrBaseOutStructure
- XrColor4f
- XrCompositionLayerProjection

- XrCompositionLayerQuad
- XrEventDataBaseHeader
- XrEventDataEventsLost
- XrEventDataInstanceLossPending
- XrEventDataInteractionProfileChanged
- XrEventDataReferenceSpaceChangePending
- XrEventDataSessionStateChanged
- XrExtent2Df
- XrHapticVibration
- XrOffset2Df
- XrRect2Df
- XrVector4f
- Extending XrSpaceLocation:
 - XrSpaceVelocity

14.3.5. New Enums

• XrObjectType

14.3.6. New Headers

• openxr_platform_defines

14.3.7. New Enum Constants

- XR_FALSE
- XR_MAX_API_LAYER_DESCRIPTION_SIZE
- XR_MAX_API_LAYER_NAME_SIZE
- XR_MAX_APPLICATION_NAME_SIZE
- XR_MAX_ENGINE_NAME_SIZE
- XR_MAX_EXTENSION_NAME_SIZE
- XR_MAX_PATH_LENGTH
- XR_MAX_RESULT_STRING_SIZE
- XR_MAX_RUNTIME_NAME_SIZE
- XR_MAX_STRUCTURE_NAME_SIZE
- XR_MAX_SYSTEM_NAME_SIZE

• XR_TRUE

Appendix

Code Style Conventions

These are the code style conventions used in this specification to define the API.

Conventions Enumerants and defines are all upper case with words separated by an underscore. Neither type, function or member names contain underscores. Structure members start with a lower case character and each consecutive word starts with a capital. A structure that has a pointer to an array includes a structure member named fooCount of type uint32_t to denote the number of elements in the array of foo. A structure that has a pointer to an array lists the fooCount member first and then the array pointer. Unless a negative value has a clearly defined meaning all fooCount variables are unsigned. Function parameters that are modified are always listed last.

Prefixes are used in the API to denote specific semantic meaning of names, or as a label to avoid name clashes, and are explained here:

Prefix	Description
XR_	Enumerants and defines are prefixed with these characters.
Xr	Non-function-pointer types are prefixed with these characters.
ХГ	Functions are prefixed with these characters.
PFN_xr	Function pointer types are prefixed with these characters.

Application Binary Interface

This section describes additional definitions and conventions that define the application binary interface.

```
typedef enum XrStructureType {
   XR_TYPE_UNKNOWN = 0,
   XR TYPE API LAYER PROPERTIES = 1,
   XR_TYPE_EXTENSION_PROPERTIES = 2,
   XR_TYPE_INSTANCE_CREATE_INFO = 3,
   XR_TYPE_SYSTEM_GET_INFO = 4,
   XR_TYPE_SYSTEM_PROPERTIES = 5,
   XR_TYPE_VIEW_LOCATE_INFO = 6,
   XR_TYPE_VIEW = 7,
   XR_TYPE_SESSION_CREATE_INFO = 8,
   XR_TYPE_SWAPCHAIN_CREATE_INFO = 9,
   XR_TYPE_SESSION_BEGIN_INFO = 10,
   XR_TYPE_VIEW_STATE = 11,
   XR TYPE FRAME END INFO = 12,
   XR_TYPE_HAPTIC_VIBRATION = 13,
   XR_TYPE_EVENT_DATA_BUFFER = 16,
   XR TYPE EVENT DATA INSTANCE LOSS PENDING = 17,
   XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED = 18,
   XR TYPE ACTION STATE BOOLEAN = 23,
   XR TYPE ACTION STATE FLOAT = 24,
   XR_TYPE_ACTION_STATE_VECTOR2F = 25,
   XR_TYPE_ACTION_STATE_POSE = 27,
   XR TYPE ACTION SET CREATE INFO = 28,
   XR_TYPE_ACTION_CREATE_INFO = 29,
   XR_TYPE_INSTANCE_PROPERTIES = 32,
   XR TYPE FRAME WAIT INFO = 33,
   XR_TYPE_COMPOSITION_LAYER_PROJECTION = 35,
   XR_TYPE_COMPOSITION_LAYER_QUAD = 36,
   XR_TYPE_REFERENCE_SPACE_CREATE_INFO = 37,
   XR_TYPE_ACTION_SPACE_CREATE_INFO = 38,
   XR TYPE EVENT DATA REFERENCE SPACE CHANGE PENDING = 40,
   XR_TYPE_VIEW_CONFIGURATION_VIEW = 41,
   XR_TYPE_SPACE_LOCATION = 42,
   XR_TYPE_SPACE_VELOCITY = 43,
   XR_TYPE_FRAME_STATE = 44,
   XR_TYPE_VIEW_CONFIGURATION_PROPERTIES = 45,
   XR_TYPE_FRAME_BEGIN_INFO = 46,
   XR_TYPE_COMPOSITION_LAYER_PROJECTION_VIEW = 48,
   XR_TYPE_EVENT_DATA_EVENTS_LOST = 49,
   XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING = 51,
   XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED = 52,
   XR_TYPE_INTERACTION_PROFILE_STATE = 53,
   XR_TYPE_SWAPCHAIN_IMAGE_ACQUIRE_INFO = 55,
```

