
The OpenXR™ 1.1.36 Specification (with
all KHR extensions)

The Khronos
®
 OpenXR Working Group

Version 1.1.36: from git ref release-1.1.36

Table of Contents

Preamble . 1

1. Introduction . 3

1.1. What is OpenXR?. 3

1.2. The Programmer’s View of OpenXR. 3

1.3. The Implementor’s View of OpenXR . 3

1.4. Our View of OpenXR. 4

1.5. Filing Bug Reports. 4

1.6. Document Conventions . 4

2. Fundamentals . 6

2.1. API Version Numbers and Semantics. 6

2.2. String Encoding . 8

2.3. Threading Behavior . 8

2.4. Multiprocessing Behavior . 9

2.5. Runtime . 9

2.6. Extensions. 9

2.7. API Layers. 10

2.8. Type Aliasing . 12

2.9. Valid Usage . 13

2.10. Return Codes . 17

2.11. Handles . 24

2.12. Object Handle Types . 24

2.13. Buffer Size Parameters . 25

2.14. Time . 28

2.15. Duration . 29

2.16. Prediction Time Limits . 29

2.17. Colors. 30

2.18. Coordinate System . 31

2.19. Common Data Types . 34

2.20. Angles . 40

2.21. Boolean Values . 41

2.22. Events . 41

2.23. System resource lifetime. 46

3. API Initialization. 48

3.1. Exported Functions . 48

3.2. Function Pointers . 48

3.3. Runtime Interface Negotiation . 51

3.4. API Layer Interface Negotiation . 57

4. Instance. 66

4.1. API Layers and Extensions . 66

4.2. Instance Lifecycle . 71

4.3. Instance Information . 77

4.4. Platform-Specific Instance Creation. 79

4.5. Instance Enumerated Type String Functions. 80

5. System . 83

5.1. Form Factors . 83

5.2. Getting the XrSystemId . 84

5.3. System Properties . 87

6. Path Tree and Semantic Paths . 91

6.1. Path Atom Type . 91

6.2. Well-Formed Path Strings . 93

6.3. Reserved Paths . 97

6.4. Interaction Profile Paths . 103

7. Spaces . 129

7.1. Reference Spaces . 130

7.2. Action Spaces . 136

7.3. Space Lifecycle . 137

7.4. Locating Spaces . 144

8. View Configurations . 159

8.1. Primary View Configurations . 159

8.2. View Configuration API. 161

8.3. Example View Configuration Code. 168

9. Session. 171

9.1. Session Lifecycle . 171

9.2. Session Creation . 173

9.3. Session Control . 177

9.4. Session States. 182

10. Rendering. 187

10.1. Swapchain Image Management . 187

10.2. View and Projection State. 205

10.3. Frame Synchronization. 210

10.4. Frame Submission . 214

10.5. Frame Rate . 220

10.6. Compositing . 221

11. Input and Haptics. 234

11.1. Action Overview . 234

11.2. Action Sets . 236

11.3. Creating Actions . 240

11.4. Suggested Bindings . 245

11.5. Current Interaction Profile. 251

11.6. Reading Input Action State. 255

11.7. Output Actions and Haptics . 267

11.8. Input Action State Synchronization . 272

11.9. Bound Sources. 275

12. List of Current Extensions . 282

12.1. XR_KHR_android_create_instance . 283

12.2. XR_KHR_android_surface_swapchain. 285

12.3. XR_KHR_android_thread_settings . 288

12.4. XR_KHR_binding_modification . 292

12.5. XR_KHR_composition_layer_color_scale_bias . 295

12.6. XR_KHR_composition_layer_cube . 298

12.7. XR_KHR_composition_layer_cylinder . 301

12.8. XR_KHR_composition_layer_depth . 305

12.9. XR_KHR_composition_layer_equirect . 309

12.10. XR_KHR_composition_layer_equirect2 . 313

12.11. XR_KHR_convert_timespec_time . 316

12.12. XR_KHR_D3D11_enable . 319

12.13. XR_KHR_D3D12_enable . 326

12.14. XR_KHR_loader_init. 333

12.15. XR_KHR_loader_init_android . 336

12.16. XR_KHR_opengl_enable . 338

12.17. XR_KHR_opengl_es_enable . 349

12.18. XR_KHR_swapchain_usage_input_attachment_bit. 356

12.19. XR_KHR_visibility_mask . 357

12.20. XR_KHR_vulkan_enable . 363

12.21. XR_KHR_vulkan_enable2 . 376

12.22. XR_KHR_vulkan_swapchain_format_list . 393

12.23. XR_KHR_win32_convert_performance_counter_time. 395

13. List of Deprecated Extensions. 400

13.1. XR_KHR_locate_spaces . 401

13.2. XR_KHR_maintenance1. 411

14. Core Revisions (Informative). 415

14.1. Version 1.1 . 415

14.2. Loader Runtime and API Layer Negotiation Version 1.0 . 417

14.3. Version 1.0 . 418

Appendix . 423

Code Style Conventions . 423

Application Binary Interface. 423

Android Notes . 432

Glossary . 433

Abbreviations . 435

Dedication (Informative) . 436

Contributors (Informative) . 438

Index . 442

Preamble

Copyright (c) 2017-2024, The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos. Except

as described by these terms, it or any components may not be reproduced, republished, distributed,

transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior

written permission of Khronos.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification for

any purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other intellectual

property rights are granted under these terms.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,

regarding this Specification, including, without limitation: merchantability, fitness for a particular

purpose, non-infringement of any intellectual property, correctness, accuracy, completeness,

timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters, Contributors

or Members, or their respective partners, officers, directors, employees, agents or representatives be

liable for any damages, whether direct, indirect, special or consequential damages for lost revenues,

lost profits, or otherwise, arising from or in connection with these materials.

This document contains extensions which are not ratified by Khronos, and as such is not a ratified

Specification, though it contains text from (and is a superset of) the ratified OpenXR Specification that

can be found at https://registry.khronos.org/OpenXR/specs/1.1-khr/html/xrspec.html (core with KHR

extensions).

The Khronos Intellectual Property Rights Policy defines the terms 'Scope', 'Compliant Portion', and

'Necessary Patent Claims'.

Some parts of this Specification are purely informative and so are EXCLUDED from the Scope of this

Specification. The Document Conventions section of the Introduction defines how these parts of the

Specification are identified.

Where this Specification uses technical terminology, defined in the Glossary or otherwise, that refer to

enabling technologies that are not expressly set forth in this Specification, those enabling technologies

are EXCLUDED from the Scope of this Specification. For clarity, enabling technologies not disclosed

with particularity in this Specification (e.g. semiconductor manufacturing technology, hardware

architecture, processor architecture or microarchitecture, memory architecture, compiler technology,

object oriented technology, basic operating system technology, compression technology, algorithms,

and so on) are NOT to be considered expressly set forth; only those application program interfaces and

data structures disclosed with particularity are included in the Scope of this Specification.

For purposes of the Khronos Intellectual Property Rights Policy as it relates to the definition of

Necessary Patent Claims, all recommended or optional features, behaviors and functionality set forth

in this Specification, if implemented, are considered to be included as Compliant Portions.

Preamble | 1

https://registry.khronos.org/OpenXR/specs/1.1-khr/html/xrspec.html

Khronos® and Vulkan® are registered trademarks, and glTF™ is a trademark of The Khronos Group

Inc. OpenXR™ is a trademark owned by The Khronos Group Inc. and is registered as a trademark in

China, the European Union, Japan and the United Kingdom. OpenGL® is a registered trademark and

the OpenGL ES™ and OpenGL SC™ logos are trademarks of Hewlett Packard Enterprise used under

license by Khronos. All other product names, trademarks, and/or company names are used solely for

identification and belong to their respective owners.

2 | Preamble

Chapter 1. Introduction

This chapter is informative except for the section on Normative Terminology.

This document, referred to as the "OpenXR Specification" or just the "Specification" hereafter, describes

OpenXR: what it is, how it acts, and what is required to implement it. We assume that the reader has a

basic understanding of computer graphics and the technologies involved in virtual and augmented

reality. This means familiarity with the essentials of computer graphics algorithms and terminology,

modern GPUs (Graphic Processing Units), tracking technologies, head mounted devices, and input

modalities.

The canonical version of the Specification is available in the official OpenXR Registry, located at URL

https://registry.khronos.org/OpenXR

1.1. What is OpenXR?

OpenXR is an API (Application Programming Interface) for XR applications. XR refers to a continuum

of real-and-virtual combined environments generated by computers through human-machine

interaction and is inclusive of the technologies associated with virtual reality (VR), augmented reality

(AR) and mixed reality (MR). OpenXR is the interface between an application and an in-process or out-

of-process "XR runtime system", or just "runtime" hereafter. The runtime may handle such

functionality as frame composition, peripheral management, and raw tracking information.

Optionally, a runtime may support device layer plugins which allow access to a variety of hardware

across a commonly defined interface.

1.2. The Programmer’s View of OpenXR

To the application programmer, OpenXR is a set of functions that interface with a runtime to perform

commonly required operations such as accessing controller/peripheral state, getting current and/or

predicted tracking positions, and submitting rendered frames.

A typical OpenXR program begins with a call to create an instance which establishes a connection to a

runtime. Then a call is made to create a system which selects for use a physical display and a subset of

input, tracking, and graphics devices. Subsequently a call is made to create buffers into which the

application will render one or more views using the appropriate graphics APIs for the platform. Finally

calls are made to create a session and begin the application’s XR rendering loop.

1.3. The Implementor’s View of OpenXR

To the runtime implementor, OpenXR is a set of functions that control the operation of the XR system

and establishes the lifecycle of a XR application.

Chapter 1. Introduction | 3

https://registry.khronos.org/OpenXR

The implementor’s task is to provide a software library on the host which implements the OpenXR API,

while mapping the work for each OpenXR function to the graphics hardware as appropriate for the

capabilities of the device.

1.4. Our View of OpenXR

We view OpenXR as a mechanism for interacting with VR/AR/MR systems in a platform-agnostic way.

We expect this model to result in a specification that satisfies the needs of both programmers and

runtime implementors. It does not, however, necessarily provide a model for implementation. A

runtime implementation must produce results conforming to those produced by the specified

methods, but may carry out particular procedures in ways that are more efficient than the one

specified.

1.5. Filing Bug Reports

Issues with and bug reports on the OpenXR Specification and the API Registry can be filed in the

Khronos OpenXR GitHub repository, located at URL

https://github.com/KhronosGroup/OpenXR-Docs

Please tag issues with appropriate labels, such as “Specification”, “Ref Pages” or “Registry”, to help us

triage and assign them appropriately. Unfortunately, GitHub does not currently let users who do not

have write access to the repository set GitHub labels on issues. In the meantime, they can be added to

the title line of the issue set in brackets, e.g. “[Specification]”.

1.6. Document Conventions

The OpenXR specification is intended for use by both implementors of the API and application

developers seeking to make use of the API, forming a contract between these parties. Specification text

may address either party; typically the intended audience can be inferred from context, though some

sections are defined to address only one of these parties. (For example, Valid Usage sections only

address application developers). Any requirements, prohibitions, recommendations or options defined

by normative terminology are imposed only on the audience of that text.

1.6.1. Normative Terminology

The key words must, required, should, may, and optional in this document, when denoted as above,

are to be interpreted as described in RFC 2119:

https://tools.ietf.org/html/rfc2119

must

When used alone, this word, or the term required, means that the definition is an absolute

requirement of the specification. When followed by not (“must not”), the phrase means that the

4 | Chapter 1. Introduction

https://github.com/KhronosGroup/OpenXR-Docs
https://tools.ietf.org/html/rfc2119

definition is an absolute prohibition of the specification.

should

When used alone, this word means that there may exist valid reasons in particular circumstances to

ignore a particular item, but the full implications must be understood and carefully weighed before

choosing a different course. When followed by not (“should not”), the phrase means that there may

exist valid reasons in particular circumstances when the particular behavior is acceptable or even

useful, but the full implications should be understood and the case carefully weighed before

implementing any behavior described with this label.

may

This word, or the adjective optional, means that an item is truly optional. One vendor may choose

to include the item because a particular marketplace requires it or because the vendor feels that it

enhances the product while another vendor may omit the same item.

The additional terms can and cannot are to be interpreted as follows:

can

This word means that the particular behavior described is a valid choice for an application, and is

never used to refer to runtime behavior.

cannot

This word means that the particular behavior described is not achievable by an application, for

example, an entry point does not exist. There is an important distinction between cannot and must not, as used in this

Specification. Cannot means something the application literally is unable to express

or accomplish through the API, while must not means something that the application

is capable of expressing through the API, but that the consequences of doing so are

undefined and potentially unrecoverable for the runtime.

Chapter 1. Introduction | 5

Chapter 2. Fundamentals

2.1. API Version Numbers and Semantics

Multi-part version numbers are used in several places in the OpenXR API.

// Provided by XR_VERSION_1_0

typedef uint64_t XrVersion;

In each such use, the API major version number, minor version number, and patch version number

are packed into a 64-bit integer, referred to as XrVersion, as follows:

Version Numbers

• The major version number is a 16-bit integer packed into bits 63-48.

• The minor version number is a 16-bit integer packed into bits 47-32.

• The patch version number is a 32-bit integer packed into bits 31-0.

Differences in any of the version numbers indicate a change to the API, with each part of the version

number indicating a different scope of change, as follows. Note

The rules below apply to OpenXR versions 1.0 or later. Prerelease versions of OpenXR

may use different rules for versioning.

A difference in patch version numbers indicates that some usually small part of the specification or

header has been modified, typically to fix a bug, and may have an impact on the behavior of existing

functionality. Differences in the patch version number must affect neither full compatibility nor

backwards compatibility between two versions, nor may it add additional interfaces to the API.

Runtimes may use patch version number to determine whether to enable implementation changes,

such as bug fixes, that impact functionality. Runtimes should document any changes that are tied to

the patch version. Application developers should retest their application on all runtimes they support

after compiling with a new version.

A difference in minor version numbers indicates that some amount of new functionality has been

added. This will usually include new interfaces in the header, and may also include behavior changes

and bug fixes. Functionality may be deprecated in a minor revision, but must not be removed. When a

new minor version is introduced, the patch version continues where the last minor version left off,

making patch versions unique inside major versions. Differences in the minor version number should

6 | Chapter 2. Fundamentals

not affect backwards compatibility, but will affect full compatibility.

A difference in major version numbers indicates a large set of changes to the API, potentially including

new functionality and header interfaces, behavioral changes, removal of deprecated features,

modification or outright replacement of any feature, and is thus very likely to break compatibility.

Differences in the major version number will typically require significant modification to application

code in order for it to function properly.

The following table attempts to detail the changes that may occur versus when they must not be

updated during an update to any of the major, minor, or patch version numbers:

Table 1. Scenarios Which May Cause a Version Change

Reason Major Version Minor Version Patch Version

Extensions

Added/Removed*
may may may

Spec-Optional Behavior

Changed*
may may may

Spec Required Behavior

Changed*
may may must not

Core Interfaces Added* may may must not

Weak Deprecation* may may must not

Strong Deprecation* may must not must not

Core Interfaces

Changed/Removed*
may must not must not

In the above table, the following identify the various cases in detail:

Extensions Added/Removed An extension may be added or removed with a change at this

patch level.

Specification-Optional Behavior

Changed

Some optional behavior laid out in this specification has

changed. Usually this will involve a change in behavior that is

marked with the normative language should or may. For

example, a runtime that previously did not validate a particular

use case may now begin validating that use case.

Specification-Required Behavior

Changed

A behavior of runtimes that is required by this specification may

have changed. For example, a previously optional validation may

now have become mandatory for runtimes.

Core Interfaces Added New interfaces may have been added to this specification (and to

the OpenXR header file) in revisions at this level.

Chapter 2. Fundamentals | 7

Weak Deprecation An interface may have been weakly deprecated at this level. This

may happen if there is now a better way to accomplish the same

thing. Applications making this call should behave the same as

before the deprecation, but following the new path may be more

performant, lower latency, or otherwise yield better results. It is

possible that some runtimes may choose to give run-time

warnings that the feature has been weakly deprecated and will

likely be strongly deprecated or removed in the future.

Strong Deprecation An interface may have been strongly deprecated at this level. This

means that the interface must still exist (so applications that are

compiled against it will still run) but it may now be a no-op, or it

may be that its behavior has been significantly changed. It may

be that this functionality is no longer necessary, or that its

functionality has been subsumed by another call. This should not

break an application, but some behavior may be different or

unanticipated.

Interfaces Changed/Removed An interface may have been changed — with different

parameters or return types — at this level. An interface or feature

may also have been removed entirely. It is almost certain that

rebuilding applications will be required.

2.2. String Encoding

This API uses strings as input and output for some functions. Unless otherwise specified, all such

strings are NULL terminated UTF-8 encoded case-sensitive character arrays.

2.3. Threading Behavior

The OpenXR API is intended to provide scalable performance when used on multiple host threads. All

functions must support being called concurrently from multiple threads, but certain parameters, or

components of parameters are defined to be externally synchronized. This means that the caller must

guarantee that no more than one thread is using such a parameter at a given time.

More precisely, functions use simple stores to update software structures representing objects. A

parameter declared as externally synchronized may have its software structures updated at any time

during the host execution of the function. If two functions operate on the same object and at least one

of the functions declares the object to be externally synchronized, then the caller must guarantee not

only that the functions do not execute simultaneously, but also that the two functions are separated by

an appropriate memory barrier if needed.

For all functions which destroy an object handle, the application must externally synchronize the

object handle parameter and any child handles.

8 | Chapter 2. Fundamentals

Externally Synchronized Parameters

• The instance parameter, and any child handles, in xrDestroyInstance

• The session parameter, and any child handles, in xrDestroySession

• The space parameter, and any child handles, in xrDestroySpace

• The swapchain parameter, and any child handles, in xrDestroySwapchain

• The actionSet parameter, and any child handles, in xrDestroyActionSet

• The action parameter, and any child handles, in xrDestroyAction

Implicit Externally Synchronized Parameters

• The session parameter by any other xrWaitFrame call in xrWaitFrame

• The session parameter by any other xrBeginFrame or xrEndFrame call in xrBeginFrame

• The session parameter by any other xrBeginFrame or xrEndFrame call in xrEndFrame

2.4. Multiprocessing Behavior

The OpenXR API does not explicitly recognize nor require support for multiple processes using the

runtime simultaneously, nor does it prevent a runtime from providing such support.

2.5. Runtime

An OpenXR runtime is software which implements the OpenXR API. There may be more than one

OpenXR runtime installed on a system, but only one runtime can be active at any given time.

2.6. Extensions

OpenXR is an extensible API that grows through the addition of new features. Similar to other Khronos

APIs, extensions may expose new OpenXR functions or modify the behavior of existing OpenXR

functions. Extensions are optional, and therefore must be enabled by the application before the

extended functionality is made available. Because extensions are optional, they may be implemented

only on a subset of runtimes, graphics platforms, or operating systems. Therefore, an application

should first query which extensions are available before enabling.

The application queries the available list of extensions using the

xrEnumerateInstanceExtensionProperties function. Once an application determines which extensions

are supported, it can enable some subset of them during the call to xrCreateInstance.

OpenXR extensions have unique names that convey information about what functionality is provided.

Chapter 2. Fundamentals | 9

The names have the following format:

Extension Name Formatting

• The prefix "XR_" to identify this as an OpenXR extension

• A string identifier for the vendor tag, which corresponds to the company or group exposing

the extension. The vendor tag must use only uppercase letters and decimal digits. Some

examples include:

◦ "KHR" for Khronos extensions, supported by multiple vendors.

◦ "EXT" for non-Khronos extensions supported by multiple vendors.

• An underscore "_".

• A string uniquely identifying the extension. The string is a compound of substrings which

must use only lower case letters and decimal digits. The substrings are delimited with single

underscores.

For example: XR_KHR_composition_layer_cube is an OpenXR extension created by the Khronos (KHR)

OpenXR Working Group to support cube composition layers.

The public list of available extensions known and configured for inclusion in this document at the time

of this specification being generated appears in the List of Extensions appendix at the end of this

document.

2.7. API Layers

OpenXR is designed to be a layered API, which means that a user or application may insert API layers

between the application and the runtime implementation. These API layers provide additional

functionality by intercepting OpenXR functions from the layer above and performing different

operations than would otherwise be performed without the layer. In the simplest cases, the layer

simply calls the next layer down with the same arguments, but a more complex layer may implement

API functionality that is not present in the layers or runtime below it. This mechanism is essentially an

architected "function shimming" or "intercept" feature that is designed into OpenXR and meant to

replace more informal methods of "hooking" API calls.

2.7.1. Examples of API Layers

Validation Layer

The layered API approach employed by OpenXR allows for potentially expensive validation of correct

API usage to be implemented in a "validation" layer. Such a layer allows the application developer to

develop their application with a validation layer active to ensure that the application is using the API

correctly. A validation layer confirms that the application has set up object state correctly, has provided

the required data for each function, ensures that required resources are available, etc. If a validation

10 | Chapter 2. Fundamentals

layer detects a problem, it issues an error message that can be logged or captured by the application

via a callback. After the developer has determined that the application is correct, they turn off a

validation layer to allow the application to run in a production environment without repeatedly

incurring the validation expense. (Note that some validation of correct API usage is required to be

implemented by the runtime.)

API Logging Layer

Another example of an API layer is an API logging layer that simply serializes all the API calls to an

output sink in a text format, including printing out argument values and structure contents.

API Trace Layer

A related API trace layer produces a trace file that contains all the information provided to the API so

that the trace file can be played back by a replay program.

2.7.2. Naming API Layers

To organize API layer names and prevent collisions in the API layer name namespace, API layers must

be named using the following convention:

XR_APILAYER_<VENDOR-TAG>_short_name

Vendors are responsible for registering a vendor tag with the OpenXR working group, and just like for

implementors, they must maintain their vendor namespace.

Example of an API layer name produced by the Acme company for the "check best practices" API layer:

XR_APILAYER_ACME_check_best_practices

2.7.3. Activating API Layers

Application Activation

Applications can determine the API layers that are available to them by calling the

xrEnumerateApiLayerProperties function to obtain a list of available API layers. Applications then can

select the desired API layers from this list and provide them to the xrCreateInstance function when

creating an instance.

System Activation

Application users or users performing roles such as system integrator or system administrator may

configure a system to activate API layers without involvement from the applications. These platform-

dependent steps may include the installation of API layer-related files, setting environment variables,

Chapter 2. Fundamentals | 11

or other platform-specific operations. The options that are available for configuring the API layers in

this manner are also dependent on the platform and/or runtime.

2.7.4. API Layer Extensions

API layers may implement OpenXR functions that are not supported by the underlying runtime. In

order to expose these new features, the API layer must expose this functionality in the form of an

OpenXR extension. It must not expose new OpenXR functions without an associated extension.

For example, an OpenXR API-logging API layer might expose an API function to allow the application to

turn logging on for only a portion of its execution. Since new functions must be exposed through an

extension, the vendor has created an extension called XR_ACME_logging_on_off to contain these new

functions. The application should query if the API layer supports the extension and then, only if it

exists, enable both the extension and the API layer by name during xrCreateInstance.

To find out what extensions an API layer supports, an application must first verify that the API layer

exists on the current system by calling xrEnumerateApiLayerProperties. After verifying an API layer of

interest exists, the application then should call xrEnumerateInstanceExtensionProperties and provide

the API layer name as the first parameter. This will return the list of extensions implemented by that

API layer.

2.8. Type Aliasing

Type aliasing refers to the situation in which the actual type of a element does not match the declared

type. Some C and C++ compilers assume that the actual type matches the declared type in some

configurations, and may be so configured by default at common optimization levels. In such a

compiler configured with that assumption, violating the assumption may produce undefined behavior.

This compiler feature is typically referred to as "strict aliasing," and it can usually be enabled or

disabled via compiler options. The OpenXR specification does not support strict aliasing, as there are

some cases in which an application intentionally provides a struct with a type that differs from the

declared type. For example, XrFrameEndInfo::layers is an array of type const

XrCompositionLayerBaseHeader code:* const. However, each element of the array must be of one of

the specific layer types, such as XrCompositionLayerQuad. Similarly, xrEnumerateSwapchainImages

accepts an array of XrSwapchainImageBaseHeader, whereas the actual type passed must be an array

of a type such as XrSwapchainImageVulkanKHR.

For OpenXR to work correctly, the compiler must support the type aliasing described here.

12 | Chapter 2. Fundamentals

// Provided by XR_VERSION_1_0

#if !defined(XR_MAY_ALIAS)

#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4))

#define XR_MAY_ALIAS __attribute__((__may_alias__))

#else

#define XR_MAY_ALIAS

#endif

#endif

As a convenience, some types and pointers that are known at specification time to alias values of

different types have been annotated with the XR_MAY_ALIAS definition. If this macro is not defined

before including OpenXR headers, and a new enough Clang or GCC compiler is used, it is defined to a

compiler-specific attribute annotation to inform these compilers that those pointers may alias.

However, there is no guarantee that all aliasing types or pointers have been correctly marked with this

macro, so thorough testing is still recommended if you choose (at your own risk) to permit your

compiler to perform type-based aliasing analysis.

2.9. Valid Usage

Valid usage defines a set of conditions which must be met in order to achieve well-defined run-time

behavior in an application. These conditions depend only on API state, and the parameters or objects

whose usage is constrained by the condition.

Some valid usage conditions have dependencies on runtime limits or feature availability. It is possible

to validate these conditions against the API’s minimum or maximum supported values for these limits

and features, or some subset of other known values.

Valid usage conditions should apply to a function or structure where complete information about the

condition would be known during execution of an application. This is such that a validation API layer

or linter can be written directly against these statements at the point they are specified.

2.9.1. Implicit Valid Usage

Some valid usage conditions apply to all functions and structures in the API, unless explicitly denoted

otherwise for a specific function or structure. These conditions are considered implicit. Implicit valid

usage conditions are described in detail below.

2.9.2. Valid Usage for Object Handles

Any input parameter to a function that is an object handle must be a valid object handle, unless

otherwise specified. An object handle is valid if and only if all of the following conditions hold:

Chapter 2. Fundamentals | 13

Object Handle Validity Conditions

• It has been created or allocated by a previous, successful call to the API.

• It has not been destroyed by a previous call to the API.

• Its parent handle is also valid.

There are contexts in which an object handle is optional or otherwise unspecified. In those cases, the

API uses XR_NULL_HANDLE, which has the integer value 0.

2.9.3. Valid Usage for Pointers

Any parameter that is a pointer must be a valid pointer when the specification indicates that the

runtime uses the pointer. A pointer is valid if and only if it points at memory containing values of the

number and type(s) expected by the function, and all fundamental types accessed through the pointer

(e.g. as elements of an array or as members of a structure) satisfy the alignment requirements of the

host processor.

2.9.4. Valid Usage for Enumerated Types

Any parameter of an enumerated type must be a valid enumerant for that type. An enumerant is valid

if and only if the enumerant is defined as part of the enumerated type in question.

2.9.5. Valid Usage for Flags

A collection of flags is represented by a bitmask using the type XrFlags64:

typedef uint64_t XrFlags64;

Bitmasks are passed to many functions and structures to compactly represent options and are stored in

memory defined by the XrFlags64 type. But the API does not use the XrFlags64 type directly. Instead, a

Xr*Flags type is used which is an alias of the XrFlags64 type. The API also defines a set of constant bit

definitions used to set the bitmasks.

Any Xr*Flags member or parameter used in the API must be a valid combination of bit flags. A valid

combination is either zero or the bitwise OR of valid bit flags. A bit flag is valid if and only if:

14 | Chapter 2. Fundamentals

Bit Flag Validity

• The bit flag is one of the constant bit definitions defined by the same Xr*Flags type as the

Xr*Flags member or parameter. (Valid flag values may also be defined by extensions but will

appear in the specification with all other valid flag values for that type.)

• The flag is allowed in the context in which it is being used. For example, in some cases,

certain bit flags or combinations of bit flags are mutually exclusive.

2.9.6. Valid Usage for Structure Types

Any parameter that is a structure containing a type member must have a value of type which is a valid

XrStructureType value matching the type of the structure. As a general rule, the name of this value is

obtained by taking the structure name, stripping the leading Xr, prefixing each capital letter with an

underscore, converting the entire resulting string to upper case, and prefixing it with XR_TYPE_.

The only exceptions to this rule are API and Operating System names which are converted in a way

that produces a more readable value:

Structure Type Format Exceptions

• OpenGL ⇒ _OPENGL

• OpenGLES ⇒ _OPENGL_ES

• EGL ⇒ _EGL

• D3D ⇒ _D3D

2.9.7. Valid Usage for Structure Pointer Chains

Any structure containing a void* next member must have a value of next that is either NULL, or points to

a valid structure that also contains type and next member values. The set of structures connected by

next pointers is referred to as a next chain.

In order to use a structure type defined by an extension in a next chain, the proper extension must

have been previously enabled during xrCreateInstance. A runtime must ignore all unrecognized

structures in a next chain, including those associated with an extension that has not been enabled.

Some structures for use in a chain are described in the core OpenXR specification and are mentioned

in the Member Descriptions. Any structure described in this document intended for use in a chain is

mentioned in a "See also" list in the implicit valid usage of the structure they chain to. Most chained

structures are associated with extensions, and are described in the base OpenXR Specification under

the List of Extensions. Vendor-specific extensions may be found there as well, or may only be available

from the vendor’s website or internal document repositories.

Chapter 2. Fundamentals | 15

Unless otherwise specified: Chained structs which are output structs may be modified by the runtime

with the exception of the type and next fields. Upon return from any function, all type and next fields

in the chain must be unmodified.

Useful Base Structures

As a convenience to runtimes and layers needing to iterate through a structure pointer chain, the

OpenXR API provides the following base structures:

The XrBaseInStructure structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrBaseInStructure {

 XrStructureType type;

 const struct XrBaseInStructure* next;

} XrBaseInStructure;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain.

XrBaseInStructure can be used to facilitate iterating through a read-only structure pointer chain.

The XrBaseOutStructure structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrBaseOutStructure {

 XrStructureType type;

 struct XrBaseOutStructure* next;

} XrBaseOutStructure;

16 | Chapter 2. Fundamentals

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain.

XrBaseOutStructure can be used to facilitate iterating through a structure pointer chain that returns

data back to the application.

These structures allow for some type safety and can be used by OpenXR API functions that operate on

generic inputs and outputs.

Next Chain Structure Uniqueness

Applications should ensure that they create and insert no more than one occurrence of each type of

extension structure in a given next chain. Other components of OpenXR (such as the OpenXR loader or

an API Layer) may insert duplicate structures into this chain. This provides those components the

ability to update a structure that appears in the next chain by making a modified copy of that same

structure and placing the new version at the beginning of the chain. The benefit of allowing this

duplication is each component is no longer required to create a copy of the entire next chain just to

update one structure. When duplication is present, all other OpenXR components must process only

the first instance of a structure of a given type, and then ignore all instances of a structure of that same

type.

If a component makes such a structure copy, and the original structure is also used to return content,

then that component must copy the necessary content from the copied structure and into the original

version of the structure upon completion of the function prior to proceeding back up the call stack.

This is to ensure that OpenXR behavior is consistent whether or not that particular OpenXR component

is present and/or enabled on the system.

2.9.8. Valid Usage for Nested Structures

The above conditions also apply recursively to members of structures provided as input to a function,

either as a direct argument to the function, or themselves a member of another structure.

Specifics on valid usage of each function are covered in their individual sections.

2.10. Return Codes

The core API is designed to capture most, but not all, instances of incorrect usage. As such, most

functions provide return codes. Functions in the API return their status via return codes that are in

one of the two categories below.

Chapter 2. Fundamentals | 17

Return Code Categories

• Successful completion codes are returned when a function needs to communicate success or

status information. All successful completion codes are non-negative values.

• Run time error codes are returned when a function needs to communicate a failure that

could only be detected at run time. All run time error codes are negative values.

typedef enum XrResult {

 XR_SUCCESS = 0,

 XR_TIMEOUT_EXPIRED = 1,

 XR_SESSION_LOSS_PENDING = 3,

 XR_EVENT_UNAVAILABLE = 4,

 XR_SPACE_BOUNDS_UNAVAILABLE = 7,

 XR_SESSION_NOT_FOCUSED = 8,

 XR_FRAME_DISCARDED = 9,

 XR_ERROR_VALIDATION_FAILURE = -1,

 XR_ERROR_RUNTIME_FAILURE = -2,

 XR_ERROR_OUT_OF_MEMORY = -3,

 XR_ERROR_API_VERSION_UNSUPPORTED = -4,

 XR_ERROR_INITIALIZATION_FAILED = -6,

 XR_ERROR_FUNCTION_UNSUPPORTED = -7,

 XR_ERROR_FEATURE_UNSUPPORTED = -8,

 XR_ERROR_EXTENSION_NOT_PRESENT = -9,

 XR_ERROR_LIMIT_REACHED = -10,

 XR_ERROR_SIZE_INSUFFICIENT = -11,

 XR_ERROR_HANDLE_INVALID = -12,

 XR_ERROR_INSTANCE_LOST = -13,

 XR_ERROR_SESSION_RUNNING = -14,

 XR_ERROR_SESSION_NOT_RUNNING = -16,

 XR_ERROR_SESSION_LOST = -17,

 XR_ERROR_SYSTEM_INVALID = -18,

 XR_ERROR_PATH_INVALID = -19,

 XR_ERROR_PATH_COUNT_EXCEEDED = -20,

 XR_ERROR_PATH_FORMAT_INVALID = -21,

 XR_ERROR_PATH_UNSUPPORTED = -22,

 XR_ERROR_LAYER_INVALID = -23,

 XR_ERROR_LAYER_LIMIT_EXCEEDED = -24,

 XR_ERROR_SWAPCHAIN_RECT_INVALID = -25,

 XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED = -26,

 XR_ERROR_ACTION_TYPE_MISMATCH = -27,

 XR_ERROR_SESSION_NOT_READY = -28,

 XR_ERROR_SESSION_NOT_STOPPING = -29,

 XR_ERROR_TIME_INVALID = -30,

18 | Chapter 2. Fundamentals

 XR_ERROR_REFERENCE_SPACE_UNSUPPORTED = -31,

 XR_ERROR_FILE_ACCESS_ERROR = -32,

 XR_ERROR_FILE_CONTENTS_INVALID = -33,

 XR_ERROR_FORM_FACTOR_UNSUPPORTED = -34,

 XR_ERROR_FORM_FACTOR_UNAVAILABLE = -35,

 XR_ERROR_API_LAYER_NOT_PRESENT = -36,

 XR_ERROR_CALL_ORDER_INVALID = -37,

 XR_ERROR_GRAPHICS_DEVICE_INVALID = -38,

 XR_ERROR_POSE_INVALID = -39,

 XR_ERROR_INDEX_OUT_OF_RANGE = -40,

 XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED = -41,

 XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED = -42,

 XR_ERROR_NAME_DUPLICATED = -44,

 XR_ERROR_NAME_INVALID = -45,

 XR_ERROR_ACTIONSET_NOT_ATTACHED = -46,

 XR_ERROR_ACTIONSETS_ALREADY_ATTACHED = -47,

 XR_ERROR_LOCALIZED_NAME_DUPLICATED = -48,

 XR_ERROR_LOCALIZED_NAME_INVALID = -49,

 XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING = -50,

 XR_ERROR_RUNTIME_UNAVAILABLE = -51,

 // Provided by XR_VERSION_1_1

 XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED = -1000710001,

 // Provided by XR_VERSION_1_1

 XR_ERROR_PERMISSION_INSUFFICIENT = -1000710000,

 // Provided by XR_KHR_android_thread_settings

 XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR = -1000003000,

 // Provided by XR_KHR_android_thread_settings

 XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR = -1000003001,

 // Provided by XR_KHR_maintenance1

 XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED_KHR =

XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED,

 // Provided by XR_KHR_maintenance1

 XR_ERROR_PERMISSION_INSUFFICIENT_KHR = XR_ERROR_PERMISSION_INSUFFICIENT,

 XR_RESULT_MAX_ENUM = 0x7FFFFFFF

} XrResult;

All return codes in the API are reported via XrResult return values.

The following are common suffixes shared across many of the return codes:

• _INVALID: The specified handle, atom, or value is formatted incorrectly, or the specified handle was

never created or has been destroyed.

• _UNSUPPORTED: The specified handle, atom, enumerant, or value is formatted correctly but cannot be

used for the lifetime of this function’s parent handle.

• _UNAVAILABLE: The specified handle, atom, enumerant, or value is supported by the handle taken by

this function, but is not usable at this moment.

Chapter 2. Fundamentals | 19

Success Codes

Enum Description

XR_SUCCESS Function successfully completed.

XR_TIMEOUT_EXPIRED The specified timeout time occurred before the

operation could complete.

XR_SESSION_LOSS_PENDING The session will be lost soon.

XR_EVENT_UNAVAILABLE No event was available.

XR_SPACE_BOUNDS_UNAVAILABLE The space’s bounds are not known at the moment.

XR_SESSION_NOT_FOCUSED The session is not in the focused state.

XR_FRAME_DISCARDED A frame has been discarded from composition.

Error Codes

Enum Description

XR_ERROR_VALIDATION_FAILURE The function usage was invalid in some way.

XR_ERROR_RUNTIME_FAILURE The runtime failed to handle the function in an

unexpected way that is not covered by another

error result.

XR_ERROR_OUT_OF_MEMORY A memory allocation has failed.

XR_ERROR_API_VERSION_UNSUPPORTED The runtime does not support the requested API

version.

XR_ERROR_INITIALIZATION_FAILED Initialization of object could not be completed.

XR_ERROR_FUNCTION_UNSUPPORTED The requested function was not found or is

otherwise unsupported.

XR_ERROR_FEATURE_UNSUPPORTED The requested feature is not supported.

XR_ERROR_EXTENSION_NOT_PRESENT A requested extension is not supported.

XR_ERROR_LIMIT_REACHED The runtime supports no more of the requested

resource.

XR_ERROR_SIZE_INSUFFICIENT The supplied size was smaller than required.

XR_ERROR_HANDLE_INVALID A supplied object handle was invalid.

XR_ERROR_INSTANCE_LOST The XrInstance was lost or could not be found. It

will need to be destroyed and optionally

recreated.

XR_ERROR_SESSION_RUNNING The session is already running.

XR_ERROR_SESSION_NOT_RUNNING The session is not yet running.

20 | Chapter 2. Fundamentals

Enum Description

XR_ERROR_SESSION_LOST The XrSession was lost. It will need to be

destroyed and optionally recreated.

XR_ERROR_SYSTEM_INVALID The provided XrSystemId was invalid.

XR_ERROR_PATH_INVALID The provided XrPath was not valid.

XR_ERROR_PATH_COUNT_EXCEEDED The maximum number of supported semantic

paths has been reached.

XR_ERROR_PATH_FORMAT_INVALID The semantic path character format is invalid.

XR_ERROR_PATH_UNSUPPORTED The semantic path is unsupported.

XR_ERROR_LAYER_INVALID The layer was NULL or otherwise invalid.

XR_ERROR_LAYER_LIMIT_EXCEEDED The number of specified layers is greater than the

supported number.

XR_ERROR_SWAPCHAIN_RECT_INVALID The image rect was negatively sized or otherwise

invalid.

XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED The image format is not supported by the runtime

or platform.

XR_ERROR_ACTION_TYPE_MISMATCH The API used to retrieve an action’s state does not

match the action’s type.

XR_ERROR_SESSION_NOT_READY The session is not in the ready state.

XR_ERROR_SESSION_NOT_STOPPING The session is not in the stopping state.

XR_ERROR_TIME_INVALID The provided XrTime was zero, negative, or out of

range.

XR_ERROR_REFERENCE_SPACE_UNSUPPORTED The specified reference space is not supported by

the runtime or system.

XR_ERROR_FILE_ACCESS_ERROR The file could not be accessed.

XR_ERROR_FILE_CONTENTS_INVALID The file’s contents were invalid.

XR_ERROR_FORM_FACTOR_UNSUPPORTED The specified form factor is not supported by the

current runtime or platform.

XR_ERROR_FORM_FACTOR_UNAVAILABLE The specified form factor is supported, but the

device is currently not available, e.g. not plugged

in or powered off.

XR_ERROR_API_LAYER_NOT_PRESENT A requested API layer is not present or could not

be loaded.

XR_ERROR_CALL_ORDER_INVALID The call was made without having made a

previously required call.

Chapter 2. Fundamentals | 21

Enum Description

XR_ERROR_GRAPHICS_DEVICE_INVALID The given graphics device is not in a valid state.

The graphics device could be lost or initialized

without meeting graphics requirements.

XR_ERROR_POSE_INVALID The supplied pose was invalid with respect to the

requirements.

XR_ERROR_INDEX_OUT_OF_RANGE The supplied index was outside the range of valid

indices.

XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED The specified view configuration type is not

supported by the runtime or platform.

XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED The specified environment blend mode is not

supported by the runtime or platform.

XR_ERROR_NAME_DUPLICATED The name provided was a duplicate of an already-

existing resource.

XR_ERROR_NAME_INVALID The name provided was invalid.

XR_ERROR_ACTIONSET_NOT_ATTACHED A referenced action set is not attached to the

session.

XR_ERROR_ACTIONSETS_ALREADY_ATTACHED The session already has attached action sets.

XR_ERROR_LOCALIZED_NAME_DUPLICATED The localized name provided was a duplicate of

an already-existing resource.

XR_ERROR_LOCALIZED_NAME_INVALID The localized name provided was invalid.

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING The xrGetGraphicsRequirements* call was not made

before calling xrCreateSession.

XR_ERROR_RUNTIME_UNAVAILABLE The loader was unable to find or load a runtime.

XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED One or more of the extensions being enabled has

dependency on extensions that are not enabled.

XR_ERROR_PERMISSION_INSUFFICIENT Insufficient permissions. This error is included for

use by vendor extensions. The precise definition

of XR_ERROR_PERMISSION_INSUFFICIENT and actions

possible by the developer or user to resolve it can

vary by platform, extension or function. The

developer should refer to the documentation of

the function that returned the error code and

extension it was defined.

XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR xrSetAndroidApplicationThreadKHR failed as

thread id is invalid. (Added by the

XR_KHR_android_thread_settings extension)

22 | Chapter 2. Fundamentals

Enum Description

XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR xrSetAndroidApplicationThreadKHR failed setting

the thread attributes/priority. (Added by the

XR_KHR_android_thread_settings extension)

2.10.1. Convenience Macros

// Provided by XR_VERSION_1_0

#define XR_SUCCEEDED(result) ((result) >= 0)

A convenience macro that can be used to test if a function succeeded. Note that this evaluates to true

for all success codes, including a qualified success such as XR_FRAME_DISCARDED.

// Provided by XR_VERSION_1_0

#define XR_FAILED(result) ((result) < 0)

A convenience macro that can be used to test if a function has failed in some way. It evaluates to true

for all failure codes.

// Provided by XR_VERSION_1_0

#define XR_UNQUALIFIED_SUCCESS(result) ((result) == 0)

A convenience macro that can be used to test a function’s failure. The XR_UNQUALIFIED_SUCCESS

macro evaluates to true exclusively when the provided XrResult is equal to XR_SUCCESS (0).

2.10.2. Validation

Except as noted below or in individual API specifications, valid API usage may be required by the

runtime. Runtimes may choose to validate some API usage and return an appropriate error code.

Application developers should use validation layers to catch and eliminate errors during development.

Once validated, applications should not enable validation layers by default.

If a function returns a run time error, unless otherwise specified any output parameters will have

undefined contents, except that if the output parameter is a structure with type and next fields, those

fields will be unmodified. Any output structures chained from next will also have undefined contents,

except that the type and next will be unmodified.

Chapter 2. Fundamentals | 23

Unless otherwise specified, errors do not affect existing OpenXR objects. Objects that have already

been successfully created may still be used by the application.

XrResult code returns may be added to a given function in future versions of the specification.

Runtimes must return only XrResult codes from the set documented for the given application API

version.

Runtimes must ensure that incorrect usage by an application does not affect the integrity of the

operating system, the API implementation, or other API client applications in the system, and does not

allow one application to access data belonging to another application.

2.11. Handles

Objects which are allocated by the runtime on behalf of applications are represented by handles.

Handles are opaque identifiers for objects whose lifetime is controlled by applications via the create

and destroy functions. Example handle types include XrInstance, XrSession, and XrSwapchain.

Handles which have not been destroyed are unique for a given application process, but may be reused

after being destroyed. Unless otherwise specified, a successful handle creation function call returns a

new unique handle. Unless otherwise specified, handles are implicitly destroyed when their parent

handle is destroyed. Applications may destroy handles explicitly before the parent handle is destroyed,

and should do so if no longer needed, in order to conserve resources. Runtimes may detect

XR_NULL_HANDLE and other invalid handles passed where a valid handle is required and return

XR_ERROR_HANDLE_INVALID. However, runtimes are not required to do so unless otherwise specified, and

so use of any invalid handle may result in undefined behavior. When a function has an optional

handle parameter, XR_NULL_HANDLE must be passed by the application if it does not pass a valid

handle.

All functions that take a handle parameter may return XR_ERROR_HANDLE_INVALID.

Handles form a hierarchy in which child handles fall under the validity and lifetime of parent handles.

For example, to create an XrSwapchain handle, applications must call xrCreateSwapchain and pass an

XrSession handle. Thus XrSwapchain is a child handle of XrSession.

2.12. Object Handle Types

The type of an object handle used in a function is usually determined by the specification of that

function, as discussed in Valid Usage for Object Handles. However, some functions accept or return

object handle parameters where the type of the object handle is unknown at execution time and is not

specified in the description of the function itself. For these functions, the XrObjectType may be used to

explicitly specify the type of a handle.

For example, an information-gathering or debugging mechanism implemented in a runtime extension

or API layer extension may return a list of object handles that are generated by the mechanism’s

operation. The same mechanism may also return a parallel list of object handle types that allow the

recipient of this information to easily determine the types of the handles.

24 | Chapter 2. Fundamentals

In general, anywhere an object handle of more than one type can occur, the object handle type may be

provided to indicate its type.

// Provided by XR_VERSION_1_0

typedef enum XrObjectType {

 XR_OBJECT_TYPE_UNKNOWN = 0,

 XR_OBJECT_TYPE_INSTANCE = 1,

 XR_OBJECT_TYPE_SESSION = 2,

 XR_OBJECT_TYPE_SWAPCHAIN = 3,

 XR_OBJECT_TYPE_SPACE = 4,

 XR_OBJECT_TYPE_ACTION_SET = 5,

 XR_OBJECT_TYPE_ACTION = 6,

 XR_OBJECT_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrObjectType;

The XrObjectType enumeration defines values, each of which corresponds to a specific OpenXR handle

type. These values can be used to associate debug information with a particular type of object through

one or more extensions.

The following table defines XrObjectType and OpenXR Handle relationships in the core specification:

XrObjectType OpenXR Handle Type

XR_OBJECT_TYPE_UNKNOWN Unknown/Undefined Handle

XR_OBJECT_TYPE_INSTANCE XrInstance

XR_OBJECT_TYPE_SESSION XrSession

XR_OBJECT_TYPE_SWAPCHAIN XrSwapchain

XR_OBJECT_TYPE_SPACE XrSpace

XR_OBJECT_TYPE_ACTION_SET XrActionSet

XR_OBJECT_TYPE_ACTION XrAction

2.13. Buffer Size Parameters

Functions with input/output buffer parameters take on either parameter form or structure form, as in

one of the following examples, with the element type being float in this case:

Parameter form:

XrResult xrFunction(uint32_t elementCapacityInput, uint32_t* elementCountOutput, float*

elements);

Chapter 2. Fundamentals | 25

Structure form:

XrResult xrFunction(XrBuffer* buffer);

struct XrBuffer {

 uint32_t elementCapacityInput;

 uint32_t elementCountOutput;

 float* elements;

};

A "two-call idiom" should be employed by the application, first calling xrFunction (with a valid

elementCountOutput pointer if in parameter form), but passing NULL as elements and 0 as

elementCapacityInput, to retrieve the required buffer size as number of elements (number of floats in

this example). After allocating a buffer at least as large as elementCountOutput (in a structure) or the

value pointed to by elementCountOutput (as parameters), a pointer to the allocated buffer should be

passed as elements, along with the buffer’s length in elementCapacityInput, to a second call to xrFunction

to perform the retrieval of the data. If the element type of elements is a structure with type and next

fields, the application must set the type to the correct value, and must set next to a valid value. A valid

value for next is generally either NULL or another structure with related data, in which type and next

are also valid, recursively. (See Valid Usage for Structure Pointer Chains for details.)

In the following discussion, "set elementCountOutput" should be interpreted as "set the value pointed to

by elementCountOutput" in parameter form and "set the value of elementCountOutput" in struct form.

These functions have the following behavior with respect to the array/buffer and its size parameters:

26 | Chapter 2. Fundamentals

Buffer Size Parameter Behavior

• The elementCapacityInput and elementCountOutput arguments precede the array to which they

refer, in argument order.

• elementCapacityInput specifies the capacity in number of elements of the buffer to be written,

or 0 to indicate a request for the required buffer size.

• Independent of elementCapacityInput or elements parameters, the application must pass a

valid pointer for elementCountOutput if the function uses parameter form.

• Independent of elementCapacityInput or elements parameters, the function sets

elementCountOutput.

• The application may pass 0 for the elementCapacityInput parameter, to indicate a request for

the required array size. That is, passing a capacity of 0 does not return

XR_ERROR_SIZE_INSUFFICIENT. In this case, the following two points apply.

◦ The function must set elementCountOutput to the required size in number of elements.

◦ The elements parameter is ignored (any value passed is considered valid usage).

• If the elementCapacityInput is non-zero but less than required, the function nust: set

elementCountOutput to the required capacity, and must return XR_ERROR_SIZE_INSUFFICIENT.

After the function returns, the data in the array elements is undefined.

• If the elementCapacityInput is non-zero and the function returns successfully, the function

sets elementCountOutput to the count of the elements that have been written to elements.

• If the function fails for reasons unrelated to the element array capacity, the contents of the

values of (or pointed to by) elementCountOutput and elements are undefined.

• For clarity, if the element array refers to a string (element is of type char*),

elementCapacityInput and elementCountOutput refer to the string strlen plus 1 for a NULL

terminator.

Some functions have a given elementCapacityInput and elementCountOutput associated with more than

one element array (i.e. parallel arrays). In this case, the capacity/count and all its associated arrays will

share a common prefix. All of the preceding general requirements continue to apply.

Some functions fill multiple element arrays of varying sizes in one call. For these functions, the

elementCapacityInput, elementCountOutput, and elements array parameters or fields are repeated with

different prefixes. In this case, all of the preceding general requirements still apply, with these

additional requirements:

• If the application sets any elementCapacityInput parameter or field to 0, the runtime must treat all

elementCapacityInput values as if they were set to 0.

• If all elementCapacityInput values are non-zero but any is insufficient to fit all elements of its

corresponding array, the runtime must return XR_ERROR_SIZE_INSUFFICIENT. As in the case of the

single array, the data in all arrays is undefined when XR_ERROR_SIZE_INSUFFICIENT is returned.

Chapter 2. Fundamentals | 27

2.14. Time

Time is represented by a 64-bit signed integer representing nanoseconds (XrTime). The passage of time

must be monotonic and not real-time (i.e. wall clock time). Thus the time is always increasing at a

constant rate and is unaffected by clock changes, time zones, daylight savings, etc.

2.14.1. XrTime

typedef int64_t XrTime;

XrTime is a base value type that represents time as a signed 64-bit integer, representing the

monotonically-increasing count of nanoseconds that have elapsed since a runtime-chosen epoch.

XrTime always represents the time elapsed since that constant epoch, rather than a duration or a time

point relative to some moving epoch such as vsync time, etc. Durations are instead represented by

XrDuration.

A single runtime must use the same epoch for all simultaneous applications. Time must be

represented the same regardless of multiple processors or threads present in the system.

The period precision of time reported by the runtime is runtime-dependent, and may change. One

nanosecond is the finest possible period precision. A runtime may, for example, report time

progression with only microsecond-level granularity.

Time must not be assumed to correspond to a system clock time.

Unless specified otherwise, zero or a negative value is not a valid XrTime, and related functions must

return error XR_ERROR_TIME_INVALID. Applications must not initialize such XrTime fields to a zero value.

Instead, applications should always assign XrTime fields to the meaningful point in time they are

choosing to reason about, such as a frame’s predicted display time, or an action’s last change time.

The behavior of a runtime is undefined when time overflows beyond the maximum positive value that

can be represented by an XrTime. Runtimes should choose an epoch that minimizes the chance of

overflow. Runtimes should also choose an epoch that minimizes the chance of underflow below 0 for

applications performing a reasonable amount of historical pose lookback. For example, if the runtime

chooses an epoch relative to its startup time, it should push the epoch into the past by enough time to

avoid applications performing reasonable pose lookback from reaching a negative XrTime value.

An application cannot assume that the system’s clock and the runtime’s clock will maintain a constant

relationship across frames and should avoid storing such an offset, as this may cause time drift.

Applications should instead always use time interop functions to convert a relevant time point across

the system’s clock and the runtime’s clock using extensions, for example,

XR_KHR_win32_convert_performance_counter_time or XR_KHR_convert_timespec_time.

28 | Chapter 2. Fundamentals

2.15. Duration

Duration refers to an elapsed period of time, as opposed to an absolute timepoint.

2.15.1. XrDuration

typedef int64_t XrDuration;

The difference between two timepoints is a duration, and thus the difference between two XrTime

values is an XrDuration value. XrDuration is a base value type that represents duration as a signed 64-bit

integer, representing the signed number of nanoseconds between two timepoints.

Functions that refer to durations use XrDuration as opposed to XrTime. When an XrDuration is used as a

timeout parameter, the constants XR_NO_DURATION and XR_INFINITE_DURATION have special

meaning. A timeout with a duration that refers to the past (that is, a negative duration) must be

interpreted as a timeout of XR_NO_DURATION.

The interpretation of zero and negative durations in non-timeout uses is specified along with each

such use.

// Provided by XR_VERSION_1_0

#define XR_NO_DURATION 0

For the case of timeout durations, XR_NO_DURATION can be used to indicate that the timeout is

immediate.

// Provided by XR_VERSION_1_0

#define XR_INFINITE_DURATION 0x7fffffffffffffffLL

XR_INFINITE_DURATION is a special value that can be used to indicate that the timeout never occurs.

2.16. Prediction Time Limits

Some functions involve prediction. For example, xrLocateViews accepts a display time for which to

return the resulting data. Prediction times provided by applications may refer to time in the past or the

future. Times in the past may be interpolated historical data. Runtimes have different practical limits

with respect to how far forward or backward prediction times can be accurate. There is no prescribed

Chapter 2. Fundamentals | 29

forward limit the application can successfully request predictions for, though predictions may become

less accurate as they get farther into the future. With respect to backward prediction, the application

can pass a prediction time equivalent to the timestamp of the most recently received pose plus as

much as 50 milliseconds in the past to retrieve accurate historical data. Requested times predating this

time window, or requested times predating the earliest received pose, may result in a best effort data

whose accuracy reduced or unspecified.

2.17. Colors

The XrColor3f structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrColor3f {

 float r;

 float g;

 float b;

} XrColor3f;

Member Descriptions

• r is the red component of the color.

• g is the green component of the color.

• b is the blue component of the color.

Unless otherwise specified, colors are encoded as linear (not with sRGB nor other gamma compression)

values with individual components being in the range of 0.0 through 1.0.

The XrColor4f structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrColor4f {

 float r;

 float g;

 float b;

 float a;

} XrColor4f;

30 | Chapter 2. Fundamentals

Member Descriptions

• r is the red component of the color.

• g is the green component of the color.

• b is the blue component of the color.

• a is the alpha component of the color.

Unless otherwise specified, colors are encoded as linear (not with sRGB nor other gamma compression)

values with individual components being in the range of 0.0 through 1.0, and without the RGB

components being premultiplied by the alpha component.

If color encoding is specified as being premultiplied by the alpha component, the RGB components are

set to zero if the alpha component is zero.

2.18. Coordinate System

This API uses a Cartesian right-handed coordinate system.

+y

+x

+z

Figure 1. Right Handed Coordinate System

The conventions for mapping coordinate axes of any particular space to meaningful directions depend

on and are documented with the description of the space.

The API uses 2D, 3D, and 4D floating-point vectors to describe points and directions in a space.

A two-dimensional vector is defined by the XrVector2f structure:

typedef struct XrVector2f {

 float x;

 float y;

} XrVector2f;

Chapter 2. Fundamentals | 31

Member Descriptions

• x is the x coordinate of the vector.

• y is the y coordinate of the vector.

If used to represent physical distances (rather than e.g. normalized direction) and not otherwise

specified, values must be in meters.

A three-dimensional vector is defined by the XrVector3f structure:

typedef struct XrVector3f {

 float x;

 float y;

 float z;

} XrVector3f;

Member Descriptions

• x is the x coordinate of the vector.

• y is the y coordinate of the vector.

• z is the z coordinate of the vector.

If used to represent physical distances (rather than e.g. velocity or angular velocity) and not otherwise

specified, values must be in meters.

A four-dimensional or homogeneous vector is defined by the XrVector4f structure:

// Provided by XR_VERSION_1_0

typedef struct XrVector4f {

 float x;

 float y;

 float z;

 float w;

} XrVector4f;

32 | Chapter 2. Fundamentals

Member Descriptions

• x is the x coordinate of the vector.

• y is the y coordinate of the vector.

• z is the z coordinate of the vector.

• w is the w coordinate of the vector.

If used to represent physical distances, x, y, and z values must be in meters.

Rotation is represented by a unit quaternion defined by the XrQuaternionf structure:

typedef struct XrQuaternionf {

 float x;

 float y;

 float z;

 float w;

} XrQuaternionf;

Member Descriptions

• x is the x coordinate of the quaternion.

• y is the y coordinate of the quaternion.

• z is the z coordinate of the quaternion.

• w is the w coordinate of the quaternion.

A pose is defined by the XrPosef structure:

typedef struct XrPosef {

 XrQuaternionf orientation;

 XrVector3f position;

} XrPosef;

Chapter 2. Fundamentals | 33

Member Descriptions

• orientation is an XrQuaternionf representing the orientation within a space.

• position is an XrVector3f representing position within a space.

A construct representing a position and orientation within a space, with position expressed in meters,

and orientation represented as a unit quaternion. When using XrPosef the rotation described by

orientation is always applied before the translation described by position.

A runtime must return XR_ERROR_POSE_INVALID if the orientation norm deviates by more than 1% from

unit length.

2.19. Common Data Types

Some OpenXR data types are used in multiple structures. Those include the XrVector*f family of types,

the spatial types specified above, and the following categories of structures:

• offset

• extents

• rectangle

• field of view

Offsets are used to describe the direction and distance of an offset in two dimensions.

A floating-point offset is defined by the structure:

// Provided by XR_VERSION_1_0

typedef struct XrOffset2Df {

 float x;

 float y;

} XrOffset2Df;

Member Descriptions

• x is the floating-point offset in the x direction.

• y is the floating-point offset in the y direction.

This structure is used for component values that may be real numbers, represented with single-

precision floating point. For representing offsets in discrete values, such as texels, the integer variant

34 | Chapter 2. Fundamentals

XrOffset2Di is used instead.

If used to represent physical distances, values must be in meters.

An integer offset is defined by the structure:

typedef struct XrOffset2Di {

 int32_t x;

 int32_t y;

} XrOffset2Di;

Member Descriptions

• x is the integer offset in the x direction.

• y is the integer offset in the y direction.

This variant is for representing discrete values such as texels. For representing physical distances, the

floating-point variant XrOffset2Df is used instead.

Extents are used to describe the size of a rectangular region in two or three dimensions.

A two-dimensional floating-point extent is defined by the structure:

// Provided by XR_VERSION_1_0

typedef struct XrExtent2Df {

 float width;

 float height;

} XrExtent2Df;

Member Descriptions

• width is the floating-point width of the extent.

• height is the floating-point height of the extent.

This structure is used for component values that may be real numbers, represented with single-

precision floating point. For representing extents in discrete values, such as texels, the integer variant

XrExtent2Di is used instead.

Chapter 2. Fundamentals | 35

If used to represent physical distances, values must be in meters.

The width and height value must be non-negative.

The XrExtent3Df structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrExtent3Df {

 float width;

 float height;

 float depth;

} XrExtent3Df;

Member Descriptions

• width is the floating-point width of the extent (x).

• height is the floating-point height of the extent (y).

• depth is the floating-point depth of the extent (z).

This structure is used for component values that may be real numbers, represented with single-

precision floating point.

If used to represent physical distances, values must be in meters. The width, height, and depth values

must be non-negative.

A two-dimensional integer extent is defined by the structure:

typedef struct XrExtent2Di {

 int32_t width;

 int32_t height;

} XrExtent2Di;

Member Descriptions

• width is the integer width of the extent.

• height is the integer height of the extent.

36 | Chapter 2. Fundamentals

This variant is for representing discrete values such as texels. For representing physical distances, the

floating-point variant XrExtent2Df is used instead.

The width and height value must be non-negative.

Rectangles are used to describe a specific rectangular region in two dimensions. Rectangles must

include both an offset and an extent defined in the same units. For instance, if a rectangle is in meters,

both offset and extent must be in meters.

A rectangle with floating-point values is defined by the structure:

// Provided by XR_VERSION_1_0

typedef struct XrRect2Df {

 XrOffset2Df offset;

 XrExtent2Df extent;

} XrRect2Df;

Member Descriptions

• offset is the XrOffset2Df specifying the rectangle offset.

• extent is the XrExtent2Df specifying the rectangle extent.

This structure is used for component values that may be real numbers, represented with single-

precision floating point.

The offset is the position of the rectangle corner with minimum value coordinates. The other three

corners are computed by adding the XrExtent2Df::width to the x offset, XrExtent2Df::height to the y

offset, or both.

A rectangle with integer values is defined by the structure:

typedef struct XrRect2Di {

 XrOffset2Di offset;

 XrExtent2Di extent;

} XrRect2Di;

Chapter 2. Fundamentals | 37

Member Descriptions

• offset is the XrOffset2Di specifying the integer rectangle offset.

• extent is the XrExtent2Di specifying the integer rectangle extent.

This variant is for representing discrete values such as texels. For representing physical distances, the

floating-point variant XrRect2Df is used instead.

The offset is the position of the rectangle corner with minimum value coordinates. The other three

corners are computed by adding the XrExtent2Di::width to the x offset, XrExtent2Di::height to the y

offset, or both.

An XrSpheref structure describes the center and radius of a sphere bounds.

// Provided by XR_VERSION_1_1

typedef struct XrSpheref {

 XrPosef center;

 float radius;

} XrSpheref;

Member Descriptions

• center is an XrPosef representing the pose of the center of the sphere within the reference

frame of the corresponding XrSpace.

• radius is the finite non-negative radius of the sphere.

The runtime must return XR_ERROR_VALIDATION_FAILURE if radius is not a finite positive value.

An XrBoxf structure describes the pose and extents of an oriented box.

// Provided by XR_VERSION_1_1

typedef struct XrBoxf {

 XrPosef center;

 XrExtent3Df extents;

} XrBoxf;

38 | Chapter 2. Fundamentals

Member Descriptions

• center is an XrPosef defining the center position and orientation of the oriented bounding

box bound within the reference frame of the corresponding XrSpace.

• extents is an XrExtent3Df defining the edge-to-edge length of the box along each dimension

with center as the center.

The runtime must return XR_ERROR_VALIDATION_FAILURE if width, height or depth values are negative.

An XrFrustumf structure describes the pose, field of view, and far distance of a frustum.

// Provided by XR_VERSION_1_1

typedef struct XrFrustumf {

 XrPosef pose;

 XrFovf fov;

 float nearZ;

 float farZ;

} XrFrustumf;

Member Descriptions

• pose is an XrPosef defining the position and orientation of the tip of the frustum within the

reference frame of the corresponding XrSpace.