 $XR_TYPE_SWAPCHAIN_IMAGE_WAIT_INFO = 56$, XR_TYPE_SWAPCHAIN_IMAGE_RELEASE_INFO = 57, XR_TYPE_ACTION_STATE_GET_INFO = 58, XR_TYPE_HAPTIC_ACTION_INFO = 59, XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO = 60, XR_TYPE_ACTIONS_SYNC_INFO = 61, $XR_TYPE_BOUND_SOURCES_FOR_ACTION_ENUMERATE_INFO = 62,$ XR TYPE INPUT SOURCE LOCALIZED NAME GET INFO = 63, // Provided by XR_VERSION_1_1 XR_TYPE_SPACES_LOCATE_INFO = 1000471000, // Provided by XR VERSION 1 1 XR TYPE SPACE LOCATIONS = 1000471001, // Provided by XR_VERSION_1_1 XR TYPE SPACE VELOCITIES = 1000471002, // Provided by XR_KHR_composition_layer_cube XR_TYPE_COMPOSITION_LAYER_CUBE_KHR = 1000006000, // Provided by XR_KHR_android_create_instance XR_TYPE_INSTANCE_CREATE_INFO_ANDROID_KHR = 1000008000, // Provided by XR_KHR_composition_layer_depth XR TYPE COMPOSITION LAYER DEPTH INFO KHR = 1000010000, // Provided by XR_KHR_vulkan_swapchain_format_list XR_TYPE_VULKAN_SWAPCHAIN_FORMAT_LIST_CREATE_INFO_KHR = 1000014000, // Provided by XR KHR composition layer cylinder XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR = 1000017000, // Provided by XR_KHR_composition_layer_equirect XR TYPE COMPOSITION LAYER EQUIRECT KHR = 1000018000, // Provided by XR_KHR_opengl_enable XR_TYPE_GRAPHICS_BINDING_OPENGL_WIN32_KHR = 1000023000, // Provided by XR_KHR_opengl_enable XR_TYPE_GRAPHICS_BINDING_OPENGL_XLIB_KHR = 1000023001, // Provided by XR_KHR_opengl_enable XR_TYPE_GRAPHICS_BINDING_OPENGL_XCB_KHR = 1000023002, // Provided by XR_KHR_opengl_enable XR_TYPE_GRAPHICS_BINDING_OPENGL_WAYLAND_KHR = 1000023003, // Provided by XR KHR opengl enable XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR = 1000023004, // Provided by XR_KHR_opengl_enable XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_KHR = 1000023005, // Provided by XR_KHR_opengl_es_enable XR TYPE GRAPHICS BINDING OPENGL ES ANDROID KHR = 1000024001, // Provided by XR_KHR_opengl_es_enable XR TYPE SWAPCHAIN IMAGE OPENGL ES KHR = 1000024002, // Provided by XR KHR opengl es enable XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_ES_KHR = 1000024003, // Provided by XR_KHR_vulkan_enable XR TYPE GRAPHICS BINDING VULKAN KHR = 1000025000, // Provided by XR_KHR_vulkan_enable XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR = 1000025001,

```
// Provided by XR_KHR_vulkan_enable
    XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR = 1000025002,
 // Provided by XR_KHR_D3D11_enable
    XR_TYPE_GRAPHICS_BINDING_D3D11_KHR = 1000027000,
 // Provided by XR KHR D3D11 enable
   XR TYPE SWAPCHAIN IMAGE D3D11 KHR = 1000027001,
 // Provided by XR_KHR_D3D11_enable
   XR TYPE GRAPHICS REQUIREMENTS D3D11 KHR = 1000027002,
 // Provided by XR_KHR_D3D12_enable
    XR_TYPE_GRAPHICS_BINDING_D3D12_KHR = 1000028000,
 // Provided by XR KHR D3D12 enable
    XR TYPE SWAPCHAIN IMAGE D3D12 KHR = 1000028001,
 // Provided by XR_KHR_D3D12_enable
   XR TYPE GRAPHICS REQUIREMENTS D3D12 KHR = 1000028002,
 // Provided by XR KHR visibility mask
   XR_TYPE_VISIBILITY_MASK_KHR = 1000031000,
 // Provided by XR_KHR_visibility_mask
   XR_TYPE_EVENT_DATA_VISIBILITY_MASK_CHANGED_KHR = 1000031001,
 // Provided by XR_KHR_composition_layer_color_scale_bias
    XR TYPE COMPOSITION LAYER COLOR SCALE BIAS KHR = 1000034000,
 // Provided by XR_KHR_loader_init_android
    XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR = 1000089000,
 // Provided by XR KHR vulkan enable2
   XR_TYPE_VULKAN_INSTANCE_CREATE_INFO_KHR = 1000090000,
 // Provided by XR_KHR_vulkan_enable2
   XR_TYPE_VULKAN_DEVICE_CREATE_INFO_KHR = 1000090001,
 // Provided by XR_KHR_vulkan_enable2
   XR_TYPE_VULKAN_GRAPHICS_DEVICE_GET_INFO_KHR = 1000090003,
 // Provided by XR_KHR_composition_layer_equirect2
    XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR = 1000091000,
 // Provided by XR_KHR_binding_modification
    XR_TYPE_BINDING_MODIFICATIONS_KHR = 1000120000,
 // Provided by XR_KHR_vulkan_enable2
   XR_TYPE_GRAPHICS_BINDING_VULKAN2_KHR = XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR,
 // Provided by XR KHR vulkan enable2
   XR_TYPE_SWAPCHAIN_IMAGE_VULKAN2_KHR = XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR,
 // Provided by XR_KHR_vulkan_enable2
    XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN2_KHR = XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR,
 // Provided by XR_KHR_locate_spaces
    XR TYPE SPACES LOCATE INFO KHR = XR TYPE SPACES LOCATE INFO,
 // Provided by XR_KHR_locate_spaces
    XR_TYPE_SPACE_LOCATIONS_KHR = XR_TYPE_SPACE_LOCATIONS,
 // Provided by XR KHR locate spaces
    XR_TYPE_SPACE_VELOCITIES_KHR = XR_TYPE_SPACE_VELOCITIES,
    XR_STRUCTURE_TYPE_MAX_ENUM = 0x7FFFFFF
} XrStructureType;
```

Most structures containing type members have a value of type matching the type of the structure, as described more fully in Valid Usage for Structure Types.

Note that all extension enums begin at the extension enum base of 10^9 (base 10). Each extension is assigned a block of 1000 enums, starting at the enum base and arranged by the extension's number.

// Provided by XR_VERSION_1_0
#define XR_EXTENSION_ENUM_BASE 1000000000

// Provided by XR_VERSION_1_0
#define XR_EXTENSION_ENUM_STRIDE 1000

For example, if extension number 5 wants to use an enum value of 3, the final enum is computed by:

enum = XR_EXTENSION_ENUM_BASE + (extension_number - 1) * XR_EXTENSION_ENUM_STRIDE + enum_value

```
1000004003 = 1000000000 + 4 * 1000 + 3
```

The maximum allowed enum value in an extension is 2,147,482,999, which belongs to extension number 2147483.

Flag Types

Flag types are all bitmasks aliasing the base type XrFlags64 and with corresponding bit flag types defining the valid bits for that flag, as described in Valid Usage for Flags.

Flag types defined in the core specification were originally listed/defined here, but have been moved to be adjacent to their associated FlagBits type. See the Index for a list.

General Macro Definitions

This API is defined in C and uses "C" linkage. The openxr.h header file is opened with:

```
1 #ifdef __cplusplus
2 extern "C" {
3 #endif
```

and closed with:

```
1 #ifdef __cplusplus
2 }
3 #endif
```

The supplied openxr.h header defines a small number of C preprocessor macros that are described below.

Version Number Macros

Two version numbers are defined in openxr.h. Each is packed into a 32-bit integer as described in API Version Number Function-like Macros.

// Provided by XR_VERSION_1_0
// OpenXR current version number.
#define XR_CURRENT_API_VERSION XR_MAKE_VERSION(1, 1, 36)

XR_CURRENT_API_VERSION is the current version of the OpenXR API.

API Version Number Function-like Macros

API Version Numbers are three components, packed into a single 64-bit integer. The following macros manipulate version components and packed version numbers.

```
#define XR_MAKE_VERSION(major, minor, patch) \
    ((((major) & 0xffffULL) << 48) | (((minor) & 0xffffULL) << 32) | ((patch) &
0xffffffULL))</pre>
```

Parameter Descriptions

- major is the major version number, packed into the most-significant 16 bits.
- minor is the minor version number, packed into the second-most-significant group of 16 bits.
- patch is the patch version number, in the least-significant 32 bits.

XR_MAKE_VERSION constructs a packed 64-bit integer API version number from three components. The format used is described in API Version Numbers and Semantics.

This macro **can** be used when constructing the XrApplicationInfo::apiVersion parameter passed to xrCreateInstance.

// Provided by XR_VERSION_1_0
#define XR_VERSION_MAJOR(version) (uint16_t)(((uint64_t)(version) >> 48)& 0xffffULL)

Parameter Descriptions

• version is a packed version number, such as those produced with XR_MAKE_VERSION.

XR_VERSION_MAJOR extracts the API major version number from a packed version number.

// Provided by XR_VERSION_1_0
#define XR_VERSION_MINOR(version) (uint16_t)(((uint64_t)(version) >> 32) & 0xffffULL)

Parameter Descriptions

• version is a packed version number, such as those produced with XR_MAKE_VERSION.

XR_VERSION_MINOR extracts the API minor version number from a packed version number.

// Provided by XR_VERSION_1_0
#define XR_VERSION_PATCH(version) (uint32_t)((uint64_t)(version) & 0xffffffULL)

Parameter Descriptions

• version is a packed version number, such as those produced with XR_MAKE_VERSION.

XR_VERSION_PATCH extracts the API patch version number from a packed version number.

Handle and Atom Macros

```
// Provided by XR_VERSION_1_0
#if !defined(XR_DEFINE_HANDLE)
#if (XR_PTR_SIZE == 8)
    #define XR_DEFINE_HANDLE(object) typedef struct object##_T* object;
#else
    #define XR_DEFINE_HANDLE(object) typedef uint64_t object;
#endif
#endif
```

Parameter Descriptions

• object is the name of the resulting C type.

XR_DEFINE_HANDLE defines a handle type, which is an opaque 64 bit value, which **may** be implemented as an opaque, distinct pointer type on platforms with 64 bit pointers.

For further details, see Handles.

```
// Provided by XR_VERSION_1_0
#if !defined(XR_NULL_HANDLE)
#if (XR_PTR_SIZE == 8) && XR_CPP_NULLPTR_SUPPORTED
    #define XR_NULL_HANDLE nullptr
#else
    #define XR_NULL_HANDLE 0
#endif
#endif
```

XR_NULL_HANDLE is a reserved value representing a non-valid object handle. It **may** be passed to and returned from API functions only when specifically allowed.

```
#if !defined(XR_DEFINE_ATOM)
    #define XR_DEFINE_ATOM(object) typedef uint64_t object;
#endif
```

Parameter Descriptions

• object is the name of the resulting C type.

XR_DEFINE_ATOM defines an atom type, which is an opaque 64 bit integer.

```
// Provided by XR_VERSION_1_0
#if !defined(XR_DEFINE_OPAQUE_64)
    #if (XR_PTR_SIZE == 8)
        #define XR_DEFINE_OPAQUE_64(object) typedef struct object##_T* object;
        #else
            #define XR_DEFINE_OPAQUE_64(object) typedef uint64_t object;
        #endif
#endif
```

Parameter Descriptions

• object is the name of the resulting C type.

XR_DEFINE_OPAQUE_64 defines an opaque 64 bit value, which **may** be implemented as an opaque, distinct pointer type on platforms with 64 bit pointers.

Platform-Specific Macro Definitions

Additional platform-specific macros and interfaces are defined using the included openxr_platform.h file. These macros are used to control platform-dependent behavior, and their exact definitions are under the control of specific platform implementations of the API.

Platform-Specific Calling Conventions

On many platforms the following macros are empty strings, causing platform- and compiler-specific default calling conventions to be used.

XRAPI_ATTR is a macro placed before the return type of an API function declaration. This macro controls calling conventions for C++11 and GCC/Clang-style compilers.