• fov is an XrFovf for the four sides of the frustum where angleLeft and angleRight are along

the X axis and angleUp and angleDown are along the Y axis of the frustum space.

• nearZ is the positive distance of the near plane of the frustum bound along the -Z direction of

the frustum space.

• farZ is the positive distance of the far plane of the frustum bound along the -Z direction of the

frustum space.

The runtime must return XR_ERROR_VALIDATION_FAILURE if farZ is less than or equal to zero.

The runtime must return XR_ERROR_VALIDATION_FAILURE if nearZ is less than zero.

See XrFovf for validity requirements on fov.

The XrUuid structure is a 128-bit Universally Unique Identifier and is defined as:

Chapter 2. Fundamentals | 39

// Provided by XR_VERSION_1_1

typedef struct XrUuid {

 uint8_t data[XR_UUID_SIZE];

} XrUuid;

Member Descriptions

• data is a 128-bit Universally Unique Identifier.

The structure is composed of 16 octets, with the size and order of the fields defined in RFC 4122 section

4.1.2.

2.20. Angles

Where a value is provided as a function parameter or as a structure member and will be interpreted as

an angle, the value is defined to be in radians.

Field of view (FoV) is defined by the structure:

typedef struct XrFovf {

 float angleLeft;

 float angleRight;

 float angleUp;

 float angleDown;

} XrFovf;

Member Descriptions

• angleLeft is the angle of the left side of the field of view. For a symmetric field of view this

value is negative.

• angleRight is the angle of the right side of the field of view.

• angleUp is the angle of the top part of the field of view.

• angleDown is the angle of the bottom part of the field of view. For a symmetric field of view

this value is negative.

Angles to the right of the center and upwards from the center are positive, and angles to the left of the

center and down from the center are negative. The total horizontal field of view is angleRight minus

angleLeft, and the total vertical field of view is angleUp minus angleDown. For a symmetric FoV,

40 | Chapter 2. Fundamentals

https://www.rfc-editor.org/rfc/rfc4122.html#section-4.1.2
https://www.rfc-editor.org/rfc/rfc4122.html#section-4.1.2

angleRight and angleUp will have positive values, angleLeft will be -angleRight, and angleDown will be -

angleUp.

The angles must be specified in radians, and must be between -π/2 and π/2 exclusively.

When angleLeft > angleRight, the content of the view must be flipped horizontally. When angleDown >

angleUp, the content of the view must be flipped vertically.

2.21. Boolean Values

typedef uint32_t XrBool32;

Boolean values used by OpenXR are of type XrBool32 and are 32-bits wide as suggested by the name.

The only valid values are the following:

Enumerant Descriptions

• XR_TRUE represents a true value.

• XR_FALSE represents a false value.

#define XR_TRUE 1

#define XR_FALSE 0

2.22. Events

Events are messages sent from the runtime to the application.

2.22.1. Event Polling

Events are placed in a queue within the runtime. The application must read from the queue with

regularity. Events are read from the queue one at a time via xrPollEvent. Every type of event is

identified by an individual structure type, with each such structure beginning with an

XrEventDataBaseHeader.

Chapter 2. Fundamentals | 41

Example 1. Proper Method for Receiving OpenXR Event Data

XrInstance instance; // previously initialized

// Initialize an event buffer to hold the output.

XrEventDataBuffer event = {XR_TYPE_EVENT_DATA_BUFFER};

XrResult result = xrPollEvent(instance, &event);

if (result == XR_SUCCESS) {

 switch (event.type) {

 case XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED: {

 const XrEventDataSessionStateChanged& session_state_changed_event =

 reinterpret_cast<XrEventDataSessionStateChanged>(&event);

 // ...

 break;

 }

 case XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING: {

 const XrEventDataInstanceLossPending& instance_loss_pending_event =

 reinterpret_cast<XrEventDataInstanceLossPending>(&event);

 // ...

 break;

 }

 }

}

xrPollEvent

The xrPollEvent function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrPollEvent(

 XrInstance instance,

 XrEventDataBuffer* eventData);

Parameter Descriptions

• instance is a valid XrInstance.

• eventData is a pointer to a valid XrEventDataBuffer.

xrPollEvent polls for the next event and returns an event if one is available. xrPollEvent returns

immediately regardless of whether an event was available. The event (if present) is unilaterally

42 | Chapter 2. Fundamentals

removed from the queue if a valid XrInstance is provided. On return, the eventData parameter is filled

with the event’s data and the type field is changed to the event’s type. Runtimes may create valid next

chains depending on enabled extensions, but they must guarantee that any such chains point only to

objects which fit completely within the original XrEventDataBuffer pointed to by eventData.

The runtime must discard queued events which contain destroyed or otherwise invalid handles. The

runtime must not return events containing handles that have been destroyed or are otherwise invalid

at the time of the call to xrPollEvent.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• eventData must be a pointer to an XrEventDataBuffer structure

Return Codes

Success

• XR_SUCCESS

• XR_EVENT_UNAVAILABLE

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

Table 2. Event Descriptions

Event Description

XrEventDataEventsLost event queue has overflowed and some events

were lost

XrEventDataInstanceLossPending application is about to lose the instance

XrEventDataInteractionProfileChanged current interaction profile for one or more top

level user paths has changed

XrEventDataReferenceSpaceChangePending runtime will begin operating with updated

definitions or bounds for a reference space

XrEventDataSessionStateChanged the application’s session has changed lifecycle

state

Chapter 2. Fundamentals | 43

The XrEventDataBaseHeader structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrEventDataBaseHeader {

 XrStructureType type;

 const void* next;

} XrEventDataBaseHeader;

Parameter Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

The XrEventDataBaseHeader is a generic structure used to identify the common event data elements.

Upon receipt, the XrEventDataBaseHeader pointer should be type-cast to a pointer of the appropriate

event data type based on the type parameter.

Valid Usage (Implicit)

• type must be one of the following XrStructureType values: XR_TYPE_EVENT_DATA_EVENTS_LOST,

XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING, XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED,

XR_TYPE_EVENT_DATA_REFERENCE_SPACE_CHANGE_PENDING,

XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED, XR_TYPE_EVENT_DATA_VISIBILITY_MASK_CHANGED_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

typedef struct XrEventDataBuffer {

 XrStructureType type;

 const void* next;

 uint8_t varying[4000];

} XrEventDataBuffer;

44 | Chapter 2. Fundamentals

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• varying is a fixed sized output buffer big enough to hold returned data elements for all

specified event data types.

The XrEventDataBuffer is a structure passed to xrPollEvent large enough to contain any returned

event data element. The maximum size is specified by XR_MAX_EVENT_DATA_SIZE.

An application can set (or reset) only the type member and clear the next member of an

XrEventDataBuffer before passing it as an input to xrPollEvent. The runtime must ignore the contents

of the varying field and overwrite it without reading it.

A pointer to an XrEventDataBuffer may be type-cast to an XrEventDataBaseHeader pointer, or a

pointer to any other appropriate event data based on the type parameter.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_BUFFER

• next must be NULL or a valid pointer to the next structure in a structure chain

// Provided by XR_VERSION_1_0

#define XR_MAX_EVENT_DATA_SIZE sizeof(XrEventDataBuffer)

XR_MAX_EVENT_DATA_SIZE is the size of XrEventDataBuffer, including the size of the

XrEventDataBuffer::type and XrEventDataBuffer::next members.

XrEventDataEventsLost

The XrEventDataEventsLost structure is defined as:

Chapter 2. Fundamentals | 45

#valid-usage-for-structure-pointer-chains

// Provided by XR_VERSION_1_0

typedef struct XrEventDataEventsLost {

 XrStructureType type;

 const void* next;

 uint32_t lostEventCount;

} XrEventDataEventsLost;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• lostEventCount is the number of events which have overflowed since the last call to

xrPollEvent.

Receiving the XrEventDataEventsLost event structure indicates that the event queue overflowed and

some events were removed at the position within the queue at which this event was found.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_EVENTS_LOST

• next must be NULL or a valid pointer to the next structure in a structure chain

Other event structures are defined in later chapters in the context where their definition is most

relevant.

2.23. System resource lifetime

The creator of an underlying system resource is responsible for ensuring the resource’s lifetime

matches the lifetime of the associated OpenXR handle.

Resources passed as inputs from the application to the runtime when creating an OpenXR handle

should not be freed while that handle is valid. A runtime must not free resources passed as inputs or

decrease their reference counts (if applicable) from the initial value. For example, the graphics device

handle (or pointer) passed in to xrCreateSession in XrGraphicsBinding* structure should be kept alive

when the corresponding XrSession handle is valid, and should be freed by the application after the

XrSession handle is destroyed.

Resources created by the runtime should not be freed by the application, and the application should

maintain the same reference count (if applicable) at the destruction of the OpenXR handle as it had at

its creation. For example, the ID3D*Texture2D objects in the XrSwapchainImageD3D* are created by the

46 | Chapter 2. Fundamentals

#valid-usage-for-structure-pointer-chains

runtime and associated with the lifetime of the XrSwapchain handle. The application should not keep

additional reference counts on any ID3D*Texture2D objects past the lifetime of the XrSwapchain handle,

or make extra reference count decrease after destroying the XrSwapchain handle.

Chapter 2. Fundamentals | 47

Chapter 3. API Initialization

Before using an OpenXR runtime, an application must initialize it by creating an XrInstance object.

The following functions are useful for gathering information about the API layers and extensions

installed on the system and creating the instance.

Instance Creation Functions

• xrEnumerateApiLayerProperties

• xrEnumerateInstanceExtensionProperties

• xrCreateInstance

xrEnumerateApiLayerProperties and xrEnumerateInstanceExtensionProperties can be called before

calling xrCreateInstance.

3.1. Exported Functions

A dynamically linked library (.dll or .so) that implements the API loader must export all core OpenXR

API functions. However, the application can gain access to extension functions by obtaining pointers to

these functions through the use of xrGetInstanceProcAddr.

3.2. Function Pointers

Function pointers for all OpenXR functions can be obtained with the function xrGetInstanceProcAddr.

// Provided by XR_VERSION_1_0

XrResult xrGetInstanceProcAddr(

 XrInstance instance,

 const char* name,

 PFN_xrVoidFunction* function);

Parameter Descriptions

• instance is the instance that the function pointer will be compatible with, or NULL for

functions not dependent on any instance.

• name is the name of the function to obtain.

• function is the address of the function pointer to get.

48 | Chapter 3. API Initialization

xrGetInstanceProcAddr itself is obtained in a platform- and loader- specific manner. Typically, the

loader library will export this function as a function symbol, so applications can link against the loader

library, or load it dynamically and look up the symbol using platform-specific APIs. Loaders must

export function symbols for all core OpenXR functions. Because of this, applications that use only the

core OpenXR functions have no need to use xrGetInstanceProcAddr.

Because an application can call xrGetInstanceProcAddr before creating an instance,

xrGetInstanceProcAddr returns a valid function pointer when the instance parameter is

XR_NULL_HANDLE and the name parameter is one of the following strings:

No Instance Required

• xrEnumerateInstanceExtensionProperties

• xrEnumerateApiLayerProperties

• xrCreateInstance

xrGetInstanceProcAddr must return XR_ERROR_HANDLE_INVALID if name is not one of the above strings and

instance is XR_NULL_HANDLE. xrGetInstanceProcAddr may return XR_ERROR_HANDLE_INVALID if name is

not one of the above strings and instance is invalid but not XR_NULL_HANDLE.

xrGetInstanceProcAddr must return XR_ERROR_FUNCTION_UNSUPPORTED if instance is a valid instance and

the string specified in name is not the name of an OpenXR core or enabled extension function.

If name is the name of an extension function, then the result returned by xrGetInstanceProcAddr will

depend upon how the instance was created. If instance was created with the related extension’s name

appearing in the XrInstanceCreateInfo::enabledExtensionNames array, then xrGetInstanceProcAddr

returns a valid function pointer. If the related extension’s name did not appear in the

XrInstanceCreateInfo::enabledExtensionNames array during the creation of instance, then

xrGetInstanceProcAddr returns XR_ERROR_FUNCTION_UNSUPPORTED. Because of this, function pointers

returned by xrGetInstanceProcAddr using one XrInstance may not be valid when used with objects

related to a different XrInstance.

The returned function pointer is of type PFN_xrVoidFunction, and must be cast to the type of the

function being queried.

The table below defines the various use cases for xrGetInstanceProcAddr and return value (“fp” is

“function pointer”) for each case.

Table 3. xrGetInstanceProcAddr behavior

instance parameter name parameter return value

* NULL undefined

invalid instance * undefined

Chapter 3. API Initialization | 49

instance parameter name parameter return value

NULL xrEnumerateInstanceExte

nsionProperties

fp

NULL xrEnumerateApiLayerPro

perties

fp

NULL xrCreateInstance fp

NULL * (any name not covered

above)

NULL

instance core OpenXR function fp
1

instance enabled extension

function for instance

fp
1

instance * (any name not covered

above)

NULL

1

The returned function pointer must only be called with a handle (the first parameter) that is

instance or a child of instance.

Valid Usage (Implicit)

• If instance is not XR_NULL_HANDLE, instance must be a valid XrInstance handle

• name must be a null-terminated UTF-8 string

• function must be a pointer to a PFN_xrVoidFunction value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

50 | Chapter 3. API Initialization

typedef void (XRAPI_PTR *PFN_xrVoidFunction)(void);

Parameter Descriptions

• no parameters.

PFN_xrVoidFunction is a generic function pointer type returned by queries, specifically those to

xrGetInstanceProcAddr.

typedef XrResult (XRAPI_PTR *PFN_xrGetInstanceProcAddr)(XrInstance instance, const char*

name, PFN_xrVoidFunction* function);

PFN_xrGetInstanceProcAddr is a function pointer type for xrGetInstanceProcAddr.

typedef struct XrApiLayerCreateInfo XrApiLayerCreateInfo;

typedef XrResult (XRAPI_PTR *PFN_xrCreateApiLayerInstance)(

 const XrInstanceCreateInfo* info,

 const XrApiLayerCreateInfo* apiLayerInfo,

 XrInstance* instance);

PFN_xrCreateApiLayerInstance is a function pointer type for xrCreateApiLayerInstance.

Note: This function pointer type is only used by an OpenXR loader library, and never by an application.

3.3. Runtime Interface Negotiation

In order to negotiate the runtime interface version with the loader, the runtime must implement the

xrNegotiateLoaderRuntimeInterface function.

Chapter 3. API Initialization | 51

 Note

The API described in this section is solely intended for use between an OpenXR loader

and a runtime (and/or an API layer, where noted). Applications use the appropriate

loader library for their platform to load the active runtime and configured API layers,

rather than making these calls directly. This section is included in the specification to

ensure consistency between runtimes in their interactions with the loader.

Be advised that as this is not application-facing API, some of the typical OpenXR API

conventions are not followed in this section.

The xrNegotiateLoaderRuntimeInterface function is defined as:

// Provided by XR_LOADER_VERSION_1_0

XrResult xrNegotiateLoaderRuntimeInterface(

 const XrNegotiateLoaderInfo* loaderInfo,

 XrNegotiateRuntimeRequest* runtimeRequest);

Parameter Descriptions

• loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure.

• runtimeRequest must be a valid pointer to an XrNegotiateRuntimeRequest structure, with

minimal initialization, as subsequently described, to be fully populated by the called runtime.

xrNegotiateLoaderRuntimeInterface should be directly exported by a runtime so that using e.g.

GetProcAddress on Windows or dlsym on POSIX platforms returns a valid function pointer to it.

The runtime must return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on

loaderInfo are true:

• XrNegotiateLoaderInfo::structType is not XR_LOADER_INTERFACE_STRUCT_LOADER_INFO

• XrNegotiateLoaderInfo::structVersion is not XR_LOADER_INFO_STRUCT_VERSION

• XrNegotiateLoaderInfo::structSize is not sizeof(XrNegotiateLoaderInfo)

The runtime must also return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on

runtimeRequest are true:

• XrNegotiateRuntimeRequest::structType is not XR_LOADER_INTERFACE_STRUCT_RUNTIME_REQUEST

• XrNegotiateRuntimeRequest::structVersion is not XR_RUNTIME_INFO_STRUCT_VERSION

• XrNegotiateRuntimeRequest::structSize is not sizeof(XrNegotiateRuntimeRequest)

52 | Chapter 3. API Initialization

The runtime must determine if it supports the loader’s request. The runtime does not support the

loader’s request if either of the following is true:

• the runtime does not support the interface versions supported by the loader as specified by the

parameters XrNegotiateLoaderInfo::minInterfaceVersion and XrNegotiateLoaderInfo

::maxInterfaceVersion

• the runtime does not support the API versions supported by the loader as specified by the

parameters XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

The runtime must return XR_ERROR_INITIALIZATION_FAILED if it does not support the loader’s request.

If the function succeeds, the runtime must set the XrNegotiateRuntimeRequest

::runtimeInterfaceVersion with the runtime interface version it desires to support. The

XrNegotiateRuntimeRequest::runtimeInterfaceVersion set must be between XrNegotiateLoaderInfo

::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion.

If the function succeeds, the runtime must set the XrNegotiateRuntimeRequest::runtimeApiVersion with

the API version of OpenXR it will execute under. The XrNegotiateRuntimeRequest::runtimeApiVersion

set must be between XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

If the function succeeds, the runtime must set the XrNegotiateRuntimeRequest::getInstanceProcAddr

with a valid function pointer for the loader to use to query function pointers to the remaining OpenXR

functions supported by the runtime.

If the function succeeds, the runtime must return XR_SUCCESS.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to calling

xrNegotiateLoaderRuntimeInterface

• loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure

• runtimeRequest must be a pointer to an XrNegotiateRuntimeRequest structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_INITIALIZATION_FAILED

The XrNegotiateLoaderInfo structure is used to pass information about the loader to a runtime or an

API layer.

Chapter 3. API Initialization | 53

The XrNegotiateLoaderInfo structure is defined as:

typedef struct XrNegotiateLoaderInfo {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 uint32_t minInterfaceVersion;

 uint32_t maxInterfaceVersion;

 XrVersion minApiVersion;

 XrVersion maxApiVersion;

} XrNegotiateLoaderInfo;

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_LOADER_INFO.

• structVersion must be a valid version of the structure. The value

XR_LOADER_INFO_STRUCT_VERSION describes the current latest version of this structure.

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrNegotiateLoaderInfo)).

• minInterfaceVersion is the minimum runtime or API layer interface version supported by the

loader.

• maxInterfaceVersion is the maximum valid version of the runtime or API layer interface

version supported by the loader, currently defined using

XR_CURRENT_LOADER_RUNTIME_VERSION or XR_CURRENT_LOADER_API_LAYER_VERSION.

• minApiVersion is the minimum supported version of the OpenXR API by the loader as

formatted by XR_MAKE_VERSION. Patch is ignored.

• maxApiVersion is the maximum supported version of the OpenXR API by the loader as

formatted by XR_MAKE_VERSION. Patch is ignored.

This structure is an input from the loader to the runtime in an xrNegotiateLoaderRuntimeInterface

call, as well as from the loader to an API layer in an xrNegotiateLoaderApiLayerInterface call.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using XrNegotiateLoaderInfo

• structType must be a valid XrLoaderInterfaceStructs value

The XrLoaderInterfaceStructs enumeration is defined as:

54 | Chapter 3. API Initialization

typedef enum XrLoaderInterfaceStructs {

 XR_LOADER_INTERFACE_STRUCT_UNINTIALIZED = 0,

 XR_LOADER_INTERFACE_STRUCT_LOADER_INFO = 1,

 XR_LOADER_INTERFACE_STRUCT_API_LAYER_REQUEST = 2,

 XR_LOADER_INTERFACE_STRUCT_RUNTIME_REQUEST = 3,

 XR_LOADER_INTERFACE_STRUCT_API_LAYER_CREATE_INFO = 4,

 XR_LOADER_INTERFACE_STRUCT_API_LAYER_NEXT_INFO = 5,

 XR_LOADER_INTERFACE_STRUCTS_MAX_ENUM = 0x7FFFFFFF

} XrLoaderInterfaceStructs;

This enumeration serves a similar purpose in the runtime and API layer interface negotiation (loader)

API as XrStructureType serves in the application-facing API.

// Provided by XR_LOADER_VERSION_1_0

#define XR_LOADER_INFO_STRUCT_VERSION 1

XR_LOADER_INFO_STRUCT_VERSION is the current version of the XrNegotiateLoaderInfo structure. It

is used to populate the XrNegotiateLoaderInfo::structVersion field.

// Provided by XR_LOADER_VERSION_1_0

#define XR_CURRENT_LOADER_RUNTIME_VERSION 1

XR_CURRENT_LOADER_RUNTIME_VERSION is the current version of the overall OpenXR Loader

Runtime interface. It is used to populate maximum and minimum interface version fields in

XrNegotiateLoaderInfo when loading a runtime.

// Provided by XR_LOADER_VERSION_1_0

#define XR_CURRENT_LOADER_API_LAYER_VERSION 1

XR_CURRENT_LOADER_API_LAYER_VERSION is the current version of the overall OpenXR Loader API

Layer interface. It is used to populate maximum and minimum interface version fields in

XrNegotiateLoaderInfo when loading an API layer.

The XrNegotiateRuntimeRequest structure is used to pass information about the runtime back to the

loader.

Chapter 3. API Initialization | 55

The XrNegotiateRuntimeRequest structure is defined as:

typedef struct XrNegotiateRuntimeRequest {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 uint32_t runtimeInterfaceVersion;

 XrVersion runtimeApiVersion;

 PFN_xrGetInstanceProcAddr getInstanceProcAddr;

} XrNegotiateRuntimeRequest;

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_RUNTIME_REQUEST.

• structVersion must be a valid version of the structure. The value

XR_RUNTIME_INFO_STRUCT_VERSION is used to describe the current version of this

structure.

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrNegotiateRuntimeRequest))

• runtimeInterfaceVersion is the version of the runtime interface version being requested by

the runtime. Must: not be outside of the bounds of the XrNegotiateLoaderInfo

::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion values (inclusive).

• runtimeApiVersion is the version of the OpenXR API supported by this runtime as formatted

by XR_MAKE_VERSION. Patch is ignored.

• getInstanceProcAddr is a pointer to the runtime’s xrGetInstanceProcAddr implementation that

will be used by the loader to populate a dispatch table of OpenXR functions supported by the

runtime.

This is an output structure from runtime negotiation. The loader must populate structType,

structVersion, and structSize to ensure correct interpretation by the runtime, while the runtime

populates the rest of the fields in a successful call to xrNegotiateLoaderRuntimeInterface.

56 | Chapter 3. API Initialization

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using

XrNegotiateRuntimeRequest

• structType must be a valid XrLoaderInterfaceStructs value

• getInstanceProcAddr must be a valid PFN_xrGetInstanceProcAddr value

// Provided by XR_LOADER_VERSION_1_0

#define XR_RUNTIME_INFO_STRUCT_VERSION 1

XR_RUNTIME_INFO_STRUCT_VERSION is the current version of the XrNegotiateRuntimeRequest

structure. It is used to populate the XrNegotiateRuntimeRequest::structVersion field.

3.4. API Layer Interface Negotiation

In order to negotiate the API layer interface version with the loader, an OpenXR API layer must

implement the xrNegotiateLoaderApiLayerInterface function. Note

The API described in this section is solely intended for use between an OpenXR loader

and an API layer. Applications use the appropriate loader library for their platform to

load the active runtime and configured API layers, rather than making these calls

directly. This section is included in the specification to ensure consistency between

runtimes in their interactions with the loader.

Be advised that as this is not application-facing API, some of the typical OpenXR API

conventions are not followed in this section.

The xrNegotiateLoaderApiLayerInterface function is defined as:

// Provided by XR_LOADER_VERSION_1_0

XrResult xrNegotiateLoaderApiLayerInterface(

 const XrNegotiateLoaderInfo* loaderInfo,

 const char* layerName,

 XrNegotiateApiLayerRequest* apiLayerRequest);

Chapter 3. API Initialization | 57

Parameter Descriptions

• loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure.

• layerName must be NULL or a valid C-style NULL-terminated string listing the name of an API

layer which the loader is attempting to negotiate with.

• apiLayerRequest must be a valid pointer to an XrNegotiateApiLayerRequest structure, with

minimal initialization, as subsequently described, to be fully populated by the called API

layer.

xrNegotiateLoaderApiLayerInterface should be directly exported by an API layer so that using e.g.

GetProcAddress on Windows or dlsym on POSIX platforms returns a valid function pointer to it.

The API layer must return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on

loaderInfo are true:

• XrNegotiateLoaderInfo::structType is not XR_LOADER_INTERFACE_STRUCT_LOADER_INFO

• XrNegotiateLoaderInfo::structVersion is not XR_LOADER_INFO_STRUCT_VERSION

• XrNegotiateLoaderInfo::structSize is not sizeof(XrNegotiateLoaderInfo)

The API layer must also return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on

apiLayerRequest are true:

• XrNegotiateApiLayerRequest::structType is not XR_LOADER_INTERFACE_STRUCT_API_LAYER_REQUEST

• XrNegotiateApiLayerRequest::structVersion is not XR_API_LAYER_INFO_STRUCT_VERSION

• XrNegotiateApiLayerRequest::structSize is not sizeof(XrNegotiateApiLayerRequest)

The API layer must determine if it supports the loader’s request. The API layer does not support the

loader’s request if either of the following is true:

• the API layer does not support the interface versions supported by the loader as specified by the

parameters XrNegotiateLoaderInfo::minInterfaceVersion and XrNegotiateLoaderInfo

::maxInterfaceVersion

• the API layer does not support the API versions supported by the loader as specified by the

parameters XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

The API layer must return XR_ERROR_INITIALIZATION_FAILED if it does not support the loader’s request.

If the function succeeds, the API layer must set the XrNegotiateApiLayerRequest

::layerInterfaceVersion with the API layer interface version it desires to support. The

XrNegotiateApiLayerRequest::layerInterfaceVersion set must be between XrNegotiateLoaderInfo

::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion.

If the function succeeds, the API layer must set the XrNegotiateApiLayerRequest::layerApiVersion with

58 | Chapter 3. API Initialization

the API version of OpenXR it will execute under. The XrNegotiateApiLayerRequest::layerApiVersion set

must be between XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

If the function succeeds, the API layer must set the XrNegotiateApiLayerRequest::getInstanceProcAddr

with a valid function pointer for the loader to use to query function pointers to the remaining OpenXR

functions supported by the API layer.

If the function succeeds, the API layer must set the XrNegotiateApiLayerRequest

::createApiLayerInstance with a valid function pointer to an implementation of

xrCreateApiLayerInstance for the loader to use to create the instance through the API layer call chain.

If the function succeeds, the API layer must return XR_SUCCESS.

The API layer must not call into another API layer from its implementation of the

xrNegotiateLoaderApiLayerInterface function. The loader must handle all API layer negotiations with

each API layer individually.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to calling

xrNegotiateLoaderApiLayerInterface

• loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure

• layerName must be a null-terminated UTF-8 string

• apiLayerRequest must be a pointer to an XrNegotiateApiLayerRequest structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_INITIALIZATION_FAILED

The XrNegotiateApiLayerRequest structure is used to pass information about the API layer back to the

loader.

The XrNegotiateApiLayerRequest structure is defined as:

Chapter 3. API Initialization | 59

typedef struct XrNegotiateApiLayerRequest {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 uint32_t layerInterfaceVersion;

 XrVersion layerApiVersion;

 PFN_xrGetInstanceProcAddr getInstanceProcAddr;

 PFN_xrCreateApiLayerInstance createApiLayerInstance;

} XrNegotiateApiLayerRequest;

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_API_LAYER_REQUEST.

• structVersion must be a valid version of the structure. The value

XR_API_LAYER_INFO_STRUCT_VERSION is used to describe the current latest version of this

structure.

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrNegotiateApiLayerRequest)).

• layerInterfaceVersion is the version of the API layer interface version being requested by the

API layer. Should not be outside of the bounds of the XrNegotiateLoaderInfo

::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion values (inclusive).

• layerApiVersion is the version of the OpenXR API supported by this API layer as formatted by

XR_MAKE_VERSION. Patch is ignored.

• getInstanceProcAddr is a pointer to the API layer’s xrGetInstanceProcAddr implementation

that will be used by the loader to populate a dispatch table of OpenXR functions supported by

the API layer.

• createApiLayerInstance is a pointer to the API layer’s xrCreateApiLayerInstance

implementation that will be used by the loader during a call to xrCreateInstance when an API

layer is active. This is used because API layers need additional information at

xrCreateInstance time.

This is an output structure from API layer negotiation. The loader must populate structType,

structVersion, and structSize before calling to ensure correct interpretation by the API layer, while the

API layer populates the rest of the fields in a successful call to xrNegotiateLoaderApiLayerInterface.

60 | Chapter 3. API Initialization

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using

XrNegotiateApiLayerRequest

• structType must be a valid XrLoaderInterfaceStructs value

• getInstanceProcAddr must be a valid PFN_xrGetInstanceProcAddr value

• createApiLayerInstance must be a valid PFN_xrCreateApiLayerInstance value

// Provided by XR_LOADER_VERSION_1_0

#define XR_API_LAYER_INFO_STRUCT_VERSION 1

XR_API_LAYER_INFO_STRUCT_VERSION is the current version of the XrNegotiateApiLayerRequest

structure. It is used to populate the XrNegotiateApiLayerRequest::structVersion field.

The xrCreateApiLayerInstance function is defined as:

// Provided by XR_LOADER_VERSION_1_0

XrResult xrCreateApiLayerInstance(

 const XrInstanceCreateInfo* info,

 const XrApiLayerCreateInfo* layerInfo,

 XrInstance* instance);

Parameter Descriptions

• info is a pointer to the XrInstanceCreateInfo information passed by the application into the

outer xrCreateInstance function.

• layerInfo is a pointer to an XrApiLayerCreateInfo structure that contains special information

required by a API layer during its create instance process. This is generated by the loader.

• instance is a pointer to store the returned instance in, just as in the standard

xrCreateInstance function.

An API layer’s implementation of the xrCreateApiLayerInstance function is invoked during the

loader’s implementation of xrCreateInstance, if the layer in question is enabled.

An API layer needs additional information during xrCreateInstance calls, so each API layer must

implement the xrCreateApiLayerInstance function, which is a special API layer function.

Chapter 3. API Initialization | 61

An API layer must not implement xrCreateInstance.

xrCreateApiLayerInstance must be called by the loader during its implementation of the

xrCreateInstance function.

The loader must call the first API layer’s xrCreateApiLayerInstance function passing in the pointer to

the created XrApiLayerCreateInfo.

The XrApiLayerCreateInfo::nextInfo must be a linked-list of XrApiLayerNextInfo structures with

information about each of the API layers that are to be enabled. Note that this does not operate like a

next chain in the OpenXR application API, but instead describes the enabled API layers from outermost

to innermost.

The API layer may validate that it is getting the correct next information by checking that the

XrApiLayerNextInfo::layerName matches the expected value.

The API layer must use the information in its XrApiLayerNextInfo to call down the call chain to the

next xrCreateApiLayerInstance:

• The API layer must copy the XrApiLayerCreateInfo structure into its own structure.

• The API layer must then update its copy of the XrApiLayerCreateInfo structure, setting

XrApiLayerCreateInfo::XrApiLayerCreateInfo::nextInfo to point to the XrApiLayerNextInfo for the

next API layer (e.g. layerInfoCopy→nextInfo = layerInfo→nextInfo→next;).

• The API layer must then use the pointer to its XrApiLayerCreateInfo structure (instead of the one

that was passed in) when it makes a call to the xrCreateApiLayerInstance function.

• If the nested xrCreateApiLayerInstance call succeeds, the API layer may choose to setup its own

dispatch table to the next API layer’s functions using the returned XrInstance and the next API

layer’s xrGetInstanceProcAddr.

• The API layer must return the XrResult returned from the next API layer.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to calling

xrCreateApiLayerInstance

• info must be a pointer to a valid XrInstanceCreateInfo structure

• layerInfo must be a pointer to a valid XrApiLayerCreateInfo structure

• instance must be a pointer to an XrInstance handle

62 | Chapter 3. API Initialization

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_INITIALIZATION_FAILED

The XrApiLayerCreateInfo structure contains special information required by a API layer during its

create instance process.

The XrApiLayerCreateInfo structure is defined as:

typedef struct XrApiLayerCreateInfo {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 void* loaderInstance;

 char settings_file_location

[XR_API_LAYER_MAX_SETTINGS_PATH_SIZE];

 XrApiLayerNextInfo* nextInfo;

} XrApiLayerCreateInfo;

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_API_LAYER_CREATE_INFO.

• structVersion is the version of the structure being supplied by the loader (i.e.

XR_API_LAYER_CREATE_INFO_STRUCT_VERSION)

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrApiLayerCreateInfo))

• loaderInstance is deprecated and must be ignored.

• settings_file_location is the location of any usable API layer settings file. The size of

settings_file_location is given by XR_API_LAYER_MAX_SETTINGS_PATH_SIZE. This is

currently unused.

• nextInfo is a pointer to the XrApiLayerNextInfo structure which contains information to

work with the next API layer in the chain.

Chapter 3. API Initialization | 63

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using XrApiLayerCreateInfo

• structType must be a valid XrLoaderInterfaceStructs value

• loaderInstance must be a pointer value

• settings_file_location must be a null-terminated UTF-8 string whose length is less than or

equal to XR_API_LAYER_MAX_SETTINGS_PATH_SIZE

• nextInfo must be a pointer to an XrApiLayerNextInfo structure

// Provided by XR_LOADER_VERSION_1_0

#define XR_API_LAYER_CREATE_INFO_STRUCT_VERSION 1

XR_API_LAYER_CREATE_INFO_STRUCT_VERSION is the current version of the XrApiLayerCreateInfo

structure. It is used to populate the XrApiLayerCreateInfo::structVersion field.

// Provided by XR_LOADER_VERSION_1_0

#define XR_API_LAYER_MAX_SETTINGS_PATH_SIZE 512

XR_API_LAYER_MAX_SETTINGS_PATH_SIZE is the size of the XrApiLayerCreateInfo

::settings_file_location field.

The XrApiLayerNextInfo structure:

The XrApiLayerNextInfo structure is defined as:

typedef struct XrApiLayerNextInfo {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 char layerName[XR_MAX_API_LAYER_NAME_SIZE];

 PFN_xrGetInstanceProcAddr nextGetInstanceProcAddr;

 PFN_xrCreateApiLayerInstance nextCreateApiLayerInstance;

 struct XrApiLayerNextInfo* next;

} XrApiLayerNextInfo;

64 | Chapter 3. API Initialization

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_API_LAYER_NEXT_INFO

• structVersion must be a valid version of the structure and the version being supplied by the

loader (i.e. XR_API_LAYER_NEXT_INFO_STRUCT_VERSION).

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrApiLayerNextInfo))

• layerName is the name of the intended next API layer, used to verify and debug the API layer

chain.

• nextGetInstanceProcAddr is a pointer to the next API layer’s xrGetInstanceProcAddr. This is

intended for use in populating a dispatch table to the next implementations in the chain.

• nextCreateApiLayerInstance is a pointer to the xrCreateApiLayerInstance function

implementation in the next API layer. This is to be called after the API layer has done any

localized creation, but before the API layer records any function addresses from the next API

layer using xrGetInstanceProcAddr.

• next is a pointer to the XrApiLayerNextInfo for the next API layer. If no API layer is after this,

it will be NULL.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using XrApiLayerNextInfo

• structType must be a valid XrLoaderInterfaceStructs value

• layerName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_API_LAYER_NAME_SIZE

• nextGetInstanceProcAddr must be a valid PFN_xrGetInstanceProcAddr value

• nextCreateApiLayerInstance must be a valid PFN_xrCreateApiLayerInstance value

• next must be a pointer to an XrApiLayerNextInfo structure

// Provided by XR_LOADER_VERSION_1_0

#define XR_API_LAYER_NEXT_INFO_STRUCT_VERSION 1

XR_API_LAYER_NEXT_INFO_STRUCT_VERSION is the current version of the XrApiLayerNextInfo

structure. It is used to populate the XrApiLayerNextInfo::structVersion field.

Chapter 3. API Initialization | 65

Chapter 4. Instance

XR_DEFINE_HANDLE(XrInstance)

An OpenXR instance is an object that allows an OpenXR application to communicate with an OpenXR

runtime. The application accomplishes this communication by calling xrCreateInstance and receiving a

handle to the resulting XrInstance object.

The XrInstance object stores and tracks OpenXR-related application state, without storing any such

state in the application’s global address space. This allows the application to create multiple instances

as well as safely encapsulate the application’s OpenXR state since this object is opaque to the

application. OpenXR runtimes may limit the number of simultaneous XrInstance objects that may be

created and used, but they must support the creation and usage of at least one XrInstance object per

process.

Physically, this state may be stored in any of the OpenXR loader, OpenXR API layers or the OpenXR

runtime components. The exact storage and distribution of this saved state is implementation-

dependent, except where indicated by this specification.

The tracking of OpenXR state in the instance allows the streamlining of the API, where the intended

instance is inferred from the highest ascendant of an OpenXR function’s target object. For example, in:

myResult = xrEndFrame(mySession, &myEndFrameDescription);

the XrSession object was created from an XrInstance object. The OpenXR loader typically keeps track of

the XrInstance that is the parent of the XrSession object in this example and directs the function to the

runtime associated with that instance. This tracking of OpenXR objects eliminates the need to specify

an XrInstance in every OpenXR function.

4.1. API Layers and Extensions

Additional functionality may be provided by API layers or extensions. An API layer must not add or

modify the definition of OpenXR functions, while an extension may do so.

The set of API layers to enable is specified when creating an instance, and those API layers are able to

intercept any functions dispatched to that instance or any of its child objects.

Example API layers may include (but are not limited to):

• an API layer to dump out OpenXR API calls

• an API layer to perform OpenXR validation

66 | Chapter 4. Instance

To determine what set of API layers are available, OpenXR provides the

xrEnumerateApiLayerProperties function:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateApiLayerProperties(

 uint32_t propertyCapacityInput,

 uint32_t* propertyCountOutput,

 XrApiLayerProperties* properties);

Parameter Descriptions

• propertyCapacityInput is the capacity of the properties array, or 0 to indicate a request to

retrieve the required capacity.

• propertyCountOutput is a pointer to the count of properties written, or a pointer to the

required capacity in the case that propertyCapacityInput is insufficient.

• properties is a pointer to an array of XrApiLayerProperties structures, but can be NULL if

propertyCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

properties size.

The list of available layers may change at any time due to actions outside of the OpenXR runtime, so

two calls to xrEnumerateApiLayerProperties with the same parameters may return different results,

or retrieve different propertyCountOutput values or properties contents.

Once an instance has been created, the layers enabled for that instance will continue to be enabled and

valid for the lifetime of that instance, even if some of them become unavailable for future instances.

Valid Usage (Implicit)

• propertyCountOutput must be a pointer to a uint32_t value

• If propertyCapacityInput is not 0, properties must be a pointer to an array of

propertyCapacityInput XrApiLayerProperties structures

Chapter 4. Instance | 67

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

The XrApiLayerProperties structure is defined as:

typedef struct XrApiLayerProperties {

 XrStructureType type;

 void* next;

 char layerName[XR_MAX_API_LAYER_NAME_SIZE];

 XrVersion specVersion;

 uint32_t layerVersion;

 char description[XR_MAX_API_LAYER_DESCRIPTION_SIZE];

} XrApiLayerProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• layerName is a string specifying the name of the API layer. Use this name in the

XrInstanceCreateInfo::enabledApiLayerNames array to enable this API layer for an instance.

• specVersion is the API version the API layer was written to, encoded as described in the API

Version Numbers and Semantics section.

• layerVersion is the version of this API layer. It is an integer, increasing with backward

compatible changes.

• description is a string providing additional details that can be used by the application to

identify the API layer.

68 | Chapter 4. Instance

Valid Usage (Implicit)

• type must be XR_TYPE_API_LAYER_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain

To enable a layer, the name of the layer should be added to XrInstanceCreateInfo

::enabledApiLayerNames when creating an XrInstance.

Loader implementations may provide mechanisms outside this API for enabling specific API layers.

API layers enabled through such a mechanism are implicitly enabled, while API layers enabled by

including the API layer name in XrInstanceCreateInfo::enabledApiLayerNames are explicitly enabled.

Except where otherwise specified, implicitly enabled and explicitly enabled API layers differ only in

the way they are enabled. Explicitly enabling an API layer that is implicitly enabled has no additional

effect.

Instance extensions are able to affect the operation of the instance and any of its child objects. As

stated earlier, extensions can expand the OpenXR API and provide new functions or augment

behavior.

Examples of extensions may be (but are not limited to):

Extension Examples

• an extension to include OpenXR functions to work with a new graphics API

• an extension to expose debug information via a callback

The application can determine the available instance extensions by calling

xrEnumerateInstanceExtensionProperties:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateInstanceExtensionProperties(

 const char* layerName,

 uint32_t propertyCapacityInput,

 uint32_t* propertyCountOutput,

 XrExtensionProperties* properties);

Chapter 4. Instance | 69

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• layerName is either NULL or a pointer to a string naming the API layer to retrieve extensions

from, as returned by xrEnumerateApiLayerProperties.

• propertyCapacityInput is the capacity of the properties array, or 0 to indicate a request to

retrieve the required capacity.

• propertyCountOutput is a pointer to the count of properties written, or a pointer to the

required capacity in the case that propertyCapacityInput is insufficient.

• properties is a pointer to an array of XrExtensionProperties structures, but can be NULL if

propertyCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

properties size.

Because the list of available layers may change externally between calls to

xrEnumerateInstanceExtensionProperties, two calls may retrieve different results if a layerName is

available in one call but not in another. The extensions supported by a layer may also change between

two calls, e.g. if the layer implementation is replaced by a different version between those calls.

Valid Usage (Implicit)

• If layerName is not NULL, layerName must be a null-terminated UTF-8 string

• propertyCountOutput must be a pointer to a uint32_t value

• If propertyCapacityInput is not 0, properties must be a pointer to an array of

propertyCapacityInput XrExtensionProperties structures

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_RUNTIME_UNAVAILABLE

• XR_ERROR_API_LAYER_NOT_PRESENT

70 | Chapter 4. Instance

The XrExtensionProperties structure is defined as:

typedef struct XrExtensionProperties {

 XrStructureType type;

 void* next;

 char extensionName[XR_MAX_EXTENSION_NAME_SIZE];

 uint32_t extensionVersion;

} XrExtensionProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• extensionName is a NULL terminated string specifying the name of the extension.

• extensionVersion is the version of this extension. It is an integer, incremented with backward

compatible changes.

Valid Usage (Implicit)

• type must be XR_TYPE_EXTENSION_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain

4.2. Instance Lifecycle

The xrCreateInstance function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateInstance(

 const XrInstanceCreateInfo* createInfo,

 XrInstance* instance);

Chapter 4. Instance | 71

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• createInfo points to an instance of XrInstanceCreateInfo controlling creation of the instance.

• instance points to an XrInstance handle in which the resulting instance is returned.

xrCreateInstance creates the XrInstance, then enables and initializes global API layers and extensions

requested by the application. If an extension is provided by an API layer, both the API layer and

extension must be specified at xrCreateInstance time. If a specified API layer cannot be found, no

XrInstance will be created and the function will return XR_ERROR_API_LAYER_NOT_PRESENT. Likewise, if a

specified extension cannot be found, the call must return XR_ERROR_EXTENSION_NOT_PRESENT and no

XrInstance will be created. Additionally, some runtimes may limit the number of concurrent instances

that may be in use. If the application attempts to create more instances than a runtime can

simultaneously support, xrCreateInstance may return XR_ERROR_LIMIT_REACHED.

If the XrApplicationInfo::applicationName is the empty string the runtime must return

XR_ERROR_NAME_INVALID.

If the XrInstanceCreateInfo structure contains a platform-specific extension for a platform other than

the target platform, XR_ERROR_INITIALIZATION_FAILED may be returned. If a mandatory platform-specific

extension is defined for the target platform but no matching extension struct is provided in

XrInstanceCreateInfo the runtime must return XR_ERROR_INITIALIZATION_FAILED.

Valid Usage (Implicit)

• createInfo must be a pointer to a valid XrInstanceCreateInfo structure

• instance must be a pointer to an XrInstance handle

72 | Chapter 4. Instance

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_RUNTIME_UNAVAILABLE

• XR_ERROR_NAME_INVALID

• XR_ERROR_INITIALIZATION_FAILED

• XR_ERROR_EXTENSION_NOT_PRESENT

• XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED

• XR_ERROR_API_VERSION_UNSUPPORTED

• XR_ERROR_API_LAYER_NOT_PRESENT

The XrInstanceCreateInfo structure is defined as:

typedef struct XrInstanceCreateInfo {

 XrStructureType type;

 const void* next;

 XrInstanceCreateFlags createFlags;

 XrApplicationInfo applicationInfo;

 uint32_t enabledApiLayerCount;

 const char* const* enabledApiLayerNames;

 uint32_t enabledExtensionCount;

 const char* const* enabledExtensionNames;

} XrInstanceCreateInfo;

Chapter 4. Instance | 73

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• createFlags is a bitmask of XrInstanceCreateFlags that identifies options that apply to the

creation.

• applicationInfo is an instance of XrApplicationInfo. This information helps runtimes

recognize behavior inherent to classes of applications. XrApplicationInfo is defined in detail

below.

• enabledApiLayerCount is the number of global API layers to enable.

• enabledApiLayerNames is a pointer to an array of enabledApiLayerCount strings containing the

names of API layers to enable for the created instance. See the API Layers and Extensions

section for further details.

• enabledExtensionCount is the number of global extensions to enable.

• enabledExtensionNames is a pointer to an array of enabledExtensionCount strings containing the

names of extensions to enable.

Valid Usage (Implicit)

• type must be XR_TYPE_INSTANCE_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrInstanceCreateInfoAndroidKHR

• createFlags must be 0

• applicationInfo must be a valid XrApplicationInfo structure

• If enabledApiLayerCount is not 0, enabledApiLayerNames must be a pointer to an array of

enabledApiLayerCount null-terminated UTF-8 strings

• If enabledExtensionCount is not 0, enabledExtensionNames must be a pointer to an array of

enabledExtensionCount null-terminated UTF-8 strings

The XrInstanceCreateInfo::createFlags member is of the following type, and contains a bitwise-OR of

zero or more of the bits defined in XrInstanceCreateFlagBits.

typedef XrFlags64 XrInstanceCreateFlags;

74 | Chapter 4. Instance

#valid-usage-for-structure-pointer-chains

Valid bits for XrInstanceCreateFlags are defined by XrInstanceCreateFlagBits.

// Flag bits for XrInstanceCreateFlags

There are currently no instance creation flag bits defined. This is reserved for future use.

The XrApplicationInfo structure is defined as:

typedef struct XrApplicationInfo {

 char applicationName[XR_MAX_APPLICATION_NAME_SIZE];

 uint32_t applicationVersion;

 char engineName[XR_MAX_ENGINE_NAME_SIZE];

 uint32_t engineVersion;

 XrVersion apiVersion;

} XrApplicationInfo;

Member Descriptions

• applicationName is a non-empty string containing the name of the application.

• applicationVersion is an unsigned integer variable containing the developer-supplied version

number of the application.

• engineName is a string containing the name of the engine (if any) used to create the

application. It may be empty to indicate no specified engine.

• engineVersion is an unsigned integer variable containing the developer-supplied version

number of the engine used to create the application. May be zero to indicate no specified

engine.

• apiVersion is the version of this API against which the application will run, encoded as

described in the API Version Numbers and Semantics section. If the runtime does not support

the requested apiVersion it must return XR_ERROR_API_VERSION_UNSUPPORTED.

Valid Usage (Implicit)

• applicationName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_APPLICATION_NAME_SIZE

• engineName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_ENGINE_NAME_SIZE

Chapter 4. Instance | 75

 Note

When using the OpenXR API to implement a reusable engine that will be used by

many applications, engineName should be set to a unique string that identifies the

engine, and engineVersion should encode a representation of the engine’s version.

This way, all applications that share this engine version will provide the same

engineName and engineVersion to the runtime. The engine should then enable

individual applications to choose their specific applicationName and

applicationVersion, enabling one application to be distinguished from another

application.

When using the OpenXR API to implement an individual application without a shared

engine, the input engineName should be left empty and engineVersion should be set to

0. The applicationName should then be filled in with a unique string that identifies the

app and the applicationVersion should encode a representation of the application’s

version.

The xrDestroyInstance function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroyInstance(

 XrInstance instance);

The xrDestroyInstance function is used to destroy an XrInstance.

Parameter Descriptions

• instance is the handle to the instance to destroy.

XrInstance handles are destroyed using xrDestroyInstance. When an XrInstance is destroyed, all

handles that are children of that XrInstance are also destroyed.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

Thread Safety

• Access to instance, and any child handles, must be externally synchronized

76 | Chapter 4. Instance

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

4.3. Instance Information

The xrGetInstanceProperties function provides information about the instance and the associated

runtime.

// Provided by XR_VERSION_1_0

XrResult xrGetInstanceProperties(

 XrInstance instance,

 XrInstanceProperties* instanceProperties);

Parameter Descriptions

• instance is a handle to an XrInstance previously created with xrCreateInstance.

• instanceProperties points to an XrInstanceProperties which describes the instance.

The instanceProperties parameter must be filled out by the runtime in response to this call, with

information as defined in XrInstanceProperties.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• instanceProperties must be a pointer to an XrInstanceProperties structure

Chapter 4. Instance | 77

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

The XrInstanceProperties structure is defined as:

typedef struct XrInstanceProperties {

 XrStructureType type;

 void* next;

 XrVersion runtimeVersion;

 char runtimeName[XR_MAX_RUNTIME_NAME_SIZE];

} XrInstanceProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• runtimeVersion is the runtime’s version (not necessarily related to an OpenXR API version),

expressed in the format of XR_MAKE_VERSION.

• runtimeName is the name of the runtime.

Valid Usage (Implicit)

• type must be XR_TYPE_INSTANCE_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain

78 | Chapter 4. Instance

#valid-usage-for-structure-pointer-chains

4.4. Platform-Specific Instance Creation

Some amount of data required for instance creation is exposed through chained structures defined in

extensions. These structures may be optional or even required for instance creation on specific

platforms, but not on other platforms. Separating off platform-specific functionality into extension

structures prevents the primary XrInstanceCreateInfo structure from becoming too bloated with

unnecessary information.

See the List of Extensions appendix for the list of available extensions and their related structures.

These structures expand the XrInstanceCreateInfo parent struct using the XrInstanceCreateInfo::next

member. The specific list of structures that may be used for extending XrInstanceCreateInfo::next can

be found in the "Valid Usage (Implicit)" block immediately following the definition of the structure.

4.4.1. The Instance Lost Error

The XR_ERROR_INSTANCE_LOST error indicates that the XrInstance has become unusable. This can happen

if a critical runtime process aborts, if the connection to the runtime is otherwise no longer available, or

if the runtime encounters an error during any function execution which prevents it from being able to

support further function execution. Once XR_ERROR_INSTANCE_LOST is first returned, it must henceforth

be returned by all non-destroy functions that involve an XrInstance or child handle type until the

instance is destroyed. Applications must destroy the XrInstance. Applications may then attempt to

continue by recreating all relevant OpenXR objects, starting with a new XrInstance. A runtime may

generate an XrEventDataInstanceLossPending event when instance loss is detected.

4.4.2. XrEventDataInstanceLossPending

// Provided by XR_VERSION_1_0

typedef struct XrEventDataInstanceLossPending {

 XrStructureType type;

 const void* next;

 XrTime lossTime;

} XrEventDataInstanceLossPending;

Receiving the XrEventDataInstanceLossPending event structure indicates that the application is about

to lose the indicated XrInstance at the indicated lossTime in the future. The application should call

xrDestroyInstance and relinquish any instance-specific resources. This typically occurs to make way

for a replacement of the underlying runtime, such as via a software update.

After the application has destroyed all of its instances and their children and waited past the specified

time, it may then re-try xrCreateInstance in a loop waiting for whatever maintenance the runtime is

performing to complete. The runtime will return XR_ERROR_RUNTIME_UNAVAILABLE from xrCreateInstance

as long as it is unable to create the instance. Once the runtime has returned and is able to continue, it

Chapter 4. Instance | 79

must resume returning XR_SUCCESS from xrCreateInstance if valid data is passed in.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• lossTime is the absolute time at which the indicated instance will be considered lost and

become unusable.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING

• next must be NULL or a valid pointer to the next structure in a structure chain

4.5. Instance Enumerated Type String Functions

Applications often want to turn certain enum values from the runtime into strings for use in log

messages, to be localized in UI, or for various other reasons. OpenXR provides functions that turn

common enum types into UTF-8 strings for use in applications.

// Provided by XR_VERSION_1_0

XrResult xrResultToString(

 XrInstance instance,

 XrResult value,

 char buffer[XR_MAX_RESULT_STRING_SIZE]);

Parameter Descriptions

• instance is the handle of the instance to ask for the string.

• value is the XrResult value to turn into a string.

• buffer is the buffer that will be used to return the string in.

Returns the text version of the provided XrResult value as a UTF-8 string.

In all cases the returned string must be one of:

80 | Chapter 4. Instance

#valid-usage-for-structure-pointer-chains

Result String Return Values

• The literal string defined for the provide numeric value in the core spec or extension. (e.g. the

value 0 results in the string XR_SUCCESS)

• XR_UNKNOWN_SUCCESS_ concatenated with the positive result number expressed as a decimal

number.

• XR_UNKNOWN_FAILURE_ concatenated with the negative result number expressed as a decimal

number.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• value must be a valid XrResult value

• buffer must be a character array of length XR_MAX_RESULT_STRING_SIZE

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

The xrStructureTypeToString function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrStructureTypeToString(

 XrInstance instance,

 XrStructureType value,

 char buffer[XR_MAX_STRUCTURE_NAME_SIZE]);

Chapter 4. Instance | 81

Parameter Descriptions

• instance is the handle of the instance to ask for the string.

• value is the XrStructureType value to turn into a string.

• buffer is the buffer that will be used to return the string in.

Returns the text version of the provided XrStructureType value as a UTF-8 string.

In all cases the returned string must be one of:

Structure Type String Return Values

• The literal string defined for the provide numeric value in the core spec or extension. (e.g. the

value of XR_TYPE_INSTANCE_CREATE_INFO results in the string XR_TYPE_INSTANCE_CREATE_INFO)

• XR_UNKNOWN_STRUCTURE_TYPE_ concatenated with the structure type number expressed as a

decimal number.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• value must be a valid XrStructureType value

• buffer must be a character array of length XR_MAX_STRUCTURE_NAME_SIZE

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

82 | Chapter 4. Instance

Chapter 5. System

This API separates the concept of physical systems of XR devices from the logical objects that

applications interact with directly. A system represents a collection of related devices in the runtime,

often made up of several individual hardware components working together to enable XR experiences.

An XrSystemId is returned by xrGetSystem representing the system of devices the runtime will use to

support a given form factor. Each system may include: a VR/AR display, various forms of input

(gamepad, touchpad, motion controller), and other trackable objects.

The application uses the system to create a session, which can then be used to accept input from the

user and output rendered frames. The application also provides suggested bindings from its actions to

any number of input sources. The runtime may use this action information to activate only a subset of

devices and avoid wasting resources on devices that are not in use. Exactly which devices are active

once an XR system is selected will depend on the features provided by the runtime, and may vary from

runtime to runtime. For example, a runtime that is capable of mapping from one tracking system’s

space to another’s may support devices from multiple tracking systems simultaneously.

5.1. Form Factors

The first step in selecting a system is for the application to request its desired form factor. The form

factor defines how the display(s) moves in the environment relative to the user’s head and how the

user will interact with the XR experience. A runtime may support multiple form factors, such as on a

mobile phone that supports both slide-in VR headset experiences and handheld AR experiences.

While an application’s core XR rendering may span across form factors, its user interface will often be

written to target a particular form factor, requiring explicit tailoring to function well on other form

factors. For example, screen-space UI designed for a handheld phone will produce an uncomfortable

experience for users if presented in screen-space on an AR headset.

typedef enum XrFormFactor {

 XR_FORM_FACTOR_HEAD_MOUNTED_DISPLAY = 1,

 XR_FORM_FACTOR_HANDHELD_DISPLAY = 2,

 XR_FORM_FACTOR_MAX_ENUM = 0x7FFFFFFF

} XrFormFactor;

The predefined form factors which may be supported by OpenXR runtimes are:

Chapter 5. System | 83

Enumerant Descriptions

• XR_FORM_FACTOR_HEAD_MOUNTED_DISPLAY. The tracked display is attached to the user’s head. The

user cannot touch the display itself. A VR headset would be an example of this form factor.

• XR_FORM_FACTOR_HANDHELD_DISPLAY. The tracked display is held in the user’s hand, independent

from the user’s head. The user may be able to touch the display, allowing for screen-space UI.

A mobile phone running an AR experience using pass-through video would be an example of

this form factor.

5.2. Getting the XrSystemId

XR_DEFINE_ATOM(XrSystemId)

An XrSystemId is an opaque atom used by the runtime to identify a system. The value

XR_NULL_SYSTEM_ID is considered an invalid system.

// Provided by XR_VERSION_1_0

#define XR_NULL_SYSTEM_ID 0

The only XrSystemId value defined to be constant across all instances is the invalid system

XR_NULL_SYSTEM_ID. No supported system is associated with XR_NULL_SYSTEM_ID. Unless explicitly

permitted, it should not be passed to API calls or used as a structure attribute when a valid XrSystemId

is required.

The xrGetSystem function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetSystem(

 XrInstance instance,

 const XrSystemGetInfo* getInfo,

 XrSystemId* systemId);

84 | Chapter 5. System

Parameter Descriptions

• instance is the handle of the instance from which to get the information.

• getInfo is a pointer to an XrSystemGetInfo structure containing the application’s requests for

a system.

• systemId is the returned XrSystemId.

To get an XrSystemId, an application specifies its desired form factor to xrGetSystem and gets the

runtime’s XrSystemId associated with that configuration.

If the form factor is supported but temporarily unavailable, xrGetSystem must return

XR_ERROR_FORM_FACTOR_UNAVAILABLE. A runtime may return XR_SUCCESS on a subsequent call for a form

factor it previously returned XR_ERROR_FORM_FACTOR_UNAVAILABLE. For example, connecting or warming

up hardware might cause an unavailable form factor to become available.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• getInfo must be a pointer to a valid XrSystemGetInfo structure

• systemId must be a pointer to an XrSystemId value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_FORM_FACTOR_UNSUPPORTED

• XR_ERROR_FORM_FACTOR_UNAVAILABLE

The XrSystemGetInfo structure is defined as:

Chapter 5. System | 85

typedef struct XrSystemGetInfo {

 XrStructureType type;

 const void* next;

 XrFormFactor formFactor;

} XrSystemGetInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• formFactor is the XrFormFactor requested by the application.

The XrSystemGetInfo structure specifies attributes about a system as desired by an application.

Valid Usage (Implicit)

• type must be XR_TYPE_SYSTEM_GET_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• formFactor must be a valid XrFormFactor value

XrInstance instance; // previously initialized

XrSystemGetInfo system_get_info = {XR_TYPE_SYSTEM_GET_INFO};

system_get_info.formFactor = XR_FORM_FACTOR_HEAD_MOUNTED_DISPLAY;

XrSystemId systemId;

CHK_XR(xrGetSystem(instance, &system_get_info, &systemId));

// create session

// create swapchains

// begin session

// main loop

// end session

// destroy session

// no access to hardware after this point

86 | Chapter 5. System

#valid-usage-for-structure-pointer-chains

5.3. System Properties

The xrGetSystemProperties function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetSystemProperties(

 XrInstance instance,

 XrSystemId systemId,

 XrSystemProperties* properties);

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose properties will be queried.

• properties points to an instance of the XrSystemProperties structure, that will be filled with

returned information.

An application can call xrGetSystemProperties to retrieve information about the system such as

vendor ID, system name, and graphics and tracking properties.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• properties must be a pointer to an XrSystemProperties structure

Chapter 5. System | 87

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SYSTEM_INVALID

The XrSystemProperties structure is defined as:

typedef struct XrSystemProperties {

 XrStructureType type;

 void* next;

 XrSystemId systemId;

 uint32_t vendorId;

 char systemName[XR_MAX_SYSTEM_NAME_SIZE];

 XrSystemGraphicsProperties graphicsProperties;

 XrSystemTrackingProperties trackingProperties;

} XrSystemProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• vendorId is a unique identifier for the vendor of the system.

• systemId is the XrSystemId identifying the system.

• systemName is a string containing the name of the system.

• graphicsProperties is an XrSystemGraphicsProperties structure specifying the system

graphics properties.

• trackingProperties is an XrSystemTrackingProperties structure specifying system tracking

properties.

88 | Chapter 5. System

Valid Usage (Implicit)

• type must be XR_TYPE_SYSTEM_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain

The runtime must report a valid vendor ID for the system. The vendor ID must be either the USB

vendor ID defined for the physical device or a Khronos vendor ID.

The XrSystemGraphicsProperties structure is defined as:

typedef struct XrSystemGraphicsProperties {

 uint32_t maxSwapchainImageHeight;

 uint32_t maxSwapchainImageWidth;

 uint32_t maxLayerCount;

} XrSystemGraphicsProperties;

Member Descriptions

• maxSwapchainImageHeight is the maximum swapchain image pixel height supported by this

system.

• maxSwapchainImageWidth is the maximum swapchain image pixel width supported by this

system.

• maxLayerCount is the maximum number of composition layers supported by this system. The

runtime must support at least XR_MIN_COMPOSITION_LAYERS_SUPPORTED layers.

// Provided by XR_VERSION_1_0

#define XR_MIN_COMPOSITION_LAYERS_SUPPORTED 16

XR_MIN_COMPOSITION_LAYERS_SUPPORTED defines the minimum number of composition layers that

a conformant runtime must support. A runtime must return the XrSystemGraphicsProperties

::maxLayerCount at least the value of XR_MIN_COMPOSITION_LAYERS_SUPPORTED.

The XrSystemTrackingProperties structure is defined as:

Chapter 5. System | 89

#valid-usage-for-structure-pointer-chains

typedef struct XrSystemTrackingProperties {

 XrBool32 orientationTracking;

 XrBool32 positionTracking;

} XrSystemTrackingProperties;

Member Descriptions

• orientationTracking is set to XR_TRUE to indicate the system supports orientational tracking of

the view pose(s), XR_FALSE otherwise.

• positionTracking is set to XR_TRUE to indicate the system supports positional tracking of the

view pose(s), XR_FALSE otherwise.

90 | Chapter 5. System

Chapter 6. Path Tree and Semantic Paths

OpenXR incorporates an internal semantic path tree model, also known as the path tree, with entities

associated with nodes organized in a logical tree and referenced by path name strings structured like a

filesystem path or URL. The path tree unifies a number of concepts used in this specification and a

runtime may add additional nodes as implementation details. As a general design principle, the most

application-facing paths should have semantic and hierarchical meaning in their name. Thus, these

paths are often referred to as semantic paths. However, path names in the path tree model may not all

have the same level or kind of semantic meaning.

In regular use in an application, path name strings are converted to instance-specific XrPath values

which are used in place of path strings. The mapping between XrPath values and their corresponding

path name strings may be considered to be tracked by the runtime in a one-to-one mapping in addition

to the natural tree structure of the referenced entities. Runtimes may use any internal implementation

that satisfies the requirements.

Formally, the runtime maintains an instance-specific bijective mapping between well-formed path

name strings and valid XrPath (uint64_t) values. These XrPath values are only valid within a single

XrInstance, and applications must not share these values between instances. Applications must

instead use the string representation of a path in their code and configuration, and obtain the correct

corresponding XrPath at runtime in each XrInstance. The term path or semantic path may refer

interchangeably to either the path name string or its associated XrPath value within an instance when

context makes it clear which type is being discussed.