XRAPI_CALL is a macro placed after the return type of an API function declaration. This macro controls calling conventions for MSVC-style compilers.

XRAPI_PTR is a macro placed between the (and * in API function pointer declarations. This macro also controls calling conventions, and typically has the same definition as XRAPI_ATTR or XRAPI_CALL, depending on the compiler.

Examples:

Function declaration:

```
XRAPI_ATTR <return_type> XRAPI_CALL <function_name>(<function_parameters>);
```

Function pointer type declaration:

typedef <return_type> (XRAPI_PTR *PFN_<function_name>)(<function_parameters>);

Platform-Specific Header Control

If the XR_NO_STDINT_H macro is defined by the application at compile time, before including any OpenXR header, extended integer types normally found in <stdint.h> and used by the OpenXR headers, such as uint8_t, must also be defined (as typedef or with the preprocessor) before including any OpenXR header. Otherwise, openxr.h and related headers will not compile. If XR_NO_STDINT_H is not defined, the system-provided <stdint.h> is used to define these types. There is a fallback path for Microsoft Visual Studio version 2008 and earlier versions (which lack this header) that is automatically activated as needed.

Graphics API Header Control

Compile Time Symbol	Graphics API Name
XR_USE_GRAPHICS_API_OPENGL	OpenGL
XR_USE_GRAPHICS_API_OPENGL_ES	OpenGL ES
XR_USE_GRAPHICS_API_VULKAN	Vulkan
XR_USE_GRAPHICS_API_D3D11	Direct3D 11
XR_USE_GRAPHICS_API_D3D12	Direct3D 12

Window System Header Control

Compile Time Symbol	Window System Name
XR_USE_PLATFORM_WIN32	Microsoft Windows
XR_USE_PLATFORM_XLIB	X Window System Xlib
XR_USE_PLATFORM_XCB	X Window System XCB
XR_USE_PLATFORM_WAYLAND	Wayland
XR_USE_PLATFORM_ANDROID	Android Native

Android Notes

Android specific notes for using the OpenXR specification.

Android Runtime category tag for immersive mode selection

Android applications should add the <category android:name="org.khronos.openxr.intent.category.IMMERSIVE_HMD" /> tag inside the intent-filter to indicate that the activity starts in an immersive OpenXR mode and will not touch the native Android 2D surface.

The HMD suffix indicates the preferred form-factor used by the application and can be used by launchers to filter applications listed.

For example:

Glossary

The terms defined in this section are used throughout this Specification. Capitalization is not significant for these definitions.

Term	Description
Application	The XR application which calls the OpenXR API to communicate with an OpenXR runtime.
Deprecated	A feature/extension is deprecated if it is no longer recommended as the correct or best way to achieve its intended purpose. Generally a newer feature/extension will have been created that solves the same problem - in cases where no newer alternative feature exists, justification should be provided.
Handle	An opaque integer or pointer value used to refer to an object. Each object type has a unique handle type.
Haptic	Haptic or kinesthetic communication recreates the sense of touch by applying forces, vibrations, or motions to the user.
In-Process	Something that executes in the application's process.

Term	Description
Instance	The top-level object, which represents the application's connection to the runtime. Represented by an XrInstance object.
Normalized	A value that is interpreted as being in the range [0,1], or a vector whose norm is in that range, as a result of being implicitly divided or scaled by some other value.
Out-Of-Process	Something that executes outside the application's process.
Promoted	A feature is promoted if it is taken from an older extension and made available as part of a new core version of the API, or a newer extension that is considered to be either as widely supported or more so. A promoted feature may have minor differences from the original such as:
	• It may be renamed
	• A small number of non-intrusive parameters may have been added
	• The feature may be advertised differently by device features
	• The author ID suffixes will be changed or removed as appropriate
Provisional	A feature is released provisionally in order to get wider feedback on the functionality before it is finalized. Provisional features may change in ways that break backwards compatibility, and thus are not recommended for use in production applications.
Required Extensions	Extensions that must be enabled alongside extensions dependent on them, or that must be enabled to use given hardware.
Runtime	The software which implements the OpenXR API and allows applications to interact with XR hardware.
Swapchain	A resource that represents a chain of images in device memory. Represented by an XrSwapchain object.

Term	Description
Swapchain Image	Each element in a swapchain. Commonly these are simple formatted 2D images, but in other cases they may be array images. Represented by a structure related to XrSwapchainImageBaseHeader.

Abbreviations

Abbreviations and acronyms are sometimes used in the API where they are considered clear and commonplace, and are defined here:

Abbreviation	Description
API	Application Programming Interface
AR	Augmented Reality
ER	Eye Relief
IAD	Inter Axial Distance
IPD	Inter Pupillary Distance
MR	Mixed Reality
OS	Operating System
TSG	Technical Sub-Group. A specialized sub-group within a Khronos Working Group (WG).
VR	Virtual Reality
WG	Working Group. An organized group of people working to define/augment an API.
XR	VR + AR + MR

Dedication (Informative)

In memory of Johannes van Waveren: a loving father, husband, son, brother, colleague, and dear friend.

Johannes, known to his friends as "JP", had a great sense of humor, fierce loyalty, intense drive, a love of rainbow unicorns, and deep disdain for processed American cheese. Perhaps most distinguishing of all, though, was his love of technology and his extraordinary technical ability.

JP's love of technology started at an early age --- instead of working on his homework, he built train sets, hovercrafts, and complex erector sets from scratch; fashioned a tool for grabbing loose change out of street grates; and played computer games. The passion for computer games continued at Delft University of Technology, where, armed with a T1 internet connection and sheer talent, he regularly destroyed his foes in arena matches without being seen, earning him the moniker "MrElusive". During this time, he wrote the Gladiator-bot AI, which earned him acclaim in the community and led directly to a job at the iconic American computer game company, id Software. From there, he quickly became an expert in every system he touched, contributing significantly to every facet of the technology: AI, path navigation, networking, skeletal animation, virtual texturing, advanced rendering, and physics. He became a master of all. He famously owned more lines of code than anyone else, but he was also a generous mentor, helping junior developers hone their skills and make their own contributions.

When the chance to work in the VR industry arose, he saw it as an opportunity to help shape the future. Having never worked on VR hardware did not phase him; he quickly became a top expert in the field. Many of his contributions directly moved the industry forward, most recently his work on asynchronous timewarp and open-standards development.

Time was not on his side. Even in his final days, JP worked tirelessly on the initial proposal for this specification. The treatments he had undergone took a tremendous physical toll, but he continued to work because of his love of technology, his dedication to the craft, and his desire to get OpenXR started on a solid footing. His focus was unwavering.

His proposal was unofficially adopted several days before his passing - and upon hearing, he mustered the energy for a smile. While it was his great dream to see this process through, he would be proud of the spirit of cooperation, passion, and dedication of the industry peers who took up the torch to drive this specification to completion.

JP lived a life full of accomplishment, as evidenced by many publications, credits, awards, and nominations where you will find his name. A less obvious accomplishment --- but of equal importance --- is the influence he had on people through his passionate leadership. He strove for excellence in everything that he did. He was always excited to talk about technology and share the discoveries made while working through complex problems. He created excitement and interest around engineering and technical excellence. He was a mentor and teacher who inspired those who knew him and many continue to benefit from his hard work and generosity.

JP was a rare gem; fantastically brilliant intellectually, but also warm, compassionate, generous, humble, and funny. Those of us lucky enough to have crossed paths with him knew what a privilege and great honor it was to know him. He is certainly missed.

Contributors (Informative)

OpenXR is the result of contributions from many people and companies participating in the Khronos OpenXR Working Group. Members of the Working Group, including the company that they represented at the time of their most recent contribution, are listed below.

Working Group Contributors to OpenXR

- Adam Gousetis, Google (version 1.0)
- Alain Zanchetta, Microsoft (version 1.1)
- Alex Turner, Microsoft (versions 1.0, 1.1)
- Alex Sink, HTC (version 1.1)
- Alfredo Muniz, XEED (version 1.1) (Working Group Chair)
- Andreas Loeve Selvik, Meta Platforms (versions 1.0, 1.1)
- Andres Rodriguez, Valve Software (version 1.0)
- Armelle Laine, Qualcomm Technologies (version 1.0)
- Attila Maczak, CTRL-labs (version 1.0)
- David Fields, Microsoft (version 1.1)
- Baolin Fu, Bytedance (version 1.1)
- Blake Taylor, Magic Leap (version 1.0)
- Brad Grantham, Google (version 1.0)
- Brandon Jones, Google (version 1.0)
- Brent E. Insko, Intel (version 1.0) (former Working Group Chair)
- Brent Wilson, Microsoft (version 1.0)
- Bryce Hutchings, Microsoft (versions 1.0, 1.1)
- Cass Everitt, Meta Platforms (versions 1.0, 1.1)
- Charles Egenbacher, Epic Games (version 1.0)
- Charlton Rodda, Collabora (version 1.1)
- Chris Kuo, HTC (version 1.1)
- Chris Osborn, CTRL-labs (version 1.0)
- Christine Perey, Perey Research & Consulting (version 1.0)
- Christoph Haag, Collabora (version 1.0, 1.1)
- Christopher Fiala, Epic Games (version 1.1)
- Craig Donner, Google (version 1.0)

- Dan Ginsburg, Valve Software (version 1.0)
- Dave Houlton, LunarG (version 1.0)
- Dave Shreiner, Unity Technologies (version 1.0)
- Darryl Gough, Microsoft (version 1.1)
- Denny Rönngren, Varjo (versions 1.0, 1.1)
- Dmitriy Vasilev, Samsung Electronics (version 1.0)
- Doug Twileager, ZSpace (version 1.0)
- Ed Hutchins, Meta Platforms (version 1.0)
- Eryk Pecyna, Meta Platforms (version 1.1)
- Frederic Plourde, Collabora (version 1.1)
- Gloria Kennickell, Meta Platforms (version 1.0)
- Gregory Greeby, AMD (version 1.0)
- Guodong Chen, Huawei (version 1.0)
- Jack Pritz, Unity Technologies (versions 1.0, 1.1)
- Jakob Bornecrantz, Collabora (versions 1.0, 1.1)
- Jared Cheshier, PlutoVR (versions 1.0, 1.1)
- Jared Finder, Google (version 1.1)
- Javier Martinez, Intel (version 1.0)
- Jeff Bellinghausen, Valve Software (version 1.0)
- Jiehua Guo, Huawei (version 1.0)
- Joe Ludwig, Valve Software (versions 1.0, 1.1)
- John Kearney, Meta Platforms (version 1.1)
- Johannes van Waveren, Meta Platforms (version 1.0)
- Jon Leech, Khronos (version 1.0)
- Jonas Pegerfalk, Tobii (version 1.1)
- Jonathan Wright, Meta Platforms (versions 1.0, 1.1)
- Juan Wee, Samsung Electronics (version 1.0)
- Jules Blok, Epic Games (version 1.0)
- Jun Yan, ByteDance (version 1.1)
- Karl Schultz, LunarG (version 1.0)
- Karthik Kadappan, Magic Leap (version 1.1)
- Karthik Nagarajan, Qualcomm Technologies (version 1.1)