Given that path trees are a unifying model in this specification, the entities referenced by paths can be

of diverse types. For example, they may be used to represent physical device or sensor components,

which may be of various component types. They may also be used to represent frames of reference that

are understood by the application and the runtime, as defined by an XrSpace. Additionally, to permit

runtime re-configuration and support hardware-independent development, any syntactically-valid

path string may be used to retrieve a corresponding XrPath without error given sufficient resources,

even if no logical or hardware entity currently corresponds to that path at the time of the call. Later

retrieval of the associated path string of such an XrPath using xrPathToString should succeed if the

other requirements of that call are met. However, using such an XrPath in a later call to any other API

function may result in an error if no entity of the type required by the call is available at the path at

that later time. A runtime should permit the entity referenced by a path to vary over time to naturally

reflect varying system configuration and hardware availability.

6.1. Path Atom Type

XR_DEFINE_ATOM(XrPath)

Chapter 6. Path Tree and Semantic Paths | 91

The XrPath is an atom that connects an application with a single path, within the context of a single

instance. There is a bijective mapping between well-formed path strings and atoms in use. This atom is

used — in place of the path name string it corresponds to — to retrieve state and perform other

operations.

As an XrPath is only shorthand for a well-formed path string, they have no explicit life cycle.

Lifetime is implicitly managed by the XrInstance. An XrPath must not be used unless it is received at

execution time from the runtime in the context of a particular XrInstance. Therefore, with the

exception of XR_NULL_PATH, XrPath values must not be specified as constant values in applications:

the corresponding path string should be used instead. During the lifetime of a given XrInstance, the

XrPath associated with that instance with any given well-formed path must not vary, and similarly the

well-formed path string that corresponds to a given XrPath in that instance must not vary. An XrPath

that is received from one XrInstance may not be used with another. Such an invalid use may be

detected and result in an error being returned, or it may result in undefined behavior.

Well-written applications should typically use a small, bounded set of paths in practice. However, the

runtime should support looking up the XrPath for a large number of path strings for maximum

compatibility. Runtime implementers should keep in mind that applications supporting diverse

systems may look up path strings in a quantity exceeding the number of non-empty entities predicted

or provided by any one runtime’s own path tree model, and this is not inherently an error. However,

system resources are finite and thus runtimes may signal exhaustion of resources dedicated to these

associations under certain conditions.

When discussing the behavior of runtimes at these limits, a new XrPath refers to an XrPath value that,

as of some point in time, has neither been received by the application nor tracked internally by the

runtime. In this case, since an application has not yet received the value of such an XrPath, the runtime

has not yet made any assertions about its association with any path string. In this context, new only

refers to the fact that the mapping has not necessarily been made constant for a given value/path

string pair for the remaining life of the associated instance by being revealed to the application. It does

not necessarily imply creation of the entity, if any, referred to by such a path. Similarly, it does not

imply the absence of such an entity prior to that point. Entities in the path tree have varied lifetime

that is independent from the duration of the mapping from path string to XrPath.

For flexibility, the runtime may internally track or otherwise make constant, in instance or larger

scope, any mapping of a path string to an XrPath value even before an application would otherwise

receive that value, thus making it no longer new by the above definition.

When the runtime’s resources to track the path string-XrPath mapping are exhausted, and the

application makes an API call that would have otherwise retrieved a new XrPath as defined above, the

runtime must return XR_ERROR_PATH_COUNT_EXCEEDED. This includes both explicit calls to xrStringToPath

as well as other calls that retrieve an XrPath in any other way.

The runtime should support creating as many paths as memory will allow and must return

XR_ERROR_PATH_COUNT_EXCEEDED from relevant functions when no more can be created.

92 | Chapter 6. Path Tree and Semantic Paths

// Provided by XR_VERSION_1_0

#define XR_NULL_PATH 0

The only XrPath value defined to be constant across all instances is the invalid path XR_NULL_PATH. No

well-formed path string is associated with XR_NULL_PATH. Unless explicitly permitted, it should not

be passed to API calls or used as a structure attribute when a valid XrPath is required.

6.2. Well-Formed Path Strings

Even though they look similar, semantic paths are not file paths. To avoid confusion with file path

directory traversal conventions, many file path conventions are explicitly disallowed from well-formed

path name strings.

A well-formed path name string must conform to the following rules:

• Path name strings must be constructed entirely from characters on the following list.

◦ Lower case ASCII letters: a-z

◦ Numeric digits: 0-9

◦ Dash: -

◦ Underscore: _

◦ Period: .

◦ Forward Slash: /

• Path name strings must start with a single forward slash character.

• Path name strings must not end with a forward slash character.

• Path name strings must not contain two or more adjacent forward slash characters.

• Path name strings must not contain two forward slash characters that are separated by only period

characters.

• Path name strings must not contain only period characters following the final forward slash

character in the string.

• The maximum string length for a path name string, including the terminating \0 character, is

defined by XR_MAX_PATH_LENGTH.

6.2.1. xrStringToPath

The xrStringToPath function is defined as:

Chapter 6. Path Tree and Semantic Paths | 93

// Provided by XR_VERSION_1_0

XrResult xrStringToPath(

 XrInstance instance,

 const char* pathString,

 XrPath* path);

Parameter Descriptions

• instance is an instance previously created.

• pathString is the path name string to retrieve the associated XrPath for.

• path is the output parameter, which must point to an XrPath. Given a well-formed path name

string, this will be populated with an opaque value that is constant for that path string during

the lifetime of that instance.

xrStringToPath retrieves the XrPath value for a well-formed path string. If such a value had not yet

been assigned by the runtime to the provided path string in this XrInstance, one must be assigned at

this point. All calls to this function with the same XrInstance and path string must retrieve the same

XrPath value. Upon failure, xrStringToPath must return an appropriate XrResult, and may set the

output parameter to XR_NULL_PATH. See Path Atom Type for the conditions under which an error

may be returned when this function is given a valid XrInstance and a well-formed path string.

If the runtime’s resources are exhausted and it cannot create the path, a return value of

XR_ERROR_PATH_COUNT_EXCEEDED must be returned. If the application specifies a string that is not a well-

formed path string, XR_ERROR_PATH_FORMAT_INVALID must be returned. A return value of XR_SUCCESS from xrStringToPath may not necessarily imply that the

runtime has a component or other source of data that will be accessible through that

semantic path. It only means that the path string supplied was well-formed and that

the retrieved XrPath maps to the given path string within and during the lifetime of

the XrInstance given.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• pathString must be a null-terminated UTF-8 string

• path must be a pointer to an XrPath value

94 | Chapter 6. Path Tree and Semantic Paths

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_PATH_FORMAT_INVALID

• XR_ERROR_PATH_COUNT_EXCEEDED

6.2.2. xrPathToString

// Provided by XR_VERSION_1_0

XrResult xrPathToString(

 XrInstance instance,

 XrPath path,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

Chapter 6. Path Tree and Semantic Paths | 95

Parameter Descriptions

• instance is an instance previously created.

• path is the valid XrPath value to retrieve the path string for.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of characters written to buffer (including the

terminating '\0'), or a pointer to the required capacity in the case that bufferCapacityInput is

insufficient.

• buffer is a pointer to an application-allocated buffer that will be filled with the semantic path

string. It can be NULL if bufferCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

xrPathToString retrieves the path name string associated with an XrPath, in the context of a given

XrInstance, in the form of a NULL terminated string placed into a caller-allocated buffer. Since the

mapping between a well-formed path name string and an XrPath is bijective, there will always be

exactly one string for each valid XrPath value. This can be useful if the calling application receives an

XrPath value that they had not previously retrieved via xrStringToPath. During the lifetime of the given

XrInstance, the path name string retrieved by this function for a given valid XrPath will not change. For

invalid paths, including XR_NULL_PATH, XR_ERROR_PATH_INVALID must be returned.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

96 | Chapter 6. Path Tree and Semantic Paths

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_PATH_INVALID

6.3. Reserved Paths

In order for some uses of semantic paths to work consistently across runtimes, it is necessary to

standardize several paths and require each runtime to use the same paths or patterns of paths for

certain classes of usage. Those paths are as follows.

6.3.1. /user paths

Some paths are used to refer to entities that are filling semantic roles in the system. These paths are all

under the /user subtree.

The reserved user paths are:

Reserved Semantic Paths

• /user/hand/left represents the user’s left hand. It might be tracked using a controller or other

device in the user’s left hand, or tracked without the user holding anything, e.g. using

computer vision.

• /user/hand/right represents the user’s right hand in analog to the left hand.

• /user/head represents inputs on the user’s head, often from a device such as a head-mounted

display. To reason about the user’s head, see the XR_REFERENCE_SPACE_TYPE_VIEW reference

space.

• /user/gamepad is a two-handed gamepad device held by the user.

• /user/treadmill is a treadmill or other locomotion-targeted input device.

Runtimes are not required to provide interaction at all of these paths. For instance, in a system with no

Chapter 6. Path Tree and Semantic Paths | 97

hand tracking, only /user/head would be active for interaction. In a system with only one controller, the

runtime may provide access to that controller via either /user/hand/left or /user/hand/right as it deems

appropriate.

The runtime may change the devices referred to by /user/hand/left and /user/hand/right at any time.

If more than two hand-held controllers or devices are active, the runtime must determine which two

are accessible as /user/hand/left and /user/hand/right.

6.3.2. Input subpaths

Devices on the source side of the input system need to define paths for each component that can be

bound to an action. This section describes the naming conventions for those input components.

Runtimes must ignore input source paths that use identifiers and component names that do not

appear in this specification or otherwise do not follow the pattern specified below.

Each input source path must match the following pattern:

• …/input/<identifier>[_<location>][/<component>]

Identifiers are often the label on the component or related to the type and location of the component.

When specifying a suggested binding there are several cases where the component part of the path can

be determined automatically. See Suggested Bindings for more details.

See Interaction Profiles for examples of input subpaths.

Standard identifiers

• trackpad - A 2D input source that usually includes click and touch component.

• thumbstick - A small 2D joystick that is meant to be used with the user’s thumb. These sometimes

include click and/or touch components.

• joystick - A 2D joystick that is meant to be used with the user’s entire hand, such as a flight stick.

These generally do not have click component, but might have touch components.

• trigger - A 1D analog input component that returns to a rest state when the user stops interacting

with it. These sometime include touch and/or click components.

• throttle - A 1D analog input component that remains in position when the user stops interacting

with it.

• trackball - A 2D relative input source. These sometimes include click components.

• pedal - A 1D analog input component that is similar to a trigger but meant to be operated by a foot

• system - A button with the specialised meaning that it enables the user to access system-level

functions and UI. Input data from system buttons is generally used internally by runtimes and may

not be available to applications.

• dpad_up, dpad_down, dpad_left, and dpad_right - A set of buttons arranged in a plus shape.

98 | Chapter 6. Path Tree and Semantic Paths

• diamond_up, diamond_down, diamond_left, and diamond_right - Gamepads often have a set of

four buttons arranged in a diamond shape. The labels on those buttons vary from gamepad to

gamepad, but their arrangement is consistent. These names are used for the A/B/X/Y buttons on a

Xbox controller, and the square/cross/circle/triangle button on a PlayStation controller.

• a, b, x, y, start, home, end, select - Standalone buttons are named for their physical labels. These are

the standard identifiers for such buttons. Extensions may add new identifiers as detailed in the

next section. Groups of four buttons in a diamond shape should use the diamond-prefix names

above instead of using the labels on the buttons themselves.

• volume_up, volume_down, mute_mic, play_pause, menu, view, back - Some other standard controls

are often identified by icons. These are their standard names.

• thumbrest - Some controllers have a place for the user to rest their thumb.

• shoulder - A button that is usually pressed with the index finger and is often positioned above a

trigger.

• squeeze - An input source that indicates that the user is squeezing their fist closed. This could be a

simple button or act more like a trigger. Sources with this identifier should either follow button or

trigger conventions for their components.

• wheel - A steering wheel.

• thumb_resting_surfaces - Any surfaces that a thumb may naturally rest on. This may include, but is

not limited to, face buttons, thumbstick, and thumbrest (Provided by XR_VERSION_1_1)

• stylus - Tip that can be used for writing or drawing. May be able to detect various pressure levels

(Provided by XR_VERSION_1_1)

• trigger_curl - This sensor detects how pointed or curled the user’s finger is on the trigger: 0 = fully

pointed, 1 = finger flat on surface (Provided by XR_VERSION_1_1)

• trigger_slide - This sensor represents how far the user is sliding their index finger along the surface

of the trigger: 0 = finger flat on the surface, 1 = finger fully drawn back (Provided by

XR_VERSION_1_1)

Standard pose identifiers

Input sources whose orientation and/or position are tracked also expose pose identifiers.

Standard pose identifiers for tracked hands or motion controllers as represented by /user/hand/left and

/user/hand/right are:

Chapter 6. Path Tree and Semantic Paths | 99

Figure 2. Example grip and aim poses for generic motion controllers

• grip - A pose that allows applications to reliably render a virtual object held in the user’s hand,

whether it is tracked directly or by a motion controller. The grip pose is defined as follows:

◦ The grip position:

▪ For tracked hands: The user’s palm centroid when closing the fist, at the surface of the palm.

▪ For handheld motion controllers: A fixed position within the controller that generally lines

up with the palm centroid when held by a hand in a neutral position. This position should

be adjusted left or right to center the position within the controller’s grip.

◦ The grip orientation’s +X axis: When you completely open your hand to form a flat 5-finger

pose, the ray that is normal to the user’s palm (away from the palm in the left hand, into the

palm in the right hand).

◦ The grip orientation’s -Z axis: When you close your hand partially (as if holding the controller),

the ray that goes through the center of the tube formed by your non-thumb fingers, in the

direction of little finger to thumb.

◦ The grip orientation’s +Y axis: orthogonal to +Z and +X using the right-hand rule.

• aim - A pose that allows applications to point in the world using the input source, according to the

platform’s conventions for aiming with that kind of source. The aim pose is defined as follows:

◦ For tracked hands: The ray that follows platform conventions for how the user aims at objects

in the world with their entire hand, with +Y up, +X to the right, and -Z forward. The ray chosen

will be runtime-dependent, often a ray emerging from the hand at a target pointed by moving

the forearm.

100 | Chapter 6. Path Tree and Semantic Paths

◦ For handheld motion controllers: The ray that follows platform conventions for how the user

targets objects in the world with the motion controller, with +Y up, +X to the right, and -Z

forward. This is usually for applications that are rendering a model matching the physical

controller, as an application rendering a virtual object in the user’s hand likely prefers to point

based on the geometry of that virtual object. The ray chosen will be runtime-dependent,

although this will often emerge from the frontmost tip of a motion controller.

• grip_surface - (Provided by XR_VERSION_1_1) A pose that allows applications to reliably anchor visual

content relative to the user’s physical hand, whether the user’s hand is tracked directly or its

position and orientation is inferred by a physical controller. The grip_surface pose is defined as

follows:

◦ The grip_surface position: The user’s physical palm centroid, at the surface of the palm. For the

avoidance of doubt, the palm does not include fingers.

◦ The grip_surface orientation’s +X axis: When a user is holding the controller and straightens

their index fingers pointing forward, the ray that is normal (perpendicular) to the user’s palm

(away from the palm in the left hand, into the palm in the right hand).

◦ The grip_surface orientation’s -Z axis: When a user is holding the controller and straightens

their index finger, the ray that is parallel to their finger’s pointing direction.

◦ The grip_surface orientation’s +Y axis: orthogonal to +Z and +X using the right-hand rule.

Figure 3. Example grip_surface pose for (from left to right) a generic motion controller, tracked hand, and a

digital hand avatar. The X axis is depicted in red. The Y axis is depicted in green. The Z axis is depicted in blue.

Standard locations

When a single device contains multiple input sources that use the same identifier, a location suffix is

added to create a unique identifier for that input source.

Standard locations are:

Chapter 6. Path Tree and Semantic Paths | 101

• left

• right

• left_upper

• left_lower

• right_upper

• right_lower

• upper

• lower

Standard components

Components are named for the specific boolean, scalar, or other value of the input source. Standard

components are:

• click - A physical switch has been pressed by the user. This is valid for all buttons, and is common

for trackpads, thumbsticks, triggers, and dpads. "click" components are always boolean.

• touch - The user has touched the input source. This is valid for all trackpads, and may be present

for any other kind of input source if the device includes the necessary sensor. "touch" components

are always boolean.

• force - A 1D scalar value that represents the user applying force to the input. It varies from 0 to 1,

with 0 being the rest state. This is present for any input source with a force sensor.

• value - A 1D scalar value that varies from 0 to 1, with 0 being the rest state. This is present for

triggers, throttles, and pedals. It may also be present for squeeze or other components.

• x, y - scalar components of 2D values. These vary in value from -1 to 1. These represent the 2D

position of the input source with 0 being the rest state on each axis. -1 means all the way left for x

axis or all the way down for y axis. +1 means all the way right for x axis or all the way up for y axis.

x and y components are present for trackpads, thumbsticks, and joysticks.

• twist - Some sources, such as flight sticks, have a sensor that allows the user to twist the input left

or right. For this component -1 means all the way left and 1 means all the way right.

• pose - The orientation and/or position of this input source. This component may exist for dedicated

pose identifiers like grip and aim, or may be defined on other identifiers such as trackpad to let

applications reason about the surface of that part.

• proximity - The user is in physical proximity of input source. This may be present for any kind of

input source representing a physical component, such as a button, if the device includes the

necessary sensor. The state of a "proximity" component must be XR_TRUE if the same input source is

returning XR_TRUE for either a "touch" or any other component that implies physical contact. The

runtime may return XR_TRUE for "proximity" when "touch" returns XR_FALSE which would indicate

that the user is hovering just above, but not touching the input source in question. "proximity"

components are always boolean. (Provided by XR_VERSION_1_1)

102 | Chapter 6. Path Tree and Semantic Paths

Output paths

Many devices also have subpaths for output features such as haptics. The runtime must ignore output

component paths that do not follow the pattern:

• …/output/<output_identifier>[_<location>]

Standard output identifiers are:

• haptic - A haptic element like an LRA (Linear Resonant Actuator) or vibration motor

• haptic_trigger - A haptic element located in the trigger (Provided by XR_VERSION_1_1)

• haptic_thumb - A haptic element located in the resting place of the thumb, like under the touchpad

(Provided by XR_VERSION_1_1)

Devices which contain multiple haptic elements with the same output identifier must use a location

suffix as specified above.

6.3.3. Adding input sources via extensions

Extensions may enable input source path identifiers, output source path identifiers, and component

names that are not included in the core specification, subject to the following conditions:

• EXT extensions must include the _ext suffix on any identifier or component name. E.g.

…/input/newidentifier_ext/newcomponent_ext

• Vendor extensions must include the vendor’s tag as a suffix on any identifier or component name.

E.g. …/input/newidentifier_vendor/newcomponent_vendor (where "vendor" is replaced with the

vendor’s actual extension tag.)

• Khronos (KHR) extensions may add undecorated identifier or component names.

These rules are in place to prevent extensions from adding first class undecorated names that become

defacto standards. Runtimes must ignore input source paths that do not follow the restrictions above.

Extensions may also add new location suffixes, and may do so by adding a new identifier and location

combination using the appropriate suffix. E.g. …/input/newidentifier_newlocation_ext

6.4. Interaction Profile Paths

An interaction profile path identifies a collection of buttons and other input sources in a physical

arrangement to allow applications and runtimes to coordinate action bindings.

Interaction profile paths are of the form:

• /interaction_profiles/<vendor_name>/<type_name>

Chapter 6. Path Tree and Semantic Paths | 103

6.4.1. Khronos Simple Controller Profile

Path: /interaction_profiles/khr/simple_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile provides basic pose, button, and haptic support for applications with simple

input needs. There is no hardware associated with the profile, and runtimes which support this profile

should map the input paths provided to whatever the appropriate paths are on the actual hardware.

Supported component paths:

• …/input/select/click

• …/input/menu/click

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.2. Bytedance PICO Neo 3 controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/bytedance/pico_neo3_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

104 | Chapter 6. Path Tree and Semantic Paths

This interaction profile represents the input sources and haptics on the Bytedance PICO Neo3

Controller.

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

• …/input/menu/click

• …/input/system/click (may not be available for application use)

• …/input/trigger/click

• …/input/trigger/value

• …/input/trigger/touch

• …/input/thumbstick/y

• …/input/thumbstick/x

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/squeeze/click

• …/input/squeeze/value

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose

Chapter 6. Path Tree and Semantic Paths | 105

 Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.3. Bytedance PICO 4 controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/bytedance/pico4_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Bytedance PICO 4 Controller.

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

• …/input/system/click (may not be available for application use)

• …/input/trigger/click

• …/input/trigger/value

• …/input/trigger/touch

• …/input/thumbstick/y

• …/input/thumbstick/x

• …/input/thumbstick/click

• …/input/thumbstick/touch

106 | Chapter 6. Path Tree and Semantic Paths

• …/input/squeeze/click

• …/input/squeeze/value

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.4. Bytedance PICO G3 controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/bytedance/pico_g3_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Bytedance PICO G3 Controller.

• …/input/trigger/click

• …/input/trigger/value

• …/input/menu/click

• …/input/grip/pose

• …/input/aim/pose

• …/input/thumbstick

• …/input/thumbstick/click

Chapter 6. Path Tree and Semantic Paths | 107

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When designing suggested bindings for this interaction profile, you may suggest

bindings for both /user/hand/left and /user/hand/right. However, only one of them will

be active at a given time, so do not design interactions that require simultaneous use

of both hands.

6.4.5. Google Daydream Controller Profile

Path: /interaction_profiles/google/daydream_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources on the Google Daydream Controller.

Supported component paths:

• …/input/select/click

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

108 | Chapter 6. Path Tree and Semantic Paths

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.6. HP Mixed Reality Motion Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/hp/mixed_reality_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the HP Mixed Reality Motion

Controller.

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/y/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/b/click

• …/input/menu/click

• …/input/squeeze/value

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/grip/pose

• …/input/aim/pose

Chapter 6. Path Tree and Semantic Paths | 109

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.7. HTC Vive Controller Profile

Path: /interaction_profiles/htc/vive_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Vive Controller.

Supported component paths:

• …/input/system/click (may not be available for application use)

• …/input/squeeze/click

• …/input/menu/click

• …/input/trigger/click

• …/input/trigger/value

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic

110 | Chapter 6. Path Tree and Semantic Paths

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.8. HTC Vive Cosmos Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/htc/vive_cosmos_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Vive Cosmos Controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/y/click

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/b/click

◦ …/input/system/click (may not be available for application use)

• …/input/shoulder/click

• …/input/squeeze/click

• …/input/trigger/click

• …/input/trigger/value

• …/input/thumbstick/x

Chapter 6. Path Tree and Semantic Paths | 111

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.9. HTC Vive Focus 3 Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/htc/vive_focus3_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Vive Focus 3 Controller.

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/y/click

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/b/click

◦ …/input/system/click (may not be available for application use)

112 | Chapter 6. Path Tree and Semantic Paths

• …/input/squeeze/click

• …/input/squeeze/touch

• …/input/squeeze/value

• …/input/trigger/click

• …/input/trigger/touch

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.10. HTC Vive Pro Profile

Path: /interaction_profiles/htc/vive_pro

Valid for user paths:

• /user/head

This interaction profile represents the input sources on the Vive Pro headset.

Supported component paths:

• …/input/system/click (may not be available for application use)

Chapter 6. Path Tree and Semantic Paths | 113

• …/input/volume_up/click

• …/input/volume_down/click

• …/input/mute_mic/click

6.4.11. Magic Leap 2 Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/ml/ml2_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Magic Leap 2 controller.

Supported component paths:

• …/input/menu/click

• …/input/home/click (may not be available for application use)

• …/input/trigger/click

• …/input/trigger/value

• …/input/trackpad/y

• …/input/trackpad/x

• …/input/trackpad/click

• …/input/trackpad/force

• …/input/trackpad/touch

• …/input/aim/pose

• …/input/grip/pose

• …/input/shoulder/click

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose

114 | Chapter 6. Path Tree and Semantic Paths

 Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.12. Microsoft Mixed Reality Motion Controller Profile

Path: /interaction_profiles/microsoft/motion_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Microsoft Mixed Reality

Controller.

Supported component paths:

• …/input/menu/click

• …/input/squeeze/click

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose

Chapter 6. Path Tree and Semantic Paths | 115

 Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.13. Microsoft Xbox Controller Profile

Path: /interaction_profiles/microsoft/xbox_controller

Valid for user paths:

• /user/gamepad

This interaction profile represents the input sources and haptics on the Microsoft Xbox Controller.

Supported component paths:

• …/input/menu/click

• …/input/view/click

• …/input/a/click

• …/input/b/click

• …/input/x/click

• …/input/y/click

• …/input/dpad_down/click

• …/input/dpad_right/click

• …/input/dpad_up/click

• …/input/dpad_left/click

• …/input/shoulder_left/click

• …/input/shoulder_right/click

• …/input/thumbstick_left/click

• …/input/thumbstick_right/click

• …/input/trigger_left/value

• …/input/trigger_right/value

• …/input/thumbstick_left/x

• …/input/thumbstick_left/y

• …/input/thumbstick_right/x

• …/input/thumbstick_right/y

116 | Chapter 6. Path Tree and Semantic Paths

• …/output/haptic_left

• …/output/haptic_right

• …/output/haptic_left_trigger

• …/output/haptic_right_trigger

6.4.14. Oculus Go Controller Profile

Path: /interaction_profiles/oculus/go_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources on the Oculus Go controller.

Supported component paths:

• …/input/system/click (may not be available for application use)

• …/input/trigger/click

• …/input/back/click

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

Chapter 6. Path Tree and Semantic Paths | 117

6.4.15. Oculus Touch Controller Profile

Path: /interaction_profiles/oculus/touch_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity (Provided by XR_VERSION_1_1)

• …/input/thumb_resting_surfaces/proximity (Provided by XR_VERSION_1_1)

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

• …/input/aim/pose

118 | Chapter 6. Path Tree and Semantic Paths

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.16. Meta Touch Pro Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_pro_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Meta Touch Pro controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

Chapter 6. Path Tree and Semantic Paths | 119

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity

• …/input/trigger_curl/value

• …/input/trigger_slide/value

• …/input/thumb_resting_surfaces/proximity

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/thumbrest/force

• …/input/stylus/force

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic

• …/output/haptic_trigger

• …/output/haptic_thumb Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.17. Meta Touch Plus Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_plus_controller

120 | Chapter 6. Path Tree and Semantic Paths

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Meta Touch Plus controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/force

• …/input/trigger/proximity

• …/input/trigger_curl/value

• …/input/trigger_slide/value

• …/input/thumb_resting_surfaces/proximity

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

Chapter 6. Path Tree and Semantic Paths | 121

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.18. Meta Touch Controller (Rift CV1) Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_controller_rift_cv1

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller and is

a legacy profile added to specifically represent the controller shipped with the Rift CV1.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

122 | Chapter 6. Path Tree and Semantic Paths

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity

• …/input/thumb_resting_surfaces/proximity

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.19. Meta Touch Controller (Rift S / Quest 1) Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_controller_quest_1_rift_s

Valid for user paths:

• /user/hand/left

• /user/hand/right

Chapter 6. Path Tree and Semantic Paths | 123

This interaction profile represents the input sources and haptics on the Oculus Touch controller and is

a legacy profile added to specifically represent the controller shipped with the Rift S and Quest 1.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity

• …/input/thumb_resting_surfaces/proximity

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose

124 | Chapter 6. Path Tree and Semantic Paths

 Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.20. Meta Touch Controller (Quest 2) Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_controller_quest_2

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller and is

a legacy profile added to specifically represent the controller shipped with the Quest 2.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity

• …/input/thumb_resting_surfaces/proximity

Chapter 6. Path Tree and Semantic Paths | 125

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.21. Samsung Odyssey Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/samsung/odyssey_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Samsung Odyssey Controller. It

is exactly the same, with the exception of the name of the interaction profile, as the Microsoft Mixed

Reality Controller interaction profile. It enables the application to differentiate the newer form factor

of motion controller released with the Samsung Odyssey headset. It enables the application to

customize the appearance and experience of the controller differently from the original mixed reality

motion controller.

Supported component paths:

• …/input/menu/click

126 | Chapter 6. Path Tree and Semantic Paths

• …/input/squeeze/click

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

6.4.22. Valve Index Controller Profile

Path: /interaction_profiles/valve/index_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Valve Index controller.

Supported component paths:

• …/input/system/click (may not be available for application use)

• …/input/system/touch (may not be available for application use)

Chapter 6. Path Tree and Semantic Paths | 127

• …/input/a/click

• …/input/a/touch

• …/input/b/click

• …/input/b/touch

• …/input/squeeze/value

• …/input/squeeze/force

• …/input/trigger/click

• …/input/trigger/value

• …/input/trigger/touch

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/force

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose

128 | Chapter 6. Path Tree and Semantic Paths

Chapter 7. Spaces

Across both virtual reality and augmented reality, XR applications have a core need to map the location

of virtual objects to the corresponding real-world locations where they will be rendered. Spaces allow

applications to explicitly create and specify the frames of reference in which they choose to track the

real world, and then determine how those frames of reference move relative to one another over time.

XR_DEFINE_HANDLE(XrSpace)

Spaces are represented by XrSpace handles, which the application creates and then uses in API calls.

Whenever an application calls a function that returns coordinates, it provides an XrSpace to specify

the frame of reference in which those coordinates will be expressed. Similarly, when providing

coordinates to a function, the application specifies which XrSpace the runtime should use to interpret

those coordinates.

OpenXR defines a set of well-known reference spaces that applications use to bootstrap their spatial

reasoning. These reference spaces are: VIEW, LOCAL, LOCAL_FLOOR, and STAGE. Each reference space has a

well-defined meaning, which establishes where its origin is positioned and how its axes are oriented.

Runtimes whose tracking systems improve their understanding of the world over time may track

spaces independently. For example, even though a LOCAL space and a STAGE space each map their origin

to a static position in the world, a runtime with an inside-out tracking system may introduce slight

adjustments to the origin of each space on a continuous basis to keep each origin in place.

Beyond well-known reference spaces, runtimes expose other independently-tracked spaces, such as a

pose action space that tracks the pose of a motion controller over time.

When one or both spaces are tracking a dynamic object, passing in an updated time to xrLocateSpace

each frame will result in an updated relative pose. For example, the location of the left hand’s pose

action space in the STAGE reference space will change each frame as the user’s hand moves relative to

the stage’s predefined origin on the floor. In other XR APIs, it is common to report the "pose" of an

object relative to some presumed underlying global space. This API is careful to not explicitly define

such an underlying global space, because it does not apply to all systems. Some systems will support no

STAGE space, while others may support a STAGE space that switches between various physical stages with

dynamic availability. To satisfy this wide variability, "poses" are always described as the relationship

between two spaces.

Some devices improve their understanding of the world as the device is used. The location returned by

xrLocateSpace in later frames may change over time, even for spaces that track static objects, as either

the target space or base space adjusts its origin.

Composition layers submitted by the application include an XrSpace for the runtime to use to position

that layer over time. Composition layers whose XrSpace is relative to the VIEW reference space are

Chapter 7. Spaces | 129

implicitly "head-locked", even if they may not be "display-locked" for non-head-mounted form factors.

7.1. Reference Spaces

The XrReferenceSpaceType enumeration is defined as:

typedef enum XrReferenceSpaceType {

 XR_REFERENCE_SPACE_TYPE_VIEW = 1,

 XR_REFERENCE_SPACE_TYPE_LOCAL = 2,

 XR_REFERENCE_SPACE_TYPE_STAGE = 3,

 // Provided by XR_VERSION_1_1

 XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR = 1000426000,

 XR_REFERENCE_SPACE_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrReferenceSpaceType;

Brief introductions to core reference space types follow. Each has full requirements in a subsequent

section, linked from these descriptions.

130 | Chapter 7. Spaces

Enumerant Descriptions

• XR_REFERENCE_SPACE_TYPE_VIEW. The VIEW reference space tracks the view origin used to

generate view transforms for the primary viewer (or centroid of view origins if stereo), with

+Y up, +X to the right, and -Z forward. This space points in the forward direction for the

viewer without incorporating the user’s eye orientation, and is not gravity-aligned.

Runtimes must support VIEW reference space.

• XR_REFERENCE_SPACE_TYPE_LOCAL. The LOCAL reference space establishes a world-locked origin,

gravity-aligned to exclude pitch and roll, with +Y up, +X to the right, and -Z forward. This

space locks in both its initial position and orientation, which the runtime may define to be

either the initial position at application launch or some other calibrated zero position.

Runtimes must support LOCAL reference space.

• XR_REFERENCE_SPACE_TYPE_STAGE. The STAGE reference space is a runtime-defined flat,

rectangular space that is empty and can be walked around on. The origin is on the floor at

the center of the rectangle, with +Y up, and the X and Z axes aligned with the rectangle edges.

The runtime may not be able to locate spaces relative to the STAGE reference space if the user

has not yet defined one within the runtime-specific UI. Applications can use

xrGetReferenceSpaceBoundsRect to determine the extents of the STAGE reference space’s XZ

bounds rectangle, if defined.

Support for the STAGE reference space is optional.

• XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR (provided by XR_VERSION_1_1) Similar to LOCAL space, the

LOCAL_FLOOR reference space establishes a world-locked origin, gravity-aligned to exclude

pitch and roll, with +Y up, +X to the right, and -Z forward. However, the origin of this space is

defined to be on an estimate of the floor level.

Runtimes must support LOCAL_FLOOR reference space.

An XrSpace handle for a reference space is created using xrCreateReferenceSpace, by specifying the

chosen reference space type and a pose within the natural reference frame defined for that reference

space type.

Runtimes implement well-known reference spaces from XrReferenceSpaceType if they support

tracking of that kind. Available reference space types are indicated by xrEnumerateReferenceSpaces.

Note that other spaces can be created as well, such as pose action spaces created by

xrCreateActionSpace, which are not enumerated by that API.

7.1.1. View Reference Space

The XR_REFERENCE_SPACE_TYPE_VIEW or VIEW reference space tracks the view origin used to generate view

Chapter 7. Spaces | 131

transforms for the primary viewer (or centroid of view origins if stereo), with +Y up, +X to the right,

and -Z forward. This space points in the forward direction for the viewer without incorporating the

user’s eye orientation, and is not gravity-aligned.

The VIEW space is primarily useful when projecting from the user’s perspective into another space to

obtain a targeting ray, or when rendering small head-locked content such as a reticle. Content

rendered in the VIEW space will stay at a fixed point on head-mounted displays and may be

uncomfortable to view if too large. To obtain the ideal view and projection transforms to use each

frame for rendering world content, applications should call xrLocateViews instead of using this space.

7.1.2. Local Reference Space

The XR_REFERENCE_SPACE_TYPE_LOCAL or LOCAL reference space establishes a world-locked origin, gravity-

aligned to exclude pitch and roll, with +Y up, +X to the right, and -Z forward. This space locks in both its

initial position and orientation, which the runtime may define to be either the initial position at

application launch or some other calibrated zero position.

When a user needs to recenter the LOCAL space, a runtime may offer some system-level recentering

interaction that is transparent to the application, but which causes the current leveled head space to

become the new LOCAL space. When such a recentering occurs, the runtime must queue the

XrEventDataReferenceSpaceChangePending event, with the recentered LOCAL space origin only taking

effect for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal to the

XrEventDataReferenceSpaceChangePending::changeTime in that event.

When views, controllers or other spaces experience tracking loss relative to the LOCAL space, runtimes

should continue to provide inferred or last-known position and orientation values. These inferred

poses can, for example, be based on neck model updates, inertial dead reckoning, or a last-known

position, so long as it is still reasonable for the application to use that pose. While a runtime is

providing position data, it must continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT and

XR_VIEW_STATE_POSITION_VALID_BIT but it can clear XR_SPACE_LOCATION_POSITION_TRACKED_BIT and

XR_VIEW_STATE_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this way.

When tracking is recovered, runtimes should snap the pose of other spaces back into position relative

to the original origin of LOCAL space.

7.1.3. Stage Reference Space

The STAGE reference space is a runtime-defined flat, rectangular space that is empty and can be walked

around on. The origin is on the floor at the center of the rectangle, with +Y up, and the X and Z axes

aligned with the rectangle edges. The runtime may not be able to locate spaces relative to the STAGE

reference space if the user has not yet defined one within the runtime-specific UI. Applications can use

xrGetReferenceSpaceBoundsRect to determine the extents of the STAGE reference space’s XZ bounds

rectangle, if defined.

The STAGE space is useful when an application needs to render standing-scale content (no bounds) or

room-scale content (with bounds) that is relative to the physical floor.

132 | Chapter 7. Spaces

When the user redefines the origin or bounds of the current STAGE space, or the runtime otherwise

switches to a new STAGE space definition, the runtime must queue the

XrEventDataReferenceSpaceChangePending event, with the new STAGE space origin only taking effect

for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal to the

XrEventDataReferenceSpaceChangePending::changeTime in that event.

When views, controllers, or other spaces experience tracking loss relative to the STAGE space, runtimes

should continue to provide inferred or last-known position and orientation values. These inferred

poses can, for example, be based on neck model updates, inertial dead reckoning, or a last-known

position, so long as it is still reasonable for the application to use that pose. While a runtime is

providing position data, it must continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT and

XR_VIEW_STATE_POSITION_VALID_BIT but it can clear XR_SPACE_LOCATION_POSITION_TRACKED_BIT and

XR_VIEW_STATE_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this way.

When tracking is recovered, runtimes should snap the pose of other spaces back into position relative

to the original origin of the STAGE space.

7.1.4. Local Floor Reference Space

Local floor reference space, indicated by XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR, is closely related to the

LOCAL reference space. It always aligns with the LOCAL space, and matches it in X and Z position.

However, unlike the LOCAL space, the LOCAL_FLOOR space has its Y axis origin on the runtime’s best

estimate of the floor level under the origin of the LOCAL space.

The location of the origin of the LOCAL_FLOOR space must match the LOCAL space in the X and Z

coordinates but not in the Y coordinate.

The orientation of the LOCAL_FLOOR space must match the LOCAL space.

The runtime must establish the Y axis origin at its best estimate of the floor level under the origin of

the LOCAL space space, subject to requirements under the following conditions to match the floor level

of the STAGE space.

If all of the following conditions are true, the Y axis origin of the LOCAL_FLOOR space must match the Y

axis origin of the STAGE space:

• the STAGE space is supported

• the location of the LOCAL space relative to the STAGE space has valid position

(XR_SPACE_LOCATION_POSITION_VALID_BIT is set)

• bounds are available from xrGetReferenceSpaceBoundsRect for the STAGE space

• the position of the LOCAL space relative to the STAGE space is within the STAGE space XZ bounds

That is, if there is a stage with bounds, and if the local space and thus the local floor is logically within

the stage, the local floor and the stage share the same floor level.

When the origin of the LOCAL space is changed in orientation or XZ position, the origin of the

Chapter 7. Spaces | 133

LOCAL_FLOOR space must also change accordingly.

When a change in origin of the LOCAL_FLOOR space occurs, the runtime must queue the

XrEventDataReferenceSpaceChangePending event, with the changed LOCAL_FLOOR space origin only

taking effect for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal

to the XrEventDataReferenceSpaceChangePending::changeTime in that event.

The xrGetReferenceSpaceBoundsRect function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetReferenceSpaceBoundsRect(

 XrSession session,

 XrReferenceSpaceType referenceSpaceType,

 XrExtent2Df* bounds);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• referenceSpaceType is the reference space type whose bounds should be retrieved.

• bounds is the returned space extents.

XR systems may have limited real world spatial ranges in which users can freely move around while

remaining tracked. Applications sometimes wish to query these boundaries and alter application

behavior or content placement to ensure the user can complete the experience while remaining within

the boundary. Applications can query this information using xrGetReferenceSpaceBoundsRect.

When called, xrGetReferenceSpaceBoundsRect should return the extents of a rectangle that is clear of

obstacles down to the floor, allowing where the user can freely move while remaining tracked, if

available for that reference space. The returned extent represents the dimensions of an axis-aligned

bounding box where the XrExtent2Df::width and XrExtent2Df::height fields correspond to the X and Z

axes of the provided space, with the extents centered at the origin of the space. Not all systems or

spaces support boundaries. If a runtime is unable to provide bounds for a given space,

XR_SPACE_BOUNDS_UNAVAILABLE must be returned and all fields of bounds must be set to 0.

The returned extents are expressed relative to the natural origin of the provided

XrReferenceSpaceType and must not incorporate any origin offsets specified by the application during

calls to xrCreateReferenceSpace.

The runtime must return XR_ERROR_REFERENCE_SPACE_UNSUPPORTED if the XrReferenceSpaceType passed in

referenceSpaceType is not supported by this session.

When a runtime will begin operating with updated space bounds, the runtime must queue a

134 | Chapter 7. Spaces

corresponding XrEventDataReferenceSpaceChangePending event.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• referenceSpaceType must be a valid XrReferenceSpaceType value

• bounds must be a pointer to an XrExtent2Df structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SPACE_BOUNDS_UNAVAILABLE

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_REFERENCE_SPACE_UNSUPPORTED

The XrEventDataReferenceSpaceChangePending event structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrEventDataReferenceSpaceChangePending {

 XrStructureType type;

 const void* next;

 XrSession session;

 XrReferenceSpaceType referenceSpaceType;

 XrTime changeTime;

 XrBool32 poseValid;

 XrPosef poseInPreviousSpace;

} XrEventDataReferenceSpaceChangePending;

Chapter 7. Spaces | 135

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• session is the XrSession for which the reference space is changing.

• referenceSpaceType is the XrReferenceSpaceType that is changing.

• changeTime is the target XrTime after which xrLocateSpace or xrLocateViews will return values

that respect this change.

• poseValid is true if the runtime can determine the poseInPreviousSpace of the new space in

the previous space before the change.

• poseInPreviousSpace is an XrPosef defining the position and orientation of the new reference

space’s natural origin within the natural reference frame of its previous space.

The XrEventDataReferenceSpaceChangePending event is sent to the application to notify it that the

origin (and perhaps the bounds) of a reference space is changing. This may occur due to the user

recentering the space explicitly, or the runtime otherwise switching to a different space definition.

The reference space change must only take effect for xrLocateSpace or xrLocateViews calls whose

XrTime parameter is greater than or equal to the changeTime provided in that event. Runtimes should

provide a changeTime to applications that allows for a deep render pipeline to present frames that are

already in flight using the previous definition of the space. Runtimes should choose a changeTime that is

midway between the XrFrameState::predictedDisplayTime of future frames to avoid threshold issues

with applications that calculate future frame times using XrFrameState::predictedDisplayPeriod.

The poseInPreviousSpace provided here must only describe the change in the natural origin of the

reference space and must not incorporate any origin offsets specified by the application during calls to

xrCreateReferenceSpace. If the runtime does not know the location of the space’s new origin relative to

its previous origin, poseValid must be false, and the position and orientation of poseInPreviousSpace are

undefined. .Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_REFERENCE_SPACE_CHANGE_PENDING

• next must be NULL or a valid pointer to the next structure in a structure chain

7.2. Action Spaces

An XrSpace handle for a pose action is created using xrCreateActionSpace, by specifying the chosen

pose action and a pose within the action’s natural reference frame.

Runtimes support suggested pose action bindings to well-known user paths with …/pose subpaths if

136 | Chapter 7. Spaces

#valid-usage-for-structure-pointer-chains

they support tracking for that particular identifier.

Some example well-known pose action paths:

• /user/hand/left/input/grip

• /user/hand/left/input/aim

• /user/hand/right/input/grip

• /user/hand/right/input/aim

For definitions of these well-known pose device paths, see the discussion of device input subpaths in

the Semantic Paths chapter.

7.2.1. Action Spaces Lifetime

XrSpace handles created for a pose action must be unlocatable unless the action set that contains the

corresponding pose action was set as active via the most recent xrSyncActions call. If the underlying

device that is active for the action changes, the device this space is tracking must only change to track

the new device when xrSyncActions is called.

If xrLocateSpace is called with an unlocatable action space, the implementation must return no

position or orientation and both XR_SPACE_LOCATION_POSITION_VALID_BIT and

XR_SPACE_LOCATION_ORIENTATION_VALID_BIT must be unset. If XrSpaceVelocity is also supplied,

XR_SPACE_VELOCITY_LINEAR_VALID_BIT and XR_SPACE_VELOCITY_ANGULAR_VALID_BIT must be unset. If

xrLocateViews is called with an unlocatable action space, the implementation must return no position

or orientation and both XR_VIEW_STATE_POSITION_VALID_BIT and XR_VIEW_STATE_ORIENTATION_VALID_BIT

must be unset.

7.3. Space Lifecycle

There are a small set of core APIs that allow applications to reason about reference spaces, action

spaces, and their relative locations.

7.3.1. xrEnumerateReferenceSpaces

The xrEnumerateReferenceSpaces function is defined as:

Chapter 7. Spaces | 137

// Provided by XR_VERSION_1_0

XrResult xrEnumerateReferenceSpaces(

 XrSession session,

 uint32_t spaceCapacityInput,

 uint32_t* spaceCountOutput,

 XrReferenceSpaceType* spaces);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• spaceCapacityInput is the capacity of the spaces array, or 0 to indicate a request to retrieve the

required capacity.

• spaceCountOutput is a pointer to the count of spaces written, or a pointer to the required

capacity in the case that spaceCapacityInput is insufficient.

• spaces is a pointer to an application-allocated array that will be filled with the enumerant of

each supported reference space. It can be NULL if spaceCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

spaces size.

Enumerates the set of reference space types that this runtime supports for a given session. Runtimes

must always return identical buffer contents from this enumeration for the lifetime of the session.

If a session enumerates support for a given reference space type, calls to xrCreateReferenceSpace must

succeed for that session, with any transient unavailability of poses expressed later during calls to

xrLocateSpace.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• spaceCountOutput must be a pointer to a uint32_t value

• If spaceCapacityInput is not 0, spaces must be a pointer to an array of spaceCapacityInput

XrReferenceSpaceType values

138 | Chapter 7. Spaces

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

7.3.2. xrCreateReferenceSpace

The xrCreateReferenceSpace function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateReferenceSpace(

 XrSession session,

 const XrReferenceSpaceCreateInfo* createInfo,

 XrSpace* space);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• createInfo is the XrReferenceSpaceCreateInfo used to specify the space.

• space is the returned space handle.

Creates an XrSpace handle based on a chosen reference space. Application can provide an XrPosef to

define the position and orientation of the new space’s origin within the natural reference frame of the

reference space.

Multiple XrSpace handles may exist simultaneously, up to some limit imposed by the runtime. The

XrSpace handle must be eventually freed via the xrDestroySpace function.

Chapter 7. Spaces | 139

The runtime must return XR_ERROR_REFERENCE_SPACE_UNSUPPORTED if the given reference space type is not

supported by this session.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrReferenceSpaceCreateInfo structure

• space must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_REFERENCE_SPACE_UNSUPPORTED

• XR_ERROR_POSE_INVALID

The XrReferenceSpaceCreateInfo structure is defined as:

typedef struct XrReferenceSpaceCreateInfo {

 XrStructureType type;

 const void* next;

 XrReferenceSpaceType referenceSpaceType;

 XrPosef poseInReferenceSpace;

} XrReferenceSpaceCreateInfo;

140 | Chapter 7. Spaces

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• referenceSpaceType is the chosen XrReferenceSpaceType.

• poseInReferenceSpace is an XrPosef defining the position and orientation of the new space’s

origin within the natural reference frame of the reference space.

Valid Usage (Implicit)

• type must be XR_TYPE_REFERENCE_SPACE_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• referenceSpaceType must be a valid XrReferenceSpaceType value

7.3.3. xrCreateActionSpace

The xrCreateActionSpace function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateActionSpace(

 XrSession session,

 const XrActionSpaceCreateInfo* createInfo,

 XrSpace* space);

Parameter Descriptions

• session is the XrSession to create the action space in.

• createInfo is the XrActionSpaceCreateInfo used to specify the space.

• space is the returned space handle.

Creates an XrSpace handle based on a chosen pose action. Application can provide an XrPosef to

define the position and orientation of the new space’s origin within the natural reference frame of the

action space.

Multiple XrSpace handles may exist simultaneously, up to some limit imposed by the runtime. The

Chapter 7. Spaces | 141

#valid-usage-for-structure-pointer-chains

XrSpace handle must be eventually freed via the xrDestroySpace function or by destroying the parent

XrAction handle.

The runtime must return XR_ERROR_ACTION_TYPE_MISMATCH if the action provided in

XrActionSpaceCreateInfo::action is not of type XR_ACTION_TYPE_POSE_INPUT.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrActionSpaceCreateInfo structure

• space must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

The XrActionSpaceCreateInfo structure is defined as:

142 | Chapter 7. Spaces

typedef struct XrActionSpaceCreateInfo {

 XrStructureType type;

 const void* next;

 XrAction action;

 XrPath subactionPath;

 XrPosef poseInActionSpace;

} XrActionSpaceCreateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• action is a handle to a pose XrAction previously created with xrCreateAction.

• subactionPath is XR_NULL_PATH or an XrPath that was specified when the action was created.

If subactionPath is a valid path not specified when the action was created the runtime must

return XR_ERROR_PATH_UNSUPPORTED. If this parameter is set, the runtime must create a space

that is relative to only that subaction’s pose binding.

• poseInActionSpace is an XrPosef defining the position and orientation of the new space’s

origin within the natural reference frame of the pose action.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_SPACE_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• action must be a valid XrAction handle

7.3.4. xrDestroySpace

The xrDestroySpace function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroySpace(

 XrSpace space);

Chapter 7. Spaces | 143

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• space is a handle to an XrSpace previously created by a function such as

xrCreateReferenceSpace.

XrSpace handles are destroyed using xrDestroySpace. The runtime may still use this space if there are

active dependencies (e.g, compositions in progress).

Valid Usage (Implicit)

• space must be a valid XrSpace handle

Thread Safety

• Access to space, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

7.4. Locating Spaces

Applications use the xrLocateSpace function to find the pose of an XrSpace’s origin within a base

XrSpace at a given historical or predicted time. If an application wants to know the velocity of the

space’s origin, it can chain an XrSpaceVelocity structure to the next pointer of the XrSpaceLocation

structure when calling the xrLocateSpace function. Applications should inspect the output

XrSpaceLocationFlagBits and XrSpaceVelocityFlagBits to determine the validity and tracking status of

the components of the location.

7.4.1. xrLocateSpace

xrLocateSpace provides the physical location of a space in a base space at a specified time, if currently

known by the runtime.

144 | Chapter 7. Spaces

// Provided by XR_VERSION_1_0

XrResult xrLocateSpace(

 XrSpace space,

 XrSpace baseSpace,

 XrTime time,

 XrSpaceLocation* location);

Parameter Descriptions

• space identifies the target space to locate.

• baseSpace identifies the underlying space in which to locate space.

• time is the time for which the location should be provided.

• location provides the location of space in baseSpace.

For a time in the past, the runtime should locate the spaces based on the runtime’s most accurate

current understanding of how the world was at that historical time.

For a time in the future, the runtime should locate the spaces based on the runtime’s most up-to-date

prediction of how the world will be at that future time.

The minimum valid range of values for time are described in Prediction Time Limits. For values of time

outside this range, xrLocateSpace may return a location with no position and

XR_SPACE_LOCATION_POSITION_VALID_BIT unset.

Some devices improve their understanding of the world as the device is used. The location returned by

xrLocateSpace for a given space, baseSpace and time may change over time, even for spaces that track

static objects, as one or both spaces adjust their origins.

During tracking loss of space relative to baseSpace, runtimes should continue to provide inferred or

last-known XrPosef::position and XrPosef::orientation values. These inferred poses can, for example,

be based on neck model updates, inertial dead reckoning, or a last-known position, so long as it is still

reasonable for the application to use that pose. While a runtime is providing position data, it must

continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT but it can clear

XR_SPACE_LOCATION_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this

way.

If the runtime has not yet observed even a last-known pose for how to locate space in baseSpace (e.g.

one space is an action space bound to a motion controller that has not yet been detected, or the two

spaces are in disconnected fragments of the runtime’s tracked volume), the runtime should return a

location with no position and XR_SPACE_LOCATION_POSITION_VALID_BIT unset.

The runtime must return a location with both XR_SPACE_LOCATION_POSITION_VALID_BIT and

XR_SPACE_LOCATION_POSITION_TRACKED_BIT set when locating space and baseSpace if both spaces were

Chapter 7. Spaces | 145

created relative to the same entity (e.g. two action spaces for the same action), even if the entity is

currently untracked. The location in this case is the difference in the two spaces' application-specified

transforms relative to that common entity.

During tracking loss, the runtime should return a location with XR_SPACE_LOCATION_POSITION_VALID_BIT

and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT set and XR_SPACE_LOCATION_POSITION_TRACKED_BIT and

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT unset for spaces tracking two static entities in the world

when their relative pose is known to the runtime. This enables applications to continue to make use of

the runtime’s latest knowledge of the world.

If an XrSpaceVelocity structure is chained to the XrSpaceLocation::next pointer, and the velocity is

observed or can be calculated by the runtime, the runtime must fill in the linear velocity of the origin

of space within the reference frame of baseSpace and set the XR_SPACE_VELOCITY_LINEAR_VALID_BIT.

Similarly, if an XrSpaceVelocity structure is chained to the XrSpaceLocation::next pointer, and the

angular velocity is observed or can be calculated by the runtime, the runtime must fill in the angular

velocity of the origin of space within the reference frame of baseSpace and set the

XR_SPACE_VELOCITY_ANGULAR_VALID_BIT.

The following example code shows how an application can get both the location and velocity of a space

within a base space using the xrLocateSpace function by chaining an XrSpaceVelocity to the next

pointer of XrSpaceLocation and calling xrLocateSpace.

XrSpace space; // previously initialized

XrSpace baseSpace; // previously initialized

XrTime time; // previously initialized

XrSpaceVelocity velocity {XR_TYPE_SPACE_VELOCITY};

XrSpaceLocation location {XR_TYPE_SPACE_LOCATION, &velocity};

xrLocateSpace(space, baseSpace, time, &location);

Valid Usage (Implicit)

• space must be a valid XrSpace handle

• baseSpace must be a valid XrSpace handle

• location must be a pointer to an XrSpaceLocation structure

• Both of baseSpace and space must have been created, allocated, or retrieved from the same

XrSession

146 | Chapter 7. Spaces

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

The XrSpaceLocation structure is defined as:

typedef struct XrSpaceLocation {

 XrStructureType type;

 void* next;

 XrSpaceLocationFlags locationFlags;

 XrPosef pose;

} XrSpaceLocation;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain, such as XrSpaceVelocity.

• locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits, to indicate

which members contain valid data. If none of the bits are set, no other fields in this structure

should be considered to be valid or meaningful.

• pose is an XrPosef defining the position and orientation of the origin of xrLocateSpace::space

within the reference frame of xrLocateSpace::baseSpace.

Chapter 7. Spaces | 147

Valid Usage (Implicit)

• type must be XR_TYPE_SPACE_LOCATION

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSpaceVelocity

• locationFlags must be 0 or a valid combination of XrSpaceLocationFlagBits values

The XrSpaceLocation::locationFlags member is of the following type, and contains a bitwise-OR of zero

or more of the bits defined in XrSpaceLocationFlagBits.

typedef XrFlags64 XrSpaceLocationFlags;

Valid bits for XrSpaceLocationFlags are defined by XrSpaceLocationFlagBits, which is specified as:

// Flag bits for XrSpaceLocationFlags

static const XrSpaceLocationFlags XR_SPACE_LOCATION_ORIENTATION_VALID_BIT = 0x00000001;

static const XrSpaceLocationFlags XR_SPACE_LOCATION_POSITION_VALID_BIT = 0x00000002;

static const XrSpaceLocationFlags XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT = 0x00000004;

static const XrSpaceLocationFlags XR_SPACE_LOCATION_POSITION_TRACKED_BIT = 0x00000008;

The flag bits have the following meanings:

148 | Chapter 7. Spaces

#valid-usage-for-structure-pointer-chains

Flag Descriptions

• XR_SPACE_LOCATION_ORIENTATION_VALID_BIT indicates that the pose field’s orientation field

contains valid data. For a space location tracking a device with its own inertial tracking,

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT should remain set when this bit is set.

Applications must not read the pose field’s orientation if this flag is unset.

• XR_SPACE_LOCATION_POSITION_VALID_BIT indicates that the pose field’s position field contains

valid data. When a space location loses tracking, runtimes should continue to provide valid

but untracked position values that are inferred or last-known, so long as it’s still meaningful

for the application to use that position, clearing XR_SPACE_LOCATION_POSITION_TRACKED_BIT until

positional tracking is recovered. Applications must not read the pose field’s position if this

flag is unset.

• XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT indicates that the pose field’s orientation field

represents an actively tracked orientation. For a space location tracking a device with its own

inertial tracking, this bit should remain set when XR_SPACE_LOCATION_ORIENTATION_VALID_BIT is

set. For a space location tracking an object whose orientation is no longer known during

tracking loss (e.g. an observed QR code), runtimes should continue to provide valid but

untracked orientation values, so long as it’s still meaningful for the application to use that

orientation.

• XR_SPACE_LOCATION_POSITION_TRACKED_BIT indicates that the pose field’s position field

represents an actively tracked position. When a space location loses tracking, runtimes

should continue to provide valid but untracked position values that are inferred or last-

known, e.g. based on neck model updates, inertial dead reckoning, or a last-known position,

so long as it’s still meaningful for the application to use that position.

The XrSpaceVelocity structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrSpaceVelocity {

 XrStructureType type;

 void* next;

 XrSpaceVelocityFlags velocityFlags;

 XrVector3f linearVelocity;

 XrVector3f angularVelocity;

} XrSpaceVelocity;

Chapter 7. Spaces | 149

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• velocityFlags is a bitfield, with bit masks defined in XrSpaceVelocityFlagBits, to indicate

which members contain valid data. If none of the bits are set, no other fields in this structure

should be considered to be valid or meaningful.

• linearVelocity is the relative linear velocity of the origin of xrLocateSpace::space with

respect to and expressed in the reference frame of xrLocateSpace::baseSpace, in units of

meters per second.

• angularVelocity is the relative angular velocity of xrLocateSpace::space with respect to

xrLocateSpace::baseSpace. The vector’s direction is expressed in the reference frame of

xrLocateSpace::baseSpace and is parallel to the rotational axis of xrLocateSpace::space. The

vector’s magnitude is the relative angular speed of xrLocateSpace::space in radians per

second. The vector follows the right-hand rule for torque/rotation.

Valid Usage (Implicit)

• type must be XR_TYPE_SPACE_VELOCITY

• next must be NULL or a valid pointer to the next structure in a structure chain

• velocityFlags must be 0 or a valid combination of XrSpaceVelocityFlagBits values

The XrSpaceVelocity::velocityFlags member is of the following type, and contains a bitwise-OR of zero

or more of the bits defined in XrSpaceVelocityFlagBits.

typedef XrFlags64 XrSpaceVelocityFlags;

Valid bits for XrSpaceVelocityFlags are defined by XrSpaceVelocityFlagBits, which is specified as:

// Flag bits for XrSpaceVelocityFlags

static const XrSpaceVelocityFlags XR_SPACE_VELOCITY_LINEAR_VALID_BIT = 0x00000001;

static const XrSpaceVelocityFlags XR_SPACE_VELOCITY_ANGULAR_VALID_BIT = 0x00000002;

The flag bits have the following meanings:

150 | Chapter 7. Spaces

#valid-usage-for-structure-pointer-chains

Flag Descriptions

• XR_SPACE_VELOCITY_LINEAR_VALID_BIT  — Indicates that the linearVelocity member contains

valid data. Applications must not read the linearVelocity field if this flag is unset.

• XR_SPACE_VELOCITY_ANGULAR_VALID_BIT  — Indicates that the angularVelocity member contains

valid data. Applications must not read the angularVelocity field if this flag is unset.

7.4.2. Locate spaces

Applications can use xrLocateSpaces function to locate an array of spaces.

The xrLocateSpaces function is defined as:

// Provided by XR_VERSION_1_1

XrResult xrLocateSpaces(

 XrSession session,

 const XrSpacesLocateInfo* locateInfo,

 XrSpaceLocations* spaceLocations);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• locateInfo is a pointer to an XrSpacesLocateInfo that provides the input information to locate

spaces.

• spaceLocations is a pointer to an XrSpaceLocations for the runtime to return the locations of

the specified spaces in the base space.

xrLocateSpaces provides the physical location of one or more spaces in a base space at a specified time,

if currently known by the runtime.

The XrSpacesLocateInfo::time, the XrSpacesLocateInfo::baseSpace, and each space in

XrSpacesLocateInfo::spaces, in the locateInfo parameter, all follow the same specifics as the

corresponding inputs to the xrLocateSpace function.

Chapter 7. Spaces | 151

Valid Usage (Implicit)

• session must be a valid XrSession handle

• locateInfo must be a pointer to a valid XrSpacesLocateInfo structure

• spaceLocations must be a pointer to an XrSpaceLocations structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_TIME_INVALID

The XrSpacesLocateInfo structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrSpacesLocateInfo {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

 uint32_t spaceCount;

 const XrSpace* spaces;

} XrSpacesLocateInfo;

152 | Chapter 7. Spaces

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace identifies the underlying space in which to locate spaces.

• time is the time for which the location is requested.

• spaceCount is a uint32_t specifying the count of elements in the spaces array.

• spaces is an array of valid XrSpace handles to be located.

The time, the baseSpace, and each space in spaces all follow the same specifics as the corresponding

inputs to the xrLocateSpace function.

The baseSpace and all of the XrSpace handles in the spaces array must be valid and share the same

parent XrSession.

If the time is invalid, the xrLocateSpaces must return XR_ERROR_TIME_INVALID.

The spaceCount must be a positive number, i.e. the array spaces must not be empty. Otherwise, the

runtime must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• type must be XR_TYPE_SPACES_LOCATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

• spaces must be a pointer to an array of spaceCount valid XrSpace handles

• The spaceCount parameter must be greater than 0

• Both of baseSpace and the elements of spaces must have been created, allocated, or retrieved

from the same XrSession

The XrSpaceLocations structure is defined as:

Chapter 7. Spaces | 153

#valid-usage-for-structure-pointer-chains

// Provided by XR_VERSION_1_1

typedef struct XrSpaceLocations {

 XrStructureType type;

 void* next;

 uint32_t locationCount;

 XrSpaceLocationData* locations;

} XrSpaceLocations;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain, such as XrSpaceVelocities.

• locationCount is a uint32_t specifying the count of elements in the locations array.

• locations is an array of XrSpaceLocations for the runtime to populate with the locations of

the specified spaces in the XrSpacesLocateInfo::baseSpace at the specified

XrSpacesLocateInfo::time.

The XrSpaceLocations structure contains an array of space locations in the member locations, to be

used as output for xrLocateSpaces. The application must allocate this array to be populated with the

function output. The locationCount value must be the same as XrSpacesLocateInfo::spaceCount,

otherwise, the xrLocateSpaces function must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• type must be XR_TYPE_SPACE_LOCATIONS

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSpaceVelocities

• locations must be a pointer to an array of locationCount XrSpaceLocationData structures

• The locationCount parameter must be greater than 0

The XrSpaceLocationData structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrSpaceLocationData {

 XrSpaceLocationFlags locationFlags;

 XrPosef pose;

} XrSpaceLocationData;

154 | Chapter 7. Spaces

#valid-usage-for-structure-pointer-chains

Member Descriptions

• locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits. It behaves the

same as XrSpaceLocation::locationFlags.

• pose is an XrPosef that behaves the same as XrSpaceLocation::pose.

This is a single element of the array in XrSpaceLocations::locations, and is used to return the pose and

location flags for a single space with respect to the specified base space from a call to xrLocateSpaces.

It does not accept chained structures to allow for easier use in dynamically allocated container

datatypes. Chained structures are possible with the XrSpaceLocations that describes an array of these

elements.

7.4.3. Locate space velocities

Applications can request the velocities of spaces by chaining the XrSpaceVelocities structure to the

next pointer of XrSpaceLocations when calling xrLocateSpaces.