- Kaye Mason, Google (version 1.0)
- Krzysztof Kosiński, Google (version 1.0)
- Kyle Chen, HTC (version 1.1)
- Lachlan Ford, Google (versions 1.0, 1.1)
- Lubosz Sarnecki, Collabora (version 1.0)
- Mark Young, LunarG (version 1.0)
- Martin Renschler, Qualcomm Technologies (version 1.0)
- Matias Koskela, Tampere University of Technology (version 1.0)
- Matt Wash, Arm (version 1.0)
- Mattias Brand, Tobii (version 1.0)
- Mattias O. Karlsson, Tobii (version 1.0)
- Matthieu Bucchianeri, Microsoft (version 1.1)
- Michael Gatson, Dell (version 1.0)
- Minmin Gong, Microsoft (version 1.0)
- Mitch Singer, AMD (version 1.0)
- Nathan Nuber, Valve (version 1.1)
- Nell Waliczek, Microsoft (version 1.0)
- Nick Whiting, Epic Games (version 1.0) (former Working Group Chair)
- Nigel Williams, Sony (version 1.0)
- Nihav Jain, Google, Inc (version 1.1)
- Paul Pedriana, Meta Platforms (version 1.0)
- Paulo Gomes, Samsung Electronics (version 1.0)
- Peter Kuhn, Unity Technologies (versions 1.0, 1.1)
- Peter Peterson, HP Inc (version 1.0)
- Philippe Harscoet, Samsung Electronics (versions 1.0, 1.1)
- Pierre-Loup Griffais, Valve Software (version 1.0)
- Rafael Wiltz, Magic Leap (version 1.1)
- Rajeev Gupta, Sony (version 1.0)
- Remi Arnaud, Starbreeze (version 1.0)
- Remy Zimmerman, Logitech (version 1.0)
- Ria Hsu, HTC (version 1.1)
- River Gillis, Google (version 1.0)

- Robert Blenkinsopp, Ultraleap (version 1.1)
- Robert Memmott, Meta Platforms (version 1.0)
- Robert Menzel, NVIDIA (version 1.0)
- Robert Simpson, Qualcomm Technologies (version 1.0)
- Robin Bourianes, Starbreeze (version 1.0)
- Ron Bessems, Magic Leap (version 1.1) (Working Group Vice-Chair)
- Rune Berg, independent (version 1.1)
- Rylie Pavlik, Collabora (versions 1.0, 1.1) (Spec Editor)
- Ryan Vance, Epic Games (version 1.0)
- Sam Martin, Arm (version 1.0)
- Satish Salian, NVIDIA (version 1.0)
- Scott Flynn, Unity Technologies (version 1.0)
- Shanliang Xu, Bytedance (version 1.1)
- Sean Payne, CTRL-labs (version 1.0)
- Sophia Baldonado, PlutoVR (version 1.0)
- Steve Smith, Epic Games (version 1.0)
- Sungye Kim, Intel (version 1.0)
- Tom Flynn, Samsung Electronics (version 1.0)
- Trevor F. Smith, Mozilla (version 1.0)
- Victor Brodin, Epic Games (version 1.1)
- Vivek Viswanathan, Dell (version 1.0)
- Wenlin Mao, Meta Platforms (version 1.1)
- Xiang Wei, Meta Platforms (version 1.1)
- Yin Li, Microsoft (versions 1.0, 1.1)
- Yuval Boger, Sensics (version 1.0)
- Zhanrui Jia, Bytedance (version 1.1)
- Zheng Qin, Microsoft (version 1.0)

Index

A

XR_API_LAYER_CREATE_INFO_STRUCT_VERSION (define), 64 XR_API_LAYER_INFO_STRUCT_VERSION (define), 61 XR_API_LAYER_MAX_SETTINGS_PATH_SIZE (define), 64 XR_API_LAYER_NEXT_INFO_STRUCT_VERSION (define), 65 xrAcquireSwapchainImage (function), 198 XrAction (type), 240 XrActionCreateInfo (type), 241 XrActionSet (type), 236 XrActionSetCreateInfo (type), 237 XrActionSpaceCreateInfo (type), 142 XrActionsSyncInfo (type), 273 XrActionStateBoolean (type), 259 XrActionStateFloat (type), 261 XrActionStateGetInfo (type), 256 XrActionStatePose (type), 266 XrActionStateVector2f (type), 263 XrActionSuggestedBinding (type), 249 XrActionType (type), 244 XrActiveActionSet (type), 274 XrAndroidThreadTypeKHR (type), 289 XrApiLayerCreateInfo (type), 63 XrApiLayerNextInfo (type), 64 XrApiLayerProperties (type), 68 XrApplicationInfo (type), 75 xrApplyHapticFeedback (function), 267 xrAttachSessionActionSets (function), 249

B

XrBaseInStructure (type), 16 XrBaseOutStructure (type), 16 xrBeginFrame (function), 215 xrBeginSession (function), 177 XrBindingModificationBaseHeaderKHR (type), 294 XrBindingModificationsKHR (type), 293 XrBool32 (type), 41 XrBoundSourcesForActionEnumerateInfo (type), 277 XrBoxf (type), 38 XrBoxfKHR (type), 413

С

XR_CURRENT_API_VERSION (define), 428 XR_CURRENT_LOADER_API_LAYER_VERSION (define), 55 XR_CURRENT_LOADER_RUNTIME_VERSION (define), 55 XrColor3f (type), 30 XrColor3fKHR (type), 412 XrColor4f (type), 30 XrCompositionLayerBaseHeader (type), 223 XrCompositionLayerColorScaleBiasKHR (type), 296 XrCompositionLayerCubeKHR (type), 299 XrCompositionLayerCylinderKHR (type), 303 XrCompositionLayerDepthInfoKHR (type), 306 XrCompositionLayerEquirect2KHR (type), 314 XrCompositionLayerEquirectKHR (type), 311 XrCompositionLayerFlagBits (type), 221 XrCompositionLayerFlags (type), 221 XrCompositionLayerProjection (type), 225 XrCompositionLayerProjectionView (type), 226 XrCompositionLayerQuad (type), 227 xrConvertTimespecTimeToTimeKHR (function), 317 xrConvertTimeToTimespecTimeKHR (function), 318 xrConvertTimeToWin32PerformanceCounterKHR (function), 398 xrConvertWin32PerformanceCounterToTimeKHR (function), 396 xrCreateAction (function), 240 xrCreateActionSet (function), 236 xrCreateActionSpace (function), 141 xrCreateApiLayerInstance (function), 61 xrCreateInstance (function), 71 xrCreateReferenceSpace (function), 139 xrCreateSession (function), 173 xrCreateSwapchain (function), 189 xrCreateSwapchainAndroidSurfaceKHR