The XrSpaceVelocities structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrSpaceVelocities {

 XrStructureType type;

 void* next;

 uint32_t velocityCount;

 XrSpaceVelocityData* velocities;

} XrSpaceVelocities;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• velocityCount is a uint32_t specifying the count of elements in the velocities array.

• velocities is an array of XrSpaceVelocityData for the runtime to populate with the velocities

of the specified spaces in the XrSpacesLocateInfo::baseSpace at the specified

XrSpacesLocateInfo::time.

The velocities member contains an array of space velocities in the member velocities, to be used as

output for xrLocateSpaces. The application must allocate this array to be populated with the function

output. The velocityCount value must be the same as XrSpacesLocateInfo::spaceCount, otherwise, the

Chapter 7. Spaces | 155

xrLocateSpaces function must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• type must be XR_TYPE_SPACE_VELOCITIES

• next must be NULL or a valid pointer to the next structure in a structure chain

• velocities must be a pointer to an array of velocityCount XrSpaceVelocityData structures

• The velocityCount parameter must be greater than 0

The XrSpaceVelocityData structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrSpaceVelocityData {

 XrSpaceVelocityFlags velocityFlags;

 XrVector3f linearVelocity;

 XrVector3f angularVelocity;

} XrSpaceVelocityData;

Member Descriptions

• velocityFlags is a bitfield, with bit values defined in XrSpaceVelocityFlagBits. It behaves the

same as XrSpaceVelocity::velocityFlags.

• linearVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::linearVelocity.

• angularVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::angularVelocity.

This is a single element of the array in XrSpaceVelocities::velocities, and is used to return the linear

and angular velocity and velocity flags for a single space with respect to the specified base space from

a call to xrLocateSpaces. It does not accept chained structures to allow for easier use in dynamically

allocated container datatypes.

7.4.4. Example code for xrLocateSpaces

The following example code shows how an application retrieves both the location and velocity of one

or more spaces in a base space at a given time using the xrLocateSpaces function.

XrInstance instance; // previously initialized

XrSession session; // previously initialized

XrSpace baseSpace; // previously initialized

156 | Chapter 7. Spaces

#valid-usage-for-structure-pointer-chains

std::vector<XrSpace> spacesToLocate; // previously initialized

// Prepare output buffers to receive data and get reused in frame loop.

std::vector<XrSpaceLocationData> locationBuffer(spacesToLocate.size());

std::vector<XrSpaceVelocityData> velocityBuffer(spacesToLocate.size());

// Get function pointer for xrLocateSpaces.

PFN_xrLocateSpaces xrLocateSpaces;

CHK_XR(xrGetInstanceProcAddr(instance, "xrLocateSpaces",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &xrLocateSpaces)));

// application frame loop

while (1) {

 // Typically the time is the predicted display time returned from xrWaitFrame.

 XrTime displayTime; // previously initialized.

 XrSpacesLocateInfo locateInfo{XR_TYPE_SPACES_LOCATE_INFO};

 locateInfo.baseSpace = baseSpace;

 locateInfo.time = displayTime;

 locateInfo.spaceCount = (uint32_t)spacesToLocate.size();

 locateInfo.spaces = spacesToLocate.data();

 XrSpaceLocations locations{XR_TYPE_SPACE_LOCATIONS};

 locations.locationCount = (uint32_t)locationBuffer.size();

 locations.locations = locationBuffer.data();

 XrSpaceVelocities velocities{XR_TYPE_SPACE_VELOCITIES};

 velocities.velocityCount = (uint32_t)velocityBuffer.size();

 velocities.velocities = velocityBuffer.data();

 locations.next = &velocities;

 CHK_XR(xrLocateSpaces(session, &locateInfo, &locations));

 for (uint32_t i = 0; i < spacesToLocate.size(); i++) {

 const auto positionAndOrientationTracked =

 XR_SPACE_LOCATION_POSITION_TRACKED_BIT |

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;

 const auto orientationOnlyTracked = XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;

 if ((locationBuffer[i].locationFlags & positionAndOrientationTracked) ==

positionAndOrientationTracked) {

 // if the location is 6dof tracked

 do_something(locationBuffer[i].pose.position);

 do_something(locationBuffer[i].pose.orientation);

 const auto velocityValidBits =

 XR_SPACE_VELOCITY_LINEAR_VALID_BIT | XR_SPACE_VELOCITY_ANGULAR_VALID_BIT;

Chapter 7. Spaces | 157

 if ((velocityBuffer[i].velocityFlags & velocityValidBits) ==

velocityValidBits) {

 do_something(velocityBuffer[i].linearVelocity);

 do_something(velocityBuffer[i].angularVelocity);

 }

 }

 else if ((locationBuffer[i].locationFlags & orientationOnlyTracked) ==

orientationOnlyTracked) {

 // if the location is 3dof tracked

 do_something(locationBuffer[i].pose.orientation);

 if ((velocityBuffer[i].velocityFlags & XR_SPACE_VELOCITY_ANGULAR_VALID_BIT)

== XR_SPACE_VELOCITY_ANGULAR_VALID_BIT) {

 do_something(velocityBuffer[i].angularVelocity);

 }

 }

 }

}

158 | Chapter 7. Spaces

Chapter 8. View Configurations

A view configuration is a semantically meaningful set of one or more views for which an application

can render images. A primary view configuration is a view configuration intended to be presented to

the viewer interacting with the XR application. This distinction allows the later addition of additional

views, for example views which are intended for spectators.

A typical head-mounted VR system has a view configuration with two views, while a typical phone-

based AR system has a view configuration with a single view. A simple multi-wall projection-based

(CAVE-like) VR system may have a view configuration with at least one view for each display surface

(wall, floor, ceiling) in the room.

For any supported form factor, a system will support one or more primary view configurations.

Supporting more than one primary view configuration can be useful if a system supports a special

view configuration optimized for the hardware but also supports a more broadly used view

configuration as a compatibility fallback.

View configurations are identified with an XrViewConfigurationType.

8.1. Primary View Configurations

typedef enum XrViewConfigurationType {

 XR_VIEW_CONFIGURATION_TYPE_PRIMARY_MONO = 1,

 XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO = 2,

 // Provided by XR_VERSION_1_1

 XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET = 1000037000,

 XR_VIEW_CONFIGURATION_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrViewConfigurationType;

The application selects its primary view configuration type when calling xrBeginSession, and that

configuration remains constant for the lifetime of the session, until xrEndSession is called.

The number of views and the semantic meaning of each view index within a given view configuration

is well-defined, specified below for all core view configurations. The predefined primary view

configuration types are:

Chapter 8. View Configurations | 159

Enumerant Descriptions

• XR_VIEW_CONFIGURATION_TYPE_PRIMARY_MONO. One view representing the form factor’s one

primary display. For example, an AR phone’s screen. This configuration requires one element

in XrViewConfigurationProperties and one projection in each XrCompositionLayerProjection

layer.

• XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO. Two views representing the form factor’s two

primary displays, which map to a left-eye and right-eye view. This configuration requires two

views in XrViewConfigurationProperties and two views in each

XrCompositionLayerProjection layer. View index 0 must represent the left eye and view

index 1 must represent the right eye.

• XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET. Four views representing the

form factor’s primary stereo displays. This view configuration type represents a hardware

independent way of providing foveated rendering. The view configuration adds two foveated

inset views for the left and right eye separately to the already defined two views specified in

the XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO view configuration. View index 0 must

represent the left eye and view index 1 must represent the right eye as specified in

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO view configuration, and view index 2 must

represent the left eye inset view and view index 3 must represent the right eye inset view.

The new inset view 2 and view 3 must, after applying the pose and FoV projection to same

plane, be contained within view 0 and 1 respectively. The inset views may have a higher

resolution with respect to the same field of view as the corresponding wide FoV view for each

eye. The runtime may blend between the views at the edges, so the application must not omit

the inner field of view from being rendered in the outer view. The fov returned by

xrLocateViews for each inset view relative to the corresponding outer stereo view may

change at run-time, the pose for inset view and stereo view for each eye respectively must

have the same values. The benefits of the

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET view

configuration type can be demonstrated by looking at the rendered pixel count.

For example, a Varjo Aero requires a pair of stereo views rendered at 4148 x

3556 (14.7 million pixels) to achieve a pixel density of 35 pixels per degree. By

using four views, with an eye-tracked foveated inset covering about 1/9th of the

full FoV and rendered with the same 35 pixels per degree and while the

remaining views are dropped to 14 pixels per degree, the resolution of the inset

is 1076 x 1076 (1.1 million pixels) and the resolution of the stereo views is 1660 x

1420 (2.3 million pixels). The total pixel count is 75% less with

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET over the

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO view configuration type.

160 | Chapter 8. View Configurations

Figure 4. View configurations. The numbers in the figure is the view indices of the specific view.

8.2. View Configuration API

First an application needs to select which primary view configuration it wants to use. If it supports

multiple configurations, an application can call xrEnumerateViewConfigurations before creating an

Chapter 8. View Configurations | 161

XrSession to get a list of the view configuration types supported for a given system.

The application can then call xrGetViewConfigurationProperties and

xrEnumerateViewConfigurationViews to get detailed information about each view configuration type

and its individual views.

8.2.1. xrEnumerateViewConfigurations

The xrEnumerateViewConfigurations function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateViewConfigurations(

 XrInstance instance,

 XrSystemId systemId,

 uint32_t viewConfigurationTypeCapacityInput,

 uint32_t* viewConfigurationTypeCountOutput,

 XrViewConfigurationType* viewConfigurationTypes);

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose view configurations will be enumerated.

• viewConfigurationTypeCapacityInput is the capacity of the viewConfigurationTypes array, or 0

to indicate a request to retrieve the required capacity.

• viewConfigurationTypeCountOutput is a pointer to the count of viewConfigurationTypes written,

or a pointer to the required capacity in the case that viewConfigurationTypeCapacityInput is

insufficient.

• viewConfigurationTypes is a pointer to an array of XrViewConfigurationType values, but can

be NULL if viewConfigurationTypeCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

viewConfigurationTypes size.

xrEnumerateViewConfigurations enumerates the view configuration types supported by the

XrSystemId. The supported set for that system must not change during the lifetime of its XrInstance.

The returned list of primary view configurations should be in order from what the runtime

considered highest to lowest user preference. Thus the first enumerated view configuration type

should be the one the runtime prefers the application to use if possible.

Runtimes must always return identical buffer contents from this enumeration for the given systemId

and for the lifetime of the instance.

162 | Chapter 8. View Configurations

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• viewConfigurationTypeCountOutput must be a pointer to a uint32_t value

• If viewConfigurationTypeCapacityInput is not 0, viewConfigurationTypes must be a pointer to

an array of viewConfigurationTypeCapacityInput XrViewConfigurationType values

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SYSTEM_INVALID

8.2.2. xrGetViewConfigurationProperties

The xrGetViewConfigurationProperties function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetViewConfigurationProperties(

 XrInstance instance,

 XrSystemId systemId,

 XrViewConfigurationType viewConfigurationType,

 XrViewConfigurationProperties* configurationProperties);

Chapter 8. View Configurations | 163

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose view configuration is being queried.

• viewConfigurationType is the XrViewConfigurationType of the configuration to get.

• configurationProperties is a pointer to view configuration properties to return.

xrGetViewConfigurationProperties queries properties of an individual view configuration.

Applications must use one of the supported view configuration types returned by

xrEnumerateViewConfigurations. If viewConfigurationType is not supported by this XrInstance the

runtime must return XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• viewConfigurationType must be a valid XrViewConfigurationType value

• configurationProperties must be a pointer to an XrViewConfigurationProperties structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_SYSTEM_INVALID

8.2.3. XrViewConfigurationProperties

The XrViewConfigurationProperties structure is defined as:

164 | Chapter 8. View Configurations

typedef struct XrViewConfigurationProperties {

 XrStructureType type;

 void* next;

 XrViewConfigurationType viewConfigurationType;

 XrBool32 fovMutable;

} XrViewConfigurationProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• viewConfigurationType is the XrViewConfigurationType of the configuration.

• fovMutable indicates if the view field of view can be modified by the application.

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW_CONFIGURATION_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewConfigurationType must be a valid XrViewConfigurationType value

8.2.4. xrEnumerateViewConfigurationViews

The xrEnumerateViewConfigurationViews function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateViewConfigurationViews(

 XrInstance instance,

 XrSystemId systemId,

 XrViewConfigurationType viewConfigurationType,

 uint32_t viewCapacityInput,

 uint32_t* viewCountOutput,

 XrViewConfigurationView* views);

Chapter 8. View Configurations | 165

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose view configuration is being queried.

• viewConfigurationType is the XrViewConfigurationType of the configuration to get.

• viewCapacityInput is the capacity of the views array, or 0 to indicate a request to retrieve the

required capacity.

• viewCountOutput is a pointer to the count of views written, or a pointer to the required

capacity in the case that viewCapacityInput is 0.

• views is a pointer to an array of XrViewConfigurationView values, but can be NULL if

viewCapacityInput is 0.

Each XrViewConfigurationType defines the number of views associated with it. Applications can query

more details of each view element using xrEnumerateViewConfigurationViews. If the supplied

viewConfigurationType is not supported by this XrInstance and XrSystemId, the runtime must return

XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

Runtimes must always return identical buffer contents from this enumeration for the given systemId

and viewConfigurationType for the lifetime of the instance.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• viewConfigurationType must be a valid XrViewConfigurationType value

• viewCountOutput must be a pointer to a uint32_t value

• If viewCapacityInput is not 0, views must be a pointer to an array of viewCapacityInput

XrViewConfigurationView structures

166 | Chapter 8. View Configurations

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_SYSTEM_INVALID

8.2.5. XrViewConfigurationView

Each XrViewConfigurationView specifies properties related to rendering of an individual view within a

view configuration.

The XrViewConfigurationView structure is defined as:

typedef struct XrViewConfigurationView {

 XrStructureType type;

 void* next;

 uint32_t recommendedImageRectWidth;

 uint32_t maxImageRectWidth;

 uint32_t recommendedImageRectHeight;

 uint32_t maxImageRectHeight;

 uint32_t recommendedSwapchainSampleCount;

 uint32_t maxSwapchainSampleCount;

} XrViewConfigurationView;

Chapter 8. View Configurations | 167

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• recommendedImageRectWidth is the optimal width of XrSwapchainSubImage::imageRect to use

when rendering this view into a swapchain.

• maxImageRectWidth is the maximum width of XrSwapchainSubImage::imageRect supported

when rendering this view into a swapchain.

• recommendedImageRectHeight is the optimal height of XrSwapchainSubImage::imageRect to use

when rendering this view into a swapchain.

• maxImageRectHeight is the maximum height of XrSwapchainSubImage::imageRect supported

when rendering this view into a swapchain.

• recommendedSwapchainSampleCount is the recommended number of sub-data element samples

to create for each swapchain image that will be rendered into for this view.

• maxSwapchainSampleCount is the maximum number of sub-data element samples supported for

swapchain images that will be rendered into for this view.

See XrSwapchainSubImage for more information about XrSwapchainSubImage::imageRect values, and

XrSwapchainCreateInfo for more information about creating swapchains appropriately sized to

support those XrSwapchainSubImage::imageRect values.

The array of XrViewConfigurationView returned by the runtime must adhere to the rules defined in

XrViewConfigurationType, such as the count and association to the left and right eyes.

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW_CONFIGURATION_VIEW

• next must be NULL or a valid pointer to the next structure in a structure chain

8.3. Example View Configuration Code

XrInstance instance; // previously initialized

XrSystemId system; // previously initialized

XrSession session; // previously initialized

XrSpace sceneSpace; // previously initialized

// Enumerate the view configurations paths.

uint32_t configurationCount;

168 | Chapter 8. View Configurations

#valid-usage-for-structure-pointer-chains

CHK_XR(xrEnumerateViewConfigurations(instance, system, 0, &configurationCount, nullptr));

std::vector<XrViewConfigurationType> configurationTypes(configurationCount);

CHK_XR(xrEnumerateViewConfigurations(instance, system, configurationCount,

&configurationCount, configurationTypes.data()));

bool configFound = false;

XrViewConfigurationType viewConfig = XR_VIEW_CONFIGURATION_TYPE_MAX_ENUM;

for(uint32_t i = 0; i < configurationCount; ++i)

{

 if (configurationTypes[i] == XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO)

 {

 configFound = true;

 viewConfig = configurationTypes[i];

 break; // Pick the first supported, i.e. preferred, view configuration.

 }

}

if (!configFound)

 return; // Cannot support any view configuration of this system.

// Get detailed information of each view element.

uint32_t viewCount;

CHK_XR(xrEnumerateViewConfigurationViews(instance, system,

 viewConfig,

 0,

 &viewCount,

 nullptr));

std::vector<XrViewConfigurationView> configViews(viewCount,

{XR_TYPE_VIEW_CONFIGURATION_VIEW});

CHK_XR(xrEnumerateViewConfigurationViews(instance, system,

 viewConfig,

 viewCount,

 &viewCount,

 configViews.data()));

// Set the primary view configuration for the session.

XrSessionBeginInfo beginInfo = {XR_TYPE_SESSION_BEGIN_INFO};

beginInfo.primaryViewConfigurationType = viewConfig;

CHK_XR(xrBeginSession(session, &beginInfo));

// Allocate a buffer according to viewCount.

std::vector<XrView> views(viewCount, {XR_TYPE_VIEW});

// Run a per-frame loop.

while (!quit)

{

Chapter 8. View Configurations | 169

 // Wait for a new frame.

 XrFrameWaitInfo frameWaitInfo{XR_TYPE_FRAME_WAIT_INFO};

 XrFrameState frameState{XR_TYPE_FRAME_STATE};

 CHK_XR(xrWaitFrame(session, &frameWaitInfo, &frameState));

 // Begin frame immediately before GPU work

 XrFrameBeginInfo frameBeginInfo { XR_TYPE_FRAME_BEGIN_INFO };

 CHK_XR(xrBeginFrame(session, &frameBeginInfo));

 std::vector<XrCompositionLayerBaseHeader*> layers;

 XrCompositionLayerProjectionView projViews[2] = { /*...*/ };

 XrCompositionLayerProjection layerProj{ XR_TYPE_COMPOSITION_LAYER_PROJECTION};

 if (frameState.shouldRender) {

 XrViewLocateInfo viewLocateInfo{XR_TYPE_VIEW_LOCATE_INFO};

 viewLocateInfo.viewConfigurationType = viewConfig;

 viewLocateInfo.displayTime = frameState.predictedDisplayTime;

 viewLocateInfo.space = sceneSpace;

 XrViewState viewState{XR_TYPE_VIEW_STATE};

 XrView views[2] = { {XR_TYPE_VIEW}, {XR_TYPE_VIEW}};

 uint32_t viewCountOutput;

 CHK_XR(xrLocateViews(session, &viewLocateInfo, &viewState, configViews.size(),

&viewCountOutput, views));

 // ...

 // Use viewState and frameState for scene render, and fill in projViews[2]

 // ...

 // Assemble composition layers structure

 layerProj.layerFlags = XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT;

 layerProj.space = sceneSpace;

 layerProj.viewCount = 2;

 layerProj.views = projViews;

 layers.push_back(reinterpret_cast<XrCompositionLayerBaseHeader*>(&layerProj));

 }

 // End frame and submit layers, even if layers is empty due to shouldRender = false

 XrFrameEndInfo frameEndInfo{ XR_TYPE_FRAME_END_INFO};

 frameEndInfo.displayTime = frameState.predictedDisplayTime;

 frameEndInfo.environmentBlendMode = XR_ENVIRONMENT_BLEND_MODE_OPAQUE;

 frameEndInfo.layerCount = (uint32_t)layers.size();

 frameEndInfo.layers = layers.data();

 CHK_XR(xrEndFrame(session, &frameEndInfo));

}

170 | Chapter 8. View Configurations

Chapter 9. Session

XR_DEFINE_HANDLE(XrSession)

A session represents an application’s intention to display XR content to the user.

9.1. Session Lifecycle

runtime: session is ready

user: request exit XR

IDLE

xrGetSystem...

xrBeginSession

READY

runtime: stop session

SYNCHRONIZED

STOPPING
xrDestroySession

EXITING

 xrDestroyInstance

LOSS_PENDING

runtime: losing system or device

any

app: optio...

xrCreateInstance

VISIBLE

FOCUSED

xrEndSession

xrDestroySession

user: optionally relaunch XR...

xrDestroyInstance

app: quit app: quit

Text is not SVG - cannot display

Figure 5. Session Life-cycle A typical XR session coordinates the application and the runtime through session

control functions and session state events.

1. The application creates a session by choosing a system and a graphics API and

passing them into xrCreateSession. The newly created session is in the

XR_SESSION_STATE_IDLE state.

2. The application can regularly call xrPollEvent to monitor for session state changes

via XrEventDataSessionStateChanged events.

3. When the runtime determines that the system is ready to start transitioning to this

session’s XR content, the application receives a notification of session state change

to XR_SESSION_STATE_READY. Once the application is also ready to proceed and

display its XR content, it calls xrBeginSession and starts its frame loop, which

Chapter 9. Session | 171

begins a running session.

4. While the session is running, the application is expected to continuously execute

its frame loop by calling xrWaitFrame, xrBeginFrame and xrEndFrame each

frame, establishing synchronization with the runtime. Once the runtime is

synchronized with the application’s frame loop and ready to display application’s

frames, the session moves into the XR_SESSION_STATE_SYNCHRONIZED state. In this

state, the submitted frames will not be displayed or visible to the user yet.

5. When the runtime intends to display frames from the application, it notifies with

XR_SESSION_STATE_VISIBLE state, and sets XrFrameState::shouldRender to true in

xrWaitFrame. The application should render XR content and submit the

composition layers to xrEndFrame.

6. When the runtime determines the application is eligible to receive XR inputs, e.g.

motion controller or hand tracking inputs, it notifies with

XR_SESSION_STATE_FOCUSED state. The application can expect to receive active action

inputs.

7. When the runtime determines the application has lost XR input focus, it moves the

session state from XR_SESSION_STATE_FOCUSED to XR_SESSION_STATE_VISIBLE state. The

application may need to change its own internal state while input is unavailable.

Since the session is still visible, the application needs to render and submit frames

at full frame rate, but may wish to change visually to indicate its input suspended

state. When the runtime returns XR focus back to the application, it moves the

session state back to XR_SESSION_STATE_FOCUSED.

8. When the runtime needs to end a running session due to the user closing or

switching the application, the runtime will change the session state through

appropriate intermediate ones and finally to XR_SESSION_STATE_STOPPING. When the

application receives the XR_SESSION_STATE_STOPPING event, it should stop its frame

loop and then call xrEndSession to tell the runtime to stop the running session.

9. After xrEndSession, the runtime transitions the session state to

XR_SESSION_STATE_IDLE. If the XR session is temporarily paused in the background,

the runtime will keep the session state at XR_SESSION_STATE_IDLE and later

transition the session state back to XR_SESSION_STATE_READY when the XR session is

resumed. If the runtime determines that its use of this XR session has concluded, it

will transition the session state from XR_SESSION_STATE_IDLE to

XR_SESSION_STATE_EXITING.

10. When the application receives the XR_SESSION_STATE_EXITING event, it releases the

resources related to the session and calls xrDestroySession.

A session is considered running after a successful call to xrBeginSession and remains running until

any call is made to xrEndSession. Certain functions are only valid to call when a session is running,

such as xrWaitFrame, or else the XR_ERROR_SESSION_NOT_RUNNING error must be returned by the runtime.

A session is considered not running before a successful call to xrBeginSession and becomes not

172 | Chapter 9. Session

running again after any call is made to xrEndSession. Certain functions are only valid to call when a

session is not running, such as xrBeginSession, or else the XR_ERROR_SESSION_RUNNING error must be

returned by the runtime.

If an error is returned from xrBeginSession, the session remains in its current running or not running

state. Calling xrEndSession always transitions a session to the not running state, regardless of any

errors returned.

Only running sessions may become focused sessions that receive XR input. When a session is not

running, the application must not submit frames. This is important because without a running session,

the runtime no longer has to spend resources on sub-systems (tracking etc.) that are no longer needed

by the application.

An application must call xrBeginSession when the session is in the XR_SESSION_STATE_READY state, or

XR_ERROR_SESSION_NOT_READY will be returned; it must call xrEndSession when the session is in the

XR_SESSION_STATE_STOPPING state, otherwise XR_ERROR_SESSION_NOT_STOPPING will be returned. This is to

allow the runtimes to seamlessly transition from one application’s session to another.

The application can call xrDestroySession at any time during the session life cycle, however, it must

stop using the XrSession handle immediately in all threads and stop using any related resources.

Therefore, it’s typically undesirable to destroy a running session and instead it’s recommended to wait

for XR_SESSION_STATE_EXITING to destroy a session.

9.2. Session Creation

To present graphical content on an output device, OpenXR applications need to pick a graphics API

which is supported by the runtime. Unextended OpenXR does not support any graphics APIs natively

but provides a number of extensions of which each runtime can support any subset. These extensions

can be activated during XrInstance create time.

During XrSession creation the application must provide information about which graphics API it

intends to use by adding an XrGraphicsBinding* struct of one (and only one) of the enabled graphics API

extensions to the next chain of XrSessionCreateInfo. The application must call the

xrGet*GraphicsRequirements method (where * is a placeholder) provided by the chosen graphics API

extension before attempting to create the session (for example, xrGetD3D11GraphicsRequirementsKHR

xrGetD3D12GraphicsRequirementsKHR xrGetOpenGLGraphicsRequirementsKHR

xrGetVulkanGraphicsRequirementsKHR xrGetVulkanGraphicsRequirements2KHR).

Unless specified differently in the graphics API extension, the application is responsible for creating a

valid graphics device binding based on the requirements returned by xrGet*GraphicsRequirements

methods (for details refer to the extension specification of the graphics API).

The xrCreateSession function is defined as:

Chapter 9. Session | 173

// Provided by XR_VERSION_1_0

XrResult xrCreateSession(

 XrInstance instance,

 const XrSessionCreateInfo* createInfo,

 XrSession* session);

Parameter Descriptions

• instance is the instance from which XrSessionCreateInfo::systemId was retrieved.

• createInfo is a pointer to an XrSessionCreateInfo structure containing information about

how to create the session.

• session is a pointer to a handle in which the created XrSession is returned.

Creates a session using the provided createInfo and returns a handle to that session. This session is

created in the XR_SESSION_STATE_IDLE state, and a corresponding XrEventDataSessionStateChanged

event to the XR_SESSION_STATE_IDLE state must be generated as the first such event for the new session.

The runtime must return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE

may be returned due to legacy behavior) on calls to xrCreateSession if a function named like

xrGet*GraphicsRequirements has not been called for the same instance and XrSessionCreateInfo

::systemId. (See graphics binding extensions for details.)

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• createInfo must be a pointer to a valid XrSessionCreateInfo structure

• session must be a pointer to an XrSession handle

174 | Chapter 9. Session

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_SYSTEM_INVALID

• XR_ERROR_INITIALIZATION_FAILED

• XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING

• XR_ERROR_GRAPHICS_DEVICE_INVALID

The XrSessionCreateInfo structure is defined as:

typedef struct XrSessionCreateInfo {

 XrStructureType type;

 const void* next;

 XrSessionCreateFlags createFlags;

 XrSystemId systemId;

} XrSessionCreateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR. Note that in most cases one graphics API extension specific struct

needs to be in this next chain.

• createFlags identifies XrSessionCreateFlags that apply to the creation.

• systemId is the XrSystemId representing the system of devices to be used by this session.

Chapter 9. Session | 175

Valid Usage

• systemId must be a valid XrSystemId or XR_ERROR_SYSTEM_INVALID must be returned.

• next, unless otherwise specified via an extension, must contain exactly one graphics API

binding structure (a structure whose name begins with “XrGraphicsBinding”) or

XR_ERROR_GRAPHICS_DEVICE_INVALID must be returned.

Valid Usage (Implicit)

• type must be XR_TYPE_SESSION_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrGraphicsBindingD3D11KHR, XrGraphicsBindingD3D12KHR,

XrGraphicsBindingOpenGLESAndroidKHR, XrGraphicsBindingOpenGLWaylandKHR,

XrGraphicsBindingOpenGLWin32KHR, XrGraphicsBindingOpenGLXcbKHR,

XrGraphicsBindingOpenGLXlibKHR, XrGraphicsBindingVulkanKHR

• createFlags must be 0

The XrSessionCreateInfo::createFlags member is of the following type, and contains a bitwise-OR of

zero or more of the bits defined in XrSessionCreateFlagBits.

typedef XrFlags64 XrSessionCreateFlags;

Valid bits for XrSessionCreateFlags are defined by XrSessionCreateFlagBits.

// Flag bits for XrSessionCreateFlags

There are currently no session creation flags. This is reserved for future use.

The xrDestroySession function is defined as.

// Provided by XR_VERSION_1_0

XrResult xrDestroySession(

 XrSession session);

176 | Chapter 9. Session

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the session to destroy.

XrSession handles are destroyed using xrDestroySession. When an XrSession is destroyed, all handles

that are children of that XrSession are also destroyed.

The application is responsible for ensuring that it has no calls using session in progress when the

session is destroyed.

xrDestroySession can be called when the session is in any session state.

Valid Usage (Implicit)

• session must be a valid XrSession handle

Thread Safety

• Access to session, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

9.3. Session Control

The xrBeginSession function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrBeginSession(

 XrSession session,

 const XrSessionBeginInfo* beginInfo);

Chapter 9. Session | 177

Parameter Descriptions

• session is a valid XrSession handle.

• beginInfo is a pointer to an XrSessionBeginInfo structure.

When the application receives XrEventDataSessionStateChanged event with the

XR_SESSION_STATE_READY state, the application should then call xrBeginSession to start rendering frames

for display to the user.

After this function successfully returns, the session is considered to be running. The application

should then start its frame loop consisting of some sequence of xrWaitFrame/xrBeginFrame

/xrEndFrame calls.

If the session is already running when the application calls xrBeginSession, the runtime must return

error XR_ERROR_SESSION_RUNNING. If the session is not running when the application calls xrBeginSession,

but the session is not yet in the XR_SESSION_STATE_READY state, the runtime must return error

XR_ERROR_SESSION_NOT_READY.

Note that a runtime may decide not to show the user any given frame from a session at any time, for

example if the user has switched to a different application’s running session. The application should

check whether xrWaitFrame returns XrFrameState::shouldRender set to true before rendering a given

frame to determine whether that frame will be visible to the user.

Runtime session frame state must start in a reset state when a session transitions to running so that no

state is carried over from when the same session was previously running. Frame state in this context

includes xrWaitFrame, xrBeginFrame, and xrEndFrame call order enforcement.

If XrSessionBeginInfo::primaryViewConfigurationType in beginInfo is not supported by the XrSystemId

used to create the session, the runtime must return XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• beginInfo must be a pointer to a valid XrSessionBeginInfo structure

178 | Chapter 9. Session

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_SESSION_RUNNING

• XR_ERROR_SESSION_NOT_READY

The XrSessionBeginInfo structure is defined as:

typedef struct XrSessionBeginInfo {

 XrStructureType type;

 const void* next;

 XrViewConfigurationType primaryViewConfigurationType;

} XrSessionBeginInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• primaryViewConfigurationType is the XrViewConfigurationType to use during this session to

provide images for the form factor’s primary displays.

Chapter 9. Session | 179

Valid Usage (Implicit)

• type must be XR_TYPE_SESSION_BEGIN_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• primaryViewConfigurationType must be a valid XrViewConfigurationType value

The xrEndSession function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEndSession(

 XrSession session);

Parameter Descriptions

• session is a handle to a running XrSession.

When the application receives XrEventDataSessionStateChanged event with the

XR_SESSION_STATE_STOPPING state, the application should stop its frame loop and then call xrEndSession

to end the running session. This function signals to the runtime that the application will no longer call

xrWaitFrame, xrBeginFrame or xrEndFrame from any thread allowing the runtime to safely transition

the session to XR_SESSION_STATE_IDLE. The application must also avoid reading input state or sending

haptic output after calling xrEndSession.

If the session is not running when the application calls xrEndSession, the runtime must return error

XR_ERROR_SESSION_NOT_RUNNING. If the session is still running when the application calls xrEndSession,

but the session is not yet in the XR_SESSION_STATE_STOPPING state, the runtime must return error

XR_ERROR_SESSION_NOT_STOPPING.

If the application wishes to exit a running session, the application can call xrRequestExitSession so that

the session transitions from XR_SESSION_STATE_IDLE to XR_SESSION_STATE_EXITING.

Valid Usage (Implicit)

• session must be a valid XrSession handle

180 | Chapter 9. Session

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SESSION_NOT_STOPPING

• XR_ERROR_SESSION_NOT_RUNNING

When an application wishes to exit a running session, it can call xrRequestExitSession, requesting that

the runtime transition through the various intermediate session states including

XR_SESSION_STATE_STOPPING to XR_SESSION_STATE_EXITING.

On platforms where an application’s lifecycle is managed by the system, session state changes may be

implicitly triggered by application lifecycle state changes. On such platforms, using platform-specific

methods to alter application lifecycle state may be the preferred method of provoking session state

changes. The behavior of xrRequestExitSession is not altered, however explicit session exit may not

interact with the platform-specific application lifecycle.

The xrRequestExitSession function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrRequestExitSession(

 XrSession session);

Parameter Descriptions

• session is a handle to a running XrSession.

If session is not running when xrRequestExitSession is called, XR_ERROR_SESSION_NOT_RUNNING must be

returned.

Chapter 9. Session | 181

Valid Usage (Implicit)

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SESSION_NOT_RUNNING

9.4. Session States

While events can be expanded upon, there are a minimum set of lifecycle events which can occur

which all OpenXR applications must be aware of. These events are detailed below.

9.4.1. XrEventDataSessionStateChanged

The XrEventDataSessionStateChanged structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrEventDataSessionStateChanged {

 XrStructureType type;

 const void* next;

 XrSession session;

 XrSessionState state;

 XrTime time;

} XrEventDataSessionStateChanged;

182 | Chapter 9. Session

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• session is the XrSession which has changed state.

• state is the current XrSessionState of the session.

• time is an XrTime which indicates the time of the state change.

Receiving the XrEventDataSessionStateChanged event structure indicates that the application has

changed lifecycle state.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrSessionState enumerates the possible session lifecycle states:

typedef enum XrSessionState {

 XR_SESSION_STATE_UNKNOWN = 0,

 XR_SESSION_STATE_IDLE = 1,

 XR_SESSION_STATE_READY = 2,

 XR_SESSION_STATE_SYNCHRONIZED = 3,

 XR_SESSION_STATE_VISIBLE = 4,

 XR_SESSION_STATE_FOCUSED = 5,

 XR_SESSION_STATE_STOPPING = 6,

 XR_SESSION_STATE_LOSS_PENDING = 7,

 XR_SESSION_STATE_EXITING = 8,

 XR_SESSION_STATE_MAX_ENUM = 0x7FFFFFFF

} XrSessionState;

Chapter 9. Session | 183

#valid-usage-for-structure-pointer-chains

Enumerant Descriptions

• XR_SESSION_STATE_UNKNOWN. An unknown state. The runtime must not return this value in an

XrEventDataSessionStateChanged event.

• XR_SESSION_STATE_IDLE. The initial state after calling xrCreateSession or returned to after

calling xrEndSession.

• XR_SESSION_STATE_READY. The application is ready to call xrBeginSession and sync its frame

loop with the runtime.

• XR_SESSION_STATE_SYNCHRONIZED. The application has synced its frame loop with the runtime

but is not visible to the user.

• XR_SESSION_STATE_VISIBLE. The application has synced its frame loop with the runtime and is

visible to the user but cannot receive XR input.

• XR_SESSION_STATE_FOCUSED. The application has synced its frame loop with the runtime, is

visible to the user and can receive XR input.

• XR_SESSION_STATE_STOPPING. The application should exit its frame loop and call xrEndSession.

• XR_SESSION_STATE_LOSS_PENDING. The session is in the process of being lost. The application

should destroy the current session and can optionally recreate it.

• XR_SESSION_STATE_EXITING. The application should end its XR experience and not

automatically restart it.

The XR_SESSION_STATE_UNKNOWN state must not be returned by the runtime, and is only defined to avoid 0

being a valid state.

Receiving the XR_SESSION_STATE_IDLE state indicates that the runtime considers the session is idle.

Applications in this state should minimize resource consumption but continue to call xrPollEvent at

some reasonable cadence.

Receiving the XR_SESSION_STATE_READY state indicates that the runtime desires the application to prepare

rendering resources, begin its session and synchronize its frame loop with the runtime.

The application does this by successfully calling xrBeginSession and then running its frame loop by

calling xrWaitFrame, xrBeginFrame and xrEndFrame in a loop. If the runtime wishes to return the

session to the XR_SESSION_STATE_IDLE state, it must wait until the application calls xrBeginSession. After

returning from the xrBeginSession call, the runtime may then immediately transition forward through

the XR_SESSION_STATE_SYNCHRONIZED state to the XR_SESSION_STATE_STOPPING state, to request that the

application end this session. If the system supports a user engagement sensor and runtime is in

XR_SESSION_STATE_IDLE state, the runtime may wait until the user starts engaging with the device before

transitioning to the XR_SESSION_STATE_READY state.

Receiving the XR_SESSION_STATE_SYNCHRONIZED state indicates that the application has synchronized its

frame loop with the runtime, but its frames are not visible to the user. The application should continue

184 | Chapter 9. Session

running its frame loop by calling xrWaitFrame, xrBeginFrame and xrEndFrame, although it should

avoid heavy GPU work so that other visible applications can take CPU and GPU precedence. The

application can save resources here by skipping rendering and not submitting any composition layers

until xrWaitFrame returns an XrFrameState with shouldRender set to true. A runtime may use this

frame synchronization to facilitate seamless switching from a previous XR application to this

application on a frame boundary.

Receiving the XR_SESSION_STATE_VISIBLE state indicates that the application has synchronized its frame

loop with the runtime, and the session’s frames will be visible to the user, but the session is not eligible

to receive XR input. An application may be visible but not have focus, for example when the runtime is

composing a modal pop-up on top of the application’s rendered frames. The application should

continue running its frame loop, rendering and submitting its composition layers, although it may

wish to pause its experience, as users cannot interact with the application at this time. It is important

for applications to continue rendering when visible, even when they do not have focus, so the user

continues to see something reasonable underneath modal pop-ups. Runtimes should make input

actions inactive while the application is unfocused, and applications should react to an inactive input

action by skipping rendering of that action’s input avatar (depictions of hands or other tracked objects

controlled by the user).

Receiving the XR_SESSION_STATE_FOCUSED state indicates that the application has synchronized its frame

loop with the runtime, the session’s frames will be visible to the user, and the session is eligible to

receive XR input. The runtime should only give one session XR input focus at any given time. The

application should be running its frame loop, rendering and submitting composition layers, including

input avatars (depictions of hands or other tracked objects controlled by the user) for any input actions

that are active. The runtime should avoid rendering its own input avatars when an application is

focused, unless input from a given source is being captured by the runtime at the moment.

Receiving the XR_SESSION_STATE_STOPPING state indicates that the runtime has determined that the

application should halt its rendering loop. Applications should exit their rendering loop and call

xrEndSession when in this state. A possible reason for this would be to minimize contention between

multiple applications. If the system supports a user engagement sensor and the session is running, the

runtime may transition to the XR_SESSION_STATE_STOPPING state when the user stops engaging with the

device.

Receiving the XR_SESSION_STATE_EXITING state indicates the runtime wishes the application to terminate

its XR experience, typically due to a user request via a runtime user interface. Applications should

gracefully end their process when in this state if they do not have a non-XR user experience.

Receiving the XR_SESSION_STATE_LOSS_PENDING state indicates the runtime is no longer able to operate

with the current session, for example due to the loss of a display hardware connection. An application

should call xrDestroySession and may end its process or decide to poll xrGetSystem at some

reasonable cadence to get a new XrSystemId, and re-initialize all graphics resources related to the new

system, and then create a new session using xrCreateSession. After the event is queued, subsequent

calls to functions that accept XrSession parameters must no longer return any success code other than

XR_SESSION_LOSS_PENDING for the given XrSession handle. The XR_SESSION_LOSS_PENDING success result is

returned for an unspecified grace period of time, and the functions that return it simulate success in

Chapter 9. Session | 185

their behavior. If the runtime has no reasonable way to successfully complete a given function (e.g.

xrCreateSwapchain) when a lost session is pending, or if the runtime is not able to provide the

application a grace period, the runtime may return XR_ERROR_SESSION_LOST. Thereafter, functions which

accept XrSession parameters for the lost session may return XR_ERROR_SESSION_LOST to indicate that the

function failed and the given session was lost. The XrSession handle and child handles are henceforth

unusable and should be destroyed by the application in order to immediately free up resources

associated with those handles.

186 | Chapter 9. Session

Chapter 10. Rendering

10.1. Swapchain Image Management

XR_DEFINE_HANDLE(XrSwapchain)

Normal XR applications will want to present rendered images to the user. To allow this, the runtime

provides images organized in swapchains for the application to render into. The runtime must allow

applications to create multiple swapchains.

Swapchain image format support by the runtime is specified by the xrEnumerateSwapchainFormats

function. Runtimes should support R8G8B8A8 and R8G8B8A8 sRGB formats if possible.

Swapchain images can be 2D or 2D Array.

Rendering operations involving composition of submitted layers are assumed to be internally

performed by the runtime in linear color space. Images submitted in sRGB color space must be created

using an API-specific sRGB format (e.g. DXGI_FORMAT_R8G8B8A8_UNORM_SRGB, GL_SRGB8_ALPHA8,

VK_FORMAT_R8G8B8A8_SRGB) to apply automatic sRGB-to-linear conversion when read by the runtime. All

other formats will be treated as linear values. Note

OpenXR applications should avoid submitting linear encoded 8 bit color data (e.g.

DXGI_FORMAT_R8G8B8A8_UNORM) whenever possible as it may result in color banding.

Gritz, L. and d’Eon, E. 2007. The Importance of Being Linear. In: H. Nguyen, ed., GPU

Gems 3. Addison-Wesley Professional. https://developer.nvidia.com/gpugems/

gpugems3/part-iv-image-effects/chapter-24-importance-being-linear Note

DXGI resources will be created with their associated TYPELESS format, but the

runtime will use the application-specified format for reading the data.

The xrEnumerateSwapchainFormats function is defined as:

Chapter 10. Rendering | 187

https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-24-importance-being-linear
https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-24-importance-being-linear

// Provided by XR_VERSION_1_0

XrResult xrEnumerateSwapchainFormats(

 XrSession session,

 uint32_t formatCapacityInput,

 uint32_t* formatCountOutput,

 int64_t* formats);

Parameter Descriptions

• session is the session that enumerates the supported formats.

• formatCapacityInput is the capacity of the formats, or 0 to retrieve the required capacity.

• formatCountOutput is a pointer to the count of uint64_t formats written, or a pointer to the

required capacity in the case that formatCapacityInput is insufficient.

• formats is a pointer to an array of int64_t format ids, but can be NULL if formatCapacityInput is

0. The format ids are specific to the specified graphics API.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

formats size.

xrEnumerateSwapchainFormats enumerates the texture formats supported by the current session. The

type of formats returned are dependent on the graphics API specified in xrCreateSession. For example,

if a DirectX graphics API was specified, then the enumerated formats correspond to the DXGI formats,

such as DXGI_FORMAT_R8G8B8A8_UNORM_SRGB. Texture formats should be in order from highest to lowest

runtime preference. The application should use the highest preference format that it supports for

optimal performance and quality.

With an OpenGL-based graphics API, the texture formats correspond to OpenGL internal formats.

With a Direct3D-based graphics API, xrEnumerateSwapchainFormats never returns typeless formats

(e.g. DXGI_FORMAT_R8G8B8A8_TYPELESS). Only concrete formats are returned, and only concrete formats

may be specified by applications for swapchain creation.

Runtimes must always return identical buffer contents from this enumeration for the lifetime of the

session.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• formatCountOutput must be a pointer to a uint32_t value

• If formatCapacityInput is not 0, formats must be a pointer to an array of formatCapacityInput

int64_t values

188 | Chapter 10. Rendering

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

The xrCreateSwapchain function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateSwapchain(

 XrSession session,

 const XrSwapchainCreateInfo* createInfo,

 XrSwapchain* swapchain);

Parameter Descriptions

• session is the session that creates the image.

• createInfo is a pointer to an XrSwapchainCreateInfo structure containing parameters to be

used to create the image.

• swapchain is a pointer to a handle in which the created XrSwapchain is returned.

Creates an XrSwapchain handle. The returned swapchain handle may be subsequently used in API

calls. Multiple XrSwapchain handles may exist simultaneously, up to some limit imposed by the

runtime. The XrSwapchain handle must be eventually freed via the xrDestroySwapchain function. The

runtime must return XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED if the image format specified in the

XrSwapchainCreateInfo is unsupported. The runtime must return XR_ERROR_FEATURE_UNSUPPORTED if any

bit of the create or usage flags specified in the XrSwapchainCreateInfo is unsupported.

Chapter 10. Rendering | 189

Valid Usage (Implicit)

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrSwapchainCreateInfo structure

• swapchain must be a pointer to an XrSwapchain handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED

• XR_ERROR_FEATURE_UNSUPPORTED

The XrSwapchainCreateInfo structure is defined as:

190 | Chapter 10. Rendering

typedef struct XrSwapchainCreateInfo {

 XrStructureType type;

 const void* next;

 XrSwapchainCreateFlags createFlags;

 XrSwapchainUsageFlags usageFlags;

 int64_t format;

 uint32_t sampleCount;

 uint32_t width;

 uint32_t height;

 uint32_t faceCount;

 uint32_t arraySize;

 uint32_t mipCount;

} XrSwapchainCreateInfo;

Chapter 10. Rendering | 191

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• createFlags is a bitmask of XrSwapchainCreateFlagBits describing additional properties of

the swapchain.

• usageFlags is a bitmask of XrSwapchainUsageFlagBits describing the intended usage of the

swapchain’s images. The usage flags define how the corresponding graphics API objects are

created. A mismatch may result in swapchain images that do not support the application’s

usage.

• format is a graphics API-specific texture format identifier. For example, if the graphics API

specified in xrCreateSession is Vulkan, then this format is a Vulkan format such as

VK_FORMAT_R8G8B8A8_SRGB. The format identifies the format that the runtime will interpret the

texture as upon submission. Valid formats are indicated by xrEnumerateSwapchainFormats.

• sampleCount is the number of sub-data element samples in the image, must not be 0 or greater

than the graphics API’s maximum limit.

• width is the width of the image, must not be 0 or greater than the graphics API’s maximum

limit.

• height is the height of the image, must not be 0 or greater than the graphics API’s maximum

limit.

• faceCount is the number of faces, which must be either 6 (for cubemaps) or 1.

• arraySize is the number of array layers in the image or 1 for a 2D image, must not be 0 or

greater than the graphics API’s maximum limit.

• mipCount describes the number of levels of detail available for minified sampling of the

image, must not be 0 or greater than the graphics API’s maximum limit.

Valid Usage (Implicit)

• type must be XR_TYPE_SWAPCHAIN_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• createFlags must be 0 or a valid combination of XrSwapchainCreateFlagBits values

• usageFlags must be 0 or a valid combination of XrSwapchainUsageFlagBits values

The XrSwapchainCreateInfo::createFlags member is of the following type, and contains a bitwise-OR of

zero or more of the bits defined in XrSwapchainCreateFlagBits.

192 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

typedef XrFlags64 XrSwapchainCreateFlags;

Valid bits for XrSwapchainCreateFlags are defined by XrSwapchainCreateFlagBits, which is specified

as:

// Flag bits for XrSwapchainCreateFlags

static const XrSwapchainCreateFlags XR_SWAPCHAIN_CREATE_PROTECTED_CONTENT_BIT =

0x00000001;

static const XrSwapchainCreateFlags XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT = 0x00000002;

The flag bits have the following meanings:

Flag Descriptions

• XR_SWAPCHAIN_CREATE_PROTECTED_CONTENT_BIT indicates that the swapchain’s images will be

protected from CPU access, using a mechanism such as Vulkan protected memory.

• XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT indicates that the application will acquire and release

only one image to this swapchain over its entire lifetime. The runtime must allocate only one

swapchain image.

A runtime may implement any of these, but is not required to. A runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateSwapchain if an XrSwapchainCreateFlags bit is requested

but not implemented.

XrSwapchainUsageFlags specify the intended usage of the swapchain images. The

XrSwapchainCreateInfo::usageFlags member is of this type, and contains a bitwise-OR of one or more

of the bits defined in XrSwapchainUsageFlagBits.

typedef XrFlags64 XrSwapchainUsageFlags;

When images are created, the runtime needs to know how the images are used in a way that requires

more information than simply the image format. The XrSwapchainCreateInfo passed to

xrCreateSwapchain must match the intended usage.

Flags include:

Chapter 10. Rendering | 193

// Flag bits for XrSwapchainUsageFlags

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT = 0x00000001;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT =

0x00000002;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT = 0x00000004;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT = 0x00000008;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT = 0x00000010;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_SAMPLED_BIT = 0x00000020;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT = 0x00000040;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND =

0x00000080;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR =

0x00000080; // alias of XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND

The flag bits have the following meanings:

Flag Descriptions

• XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT  — Specifies that the image may be a color

rendering target.

• XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT  — Specifies that the image may be a

depth/stencil rendering target.

• XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT  — Specifies that the image may be accessed out of

order and that access may be via atomic operations.

• XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT  — Specifies that the image may be used as the source of

a transfer operation.

• XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT  — Specifies that the image may be used as the

destination of a transfer operation.

• XR_SWAPCHAIN_USAGE_SAMPLED_BIT  — Specifies that the image may be sampled by a shader.

• XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT  — Specifies that the image may be reinterpreted as

another image format.

• XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND  — Specifies that the image may be used as a

input attachment. (Added by the XR_MND_swapchain_usage_input_attachment_bit extension)

• XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR  — Specifies that the image may be used as a

input attachment. (Added by the XR_KHR_swapchain_usage_input_attachment_bit extension)

The number of images in each swapchain is implementation-defined except in the case of a static

swapchain. To obtain the number of images actually allocated, call xrEnumerateSwapchainImages.

With a Direct3D-based graphics API, the swapchain returned by xrCreateSwapchain will be a typeless

194 | Chapter 10. Rendering

format if the requested format has a typeless analogue. Applications are required to reinterpret the

swapchain as a compatible non-typeless type. Upon submitting such swapchains to the runtime, they

are interpreted as the format specified by the application in the XrSwapchainCreateInfo.

Swapchains will be created with graphics API-specific flags appropriate to the type of underlying

image and its usage.

Runtimes must honor underlying graphics API limits when creating resources.

xrEnumerateSwapchainFormats never returns typeless formats (e.g. DXGI_FORMAT_R8G8B8A8_TYPELESS).

Only concrete formats are returned, and only concrete formats may be specified by applications for

swapchain creation.

The xrDestroySwapchain function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroySwapchain(

 XrSwapchain swapchain);

Parameter Descriptions

• swapchain is the swapchain to destroy.

All submitted graphics API commands that refer to swapchain must have completed execution.

Runtimes may continue to utilize swapchain images after xrDestroySwapchain is called.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

Thread Safety

• Access to swapchain, and any child handles, must be externally synchronized

Chapter 10. Rendering | 195

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

Swapchain images are acquired, waited on, and released by index, but the number of images in a

swapchain is implementation-defined. Additionally, rendering to images requires access to the

underlying image primitive of the graphics API being used. Applications may query and cache the

images at any time after swapchain creation.

The xrEnumerateSwapchainImages function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateSwapchainImages(

 XrSwapchain swapchain,

 uint32_t imageCapacityInput,

 uint32_t* imageCountOutput,

 XrSwapchainImageBaseHeader* images);

Parameter Descriptions

• swapchain is the XrSwapchain to get images from.

• imageCapacityInput is the capacity of the images array, or 0 to indicate a request to retrieve the

required capacity.

• imageCountOutput is a pointer to the count of images written, or a pointer to the required

capacity in the case that imageCapacityInput is insufficient.

• images is a pointer to an array of graphics API-specific XrSwapchainImage structures, all of the

same type, based on XrSwapchainImageBaseHeader. It can be NULL if imageCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

images size.

Fills an array of graphics API-specific XrSwapchainImage structures. The resources must be constant and

valid for the lifetime of the XrSwapchain.

Runtimes must always return identical buffer contents from this enumeration for the lifetime of the

swapchain.

196 | Chapter 10. Rendering

Note: images is a pointer to an array of structures of graphics API-specific type, not an array of

structure pointers.

The pointer submitted as images will be treated as an array of the expected graphics API-specific type

based on the graphics API used at session creation time. If the type member of any array element

accessed in this way does not match the expected value, the runtime must return

XR_ERROR_VALIDATION_FAILURE. Note

Under a typical memory model, a runtime must treat the supplied pointer as an

opaque blob beginning with XrSwapchainImageBaseHeader, until after it has verified

the XrSwapchainImageBaseHeader::type.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

• imageCountOutput must be a pointer to a uint32_t value

• If imageCapacityInput is not 0, images must be a pointer to an array of imageCapacityInput

XrSwapchainImageBaseHeader-based structures. See also: XrSwapchainImageD3D11KHR,

XrSwapchainImageD3D12KHR, XrSwapchainImageOpenGLESKHR,

XrSwapchainImageOpenGLKHR, XrSwapchainImageVulkanKHR

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

The XrSwapchainImageBaseHeader structure is defined as:

Chapter 10. Rendering | 197

typedef struct XrSwapchainImageBaseHeader {

 XrStructureType type;

 void* next;

} XrSwapchainImageBaseHeader;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

The XrSwapchainImageBaseHeader is a base structure that is extended by graphics API-specific

XrSwapchainImage* child structures.

Valid Usage (Implicit)

• type must be one of the following XrStructureType values:

XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR, XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR,

XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR, XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR,
XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

Before an application builds graphics API command buffers that refer to an image in a swapchain, it

must acquire the image from the swapchain. The acquire operation determines the index of the next

image to be used in the swapchain. The order in which images are acquired is undefined. The runtime

must allow the application to acquire more than one image from a single (non-static) swapchain at a

time, for example if the application implements a multiple frame deep rendering pipeline.

The xrAcquireSwapchainImage function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrAcquireSwapchainImage(

 XrSwapchain swapchain,

 const XrSwapchainImageAcquireInfo* acquireInfo,

 uint32_t* index);

198 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• swapchain is the swapchain from which to acquire an image.

• acquireInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrSwapchainImageAcquireInfo.

• index is the returned image index that has been acquired.

Acquires the image corresponding to the index position in the array returned by

xrEnumerateSwapchainImages. The runtime must return XR_ERROR_CALL_ORDER_INVALID if the next

available index has already been acquired and not yet released with xrReleaseSwapchainImage. If the

swapchain was created with the XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT set in XrSwapchainCreateInfo

::createFlags, this function must not have been previously called for this swapchain. The runtime

must return XR_ERROR_CALL_ORDER_INVALID if a swapchain created with the

XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT set in XrSwapchainCreateInfo::createFlags and this function has

been successfully called previously for this swapchain.

This function only provides the index of the swapchain image, for example for use in recording

command buffers. It does not wait for the image to be usable by the application. The application must

call xrWaitSwapchainImage for each "acquire" call before submitting graphics commands that write to

the image.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

• If acquireInfo is not NULL, acquireInfo must be a pointer to a valid

XrSwapchainImageAcquireInfo structure

• index must be a pointer to a uint32_t value

Chapter 10. Rendering | 199

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_CALL_ORDER_INVALID

The XrSwapchainImageAcquireInfo structure is defined as:

typedef struct XrSwapchainImageAcquireInfo {

 XrStructureType type;

 const void* next;

} XrSwapchainImageAcquireInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrAcquireSwapchainImage

will accept a NULL argument for xrAcquireSwapchainImage::acquireInfo for applications that are not

using any relevant extensions.

Valid Usage (Implicit)

• type must be XR_TYPE_SWAPCHAIN_IMAGE_ACQUIRE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

200 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

The xrWaitSwapchainImage function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrWaitSwapchainImage(

 XrSwapchain swapchain,

 const XrSwapchainImageWaitInfo* waitInfo);

Parameter Descriptions

• swapchain is the swapchain from which to wait for an image.

• waitInfo is a pointer to an XrSwapchainImageWaitInfo structure.

Before an application begins writing to a swapchain image, it must first wait on the image, to avoid

writing to it before the compositor has finished reading from it. xrWaitSwapchainImage will implicitly

wait on the oldest acquired swapchain image which has not yet been successfully waited on. Once a

swapchain image has been successfully waited on without timeout, the app must release before

waiting on the next acquired swapchain image.

This function may block for longer than the timeout specified in XrSwapchainImageWaitInfo due to

scheduling or contention.

If the timeout expires without the image becoming available for writing, XR_TIMEOUT_EXPIRED must be

returned. If xrWaitSwapchainImage returns XR_TIMEOUT_EXPIRED, the next call to

xrWaitSwapchainImage will wait on the same image index again until the function succeeds with

XR_SUCCESS. Note that this is not an error code; XR_SUCCEEDED(XR_TIMEOUT_EXPIRED) is true.

The runtime must eventually relinquish ownership of a swapchain image to the application and must

not block indefinitely.

The runtime must return XR_ERROR_CALL_ORDER_INVALID if no image has been acquired by calling

xrAcquireSwapchainImage.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

• waitInfo must be a pointer to a valid XrSwapchainImageWaitInfo structure

Chapter 10. Rendering | 201

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_TIMEOUT_EXPIRED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_CALL_ORDER_INVALID

The XrSwapchainImageWaitInfo structure describes a swapchain image wait operation. It is defined

as:

typedef struct XrSwapchainImageWaitInfo {

 XrStructureType type;

 const void* next;

 XrDuration timeout;

} XrSwapchainImageWaitInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• timeout indicates how many nanoseconds the call may block waiting for the image to become

available for writing.

202 | Chapter 10. Rendering

Valid Usage (Implicit)

• type must be XR_TYPE_SWAPCHAIN_IMAGE_WAIT_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

Once an application is done submitting commands that reference the swapchain image, the application

must release the swapchain image. xrReleaseSwapchainImage will implicitly release the oldest

swapchain image which has been acquired. The swapchain image must have been successfully waited

on without timeout before it is released. xrEndFrame will use the most recently released swapchain

image. In each frame submitted to the compositor, only one image index from each swapchain will be

used. Note that in case the swapchain contains 2D image arrays, one array is referenced per swapchain

index and thus the whole image array may be used in one frame.

The xrReleaseSwapchainImage function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrReleaseSwapchainImage(

 XrSwapchain swapchain,

 const XrSwapchainImageReleaseInfo* releaseInfo);

Parameter Descriptions

• swapchain is the XrSwapchain from which to release an image.

• releaseInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrSwapchainImageReleaseInfo.

If the swapchain was created with the XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT set in

XrSwapchainCreateInfo::createFlags structure, this function must not have been previously called for

this swapchain.

The runtime must return XR_ERROR_CALL_ORDER_INVALID if no image has been waited on by calling

xrWaitSwapchainImage.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

• If releaseInfo is not NULL, releaseInfo must be a pointer to a valid

XrSwapchainImageReleaseInfo structure

Chapter 10. Rendering | 203

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_CALL_ORDER_INVALID

The XrSwapchainImageReleaseInfo structure is defined as:

typedef struct XrSwapchainImageReleaseInfo {

 XrStructureType type;

 const void* next;

} XrSwapchainImageReleaseInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrReleaseSwapchainImage

will accept a NULL argument for xrReleaseSwapchainImage::releaseInfo for applications that are not

using any relevant extensions.

Valid Usage (Implicit)

• type must be XR_TYPE_SWAPCHAIN_IMAGE_RELEASE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

204 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

10.2. View and Projection State

An application uses xrLocateViews to retrieve the viewer pose and projection parameters needed to

render each view for use in a composition projection layer.

The xrLocateViews function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrLocateViews(

 XrSession session,

 const XrViewLocateInfo* viewLocateInfo,

 XrViewState* viewState,

 uint32_t viewCapacityInput,

 uint32_t* viewCountOutput,

 XrView* views);

Parameter Descriptions

• session is a handle to the provided XrSession.

• viewLocateInfo is a pointer to a valid XrViewLocateInfo structure.

• viewState is the output structure with the viewer state information.

• viewCapacityInput is an input parameter which specifies the capacity of the views array. The

required capacity must be same as defined by the corresponding XrViewConfigurationType.

• viewCountOutput is an output parameter which identifies the valid count of views.

• views is an array of XrView.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

views size.

The xrLocateViews function returns the view and projection info for a particular display time. This

time is typically the target display time for a given frame. Repeatedly calling xrLocateViews with the

same time may not necessarily return the same result. Instead the prediction gets increasingly

accurate as the function is called closer to the given time for which a prediction is made. This allows an

application to get the predicted views as late as possible in its pipeline to get the least amount of

latency and prediction error.

xrLocateViews returns an array of XrView elements, one for each view of the specified view

configuration type, along with an XrViewState containing additional state data shared across all views.

The eye each view corresponds to is statically defined in XrViewConfigurationType in case the

application wants to apply eye-specific rendering traits. The XrViewState and XrView member data

Chapter 10. Rendering | 205

may change on subsequent calls to xrLocateViews, and so applications must not assume it to be

constant.

If an application gives a viewLocateInfo with a XrViewLocateInfo::viewConfigurationType that was not

passed in the session’s call to xrBeginSession via the XrSessionBeginInfo::

primaryViewConfigurationType, or enabled though an extension, then the runtime must return

XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• viewLocateInfo must be a pointer to a valid XrViewLocateInfo structure

• viewState must be a pointer to an XrViewState structure

• viewCountOutput must be a pointer to a uint32_t value

• If viewCapacityInput is not 0, views must be a pointer to an array of viewCapacityInput XrView

structures

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_TIME_INVALID

The XrViewLocateInfo structure is defined as:

206 | Chapter 10. Rendering

typedef struct XrViewLocateInfo {

 XrStructureType type;

 const void* next;

 XrViewConfigurationType viewConfigurationType;

 XrTime displayTime;

 XrSpace space;

} XrViewLocateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• viewConfigurationType is XrViewConfigurationType to query for.

• displayTime is the time for which the view poses are predicted.

• space is the XrSpace in which the pose in each XrView is expressed.

The XrViewLocateInfo structure contains the display time and space used to locate the view XrView

structures.

The runtime must return error XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED if the given

viewConfigurationType is not one of the supported type reported by xrEnumerateViewConfigurations.

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW_LOCATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewConfigurationType must be a valid XrViewConfigurationType value

• space must be a valid XrSpace handle

The XrView structure is defined as:

typedef struct XrView {

 XrStructureType type;

 void* next;

 XrPosef pose;

 XrFovf fov;

} XrView;

Chapter 10. Rendering | 207

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• pose is an XrPosef defining the location and orientation of the view in the space specified by

the xrLocateViews function.

• fov is the XrFovf for the four sides of the projection.

The XrView structure contains view pose and projection state necessary to render a single projection

view in the view configuration.

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrViewState structure is defined as:

typedef struct XrViewState {

 XrStructureType type;

 void* next;

 XrViewStateFlags viewStateFlags;

} XrViewState;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• viewStateFlags is a bitmask of XrViewStateFlagBits indicating state for all views.

The XrViewState contains additional view state from xrLocateViews common to all views of the active

view configuration.