(function), 286

xrCreateVulkanDeviceKHR (function), 384 xrCreateVulkanInstanceKHR (function), 379

D

XR_DEFINE_ATOM (define), 430 XR_DEFINE_HANDLE (define), 429 XR_DEFINE_OPAQUE_64 (define), 431 xrDestroyAction (function), 244 xrDestroyActionSet (function), 239 xrDestroyInstance (function), 76 xrDestroySession (function), 176 xrDestroySpace (function), 143 xrDestroySwapchain (function), 195 XrDuration (type), 29

E

XR_EXTENSION_ENUM_BASE (define), 427 XR_EXTENSION_ENUM_STRIDE (define), 427 xrEndFrame (function), 217 xrEndSession (function), 180 xrEnumerateApiLayerProperties (function), 67 xrEnumerateBoundSourcesForAction (function), 275 xrEnumerateEnvironmentBlendModes (function), 230 xrEnumerateInstanceExtensionProperties (function), 69 xrEnumerateReferenceSpaces (function), 137 xrEnumerateSwapchainFormats (function), 187 xrEnumerateSwapchainImages (function), 196 xrEnumerateViewConfigurations (function), 162 xrEnumerateViewConfigurationViews (function), 165 XrEnvironmentBlendMode (type), 232 XrEventDataBaseHeader (type), 44 XrEventDataBuffer (type), 44 XrEventDataEventsLost (type), 45 XrEventDataInstanceLossPending (type), 79 XrEventDataInteractionProfileChanged (type), 254 XrEventDataReferenceSpaceChangePending (type), 135 XrEventDataSessionStateChanged (type), 182 XrEventDataVisibilityMaskChangedKHR (type), 360

XrExtensionProperties (type), 71 XrExtent2Df (type), 35 XrExtent2Di (type), 36 XrExtent3Df (type), 36 XrExtent3DfKHR (type), 412 XrEyeVisibility (type), 229

F

XR_FAILED (define), 23 XR_FALSE (define), 41 XR_FREQUENCY_UNSPECIFIED (define), 271 XrFlags64 (type), 14 XrFormFactor (type), 83 XrFovf (type), 40 XrFrameBeginInfo (type), 216 XrFrameEndInfo (type), 219 XrFrameState (type), 213 XrFrameWaitInfo (type), 212 XrFrustumf (type), 39 XrFrustumfKHR (type), 413

G

xrGetActionStateBoolean (function), 258 xrGetActionStateFloat (function), 260 xrGetActionStatePose (function), 264 xrGetActionStateVector2f (function), 262 xrGetCurrentInteractionProfile (function), 251 xrGetD3D11GraphicsRequirementsKHR (function), 324 xrGetD3D12GraphicsRequirementsKHR (function), 331 xrGetInputSourceLocalizedName (function), 278 xrGetInstanceProcAddr (function), 48 xrGetInstanceProperties (function), 77 xrGetOpenGLESGraphicsRequirementsKHR (function), 354 xrGetOpenGLGraphicsRequirementsKHR (function), 347 xrGetReferenceSpaceBoundsRect (function), 134 xrGetSystem (function), 84 xrGetSystemProperties (function), 87 xrGetViewConfigurationProperties (function), 163 xrGetVisibilityMaskKHR (function), 361 xrGetVulkanDeviceExtensionsKHR (function), 374 xrGetVulkanGraphicsDevice2KHR (function), 382

xrGetVulkanGraphicsDeviceKHR (function), 371 xrGetVulkanGraphicsRequirements2KHR

(function), 377

xrGetVulkanGraphicsRequirementsKHR (function), 370

xrGetVulkanInstanceExtensionsKHR (function), 372

XrGraphicsBindingD3D11KHR (type), 321 XrGraphicsBindingD3D12KHR (type), 328 XrGraphicsBindingOpenGLESAndroidKHR (type), 351

XrGraphicsBindingOpenGLWaylandKHR (type), 344

XrGraphicsBindingOpenGLWin32KHR (type), 340 XrGraphicsBindingOpenGLXcbKHR (type), 343 XrGraphicsBindingOpenGLXlibKHR (type), 341 XrGraphicsBindingVulkan2KHR (type), 388 XrGraphicsBindingVulkanKHR (type), 366 XrGraphicsRequirementsD3D11KHR (type), 323 XrGraphicsRequirementsD3D12KHR (type), 330 XrGraphicsRequirementsOpenGLESKHR (type), 353

XrGraphicsRequirementsOpenGLKHR (type), 346 XrGraphicsRequirementsVulkan2KHR (type), 378 XrGraphicsRequirementsVulkanKHR (type), 369

H

XrHapticActionInfo (type), 257 XrHapticBaseHeader (type), 269 XrHapticVibration (type), 270

Ι

XR_INFINITE_DURATION (define), 29 xrInitializeLoaderKHR (function), 335 XrInputSourceLocalizedNameFlagBits (type), 280 XrInputSourceLocalizedNameGetInfo (type), 279 XrInstance (type), 66 XrInstanceCreateFlagBits (type), 75 XrInstanceCreateFlags (type), 74 XrInstanceCreateInfo (type), 73 XrInstanceCreateInfoAndroidKHR (type), 284 XrInstanceProperties (type), 78 XrInteractionProfileState (type), 253 XrInteractionProfileSuggestedBinding (type), 248 \mathbf{L}

XR_LOADER_INFO_STRUCT_VERSION (define), 55 XrLoaderInitInfoAndroidKHR (type), 337 XrLoaderInitInfoBaseHeaderKHR (type), 334 XrLoaderInterfaceStructs (type), 55 xrLocateSpace (function), 144 xrLocateSpaces (function), 151 xrLocateSpacesKHR (function), 402 xrLocateViews (function), 205

M

XR_MAKE_VERSION (define), 428 XR_MAX_EVENT_DATA_SIZE (define), 45 XR_MAY_ALIAS (define), 12 XR_MIN_COMPOSITION_LAYERS_SUPPORTED (define), 89 XR_MIN_HAPTIC_DURATION (define), 271

Ν

XR_NO_DURATION (define), 29 XR_NULL_HANDLE (define), 430 XR_NULL_PATH (define), 93 XR_NULL_SYSTEM_ID (define), 84 XrNegotiateApiLayerRequest (type), 59 xrNegotiateLoaderApiLayerInterface (function), 57 XrNegotiateLoaderInfo (type), 54 vrNegotiateLoaderInfo (type), 54

xrNegotiateLoaderRuntimeInterface (function), 52 XrNegotiateRuntimeRequest (type), 56

0

XrObjectType (type), 25 XrOffset2Df (type), 34 XrOffset2Di (type), 35

P

PFN_xrCreateApiLayerInstance, 51 PFN_xrGetInstanceProcAddr, 51 PFN_xrVoidFunction, 51 XrPath (type), 91 xrPathToString (function), 95 xrPollEvent (function), 42 XrPosef (type), 33 Q

XrQuaternionf (type), 33

R

XR_RUNTIME_INFO_STRUCT_VERSION (define), 57 XrRect2Df (type), 37 XrRect2Di (type), 37 XrReferenceSpaceCreateInfo (type), 140 XrReferenceSpaceType (type), 130 xrReleaseSwapchainImage (function), 203 xrRequestExitSession (function), 181 XrResult (type), 18 xrResult (type), 18

S

XR_SUCCEEDED (define), 23 XrSession (type), 171 XrSessionActionSetsAttachInfo (type), 251 XrSessionBeginInfo (type), 179 XrSessionCreateFlagBits (type), 176 XrSessionCreateFlags (type), 176 XrSessionCreateInfo (type), 175 XrSessionState (type), 183 xrSetAndroidApplicationThreadKHR (function), 290 XrSpace (type), 129 XrSpaceLocation (type), 147 XrSpaceLocationData (type), 154 XrSpaceLocationDataKHR (type), 406 XrSpaceLocationFlagBits (type), 148

XrSpaceLocationFlagBits (type), 148 XrSpaceLocationFlags (type), 148 XrSpaceLocations (type), 153 XrSpaceLocations (type), 153 XrSpaceLocationsKHR (type), 404 XrSpacesLocateInfo (type), 152 XrSpaceSLocateInfoKHR (type), 403 XrSpaceVelocities (type), 155 XrSpaceVelocitiesKHR (type), 406 XrSpaceVelocityData (type), 149 XrSpaceVelocityData (type), 156 XrSpaceVelocityFlagBits (type), 150 XrSpaceVelocityFlagBits (type), 150 XrSpheref (type), 38 XrSpherefKHR (type), 412 xrStopHapticFeedback (function), 271 xrStringToPath (function), 93 XrStructureType (type), 424 xrStructureTypeToString (function), 81 xrSuggestInteractionProfileBindings (function),

246

XrSwapchain (type), 187 XrSwapchainCreateFlagBits (type), 193 XrSwapchainCreateFlags (type), 192 XrSwapchainCreateInfo (type), 190 XrSwapchainImageAcquireInfo (type), 200 XrSwapchainImageBaseHeader (type), 197 XrSwapchainImageD3D11KHR (type), 322 XrSwapchainImageD3D12KHR (type), 329 XrSwapchainImageOpenGLESKHR (type), 352 XrSwapchainImageOpenGLKHR (type), 345 XrSwapchainImageReleaseInfo (type), 204 XrSwapchainImageVulkan2KHR (type), 390 XrSwapchainImageVulkanKHR (type), 368 XrSwapchainImageWaitInfo (type), 202 XrSwapchainSubImage (type), 224 XrSwapchainUsageFlagBits (type), 193 XrSwapchainUsageFlags (type), 193 xrSyncActions (function), 272 XrSystemGetInfo (type), 85 XrSystemGraphicsProperties (type), 89 XrSystemId (type), 84 XrSystemProperties (type), 88 XrSystemTrackingProperties (type), 89

Т

XR_TRUE (define), 41 XrTime (type), 28

U

XR_UNQUALIFIED_SUCCESS (define), 23 XrUuid (type), 39

V

XR_VERSION_MAJOR (define), 429 XR_VERSION_MINOR (define), 429 XR_VERSION_PATCH (define), 429 XrVector2f (type), 31 XrVector3f (type), 32 XrVector4f (type), 32 XrVersion (type), 6 XrView (type), 207 XrViewConfigurationProperties (type), 164 XrViewConfigurationType (type), 159 XrViewConfigurationView (type), 167 XrViewLocateInfo (type), 206 XrViewState (type), 208 XrViewStateFlagBits (type), 209 XrViewStateFlags (type), 209 XrVisibilityMaskKHR (type), 359 XrVisibilityMaskTypeKHR (type), 358 XrVulkanDeviceCreateFlagBitsKHR (type), 387 XrVulkanDeviceCreateFlagsKHR (type), 387 XrVulkanDeviceCreateInfoKHR (type), 385 XrVulkanGraphicsDeviceGetInfoKHR (type), 383 XrVulkanInstanceCreateFlagBitsKHR (type), 382 XrVulkanInstanceCreateFlagsKHR (type), 382 XrVulkanInstanceCreateInfoKHR (type), 380 XrVulkanSwapchainFormatListCreateInfoKHR (type), 394

W

V

xrWaitFrame (function), 210 xrWaitSwapchainImage (function), 201