208 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW_STATE

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewStateFlags must be 0 or a valid combination of XrViewStateFlagBits values

The XrViewStateFlags specifies the validity and quality of the corresponding XrView array returned by

xrLocateViews. The XrViewState::viewStateFlags member is of this type, and contains a bitwise-OR of

zero or more of the bits defined in XrViewStateFlagBits.

typedef XrFlags64 XrViewStateFlags;

Valid bits for XrViewStateFlags are defined by XrViewStateFlagBits, which is specified as:

// Flag bits for XrViewStateFlags

static const XrViewStateFlags XR_VIEW_STATE_ORIENTATION_VALID_BIT = 0x00000001;

static const XrViewStateFlags XR_VIEW_STATE_POSITION_VALID_BIT = 0x00000002;

static const XrViewStateFlags XR_VIEW_STATE_ORIENTATION_TRACKED_BIT = 0x00000004;

static const XrViewStateFlags XR_VIEW_STATE_POSITION_TRACKED_BIT = 0x00000008;

The flag bits have the following meanings:

Chapter 10. Rendering | 209

#valid-usage-for-structure-pointer-chains

Flag Descriptions

• XR_VIEW_STATE_ORIENTATION_VALID_BIT indicates whether all XrView orientations contain valid

data. Applications must not read any of the XrView pose orientation fields if this flag is unset.

XR_VIEW_STATE_ORIENTATION_TRACKED_BIT should generally remain set when this bit is set for

views on a tracked headset or handheld device.

• XR_VIEW_STATE_POSITION_VALID_BIT indicates whether all XrView positions contain valid data.

Applications must not read any of the XrView::pose position fields if this flag is unset. When

a view loses tracking, runtimes should continue to provide valid but untracked view position

values that are inferred or last-known, so long as it’s still meaningful for the application to

render content using that position, clearing XR_VIEW_STATE_POSITION_TRACKED_BIT until

tracking is recovered.

• XR_VIEW_STATE_ORIENTATION_TRACKED_BIT indicates whether all XrView orientations represent

an actively tracked orientation. This bit should generally remain set when

XR_VIEW_STATE_ORIENTATION_VALID_BIT is set for views on a tracked headset or handheld

device.

• XR_VIEW_STATE_POSITION_TRACKED_BIT indicates whether all XrView positions represent an

actively tracked position. When a view loses tracking, runtimes should continue to provide

valid but untracked view position values that are inferred or last-known, e.g. based on neck

model updates, inertial dead reckoning, or a last-known position, so long as it’s still

meaningful for the application to render content using that position.

10.3. Frame Synchronization

An application synchronizes its rendering loop to the runtime by calling xrWaitFrame.

The xrWaitFrame function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrWaitFrame(

 XrSession session,

 const XrFrameWaitInfo* frameWaitInfo,

 XrFrameState* frameState);

210 | Chapter 10. Rendering

Parameter Descriptions

• session is a valid XrSession handle.

• frameWaitInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrFrameWaitInfo.

• frameState is a pointer to a valid XrFrameState, an output parameter.

xrWaitFrame throttles the application frame loop in order to synchronize application frame

submissions with the display. xrWaitFrame returns a predicted display time for the next time that the

runtime predicts a composited frame will be displayed. The runtime may affect this computation by

changing the return values and throttling of xrWaitFrame in response to feedback from frame

submission and completion times in xrEndFrame. A subsequent xrWaitFrame call must block until the

previous frame has been begun with xrBeginFrame and must unblock independently of the

corresponding call to xrEndFrame. Refer to xrBeginSession for details on how a transition to session

running resets the frame function call order.

When less than one frame interval has passed since the previous return from xrWaitFrame, the

runtime should block until the beginning of the next frame interval. If more than one frame interval

has passed since the last return from xrWaitFrame, the runtime may return immediately or block until

the beginning of the next frame interval.

In the case that an application has pipelined frame submissions, the application should compute the

appropriate target display time using both the predicted display time and predicted display interval.

The application should use the computed target display time when requesting space and view

locations for rendering.

The XrFrameState::predictedDisplayTime returned by xrWaitFrame must be monotonically increasing.

The runtime may dynamically adjust the start time of the frame interval relative to the display

hardware’s refresh cycle to minimize graphics processor contention between the application and the

compositor.

xrWaitFrame must be callable from any thread, including a different thread than xrBeginFrame

/xrEndFrame are being called from.

Calling xrWaitFrame must be externally synchronized by the application, concurrent calls may result

in undefined behavior.

The runtime must return XR_ERROR_SESSION_NOT_RUNNING if the session is not running.

Chapter 10. Rendering | 211

 Note

The engine simulation should advance based on the display time. Every stage in the

engine pipeline should use the exact same display time for one particular application-

generated frame. An accurate and consistent display time across all stages and

threads in the engine pipeline is important to avoid object motion judder. If the

application has multiple pipeline stages, the application should pass its computed

display time through its pipeline, as xrWaitFrame must be called only once per frame.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• If frameWaitInfo is not NULL, frameWaitInfo must be a pointer to a valid XrFrameWaitInfo

structure

• frameState must be a pointer to an XrFrameState structure

Thread Safety

• Access to the session parameter by any other xrWaitFrame call must be externally

synchronized

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SESSION_NOT_RUNNING

The XrFrameWaitInfo structure is defined as:

212 | Chapter 10. Rendering

typedef struct XrFrameWaitInfo {

 XrStructureType type;

 const void* next;

} XrFrameWaitInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrWaitFrame must accept a

NULL argument for xrWaitFrame::frameWaitInfo for applications that are not using any relevant

extensions.

Valid Usage (Implicit)

• type must be XR_TYPE_FRAME_WAIT_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrFrameState structure is defined as:

typedef struct XrFrameState {

 XrStructureType type;

 void* next;

 XrTime predictedDisplayTime;

 XrDuration predictedDisplayPeriod;

 XrBool32 shouldRender;

} XrFrameState;

Chapter 10. Rendering | 213

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• predictedDisplayTime is the anticipated display XrTime for the next application-generated

frame.

• predictedDisplayPeriod is the XrDuration of the display period for the next application-

generated frame, for use in predicting display times beyond the next one.

• shouldRender is XR_TRUE if the application should render its layers as normal and submit them

to xrEndFrame. When this value is XR_FALSE, the application should avoid heavy GPU work

where possible, for example by skipping layer rendering and then omitting those layers

when calling xrEndFrame.

XrFrameState describes the time at which the next frame will be displayed to the user.

predictedDisplayTime must refer to the midpoint of the interval during which the frame is displayed.

The runtime may report a different predictedDisplayPeriod from the hardware’s refresh cycle.

For any frame where shouldRender is XR_FALSE, the application should avoid heavy GPU work for that

frame, for example by not rendering its layers. This typically happens when the application is

transitioning into or out of a running session, or when some system UI is fully covering the application

at the moment. As long as the session is running, the application should keep running the frame loop

to maintain the frame synchronization to the runtime, even if this requires calling xrEndFrame with

all layers omitted.

Valid Usage (Implicit)

• type must be XR_TYPE_FRAME_STATE

• next must be NULL or a valid pointer to the next structure in a structure chain

10.4. Frame Submission

Every application must call xrBeginFrame before calling xrEndFrame, and should call xrEndFrame

before calling xrBeginFrame again. Calling xrEndFrame again without a prior call to xrBeginFrame

must result in XR_ERROR_CALL_ORDER_INVALID being returned by xrEndFrame. An application may call

xrBeginFrame again if the prior xrEndFrame fails or if the application wishes to discard an in-progress

frame. A successful call to xrBeginFrame again with no intervening xrEndFrame call must result in the

success code XR_FRAME_DISCARDED being returned from xrBeginFrame. In this case it is assumed that the

xrBeginFrame refers to the next frame and the previously begun frame is forfeited by the application.

An application may call xrEndFrame without having called xrReleaseSwapchainImage since the

214 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

previous call to xrEndFrame for any swapchain passed to xrEndFrame. Applications should call

xrBeginFrame right before executing any graphics device work for a given frame, as opposed to calling

it afterwards. The runtime must only compose frames whose xrBeginFrame and xrEndFrame both

return success codes. While xrBeginFrame and xrEndFrame do not need to be called on the same

thread, the application must handle synchronization if they are called on separate threads.

The xrBeginFrame function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrBeginFrame(

 XrSession session,

 const XrFrameBeginInfo* frameBeginInfo);

Parameter Descriptions

• session is a valid XrSession handle.

• frameBeginInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrFrameBeginInfo.

xrBeginFrame is called prior to the start of frame rendering. The application should still call

xrBeginFrame but omit rendering work for the frame if XrFrameState::shouldRender is XR_FALSE.

Runtimes must not perform frame synchronization or throttling through the xrBeginFrame function

and should instead do so through xrWaitFrame.

The runtime must return the error code XR_ERROR_CALL_ORDER_INVALID if there was no corresponding

successful call to xrWaitFrame. The runtime must return the success code XR_FRAME_DISCARDED if a prior

xrBeginFrame has been called without an intervening call to xrEndFrame. Refer to xrBeginSession for

details on how a transition to session running resets the frame function call order.

The runtime must return XR_ERROR_SESSION_NOT_RUNNING if the session is not running.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• If frameBeginInfo is not NULL, frameBeginInfo must be a pointer to a valid XrFrameBeginInfo

structure

Chapter 10. Rendering | 215

Thread Safety

• Access to the session parameter by any other xrBeginFrame or xrEndFrame call must be

externally synchronized

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_FRAME_DISCARDED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SESSION_NOT_RUNNING

• XR_ERROR_CALL_ORDER_INVALID

The XrFrameBeginInfo structure is defined as:

typedef struct XrFrameBeginInfo {

 XrStructureType type;

 const void* next;

} XrFrameBeginInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrBeginFrame will accept a

216 | Chapter 10. Rendering

NULL argument for xrBeginFrame::frameBeginInfo for applications that are not using any relevant

extensions.

Valid Usage (Implicit)

• type must be XR_TYPE_FRAME_BEGIN_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

The xrEndFrame function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEndFrame(

 XrSession session,

 const XrFrameEndInfo* frameEndInfo);

Parameter Descriptions

• session is a valid XrSession handle.

• frameEndInfo is a pointer to a valid XrFrameEndInfo.

xrEndFrame may return immediately to the application. XrFrameEndInfo::displayTime should be

computed using values returned by xrWaitFrame. The runtime should be robust against variations in

the timing of calls to xrWaitFrame, since a pipelined system may call xrWaitFrame on a separate

thread from xrBeginFrame and xrEndFrame without any synchronization guarantees. Note

An accurate predicted display time is very important to avoid black pull-in by

reprojection and to reduce motion judder in case the runtime does not implement a

translational reprojection. Reprojection should never display images before the

display refresh period they were predicted for, even if they are completed early,

because this will cause motion judder just the same. In other words, the better the

predicted display time, the less latency experienced by the user.

Every call to xrEndFrame must be preceded by a successful call to xrBeginFrame. Failure to do so

must result in XR_ERROR_CALL_ORDER_INVALID being returned by xrEndFrame. Refer to xrBeginSession

for details on how a transition to session running resets the frame function call order. XrFrameEndInfo

may reference swapchains into which the application has rendered for this frame. From each

XrSwapchain only one image index is implicitly referenced per frame, the one corresponding to the

last call to xrReleaseSwapchainImage. However, a specific swapchain (and by extension a specific

Chapter 10. Rendering | 217

#valid-usage-for-structure-pointer-chains

swapchain image index) may be referenced in XrFrameEndInfo multiple times. This can be used for

example to render a side by side image into a single swapchain image and referencing it twice with

differing image rectangles in different layers.

If no layers are provided then the display must be cleared.

XR_ERROR_LAYER_INVALID must be returned if an unknown, unsupported layer type, or NULL pointer is

passed as one of the XrFrameEndInfo::layers.

XR_ERROR_LAYER_INVALID must be returned if a layer references a swapchain that has no released

swapchain image.

XR_ERROR_LAYER_LIMIT_EXCEEDED must be returned if XrFrameEndInfo::layerCount exceeds

XrSystemGraphicsProperties::maxLayerCount or if the runtime is unable to composite the specified

layers due to resource constraints.

XR_ERROR_SWAPCHAIN_RECT_INVALID must be returned if XrFrameEndInfo::layers contains a composition

layer which references pixels outside of the associated swapchain image or if negatively sized.

XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED must be returned if

XrFrameEndInfo::environmentBlendMode is not supported.

XR_ERROR_SESSION_NOT_RUNNING must be returned if the session is not running. Note

Applications should discard frames for which xrEndFrame returns a recoverable

error over attempting to resubmit the frame with different frame parameters to

provide a more consistent experience across different runtime implementations.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• frameEndInfo must be a pointer to a valid XrFrameEndInfo structure

Thread Safety

• Access to the session parameter by any other xrBeginFrame or xrEndFrame call must be

externally synchronized

218 | Chapter 10. Rendering

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

• XR_ERROR_SWAPCHAIN_RECT_INVALID

• XR_ERROR_SESSION_NOT_RUNNING

• XR_ERROR_POSE_INVALID

• XR_ERROR_LAYER_LIMIT_EXCEEDED

• XR_ERROR_LAYER_INVALID

• XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED

• XR_ERROR_CALL_ORDER_INVALID

The XrFrameEndInfo structure is defined as:

typedef struct XrFrameEndInfo {

 XrStructureType type;

 const void* next;

 XrTime displayTime;

 XrEnvironmentBlendMode environmentBlendMode;

 uint32_t layerCount;

 const XrCompositionLayerBaseHeader* const* layers;

} XrFrameEndInfo;

Chapter 10. Rendering | 219

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• displayTime is the XrTime at which this frame should be displayed.

• environmentBlendMode is the XrEnvironmentBlendMode value representing the desired

environment blend mode for this frame.

• layerCount is the number of composition layers in this frame. The maximum supported layer

count is identified by XrSystemGraphicsProperties::maxLayerCount. If layerCount is greater

than the maximum supported layer count then XR_ERROR_LAYER_LIMIT_EXCEEDED must be

returned.

• layers is a pointer to an array of XrCompositionLayerBaseHeader pointers.

Valid Usage (Implicit)

• type must be XR_TYPE_FRAME_END_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• environmentBlendMode must be a valid XrEnvironmentBlendMode value

• If layerCount is not 0, layers must be a pointer to an array of layerCount valid

XrCompositionLayerBaseHeader-based structures. See also: XrCompositionLayerCubeKHR,

XrCompositionLayerCylinderKHR, XrCompositionLayerEquirect2KHR,

XrCompositionLayerEquirectKHR, XrCompositionLayerProjection, XrCompositionLayerQuad

All layers submitted to xrEndFrame will be presented to the primary view configuration of the running

session.

10.5. Frame Rate

For every application-generated frame, the application may call xrEndFrame to submit the application-

generated composition layers. In addition, the application must call xrWaitFrame when the

application is ready to begin preparing the next set of frame layers. xrEndFrame may return

immediately to the application, but xrWaitFrame must block for an amount of time that depends on

throttling of the application by the runtime. The earliest the runtime will return from xrWaitFrame is

when it determines that the application should start drawing the next frame.

220 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

10.6. Compositing

Composition layers are submitted by the application via the xrEndFrame call. All composition layers to

be drawn must be submitted with every xrEndFrame call. A layer that is omitted in this call will not be

drawn by the runtime layer compositor. All views associated with projection layers must be supplied,

or XR_ERROR_VALIDATION_FAILURE must be returned by xrEndFrame.

Composition layers must be drawn in the same order as they are specified in via XrFrameEndInfo,

with the 0th layer drawn first. Layers must be drawn with a "painter’s algorithm," with each

successive layer potentially overwriting the destination layers whether or not the new layers are

virtually closer to the viewer.

10.6.1. Composition Layer Flags

XrCompositionLayerFlags specifies options for individual composition layers, and contains a bitwise-

OR of zero or more of the bits defined in XrCompositionLayerFlagBits.

typedef XrFlags64 XrCompositionLayerFlags;

Valid bits for XrCompositionLayerFlags are defined by XrCompositionLayerFlagBits, which is specified

as:

// Flag bits for XrCompositionLayerFlags

static const XrCompositionLayerFlags

XR_COMPOSITION_LAYER_CORRECT_CHROMATIC_ABERRATION_BIT = 0x00000001;

static const XrCompositionLayerFlags XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT

= 0x00000002;

static const XrCompositionLayerFlags XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT =

0x00000004;

The flag bits have the following meanings:

Chapter 10. Rendering | 221

Flag Descriptions

• XR_COMPOSITION_LAYER_CORRECT_CHROMATIC_ABERRATION_BIT (deprecated — ignored)  — Enables

chromatic aberration correction when not done by default. This flag has no effect on any

known conformant runtime, and is officially deprecated in OpenXR 1.1.

• XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT  — Enables the layer texture alpha

channel.

• XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT  — Indicates the texture color channels have

not been premultiplied by the texture alpha channel.

10.6.2. Composition Layer Blending

All types of composition layers are subject to blending with other layers. Blending of layers can be

controlled by layer per-texel source alpha. Layer swapchain textures may contain an alpha channel,

depending on the image format. If a submitted swapchain’s texture format does not include an alpha

channel or if the XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT is unset, then the layer alpha is

initialized to one.

If the swapchain texture format color encoding is other than RGBA, it is converted to RGBA.

If the texture color channels are encoded without premultiplying by alpha, the

XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT should be set. The effect of this bit alters the layer

color as follows:

LayerColor.RGB *= LayerColor.A

LayerColor is then clamped to a range of [0.0, 1.0].

The layer blending operation is defined as:

CompositeColor = LayerColor + CompositeColor * (1 - LayerColor.A)

Before the first layer is composited, all components of CompositeColor are initialized to zero.

10.6.3. Composition Layer Types

Composition layers allow an application to offload the composition of the final image to a runtime-

supplied compositor. This reduces the application’s rendering complexity since details such as frame-

rate interpolation and distortion correction can be performed by the runtime. The core specification

defines XrCompositionLayerProjection and XrCompositionLayerQuad layer types.

The projection layer type represents planar projected images rendered from the eye point of each eye

222 | Chapter 10. Rendering

using a perspective projection. This layer type is typically used to render the virtual world from the

user’s perspective.

The quad layer type describes a posable planar rectangle in the virtual world for displaying two-

dimensional content. Quad layers can subtend a smaller portion of the display’s field of view, allowing

a better match between the resolutions of the XrSwapchain image and footprint of that image in the

final composition. This improves legibility for user interface elements or heads-up displays and allows

optimal sampling during any composition distortion corrections the runtime might employ.

The classes below describe the layer types in the layer composition system.

The XrCompositionLayerBaseHeader structure is defined as:

typedef struct XrCompositionLayerBaseHeader {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

} XrCompositionLayerBaseHeader;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.

• space is the XrSpace in which the layer will be kept stable over time.

All composition layer structures begin with the elements described in the

XrCompositionLayerBaseHeader. The XrCompositionLayerBaseHeader structure is not intended to be

directly used, but forms a basis for defining current and future structures containing composition

layer information. The XrFrameEndInfo structure contains an array of pointers to these polymorphic

header structures. All composition layer type pointers must be type-castable as an

XrCompositionLayerBaseHeader pointer.

Chapter 10. Rendering | 223

Valid Usage (Implicit)

• type must be one of the following XrStructureType values:

XR_TYPE_COMPOSITION_LAYER_CUBE_KHR, XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR,

XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR, XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR,

XR_TYPE_COMPOSITION_LAYER_PROJECTION, XR_TYPE_COMPOSITION_LAYER_QUAD

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrCompositionLayerColorScaleBiasKHR

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

Many composition layer structures also contain one or more references to generic layer data stored in

an XrSwapchainSubImage structure.

The XrSwapchainSubImage structure is defined as:

typedef struct XrSwapchainSubImage {

 XrSwapchain swapchain;

 XrRect2Di imageRect;

 uint32_t imageArrayIndex;

} XrSwapchainSubImage;

Member Descriptions

• swapchain is the XrSwapchain to be displayed.

• imageRect is an XrRect2Di representing the valid portion of the image to use, in pixels. It also

implicitly defines the transform from normalized image coordinates into pixel coordinates.

The coordinate origin depends on which graphics API is being used. See the graphics API

extension details for more information on the coordinate origin definition. Note that the

compositor may bleed in pixels from outside the bounds in some cases, for instance due to

mipmapping.

• imageArrayIndex is the image array index, with 0 meaning the first or only array element.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

224 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

Runtimes must return XR_ERROR_VALIDATION_FAILURE if the XrSwapchainSubImage::imageArrayIndex is

equal to or greater than the XrSwapchainCreateInfo::arraySize that the XrSwapchainSubImage

::swapchain was created with.

Projection Composition

The XrCompositionLayerProjection layer represents planar projected images rendered from the eye

point of each eye using a standard perspective projection.

The XrCompositionLayerProjection structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrCompositionLayerProjection {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 uint32_t viewCount;

 const XrCompositionLayerProjectionView* views;

} XrCompositionLayerProjection;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.

• space is the XrSpace in which the pose of each XrCompositionLayerProjectionView is

evaluated over time by the compositor.

• viewCount is the count of views in the views array. This must be equal to the number of view

poses returned by xrLocateViews.

• views is the array of type XrCompositionLayerProjectionView containing each projection

layer view.

Chapter 10. Rendering | 225

 Note

Because a runtime may reproject the layer over time, a projection layer should specify

an XrSpace in which to maximize stability of the layer content. For example, a

projection layer containing world-locked content should use an XrSpace which is also

world-locked, such as the LOCAL or STAGE reference spaces. In the case that the

projection layer should be head-locked, such as a heads up display, the VIEW reference

space would provide the highest quality layer reprojection.

Valid Usage (Implicit)

• type must be XR_TYPE_COMPOSITION_LAYER_PROJECTION

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• views must be a pointer to an array of viewCount valid XrCompositionLayerProjectionView

structures

• The viewCount parameter must be greater than 0

The XrCompositionLayerProjectionView structure is defined as:

typedef struct XrCompositionLayerProjectionView {

 XrStructureType type;

 const void* next;

 XrPosef pose;

 XrFovf fov;

 XrSwapchainSubImage subImage;

} XrCompositionLayerProjectionView;

226 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• pose is an XrPosef defining the location and orientation of this projection element in the space

of the corresponding XrCompositionLayerProjectionView.

• fov is the XrFovf for this projection element.

• subImage is the image layer XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

The count and order of view poses submitted with XrCompositionLayerProjection must be the same

order as that returned by xrLocateViews. The XrCompositionLayerProjectionView::pose and

XrCompositionLayerProjectionView::fov should almost always derive from XrView::pose and XrView

::fov as found in the xrLocateViews::views array. However, applications may submit an

XrCompositionLayerProjectionView which has a different view or FOV than that from xrLocateViews.

In this case, the runtime will map the view and FOV to the system display appropriately. In the case

that two submitted views within a single layer overlap, they must be composited in view array order.

Valid Usage (Implicit)

• type must be XR_TYPE_COMPOSITION_LAYER_PROJECTION_VIEW

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrCompositionLayerDepthInfoKHR

• subImage must be a valid XrSwapchainSubImage structure

Quad Layer Composition

The XrCompositionLayerQuad structure defined as:

Chapter 10. Rendering | 227

#valid-usage-for-structure-pointer-chains

// Provided by XR_VERSION_1_0

typedef struct XrCompositionLayerQuad {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchainSubImage subImage;

 XrPosef pose;

 XrExtent2Df size;

} XrCompositionLayerQuad;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.

• space is the XrSpace in which the pose of the quad layer is evaluated over time.

• eyeVisibility is the XrEyeVisibility for this layer.

• subImage is the image layer XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

• pose is an XrPosef defining the position and orientation of the quad in the reference frame of

the space.

• size is the width and height of the quad in meters.

The XrCompositionLayerQuad layer is useful for user interface elements or 2D content rendered into

the virtual world. The layer’s XrSwapchainSubImage::swapchain image is applied to a quad in the

virtual world space. Only front face of the quad surface is visible; the back face is not visible and must

not be drawn by the runtime. A quad layer has no thickness; it is a two-dimensional object positioned

and oriented in 3D space. The position of a quad refers to the center of the quad within the given

XrSpace. The orientation of the quad refers to the orientation of the normal vector from the front face.

The size of a quad refers to the quad’s size in the x-y plane of the given XrSpace’s coordinate system. A

quad with a position of {0,0,0}, rotation of {0,0,0,1} (no rotation), and a size of {1,1} refers to a 1 meter x

1 meter quad centered at {0,0,0} with its front face normal vector coinciding with the +z axis.

228 | Chapter 10. Rendering

Valid Usage (Implicit)

• type must be XR_TYPE_COMPOSITION_LAYER_QUAD

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• subImage must be a valid XrSwapchainSubImage structure

The XrEyeVisibility enum selects which of the viewer’s eyes to display a layer to:

typedef enum XrEyeVisibility {

 XR_EYE_VISIBILITY_BOTH = 0,

 XR_EYE_VISIBILITY_LEFT = 1,

 XR_EYE_VISIBILITY_RIGHT = 2,

 XR_EYE_VISIBILITY_MAX_ENUM = 0x7FFFFFFF

} XrEyeVisibility;

Enumerant Descriptions

• XR_EYE_VISIBILITY_BOTH displays the layer to both eyes.

• XR_EYE_VISIBILITY_LEFT displays the layer to the viewer’s physical left eye.

• XR_EYE_VISIBILITY_RIGHT displays the layer to the viewer’s physical right eye.

10.6.4. Environment Blend Mode

After the compositor has blended and flattened all layers (including any layers added by the runtime

itself), it will then present this image to the system’s display. The composited image will then blend

with the user’s view of the physical world behind the displays in one of three modes, based on the

application’s chosen environment blend mode. VR applications will generally choose the

XR_ENVIRONMENT_BLEND_MODE_OPAQUE blend mode, while AR applications will generally choose either the

XR_ENVIRONMENT_BLEND_MODE_ADDITIVE or XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND mode.

Applications select their environment blend mode each frame as part of their call to xrEndFrame. The

application can inspect the set of supported environment blend modes for a given system using

xrEnumerateEnvironmentBlendModes, and prepare their assets and rendering techniques differently

based on the blend mode they choose. For example, a black shadow rendered using the

Chapter 10. Rendering | 229

#valid-usage-for-structure-pointer-chains

XR_ENVIRONMENT_BLEND_MODE_ADDITIVE blend mode will appear transparent, and so an application in that

mode may render a glow as a grounding effect around the black shadow to ensure the shadow can be

seen. Similarly, an application designed for XR_ENVIRONMENT_BLEND_MODE_OPAQUE or

XR_ENVIRONMENT_BLEND_MODE_ADDITIVE rendering may choose to leave garbage in their alpha channel as a

side effect of a rendering optimization, but this garbage would appear as visible display artifacts if the

environment blend mode was instead XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND.

Not all systems will support all environment blend modes. For example, a VR headset may not support

the XR_ENVIRONMENT_BLEND_MODE_ADDITIVE or XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND modes unless it has

video passthrough, while an AR headset with an additive display may not support the

XR_ENVIRONMENT_BLEND_MODE_OPAQUE or XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND modes.

For devices that can support multiple environment blend modes, such as AR phones with video

passthrough, the runtime may optimize power consumption on the device in response to the

environment blend mode that the application chooses each frame. For example, if an application on a

video passthrough phone knows that it is currently rendering a 360-degree background covering all

screen pixels, it can submit frames with an environment blend mode of

XR_ENVIRONMENT_BLEND_MODE_OPAQUE, saving the runtime the cost of compositing a camera-based underlay

of the physical world behind the application’s layers.

The xrEnumerateEnvironmentBlendModes function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateEnvironmentBlendModes(

 XrInstance instance,

 XrSystemId systemId,

 XrViewConfigurationType viewConfigurationType,

 uint32_t environmentBlendModeCapacityInput,

 uint32_t* environmentBlendModeCountOutput,

 XrEnvironmentBlendMode* environmentBlendModes);

230 | Chapter 10. Rendering

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose environment blend modes will be enumerated.

• viewConfigurationType is the XrViewConfigurationType to enumerate.

• environmentBlendModeCapacityInput is the capacity of the environmentBlendModes array, or 0 to

indicate a request to retrieve the required capacity.

• environmentBlendModeCountOutput is a pointer to the count of environmentBlendModes written, or

a pointer to the required capacity in the case that environmentBlendModeCapacityInput is

insufficient.

• environmentBlendModes is a pointer to an array of XrEnvironmentBlendMode values, but can

be NULL if environmentBlendModeCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

environmentBlendModes size.

Enumerates the set of environment blend modes that this runtime supports for a given view

configuration of the system. Environment blend modes should be in order from highest to lowest

runtime preference.

Runtimes must always return identical buffer contents from this enumeration for the given systemId

and viewConfigurationType for the lifetime of the instance.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• viewConfigurationType must be a valid XrViewConfigurationType value

• environmentBlendModeCountOutput must be a pointer to a uint32_t value

• If environmentBlendModeCapacityInput is not 0, environmentBlendModes must be a pointer to an

array of environmentBlendModeCapacityInput XrEnvironmentBlendMode values

Chapter 10. Rendering | 231

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_SYSTEM_INVALID

The possible blend modes are specified by the XrEnvironmentBlendMode enumeration:

typedef enum XrEnvironmentBlendMode {

 XR_ENVIRONMENT_BLEND_MODE_OPAQUE = 1,

 XR_ENVIRONMENT_BLEND_MODE_ADDITIVE = 2,

 XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND = 3,

 XR_ENVIRONMENT_BLEND_MODE_MAX_ENUM = 0x7FFFFFFF

} XrEnvironmentBlendMode;

232 | Chapter 10. Rendering

Enumerant Descriptions

• XR_ENVIRONMENT_BLEND_MODE_OPAQUE. The composition layers will be displayed with no view of

the physical world behind them. The composited image will be interpreted as an RGB image,

ignoring the composited alpha channel. This is the typical mode for VR experiences, although

this mode can also be supported on devices that support video passthrough.

• XR_ENVIRONMENT_BLEND_MODE_ADDITIVE. The composition layers will be additively blended with

the real world behind the display. The composited image will be interpreted as an RGB image,

ignoring the composited alpha channel during the additive blending. This will cause black

composited pixels to appear transparent. This is the typical mode for an AR experience on a

see-through headset with an additive display, although this mode can also be supported on

devices that support video passthrough.

• XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND. The composition layers will be alpha-blended with

the real world behind the display. The composited image will be interpreted as an RGBA

image, with the composited alpha channel determining each pixel’s level of blending with the

real world behind the display. This is the typical mode for an AR experience on a phone or

headset that supports video passthrough.

Chapter 10. Rendering | 233

Chapter 11. Input and Haptics

11.1. Action Overview

OpenXR applications communicate with input devices using XrActions. Actions are created at

initialization time and later used to request input device state, create action spaces, or control haptic

events. Input action handles represent 'actions' that the application is interested in obtaining the state

of, not direct input device hardware. For example, instead of the application directly querying the state

of the A button when interacting with a menu, an OpenXR application instead creates a menu_select

action at startup then asks OpenXR for the state of the action.

The application recommends that the action be assigned to a specific input source on the input device

for a known interaction profile, but runtimes have the ability to choose a different control depending

on user preference, input device availability, or any other reason. This abstraction ensures that

applications can run on a wide variety of input hardware and maximize user accessibility.

Example usage:

XrInstance instance; // previously initialized

XrSession session; // previously initialized

// Create an action set

XrActionSetCreateInfo actionSetInfo{XR_TYPE_ACTION_SET_CREATE_INFO};

strcpy(actionSetInfo.actionSetName, "gameplay");

strcpy(actionSetInfo.localizedActionSetName, "Gameplay");

actionSetInfo.priority = 0;

XrActionSet inGameActionSet;

CHK_XR(xrCreateActionSet(instance, &actionSetInfo, &inGameActionSet));

// create a "teleport" input action

XrActionCreateInfo actioninfo{XR_TYPE_ACTION_CREATE_INFO};

strcpy(actioninfo.actionName, "teleport");

actioninfo.actionType = XR_ACTION_TYPE_BOOLEAN_INPUT;

strcpy(actioninfo.localizedActionName, "Teleport");

XrAction teleportAction;

CHK_XR(xrCreateAction(inGameActionSet, &actioninfo, &teleportAction));

// create a "player_hit" output action

XrActionCreateInfo hapticsactioninfo{XR_TYPE_ACTION_CREATE_INFO};

strcpy(hapticsactioninfo.actionName, "player_hit");

hapticsactioninfo.actionType = XR_ACTION_TYPE_VIBRATION_OUTPUT;

strcpy(hapticsactioninfo.localizedActionName, "Player hit");

XrAction hapticsAction;

CHK_XR(xrCreateAction(inGameActionSet, &hapticsactioninfo, &hapticsAction));

234 | Chapter 11. Input and Haptics

XrPath triggerClickPath, hapticPath;

CHK_XR(xrStringToPath(instance, "/user/hand/right/input/trigger/click",

&triggerClickPath));

CHK_XR(xrStringToPath(instance, "/user/hand/right/output/haptic", &hapticPath))

XrPath interactionProfilePath;

CHK_XR(xrStringToPath(instance, "/interaction_profiles/vendor_x/profile_x",

&interactionProfilePath));

XrActionSuggestedBinding bindings[2];

bindings[0].action = teleportAction;

bindings[0].binding = triggerClickPath;

bindings[1].action = hapticsAction;

bindings[1].binding = hapticPath;

XrInteractionProfileSuggestedBinding

suggestedBindings{XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING};

suggestedBindings.interactionProfile = interactionProfilePath;

suggestedBindings.suggestedBindings = bindings;

suggestedBindings.countSuggestedBindings = 2;

CHK_XR(xrSuggestInteractionProfileBindings(instance, &suggestedBindings));

XrSessionActionSetsAttachInfo attachInfo{XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO};

attachInfo.countActionSets = 1;

attachInfo.actionSets = &inGameActionSet;

CHK_XR(xrAttachSessionActionSets(session, &attachInfo));

// application main loop

while (1)

{

 // sync action data

 XrActiveActionSet activeActionSet{inGameActionSet, XR_NULL_PATH};

 XrActionsSyncInfo syncInfo{XR_TYPE_ACTIONS_SYNC_INFO};

 syncInfo.countActiveActionSets = 1;

 syncInfo.activeActionSets = &activeActionSet;

 CHK_XR(xrSyncActions(session, &syncInfo));

 // query input action state

 XrActionStateBoolean teleportState{XR_TYPE_ACTION_STATE_BOOLEAN};

 XrActionStateGetInfo getInfo{XR_TYPE_ACTION_STATE_GET_INFO};

 getInfo.action = teleportAction;

 CHK_XR(xrGetActionStateBoolean(session, &getInfo, &teleportState));

 if (teleportState.changedSinceLastSync && teleportState.currentState)

 {

 // fire haptics using output action

 XrHapticVibration vibration{XR_TYPE_HAPTIC_VIBRATION};

 vibration.amplitude = 0.5;

Chapter 11. Input and Haptics | 235

 vibration.duration = 300;

 vibration.frequency = 3000;

 XrHapticActionInfo hapticActionInfo{XR_TYPE_HAPTIC_ACTION_INFO};

 hapticActionInfo.action = hapticsAction;

 CHK_XR(xrApplyHapticFeedback(session, &hapticActionInfo, (const

XrHapticBaseHeader*)&vibration));

 }

}

11.2. Action Sets

XR_DEFINE_HANDLE(XrActionSet)

Action sets are application-defined collections of actions. They are attached to a given XrSession with a

xrAttachSessionActionSets call. They are enabled or disabled by the application via xrSyncActions

depending on the current application context. For example, a game may have one set of actions that

apply to controlling a character and another set for navigating a menu system. When these actions are

grouped into two XrActionSet handles they can be selectively enabled and disabled using a single

function call.

Actions are passed a handle to their XrActionSet when they are created.

Action sets are created by calling xrCreateActionSet:

The xrCreateActionSet function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateActionSet(

 XrInstance instance,

 const XrActionSetCreateInfo* createInfo,

 XrActionSet* actionSet);

236 | Chapter 11. Input and Haptics

Parameter Descriptions

• instance is a handle to an XrInstance.

• createInfo is a pointer to a valid XrActionSetCreateInfo structure that defines the action set

being created.

• actionSet is a pointer to an XrActionSet where the created action set is returned.

The xrCreateActionSet function creates an action set and returns a handle to the created action set.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• createInfo must be a pointer to a valid XrActionSetCreateInfo structure

• actionSet must be a pointer to an XrActionSet handle

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_PATH_FORMAT_INVALID

• XR_ERROR_NAME_INVALID

• XR_ERROR_NAME_DUPLICATED

• XR_ERROR_LOCALIZED_NAME_INVALID

• XR_ERROR_LOCALIZED_NAME_DUPLICATED

The XrActionSetCreateInfo structure is defined as:

Chapter 11. Input and Haptics | 237

typedef struct XrActionSetCreateInfo {

 XrStructureType type;

 const void* next;

 char actionSetName[XR_MAX_ACTION_SET_NAME_SIZE];

 char localizedActionSetName[XR_MAX_LOCALIZED_ACTION_SET_NAME_SIZE];

 uint32_t priority;

} XrActionSetCreateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• actionSetName is an array containing a NULL terminated non-empty string with the name of

this action set.

• localizedActionSetName is an array containing a NULL terminated UTF-8 string that can be

presented to the user as a description of the action set. This string should be presented in the

system’s current active locale.

• priority defines which action sets' actions are active on a given input source when actions on

multiple active action sets are bound to the same input source. Larger priority numbers take

precedence over smaller priority numbers.

When multiple actions are bound to the same input source, the priority of each action set determines

which bindings are suppressed. Runtimes must ignore input sources from action sets with a lower

priority number if those specific input sources are also present in active actions within a higher

priority action set. If multiple action sets with the same priority are bound to the same input source

and that is the highest priority number, runtimes must process all those bindings at the same time.

Two actions are considered to be bound to the same input source if they use the same identifier and

optional location path segments, even if they have different component segments.

When runtimes are ignoring bindings because of priority, they must treat the binding to that input

source as though they do not exist. That means the isActive field must be XR_FALSE when retrieving

action data, and that the runtime must not provide any visual, haptic, or other feedback related to the

binding of that action to that input source. Other actions in the same action set which are bound to

input sources that do not collide are not affected and are processed as normal.

If actionSetName or localizedActionSetName are empty strings, the runtime must return

XR_ERROR_NAME_INVALID or XR_ERROR_LOCALIZED_NAME_INVALID respectively. If actionSetName or

localizedActionSetName are duplicates of the corresponding field for any existing action set in the

specified instance, the runtime must return XR_ERROR_NAME_DUPLICATED or

XR_ERROR_LOCALIZED_NAME_DUPLICATED respectively. If the conflicting action set is destroyed, the

238 | Chapter 11. Input and Haptics

conflicting field is no longer considered duplicated. If actionSetName contains characters which are not

allowed in a single level of a well-formed path string, the runtime must return

XR_ERROR_PATH_FORMAT_INVALID.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_SET_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• actionSetName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_ACTION_SET_NAME_SIZE

• localizedActionSetName must be a null-terminated UTF-8 string whose length is less than or

equal to XR_MAX_LOCALIZED_ACTION_SET_NAME_SIZE

The xrDestroyActionSet function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroyActionSet(

 XrActionSet actionSet);

Parameter Descriptions

• actionSet is the action set to destroy.

Action set handles can be destroyed by calling xrDestroyActionSet. When an action set handle is

destroyed, all handles of actions in that action set are also destroyed.

The implementation must not free underlying resources for the action set while there are other valid

handles that refer to those resources. The implementation may release resources for an action set

when all of the action spaces for actions in that action set have been destroyed. See Action Spaces

Lifetime for details.

Resources for all action sets in an instance must be freed when the instance containing those actions

sets is destroyed.

Valid Usage (Implicit)

• actionSet must be a valid XrActionSet handle

Chapter 11. Input and Haptics | 239

#valid-usage-for-structure-pointer-chains

Thread Safety

• Access to actionSet, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

11.3. Creating Actions

XR_DEFINE_HANDLE(XrAction)

Action handles are used to refer to individual actions when retrieving action data, creating action

spaces, or sending haptic events.

The xrCreateAction function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateAction(

 XrActionSet actionSet,

 const XrActionCreateInfo* createInfo,

 XrAction* action);

Parameter Descriptions

• actionSet is a handle to an XrActionSet.

• createInfo is a pointer to a valid XrActionCreateInfo structure that defines the action being

created.

• action is a pointer to an XrAction where the created action is returned.

xrCreateAction creates an action and returns its handle.

240 | Chapter 11. Input and Haptics

If actionSet has been included in a call to xrAttachSessionActionSets, the implementation must return

XR_ERROR_ACTIONSETS_ALREADY_ATTACHED.

Valid Usage (Implicit)

• actionSet must be a valid XrActionSet handle

• createInfo must be a pointer to a valid XrActionCreateInfo structure

• action must be a pointer to an XrAction handle

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_PATH_FORMAT_INVALID

• XR_ERROR_NAME_INVALID

• XR_ERROR_NAME_DUPLICATED

• XR_ERROR_LOCALIZED_NAME_INVALID

• XR_ERROR_LOCALIZED_NAME_DUPLICATED

• XR_ERROR_ACTIONSETS_ALREADY_ATTACHED

The XrActionCreateInfo structure is defined as:

Chapter 11. Input and Haptics | 241

typedef struct XrActionCreateInfo {

 XrStructureType type;

 const void* next;

 char actionName[XR_MAX_ACTION_NAME_SIZE];

 XrActionType actionType;

 uint32_t countSubactionPaths;

 const XrPath* subactionPaths;

 char localizedActionName[XR_MAX_LOCALIZED_ACTION_NAME_SIZE];

} XrActionCreateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• actionName is an array containing a NULL terminated string with the name of this action.

• actionType is the XrActionType of the action to be created.

• countSubactionPaths is the number of elements in the subactionPaths array. If subactionPaths

is NULL, this parameter must be 0.

• subactionPaths is an array of XrPath or NULL. If this array is specified, it contains one or more

subaction paths that the application intends to query action state for.

• localizedActionName is an array containing a NULL terminated UTF-8 string that can be

presented to the user as a description of the action. This string should be in the system’s

current active locale.

Subaction paths are a mechanism that enables applications to use the same action name and handle on

multiple devices. Applications can query action state using subaction paths that differentiate data

coming from each device. This allows the runtime to group logically equivalent actions together in

system UI. For instance, an application could create a single pick_up action with the /user/hand/left and

/user/hand/right subaction paths and use the subaction paths to independently query the state of

pick_up_with_left_hand and pick_up_with_right_hand.

Applications can create actions with or without the subactionPaths set to a list of paths. If this list of

paths is omitted (i.e. subactionPaths is set to NULL, and countSubactionPaths is set to 0), the application is

opting out of filtering action results by subaction paths and any call to get action data must also omit

subaction paths.

If subactionPaths is specified and any of the following conditions are not satisfied, the runtime must

return XR_ERROR_PATH_UNSUPPORTED:

• Each path provided is one of:

242 | Chapter 11. Input and Haptics

◦ /user/head

◦ /user/hand/left

◦ /user/hand/right

◦ /user/gamepad

• No path appears in the list more than once

Extensions may append additional top level user paths to the above list. Note

Earlier revisions of the spec mentioned /user but it could not be implemented as

specified and was removed as errata.

The runtime must return XR_ERROR_PATH_UNSUPPORTED in the following circumstances:

• The application specified subaction paths at action creation and the application called

xrGetActionState* or a haptic function with an empty subaction path array.

• The application called xrGetActionState* or a haptic function with a subaction path that was not

specified when the action was created.

If actionName or localizedActionName are empty strings, the runtime must return XR_ERROR_NAME_INVALID

or XR_ERROR_LOCALIZED_NAME_INVALID respectively. If actionName or localizedActionName are duplicates of

the corresponding field for any existing action in the specified action set, the runtime must return

XR_ERROR_NAME_DUPLICATED or XR_ERROR_LOCALIZED_NAME_DUPLICATED respectively. If the conflicting action is

destroyed, the conflicting field is no longer considered duplicated. If actionName contains characters

which are not allowed in a single level of a well-formed path string, the runtime must return

XR_ERROR_PATH_FORMAT_INVALID.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• actionName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_ACTION_NAME_SIZE

• actionType must be a valid XrActionType value

• If countSubactionPaths is not 0, subactionPaths must be a pointer to an array of

countSubactionPaths valid XrPath values

• localizedActionName must be a null-terminated UTF-8 string whose length is less than or

equal to XR_MAX_LOCALIZED_ACTION_NAME_SIZE

The XrActionType parameter takes one of the following values:

Chapter 11. Input and Haptics | 243

#valid-usage-for-structure-pointer-chains

typedef enum XrActionType {

 XR_ACTION_TYPE_BOOLEAN_INPUT = 1,

 XR_ACTION_TYPE_FLOAT_INPUT = 2,

 XR_ACTION_TYPE_VECTOR2F_INPUT = 3,

 XR_ACTION_TYPE_POSE_INPUT = 4,

 XR_ACTION_TYPE_VIBRATION_OUTPUT = 100,

 XR_ACTION_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrActionType;

Enumerant Descriptions

• XR_ACTION_TYPE_BOOLEAN_INPUT. The action can be passed to xrGetActionStateBoolean to

retrieve a boolean value.

• XR_ACTION_TYPE_FLOAT_INPUT. The action can be passed to xrGetActionStateFloat to retrieve a

float value.

• XR_ACTION_TYPE_VECTOR2F_INPUT. The action can be passed to xrGetActionStateVector2f to

retrieve a 2D float vector.

• XR_ACTION_TYPE_POSE_INPUT. The action can can be passed to xrCreateActionSpace to create a

space.

• XR_ACTION_TYPE_VIBRATION_OUTPUT. The action can be passed to xrApplyHapticFeedback to send

a haptic event to the runtime.

The xrDestroyAction function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroyAction(

 XrAction action);

Parameter Descriptions

• action is the action to destroy.

Action handles can be destroyed by calling xrDestroyAction. Handles for actions that are part of an

action set are automatically destroyed when the action set’s handle is destroyed.

The implementation must not destroy the underlying resources for an action when xrDestroyAction is

244 | Chapter 11. Input and Haptics

called. Those resources are still used to make action spaces locatable and when processing action

priority in xrSyncActions. Destroying the action handle removes the application’s access to these

resources, but has no other change on actions.

Resources for all actions in an instance must be freed when the instance containing those actions sets

is destroyed.

Valid Usage (Implicit)

• action must be a valid XrAction handle

Thread Safety

• Access to action, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

11.3.1. Input Actions & Output Actions

Input actions are used to read sensors like buttons or joysticks while output actions are used for

triggering haptics or motion platforms. The type of action created by xrCreateAction depends on the

value of the XrActionType argument.

A given action can either be used for either input or output, but not both. Input actions are queried

using one of the xrGetActionState* function calls, while output actions are set using the haptics calls. If

either call is used with an action of the wrong type XR_ERROR_ACTION_TYPE_MISMATCH must be returned.

11.4. Suggested Bindings

Applications suggest bindings for their actions to runtimes so that raw input data is mapped

appropriately to the application’s actions. Suggested bindings also serve as a signal indicating the

hardware that has been tested by the application developer. Applications can suggest bindings by

calling xrSuggestInteractionProfileBindings for each interaction profile that the application is

developed and tested with. If bindings are provided for an appropriate interaction profile, the runtime

may select one and input will begin to flow. Interaction profile selection changes must only happen

Chapter 11. Input and Haptics | 245

when xrSyncActions is called. Applications can call xrGetCurrentInteractionProfile during on a

running session to learn what the active interaction profile are for a top level user path. If this value

ever changes, the runtime must send an XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED event to the

application to indicate that the value should be queried again.

The bindings suggested by this system are only a hint to the runtime. Some runtimes may choose to

use a different device binding depending on user preference, accessibility settings, or for any other

reason. If the runtime is using the values provided by suggested bindings, it must make a best effort to

convert the input value to the created action and apply certain rules to that use so that suggested

bindings function in the same way across runtimes. If an input value cannot be converted to the type

of the action, the value must be ignored and not contribute to the state of the action.

For actions created with XR_ACTION_TYPE_BOOLEAN_INPUT when the runtime is obeying suggested

bindings: Boolean input sources must be bound directly to the action. If the path is to a scalar value, a

threshold must be applied to the value and values over that threshold will be XR_TRUE. The runtime

should use hysteresis when applying this threshold. The threshold and hysteresis range may vary

from device to device or component to component and are left as an implementation detail. If the path

refers to the parent of input values instead of to an input value itself, the runtime must use

…/example/path/click instead of …/example/path if it is available. If a parent path does not have a

…/click subpath, the runtime must use …/value and apply the same thresholding that would be applied

to any scalar input. In any other situation the runtime may provide an alternate binding for the action

or it will be unbound.

For actions created with XR_ACTION_TYPE_FLOAT_INPUT when the runtime is obeying suggested bindings:

If the input value specified by the path is scalar, the input value must be bound directly to the float. If

the path refers to the parent of input values instead of to an input value itself, the runtime must use

…/example/path/value instead of …/example/path as the source of the value. If a parent path does not

have a …/value subpath, the runtime must use …/click. If the input value is boolean, the runtime must

supply 0.0 or 1.0 as a conversion of the boolean value. In any other situation, the runtime may provide

an alternate binding for the action or it will be unbound.

For actions created with XR_ACTION_TYPE_VECTOR2F_INPUT when the runtime is obeying suggested

bindings: The suggested binding path must refer to the parent of input values instead of to the input

values themselves, and that parent path must contain subpaths …/x and …/y. …/x and …/y must be

bound to 'x' and 'y' of the vector, respectively. In any other situation, the runtime may provide an

alternate binding for the action or it will be unbound.

For actions created with XR_ACTION_TYPE_POSE_INPUT when the runtime is obeying suggested bindings:

Pose input sources must be bound directly to the action. If the path refers to the parent of input values

instead of to an input value itself, the runtime must use …/example/path/pose instead of

…/example/path if it is available. In any other situation the runtime may provide an alternate binding

for the action or it will be unbound.

The xrSuggestInteractionProfileBindings function is defined as:

246 | Chapter 11. Input and Haptics

// Provided by XR_VERSION_1_0

XrResult xrSuggestInteractionProfileBindings(

 XrInstance instance,

 const XrInteractionProfileSuggestedBinding* suggestedBindings);

Parameter Descriptions

• instance is the XrInstance for which the application would like to set suggested bindings

• suggestedBindings is the XrInteractionProfileSuggestedBinding that the application would like

to set

The xrSuggestInteractionProfileBindings function provides action bindings for a single interaction

profile. The application can call xrSuggestInteractionProfileBindings once per interaction profile that it

supports.

The application can provide any number of bindings for each action.

If the application successfully calls xrSuggestInteractionProfileBindings more than once for an

interaction profile, the runtime must discard the previous suggested bindings and replace them with

the new suggested bindings for that profile.

If the interaction profile path does not follow the structure defined in Interaction Profiles or suggested

bindings contain paths that do not follow the format defined in Input subpaths (further described in

XrActionSuggestedBinding), the runtime must return XR_ERROR_PATH_UNSUPPORTED. If the interaction

profile or input source for any of the suggested bindings does not exist in the allowlist defined in

Interaction Profile Paths, the runtime must return XR_ERROR_PATH_UNSUPPORTED. A runtime must accept

every valid binding in the allowlist though it is free to ignore any of them.

If the action set for any action referenced in the suggestedBindings parameter has been included in a

call to xrAttachSessionActionSets, the implementation must return

XR_ERROR_ACTIONSETS_ALREADY_ATTACHED.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• suggestedBindings must be a pointer to a valid XrInteractionProfileSuggestedBinding

structure

Chapter 11. Input and Haptics | 247

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSETS_ALREADY_ATTACHED

The XrInteractionProfileSuggestedBinding structure is defined as:

typedef struct XrInteractionProfileSuggestedBinding {

 XrStructureType type;

 const void* next;

 XrPath interactionProfile;

 uint32_t countSuggestedBindings;

 const XrActionSuggestedBinding* suggestedBindings;

} XrInteractionProfileSuggestedBinding;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• interactionProfile is the XrPath of an interaction profile.

• countSuggestedBindings is the number of suggested bindings in the array pointed to by

suggestedBindings.

• suggestedBindings is a pointer to an array of XrActionSuggestedBinding structures that define

all of the application’s suggested bindings for the specified interaction profile.

248 | Chapter 11. Input and Haptics

Valid Usage (Implicit)

• type must be XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrBindingModificationsKHR

• suggestedBindings must be a pointer to an array of countSuggestedBindings valid

XrActionSuggestedBinding structures

• The countSuggestedBindings parameter must be greater than 0

The XrActionSuggestedBinding structure is defined as:

typedef struct XrActionSuggestedBinding {

 XrAction action;

 XrPath binding;

} XrActionSuggestedBinding;

Member Descriptions

• action is the XrAction handle for an action

• binding is the XrPath of a binding for the action specified in action. This path is any top level

user path plus input source path, for example /user/hand/right/input/trigger/click. See

suggested bindings for more details.

Valid Usage (Implicit)

• action must be a valid XrAction handle

The xrAttachSessionActionSets function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrAttachSessionActionSets(

 XrSession session,

 const XrSessionActionSetsAttachInfo* attachInfo);

Chapter 11. Input and Haptics | 249

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession to attach the action sets to.

• attachInfo is the XrSessionActionSetsAttachInfo to provide information to attach action sets

to the session.

xrAttachSessionActionSets attaches the XrActionSet handles in XrSessionActionSetsAttachInfo

::actionSets to the session. Action sets must be attached in order to be synchronized with

xrSyncActions.

When an action set is attached to a session, that action set becomes immutable. See xrCreateAction and

xrSuggestInteractionProfileBindings for details.

After action sets are attached to a session, if any unattached actions are passed to functions for the

same session, then for those functions the runtime must return XR_ERROR_ACTIONSET_NOT_ATTACHED.

The runtime must return XR_ERROR_ACTIONSETS_ALREADY_ATTACHED if xrAttachSessionActionSets is called

more than once for a given session.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• attachInfo must be a pointer to a valid XrSessionActionSetsAttachInfo structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_ACTIONSETS_ALREADY_ATTACHED

The XrSessionActionSetsAttachInfo structure is defined as:

250 | Chapter 11. Input and Haptics

typedef struct XrSessionActionSetsAttachInfo {

 XrStructureType type;

 const void* next;

 uint32_t countActionSets;

 const XrActionSet* actionSets;

} XrSessionActionSetsAttachInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• countActionSets is an integer specifying the number of valid elements in the actionSets array.

• actionSets is a pointer to an array of one or more XrActionSet handles to be attached to the

session.

Valid Usage (Implicit)

• type must be XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• actionSets must be a pointer to an array of countActionSets valid XrActionSet handles

• The countActionSets parameter must be greater than 0

11.5. Current Interaction Profile

The xrGetCurrentInteractionProfile function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetCurrentInteractionProfile(

 XrSession session,

 XrPath topLevelUserPath,

 XrInteractionProfileState* interactionProfile);

Chapter 11. Input and Haptics | 251

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession for which the application would like to retrieve the current

interaction profile.

• topLevelUserPath is the top level user path the application would like to retrieve the

interaction profile for.

• interactionProfile is a pointer to an XrInteractionProfileState structure to receive the

current interaction profile.

xrGetCurrentInteractionProfile retrieves the current interaction profile for a top level user path.

The runtime must return only interaction profiles for which the application has provided suggested

bindings with xrSuggestInteractionProfileBindings or XR_NULL_PATH. The runtime may return

interaction profiles that do not represent physically present hardware, for example if the runtime is

using a known interaction profile to bind to hardware that the application is not aware of. The runtime

may return the last-known interaction profile in the event that no controllers are active.

If xrAttachSessionActionSets has not yet been called for the session, the runtime must return

XR_ERROR_ACTIONSET_NOT_ATTACHED. If topLevelUserPath is not one of the top level user paths described in

/user paths, the runtime must return XR_ERROR_PATH_UNSUPPORTED.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• interactionProfile must be a pointer to an XrInteractionProfileState structure

252 | Chapter 11. Input and Haptics

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrInteractionProfileState structure is defined as:

typedef struct XrInteractionProfileState {

 XrStructureType type;

 void* next;

 XrPath interactionProfile;

} XrInteractionProfileState;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• interactionProfile is the XrPath of the interaction profile path for the

xrGetCurrentInteractionProfile::topLevelUserPath used to retrieve this state, or

XR_NULL_PATH if there is no active interaction profile at that top level user path.

The runtime must only include interaction profiles that the application has provided bindings for via

xrSuggestInteractionProfileBindings or XR_NULL_PATH. If the runtime is rebinding an interaction

profile provided by the application to a device that the application did not provide bindings for, it

Chapter 11. Input and Haptics | 253

must return the interaction profile path that it is emulating. If the runtime is unable to provide input

because it cannot emulate any of the application-provided interaction profiles, it must return

XR_NULL_PATH.

Valid Usage (Implicit)

• type must be XR_TYPE_INTERACTION_PROFILE_STATE

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataInteractionProfileChanged structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrEventDataInteractionProfileChanged {

 XrStructureType type;

 const void* next;

 XrSession session;

} XrEventDataInteractionProfileChanged;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• session is the XrSession for which at least one of the interaction profiles for a top level path

has changed.

The XrEventDataInteractionProfileChanged event is queued to notify the application that the current

interaction profile for one or more top level user paths has changed. This event must only be sent for

interaction profiles that the application indicated its support for via

xrSuggestInteractionProfileBindings. This event must only be queued for running sessions.

Upon receiving this event, an application can call xrGetCurrentInteractionProfile for each top level

user path in use, if its behavior depends on the current interaction profile.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED

• next must be NULL or a valid pointer to the next structure in a structure chain

254 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

11.6. Reading Input Action State

The current state of an input action can be obtained by calling the xrGetActionState* function call that

matches the XrActionType provided when the action was created. If a mismatched call is used to

retrieve the state XR_ERROR_ACTION_TYPE_MISMATCH must be returned. xrGetActionState* calls for an

action in an action set never bound to the session with xrAttachSessionActionSets must return

XR_ERROR_ACTIONSET_NOT_ATTACHED.

The result of calls to xrGetActionState* for an XrAction and subaction path must not change between

calls to xrSyncActions. When the combination of the parent XrActionSet and subaction path for an

action is passed to xrSyncActions, the runtime must update the results from xrGetActionState* after

this call with any changes to the state of the underlying hardware. When the parent action set and

subaction path for an action is removed from or added to the list of active action sets passed to

xrSyncActions, the runtime must update isActive to reflect the new active state after this call. In all

cases the runtime must not change the results of xrGetActionState* calls between calls to

xrSyncActions.

When xrGetActionState* or haptic output functions are called while the session is not focused, the

runtime must set the isActive value to XR_FALSE and suppress all haptic output. Furthermore, the

runtime should stop all in-progress haptic events when a session loses focus.

When retrieving action state, lastChangeTime must be set to the runtime’s best estimate of when the

physical state of the part of the device bound to that action last changed.

The currentState value is computed based on the current sync, combining the underlying input

sources bound to the provided subactionPaths within this action.

The changedSinceLastSync value must be XR_TRUE if the computed currentState value differs from the

currentState value that would have been computed as of the previous sync for the same

subactionPaths. If there is no previous sync, or the action was not active for the previous sync, the

changedSinceLastSync value must be set to XR_FALSE.

The isActive value must be XR_TRUE whenever an action is bound and a source is providing state data

for the current sync. If the action is unbound or no source is present, the isActive value must be

XR_FALSE. For any action which is inactive, the runtime must return zero (or XR_FALSE) for state,

XR_FALSE for changedSinceLastSync, and 0 for lastChangeTime.

11.6.1. Resolving a single action bound to multiple inputs or outputs

It is often the case that a single action will be bound to multiple physical inputs simultaneously. In

these circumstances, the runtime must resolve the ambiguity in that multiple binding as follows:

The current state value is selected based on the type of the action:

• Boolean actions - The current state must be the result of a boolean OR of all bound inputs

• Float actions - The current state must be the state of the input with the largest absolute value

Chapter 11. Input and Haptics | 255

• Vector2 actions - The current state must be the state of the input with the longest length

• Pose actions - The current state must be the state of a single pose source. The source of the pose

must only be changed during a call to xrSyncAction. The runtime should only change the source in

response to user actions, such as picking up a new controller, or external events, such as a

controller running out of battery.

• Haptic actions - The runtime must send output events to all bound haptic devices

11.6.2. Structs to describe action and subaction paths

The XrActionStateGetInfo structure is used to provide action and subaction paths when calling

xrGetActionState* function. It is defined as:

typedef struct XrActionStateGetInfo {

 XrStructureType type;

 const void* next;

 XrAction action;

 XrPath subactionPath;

} XrActionStateGetInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• action is the XrAction being queried.

• subactionPath is the subaction path XrPath to query data from, or XR_NULL_PATH to specify

all subaction paths. If the subaction path is specified, it is one of the subaction paths that

were specified when the action was created. If the subaction path was not specified when the

action was created, the runtime must return XR_ERROR_PATH_UNSUPPORTED. If this parameter is

specified, the runtime must return data that originates only from the subaction paths

specified.

See XrActionCreateInfo for a description of subaction paths, and the restrictions on their use.

256 | Chapter 11. Input and Haptics

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_GET_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• action must be a valid XrAction handle

The XrHapticActionInfo structure is used to provide action and subaction paths when calling

xr*HapticFeedback function. It is defined as:

typedef struct XrHapticActionInfo {

 XrStructureType type;

 const void* next;

 XrAction action;

 XrPath subactionPath;

} XrHapticActionInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• action is the XrAction handle for the desired output haptic action.

• subactionPath is the subaction path XrPath of the device to send the haptic event to, or

XR_NULL_PATH to specify all subaction paths. If the subaction path is specified, it is one of

the subaction paths that were specified when the action was created. If the subaction path

was not specified when the action was created, the runtime must return

XR_ERROR_PATH_UNSUPPORTED. If this parameter is specified, the runtime must trigger the haptic

events only on the device from the subaction path.

See XrActionCreateInfo for a description of subaction paths, and the restrictions on their use.

Valid Usage (Implicit)

• type must be XR_TYPE_HAPTIC_ACTION_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• action must be a valid XrAction handle

Chapter 11. Input and Haptics | 257

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

11.6.3. Boolean Actions

xrGetActionStateBoolean retrieves the current state of a boolean action. It is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetActionStateBoolean(

 XrSession session,

 const XrActionStateGetInfo* getInfo,

 XrActionStateBoolean* state);

Parameter Descriptions

• session is the XrSession to query.

• getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths

information.

• state is a pointer to a valid XrActionStateBoolean into which the state will be placed.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrActionStateGetInfo structure

• state must be a pointer to an XrActionStateBoolean structure

258 | Chapter 11. Input and Haptics

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStateBoolean structure is defined as:

typedef struct XrActionStateBoolean {

 XrStructureType type;

 void* next;

 XrBool32 currentState;

 XrBool32 changedSinceLastSync;

 XrTime lastChangeTime;

 XrBool32 isActive;

} XrActionStateBoolean;

Chapter 11. Input and Haptics | 259

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• currentState is the current state of the action.

• changedSinceLastSync is XR_TRUE if the value of currentState is different than it was before the

most recent call to xrSyncActions. This parameter can be combined with currentState to

detect rising and falling edges since the previous call to xrSyncActions. E.g. if both

changedSinceLastSync and currentState are XR_TRUE then a rising edge (XR_FALSE to XR_TRUE) has

taken place.

• lastChangeTime is the XrTime associated with the most recent change to this action’s state.

• isActive is XR_TRUE if and only if there exists an input source that is contributing to the

current state of this action.

When multiple input sources are bound to this action, the currentState follows the previously defined

rule to resolve ambiguity.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_BOOLEAN

• next must be NULL or a valid pointer to the next structure in a structure chain

11.6.4. Scalar and Vector Actions

xrGetActionStateFloat retrieves the current state of a floating-point action. It is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetActionStateFloat(

 XrSession session,

 const XrActionStateGetInfo* getInfo,

 XrActionStateFloat* state);

260 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession to query.

• getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths

information.

• state is a pointer to a valid XrActionStateFloat into which the state will be placed.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrActionStateGetInfo structure

• state must be a pointer to an XrActionStateFloat structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStateFloat structure is defined as:

Chapter 11. Input and Haptics | 261

typedef struct XrActionStateFloat {

 XrStructureType type;

 void* next;

 float currentState;

 XrBool32 changedSinceLastSync;

 XrTime lastChangeTime;

 XrBool32 isActive;

} XrActionStateFloat;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• currentState is the current state of the Action.

• changedSinceLastSync is XR_TRUE if the value of currentState is different than it was before the

most recent call to xrSyncActions.

• lastChangeTime is the XrTime associated with the most recent change to this action’s state.

• isActive is XR_TRUE if and only if there exists an input source that is contributing to the

current state of this action.

When multiple input sources are bound to this action, the currentState follows the previously defined

rule to resolve ambiguity.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_FLOAT

• next must be NULL or a valid pointer to the next structure in a structure chain

xrGetActionStateVector2f retrieves the current state of a two-dimensional vector action. It is defined

as:

// Provided by XR_VERSION_1_0

XrResult xrGetActionStateVector2f(

 XrSession session,

 const XrActionStateGetInfo* getInfo,

 XrActionStateVector2f* state);

262 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession to query.

• getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths

information.

• state is a pointer to a valid XrActionStateVector2f into which the state will be placed.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrActionStateGetInfo structure

• state must be a pointer to an XrActionStateVector2f structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStateVector2f structure is defined as:

Chapter 11. Input and Haptics | 263

typedef struct XrActionStateVector2f {

 XrStructureType type;

 void* next;

 XrVector2f currentState;

 XrBool32 changedSinceLastSync;

 XrTime lastChangeTime;

 XrBool32 isActive;

} XrActionStateVector2f;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• currentState is the current XrVector2f state of the Action.

• changedSinceLastSync is XR_TRUE if the value of currentState is different than it was before the

most recent call to xrSyncActions.

• lastChangeTime is the XrTime associated with the most recent change to this action’s state.

• isActive is XR_TRUE if and only if there exists an input source that is contributing to the

current state of this action.

When multiple input sources are bound to this action, the currentState follows the previously defined

rule to resolve ambiguity.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_VECTOR2F

• next must be NULL or a valid pointer to the next structure in a structure chain

11.6.5. Pose Actions

The xrGetActionStatePose function is defined as:

264 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

// Provided by XR_VERSION_1_0

XrResult xrGetActionStatePose(

 XrSession session,

 const XrActionStateGetInfo* getInfo,

 XrActionStatePose* state);

Parameter Descriptions

• session is the XrSession to query.

• getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths

information.

• state is a pointer to a valid XrActionStatePose into which the state will be placed.

xrGetActionStatePose returns information about the binding and active state for the specified action.

To determine the pose of this action at a historical or predicted time, the application can create an

action space using xrCreateActionSpace. Then, after each sync, the application can locate the pose of

this action space within a base space using xrLocateSpace.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrActionStateGetInfo structure

• state must be a pointer to an XrActionStatePose structure

Chapter 11. Input and Haptics | 265

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStatePose structure is defined as:

typedef struct XrActionStatePose {

 XrStructureType type;

 void* next;

 XrBool32 isActive;

} XrActionStatePose;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• isActive is XR_TRUE if and only if there exists an input source that is being tracked by this pose

action.

A pose action must not be bound to multiple input sources, according to the previously defined rule.

266 | Chapter 11. Input and Haptics

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_POSE

• next must be NULL or a valid pointer to the next structure in a structure chain

11.7. Output Actions and Haptics

Haptic feedback is sent to a device using the xrApplyHapticFeedback function. The hapticEvent points

to a supported event structure. All event structures have in common that the first element is an

XrHapticBaseHeader which can be used to determine the type of the haptic event.

Haptic feedback may be immediately halted for a haptic action using the xrStopHapticFeedback

function.

Output action requests activate immediately and must not wait for the next call to xrSyncActions.

If a haptic event is sent to an action before a previous haptic event completes, the latest event will take

precedence and the runtime must cancel all preceding incomplete haptic events on that action.

Output action requests must be discarded and have no effect on hardware if the application’s session

is not focused.

Output action requests for an action in an action set never attached to the session with

xrAttachSessionActionSets must return XR_ERROR_ACTIONSET_NOT_ATTACHED.

The only haptics type supported by unextended OpenXR is XrHapticVibration.

The xrApplyHapticFeedback function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrApplyHapticFeedback(

 XrSession session,

 const XrHapticActionInfo* hapticActionInfo,

 const XrHapticBaseHeader* hapticFeedback);

Chapter 11. Input and Haptics | 267

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession to start outputting to.

• hapticActionInfo is a pointer to XrHapticActionInfo to provide action and subaction paths

information.

• hapticFeedback is a pointer to a haptic event structure which starts with an

XrHapticBaseHeader.

Triggers a haptic event through the specified action of type XR_ACTION_TYPE_VIBRATION_OUTPUT. The

runtime should deliver this request to the appropriate device, but exactly which device, if any, this

event is sent to is up to the runtime to decide. If an appropriate device is unavailable the runtime may

ignore this request for haptic feedback.

If session is not focused, the runtime must return XR_SESSION_NOT_FOCUSED, and not trigger a haptic

event.

If another haptic event from this session is currently happening on the device bound to this action, the

runtime must interrupt that other event and replace it with the new one.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• hapticActionInfo must be a pointer to a valid XrHapticActionInfo structure

• hapticFeedback must be a pointer to a valid XrHapticBaseHeader-based structure. See also:

XrHapticVibration

268 | Chapter 11. Input and Haptics

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SESSION_NOT_FOCUSED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrHapticBaseHeader structure is defined as:

typedef struct XrHapticBaseHeader {

 XrStructureType type;

 const void* next;

} XrHapticBaseHeader;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

Chapter 11. Input and Haptics | 269

Valid Usage (Implicit)

• type must be XR_TYPE_HAPTIC_VIBRATION

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrHapticVibration structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrHapticVibration {

 XrStructureType type;

 const void* next;

 XrDuration duration;

 float frequency;

 float amplitude;

} XrHapticVibration;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• duration is the number of nanoseconds the vibration should last. If

XR_MIN_HAPTIC_DURATION is specified, the runtime must produce a short haptics pulse of

minimal supported duration for the haptic device.

• frequency is the frequency of the vibration in Hz. If XR_FREQUENCY_UNSPECIFIED is

specified, it is left to the runtime to decide the optimal frequency value to use.

• amplitude is the amplitude of the vibration between 0.0 and 1.0.

The XrHapticVibration is used in calls to xrApplyHapticFeedback that trigger vibration output actions.

The duration, and frequency parameters may be clamped to implementation-dependent ranges.

Valid Usage (Implicit)

• type must be XR_TYPE_HAPTIC_VIBRATION

• next must be NULL or a valid pointer to the next structure in a structure chain

270 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

XR_MIN_HAPTIC_DURATION is used to indicate to the runtime that a short haptic pulse of the minimal

supported duration for the haptic device.

// Provided by XR_VERSION_1_0

#define XR_MIN_HAPTIC_DURATION -1

XR_FREQUENCY_UNSPECIFIED is used to indicate that the application wants the runtime to decide

what the optimal frequency is for the haptic pulse.

// Provided by XR_VERSION_1_0

#define XR_FREQUENCY_UNSPECIFIED 0

The xrStopHapticFeedback function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrStopHapticFeedback(

 XrSession session,

 const XrHapticActionInfo* hapticActionInfo);

Parameter Descriptions

• session is the XrSession to stop outputting to.

• hapticActionInfo is a pointer to an XrHapticActionInfo to provide action and subaction path

information.

If a haptic event from this XrAction is in progress, when this function is called the runtime must stop

that event.

If session is not focused, the runtime must return XR_SESSION_NOT_FOCUSED.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• hapticActionInfo must be a pointer to a valid XrHapticActionInfo structure

Chapter 11. Input and Haptics | 271

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SESSION_NOT_FOCUSED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

11.8. Input Action State Synchronization

The xrSyncActions function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrSyncActions(

 XrSession session,

 const XrActionsSyncInfo* syncInfo);

Parameter Descriptions

• session is a handle to the XrSession that all provided action set handles belong to.

• syncInfo is an XrActionsSyncInfo providing information to synchronize action states.

xrSyncActions updates the current state of input actions. Repeated input action state queries between

subsequent synchronization calls must return the same values. The XrActionSet structures referenced

in the XrActionsSyncInfo::activeActionSets must have been previously attached to the session via

272 | Chapter 11. Input and Haptics

xrAttachSessionActionSets. If any action sets not attached to this session are passed to xrSyncActions it

must return XR_ERROR_ACTIONSET_NOT_ATTACHED. Subsets of the bound action sets can be synchronized in

order to control which actions are seen as active.

If session is not focused, the runtime must return XR_SESSION_NOT_FOCUSED, and all action states in the

session must be inactive.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• syncInfo must be a pointer to a valid XrActionsSyncInfo structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SESSION_NOT_FOCUSED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionsSyncInfo structure is defined as:

Chapter 11. Input and Haptics | 273

typedef struct XrActionsSyncInfo {

 XrStructureType type;

 const void* next;

 uint32_t countActiveActionSets;

 const XrActiveActionSet* activeActionSets;

} XrActionsSyncInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• countActiveActionSets is an integer specifying the number of valid elements in the

activeActionSets array.

• activeActionSets is NULL or a pointer to an array of one or more XrActiveActionSet structures

that should be synchronized.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTIONS_SYNC_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• If countActiveActionSets is not 0, activeActionSets must be a pointer to an array of

countActiveActionSets valid XrActiveActionSet structures

The XrActiveActionSet structure is defined as:

typedef struct XrActiveActionSet {

 XrActionSet actionSet;

 XrPath subactionPath;

} XrActiveActionSet;

274 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Member Descriptions

• actionSet is the handle of the action set to activate.

• subactionPath is a subaction path that was declared when one or more actions in the action

set was created or XR_NULL_PATH. If the application wants to activate the action set on more

than one subaction path, it can include additional XrActiveActionSet structs with the other

subactionPath values. Using XR_NULL_PATH as the value for subactionPath, acts as a wildcard

for all subaction paths on the actions in the action set. If the subaction path was not specified

on any of the actions in the actionSet when that action was created, the runtime must return

XR_ERROR_PATH_UNSUPPORTED.

This structure defines a single active action set and subaction path combination. Applications can

provide a list of these structures to the xrSyncActions function.

Valid Usage (Implicit)

• actionSet must be a valid XrActionSet handle

11.9. Bound Sources

An application can use the xrEnumerateBoundSourcesForAction and xrGetInputSourceLocalizedName

calls to prompt the user which physical inputs to use in order to perform an action. The bound sources

are XrPath semantic paths representing the physical controls that an action is bound to. An action may

be bound to multiple sources at one time, for example an action named hold could be bound to both

the X and A buttons.

Once the bound sources for an action are obtained, the application can gather additional information

about it. xrGetInputSourceLocalizedName returns a localized human-readable string describing the

bound physical control, e.g. 'A Button'.

The xrEnumerateBoundSourcesForAction function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateBoundSourcesForAction(

 XrSession session,

 const XrBoundSourcesForActionEnumerateInfo* enumerateInfo,

 uint32_t sourceCapacityInput,

 uint32_t* sourceCountOutput,

 XrPath* sources);

Chapter 11. Input and Haptics | 275

Parameter Descriptions

• session is the XrSession being queried.

• enumerateInfo is an XrBoundSourcesForActionEnumerateInfo providing the query

information.

• sourceCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve the

required capacity.

• sourceCountOutput is a pointer to the count of sources, or a pointer to the required capacity in

the case that sourceCapacityInput is insufficient.

• sources is a pointer to an application-allocated array that will be filled with the XrPath values

for all bound sources. It can be NULL if sourceCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

sources size.

If an action is unbound, xrEnumerateBoundSourcesForAction must assign 0 to the value pointed-to by

sourceCountOutput and not modify the array.

xrEnumerateBoundSourcesForAction must return XR_ERROR_ACTIONSET_NOT_ATTACHED if passed an action

in an action set never attached to the session with xrAttachSessionActionSets.

As bindings for actions do not change between calls to xrSyncActions,

xrEnumerateBoundSourcesForAction must enumerate the same set of bound sources, or absence of

bound sources, for a given query (defined by the enumerateInfo parameter) between any two calls to

xrSyncActions. Note

The XrPath bound sources returned by the runtime are opaque values and should not

be inspected or persisted. They are only intended for use in conjunction with

xrGetInputSourceLocalizedName.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• enumerateInfo must be a pointer to a valid XrBoundSourcesForActionEnumerateInfo

structure

• sourceCountOutput must be a pointer to a uint32_t value

• If sourceCapacityInput is not 0, sources must be a pointer to an array of sourceCapacityInput

XrPath values

276 | Chapter 11. Input and Haptics

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrBoundSourcesForActionEnumerateInfo structure is defined as:

typedef struct XrBoundSourcesForActionEnumerateInfo {

 XrStructureType type;

 const void* next;

 XrAction action;

} XrBoundSourcesForActionEnumerateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• action is the handle of the action to query.

Chapter 11. Input and Haptics | 277

Valid Usage (Implicit)

• type must be XR_TYPE_BOUND_SOURCES_FOR_ACTION_ENUMERATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• action must be a valid XrAction handle

The xrGetInputSourceLocalizedName function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetInputSourceLocalizedName(

 XrSession session,

 const XrInputSourceLocalizedNameGetInfo* getInfo,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

Parameter Descriptions

• session is a handle to the XrSession associated with the action that reported this bound

source.

• getInfo is an XrInputSourceLocalizedNameGetInfo providing the query information.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of name characters written to buffer (including

the terminating \0), or a pointer to the required capacity in the case that bufferCapacityInput

is insufficient.

• buffer is a pointer to an application-allocated buffer that will be filled with the bound source

name. It can be NULL if bufferCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

xrGetInputSourceLocalizedName returns a string for the bound source in the current system locale.

If xrAttachSessionActionSets has not yet been called for the session, the runtime must return

XR_ERROR_ACTIONSET_NOT_ATTACHED.

278 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrInputSourceLocalizedNameGetInfo structure

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrInputSourceLocalizedNameGetInfo structure is defined as:

typedef struct XrInputSourceLocalizedNameGetInfo {

 XrStructureType type;

 const void* next;

 XrPath sourcePath;

 XrInputSourceLocalizedNameFlags whichComponents;

} XrInputSourceLocalizedNameGetInfo;

Chapter 11. Input and Haptics | 279

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• sourcePath is an XrPath representing a bound source returned by

xrEnumerateBoundSourcesForAction.

• whichComponents is any set of flags from XrInputSourceLocalizedNameFlagBits.

The result of passing an XrPath sourcePath not retrieved from xrEnumerateBoundSourcesForAction is

not specified.

Valid Usage (Implicit)

• type must be XR_TYPE_INPUT_SOURCE_LOCALIZED_NAME_GET_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• whichComponents must be a valid combination of XrInputSourceLocalizedNameFlagBits values

• whichComponents must not be 0

The XrInputSourceLocalizedNameGetInfo::whichComponents parameter is of the following type, and

contains a bitwise-OR of one or more of the bits defined in XrInputSourceLocalizedNameFlagBits.

typedef XrFlags64 XrInputSourceLocalizedNameFlags;

// Flag bits for XrInputSourceLocalizedNameFlags

static const XrInputSourceLocalizedNameFlags XR_INPUT_SOURCE_LOCALIZED_NAME_USER_PATH_BIT

= 0x00000001;

static const XrInputSourceLocalizedNameFlags

XR_INPUT_SOURCE_LOCALIZED_NAME_INTERACTION_PROFILE_BIT = 0x00000002;

static const XrInputSourceLocalizedNameFlags XR_INPUT_SOURCE_LOCALIZED_NAME_COMPONENT_BIT

= 0x00000004;

The flag bits have the following meanings:

280 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Flag Descriptions

• XR_INPUT_SOURCE_LOCALIZED_NAME_USER_PATH_BIT indicates that the runtime must include the

user path portion of the string in the result, if available. E.g. Left Hand.

• XR_INPUT_SOURCE_LOCALIZED_NAME_INTERACTION_PROFILE_BIT indicates that the runtime must

include the interaction profile portion of the string in the result, if available. E.g. Vive

Controller.

• XR_INPUT_SOURCE_LOCALIZED_NAME_COMPONENT_BIT indicates that the runtime must include the

input component portion of the string in the result, if available. E.g. Trigger.

Chapter 11. Input and Haptics | 281

Chapter 12. List of Current Extensions

• XR_KHR_android_create_instance

• XR_KHR_android_surface_swapchain

• XR_KHR_android_thread_settings

• XR_KHR_binding_modification

• XR_KHR_composition_layer_color_scale_bias

• XR_KHR_composition_layer_cube

• XR_KHR_composition_layer_cylinder

• XR_KHR_composition_layer_depth

• XR_KHR_composition_layer_equirect

• XR_KHR_composition_layer_equirect2

• XR_KHR_convert_timespec_time

• XR_KHR_D3D11_enable

• XR_KHR_D3D12_enable

• XR_KHR_loader_init

• XR_KHR_loader_init_android

• XR_KHR_opengl_enable

• XR_KHR_opengl_es_enable

• XR_KHR_swapchain_usage_input_attachment_bit

• XR_KHR_visibility_mask

• XR_KHR_vulkan_enable

• XR_KHR_vulkan_enable2

• XR_KHR_vulkan_swapchain_format_list

• XR_KHR_win32_convert_performance_counter_time

282 | Chapter 12. List of Current Extensions

12.1. XR_KHR_android_create_instance

Name String

XR_KHR_android_create_instance

Extension Type

Instance extension

Registered Extension Number

9

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-07-17

IP Status

No known IP claims.

Contributors

Robert Menzel, NVIDIA

Martin Renschler, Qualcomm

Krzysztof Kosiński, Google

Overview

When the application creates an XrInstance object on Android systems, additional information from

the application has to be provided to the XR runtime.

The Android XR runtime must return error XR_ERROR_VALIDATION_FAILURE if the additional information

is not provided by the application or if the additional parameters are invalid.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_INSTANCE_CREATE_INFO_ANDROID_KHR

Chapter 12. List of Current Extensions | 283

New Enums

New Structures

The XrInstanceCreateInfoAndroidKHR structure is defined as:

// Provided by XR_KHR_android_create_instance

typedef struct XrInstanceCreateInfoAndroidKHR {

 XrStructureType type;

 const void* next;

 void* applicationVM;

 void* applicationActivity;

} XrInstanceCreateInfoAndroidKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• applicationVM is a pointer to the JNI’s opaque JavaVM structure, cast to a void pointer.

• applicationActivity is a JNI reference to an android.app.Activity that will drive the session

lifecycle of this instance, cast to a void pointer.

XrInstanceCreateInfoAndroidKHR contains additional Android specific information needed when

calling xrCreateInstance. The applicationVM field should be populated with the JavaVM structure

received by the JNI_OnLoad function, while the applicationActivity field will typically contain a

reference to a Java activity object received through an application-specific native method. The

XrInstanceCreateInfoAndroidKHR structure must be provided in the next chain of the

XrInstanceCreateInfo structure when calling xrCreateInstance.

Valid Usage (Implicit)

• The XR_KHR_android_create_instance extension must be enabled prior to using

XrInstanceCreateInfoAndroidKHR

• type must be XR_TYPE_INSTANCE_CREATE_INFO_ANDROID_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• applicationVM must be a pointer value

• applicationActivity must be a pointer value

284 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

New Functions

Issues

Version History

• Revision 1, 2017-05-26 (Robert Menzel)

◦ Initial draft

• Revision 2, 2019-01-24 (Martin Renschler)

◦ Added error code, reformatted

• Revision 3, 2019-07-17 (Krzysztof Kosiński)

◦ Non-substantive clarifications.

12.2. XR_KHR_android_surface_swapchain

Name String

XR_KHR_android_surface_swapchain

Extension Type

Instance extension

Registered Extension Number

5

Revision

4

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-05-30

IP Status

No known IP claims.

Contributors

Krzysztof Kosiński, Google

Johannes van Waveren, Oculus

Martin Renschler, Qualcomm

Overview

A common activity in XR is to view an image stream. Image streams are often the result of camera

Chapter 12. List of Current Extensions | 285

previews or decoded video streams. On Android, the basic primitive representing the producer end of

an image queue is the class android.view.Surface. This extension provides a special swapchain that

uses an android.view.Surface as its producer end.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

To create an XrSwapchain object and an Android Surface object call:

// Provided by XR_KHR_android_surface_swapchain

XrResult xrCreateSwapchainAndroidSurfaceKHR(

 XrSession session,

 const XrSwapchainCreateInfo* info,

 XrSwapchain* swapchain,

 jobject* surface);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• info is a pointer to an XrSwapchainCreateInfo structure.

• swapchain is a pointer to a handle in which the created XrSwapchain is returned.

• surface is a pointer to a jobject where the created Android Surface is returned.

xrCreateSwapchainAndroidSurfaceKHR creates an XrSwapchain object returned in swapchain and an

Android Surface jobject returned in surface. The jobject must be valid to be passed back to Java code

using JNI and must be valid to be used with ordinary Android APIs for submitting images to Surfaces.

The returned XrSwapchain must be valid to be referenced in XrSwapchainSubImage structures to

show content on the screen. The width and height passed in XrSwapchainCreateInfo may not be

persistent throughout the life cycle of the created swapchain, since on Android, the size of the images

is controlled by the producer and possibly changes at any time.

The only function that is allowed to be called on the XrSwapchain returned from this function is

xrDestroySwapchain. For example, calling any of the functions xrEnumerateSwapchainImages,

286 | Chapter 12. List of Current Extensions

xrAcquireSwapchainImage, xrWaitSwapchainImage or xrReleaseSwapchainImage is invalid.

When the application receives the XrEventDataSessionStateChanged event with the

XR_SESSION_STATE_STOPPING state, it must ensure that no threads are writing to any of the Android

surfaces created with this extension before calling xrEndSession. The effect of writing frames to the

Surface when the session is in states other than XR_SESSION_STATE_VISIBLE or XR_SESSION_STATE_FOCUSED

is undefined.

xrCreateSwapchainAndroidSurfaceKHR must return the same set of error codes as

xrCreateSwapchain under the same circumstances, plus XR_ERROR_FUNCTION_UNSUPPORTED in case the

function is not supported.

Valid Usage of XrSwapchainCreateInfo members

• The XrSwapchainCreateInfo::format,

XrSwapchainCreateInfo::sampleCount,

XrSwapchainCreateInfo::faceCount,

XrSwapchainCreateInfo::arraySize and

XrSwapchainCreateInfo::mipCount

members of the structure passed as the info parameter must be zero.

Valid Usage (Implicit)

• The XR_KHR_android_surface_swapchain extension must be enabled prior to calling

xrCreateSwapchainAndroidSurfaceKHR

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSwapchainCreateInfo structure

• swapchain must be a pointer to an XrSwapchain handle

• surface must be a pointer to a jobject value

Chapter 12. List of Current Extensions | 287

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

Issues

Version History

• Revision 1, 2017-01-17 (Johannes van Waveren)

◦ Initial draft

• Revision 2, 2017-10-30 (Kaye Mason)

◦ Changed images to swapchains, used snippet includes. Added issue for Surfaces.

• Revision 3, 2018-05-16 (Krzysztof Kosiński)

◦ Refactored to use Surface instead of SurfaceTexture.

• Revision 4, 2019-01-24 (Martin Renschler)

◦ Refined the specification of the extension

12.3. XR_KHR_android_thread_settings

Name String

XR_KHR_android_thread_settings

Extension Type

Instance extension

288 | Chapter 12. List of Current Extensions

Registered Extension Number

4

Revision

6

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-12-04

IP Status

No known IP claims.

Contributors

Cass Everitt, Oculus

Johannes van Waveren, Oculus

Martin Renschler, Qualcomm

Krzysztof Kosiński, Google

Xiang Wei, Meta

Overview

For XR to be comfortable, it is important for applications to deliver frames quickly and consistently. In

order to make sure the important application threads get their full share of time, these threads must be

identified to the system, which will adjust their scheduling priority accordingly.

New Object Types

New Flag Types

New Enum Constants

XrResult enumeration is extended with:

• XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR

• XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR

New Enums

The possible thread types are specified by the XrAndroidThreadTypeKHR enumeration:

Chapter 12. List of Current Extensions | 289

// Provided by XR_KHR_android_thread_settings

typedef enum XrAndroidThreadTypeKHR {

 XR_ANDROID_THREAD_TYPE_APPLICATION_MAIN_KHR = 1,

 XR_ANDROID_THREAD_TYPE_APPLICATION_WORKER_KHR = 2,

 XR_ANDROID_THREAD_TYPE_RENDERER_MAIN_KHR = 3,

 XR_ANDROID_THREAD_TYPE_RENDERER_WORKER_KHR = 4,

 XR_ANDROID_THREAD_TYPE_MAX_ENUM_KHR = 0x7FFFFFFF

} XrAndroidThreadTypeKHR;

Enumerants

• XR_ANDROID_THREAD_TYPE_APPLICATION_MAIN_KHR

hints the XR runtime that the thread is doing time critical CPU tasks

• XR_ANDROID_THREAD_TYPE_APPLICATION_WORKER_KHR

hints the XR runtime that the thread is doing background CPU tasks

• XR_ANDROID_THREAD_TYPE_RENDERER_MAIN_KHR

hints the XR runtime that the thread is doing time critical graphics device tasks

• XR_ANDROID_THREAD_TYPE_RENDERER_WORKER_KHR

hints the XR runtime that the thread is doing background graphics device tasks

New Structures

New Functions

To declare a thread to be of a certain XrAndroidThreadTypeKHR type call:

// Provided by XR_KHR_android_thread_settings

XrResult xrSetAndroidApplicationThreadKHR(

 XrSession session,

 XrAndroidThreadTypeKHR threadType,

 uint32_t threadId);

290 | Chapter 12. List of Current Extensions

Parameter Descriptions

• session is a valid XrSession handle.

• threadType is a classification of the declared thread allowing the XR runtime to apply the

relevant priority and attributes. If such settings fail, the runtime must return

XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR.

• threadId is the kernel thread ID of the declared thread, as returned by gettid() or

android.os.process.myTid(). If the thread ID is invalid, the runtime must return

XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR.

xrSetAndroidApplicationThreadKHR allows to declare an XR-critical thread and to classify it.

Valid Usage (Implicit)

• The XR_KHR_android_thread_settings extension must be enabled prior to calling

xrSetAndroidApplicationThreadKHR

• session must be a valid XrSession handle

• threadType must be a valid XrAndroidThreadTypeKHR value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR

• XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR

Version History

Chapter 12. List of Current Extensions | 291

• Revision 1, 2017-01-17 (Johannes van Waveren)

◦ Initial draft.

• Revision 2, 2017-10-31 (Armelle Laine)

◦ Move the performance settings to EXT extension.

• Revision 3, 2018-12-20 (Paul Pedriana)

◦ Revised the error code naming to use KHR and renamed xrSetApplicationThreadKHR →

xrSetAndroidApplicationThreadKHR.

• Revision 4, 2019-01-24 (Martin Renschler)

◦ Added enum specification, reformatting

• Revision 5, 2019-07-17 (Krzysztof Kosiński)

◦ Clarify the type of thread identifier used by the extension.

• Revision 6, 2023-12-04 (Xiang Wei)

◦ Revise/fix the hints of enum specification

12.4. XR_KHR_binding_modification

Name String

XR_KHR_binding_modification

Extension Type

Instance extension

Registered Extension Number

121

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-07-29

IP Status

No known IP claims.

Contributors

Joe Ludwig, Valve

292 | Chapter 12. List of Current Extensions

Contacts

Joe Ludwig, Valve

Overview

This extension adds an optional structure that can be included on the

XrInteractionProfileSuggestedBinding::next chain passed to xrSuggestInteractionProfileBindings to

specify additional information to modify default binding behavior.

This extension does not define any actual modification structs, but includes the list of modifications

and the XrBindingModificationBaseHeaderKHR structure to allow other extensions to provide specific

modifications.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_BINDING_MODIFICATIONS_KHR

New Enums

New Structures

The XrBindingModificationsKHR structure is defined as:

// Provided by XR_KHR_binding_modification

typedef struct XrBindingModificationsKHR {

 XrStructureType type;

 const void* next;

 uint32_t bindingModificationCount;

 const XrBindingModificationBaseHeaderKHR* const* bindingModifications;

} XrBindingModificationsKHR;

Chapter 12. List of Current Extensions | 293

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• bindingModificationCount is the number of binding modifications in the array pointed to by

bindingModifications.

• bindingModifications is a pointer to an array of pointers to binding modification structures

based on XrBindingModificationBaseHeaderKHR, that define all of the application’s

suggested binding modifications for the specified interaction profile.

Valid Usage (Implicit)

• The XR_KHR_binding_modification extension must be enabled prior to using

XrBindingModificationsKHR

• type must be XR_TYPE_BINDING_MODIFICATIONS_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• If bindingModificationCount is not 0, bindingModifications must be a pointer to an array of

bindingModificationCount valid XrBindingModificationBaseHeaderKHR-based structures

The XrBindingModificationBaseHeaderKHR structure is defined as:

// Provided by XR_KHR_binding_modification

typedef struct XrBindingModificationBaseHeaderKHR {

 XrStructureType type;

 const void* next;

} XrBindingModificationBaseHeaderKHR;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or in this extension.

The XrBindingModificationBaseHeaderKHR is a base structure is overridden by XrBindingModification*

child structures.

294 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_KHR_binding_modification extension must be enabled prior to using

XrBindingModificationBaseHeaderKHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 1, 2020-08-06 (Joe Ludwig)

◦ Initial draft.

12.5. XR_KHR_composition_layer_color_scale_bias

Name String

XR_KHR_composition_layer_color_scale_bias

Extension Type

Instance extension

Registered Extension Number

35

Revision

5

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-28

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Cass Everitt, Oculus

Martin Renschler, Qualcomm

Chapter 12. List of Current Extensions | 295

#valid-usage-for-structure-pointer-chains

Overview

Color scale and bias are applied to a layer color during composition, after its conversion to

premultiplied alpha representation.

If specified, colorScale and colorBias must be used to alter the LayerColor as follows:

• colorScale = max(vec4(0, 0, 0, 0), colorScale)

• LayerColor.RGB = LayerColor.A > 0 ? LayerColor.RGB / LayerColor.A : vec3(0, 0, 0)

• LayerColor = LayerColor * colorScale + colorBias

• LayerColor.RGB *= LayerColor.A

This extension specifies the XrCompositionLayerColorScaleBiasKHR structure, which, if present in the

XrCompositionLayerBaseHeader::next chain, must be applied to the composition layer.

This extension does not define a new composition layer type, but rather it defines a transform that

may be applied to the color derived from existing composition layer types.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_COLOR_SCALE_BIAS_KHR

New Enums

New Structures

The XrCompositionLayerColorScaleBiasKHR structure is defined as:

// Provided by XR_KHR_composition_layer_color_scale_bias

typedef struct XrCompositionLayerColorScaleBiasKHR {

 XrStructureType type;

 const void* next;

 XrColor4f colorScale;

 XrColor4f colorBias;

} XrCompositionLayerColorScaleBiasKHR;

296 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• colorScale is an XrColor4f which will modulate the color sourced from the images.

• colorBias is an XrColor4f which will offset the color sourced from the images.

XrCompositionLayerColorScaleBiasKHR contains the information needed to scale and bias the color of

layer textures.

The XrCompositionLayerColorScaleBiasKHR structure can be applied by applications to composition

layers by adding an instance of the struct to the XrCompositionLayerBaseHeader::next list.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_color_scale_bias extension must be enabled prior to using

XrCompositionLayerColorScaleBiasKHR

• type must be XR_TYPE_COMPOSITION_LAYER_COLOR_SCALE_BIAS_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 1, 2017-09-13 (Paul Pedriana)

◦ Initial implementation.

• Revision 2, 2019-01-24 (Martin Renschler)

◦ Formatting, spec language changes

• Revision 3, 2019-01-28 (Paul Pedriana)

◦ Revised math to remove premultiplied alpha before applying color scale and offset, then

restoring.

• Revision 4, 2019-07-17 (Cass Everitt)

◦ Non-substantive updates to the spec language and equations.

• Revision 5, 2020-05-20 (Cass Everitt)

◦ Changed extension name, simplified language.

Chapter 12. List of Current Extensions | 297

#valid-usage-for-structure-pointer-chains

12.6. XR_KHR_composition_layer_cube

Name String

XR_KHR_composition_layer_cube

Extension Type

Instance extension

Registered Extension Number

7

Revision

8

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Johannes van Waveren, Oculus

Cass Everitt, Oculus

Paul Pedriana, Oculus

Gloria Kennickell, Oculus

Sam Martin, ARM

Kaye Mason, Google, Inc.

Martin Renschler, Qualcomm

Contacts

Cass Everitt, Oculus

Paul Pedriana, Oculus

Overview

This extension adds an additional layer type that enables direct sampling from cubemaps.

The cube layer is the natural layer type for hardware accelerated environment maps. Without

updating the image source, the user can look all around, and the compositor can display what they are

looking at without intervention from the application.

New Object Types

298 | Chapter 12. List of Current Extensions

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_CUBE_KHR

New Enums

New Structures

The XrCompositionLayerCubeKHR structure is defined as:

// Provided by XR_KHR_composition_layer_cube

typedef struct XrCompositionLayerCubeKHR {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchain swapchain;

 uint32_t imageArrayIndex;

 XrQuaternionf orientation;

} XrCompositionLayerCubeKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layerFlags is any flags to apply to this layer.

• space is the XrSpace in which the orientation of the cube layer is evaluated over time.

• eyeVisibility is the eye represented by this layer.

• swapchain is the swapchain, which must have been created with a XrSwapchainCreateInfo

::faceCount of 6.

• imageArrayIndex is the image array index, with 0 meaning the first or only array element.

• orientation is the orientation of the environment map in the space.

XrCompositionLayerCubeKHR contains the information needed to render a cube map when calling

Chapter 12. List of Current Extensions | 299

xrEndFrame. XrCompositionLayerCubeKHR is an alias type for the base struct

XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_cube extension must be enabled prior to using

XrCompositionLayerCubeKHR

• type must be XR_TYPE_COMPOSITION_LAYER_CUBE_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• swapchain must be a valid XrSwapchain handle

• Both of space and swapchain must have been created, allocated, or retrieved from the same

XrSession

New Functions

Issues

Version History

• Revision 0, 2017-02-01 (Johannes van Waveren)

◦ Initial draft.

• Revision 1, 2017-05-19 (Sam Martin)

◦ Initial draft, moving the 3 layer types to an extension.

• Revision 2, 2017-08-30 (Paul Pedriana)

◦ Updated the specification.

• Revision 3, 2017-10-12 (Cass Everitt)

◦ Updated to reflect per-eye structs and the change to swapchains

• Revision 4, 2017-10-18 (Kaye Mason)

◦ Update to flatten structs to remove per-eye arrays.

• Revision 5, 2017-12-05 (Paul Pedriana)

◦ Updated to break out the cylinder and equirect features into separate extensions.

• Revision 6, 2017-12-07 (Paul Pedriana)

◦ Updated to use transform components instead of transform matrices.

300 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

• Revision 7, 2017-12-07 (Paul Pedriana)

◦ Updated to convert XrPosef to XrQuaternionf (there’s no position component).

• Revision 8, 2019-01-24 (Martin Renschler)

◦ Updated struct to use XrSwapchainSubImage, reformat and spec language changes, eye

parameter description update

12.7. XR_KHR_composition_layer_cylinder

Name String

XR_KHR_composition_layer_cylinder

Extension Type

Instance extension

Registered Extension Number

18

Revision

4

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

James Hughes, Oculus

Paul Pedriana, Oculus

Martin Renschler, Qualcomm

Contacts

Paul Pedriana, Oculus

Cass Everitt, Oculus

Overview

This extension adds an additional layer type where the XR runtime must map a texture stemming

from a swapchain onto the inside of a cylinder section. It can be imagined much the same way a

curved television display looks to a viewer. This is not a projection type of layer but rather an object-in-

world type of layer, similar to XrCompositionLayerQuad. Only the interior of the cylinder surface must

Chapter 12. List of Current Extensions | 301

be visible; the exterior of the cylinder is not visible and must not be drawn by the runtime.

The cylinder characteristics are specified by the following parameters:

 XrPosef pose;

 float radius;

 float centralAngle;

 float aspectRatio;

These can be understood via the following diagram, which is a top-down view of a horizontally

oriented cylinder. The aspect ratio drives how tall the cylinder will appear based on the other

parameters. Typically the aspectRatio would be set to be the aspect ratio of the texture being used, so

that it looks the same within the cylinder as it does in 2D.

a

p r

-z
U=1U=0

+x

V=1

V=0

p
+x-x

+y

-y

(+y is out of the plane of the diagram)

Figure 6. Cylinder Layer Parameters

• r — Radius

• a — Central angle in (0, 2π)

• p — Origin of pose transform

• U/V — UV coordinates

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

302 | Chapter 12. List of Current Extensions

• XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR

New Enums

New Structures

The XrCompositionLayerCylinderKHR structure is defined as:

// Provided by XR_KHR_composition_layer_cylinder

typedef struct XrCompositionLayerCylinderKHR {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchainSubImage subImage;

 XrPosef pose;

 float radius;

 float centralAngle;

 float aspectRatio;

} XrCompositionLayerCylinderKHR;

Chapter 12. List of Current Extensions | 303

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layerFlags specifies options for the layer.

• space is the XrSpace in which the pose of the cylinder layer is evaluated over time.

• eyeVisibility is the eye represented by this layer.

• subImage identifies the image XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

• pose is an XrPosef defining the position and orientation of the center point of the view of the

cylinder within the reference frame of the space.

• radius is the non-negative radius of the cylinder. Values of zero or floating point positive

infinity are treated as an infinite cylinder.

• centralAngle is the angle of the visible section of the cylinder, based at 0 radians, in the range

of [0, 2π). It grows symmetrically around the 0 radian angle.

• aspectRatio is the ratio of the visible cylinder section width / height. The height of the

cylinder is given by: (cylinder radius × cylinder angle) / aspectRatio.

XrCompositionLayerCylinderKHR contains the information needed to render a texture onto a cylinder

when calling xrEndFrame. XrCompositionLayerCylinderKHR is an alias type for the base struct

XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_cylinder extension must be enabled prior to using

XrCompositionLayerCylinderKHR

• type must be XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

304 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Version History

• Revision 1, 2017-05-19 (Paul Pedriana)

◦ Initial version. This was originally part of a single extension which supported multiple such

extension layer types.

• Revision 2, 2017-12-07 (Paul Pedriana)

◦ Updated to use transform components instead of transform matrices.

• Revision 3, 2018-03-05 (Paul Pedriana)

◦ Added improved documentation and brought the documentation in line with the existing core

spec.

• Revision 4, 2019-01-24 (Martin Renschler)

◦ Reformatted, spec language changes, eye parameter description update

12.8. XR_KHR_composition_layer_depth

Name String

XR_KHR_composition_layer_depth

Extension Type

Instance extension

Registered Extension Number

11

Revision

6

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Bryce Hutchings, Microsoft

Andreas Loeve Selvik, Arm

Martin Renschler, Qualcomm

Chapter 12. List of Current Extensions | 305

Overview

This extension defines an extra layer type which allows applications to submit depth images along

with color images in projection layers, i.e. XrCompositionLayerProjection.

The XR runtime may use this information to perform more accurate reprojections taking depth into

account. Use of this extension does not affect the order of layer composition as described in

Compositing.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR

New Enums

New Structures

When submitting depth images along with projection layers, add the

XrCompositionLayerDepthInfoKHR to the next chain for all XrCompositionLayerProjectionView

structures in the given layer.

The XrCompositionLayerDepthInfoKHR structure is defined as:

// Provided by XR_KHR_composition_layer_depth

typedef struct XrCompositionLayerDepthInfoKHR {

 XrStructureType type;

 const void* next;

 XrSwapchainSubImage subImage;

 float minDepth;

 float maxDepth;

 float nearZ;

 float farZ;

} XrCompositionLayerDepthInfoKHR;

306 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• subImage identifies the depth image XrSwapchainSubImage to be associated with the color

swapchain. The swapchain must have been created with a XrSwapchainCreateInfo

::faceCount of 1.

• minDepth and maxDepth are the window space depths that correspond to the near and far

frustum planes, respectively. minDepth must be less than maxDepth. minDepth and maxDepth must

be in the range [0, 1].

• nearZ and farZ are the positive distances in meters to the near and far frustum planes,

respectively. nearZ and farZ must not be equal. nearZ and farZ must be in the range (0,

+infinity]. Note

The window space depth values minDepth and maxDepth are akin to the parameters of

glDepthRange that specify the mapping from normalized device coordinates into

window space. Note

A reversed mapping of depth, such that points closer to the view have a window space

depth that is greater than points further away can be achieved by making nearZ >

farZ.

XrCompositionLayerDepthInfoKHR contains the information needed to associate depth with the color

information in a projection layer. When submitting depth images along with projection layers, add the

XrCompositionLayerDepthInfoKHR to the next chain for all XrCompositionLayerProjectionView

structures in the given layer.

The homogeneous transform from view space z to window space depth is given by the following

matrix, where a = minDepth, b = maxDepth, n = nearZ, and f = farZ.

Chapter 12. List of Current Extensions | 307

Figure 7. Homogeneous transform from view space to window space depth

Homogeneous values are constructed from real values by appending a w component with value 1.0.

General homogeneous values are projected back to real space by dividing by the w component.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_depth extension must be enabled prior to using

XrCompositionLayerDepthInfoKHR

• type must be XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

1. Should the range of minDepth and maxDepth be constrained to [0,1]?

RESOLVED: Yes.

There is no compelling mathematical reason for this constraint, however, it does not impose any

hardship currently, and the constraint could be relaxed in a future version of the extension if

needed.

2. Should we require minDepth be less than maxDepth?

RESOLVED: Yes.

There is no compelling mathematical reason for this constraint, however, it does not impose any

308 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

hardship currently, and the constraint could be relaxed in a future version of the extension if

needed. Reverse z mappings can be achieved by making nearZ > farZ.

3. Does this extension support view space depth images?

RESOLVED: No.

The formulation of the transform between view and window depths implies projected depth. A

different extension would be needed to support a different interpretation of depth.

4. Is there any constraint on the resolution of the depth subimage?

RESOLVED: No.

The resolution of the depth image need not match that of the corresponding color image.

Version History

• Revision 1, 2017-08-18 (Paul Pedriana)

◦ Initial proposal.

• Revision 2, 2017-10-30 (Kaye Mason)

◦ Migration from Images to Swapchains.

• Revision 3, 2018-07-20 (Bryce Hutchings)

◦ Support for swapchain texture arrays

• Revision 4, 2018-12-17 (Andreas Loeve Selvik)

◦ depthImageRect in pixels instead of UVs

• Revision 5, 2019-01-24 (Martin Renschler)

◦ changed depthSwapchain/depthImageRect/depthImageArrayIndex

to XrSwapchainSubImage

◦ reformat and spec language changes

◦ removed vendor specific terminology

• Revision 6, 2022-02-16 (Cass Everitt)

◦ Provide homogeneous transform as function of provided parameters

12.9. XR_KHR_composition_layer_equirect

Name String

XR_KHR_composition_layer_equirect

Extension Type

Instance extension

Chapter 12. List of Current Extensions | 309

Registered Extension Number

19

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Johannes van Waveren, Oculus

Cass Everitt, Oculus

Paul Pedriana, Oculus

Gloria Kennickell, Oculus

Martin Renschler, Qualcomm

Contacts

Cass Everitt, Oculus

Paul Pedriana, Oculus

Overview

This extension adds an additional layer type where the XR runtime must map an equirectangular

coded image stemming from a swapchain onto the inside of a sphere.

The equirect layer type provides most of the same benefits as a cubemap, but from an equirect 2D

image source. This image source is appealing mostly because equirect environment maps are very

common, and the highest quality you can get from them is by sampling them directly in the

compositor.

This is not a projection type of layer but rather an object-in-world type of layer, similar to

XrCompositionLayerQuad. Only the interior of the sphere surface must be visible; the exterior of the

sphere is not visible and must not be drawn by the runtime.

New Object Types

New Flag Types

New Enum Constants

310 | Chapter 12. List of Current Extensions

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR

New Enums

New Structures

The XrCompositionLayerEquirectKHR structure is defined as:

// Provided by XR_KHR_composition_layer_equirect

typedef struct XrCompositionLayerEquirectKHR {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchainSubImage subImage;

 XrPosef pose;

 float radius;

 XrVector2f scale;

 XrVector2f bias;

} XrCompositionLayerEquirectKHR;

Chapter 12. List of Current Extensions | 311

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layerFlags specifies options for the layer.

• space is the XrSpace in which the pose of the equirect layer is evaluated over time.

• eyeVisibility is the eye represented by this layer.

• subImage identifies the image XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

• pose is an XrPosef defining the position and orientation of the center point of the sphere onto

which the equirect image data is mapped, relative to the reference frame of the space.

• radius is the non-negative radius of the sphere onto which the equirect image data is

mapped. Values of zero or floating point positive infinity are treated as an infinite sphere.

• scale is an XrVector2f indicating a scale of the texture coordinates after the mapping to 2D.

• bias is an XrVector2f indicating a bias of the texture coordinates after the mapping to 2D.

XrCompositionLayerEquirectKHR contains the information needed to render an equirectangular

image onto a sphere when calling xrEndFrame. XrCompositionLayerEquirectKHR is an alias type for

the base struct XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_equirect extension must be enabled prior to using

XrCompositionLayerEquirectKHR

• type must be XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

Version History

312 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

• Revision 1, 2017-05-19 (Paul Pedriana)

◦ Initial version. This was originally part of a single extension which supported multiple such

extension layer types.

• Revision 2, 2017-12-07 (Paul Pedriana)

◦ Updated to use transform components instead of transform matrices.

• Revision 3, 2019-01-24 (Martin Renschler)

◦ Reformatted, spec language changes, eye parameter description update

12.10. XR_KHR_composition_layer_equirect2

Name String

XR_KHR_composition_layer_equirect2

Extension Type

Instance extension

Registered Extension Number

92

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Johannes van Waveren, Oculus

Cass Everitt, Oculus

Paul Pedriana, Oculus

Gloria Kennickell, Oculus

Martin Renschler, Qualcomm

Contacts

Cass Everitt, Oculus

Overview

Chapter 12. List of Current Extensions | 313

This extension adds an additional layer type where the XR runtime must map an equirectangular

coded image stemming from a swapchain onto the inside of a sphere.

The equirect layer type provides most of the same benefits as a cubemap, but from an equirect 2D

image source. This image source is appealing mostly because equirect environment maps are very

common, and the highest quality you can get from them is by sampling them directly in the

compositor.

This is not a projection type of layer but rather an object-in-world type of layer, similar to

XrCompositionLayerQuad. Only the interior of the sphere surface must be visible; the exterior of the

sphere is not visible and must not be drawn by the runtime.

This extension uses a different parameterization more in keeping with the formulation of

KHR_composition_layer_cylinder but is functionally equivalent to KHR_composition_layer_equirect.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR

New Enums

New Structures

The XrCompositionLayerEquirect2KHR structure is defined as:

// Provided by XR_KHR_composition_layer_equirect2

typedef struct XrCompositionLayerEquirect2KHR {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchainSubImage subImage;

 XrPosef pose;

 float radius;

 float centralHorizontalAngle;

 float upperVerticalAngle;

 float lowerVerticalAngle;

} XrCompositionLayerEquirect2KHR;

314 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layerFlags specifies options for the layer.

• space is the XrSpace in which the pose of the equirect layer is evaluated over time.

• eyeVisibility is the eye represented by this layer.

• subImage identifies the image XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

• pose is an XrPosef defining the position and orientation of the center point of the sphere onto

which the equirect image data is mapped, relative to the reference frame of the space.

• radius is the non-negative radius of the sphere onto which the equirect image data is

mapped. Values of zero or floating point positive infinity are treated as an infinite sphere.

• centralHorizontalAngle defines the visible horizontal angle of the sphere, based at 0 radians,

in the range of [0, 2π]. It grows symmetrically around the 0 radian angle.

• upperVerticalAngle defines the upper vertical angle of the visible portion of the sphere, in the

range of [-π/2, π/2].

• lowerVerticalAngle defines the lower vertical angle of the visible portion of the sphere, in the

range of [-π/2, π/2].

XrCompositionLayerEquirect2KHR contains the information needed to render an equirectangular

image onto a sphere when calling xrEndFrame. XrCompositionLayerEquirect2KHR is an alias type for

the base struct XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_equirect2 extension must be enabled prior to using

XrCompositionLayerEquirect2KHR

• type must be XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• subImage must be a valid XrSwapchainSubImage structure

Chapter 12. List of Current Extensions | 315

#valid-usage-for-structure-pointer-chains

New Functions

Issues

Version History

• Revision 1, 2020-05-08 (Cass Everitt)

◦ Initial version.

◦ Kept contributors from the original equirect extension.

12.11. XR_KHR_convert_timespec_time

Name String

XR_KHR_convert_timespec_time

Extension Type

Instance extension

Registered Extension Number

37

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Overview

This extension provides two functions for converting between timespec monotonic time and XrTime.

The xrConvertTimespecTimeToTimeKHR function converts from timespec time to XrTime, while the

xrConvertTimeToTimespecTimeKHR function converts XrTime to timespec monotonic time. The

primary use case for this functionality is to be able to synchronize events between the local system and

the OpenXR system.

New Object Types

316 | Chapter 12. List of Current Extensions

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

To convert from timespec monotonic time to XrTime, call:

// Provided by XR_KHR_convert_timespec_time

XrResult xrConvertTimespecTimeToTimeKHR(

 XrInstance instance,

 const struct timespec* timespecTime,

 XrTime* time);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• timespecTime is a timespec obtained from clock_gettime with CLOCK_MONOTONIC.

• time is the resulting XrTime that is equivalent to the timespecTime.

The xrConvertTimespecTimeToTimeKHR function converts a time obtained by the clock_gettime

function to the equivalent XrTime.

If the output time cannot represent the input timespecTime, the runtime must return

XR_ERROR_TIME_INVALID.

Valid Usage (Implicit)

• The XR_KHR_convert_timespec_time extension must be enabled prior to calling

xrConvertTimespecTimeToTimeKHR

• instance must be a valid XrInstance handle

• timespecTime must be a pointer to a valid timespec value

• time must be a pointer to an XrTime value

Chapter 12. List of Current Extensions | 317

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_TIME_INVALID

To convert from XrTime to timespec monotonic time, call:

// Provided by XR_KHR_convert_timespec_time

XrResult xrConvertTimeToTimespecTimeKHR(

 XrInstance instance,

 XrTime time,

 struct timespec* timespecTime);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• time is an XrTime.

• timespecTime is the resulting timespec time that is equivalent to a timespec obtained from

clock_gettime with CLOCK_MONOTONIC.

The xrConvertTimeToTimespecTimeKHR function converts an XrTime to time as if generated by

clock_gettime.

If the output timespecTime cannot represent the input time, the runtime must return

XR_ERROR_TIME_INVALID.

318 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_KHR_convert_timespec_time extension must be enabled prior to calling

xrConvertTimeToTimespecTimeKHR

• instance must be a valid XrInstance handle

• timespecTime must be a pointer to a timespec value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_TIME_INVALID

Issues

Version History

• Revision 1, 2019-01-24 (Paul Pedriana)

◦ Initial draft

12.12. XR_KHR_D3D11_enable

Name String

XR_KHR_D3D11_enable

Extension Type

Instance extension

Registered Extension Number

28

Chapter 12. List of Current Extensions | 319

Revision

9

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2018-11-16

IP Status

No known IP claims.

Contributors

Bryce Hutchings, Microsoft

Paul Pedriana, Oculus

Mark Young, LunarG

Minmin Gong, Microsoft

Matthieu Bucchianeri, Microsoft

Overview

This extension enables the use of the D3D11 graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to use any D3D11 swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingD3D11KHR structure in order to create a D3D11-based XrSession. Note that during

this process the application is responsible for creating all the required D3D11 objects, including a

graphics device to be used for rendering.

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you must define

XR_USE_GRAPHICS_API_D3D11 before including the OpenXR platform header openxr_platform.h, in all

portions of your library or application that include it. Swapchain Flag Bits

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingD3D11KHR

must be interpreted as follows by the runtime, so that the returned swapchain images used by the

application may be used as if they were created with the corresponding D3D11_BIND_FLAG flags. The

runtime may set additional bind flags but must not restrict usage.

XrSwapchainUsageFlagBits Corresponding D3D11 bind flag bits

XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT D3D11_BIND_RENDER_TARGET

XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT D3D11_BIND_DEPTH_STENCIL

XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT D3D11_BIND_UNORDERED_ACCESS

320 | Chapter 12. List of Current Extensions

XrSwapchainUsageFlagBits Corresponding D3D11 bind flag bits

XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT ignored

XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT ignored

XR_SWAPCHAIN_USAGE_SAMPLED_BIT D3D11_BIND_SHADER_RESOURCE

XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT ignored

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR

(Added by

XR_KHR_swapchain_usage_input_attachment_bit and

only available when that extension is enabled)

ignored

All D3D11 swapchain textures are created with D3D11_USAGE_DEFAULT usage.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_D3D11_KHR

• XR_TYPE_GRAPHICS_BINDING_D3D11_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information

required to work with the D3D11 API executing on certain operating systems.

The XrGraphicsBindingD3D11KHR structure is defined as:

// Provided by XR_KHR_D3D11_enable

typedef struct XrGraphicsBindingD3D11KHR {

 XrStructureType type;

 const void* next;

 ID3D11Device* device;

} XrGraphicsBindingD3D11KHR;

Chapter 12. List of Current Extensions | 321

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• device is a pointer to a valid ID3D11Device to use.

When creating a D3D11-backed XrSession, the application will provide a pointer to an

XrGraphicsBindingD3D11KHR in the XrSessionCreateInfo::next field of structure passed to

xrCreateSession. The D3D11 device specified in XrGraphicsBindingD3D11KHR::device must be created

in accordance with the requirements retrieved through xrGetD3D11GraphicsRequirementsKHR,

otherwise xrCreateSession must return XR_ERROR_GRAPHICS_DEVICE_INVALID.

Valid Usage (Implicit)

• The XR_KHR_D3D11_enable extension must be enabled prior to using

XrGraphicsBindingD3D11KHR

• type must be XR_TYPE_GRAPHICS_BINDING_D3D11_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• device must be a pointer to an ID3D11Device value

The XrSwapchainImageD3D11KHR structure is defined as:

// Provided by XR_KHR_D3D11_enable

typedef struct XrSwapchainImageD3D11KHR {

 XrStructureType type;

 void* next;

 ID3D11Texture2D* texture;

} XrSwapchainImageD3D11KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• texture is a pointer to a valid ID3D11Texture2D to use.

322 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

If a given session was created with XrGraphicsBindingD3D11KHR, the following conditions must apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageD3D11KHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageD3D11KHR.

The OpenXR runtime must interpret the top-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing up,

near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_D3D11_enable extension must be enabled prior to using

XrSwapchainImageD3D11KHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsD3D11KHR structure is defined as:

// Provided by XR_KHR_D3D11_enable

typedef struct XrGraphicsRequirementsD3D11KHR {

 XrStructureType type;

 void* next;

 LUID adapterLuid;

 D3D_FEATURE_LEVEL minFeatureLevel;

} XrGraphicsRequirementsD3D11KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• adapterLuid identifies what graphics device needs to be used.

• minFeatureLevel is the minimum feature level that the D3D11 device must be initialized with.

XrGraphicsRequirementsD3D11KHR is populated by xrGetD3D11GraphicsRequirementsKHR.

Chapter 12. List of Current Extensions | 323

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_KHR_D3D11_enable extension must be enabled prior to using

XrGraphicsRequirementsD3D11KHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_D3D11_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• adapterLuid must be a valid LUID value

• minFeatureLevel must be a valid D3D_FEATURE_LEVEL value

New Functions

Some computer systems may have multiple graphics devices, each of which may have independent

external display outputs. XR systems that connect to such graphics devices are typically connected to a

single device. Applications need to know what graphics device the XR system is connected to so that

they can use that graphics device to generate XR images.

To retrieve the D3D11 feature level and graphics device for an instance and system, call:

// Provided by XR_KHR_D3D11_enable

XrResult xrGetD3D11GraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsD3D11KHR* graphicsRequirements);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsD3D11KHR output structure.

The xrGetD3D11GraphicsRequirementsKHR function identifies to the application what graphics device

(Windows LUID) needs to be used and the minimum feature level to use. The runtime must return

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to

legacy behavior) on calls to xrCreateSession if xrGetD3D11GraphicsRequirementsKHR has not been

called for the same instance and systemId. The LUID and feature level that

xrGetD3D11GraphicsRequirementsKHR returns must be used to create the ID3D11Device that the

application passes to xrCreateSession in the XrGraphicsBindingD3D11KHR.

324 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_KHR_D3D11_enable extension must be enabled prior to calling

xrGetD3D11GraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsD3D11KHR structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Issues

Version History

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Split XR_KHR_D3D_enable into XR_KHR_D3D11_enable

◦ Rename and expand xrGetD3DGraphicsDeviceKHR functionality to
xrGetD3D11GraphicsRequirementsKHR

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

• Revision 5, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

Chapter 12. List of Current Extensions | 325

• Revision 8, 2021-09-09 (Bryce Hutchings)

◦ Document mapping for XrSwapchainUsageFlags

• Revision 9, 2021-12-28 (Matthieu Bucchianeri)

◦ Added missing XR_ERROR_GRAPHICS_DEVICE_INVALID error condition

12.13. XR_KHR_D3D12_enable

Name String

XR_KHR_D3D12_enable

Extension Type

Instance extension

Registered Extension Number

29

Revision

9

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-03-18

IP Status

No known IP claims.

Contributors

Bryce Hutchings, Microsoft

Paul Pedriana, Oculus

Mark Young, LunarG

Minmin Gong, Microsoft

Dan Ginsburg, Valve

Matthieu Bucchianeri, Microsoft

Overview

This extension enables the use of the D3D12 graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to use any D3D12 swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingD3D12KHR structure in order to create a D3D12-based XrSession. Note that during

this process the application is responsible for creating all the required D3D12 objects, including a

326 | Chapter 12. List of Current Extensions

graphics device and queue to be used for rendering.

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you must define

XR_USE_GRAPHICS_API_D3D12 before including the OpenXR platform header openxr_platform.h, in all

portions of your library or application that include it.

Swapchain Image Resource State

When an application acquires a swapchain image by calling xrAcquireSwapchainImage in a session

create using XrGraphicsBindingD3D12KHR, the OpenXR runtime must guarantee that:

• The color rendering target image has a resource state match with
D3D12_RESOURCE_STATE_RENDER_TARGET

• The depth rendering target image has a resource state match with
D3D12_RESOURCE_STATE_DEPTH_WRITE

• The ID3D12CommandQueue specified in XrGraphicsBindingD3D12KHR can write to the image.

When an application releases a swapchain image by calling xrReleaseSwapchainImage, in a session

create using XrGraphicsBindingD3D12KHR, the OpenXR runtime must interpret the image as:

• Having a resource state match with D3D12_RESOURCE_STATE_RENDER_TARGET if the image is a color

rendering target

• Having a resource state match with D3D12_RESOURCE_STATE_DEPTH_WRITE if the image is a depth

rendering target

• Being available for read/write on the ID3D12CommandQueue specified in XrGraphicsBindingD3D12KHR.

The application is responsible for transitioning the swapchain image back to the resource state and

queue availability that the OpenXR runtime requires. If the image is not in a resource state match with

the above specifications the runtime may exhibit undefined behavior.

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingD3D12KHR

must be interpreted as follows by the runtime, so that the returned swapchain images used by the

application may be used as if they were created with the corresponding D3D12_BIND_FLAG flags and

heap type. The runtime may set additional resource flags but must not restrict usage.

XrSwapchainUsageFlagBits Corresponding D3D12 resource flag bits

XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET

XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL

XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS

XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT ignored

XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT ignored

Chapter 12. List of Current Extensions | 327

XrSwapchainUsageFlagBits Corresponding D3D12 resource flag bits

XR_SWAPCHAIN_USAGE_SAMPLED_BIT omitted D3D12_RESOURCE_FLAG_DENY_SHADER_RESOURCE

XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT ignored

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR

(Added by

XR_KHR_swapchain_usage_input_attachment_bit and

only available when that extension is enabled)

ignored

All D3D12 swapchain textures are created with D3D12_HEAP_TYPE_DEFAULT usage.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_D3D12_KHR

• XR_TYPE_GRAPHICS_BINDING_D3D12_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information

required to work with the D3D12 API executing on certain operating systems.

The XrGraphicsBindingD3D12KHR structure is defined as:

// Provided by XR_KHR_D3D12_enable

typedef struct XrGraphicsBindingD3D12KHR {

 XrStructureType type;

 const void* next;

 ID3D12Device* device;

 ID3D12CommandQueue* queue;

} XrGraphicsBindingD3D12KHR;

328 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• device is a pointer to a valid ID3D12Device to use.

• queue is a pointer to a valid ID3D12CommandQueue to use.

When creating a D3D12-backed XrSession, the application will provide a pointer to an

XrGraphicsBindingD3D12KHR in the XrSessionCreateInfo::next field of structure passed to

xrCreateSession. The D3D12 device specified in XrGraphicsBindingD3D12KHR::device must be created

in accordance with the requirements retrieved through xrGetD3D12GraphicsRequirementsKHR,

otherwise xrCreateSession must return XR_ERROR_GRAPHICS_DEVICE_INVALID.

Valid Usage (Implicit)

• The XR_KHR_D3D12_enable extension must be enabled prior to using

XrGraphicsBindingD3D12KHR

• type must be XR_TYPE_GRAPHICS_BINDING_D3D12_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• device must be a pointer to an ID3D12Device value

• queue must be a pointer to an ID3D12CommandQueue value

The XrSwapchainImageD3D12KHR structure is defined as:

// Provided by XR_KHR_D3D12_enable

typedef struct XrSwapchainImageD3D12KHR {

 XrStructureType type;

 void* next;

 ID3D12Resource* texture;

} XrSwapchainImageD3D12KHR;

Chapter 12. List of Current Extensions | 329

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• texture is a pointer to a valid ID3D12Texture2D to use.

If a given session was created with XrGraphicsBindingD3D12KHR, the following conditions must apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageD3D12KHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageD3D12KHR.

The OpenXR runtime must interpret the top-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing up,

near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_D3D12_enable extension must be enabled prior to using

XrSwapchainImageD3D12KHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsD3D12KHR structure is defined as:

// Provided by XR_KHR_D3D12_enable

typedef struct XrGraphicsRequirementsD3D12KHR {

 XrStructureType type;

 void* next;

 LUID adapterLuid;

 D3D_FEATURE_LEVEL minFeatureLevel;

} XrGraphicsRequirementsD3D12KHR;

330 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• adapterLuid identifies what graphics device needs to be used.

• minFeatureLevel is the minimum feature level that the D3D12 device must be initialized with.

XrGraphicsRequirementsD3D12KHR is populated by xrGetD3D12GraphicsRequirementsKHR.

Valid Usage (Implicit)

• The XR_KHR_D3D12_enable extension must be enabled prior to using

XrGraphicsRequirementsD3D12KHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_D3D12_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• adapterLuid must be a valid LUID value

• minFeatureLevel must be a valid D3D_FEATURE_LEVEL value

New Functions

Some computer systems may have multiple graphics devices, each of which may have independent

external display outputs. XR systems that connect to such graphics devices are typically connected to a

single device. Applications need to know what graphics device the XR system is connected to so that

they can use that graphics device to generate XR images.

To retrieve the D3D12 feature level and graphics device for an instance and system, call:

// Provided by XR_KHR_D3D12_enable

XrResult xrGetD3D12GraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsD3D12KHR* graphicsRequirements);

Chapter 12. List of Current Extensions | 331

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsD3D12KHR output structure.

The xrGetD3D12GraphicsRequirementsKHR function identifies to the application what graphics device

(Windows LUID) needs to be used and the minimum feature level to use. The runtime must return

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to

legacy behavior) on calls to xrCreateSession if xrGetD3D12GraphicsRequirementsKHR has not been

called for the same instance and systemId. The LUID and feature level that

xrGetD3D12GraphicsRequirementsKHR returns must be used to create the ID3D12Device that the

application passes to xrCreateSession in the XrGraphicsBindingD3D12KHR.

Valid Usage (Implicit)

• The XR_KHR_D3D12_enable extension must be enabled prior to calling

xrGetD3D12GraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsD3D12KHR structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Issues

Version History

332 | Chapter 12. List of Current Extensions

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Split XR_KHR_D3D_enable into XR_KHR_D3D12_enable

◦ Rename and expand xrGetD3DGraphicsDeviceKHR functionality to
xrGetD3D12GraphicsRequirementsKHR

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

• Revision 5, 2019-01-29 (Dan Ginsburg)

◦ Added swapchain image resource state details.

• Revision 6, 2020-03-18 (Minmin Gong)

◦ Specified depth swapchain image resource state.

• Revision 7, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

• Revision 8, 2021-09-09 (Bryce Hutchings)

◦ Document mapping for XrSwapchainUsageFlags

• Revision 9, 2021-12-28 (Matthieu Bucchianeri)

◦ Added missing XR_ERROR_GRAPHICS_DEVICE_INVALID error condition

12.14. XR_KHR_loader_init

Name String

XR_KHR_loader_init

Extension Type

Instance extension

Registered Extension Number

89

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Chapter 12. List of Current Extensions | 333

Last Modified Date

2023-05-08

IP Status

No known IP claims.

Contributors

Cass Everitt, Facebook

Robert Blenkinsopp, Ultraleap

Overview

On some platforms, before loading can occur the loader must be initialized with platform-specific

parameters.

Unlike other extensions, the presence of this extension is signaled by a successful call to

xrGetInstanceProcAddr to retrieve the function pointer for xrInitializeLoaderKHR using

XR_NULL_HANDLE as the instance parameter.

If this extension is supported, its use may be required on some platforms and the use of the

xrInitializeLoaderKHR function must precede other OpenXR calls except xrGetInstanceProcAddr.

This function exists as part of the loader library that the application is using and the loader must pass

calls to xrInitializeLoaderKHR to the active runtime, and all enabled API layers that expose a

xrInitializeLoaderKHR function exposed either through their manifest, or through their

implementation of xrGetInstanceProcAddr.

If the xrInitializeLoaderKHR function is discovered through the manifest, xrInitializeLoaderKHR will

be called before xrNegotiateLoaderRuntimeInterface or xrNegotiateLoaderApiLayerInterface has been

called on the runtime or layer respectively.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

The XrLoaderInitInfoBaseHeaderKHR structure is defined as:

334 | Chapter 12. List of Current Extensions

// Provided by XR_KHR_loader_init

typedef struct XrLoaderInitInfoBaseHeaderKHR {

 XrStructureType type;

 const void* next;

} XrLoaderInitInfoBaseHeaderKHR;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

Valid Usage (Implicit)

• The XR_KHR_loader_init extension must be enabled prior to using

XrLoaderInitInfoBaseHeaderKHR

• type must be XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To initialize an OpenXR loader with platform or implementation-specific parameters, call:

// Provided by XR_KHR_loader_init

XrResult xrInitializeLoaderKHR(

 const XrLoaderInitInfoBaseHeaderKHR* loaderInitInfo);

Parameter Descriptions

• loaderInitInfo is a pointer to an XrLoaderInitInfoBaseHeaderKHR structure, which is a

polymorphic type defined by other platform- or implementation-specific extensions.

Issues

Version History

Chapter 12. List of Current Extensions | 335

#valid-usage-for-structure-pointer-chains

• Revision 2, 2023-05-08 (Robert Blenkinsoppp)

◦ Explicitly state that the call to xrInitializeLoaderKHR should be passed to the runtime and

enabled API layers.

• Revision 1, 2020-05-07 (Cass Everitt)

◦ Initial draft

12.15. XR_KHR_loader_init_android

Name String

XR_KHR_loader_init_android

Extension Type

Instance extension

Registered Extension Number

90

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_KHR_loader_init

Last Modified Date

2020-05-07

IP Status

No known IP claims.

Contributors

Cass Everitt, Facebook

Overview

On Android, some loader implementations need the application to provide additional information on

initialization. This extension defines the parameters needed by such implementations. If this is

available on a given implementation, an application must make use of it.

On implementations where use of this is required, the following condition must apply:

• Whenever an OpenXR function accepts an XrLoaderInitInfoBaseHeaderKHR pointer, the runtime

(and loader) must also accept a pointer to an XrLoaderInitInfoAndroidKHR.

336 | Chapter 12. List of Current Extensions

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR

New Enums

New Structures

The XrLoaderInitInfoAndroidKHR structure is defined as:

// Provided by XR_KHR_loader_init_android

typedef struct XrLoaderInitInfoAndroidKHR {

 XrStructureType type;

 const void* next;

 void* applicationVM;

 void* applicationContext;

} XrLoaderInitInfoAndroidKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• applicationVM is a pointer to the JNI’s opaque JavaVM structure, cast to a void pointer.

• applicationContext is a JNI reference to an android.content.Context associated with the

application, cast to a void pointer.

Chapter 12. List of Current Extensions | 337

Valid Usage (Implicit)

• The XR_KHR_loader_init_android extension must be enabled prior to using

XrLoaderInitInfoAndroidKHR

• type must be XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• applicationVM must be a pointer value

• applicationContext must be a pointer value

New Functions

Issues

Version History

• Revision 1, 2020-05-07 (Cass Everitt)

◦ Initial draft

12.16. XR_KHR_opengl_enable

Name String

XR_KHR_opengl_enable

Extension Type

Instance extension

Registered Extension Number

24

Revision

10

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-07-02

IP Status

No known IP claims.

338 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Contributors

Mark Young, LunarG

Bryce Hutchings, Microsoft

Paul Pedriana, Oculus

Minmin Gong, Microsoft

Robert Menzel, NVIDIA

Jakob Bornecrantz, Collabora

Paulo Gomes, Samsung Electronics

Overview

This extension enables the use of the OpenGL graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to provide any OpenGL swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingOpenGL*KHR structure in order to create an OpenGL-based XrSession. Note that during

this process the application is responsible for creating an OpenGL context to be used for rendering.

The runtime however will provide the OpenGL textures to render into in the form of a swapchain.

This extension provides mechanisms for the application to interact with images acquired by calling

xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, the application must define

XR_USE_GRAPHICS_API_OPENGL, as well as an appropriate window system define supported by this

extension, before including the OpenXR platform header openxr_platform.h, in all portions of the

library or application that include it. The window system defines currently supported by this extension

are:

• XR_USE_PLATFORM_WIN32

• XR_USE_PLATFORM_XLIB

• XR_USE_PLATFORM_XCB

• XR_USE_PLATFORM_WAYLAND

Note that a runtime implementation of this extension is only required to support the structs

introduced by this extension which belong to the platform it is running on.

Note that the OpenGL context given to the call xrCreateSession must not be bound in another thread

when calling the functions: xrCreateSession, xrDestroySession, xrBeginFrame, xrEndFrame,

xrCreateSwapchain, xrDestroySwapchain, xrEnumerateSwapchainImages, xrAcquireSwapchainImage,

xrWaitSwapchainImage and xrReleaseSwapchainImage. It may be bound in the thread calling those

functions. The runtime must not access the context from any other function. In particular the

application must be able to call xrWaitFrame from a different thread than the rendering thread.

Swapchain Flag Bits

Chapter 12. List of Current Extensions | 339

All XrSwapchainUsageFlags valid values passed in a session created using

XrGraphicsBindingOpenGLWin32KHR, XrGraphicsBindingOpenGLXlibKHR,

XrGraphicsBindingOpenGLXcbKHR or XrGraphicsBindingOpenGLWaylandKHR should be ignored as

there is no mapping to OpenGL texture settings. Note

In such a session, a runtime may use a supporting graphics API, such as Vulkan, to

allocate images that are intended to alias with OpenGL textures, and be part of an

XrSwapchain. A runtime which allocates the texture with a different graphics API

may need to enable several usage flags on the underlying native texture resource to

ensure compatibility with OpenGL.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_WIN32_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_XLIB_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_XCB_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_WAYLAND_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information

required to work with the OpenGL API executing on certain operating systems.

These structures are only available when the corresponding XR_USE_PLATFORM_ macro is defined before

including openxr_platform.h.

The XrGraphicsBindingOpenGLWin32KHR structure is defined as:

340 | Chapter 12. List of Current Extensions

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsBindingOpenGLWin32KHR {

 XrStructureType type;

 const void* next;

 HDC hDC;

 HGLRC hGLRC;

} XrGraphicsBindingOpenGLWin32KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• hDC is a valid Windows HW device context handle.

• hGLRC is a valid Windows OpenGL rendering context handle.

When creating an OpenGL-backed XrSession on Microsoft Windows, the application will provide a

pointer to an XrGraphicsBindingOpenGLWin32KHR in the next chain of the XrSessionCreateInfo. As no

standardized way exists for OpenGL to create the graphics context on a specific GPU, the runtime must

assume that the application uses the operating systems default GPU. If the GPU used by the runtime

does not match the GPU on which the OpenGL context of the application got created, xrCreateSession

must return XR_ERROR_GRAPHICS_DEVICE_INVALID.

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_WIN32.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLWin32KHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_WIN32_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• hDC must be a valid HDC value

• hGLRC must be a valid HGLRC value

The XrGraphicsBindingOpenGLXlibKHR structure is defined as:

Chapter 12. List of Current Extensions | 341

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsBindingOpenGLXlibKHR {

 XrStructureType type;

 const void* next;

 Display* xDisplay;

 uint32_t visualid;

 GLXFBConfig glxFBConfig;

 GLXDrawable glxDrawable;

 GLXContext glxContext;

} XrGraphicsBindingOpenGLXlibKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• xDisplay is a valid X11 Display.

• visualid is a valid X11 visual identifier.

• glxFBConfig is a valid X11 OpenGL GLX GLXFBConfig.

• glxDrawable is a valid X11 OpenGL GLX GLXDrawable.

• glxContext is a valid X11 OpenGL GLX GLXContext.

When creating an OpenGL-backed XrSession on any Linux/Unix platform that utilizes X11 and GLX, via

the Xlib library, the application will provide a pointer to an XrGraphicsBindingOpenGLXlibKHR in the

next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_XLIB.

342 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLXlibKHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_XLIB_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• xDisplay must be a pointer to a Display value

• glxFBConfig must be a valid GLXFBConfig value

• glxDrawable must be a valid GLXDrawable value

• glxContext must be a valid GLXContext value

The XrGraphicsBindingOpenGLXcbKHR structure is defined as:

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsBindingOpenGLXcbKHR {

 XrStructureType type;

 const void* next;

 xcb_connection_t* connection;

 uint32_t screenNumber;

 xcb_glx_fbconfig_t fbconfigid;

 xcb_visualid_t visualid;

 xcb_glx_drawable_t glxDrawable;

 xcb_glx_context_t glxContext;

} XrGraphicsBindingOpenGLXcbKHR;

Chapter 12. List of Current Extensions | 343

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• connection is a valid xcb_connection_t.

• screenNumber is an index indicating which screen should be used for rendering.

• fbconfigid is a valid XCB OpenGL GLX xcb_glx_fbconfig_t.

• visualid is a valid XCB OpenGL GLX xcb_visualid_t.

• glxDrawable is a valid XCB OpenGL GLX xcb_glx_drawable_t.

• glxContext is a valid XCB OpenGL GLX xcb_glx_context_t.

When creating an OpenGL-backed XrSession on any Linux/Unix platform that utilizes X11 and GLX, via

the Xlib library, the application will provide a pointer to an XrGraphicsBindingOpenGLXcbKHR in the

next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_XCB.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLXcbKHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_XCB_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• connection must be a pointer to an xcb_connection_t value

• fbconfigid must be a valid xcb_glx_fbconfig_t value

• visualid must be a valid xcb_visualid_t value

• glxDrawable must be a valid xcb_glx_drawable_t value

• glxContext must be a valid xcb_glx_context_t value

The XrGraphicsBindingOpenGLWaylandKHR structure is defined as:

344 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsBindingOpenGLWaylandKHR {

 XrStructureType type;

 const void* next;

 struct wl_display* display;

} XrGraphicsBindingOpenGLWaylandKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• display is a valid Wayland wl_display.

When creating an OpenGL-backed XrSession on any Linux/Unix platform that utilizes the Wayland

protocol with its compositor, the application will provide a pointer to an

XrGraphicsBindingOpenGLWaylandKHR in the next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_WAYLAND.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLWaylandKHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_WAYLAND_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• display must be a pointer to a wl_display value

The XrSwapchainImageOpenGLKHR structure is defined as:

// Provided by XR_KHR_opengl_enable

typedef struct XrSwapchainImageOpenGLKHR {

 XrStructureType type;

 void* next;

 uint32_t image;

} XrSwapchainImageOpenGLKHR;

Chapter 12. List of Current Extensions | 345

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• image is the OpenGL texture handle associated with this swapchain image.

If a given session was created with a XrGraphicsBindingOpenGL*KHR, the following conditions must apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageOpenGLKHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageOpenGLKHR.

The OpenXR runtime must interpret the bottom-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing up,

near Z plane at -1, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrSwapchainImageOpenGLKHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsOpenGLKHR structure is defined as:

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsRequirementsOpenGLKHR {

 XrStructureType type;

 void* next;

 XrVersion minApiVersionSupported;

 XrVersion maxApiVersionSupported;

} XrGraphicsRequirementsOpenGLKHR;

346 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minApiVersionSupported is the minimum version of OpenGL that the runtime supports. Uses

XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

• maxApiVersionSupported is the maximum version of OpenGL that the runtime has been tested

on and is known to support. Newer OpenGL versions might work if they are compatible. Uses

XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

XrGraphicsRequirementsOpenGLKHR is populated by xrGetOpenGLGraphicsRequirementsKHR with

the runtime’s OpenGL API version requirements.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsRequirementsOpenGLKHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To query OpenGL API version requirements for an instance and system, call:

// Provided by XR_KHR_opengl_enable

XrResult xrGetOpenGLGraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsOpenGLKHR* graphicsRequirements);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsOpenGLKHR output structure.

Chapter 12. List of Current Extensions | 347

#valid-usage-for-structure-pointer-chains

The xrGetOpenGLGraphicsRequirementsKHR function identifies to the application the minimum

OpenGL version requirement and the highest known tested OpenGL version. The runtime must return

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to

legacy behavior) on calls to xrCreateSession if xrGetOpenGLGraphicsRequirementsKHR has not been

called for the same instance and systemId.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to calling

xrGetOpenGLGraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsOpenGLKHR structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Issues

Version History

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Add new xrGetOpenGLGraphicsRequirementsKHR

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

348 | Chapter 12. List of Current Extensions

• Revision 5, 2019-01-25 (Robert Menzel)

◦ Description updated

• Revision 6, 2019-07-02 (Robert Menzel)

◦ Minor fixes

• Revision 7, 2019-07-08 (Rylie Pavlik)

◦ Adjusted member name in XCB struct

• Revision 8, 2019-11-28 (Jakob Bornecrantz)

◦ Added note about context not allowed to be current in a different thread.

• Revision 9, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

• Revision 10, 2021-08-31 (Paulo F. Gomes)

◦ Document handling of XrSwapchainUsageFlags

12.17. XR_KHR_opengl_es_enable

Name String

XR_KHR_opengl_es_enable

Extension Type

Instance extension

Registered Extension Number

25

Revision

8

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-07-12

IP Status

No known IP claims.

Contributors

Mark Young, LunarG

Bryce Hutchings, Microsoft

Paul Pedriana, Oculus

Chapter 12. List of Current Extensions | 349

Minmin Gong, Microsoft

Robert Menzel, NVIDIA

Martin Renschler, Qualcomm

Paulo Gomes, Samsung Electronics

Overview

This extension must be provided by runtimes supporting applications using OpenGL ES APIs for

rendering. OpenGL ES applications need this extension to obtain compatible swapchain images which

the runtime is required to supply. The runtime needs the following OpenGL ES objects from the

application in order to interact properly with the OpenGL ES driver: EGLDisplay, EGLConfig and

EGLContext.

These are passed from the application to the runtime in a XrGraphicsBindingOpenGLESAndroidKHR

structure when creating the XrSession. Although not restricted to Android, the OpenGL ES extension is

currently tailored for Android.

Note that the application is responsible for creating the required OpenGL ES objects, including an

OpenGL ES context to be used for rendering.

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, the application source code

must define XR_USE_GRAPHICS_API_OPENGL_ES, as well as an appropriate window system define,

before including the OpenXR platform header openxr_platform.h, in all portions of your library or

application that include it. The only window system define currently supported by this extension is:

• XR_USE_PLATFORM_ANDROID

Swapchain Flag Bits

All XrSwapchainUsageFlags valid values passed in a session created using

XrGraphicsBindingOpenGLESAndroidKHR should be ignored as there is no mapping to OpenGL ES

texture settings. Note

In such a session, a runtime may use a supporting graphics API, such as Vulkan, to

allocate images that are intended to alias with OpenGLES textures, and be part of an

XrSwapchain. A runtime which allocates the texture with a different graphics API

may need to enable several usage flags on the underlying native texture resource to

ensure compatibility with OpenGL ES.

New Object Types

New Flag Types

350 | Chapter 12. List of Current Extensions

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_ES_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_ES_ANDROID_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information

required to work with the OpenGL ES API executing on certain operating systems.

These structures are only available when the corresponding XR_USE_PLATFORM_ macro is defined before

including openxr_platform.h.

The XrGraphicsBindingOpenGLESAndroidKHR structure is defined as:

// Provided by XR_KHR_opengl_es_enable

typedef struct XrGraphicsBindingOpenGLESAndroidKHR {

 XrStructureType type;

 const void* next;

 EGLDisplay display;

 EGLConfig config;

 EGLContext context;

} XrGraphicsBindingOpenGLESAndroidKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• display is a valid Android OpenGL ES EGLDisplay.

• config is a valid Android OpenGL ES EGLConfig.

• context is a valid Android OpenGL ES EGLContext.

When creating an OpenGL ES-backed XrSession on Android, the application will provide a pointer to

an XrGraphicsBindingOpenGLESAndroidKHR structure in the next chain of the XrSessionCreateInfo.

Chapter 12. List of Current Extensions | 351

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_ANDROID.

Valid Usage (Implicit)

• The XR_KHR_opengl_es_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLESAndroidKHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_ES_ANDROID_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• display must be a valid EGLDisplay value

• config must be a valid EGLConfig value

• context must be a valid EGLContext value

The XrSwapchainImageOpenGLESKHR structure is defined as:

// Provided by XR_KHR_opengl_es_enable

typedef struct XrSwapchainImageOpenGLESKHR {

 XrStructureType type;

 void* next;

 uint32_t image;

} XrSwapchainImageOpenGLESKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• image is an index indicating the current OpenGL ES swapchain image to use.

If a given session was created with a XrGraphicsBindingOpenGLES*KHR, the following conditions must

apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageOpenGLESKHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageOpenGLESKHR

structure.

352 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

The OpenXR runtime must interpret the bottom-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing up,

near Z plane at -1, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_opengl_es_enable extension must be enabled prior to using

XrSwapchainImageOpenGLESKHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsOpenGLESKHR structure is defined as:

// Provided by XR_KHR_opengl_es_enable

typedef struct XrGraphicsRequirementsOpenGLESKHR {

 XrStructureType type;

 void* next;

 XrVersion minApiVersionSupported;

 XrVersion maxApiVersionSupported;

} XrGraphicsRequirementsOpenGLESKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minApiVersionSupported is the minimum version of OpenGL ES that the runtime supports.

Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version

component.

• maxApiVersionSupported is the maximum version of OpenGL ES that the runtime has been

tested on and is known to support. Newer OpenGL ES versions might work if they are

compatible. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch

version component.

XrGraphicsRequirementsOpenGLESKHR is populated by xrGetOpenGLESGraphicsRequirementsKHR

with the runtime’s OpenGL ES API version requirements.

Chapter 12. List of Current Extensions | 353

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_KHR_opengl_es_enable extension must be enabled prior to using

XrGraphicsRequirementsOpenGLESKHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_ES_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To query OpenGL ES API version requirements for an instance and system, call:

// Provided by XR_KHR_opengl_es_enable

XrResult xrGetOpenGLESGraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsOpenGLESKHR* graphicsRequirements);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsOpenGLESKHR output structure.

The xrGetOpenGLESGraphicsRequirementsKHR function identifies to the application the minimum

OpenGL ES version requirement and the highest known tested OpenGL ES version. The runtime must

return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned

due to legacy behavior) on calls to xrCreateSession if xrGetOpenGLESGraphicsRequirementsKHR has

not been called for the same instance and systemId.

Valid Usage (Implicit)

• The XR_KHR_opengl_es_enable extension must be enabled prior to calling

xrGetOpenGLESGraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsOpenGLESKHR

structure

354 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Issues

Version History

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Add new xrGetOpenGLESGraphicsRequirementsKHR

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

• Revision 5, 2019-01-25 (Robert Menzel)

◦ Description updated

• Revision 6, 2019-07-12 (Martin Renschler)

◦ Description updated

• Revision 7, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

• Revision 8, 2021-08-27 (Paulo F. Gomes)

◦ Document handling of XrSwapchainUsageFlags

Chapter 12. List of Current Extensions | 355

12.18. XR_KHR_swapchain_usage_input_attachment_bit

Name String

XR_KHR_swapchain_usage_input_attachment_bit

Extension Type

Instance extension

Registered Extension Number

166

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-05-11

IP Status

No known IP claims.

Contributors

Jakob Bornecrantz, Collabora

Rylie Pavlik, Collabora

Overview

This extension enables an application to specify that swapchain images should be created in a way so

that they can be used as input attachments. At the time of writing this bit only affects Vulkan

swapchains.

New Object Types

New Flag Types

New Enum Constants

XrSwapchainUsageFlagBits enumeration is extended with:

• XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR - indicates that the image format may be used as an

input attachment.

New Enums

356 | Chapter 12. List of Current Extensions

New Structures

New Functions

Issues

Version History

• Revision 1, 2020-07-23 (Jakob Bornecrantz)

◦ Initial draft

• Revision 2, 2020-07-24 (Jakob Bornecrantz)

◦ Added note about only affecting Vulkan

◦ Changed from MNDX to MND

• Revision 3, 2021-05-11 (Rylie Pavlik, Collabora, Ltd.)

◦ Updated for promotion from MND to KHR

12.19. XR_KHR_visibility_mask

Name String

XR_KHR_visibility_mask

Extension Type

Instance extension

Registered Extension Number

32

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2018-07-05

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Alex Turner, Microsoft

Chapter 12. List of Current Extensions | 357

Contacts

Paul Pedriana, Oculus

Overview

This extension support the providing of a per-view drawing mask for applications. The primary

purpose of this is to enable performance improvements that result from avoiding drawing on areas

that are not visible to the user. A common occurrence in head-mounted VR hardware is that the optical

system’s frustum does not intersect precisely with the rectangular display it is viewing. As a result, it

may be that there are parts of the display that are not visible to the user, such as the corners of the

display. In such cases it would be unnecessary for the application to draw into those parts.

New Object Types

New Flag Types

New Enum Constants

New Enums

XrVisibilityMaskTypeKHR identifies the different types of mask specification that is supported. The

application can request a view mask in any of the formats identified by these types.

// Provided by XR_KHR_visibility_mask

typedef enum XrVisibilityMaskTypeKHR {

 XR_VISIBILITY_MASK_TYPE_HIDDEN_TRIANGLE_MESH_KHR = 1,

 XR_VISIBILITY_MASK_TYPE_VISIBLE_TRIANGLE_MESH_KHR = 2,

 XR_VISIBILITY_MASK_TYPE_LINE_LOOP_KHR = 3,

 XR_VISIBILITY_MASK_TYPE_MAX_ENUM_KHR = 0x7FFFFFFF

} XrVisibilityMaskTypeKHR;

358 | Chapter 12. List of Current Extensions

Enumerant Descriptions

• XR_VISIBILITY_MASK_TYPE_HIDDEN_TRIANGLE_MESH_KHR refers to a two dimensional triangle mesh

on the view surface which should not be drawn to by the application. XrVisibilityMaskKHR

refers to a set of triangles identified by vertices and vertex indices. The index count will thus

be a multiple of three. The triangle vertices will be returned in counter-clockwise order as

viewed from the user perspective.

• XR_VISIBILITY_MASK_TYPE_VISIBLE_TRIANGLE_MESH_KHR refers to a two dimensional triangle

mesh on the view surface which should be drawn to by the application. XrVisibilityMaskKHR

refers to a set of triangles identified by vertices and vertex indices. The index count will thus

be a multiple of three. The triangle vertices will be returned in counter-clockwise order as

viewed from the user perspective.

• XR_VISIBILITY_MASK_TYPE_LINE_LOOP_KHR refers to a single multi-segmented line loop on the

view surface which encompasses the view area which should be drawn by the application. It

is the border that exists between the visible and hidden meshes identified by

XR_VISIBILITY_MASK_TYPE_HIDDEN_TRIANGLE_MESH_KHR and

XR_VISIBILITY_MASK_TYPE_VISIBLE_TRIANGLE_MESH_KHR. The line is counter-clockwise,

contiguous, and non-self crossing, with the last point implicitly connecting to the first point.

There is one vertex per point, the index count will equal the vertex count, and the indices

will refer to the vertices.

New Structures

The XrVisibilityMaskKHR structure is an input/output struct which specifies the view mask.

// Provided by XR_KHR_visibility_mask

typedef struct XrVisibilityMaskKHR {

 XrStructureType type;

 void* next;

 uint32_t vertexCapacityInput;

 uint32_t vertexCountOutput;

 XrVector2f* vertices;

 uint32_t indexCapacityInput;

 uint32_t indexCountOutput;

 uint32_t* indices;

} XrVisibilityMaskKHR;

Chapter 12. List of Current Extensions | 359

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• vertexCapacityInput is the capacity of the vertices array, or 0 to indicate a request to retrieve

the required capacity.

• vertexCountOutput is filled in by the runtime with the count of vertices written or the required

capacity in the case that vertexCapacityInput or indexCapacityInput is insufficient.

• vertices is an array of vertices filled in by the runtime that specifies mask coordinates in the

z=-1 plane of the rendered view—i.e. one meter in front of the view. When rendering the

mask for use in a projection layer, these vertices must be transformed by the application’s

projection matrix used for the respective XrCompositionLayerProjectionView.

• indexCapacityInput is the capacity of the indices array, or 0 to indicate a request to retrieve

the required capacity.

• indexCountOutput is filled in by the runtime with the count of indices written or the required

capacity in the case that vertexCapacityInput or indexCapacityInput is insufficient.

• indices is an array of indices filled in by the runtime, specifying the indices of the mask

geometry in the vertices array.

Valid Usage (Implicit)

• The XR_KHR_visibility_mask extension must be enabled prior to using XrVisibilityMaskKHR

• type must be XR_TYPE_VISIBILITY_MASK_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• If vertexCapacityInput is not 0, vertices must be a pointer to an array of vertexCapacityInput

XrVector2f structures

• If indexCapacityInput is not 0, indices must be a pointer to an array of indexCapacityInput

uint32_t values

The XrEventDataVisibilityMaskChangedKHR structure specifies an event which indicates that a given

view mask has changed. The application should respond to the event by calling

xrGetVisibilityMaskKHR to retrieve the updated mask. This event is per-view, so if the masks for

multiple views in a configuration change then multiple instances of this event will be sent to the

application, one per view.

360 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_visibility_mask

typedef struct XrEventDataVisibilityMaskChangedKHR {

 XrStructureType type;

 const void* next;

 XrSession session;

 XrViewConfigurationType viewConfigurationType;

 uint32_t viewIndex;

} XrEventDataVisibilityMaskChangedKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• session is the XrSession for which the view mask has changed.

• viewConfigurationType is the view configuration whose mask has changed.

• viewIndex is the individual view within the view configuration to which the change refers.

Valid Usage (Implicit)

• The XR_KHR_visibility_mask extension must be enabled prior to using

XrEventDataVisibilityMaskChangedKHR

• type must be XR_TYPE_EVENT_DATA_VISIBILITY_MASK_CHANGED_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrGetVisibilityMaskKHR function is defined as:

// Provided by XR_KHR_visibility_mask

XrResult xrGetVisibilityMaskKHR(

 XrSession session,

 XrViewConfigurationType viewConfigurationType,

 uint32_t viewIndex,

 XrVisibilityMaskTypeKHR visibilityMaskType,

 XrVisibilityMaskKHR* visibilityMask);

Chapter 12. List of Current Extensions | 361

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• viewConfigurationType is the view configuration from which to retrieve mask information.

• viewIndex is the individual view within the view configuration from which to retrieve mask

information.

• visibilityMaskType is the type of visibility mask requested.

• visibilityMask is an input/output struct which specifies the view mask.

xrGetVisibilityMaskKHR retrieves the view mask for a given view. This function follows the two-call

idiom for filling multiple buffers in a struct. Specifically, if either XrVisibilityMaskKHR

::vertexCapacityInput or XrVisibilityMaskKHR::indexCapacityInput is 0, the runtime must respond as if

both fields were set to 0, returning the vertex count and index count through XrVisibilityMaskKHR

::vertexCountOutput or XrVisibilityMaskKHR::indexCountOutput respectively. If a view mask for the

specified view isn’t available, the returned vertex and index counts must be 0.

Valid Usage (Implicit)

• The XR_KHR_visibility_mask extension must be enabled prior to calling

xrGetVisibilityMaskKHR

• session must be a valid XrSession handle

• viewConfigurationType must be a valid XrViewConfigurationType value

• visibilityMaskType must be a valid XrVisibilityMaskTypeKHR value

• visibilityMask must be a pointer to an XrVisibilityMaskKHR structure

362 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

Issues

Version History

• Revision 1, 2018-07-05 (Paul Pedriana)

◦ Initial version.

• Revision 2, 2019-07-15 (Alex Turner)

◦ Adjust two-call idiom usage.

12.20. XR_KHR_vulkan_enable

Name String

XR_KHR_vulkan_enable

Extension Type

Instance extension

Registered Extension Number

26

Revision

8

Chapter 12. List of Current Extensions | 363

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-25

IP Status

No known IP claims.

Contributors

Mark Young, LunarG

Paul Pedriana, Oculus

Ed Hutchins, Oculus

Andres Rodriguez, Valve

Dan Ginsburg, Valve

Bryce Hutchings, Microsoft

Minmin Gong, Microsoft

Robert Menzel, NVIDIA

Paulo Gomes, Samsung Electronics

Overview

This extension enables the use of the Vulkan graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to use any Vulkan swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingVulkanKHR structure in order to create a Vulkan-based XrSession. Note that during

this process the application is responsible for creating all the required Vulkan objects.

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you must define

XR_USE_GRAPHICS_API_VULKAN before including the OpenXR platform header openxr_platform.h, in

all portions of your library or application that include it.

Initialization

Some of the requirements for creating a valid XrGraphicsBindingVulkanKHR include correct

initialization of a VkInstance, VkPhysicalDevice, and VkDevice.

A runtime may require that the VkInstance be initialized to a specific Vulkan API version. Additionally,

the runtime may require a set of instance extensions to be enabled in the VkInstance. These

requirements can be queried by the application using xrGetVulkanGraphicsRequirementsKHR and

xrGetVulkanInstanceExtensionsKHR, respectively.

Similarly, the runtime may require the VkDevice to have a set of device extensions enabled, which can

364 | Chapter 12. List of Current Extensions

be queried using xrGetVulkanDeviceExtensionsKHR.

In order to satisfy the VkPhysicalDevice requirements, the application can query

xrGetVulkanGraphicsDeviceKHR to identify the correct VkPhysicalDevice.

Populating an XrGraphicsBindingVulkanKHR with a VkInstance, VkDevice, or VkPhysicalDevice that does

not meet the requirements outlined by this extension may result in undefined behavior by the OpenXR

runtime.

The API version, instance extension, device extension and physical device requirements only apply to

the VkInstance, VkDevice, and VkPhysicalDevice objects which the application wishes to associate with

an XrGraphicsBindingVulkanKHR.

Concurrency

Vulkan requires that concurrent access to a VkQueue from multiple threads be externally synchronized.

Therefore, OpenXR functions that may access the VkQueue specified in the

XrGraphicsBindingVulkanKHR must also be externally synchronized.

The list of OpenXR functions where the OpenXR runtime may access the VkQueue are:

• xrBeginFrame

• xrEndFrame

• xrAcquireSwapchainImage

• xrReleaseSwapchainImage

The runtime must not access the VkQueue in any OpenXR function that is not listed above or in an

extension definition.

Swapchain Image Layout

When an application acquires a swapchain image by calling xrAcquireSwapchainImage in a session

created using XrGraphicsBindingVulkanKHR, the OpenXR runtime must guarantee that:

• The image has a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for

color images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.

• The VkQueue specified in XrGraphicsBindingVulkanKHR has ownership of the image.

When an application releases a swapchain image by calling xrReleaseSwapchainImage, in a session

created using XrGraphicsBindingVulkanKHR, the OpenXR runtime must interpret the image as:

• Having a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for color

images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.

• Being owned by the VkQueue specified in XrGraphicsBindingVulkanKHR.

The application is responsible for transitioning the swapchain image back to the image layout and

Chapter 12. List of Current Extensions | 365

queue ownership that the OpenXR runtime requires. If the image is not in a layout compatible with the

above specifications the runtime may exhibit undefined behavior.

Swapchain Flag Bits

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingVulkanKHR

must be interpreted as follows by the runtime, so that the returned swapchain images used by the

application may be used as if they were created with at least the specified VkImageUsageFlagBits or

VkImageCreateFlagBits set.

XrSwapchainUsageFlagBits Corresponding Vulkan flag bit

XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT VK_IMAGE_USAGE_STORAGE_BIT

XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT VK_IMAGE_USAGE_TRANSFER_SRC_BIT

XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT VK_IMAGE_USAGE_TRANSFER_DST_BIT

XR_SWAPCHAIN_USAGE_SAMPLED_BIT VK_IMAGE_USAGE_SAMPLED_BIT

XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR

(Added by

XR_KHR_swapchain_usage_input_attachment_bit and

only available when that extension is enabled)

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR

• XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information

required to work with the Vulkan API executing on certain operating systems.

The XrGraphicsBindingVulkanKHR structure is defined as:

366 | Chapter 12. List of Current Extensions

// Provided by XR_KHR_vulkan_enable

typedef struct XrGraphicsBindingVulkanKHR {

 XrStructureType type;

 const void* next;

 VkInstance instance;

 VkPhysicalDevice physicalDevice;

 VkDevice device;

 uint32_t queueFamilyIndex;

 uint32_t queueIndex;

} XrGraphicsBindingVulkanKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• instance is a valid Vulkan VkInstance.

• physicalDevice is a valid Vulkan VkPhysicalDevice.

• device is a valid Vulkan VkDevice.

• queueFamilyIndex is a valid queue family index on device.

• queueIndex is a valid queue index on device to be used for synchronization.

When creating a Vulkan-backed XrSession, the application will provide a pointer to an

XrGraphicsBindingVulkanKHR in the next chain of the XrSessionCreateInfo.

Valid Usage

• instance must have enabled a Vulkan API version in the range specified by

XrGraphicsBindingVulkanKHR

• instance must have enabled all the instance extensions specified by

xrGetVulkanInstanceExtensionsKHR

• physicalDevice VkPhysicalDevice must match the device specified by

xrGetVulkanGraphicsDeviceKHR

• device must have enabled all the device extensions specified by

xrGetVulkanDeviceExtensionsKHR

Chapter 12. List of Current Extensions | 367

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to using

XrGraphicsBindingVulkanKHR

• type must be XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• instance must be a valid VkInstance value

• physicalDevice must be a valid VkPhysicalDevice value

• device must be a valid VkDevice value

The XrSwapchainImageVulkanKHR structure is defined as:

// Provided by XR_KHR_vulkan_enable

typedef struct XrSwapchainImageVulkanKHR {

 XrStructureType type;

 void* next;

 VkImage image;

} XrSwapchainImageVulkanKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• image is a valid Vulkan VkImage to use.

If a given session was created with XrGraphicsBindingVulkanKHR, the following conditions must

apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageVulkanKHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageVulkanKHR.

The OpenXR runtime must interpret the top-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing down,

368 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to using

XrSwapchainImageVulkanKHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsVulkanKHR structure is defined as:

// Provided by XR_KHR_vulkan_enable

typedef struct XrGraphicsRequirementsVulkanKHR {

 XrStructureType type;

 void* next;

 XrVersion minApiVersionSupported;

 XrVersion maxApiVersionSupported;

} XrGraphicsRequirementsVulkanKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minApiVersionSupported is the minimum Vulkan Instance API version that the runtime

supports. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch

version component.

• maxApiVersionSupported is the maximum Vulkan Instance API version that the runtime has

been tested on and is known to support. Newer Vulkan Instance API versions might work if

they are compatible. Uses XR_MAKE_VERSION on major and minor API version, ignoring any

patch version component.

XrGraphicsRequirementsVulkanKHR is populated by xrGetVulkanGraphicsRequirementsKHR with the

runtime’s Vulkan API version requirements.

Chapter 12. List of Current Extensions | 369

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to using

XrGraphicsRequirementsVulkanKHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To query Vulkan API version requirements, call:

// Provided by XR_KHR_vulkan_enable

XrResult xrGetVulkanGraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsVulkanKHR* graphicsRequirements);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsVulkanKHR output structure.

The xrGetVulkanGraphicsRequirementsKHR function identifies to the application the minimum

Vulkan version requirement and the highest known tested Vulkan version. The runtime must return

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to

legacy behavior) on calls to xrCreateSession if xrGetVulkanGraphicsRequirementsKHR has not been

called for the same instance and systemId.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to calling

xrGetVulkanGraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsVulkanKHR structure

370 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Some computer systems may have multiple graphics devices, each of which may have independent

external display outputs. XR systems that connect to such graphics devices are typically connected to a

single device. Applications need to know what graphics device the XR system is connected to so that

they can use that graphics device to generate XR images.

To identify what graphics device needs to be used for an instance and system, call:

// Provided by XR_KHR_vulkan_enable

XrResult xrGetVulkanGraphicsDeviceKHR(

 XrInstance instance,

 XrSystemId systemId,

 VkInstance vkInstance,

 VkPhysicalDevice* vkPhysicalDevice);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• vkInstance is a valid Vulkan VkInstance.

• vkPhysicalDevice is a pointer to a VkPhysicalDevice value to populate.

xrGetVulkanGraphicsDeviceKHR function identifies to the application what graphics device (Vulkan

VkPhysicalDevice) needs to be used. xrGetVulkanGraphicsDeviceKHR must be called prior to calling

xrCreateSession, and the VkPhysicalDevice that xrGetVulkanGraphicsDeviceKHR returns should be

Chapter 12. List of Current Extensions | 371

passed to xrCreateSession in the XrGraphicsBindingVulkanKHR.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to calling

xrGetVulkanGraphicsDeviceKHR

• instance must be a valid XrInstance handle

• vkInstance must be a valid VkInstance value

• vkPhysicalDevice must be a pointer to a VkPhysicalDevice value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

// Provided by XR_KHR_vulkan_enable

XrResult xrGetVulkanInstanceExtensionsKHR(

 XrInstance instance,

 XrSystemId systemId,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

372 | Chapter 12. List of Current Extensions

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of characters written (including terminating \0),

or a pointer to the required capacity in the case that bufferCapacityInput is insufficient.

• buffer is a pointer to an array of characters, but can be NULL if bufferCapacityInput is 0. The

format of the output is a single space (ASCII 0x20) delimited string of extension names.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to calling

xrGetVulkanInstanceExtensionsKHR

• instance must be a valid XrInstance handle

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SYSTEM_INVALID

Chapter 12. List of Current Extensions | 373

// Provided by XR_KHR_vulkan_enable

XrResult xrGetVulkanDeviceExtensionsKHR(

 XrInstance instance,

 XrSystemId systemId,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of characters written (including terminating \0),

or a pointer to the required capacity in the case that bufferCapacityInput is insufficient.

• buffer is a pointer to an array of characters, but can be NULL if bufferCapacityInput is 0. The

format of the output is a single space (ASCII 0x20) delimited string of extension names.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to calling

xrGetVulkanDeviceExtensionsKHR

• instance must be a valid XrInstance handle

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

374 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SYSTEM_INVALID

Issues

Version History

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Replace session parameter with instance and systemId parameters.

◦ Move xrGetVulkanDeviceExtensionsKHR, xrGetVulkanInstanceExtensionsKHR and

xrGetVulkanGraphicsDeviceKHR functions into this extension

◦ Add new XrGraphicsRequirementsVulkanKHR function.

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

• Revision 5, 2019-01-24 (Robert Menzel)

◦ Description updated

• Revision 6, 2019-01-25 (Andres Rodriguez)

◦ Reword sections of the spec to shift requirements on to the runtime instead of the app

• Revision 7, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

Chapter 12. List of Current Extensions | 375

• Revision 8, 2021-01-21 (Rylie Pavlik, Collabora, Ltd.)

◦ Document mapping for XrSwapchainUsageFlags

12.21. XR_KHR_vulkan_enable2

Name String

XR_KHR_vulkan_enable2

Extension Type

Instance extension

Registered Extension Number

91

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-05-04

IP Status

No known IP claims.

Contributors

Mark Young, LunarG

Paul Pedriana, Oculus

Ed Hutchins, Oculus

Andres Rodriguez, Valve

Dan Ginsburg, Valve

Bryce Hutchings, Microsoft

Minmin Gong, Microsoft

Robert Menzel, NVIDIA

Paulo Gomes, Samsung Electronics

12.21.1. Overview

This extension enables the use of the Vulkan graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to use any Vulkan swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingVulkan2KHR structure in order to create a Vulkan-based XrSession.

376 | Chapter 12. List of Current Extensions

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you must define

XR_USE_GRAPHICS_API_VULKAN before including the OpenXR platform header openxr_platform.h, in

all portions of your library or application that include it. Note

This extension is intended as an alternative to XR_KHR_vulkan_enable, and does not

depend on it.

12.21.2. Initialization

When operating in Vulkan mode, the OpenXR runtime and the application will share the Vulkan queue

described in the XrGraphicsBindingVulkan2KHR structure. This section of the document describes the

mechanisms this extension exposes to ensure the shared Vulkan queue is compatible with the runtime

and the application’s requirements.

Vulkan Version Requirements

First, a compatible Vulkan version must be agreed upon. To query the runtime’s Vulkan API version

requirements an application will call:

// Provided by XR_KHR_vulkan_enable2

XrResult xrGetVulkanGraphicsRequirements2KHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsVulkanKHR* graphicsRequirements);

The xrGetVulkanGraphicsRequirements2KHR function identifies to the application the runtime’s

minimum Vulkan version requirement and the highest known tested Vulkan version.

xrGetVulkanGraphicsRequirements2KHR must be called prior to calling xrCreateSession. The runtime

must return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING on calls to xrCreateSession if

xrGetVulkanGraphicsRequirements2KHR has not been called for the same instance and systemId.

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsVulkan2KHR output structure.

Chapter 12. List of Current Extensions | 377

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to calling

xrGetVulkanGraphicsRequirements2KHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsVulkanKHR structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

The XrGraphicsRequirementsVulkan2KHR structure populated by

xrGetVulkanGraphicsRequirements2KHR is defined as:

// Provided by XR_KHR_vulkan_enable2

// XrGraphicsRequirementsVulkan2KHR is an alias for XrGraphicsRequirementsVulkanKHR

typedef struct XrGraphicsRequirementsVulkanKHR {

 XrStructureType type;

 void* next;

 XrVersion minApiVersionSupported;

 XrVersion maxApiVersionSupported;

} XrGraphicsRequirementsVulkanKHR;

typedef XrGraphicsRequirementsVulkanKHR XrGraphicsRequirementsVulkan2KHR;

378 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minApiVersionSupported is the minimum version of Vulkan that the runtime supports. Uses

XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

• maxApiVersionSupported is the maximum version of Vulkan that the runtime has been tested

on and is known to support. Newer Vulkan versions might work if they are compatible. Uses

XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrGraphicsRequirementsVulkan2KHR

• Note: XrGraphicsRequirementsVulkan2KHR is an alias for

XrGraphicsRequirementsVulkanKHR, so the following items replicate the implicit valid usage

for XrGraphicsRequirementsVulkanKHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

Vulkan Instance Creation

Second, a compatible VkInstance must be created. The xrCreateVulkanInstanceKHR entry point is a

wrapper around vkCreateInstance intended for this purpose. When called, the runtime must aggregate

the requirements specified by the application with its own requirements and forward the VkInstance

creation request to the vkCreateInstance function pointer returned by pfnGetInstanceProcAddr.

// Provided by XR_KHR_vulkan_enable2

XrResult xrCreateVulkanInstanceKHR(

 XrInstance instance,

 const XrVulkanInstanceCreateInfoKHR* createInfo,

 VkInstance* vulkanInstance,

 VkResult* vulkanResult);

Chapter 12. List of Current Extensions | 379

#valid-usage-for-structure-pointer-chains
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/vkCreateInstance.html

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• createInfo extensible input struct of type XrVulkanInstanceCreateInfoKHR

• vulkanInstance points to a VkInstance handle to populate with the new Vulkan instance.

• vulkanResult points to a VkResult to populate with the result of the vkCreateInstance operation

as returned by XrVulkanInstanceCreateInfoKHR::pfnGetInstanceProcAddr.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to calling

xrCreateVulkanInstanceKHR

• instance must be a valid XrInstance handle

• createInfo must be a pointer to a valid XrVulkanInstanceCreateInfoKHR structure

• vulkanInstance must be a pointer to a VkInstance value

• vulkanResult must be a pointer to a VkResult value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_SYSTEM_INVALID

The XrVulkanInstanceCreateInfoKHR structure contains the input parameters to

xrCreateVulkanInstanceKHR.

380 | Chapter 12. List of Current Extensions

// Provided by XR_KHR_vulkan_enable2

typedef struct XrVulkanInstanceCreateInfoKHR {

 XrStructureType type;

 const void* next;

 XrSystemId systemId;

 XrVulkanInstanceCreateFlagsKHR createFlags;

 PFN_vkGetInstanceProcAddr pfnGetInstanceProcAddr;

 const VkInstanceCreateInfo* vulkanCreateInfo;

 const VkAllocationCallbacks* vulkanAllocator;

} XrVulkanInstanceCreateInfoKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension

• systemId is an XrSystemId handle for the system which will be used to create a session.

• createFlags is a bitmask of XrVulkanInstanceCreateFlagBitsKHR

• pfnGetInstanceProcAddr is a function pointer to vkGetInstanceProcAddr or a compatible entry

point.

• vulkanCreateInfo is the VkInstanceCreateInfo as specified by Vulkan.

• vulkanAllocator is the VkAllocationCallbacks as specified by Vulkan.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrVulkanInstanceCreateInfoKHR

• type must be XR_TYPE_VULKAN_INSTANCE_CREATE_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• createFlags must be 0

• pfnGetInstanceProcAddr must be a valid PFN_vkGetInstanceProcAddr value

• vulkanCreateInfo must be a pointer to a valid VkInstanceCreateInfo value

• If vulkanAllocator is not NULL, vulkanAllocator must be a pointer to a valid

VkAllocationCallbacks value

The XrVulkanInstanceCreateInfoKHR::createFlags member is of the following type, and contains a

bitwise-OR of zero or more of the bits defined in XrVulkanInstanceCreateFlagBitsKHR.

Chapter 12. List of Current Extensions | 381

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkInstanceCreateInfo.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkInstanceCreateInfo.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkAllocationCallbacks.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkAllocationCallbacks.html
#valid-usage-for-structure-pointer-chains

typedef XrFlags64 XrVulkanInstanceCreateFlagsKHR;

Valid bits for XrVulkanInstanceCreateFlagsKHR are defined by XrVulkanInstanceCreateFlagBitsKHR.

// Flag bits for XrVulkanInstanceCreateFlagsKHR

There are currently no Vulkan instance creation flag bits defined. This is reserved for future use.

Physical Device Selection

Third, a VkPhysicalDevice must be chosen. Some computer systems may have multiple graphics

devices, each of which may have independent external display outputs. The runtime must report a

VkPhysicalDevice that is compatible with the OpenXR implementation when

xrGetVulkanGraphicsDevice2KHR is invoked. The application will use this VkPhysicalDevice to interact

with the OpenXR runtime.

// Provided by XR_KHR_vulkan_enable2

XrResult xrGetVulkanGraphicsDevice2KHR(

 XrInstance instance,

 const XrVulkanGraphicsDeviceGetInfoKHR* getInfo,

 VkPhysicalDevice* vulkanPhysicalDevice);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• getInfo extensible input struct of type XrVulkanGraphicsDeviceGetInfoKHR

• vulkanPhysicalDevice is a pointer to a VkPhysicalDevice handle to populate.

382 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to calling

xrGetVulkanGraphicsDevice2KHR

• instance must be a valid XrInstance handle

• getInfo must be a pointer to a valid XrVulkanGraphicsDeviceGetInfoKHR structure

• vulkanPhysicalDevice must be a pointer to a VkPhysicalDevice value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

The XrVulkanGraphicsDeviceGetInfoKHR structure contains the input parameters to

xrCreateVulkanInstanceKHR.

// Provided by XR_KHR_vulkan_enable2

typedef struct XrVulkanGraphicsDeviceGetInfoKHR {

 XrStructureType type;

 const void* next;

 XrSystemId systemId;

 VkInstance vulkanInstance;

} XrVulkanGraphicsDeviceGetInfoKHR;

Chapter 12. List of Current Extensions | 383

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• vulkanInstance is a valid Vulkan VkInstance.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrVulkanGraphicsDeviceGetInfoKHR

• type must be XR_TYPE_VULKAN_GRAPHICS_DEVICE_GET_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• vulkanInstance must be a valid VkInstance value

Vulkan Device Creation

Fourth, a compatible VkDevice must be created. The xrCreateVulkanDeviceKHR entry point is a

wrapper around vkCreateDevice intended for this purpose. When called, the runtime must aggregate

the requirements specified by the application with its own requirements and forward the VkDevice

creation request to the vkCreateDevice function pointer returned by XrVulkanInstanceCreateInfoKHR

::pfnGetInstanceProcAddr.

// Provided by XR_KHR_vulkan_enable2

XrResult xrCreateVulkanDeviceKHR(

 XrInstance instance,

 const XrVulkanDeviceCreateInfoKHR* createInfo,

 VkDevice* vulkanDevice,

 VkResult* vulkanResult);

384 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/vkCreateDevice.html

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• createInfo extensible input struct of type XrCreateVulkanDeviceCreateInfoKHR

• vulkanDevice points to a VkDevice handle to populate with the new Vulkan device.

• vulkanResult points to a VkResult to populate with the result of the vkCreateDevice operation

as returned by XrVulkanInstanceCreateInfoKHR::pfnGetInstanceProcAddr.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to calling

xrCreateVulkanDeviceKHR

• instance must be a valid XrInstance handle

• createInfo must be a pointer to a valid XrVulkanDeviceCreateInfoKHR structure

• vulkanDevice must be a pointer to a VkDevice value

• vulkanResult must be a pointer to a VkResult value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_SYSTEM_INVALID

The XrVulkanDeviceCreateInfoKHR structure contains the input parameters to

xrCreateVulkanDeviceKHR.

Chapter 12. List of Current Extensions | 385

// Provided by XR_KHR_vulkan_enable2

typedef struct XrVulkanDeviceCreateInfoKHR {

 XrStructureType type;

 const void* next;

 XrSystemId systemId;

 XrVulkanDeviceCreateFlagsKHR createFlags;

 PFN_vkGetInstanceProcAddr pfnGetInstanceProcAddr;

 VkPhysicalDevice vulkanPhysicalDevice;

 const VkDeviceCreateInfo* vulkanCreateInfo;

 const VkAllocationCallbacks* vulkanAllocator;

} XrVulkanDeviceCreateInfoKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• createFlags is a bitmask of XrVulkanDeviceCreateFlagBitsKHR

• pfnGetInstanceProcAddr is a function pointer to vkGetInstanceProcAddr or a compatible entry

point.

• vulkanPhysicalDevice must match xrGetVulkanGraphicsDeviceKHR.

• vulkanCreateInfo is the VkDeviceCreateInfo as specified by Vulkan.

• vulkanAllocator is the VkAllocationCallbacks as specified by Vulkan.

If the vulkanPhysicalDevice parameter does not match the output of xrGetVulkanGraphicsDeviceKHR,

then the runtime must return XR_ERROR_HANDLE_INVALID.

386 | Chapter 12. List of Current Extensions

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDeviceCreateInfo.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDeviceCreateInfo.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkAllocationCallbacks.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkAllocationCallbacks.html

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrVulkanDeviceCreateInfoKHR

• type must be XR_TYPE_VULKAN_DEVICE_CREATE_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• createFlags must be 0

• pfnGetInstanceProcAddr must be a valid PFN_vkGetInstanceProcAddr value

• vulkanPhysicalDevice must be a valid VkPhysicalDevice value

• vulkanCreateInfo must be a pointer to a valid VkDeviceCreateInfo value

• If vulkanAllocator is not NULL, vulkanAllocator must be a pointer to a valid

VkAllocationCallbacks value

XrVulkanDeviceCreateFlagsKHR specify details of device creation. The

XrVulkanDeviceCreateInfoKHR::createFlags member is of the following type, and contains a bitwise-

OR of zero or more of the bits defined in XrVulkanDeviceCreateFlagBitsKHR.

typedef XrFlags64 XrVulkanDeviceCreateFlagsKHR;

Valid bits for XrVulkanDeviceCreateFlagsKHR are defined by XrVulkanDeviceCreateFlagBitsKHR.

// Flag bits for XrVulkanDeviceCreateFlagsKHR

There are currently no Vulkan device creation flag bits defined. This is reserved for future use.

Queue Selection

Last, the application selects a VkQueue from the VkDevice that has the VK_QUEUE_GRAPHICS_BIT set. Note

The runtime may schedule work on the VkQueue specified in the binding, or it may

schedule work on any hardware queue in a foreign logical device.

Chapter 12. List of Current Extensions | 387

#valid-usage-for-structure-pointer-chains

Vulkan Graphics Binding

When creating a Vulkan-backed XrSession, the application will chain a pointer to an

XrGraphicsBindingVulkan2KHR to the XrSessionCreateInfo parameter of xrCreateSession. With the

data collected in the previous sections, the application now has all the necessary information to

populate an XrGraphicsBindingVulkan2KHR structure for session creation.

// Provided by XR_KHR_vulkan_enable2

// XrGraphicsBindingVulkan2KHR is an alias for XrGraphicsBindingVulkanKHR

typedef struct XrGraphicsBindingVulkanKHR {

 XrStructureType type;

 const void* next;

 VkInstance instance;

 VkPhysicalDevice physicalDevice;

 VkDevice device;

 uint32_t queueFamilyIndex;

 uint32_t queueIndex;

} XrGraphicsBindingVulkanKHR;

typedef XrGraphicsBindingVulkanKHR XrGraphicsBindingVulkan2KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• instance is a valid Vulkan VkInstance.

• physicalDevice is a valid Vulkan VkPhysicalDevice.

• device is a valid Vulkan VkDevice.

• queueFamilyIndex is a valid queue family index on device.

• queueIndex is a valid queue index on device to be used for synchronization.

388 | Chapter 12. List of Current Extensions

Valid Usage

• instance must have enabled a Vulkan API version in the range specified by

xrGetVulkanGraphicsRequirements2KHR

• instance must have been created using xrCreateVulkanInstanceKHR

• physicalDevice VkPhysicalDevice must match the device specified by

xrGetVulkanGraphicsDevice2KHR

• device must have been created using xrCreateVulkanDeviceKHR

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrGraphicsBindingVulkan2KHR

• Note: XrGraphicsBindingVulkan2KHR is an alias for XrGraphicsBindingVulkanKHR, so the

following items replicate the implicit valid usage for XrGraphicsBindingVulkanKHR

• type must be XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• instance must be a valid VkInstance value

• physicalDevice must be a valid VkPhysicalDevice value

• device must be a valid VkDevice value

Populating an XrGraphicsBindingVulkan2KHR structure with a member that does not meet the

requirements outlined by this extension may result in undefined behavior by the OpenXR runtime.

The requirements outlined in this extension only apply to the VkInstance, VkDevice, VkPhysicalDevice

and VkQueue objects which the application wishes to associate with an XrGraphicsBindingVulkan2KHR.

12.21.3. Concurrency

Vulkan requires that concurrent access to a VkQueue from multiple threads be externally synchronized.

Therefore, OpenXR functions that may access the VkQueue specified in the

XrGraphicsBindingVulkan2KHR must also be externally synchronized by the OpenXR application.

The list of OpenXR functions where the OpenXR runtime may access the VkQueue are:

• xrBeginFrame

• xrEndFrame

• xrAcquireSwapchainImage

• xrReleaseSwapchainImage

Chapter 12. List of Current Extensions | 389

#valid-usage-for-structure-pointer-chains

The runtime must not access the VkQueue in any OpenXR function that is not listed above or in an

extension definition.

Failure by the application to synchronize access to VkQueue may result in undefined behavior in the

OpenXR runtime.

12.21.4. Swapchain Interactions

Swapchain Images

When an application interacts with XrSwapchainImageBaseHeader structures in a Vulkan-backed

XrSession, the application can interpret these to be XrSwapchainImageVulkan2KHR structures. These

are defined as:

// Provided by XR_KHR_vulkan_enable2

// XrSwapchainImageVulkan2KHR is an alias for XrSwapchainImageVulkanKHR

typedef struct XrSwapchainImageVulkanKHR {

 XrStructureType type;

 void* next;

 VkImage image;

} XrSwapchainImageVulkanKHR;

typedef XrSwapchainImageVulkanKHR XrSwapchainImageVulkan2KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• image is a valid Vulkan VkImage to use.

If a given session was created with XrGraphicsBindingVulkan2KHR, the following conditions must

apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageVulkan2KHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageVulkan2KHR.

The OpenXR runtime must interpret the top-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

390 | Chapter 12. List of Current Extensions

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing down,

near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrSwapchainImageVulkan2KHR

• Note: XrSwapchainImageVulkan2KHR is an alias for XrSwapchainImageVulkanKHR, so the

following items replicate the implicit valid usage for XrSwapchainImageVulkanKHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

Swapchain Image Layout

When an application acquires a swapchain image by calling xrAcquireSwapchainImage in a session

created using XrGraphicsBindingVulkan2KHR, the OpenXR runtime must guarantee that:

• The image has a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for

color images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.

• The VkQueue specified in XrGraphicsBindingVulkan2KHR has ownership of the image.

When an application releases a swapchain image by calling xrReleaseSwapchainImage, in a session

created using XrGraphicsBindingVulkan2KHR, the OpenXR runtime must interpret the image as:

• Having a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for color

images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.

• Being owned by the VkQueue specified in XrGraphicsBindingVulkan2KHR.

• Being referenced by command buffers submitted to the VkQueue specified in

XrGraphicsBindingVulkan2KHR which have not yet completed execution.

The application is responsible for transitioning the swapchain image back to the image layout and

queue ownership that the OpenXR runtime requires. If the image is not in a layout compatible with the

above specifications the runtime may exhibit undefined behavior.

Swapchain Flag Bits

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingVulkan2KHR

must be interpreted as follows by the runtime, so that the returned swapchain images used by the

application may be used as if they were created with at least the specified VkImageUsageFlagBits or

VkImageCreateFlagBits set.

Chapter 12. List of Current Extensions | 391

#valid-usage-for-structure-pointer-chains

XrSwapchainUsageFlagBits Corresponding Vulkan flag bit

XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT VK_IMAGE_USAGE_STORAGE_BIT

XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT VK_IMAGE_USAGE_TRANSFER_SRC_BIT

XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT VK_IMAGE_USAGE_TRANSFER_DST_BIT

XR_SWAPCHAIN_USAGE_SAMPLED_BIT VK_IMAGE_USAGE_SAMPLED_BIT

XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR

(Added by

XR_KHR_swapchain_usage_input_attachment_bit and

only available when that extension is enabled)

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

12.21.5. Appendix

Questions

1. Should the xrCreateVulkanDeviceKHR and xrCreateVulkanInstanceKHR functions have an output

parameter that returns the combined list of parameters used to create the Vulkan device/instance?

◦ No. If the application is interested in capturing this data it can set the pfnGetInstanceProcAddr

parameter to a local callback that captures the relevant information.

Quick Reference

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN2_KHR (alias of XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR)

• XR_TYPE_GRAPHICS_BINDING_VULKAN2_KHR (alias of XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR)

• XR_TYPE_SWAPCHAIN_IMAGE_VULKAN2_KHR (alias of XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR)

New Structures

• XrVulkanInstanceCreateInfoKHR

• XrVulkanDeviceCreateInfoKHR

• XrVulkanGraphicsDeviceGetInfoKHR

• XrGraphicsBindingVulkan2KHR (alias of XrGraphicsBindingVulkanKHR)

• XrSwapchainImageVulkan2KHR (alias of XrSwapchainImageVulkanKHR)

• XrGraphicsRequirementsVulkan2KHR (alias of XrGraphicsRequirementsVulkanKHR)

392 | Chapter 12. List of Current Extensions

New Functions

• xrCreateVulkanInstanceKHR

• xrCreateVulkanDeviceKHR

• xrGetVulkanGraphicsDevice2KHR

• xrGetVulkanGraphicsRequirements2KHR

Version History

• Revision 1, 2020-05-04 (Andres Rodriguez)

◦ Initial draft

• Revision 2, 2021-01-21 (Rylie Pavlik, Collabora, Ltd.)

◦ Document mapping for XrSwapchainUsageFlags

12.22. XR_KHR_vulkan_swapchain_format_list

Name String

XR_KHR_vulkan_swapchain_format_list

Extension Type

Instance extension

Registered Extension Number

15

Revision

4

Extension and Version Dependencies

OpenXR 1.0

and

XR_KHR_vulkan_enable

Last Modified Date

2020-01-01

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Dan Ginsburg, Valve

Chapter 12. List of Current Extensions | 393

Overview

Vulkan has the VK_KHR_image_format_list extension which allows applications to tell the vkCreateImage

function which formats the application intends to use when VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT is

specified. This OpenXR extension exposes that Vulkan extension to OpenXR applications. In the same

way that a Vulkan-based application can pass a VkImageFormatListCreateInfo struct to the vkCreateImage

function, an OpenXR application can pass an identically configured

XrVulkanSwapchainFormatListCreateInfoKHR structure to xrCreateSwapchain.

Applications using this extension to specify more than one swapchain format must create OpenXR

swapchains with the XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT bit set.

Runtimes implementing this extension must support the XR_KHR_vulkan_enable or the

XR_KHR_vulkan_enable2 extension. When XR_KHR_vulkan_enable is used, the runtime must add

VK_KHR_image_format_list to the list of extensions enabled in xrCreateVulkanDeviceKHR.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

 XR_TYPE_VULKAN_SWAPCHAIN_FORMAT_LIST_CREATE_INFO_KHR

New Enums

New Structures

// Provided by XR_KHR_vulkan_swapchain_format_list

typedef struct XrVulkanSwapchainFormatListCreateInfoKHR {

 XrStructureType type;

 const void* next;

 uint32_t viewFormatCount;

 const VkFormat* viewFormats;

} XrVulkanSwapchainFormatListCreateInfoKHR;

394 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• viewFormatCount is the number of view formats passed in viewFormats.

• viewFormats is an array of VkFormat.

Valid Usage (Implicit)

• The XR_KHR_vulkan_swapchain_format_list extension must be enabled prior to using

XrVulkanSwapchainFormatListCreateInfoKHR

• type must be XR_TYPE_VULKAN_SWAPCHAIN_FORMAT_LIST_CREATE_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• If viewFormatCount is not 0, viewFormats must be a pointer to an array of viewFormatCount valid

VkFormat values

New Functions

Issues

Version History

• Revision 1, 2017-09-13 (Paul Pedriana)

◦ Initial proposal.

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Update reference of XR_KHR_vulkan_extension_requirements to XR_KHR_vulkan_enable

• Revision 3, 2020-01-01 (Andres Rodriguez)

◦ Update for XR_KHR_vulkan_enable2

• Revision 4, 2021-01-21 (Rylie Pavlik, Collabora, Ltd.)

◦ Fix reference to the mutable-format bit in Vulkan.

12.23.

XR_KHR_win32_convert_performance_counter_time

Name String

XR_KHR_win32_convert_performance_counter_time

Chapter 12. List of Current Extensions | 395

#valid-usage-for-structure-pointer-chains

Extension Type

Instance extension

Registered Extension Number

36

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Bryce Hutchings, Microsoft

Overview

This extension provides two functions for converting between the Windows performance counter

(QPC) time stamps and XrTime. The xrConvertWin32PerformanceCounterToTimeKHR function converts

from Windows performance counter time stamps to XrTime, while the

xrConvertTimeToWin32PerformanceCounterKHR function converts XrTime to Windows performance

counter time stamps. The primary use case for this functionality is to be able to synchronize events

between the local system and the OpenXR system.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

To convert from a Windows performance counter time stamp to XrTime, call:

396 | Chapter 12. List of Current Extensions

// Provided by XR_KHR_win32_convert_performance_counter_time

XrResult xrConvertWin32PerformanceCounterToTimeKHR(

 XrInstance instance,

 const LARGE_INTEGER* performanceCounter,

 XrTime* time);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• performanceCounter is a time returned by QueryPerformanceCounter.

• time is the resulting XrTime that is equivalent to the performanceCounter.

The xrConvertWin32PerformanceCounterToTimeKHR function converts a time stamp obtained by the

QueryPerformanceCounter Windows function to the equivalent XrTime.

If the output time cannot represent the input performanceCounter, the runtime must return

XR_ERROR_TIME_INVALID.

Valid Usage (Implicit)

• The XR_KHR_win32_convert_performance_counter_time extension must be enabled prior to

calling xrConvertWin32PerformanceCounterToTimeKHR

• instance must be a valid XrInstance handle

• performanceCounter must be a pointer to a valid LARGE_INTEGER value

• time must be a pointer to an XrTime value

Chapter 12. List of Current Extensions | 397

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_TIME_INVALID

To convert from XrTime to a Windows performance counter time stamp, call:

// Provided by XR_KHR_win32_convert_performance_counter_time

XrResult xrConvertTimeToWin32PerformanceCounterKHR(

 XrInstance instance,

 XrTime time,

 LARGE_INTEGER* performanceCounter);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• time is an XrTime.

• performanceCounter is the resulting Windows performance counter time stamp that is

equivalent to the time.

The xrConvertTimeToWin32PerformanceCounterKHR function converts an XrTime to time as if

generated by the QueryPerformanceCounter Windows function.

If the output performanceCounter cannot represent the input time, the runtime must return

XR_ERROR_TIME_INVALID.

398 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_KHR_win32_convert_performance_counter_time extension must be enabled prior to

calling xrConvertTimeToWin32PerformanceCounterKHR

• instance must be a valid XrInstance handle

• performanceCounter must be a pointer to a LARGE_INTEGER value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_TIME_INVALID

Issues

Version History

• Revision 1, 2019-01-24 (Paul Pedriana)

◦ Initial draft

Chapter 12. List of Current Extensions | 399

Chapter 13. List of Deprecated Extensions

• XR_KHR_locate_spaces

• XR_KHR_maintenance1

400 | Chapter 13. List of Deprecated Extensions

13.1. XR_KHR_locate_spaces

Name String

XR_KHR_locate_spaces

Extension Type

Instance extension

Registered Extension Number

472

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2024-01-19

IP Status

No known IP claims.

Contributors

Yin Li, Microsoft

Bryce Hutchings, Microsoft

Andreas Loeve Selvik, Meta Platforms

John Kearney, Meta Platforms

Robert Blenkinsopp, Ultraleap

Rylie Pavlik, Collabora

Ron Bessems, Magic Leap

Jakob Bornecrantz, NVIDIA

13.1.1. Overview

This extension introduces the xrLocateSpacesKHR function, which enables applications to locate an

array of spaces in a single function call. Runtimes may provide performance benefits for applications

that use many spaces.

Compared to the xrLocateSpace function, the new xrLocateSpacesKHR function also provides

extensible input parameters for future extensions to extend using additional chained structures.

Chapter 13. List of Deprecated Extensions | 401

13.1.2. Locate spaces

Applications can use xrLocateSpacesKHR function to locate an array of spaces.

The xrLocateSpacesKHR function is defined as:

// Provided by XR_KHR_locate_spaces

XrResult xrLocateSpacesKHR(

 XrSession session,

 const XrSpacesLocateInfo* locateInfo,

 XrSpaceLocations* spaceLocations);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• locateInfo is a pointer to an XrSpacesLocateInfoKHR that provides the input information to

locate spaces.

• spaceLocations is a pointer to an XrSpaceLocationsKHR for the runtime to return the

locations of the specified spaces in the base space.

xrLocateSpacesKHR provides the physical location of one or more spaces in a base space at a specified

time, if currently known by the runtime.

The XrSpacesLocateInfoKHR::time, the XrSpacesLocateInfoKHR::baseSpace, and each space in

XrSpacesLocateInfoKHR::spaces, in the locateInfo parameter, all follow the same specifics as the

corresponding inputs to the xrLocateSpace function.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to calling xrLocateSpacesKHR

• session must be a valid XrSession handle

• locateInfo must be a pointer to a valid XrSpacesLocateInfo structure

• spaceLocations must be a pointer to an XrSpaceLocations structure

402 | Chapter 13. List of Deprecated Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_TIME_INVALID

The XrSpacesLocateInfoKHR structure is defined as:

// Provided by XR_KHR_locate_spaces

// XrSpacesLocateInfoKHR is an alias for XrSpacesLocateInfo

typedef struct XrSpacesLocateInfo {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

 uint32_t spaceCount;

 const XrSpace* spaces;

} XrSpacesLocateInfo;

typedef XrSpacesLocateInfo XrSpacesLocateInfoKHR;

Chapter 13. List of Deprecated Extensions | 403

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace identifies the underlying space in which to locate spaces.

• time is the time for which the location is requested.

• spaceCount is a uint32_t specifying the count of elements in the spaces array.

• spaces is an array of valid XrSpace handles to be located.

The time, the baseSpace, and each space in spaces all follow the same specifics as the corresponding

inputs to the xrLocateSpace function.

The baseSpace and all of the XrSpace handles in the spaces array must be valid and share the same

parent XrSession.

If the time is invalid, the xrLocateSpacesKHR must return XR_ERROR_TIME_INVALID.

The spaceCount must be a positive number, i.e. the array spaces must not be empty. Otherwise, the

runtime must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using XrSpacesLocateInfoKHR

• Note: XrSpacesLocateInfoKHR is an alias for XrSpacesLocateInfo, so the following items

replicate the implicit valid usage for XrSpacesLocateInfo

• type must be XR_TYPE_SPACES_LOCATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

• spaces must be a pointer to an array of spaceCount valid XrSpace handles

• The spaceCount parameter must be greater than 0

• Both of baseSpace and the elements of spaces must have been created, allocated, or retrieved

from the same XrSession

The XrSpaceLocationsKHR structure is defined as:

404 | Chapter 13. List of Deprecated Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_locate_spaces

// XrSpaceLocationsKHR is an alias for XrSpaceLocations

typedef struct XrSpaceLocations {

 XrStructureType type;

 void* next;

 uint32_t locationCount;

 XrSpaceLocationData* locations;

} XrSpaceLocations;

typedef XrSpaceLocations XrSpaceLocationsKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain, such as

XrSpaceVelocitiesKHR.

• locationCount is a uint32_t specifying the count of elements in the locations array.

• locations is an array of XrSpaceLocationsKHR for the runtime to populate with the locations

of the specified spaces in the XrSpacesLocateInfoKHR::baseSpace at the specified

XrSpacesLocateInfoKHR::time.

The XrSpaceLocationsKHR structure contains an array of space locations in the member locations, to

be used as output for xrLocateSpacesKHR. The application must allocate this array to be populated

with the function output. The locationCount value must be the same as XrSpacesLocateInfoKHR

::spaceCount, otherwise, the xrLocateSpacesKHR function must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using XrSpaceLocationsKHR

• Note: XrSpaceLocationsKHR is an alias for XrSpaceLocations, so the following items replicate

the implicit valid usage for XrSpaceLocations

• type must be XR_TYPE_SPACE_LOCATIONS

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSpaceVelocities

• locations must be a pointer to an array of locationCount XrSpaceLocationData structures

• The locationCount parameter must be greater than 0

The XrSpaceLocationDataKHR structure is defined as:

Chapter 13. List of Deprecated Extensions | 405

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_locate_spaces

// XrSpaceLocationDataKHR is an alias for XrSpaceLocationData

typedef struct XrSpaceLocationData {

 XrSpaceLocationFlags locationFlags;

 XrPosef pose;

} XrSpaceLocationData;

typedef XrSpaceLocationData XrSpaceLocationDataKHR;

Member Descriptions

• locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits. It behaves the

same as XrSpaceLocation::locationFlags.

• pose is an XrPosef that behaves the same as XrSpaceLocation::pose.

This is a single element of the array in XrSpaceLocationsKHR::locations, and is used to return the pose

and location flags for a single space with respect to the specified base space from a call to

xrLocateSpacesKHR. It does not accept chained structures to allow for easier use in dynamically

allocated container datatypes. Chained structures are possible with the XrSpaceLocationsKHR that

describes an array of these elements.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using

XrSpaceLocationDataKHR

13.1.3. Locate space velocities

Applications can request the velocities of spaces by chaining the XrSpaceVelocitiesKHR structure to the

next pointer of XrSpaceLocationsKHR when calling xrLocateSpacesKHR.

The XrSpaceVelocitiesKHR structure is defined as:

406 | Chapter 13. List of Deprecated Extensions

// Provided by XR_KHR_locate_spaces

// XrSpaceVelocitiesKHR is an alias for XrSpaceVelocities

typedef struct XrSpaceVelocities {

 XrStructureType type;

 void* next;

 uint32_t velocityCount;

 XrSpaceVelocityData* velocities;

} XrSpaceVelocities;

typedef XrSpaceVelocities XrSpaceVelocitiesKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• velocityCount is a uint32_t specifying the count of elements in the velocities array.

• velocities is an array of XrSpaceVelocityDataKHR for the runtime to populate with the

velocities of the specified spaces in the XrSpacesLocateInfoKHR::baseSpace at the specified

XrSpacesLocateInfoKHR::time.

The velocities member contains an array of space velocities in the member velocities, to be used as

output for xrLocateSpacesKHR. The application must allocate this array to be populated with the

function output. The velocityCount value must be the same as XrSpacesLocateInfoKHR::spaceCount,

otherwise, the xrLocateSpacesKHR function must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using XrSpaceVelocitiesKHR

• Note: XrSpaceVelocitiesKHR is an alias for XrSpaceVelocities, so the following items replicate

the implicit valid usage for XrSpaceVelocities

• type must be XR_TYPE_SPACE_VELOCITIES

• next must be NULL or a valid pointer to the next structure in a structure chain

• velocities must be a pointer to an array of velocityCount XrSpaceVelocityData structures

• The velocityCount parameter must be greater than 0

The XrSpaceVelocityDataKHR structure is defined as:

Chapter 13. List of Deprecated Extensions | 407

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_locate_spaces

// XrSpaceVelocityDataKHR is an alias for XrSpaceVelocityData

typedef struct XrSpaceVelocityData {

 XrSpaceVelocityFlags velocityFlags;

 XrVector3f linearVelocity;

 XrVector3f angularVelocity;

} XrSpaceVelocityData;

typedef XrSpaceVelocityData XrSpaceVelocityDataKHR;

Member Descriptions

• velocityFlags is a bitfield, with bit values defined in XrSpaceVelocityFlagBits. It behaves the

same as XrSpaceVelocity::velocityFlags.

• linearVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::linearVelocity.

• angularVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::angularVelocity.

This is a single element of the array in XrSpaceVelocitiesKHR::velocities, and is used to return the

linear and angular velocity and velocity flags for a single space with respect to the specified base space

from a call to xrLocateSpacesKHR. It does not accept chained structures to allow for easier use in

dynamically allocated container datatypes.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using XrSpaceVelocityDataKHR

13.1.4. Example code for xrLocateSpacesKHR

The following example code shows how an application retrieves both the location and velocity of one

or more spaces in a base space at a given time using the xrLocateSpacesKHR function.

XrInstance instance; // previously initialized

XrSession session; // previously initialized

XrSpace baseSpace; // previously initialized

std::vector<XrSpace> spacesToLocate; // previously initialized

// Prepare output buffers to receive data and get reused in frame loop.

std::vector<XrSpaceLocationDataKHR> locationBuffer(spacesToLocate.size());

std::vector<XrSpaceVelocityDataKHR> velocityBuffer(spacesToLocate.size());

// Get function pointer for xrLocateSpacesKHR.

408 | Chapter 13. List of Deprecated Extensions

PFN_xrLocateSpacesKHR xrLocateSpacesKHR;

CHK_XR(xrGetInstanceProcAddr(instance, "xrLocateSpacesKHR",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &xrLocateSpacesKHR)));

// application frame loop

while (1) {

 // Typically the time is the predicted display time returned from xrWaitFrame.

 XrTime displayTime; // previously initialized.

 XrSpacesLocateInfoKHR locateInfo{XR_TYPE_SPACES_LOCATE_INFO_KHR};

 locateInfo.baseSpace = baseSpace;

 locateInfo.time = displayTime;

 locateInfo.spaceCount = (uint32_t)spacesToLocate.size();

 locateInfo.spaces = spacesToLocate.data();

 XrSpaceLocationsKHR locations{XR_TYPE_SPACES_LOCATE_INFO_KHR};

 locations.locationCount = (uint32_t)locationBuffer.size();

 locations.locations = locationBuffer.data();

 XrSpaceVelocitiesKHR velocities{XR_TYPE_SPACE_VELOCITIES_KHR};

 velocities.velocityCount = (uint32_t)velocityBuffer.size();

 velocities.velocities = velocityBuffer.data();

 locations.next = &velocities;

 CHK_XR(xrLocateSpacesKHR(session, &locateInfo, &locations));

 for (uint32_t i = 0; i < spacesToLocate.size(); i++) {

 const auto positionAndOrientationTracked =

 XR_SPACE_LOCATION_POSITION_TRACKED_BIT |

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;

 const auto orientationOnlyTracked = XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;

 if ((locationBuffer[i].locationFlags & positionAndOrientationTracked) ==

positionAndOrientationTracked) {

 // if the location is 6dof tracked

 do_something(locationBuffer[i].pose.position);

 do_something(locationBuffer[i].pose.orientation);

 const auto velocityValidBits =

 XR_SPACE_VELOCITY_LINEAR_VALID_BIT | XR_SPACE_VELOCITY_ANGULAR_VALID_BIT;

 if ((velocityBuffer[i].velocityFlags & velocityValidBits) ==

velocityValidBits) {

 do_something(velocityBuffer[i].linearVelocity);

 do_something(velocityBuffer[i].angularVelocity);

 }

 }

 else if ((locationBuffer[i].locationFlags & orientationOnlyTracked) ==

Chapter 13. List of Deprecated Extensions | 409

orientationOnlyTracked) {

 // if the location is 3dof tracked

 do_something(locationBuffer[i].pose.orientation);

 if ((velocityBuffer[i].velocityFlags & XR_SPACE_VELOCITY_ANGULAR_VALID_BIT)

== XR_SPACE_VELOCITY_ANGULAR_VALID_BIT) {

 do_something(velocityBuffer[i].angularVelocity);

 }

 }

 }

}

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SPACES_LOCATE_INFO_KHR

• XR_TYPE_SPACE_LOCATIONS_KHR

• XR_TYPE_SPACE_VELOCITIES_KHR

New Enums

New Structures

• XrSpacesLocateInfoKHR

• XrSpaceLocationsKHR

• XrSpaceLocationDataKHR

• XrSpaceVelocitiesKHR

• XrSpaceVelocityDataKHR

New Functions

• xrLocateSpacesKHR

Issues

Version History

• Revision 1, 2023-04-22 (Yin LI)

◦ Initial extension description

410 | Chapter 13. List of Deprecated Extensions

13.2. XR_KHR_maintenance1

Name String

XR_KHR_maintenance1

Extension Type

Instance extension

Registered Extension Number

711

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_BD_controller_interaction

• Interacts with XR_EXT_hp_mixed_reality_controller

• Interacts with XR_EXT_samsung_odyssey_controller

• Interacts with XR_FB_touch_controller_pro

• Interacts with XR_HTCX_vive_tracker_interaction

• Interacts with XR_HTC_hand_interaction

• Interacts with XR_HTC_vive_cosmos_controller_interaction

• Interacts with XR_HTC_vive_focus3_controller_interaction

• Interacts with XR_HUAWEI_controller_interaction

• Interacts with XR_META_touch_controller_plus

• Interacts with XR_ML_ml2_controller_interaction

• Interacts with XR_MSFT_hand_interaction

• Interacts with XR_OPPO_controller_interaction

• Interacts with XR_YVR_controller_interaction

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2023-10-25

Chapter 13. List of Deprecated Extensions | 411

IP Status

No known IP claims.

Contributors

Ron Bessems, Magic Leap

Karthik Kadappan, Magic Leap

Rylie Pavlik, Collabora

Nihav Jain, Google

Lachlan Ford, Google

John Kearney, Meta

Yin Li, Microsoft

Robert Blenkinsopp, Ultraleap

13.2.1. Overview

XR_KHR_maintenance1 adds a collection of minor features that were intentionally left out or overlooked

from the original OpenXR 1.0 release. All are promoted to the OpenXR 1.1 release.

// Provided by XR_KHR_maintenance1

// XrColor3fKHR is an alias for XrColor3f

typedef struct XrColor3f {

 float r;

 float g;

 float b;

} XrColor3f;

typedef XrColor3f XrColor3fKHR;

// Provided by XR_KHR_maintenance1

// XrExtent3DfKHR is an alias for XrExtent3Df

typedef struct XrExtent3Df {

 float width;

 float height;

 float depth;

} XrExtent3Df;

typedef XrExtent3Df XrExtent3DfKHR;

412 | Chapter 13. List of Deprecated Extensions

// Provided by XR_KHR_maintenance1

// XrSpherefKHR is an alias for XrSpheref

typedef struct XrSpheref {

 XrPosef center;

 float radius;

} XrSpheref;

typedef XrSpheref XrSpherefKHR;

// Provided by XR_KHR_maintenance1

// XrBoxfKHR is an alias for XrBoxf

typedef struct XrBoxf {

 XrPosef center;

 XrExtent3Df extents;

} XrBoxf;

typedef XrBoxf XrBoxfKHR;

// Provided by XR_KHR_maintenance1

// XrFrustumfKHR is an alias for XrFrustumf

typedef struct XrFrustumf {

 XrPosef pose;

 XrFovf fov;

 float nearZ;

 float farZ;

} XrFrustumf;

typedef XrFrustumf XrFrustumfKHR;

13.2.2. New Structures

• XrBoxfKHR

• XrColor3fKHR

• XrExtent3DfKHR

• XrFrustumfKHR

• XrSpherefKHR

Chapter 13. List of Deprecated Extensions | 413

13.2.3. New Enum Constants

• XR_KHR_MAINTENANCE1_EXTENSION_NAME

• XR_KHR_maintenance1_SPEC_VERSION

• Extending XrResult:

◦ XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED_KHR

◦ XR_ERROR_PERMISSION_INSUFFICIENT_KHR

13.2.4. Version History

• Revision 1, 2023-10-25 (Ron Bessems)

◦ Initial extension description

414 | Chapter 13. List of Deprecated Extensions

Chapter 14. Core Revisions (Informative)

New minor versions of the OpenXR API are defined periodically by the Khronos OpenXR Working

Group. These consist of some amount of additional functionality added to the core API, potentially

including both new functionality and functionality promoted from extensions.

14.1. Version 1.1

14.1.1. OpenXR 1.1 Promotions

OpenXR version 1.1 promoted a number of key extensions into the core API:

• XR_KHR_locate_spaces

• XR_KHR_maintenance1

• XR_EXT_hp_mixed_reality_controller

• XR_EXT_local_floor

• XR_EXT_palm_pose

• XR_EXT_samsung_odyssey_controller

• XR_EXT_uuid

• XR_BD_controller_interaction

• XR_HTC_vive_cosmos_controller_interaction

• XR_HTC_vive_focus3_controller_interaction

• XR_ML_ml2_controller_interaction

• XR_VARJO_quad_views

All differences in behavior between these extensions and the corresponding OpenXR 1.1 functionality

are summarized below.

Differences Relative to XR_EXT_local_floor

The definition of this space was made more precise, and it was clarified that the mandatory support of

this space does not dictate any particular quality of floor level estimation. Applications that can

provide a head-relative interaction experience in the absence of a defined stage continue to use LOCAL

space, while those that need higher quality assertions about floor level continue to use STAGE space or

scene understanding extensions to detect floor level. The (mandatory) presence of this space when

enumerating reference spaces is a convenience for portability rather than an assertion that e.g. floor

detection scene understanding has taken place or that the floor is inherently walkable.

Chapter 14. Core Revisions (Informative) | 415

Differences Relative to XR_EXT_palm_pose

The input identifier palm_ext defined in the extension has been renamed to grip_surface to more

clearly describe its intended use and distinguish it from hand tracking.

Differences Relative to XR_VARJO_quad_views

The view configuration type enumerant XR_VIEW_CONFIGURATION_TYPE_PRIMARY_QUAD_VARJO was renamed

to XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET, to clarify that it is not vendor-

specific nor the only way four views are possible. In OpenXR 1.1, a runtime may support

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET, but this is optional like the other

view configuration types. Use xrEnumerateViewConfigurations to determine if it is provided, rather

than using the presence or absence of the extension.

14.1.2. Additional OpenXR 1.1 Changes

In addition to the promoted extensions described above, OpenXR 1.1 changed the following:

• Substantial clarifications in the input and fundamentals chapters, intended to be non-substantive.

• Added the following legacy interaction profiles to represent specific controllers shipped under the

Oculus/Meta Touch name and previously grouped into a single Oculus Touch interaction profile:

◦ /interaction_profiles/meta/touch_controller_rift_cv1 - Meta Touch Controller (Rift CV1) Profile

◦ /interaction_profiles/meta/touch_controller_quest_1_rift_s - Meta Touch Controller (Rift S / Quest

1) Profile

◦ /interaction_profiles/meta/touch_controller_quest_2 - Meta Touch Controller (Quest 2) Profile

14.1.3. New Commands

• xrLocateSpaces

14.1.4. New Structures

• XrBoxf

• XrColor3f

• XrExtent3Df

• XrFrustumf

• XrSpaceLocationData

• XrSpaceLocations

• XrSpaceVelocityData

• XrSpacesLocateInfo

• XrSpheref

416 | Chapter 14. Core Revisions (Informative)

• XrUuid

• Extending XrSpaceLocations:

◦ XrSpaceVelocities

14.1.5. New Enum Constants

• XR_UUID_SIZE

• Extending XrReferenceSpaceType:

◦ XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR

• Extending XrResult:

◦ XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED

◦ XR_ERROR_PERMISSION_INSUFFICIENT

• Extending XrStructureType:

◦ XR_TYPE_SPACES_LOCATE_INFO

◦ XR_TYPE_SPACE_LOCATIONS

◦ XR_TYPE_SPACE_VELOCITIES

• Extending XrViewConfigurationType:

◦ XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET

14.2. Loader Runtime and API Layer Negotiation Version

1.0

The OpenXR version 1.0.33 patch release included ratification of the runtime and API layer negotiation

API, associated with the identifier XR_LOADER_VERSION_1_0, substantially unchanged from the unratified

form previously described in the loader design document. This interface is intended for use only

between the loader, runtimes, and API layers, and is not typically directly used by an application.

14.2.1. New Macros

• XR_API_LAYER_CREATE_INFO_STRUCT_VERSION

• XR_API_LAYER_INFO_STRUCT_VERSION

• XR_API_LAYER_MAX_SETTINGS_PATH_SIZE

• XR_API_LAYER_NEXT_INFO_STRUCT_VERSION

• XR_CURRENT_LOADER_API_LAYER_VERSION

• XR_CURRENT_LOADER_RUNTIME_VERSION

• XR_LOADER_INFO_STRUCT_VERSION

Chapter 14. Core Revisions (Informative) | 417

• XR_RUNTIME_INFO_STRUCT_VERSION

14.2.2. New Commands

• xrCreateApiLayerInstance

• xrNegotiateLoaderApiLayerInterface

• xrNegotiateLoaderRuntimeInterface

14.3. Version 1.0

OpenXR version 1.0 defined the initial core API.

14.3.1. New Macros

• XR_CURRENT_API_VERSION

• XR_DEFINE_HANDLE

• XR_DEFINE_OPAQUE_64

• XR_EXTENSION_ENUM_BASE

• XR_EXTENSION_ENUM_STRIDE

• XR_FAILED

• XR_FREQUENCY_UNSPECIFIED

• XR_INFINITE_DURATION

• XR_MAX_EVENT_DATA_SIZE

• XR_MAY_ALIAS

• XR_MIN_COMPOSITION_LAYERS_SUPPORTED

• XR_MIN_HAPTIC_DURATION

• XR_NO_DURATION

• XR_NULL_HANDLE

• XR_NULL_PATH

• XR_NULL_SYSTEM_ID

• XR_SUCCEEDED

• XR_UNQUALIFIED_SUCCESS

• XR_VERSION_MAJOR

• XR_VERSION_MINOR

• XR_VERSION_PATCH

418 | Chapter 14. Core Revisions (Informative)

14.3.2. New Base Types

• XrVersion

14.3.3. New Commands

• xrAcquireSwapchainImage

• xrApplyHapticFeedback

• xrAttachSessionActionSets

• xrBeginFrame

• xrBeginSession

• xrCreateAction

• xrCreateActionSet

• xrCreateActionSpace

• xrCreateInstance

• xrCreateReferenceSpace

• xrCreateSession

• xrCreateSwapchain

• xrDestroyAction

• xrDestroyActionSet

• xrDestroyInstance

• xrDestroySession

• xrDestroySpace

• xrDestroySwapchain

• xrEndFrame

• xrEndSession

• xrEnumerateApiLayerProperties

• xrEnumerateBoundSourcesForAction

• xrEnumerateEnvironmentBlendModes

• xrEnumerateInstanceExtensionProperties

• xrEnumerateReferenceSpaces

• xrEnumerateSwapchainFormats

• xrEnumerateSwapchainImages

• xrEnumerateViewConfigurationViews

Chapter 14. Core Revisions (Informative) | 419

• xrEnumerateViewConfigurations

• xrGetActionStateBoolean

• xrGetActionStateFloat

• xrGetActionStatePose

• xrGetActionStateVector2f

• xrGetCurrentInteractionProfile

• xrGetInputSourceLocalizedName

• xrGetInstanceProcAddr

• xrGetInstanceProperties

• xrGetReferenceSpaceBoundsRect

• xrGetSystem

• xrGetSystemProperties

• xrGetViewConfigurationProperties

• xrLocateSpace

• xrLocateViews

• xrPathToString

• xrPollEvent

• xrReleaseSwapchainImage

• xrRequestExitSession

• xrResultToString

• xrStopHapticFeedback

• xrStringToPath

• xrStructureTypeToString

• xrSuggestInteractionProfileBindings

• xrSyncActions

• xrWaitFrame

• xrWaitSwapchainImage

14.3.4. New Structures

• XrBaseInStructure

• XrBaseOutStructure

• XrColor4f

• XrCompositionLayerProjection

420 | Chapter 14. Core Revisions (Informative)

• XrCompositionLayerQuad

• XrEventDataBaseHeader

• XrEventDataEventsLost

• XrEventDataInstanceLossPending

• XrEventDataInteractionProfileChanged

• XrEventDataReferenceSpaceChangePending

• XrEventDataSessionStateChanged

• XrExtent2Df

• XrHapticVibration

• XrOffset2Df

• XrRect2Df

• XrVector4f

• Extending XrSpaceLocation:

◦ XrSpaceVelocity

14.3.5. New Enums

• XrObjectType

14.3.6. New Headers

• openxr_platform_defines

14.3.7. New Enum Constants

• XR_FALSE

• XR_MAX_API_LAYER_DESCRIPTION_SIZE

• XR_MAX_API_LAYER_NAME_SIZE

• XR_MAX_APPLICATION_NAME_SIZE

• XR_MAX_ENGINE_NAME_SIZE

• XR_MAX_EXTENSION_NAME_SIZE

• XR_MAX_PATH_LENGTH

• XR_MAX_RESULT_STRING_SIZE

• XR_MAX_RUNTIME_NAME_SIZE

• XR_MAX_STRUCTURE_NAME_SIZE

• XR_MAX_SYSTEM_NAME_SIZE

Chapter 14. Core Revisions (Informative) | 421

• XR_TRUE

422 | Chapter 14. Core Revisions (Informative)

Appendix

Code Style Conventions

These are the code style conventions used in this specification to define the API.

Conventions

• Enumerants and defines are all upper case with words separated by an underscore.

• Neither type, function or member names contain underscores.

• Structure members start with a lower case character and each consecutive word starts with a

capital.

• A structure that has a pointer to an array includes a structure member named fooCount of

type uint32_t to denote the number of elements in the array of foo.

• A structure that has a pointer to an array lists the fooCount member first and then the array

pointer.

• Unless a negative value has a clearly defined meaning all fooCount variables are unsigned.

• Function parameters that are modified are always listed last.

Prefixes are used in the API to denote specific semantic meaning of names, or as a label to avoid name

clashes, and are explained here:

Prefix Description

XR_ Enumerants and defines are prefixed with these

characters.

Xr Non-function-pointer types are prefixed with

these characters.

xr Functions are prefixed with these characters.

PFN_xr Function pointer types are prefixed with these

characters.

Application Binary Interface

This section describes additional definitions and conventions that define the application binary

interface.

Appendix | 423

Structure Types

typedef enum XrStructureType {

 XR_TYPE_UNKNOWN = 0,

 XR_TYPE_API_LAYER_PROPERTIES = 1,

 XR_TYPE_EXTENSION_PROPERTIES = 2,

 XR_TYPE_INSTANCE_CREATE_INFO = 3,

 XR_TYPE_SYSTEM_GET_INFO = 4,

 XR_TYPE_SYSTEM_PROPERTIES = 5,

 XR_TYPE_VIEW_LOCATE_INFO = 6,

 XR_TYPE_VIEW = 7,

 XR_TYPE_SESSION_CREATE_INFO = 8,

 XR_TYPE_SWAPCHAIN_CREATE_INFO = 9,

 XR_TYPE_SESSION_BEGIN_INFO = 10,

 XR_TYPE_VIEW_STATE = 11,

 XR_TYPE_FRAME_END_INFO = 12,

 XR_TYPE_HAPTIC_VIBRATION = 13,

 XR_TYPE_EVENT_DATA_BUFFER = 16,

 XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING = 17,

 XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED = 18,

 XR_TYPE_ACTION_STATE_BOOLEAN = 23,

 XR_TYPE_ACTION_STATE_FLOAT = 24,

 XR_TYPE_ACTION_STATE_VECTOR2F = 25,

 XR_TYPE_ACTION_STATE_POSE = 27,

 XR_TYPE_ACTION_SET_CREATE_INFO = 28,

 XR_TYPE_ACTION_CREATE_INFO = 29,

 XR_TYPE_INSTANCE_PROPERTIES = 32,

 XR_TYPE_FRAME_WAIT_INFO = 33,

 XR_TYPE_COMPOSITION_LAYER_PROJECTION = 35,

 XR_TYPE_COMPOSITION_LAYER_QUAD = 36,

 XR_TYPE_REFERENCE_SPACE_CREATE_INFO = 37,

 XR_TYPE_ACTION_SPACE_CREATE_INFO = 38,

 XR_TYPE_EVENT_DATA_REFERENCE_SPACE_CHANGE_PENDING = 40,

 XR_TYPE_VIEW_CONFIGURATION_VIEW = 41,

 XR_TYPE_SPACE_LOCATION = 42,

 XR_TYPE_SPACE_VELOCITY = 43,

 XR_TYPE_FRAME_STATE = 44,

 XR_TYPE_VIEW_CONFIGURATION_PROPERTIES = 45,

 XR_TYPE_FRAME_BEGIN_INFO = 46,

 XR_TYPE_COMPOSITION_LAYER_PROJECTION_VIEW = 48,

 XR_TYPE_EVENT_DATA_EVENTS_LOST = 49,

 XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING = 51,

 XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED = 52,

 XR_TYPE_INTERACTION_PROFILE_STATE = 53,

 XR_TYPE_SWAPCHAIN_IMAGE_ACQUIRE_INFO = 55,

424 | Appendix

 XR_TYPE_SWAPCHAIN_IMAGE_WAIT_INFO = 56,

 XR_TYPE_SWAPCHAIN_IMAGE_RELEASE_INFO = 57,

 XR_TYPE_ACTION_STATE_GET_INFO = 58,

 XR_TYPE_HAPTIC_ACTION_INFO = 59,

 XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO = 60,

 XR_TYPE_ACTIONS_SYNC_INFO = 61,

 XR_TYPE_BOUND_SOURCES_FOR_ACTION_ENUMERATE_INFO = 62,

 XR_TYPE_INPUT_SOURCE_LOCALIZED_NAME_GET_INFO = 63,

 // Provided by XR_VERSION_1_1

 XR_TYPE_SPACES_LOCATE_INFO = 1000471000,

 // Provided by XR_VERSION_1_1

 XR_TYPE_SPACE_LOCATIONS = 1000471001,

 // Provided by XR_VERSION_1_1

 XR_TYPE_SPACE_VELOCITIES = 1000471002,

 // Provided by XR_KHR_composition_layer_cube

 XR_TYPE_COMPOSITION_LAYER_CUBE_KHR = 1000006000,

 // Provided by XR_KHR_android_create_instance

 XR_TYPE_INSTANCE_CREATE_INFO_ANDROID_KHR = 1000008000,

 // Provided by XR_KHR_composition_layer_depth

 XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR = 1000010000,

 // Provided by XR_KHR_vulkan_swapchain_format_list

 XR_TYPE_VULKAN_SWAPCHAIN_FORMAT_LIST_CREATE_INFO_KHR = 1000014000,

 // Provided by XR_KHR_composition_layer_cylinder

 XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR = 1000017000,

 // Provided by XR_KHR_composition_layer_equirect

 XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR = 1000018000,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_WIN32_KHR = 1000023000,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_XLIB_KHR = 1000023001,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_XCB_KHR = 1000023002,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_WAYLAND_KHR = 1000023003,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR = 1000023004,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_KHR = 1000023005,

 // Provided by XR_KHR_opengl_es_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_ES_ANDROID_KHR = 1000024001,

 // Provided by XR_KHR_opengl_es_enable

 XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR = 1000024002,

 // Provided by XR_KHR_opengl_es_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_ES_KHR = 1000024003,

 // Provided by XR_KHR_vulkan_enable

 XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR = 1000025000,

 // Provided by XR_KHR_vulkan_enable

 XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR = 1000025001,

Appendix | 425

 // Provided by XR_KHR_vulkan_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR = 1000025002,

 // Provided by XR_KHR_D3D11_enable

 XR_TYPE_GRAPHICS_BINDING_D3D11_KHR = 1000027000,

 // Provided by XR_KHR_D3D11_enable

 XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR = 1000027001,

 // Provided by XR_KHR_D3D11_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_D3D11_KHR = 1000027002,

 // Provided by XR_KHR_D3D12_enable

 XR_TYPE_GRAPHICS_BINDING_D3D12_KHR = 1000028000,

 // Provided by XR_KHR_D3D12_enable

 XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR = 1000028001,

 // Provided by XR_KHR_D3D12_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_D3D12_KHR = 1000028002,

 // Provided by XR_KHR_visibility_mask

 XR_TYPE_VISIBILITY_MASK_KHR = 1000031000,

 // Provided by XR_KHR_visibility_mask

 XR_TYPE_EVENT_DATA_VISIBILITY_MASK_CHANGED_KHR = 1000031001,

 // Provided by XR_KHR_composition_layer_color_scale_bias

 XR_TYPE_COMPOSITION_LAYER_COLOR_SCALE_BIAS_KHR = 1000034000,

 // Provided by XR_KHR_loader_init_android

 XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR = 1000089000,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_VULKAN_INSTANCE_CREATE_INFO_KHR = 1000090000,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_VULKAN_DEVICE_CREATE_INFO_KHR = 1000090001,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_VULKAN_GRAPHICS_DEVICE_GET_INFO_KHR = 1000090003,

 // Provided by XR_KHR_composition_layer_equirect2

 XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR = 1000091000,

 // Provided by XR_KHR_binding_modification

 XR_TYPE_BINDING_MODIFICATIONS_KHR = 1000120000,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_GRAPHICS_BINDING_VULKAN2_KHR = XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_SWAPCHAIN_IMAGE_VULKAN2_KHR = XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN2_KHR = XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR,

 // Provided by XR_KHR_locate_spaces

 XR_TYPE_SPACES_LOCATE_INFO_KHR = XR_TYPE_SPACES_LOCATE_INFO,

 // Provided by XR_KHR_locate_spaces

 XR_TYPE_SPACE_LOCATIONS_KHR = XR_TYPE_SPACE_LOCATIONS,

 // Provided by XR_KHR_locate_spaces

 XR_TYPE_SPACE_VELOCITIES_KHR = XR_TYPE_SPACE_VELOCITIES,

 XR_STRUCTURE_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrStructureType;

426 | Appendix

Most structures containing type members have a value of type matching the type of the structure, as

described more fully in Valid Usage for Structure Types.

Note that all extension enums begin at the extension enum base of 10^9 (base 10). Each extension is

assigned a block of 1000 enums, starting at the enum base and arranged by the extension’s number.

// Provided by XR_VERSION_1_0

#define XR_EXTENSION_ENUM_BASE 1000000000

// Provided by XR_VERSION_1_0

#define XR_EXTENSION_ENUM_STRIDE 1000

For example, if extension number 5 wants to use an enum value of 3, the final enum is computed by:

enum = XR_EXTENSION_ENUM_BASE + (extension_number - 1) * XR_EXTENSION_ENUM_STRIDE +

enum_value

1000004003 = 1000000000 + 4 * 1000 + 3

The maximum allowed enum value in an extension is 2,147,482,999, which belongs to extension

number 2147483.

Flag Types

Flag types are all bitmasks aliasing the base type XrFlags64 and with corresponding bit flag types

defining the valid bits for that flag, as described in Valid Usage for Flags.

Flag types defined in the core specification were originally listed/defined here, but have been moved to

be adjacent to their associated FlagBits type. See the Index for a list.

General Macro Definitions

This API is defined in C and uses "C" linkage. The openxr.h header file is opened with:

1 #ifdef __cplusplus

2 extern "C" {

3 #endif

and closed with:

Appendix | 427

1 #ifdef __cplusplus

2 }

3 #endif

The supplied openxr.h header defines a small number of C preprocessor macros that are described

below.

Version Number Macros

Two version numbers are defined in openxr.h. Each is packed into a 32-bit integer as described in API

Version Number Function-like Macros.

// Provided by XR_VERSION_1_0

// OpenXR current version number.

#define XR_CURRENT_API_VERSION XR_MAKE_VERSION(1, 1, 36)

XR_CURRENT_API_VERSION is the current version of the OpenXR API.

API Version Number Function-like Macros

API Version Numbers are three components, packed into a single 64-bit integer. The following macros

manipulate version components and packed version numbers.

#define XR_MAKE_VERSION(major, minor, patch) \

 ((((major) & 0xffffULL) << 48) | (((minor) & 0xffffULL) << 32) | ((patch) &

0xffffffffULL))

Parameter Descriptions

• major is the major version number, packed into the most-significant 16 bits.

• minor is the minor version number, packed into the second-most-significant group of 16 bits.

• patch is the patch version number, in the least-significant 32 bits.

XR_MAKE_VERSION constructs a packed 64-bit integer API version number from three components.

The format used is described in API Version Numbers and Semantics.

This macro can be used when constructing the XrApplicationInfo::apiVersion parameter passed to

xrCreateInstance.

428 | Appendix

// Provided by XR_VERSION_1_0

#define XR_VERSION_MAJOR(version) (uint16_t)(((uint64_t)(version) >> 48)& 0xffffULL)

Parameter Descriptions

• version is a packed version number, such as those produced with XR_MAKE_VERSION.

XR_VERSION_MAJOR extracts the API major version number from a packed version number.

// Provided by XR_VERSION_1_0

#define XR_VERSION_MINOR(version) (uint16_t)(((uint64_t)(version) >> 32) & 0xffffULL)

Parameter Descriptions

• version is a packed version number, such as those produced with XR_MAKE_VERSION.

XR_VERSION_MINOR extracts the API minor version number from a packed version number.

// Provided by XR_VERSION_1_0

#define XR_VERSION_PATCH(version) (uint32_t)((uint64_t)(version) & 0xffffffffULL)

Parameter Descriptions

• version is a packed version number, such as those produced with XR_MAKE_VERSION.

XR_VERSION_PATCH extracts the API patch version number from a packed version number.

Handle and Atom Macros

Appendix | 429

// Provided by XR_VERSION_1_0

#if !defined(XR_DEFINE_HANDLE)

#if (XR_PTR_SIZE == 8)

 #define XR_DEFINE_HANDLE(object) typedef struct object##_T* object;

#else

 #define XR_DEFINE_HANDLE(object) typedef uint64_t object;

#endif

#endif

Parameter Descriptions

• object is the name of the resulting C type.

XR_DEFINE_HANDLE defines a handle type, which is an opaque 64 bit value, which may be

implemented as an opaque, distinct pointer type on platforms with 64 bit pointers.

For further details, see Handles.

// Provided by XR_VERSION_1_0

#if !defined(XR_NULL_HANDLE)

#if (XR_PTR_SIZE == 8) && XR_CPP_NULLPTR_SUPPORTED

 #define XR_NULL_HANDLE nullptr

#else

 #define XR_NULL_HANDLE 0

#endif

#endif

XR_NULL_HANDLE is a reserved value representing a non-valid object handle. It may be passed to and

returned from API functions only when specifically allowed.

#if !defined(XR_DEFINE_ATOM)

 #define XR_DEFINE_ATOM(object) typedef uint64_t object;

#endif

Parameter Descriptions

• object is the name of the resulting C type.

430 | Appendix

XR_DEFINE_ATOM defines an atom type, which is an opaque 64 bit integer.

// Provided by XR_VERSION_1_0

#if !defined(XR_DEFINE_OPAQUE_64)

 #if (XR_PTR_SIZE == 8)

 #define XR_DEFINE_OPAQUE_64(object) typedef struct object##_T* object;

 #else

 #define XR_DEFINE_OPAQUE_64(object) typedef uint64_t object;

 #endif

#endif

Parameter Descriptions

• object is the name of the resulting C type.

XR_DEFINE_OPAQUE_64 defines an opaque 64 bit value, which may be implemented as an opaque,

distinct pointer type on platforms with 64 bit pointers.

Platform-Specific Macro Definitions

Additional platform-specific macros and interfaces are defined using the included openxr_platform.h

file. These macros are used to control platform-dependent behavior, and their exact definitions are

under the control of specific platform implementations of the API.

Platform-Specific Calling Conventions

On many platforms the following macros are empty strings, causing platform- and compiler-specific

default calling conventions to be used.

XRAPI_ATTR is a macro placed before the return type of an API function declaration. This macro

controls calling conventions for C++11 and GCC/Clang-style compilers.

XRAPI_CALL is a macro placed after the return type of an API function declaration. This macro

controls calling conventions for MSVC-style compilers.

XRAPI_PTR is a macro placed between the (and * in API function pointer declarations. This macro also

controls calling conventions, and typically has the same definition as XRAPI_ATTR or XRAPI_CALL,

depending on the compiler.

Examples:

Function declaration:

Appendix | 431

XRAPI_ATTR <return_type> XRAPI_CALL <function_name>(<function_parameters>);

Function pointer type declaration:

typedef <return_type> (XRAPI_PTR *PFN_<function_name>)(<function_parameters>);

Platform-Specific Header Control

If the XR_NO_STDINT_H macro is defined by the application at compile time, before including any

OpenXR header, extended integer types normally found in <stdint.h> and used by the OpenXR

headers, such as uint8_t, must also be defined (as typedef or with the preprocessor) before including

any OpenXR header. Otherwise, openxr.h and related headers will not compile. If XR_NO_STDINT_H is

not defined, the system-provided <stdint.h> is used to define these types. There is a fallback path for

Microsoft Visual Studio version 2008 and earlier versions (which lack this header) that is automatically

activated as needed.

Graphics API Header Control

Compile Time Symbol Graphics API Name

XR_USE_GRAPHICS_API_OPENGL OpenGL

XR_USE_GRAPHICS_API_OPENGL_ES OpenGL ES

XR_USE_GRAPHICS_API_VULKAN Vulkan

XR_USE_GRAPHICS_API_D3D11 Direct3D 11

XR_USE_GRAPHICS_API_D3D12 Direct3D 12

Window System Header Control

Compile Time Symbol Window System Name

XR_USE_PLATFORM_WIN32 Microsoft Windows

XR_USE_PLATFORM_XLIB X Window System Xlib

XR_USE_PLATFORM_XCB X Window System XCB

XR_USE_PLATFORM_WAYLAND Wayland

XR_USE_PLATFORM_ANDROID Android Native

Android Notes

Android specific notes for using the OpenXR specification.

432 | Appendix

Android Runtime category tag for immersive mode selection

Android applications should add the <category

android:name="org.khronos.openxr.intent.category.IMMERSIVE_HMD" /> tag inside the intent-filter to

indicate that the activity starts in an immersive OpenXR mode and will not touch the native Android

2D surface.

The HMD suffix indicates the preferred form-factor used by the application and can be used by

launchers to filter applications listed.

For example:

<intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 <category android:name="org.khronos.openxr.intent.category.IMMERSIVE_HMD" />

</intent-filter>

Glossary

The terms defined in this section are used throughout this Specification. Capitalization is not

significant for these definitions.

Term Description

Application The XR application which calls the OpenXR API to

communicate with an OpenXR runtime.

Deprecated A feature/extension is deprecated if it is no longer

recommended as the correct or best way to

achieve its intended purpose. Generally a newer

feature/extension will have been created that

solves the same problem - in cases where no

newer alternative feature exists, justification

should be provided.

Handle An opaque integer or pointer value used to refer

to an object. Each object type has a unique handle

type.

Haptic Haptic or kinesthetic communication recreates

the sense of touch by applying forces, vibrations,

or motions to the user.

In-Process Something that executes in the application’s

process.

Appendix | 433

Term Description

Instance The top-level object, which represents the

application’s connection to the runtime.

Represented by an XrInstance object.

Normalized A value that is interpreted as being in the range

[0,1], or a vector whose norm is in that range, as a

result of being implicitly divided or scaled by

some other value.

Out-Of-Process Something that executes outside the application’s

process.

Promoted A feature is promoted if it is taken from an older

extension and made available as part of a new

core version of the API, or a newer extension that

is considered to be either as widely supported or

more so. A promoted feature may have minor

differences from the original such as:

• It may be renamed

• A small number of non-intrusive parameters

may have been added

• The feature may be advertised differently by

device features

• The author ID suffixes will be changed or

removed as appropriate

Provisional A feature is released provisionally in order to get

wider feedback on the functionality before it is

finalized. Provisional features may change in

ways that break backwards compatibility, and

thus are not recommended for use in production

applications.

Required Extensions Extensions that must be enabled alongside

extensions dependent on them, or that must be

enabled to use given hardware.

Runtime The software which implements the OpenXR API

and allows applications to interact with XR

hardware.

Swapchain A resource that represents a chain of images in

device memory. Represented by an XrSwapchain

object.

434 | Appendix

Term Description

Swapchain Image Each element in a swapchain. Commonly these

are simple formatted 2D images, but in other

cases they may be array images. Represented by a

structure related to

XrSwapchainImageBaseHeader.

Abbreviations

Abbreviations and acronyms are sometimes used in the API where they are considered clear and

commonplace, and are defined here:

Abbreviation Description

API Application Programming Interface

AR Augmented Reality

ER Eye Relief

IAD Inter Axial Distance

IPD Inter Pupillary Distance

MR Mixed Reality

OS Operating System

TSG Technical Sub-Group. A specialized sub-group

within a Khronos Working Group (WG).

VR Virtual Reality

WG Working Group. An organized group of people

working to define/augment an API.

XR VR + AR + MR

Appendix | 435

Dedication (Informative)

In memory of Johannes van Waveren: a loving father, husband, son, brother, colleague, and dear

friend.

Johannes, known to his friends as "JP", had a great sense of humor, fierce loyalty, intense drive, a love

of rainbow unicorns, and deep disdain for processed American cheese. Perhaps most distinguishing of

all, though, was his love of technology and his extraordinary technical ability.

JP’s love of technology started at an early age --- instead of working on his homework, he built train

sets, hovercrafts, and complex erector sets from scratch; fashioned a tool for grabbing loose change out

of street grates; and played computer games. The passion for computer games continued at Delft

University of Technology, where, armed with a T1 internet connection and sheer talent, he regularly

destroyed his foes in arena matches without being seen, earning him the moniker "MrElusive". During

this time, he wrote the Gladiator-bot AI, which earned him acclaim in the community and led directly

to a job at the iconic American computer game company, id Software. From there, he quickly became

an expert in every system he touched, contributing significantly to every facet of the technology: AI,

path navigation, networking, skeletal animation, virtual texturing, advanced rendering, and physics.

He became a master of all. He famously owned more lines of code than anyone else, but he was also a

generous mentor, helping junior developers hone their skills and make their own contributions.

When the chance to work in the VR industry arose, he saw it as an opportunity to help shape the

future. Having never worked on VR hardware did not phase him; he quickly became a top expert in

the field. Many of his contributions directly moved the industry forward, most recently his work on

asynchronous timewarp and open-standards development.

Time was not on his side. Even in his final days, JP worked tirelessly on the initial proposal for this

specification. The treatments he had undergone took a tremendous physical toll, but he continued to

work because of his love of technology, his dedication to the craft, and his desire to get OpenXR started

on a solid footing. His focus was unwavering.

His proposal was unofficially adopted several days before his passing - and upon hearing, he mustered

the energy for a smile. While it was his great dream to see this process through, he would be proud of

the spirit of cooperation, passion, and dedication of the industry peers who took up the torch to drive

this specification to completion.

JP lived a life full of accomplishment, as evidenced by many publications, credits, awards, and

nominations where you will find his name. A less obvious accomplishment --- but of equal importance

--- is the influence he had on people through his passionate leadership. He strove for excellence in

everything that he did. He was always excited to talk about technology and share the discoveries made

while working through complex problems. He created excitement and interest around engineering

and technical excellence. He was a mentor and teacher who inspired those who knew him and many

continue to benefit from his hard work and generosity.

436 | Appendix

JP was a rare gem; fantastically brilliant intellectually, but also warm, compassionate, generous,

humble, and funny. Those of us lucky enough to have crossed paths with him knew what a privilege

and great honor it was to know him. He is certainly missed.

Appendix | 437

Contributors (Informative)

OpenXR is the result of contributions from many people and companies participating in the Khronos

OpenXR Working Group. Members of the Working Group, including the company that they represented

at the time of their most recent contribution, are listed below.

Working Group Contributors to OpenXR

• Adam Gousetis, Google (version 1.0)

• Alain Zanchetta, Microsoft (version 1.1)

• Alex Turner, Microsoft (versions 1.0, 1.1)

• Alex Sink, HTC (version 1.1)

• Alfredo Muniz, XEED (version 1.1) (Working Group Chair)

• Andreas Loeve Selvik, Meta Platforms (versions 1.0, 1.1)

• Andres Rodriguez, Valve Software (version 1.0)

• Armelle Laine, Qualcomm Technologies (version 1.0)

• Attila Maczak, CTRL-labs (version 1.0)

• David Fields, Microsoft (version 1.1)

• Baolin Fu, Bytedance (version 1.1)

• Blake Taylor, Magic Leap (version 1.0)

• Brad Grantham, Google (version 1.0)

• Brandon Jones, Google (version 1.0)

• Brent E. Insko, Intel (version 1.0) (former Working Group Chair)

• Brent Wilson, Microsoft (version 1.0)

• Bryce Hutchings, Microsoft (versions 1.0, 1.1)

• Cass Everitt, Meta Platforms (versions 1.0, 1.1)

• Charles Egenbacher, Epic Games (version 1.0)

• Charlton Rodda, Collabora (version 1.1)

• Chris Kuo, HTC (version 1.1)

• Chris Osborn, CTRL-labs (version 1.0)

• Christine Perey, Perey Research & Consulting (version 1.0)

• Christoph Haag, Collabora (version 1.0, 1.1)

• Christopher Fiala, Epic Games (version 1.1)

• Craig Donner, Google (version 1.0)

438 | Appendix

• Dan Ginsburg, Valve Software (version 1.0)

• Dave Houlton, LunarG (version 1.0)

• Dave Shreiner, Unity Technologies (version 1.0)

• Darryl Gough, Microsoft (version 1.1)

• Denny Rönngren, Varjo (versions 1.0, 1.1)

• Dmitriy Vasilev, Samsung Electronics (version 1.0)

• Doug Twileager, ZSpace (version 1.0)

• Ed Hutchins, Meta Platforms (version 1.0)

• Eryk Pecyna, Meta Platforms (version 1.1)

• Frederic Plourde, Collabora (version 1.1)

• Gloria Kennickell, Meta Platforms (version 1.0)

• Gregory Greeby, AMD (version 1.0)

• Guodong Chen, Huawei (version 1.0)

• Jack Pritz, Unity Technologies (versions 1.0, 1.1)

• Jakob Bornecrantz, Collabora (versions 1.0, 1.1)

• Jared Cheshier, PlutoVR (versions 1.0, 1.1)

• Jared Finder, Google (version 1.1)

• Javier Martinez, Intel (version 1.0)

• Jeff Bellinghausen, Valve Software (version 1.0)

• Jiehua Guo, Huawei (version 1.0)

• Joe Ludwig, Valve Software (versions 1.0, 1.1)

• John Kearney, Meta Platforms (version 1.1)

• Johannes van Waveren, Meta Platforms (version 1.0)

• Jon Leech, Khronos (version 1.0)

• Jonas Pegerfalk, Tobii (version 1.1)

• Jonathan Wright, Meta Platforms (versions 1.0, 1.1)

• Juan Wee, Samsung Electronics (version 1.0)

• Jules Blok, Epic Games (version 1.0)

• Jun Yan, ByteDance (version 1.1)

• Karl Schultz, LunarG (version 1.0)

• Karthik Kadappan, Magic Leap (version 1.1)

• Karthik Nagarajan, Qualcomm Technologies (version 1.1)

Appendix | 439

• Kaye Mason, Google (version 1.0)

• Krzysztof Kosiński, Google (version 1.0)

• Kyle Chen, HTC (version 1.1)

• Lachlan Ford, Google (versions 1.0, 1.1)

• Lubosz Sarnecki, Collabora (version 1.0)

• Mark Young, LunarG (version 1.0)

• Martin Renschler, Qualcomm Technologies (version 1.0)

• Matias Koskela, Tampere University of Technology (version 1.0)

• Matt Wash, Arm (version 1.0)

• Mattias Brand, Tobii (version 1.0)

• Mattias O. Karlsson, Tobii (version 1.0)

• Matthieu Bucchianeri, Microsoft (version 1.1)

• Michael Gatson, Dell (version 1.0)

• Minmin Gong, Microsoft (version 1.0)

• Mitch Singer, AMD (version 1.0)

• Nathan Nuber, Valve (version 1.1)

• Nell Waliczek, Microsoft (version 1.0)

• Nick Whiting, Epic Games (version 1.0) (former Working Group Chair)

• Nigel Williams, Sony (version 1.0)

• Nihav Jain, Google, Inc (version 1.1)

• Paul Pedriana, Meta Platforms (version 1.0)

• Paulo Gomes, Samsung Electronics (version 1.0)

• Peter Kuhn, Unity Technologies (versions 1.0, 1.1)

• Peter Peterson, HP Inc (version 1.0)

• Philippe Harscoet, Samsung Electronics (versions 1.0, 1.1)

• Pierre-Loup Griffais, Valve Software (version 1.0)

• Rafael Wiltz, Magic Leap (version 1.1)

• Rajeev Gupta, Sony (version 1.0)

• Remi Arnaud, Starbreeze (version 1.0)

• Remy Zimmerman, Logitech (version 1.0)

• Ria Hsu, HTC (version 1.1)

• River Gillis, Google (version 1.0)

440 | Appendix

• Robert Blenkinsopp, Ultraleap (version 1.1)

• Robert Memmott, Meta Platforms (version 1.0)

• Robert Menzel, NVIDIA (version 1.0)

• Robert Simpson, Qualcomm Technologies (version 1.0)

• Robin Bourianes, Starbreeze (version 1.0)

• Ron Bessems, Magic Leap (version 1.1) (Working Group Vice-Chair)

• Rune Berg, independent (version 1.1)

• Rylie Pavlik, Collabora (versions 1.0, 1.1) (Spec Editor)

• Ryan Vance, Epic Games (version 1.0)

• Sam Martin, Arm (version 1.0)

• Satish Salian, NVIDIA (version 1.0)

• Scott Flynn, Unity Technologies (version 1.0)

• Shanliang Xu, Bytedance (version 1.1)

• Sean Payne, CTRL-labs (version 1.0)

• Sophia Baldonado, PlutoVR (version 1.0)

• Steve Smith, Epic Games (version 1.0)

• Sungye Kim, Intel (version 1.0)

• Tom Flynn, Samsung Electronics (version 1.0)

• Trevor F. Smith, Mozilla (version 1.0)

• Victor Brodin, Epic Games (version 1.1)

• Vivek Viswanathan, Dell (version 1.0)

• Wenlin Mao, Meta Platforms (version 1.1)

• Xiang Wei, Meta Platforms (version 1.1)

• Yin Li, Microsoft (versions 1.0, 1.1)

• Yuval Boger, Sensics (version 1.0)

• Zhanrui Jia, Bytedance (version 1.1)

• Zheng Qin, Microsoft (version 1.0)

Appendix | 441

Index

A

XR_API_LAYER_CREATE_INFO_STRUCT_VERSION

(define), 64

XR_API_LAYER_INFO_STRUCT_VERSION (define),

61

XR_API_LAYER_MAX_SETTINGS_PATH_SIZE

(define), 64

XR_API_LAYER_NEXT_INFO_STRUCT_VERSION

(define), 65

xrAcquireSwapchainImage (function), 198

XrAction (type), 240

XrActionCreateInfo (type), 241

XrActionSet (type), 236

XrActionSetCreateInfo (type), 237

XrActionSpaceCreateInfo (type), 142

XrActionsSyncInfo (type), 273

XrActionStateBoolean (type), 259

XrActionStateFloat (type), 261

XrActionStateGetInfo (type), 256

XrActionStatePose (type), 266

XrActionStateVector2f (type), 263

XrActionSuggestedBinding (type), 249

XrActionType (type), 244

XrActiveActionSet (type), 274

XrAndroidThreadTypeKHR (type), 289

XrApiLayerCreateInfo (type), 63

XrApiLayerNextInfo (type), 64

XrApiLayerProperties (type), 68

XrApplicationInfo (type), 75

xrApplyHapticFeedback (function), 267

xrAttachSessionActionSets (function), 249

B

XrBaseInStructure (type), 16

XrBaseOutStructure (type), 16

xrBeginFrame (function), 215

xrBeginSession (function), 177

XrBindingModificationBaseHeaderKHR (type), 294

XrBindingModificationsKHR (type), 293

XrBool32 (type), 41

XrBoundSourcesForActionEnumerateInfo (type),

277

XrBoxf (type), 38

XrBoxfKHR (type), 413

C

XR_CURRENT_API_VERSION (define), 428

XR_CURRENT_LOADER_API_LAYER_VERSION

(define), 55

XR_CURRENT_LOADER_RUNTIME_VERSION

(define), 55

XrColor3f (type), 30

XrColor3fKHR (type), 412

XrColor4f (type), 30

XrCompositionLayerBaseHeader (type), 223

XrCompositionLayerColorScaleBiasKHR (type),

296

XrCompositionLayerCubeKHR (type), 299

XrCompositionLayerCylinderKHR (type), 303

XrCompositionLayerDepthInfoKHR (type), 306

XrCompositionLayerEquirect2KHR (type), 314

XrCompositionLayerEquirectKHR (type), 311

XrCompositionLayerFlagBits (type), 221

XrCompositionLayerFlags (type), 221

XrCompositionLayerProjection (type), 225

XrCompositionLayerProjectionView (type), 226

XrCompositionLayerQuad (type), 227

xrConvertTimespecTimeToTimeKHR (function),

317

xrConvertTimeToTimespecTimeKHR (function),

318

xrConvertTimeToWin32PerformanceCounterKHR

(function), 398

xrConvertWin32PerformanceCounterToTimeKHR

(function), 396

xrCreateAction (function), 240

xrCreateActionSet (function), 236

xrCreateActionSpace (function), 141

xrCreateApiLayerInstance (function), 61

xrCreateInstance (function), 71

xrCreateReferenceSpace (function), 139

xrCreateSession (function), 173

xrCreateSwapchain (function), 189

xrCreateSwapchainAndroidSurfaceKHR

442 | Index

(function), 286

xrCreateVulkanDeviceKHR (function), 384

xrCreateVulkanInstanceKHR (function), 379

D

XR_DEFINE_ATOM (define), 430

XR_DEFINE_HANDLE (define), 429

XR_DEFINE_OPAQUE_64 (define), 431

xrDestroyAction (function), 244

xrDestroyActionSet (function), 239

xrDestroyInstance (function), 76

xrDestroySession (function), 176

xrDestroySpace (function), 143

xrDestroySwapchain (function), 195

XrDuration (type), 29

E

XR_EXTENSION_ENUM_BASE (define), 427

XR_EXTENSION_ENUM_STRIDE (define), 427

xrEndFrame (function), 217

xrEndSession (function), 180

xrEnumerateApiLayerProperties (function), 67

xrEnumerateBoundSourcesForAction (function),

275

xrEnumerateEnvironmentBlendModes (function),

230

xrEnumerateInstanceExtensionProperties

(function), 69

xrEnumerateReferenceSpaces (function), 137

xrEnumerateSwapchainFormats (function), 187

xrEnumerateSwapchainImages (function), 196

xrEnumerateViewConfigurations (function), 162

xrEnumerateViewConfigurationViews (function),

165

XrEnvironmentBlendMode (type), 232

XrEventDataBaseHeader (type), 44

XrEventDataBuffer (type), 44

XrEventDataEventsLost (type), 45

XrEventDataInstanceLossPending (type), 79

XrEventDataInteractionProfileChanged (type), 254

XrEventDataReferenceSpaceChangePending

(type), 135

XrEventDataSessionStateChanged (type), 182

XrEventDataVisibilityMaskChangedKHR (type),

360

XrExtensionProperties (type), 71

XrExtent2Df (type), 35

XrExtent2Di (type), 36

XrExtent3Df (type), 36

XrExtent3DfKHR (type), 412

XrEyeVisibility (type), 229

F

XR_FAILED (define), 23

XR_FALSE (define), 41

XR_FREQUENCY_UNSPECIFIED (define), 271

XrFlags64 (type), 14

XrFormFactor (type), 83

XrFovf (type), 40

XrFrameBeginInfo (type), 216

XrFrameEndInfo (type), 219

XrFrameState (type), 213

XrFrameWaitInfo (type), 212

XrFrustumf (type), 39

XrFrustumfKHR (type), 413

G

xrGetActionStateBoolean (function), 258

xrGetActionStateFloat (function), 260

xrGetActionStatePose (function), 264

xrGetActionStateVector2f (function), 262

xrGetCurrentInteractionProfile (function), 251

xrGetD3D11GraphicsRequirementsKHR

(function), 324

xrGetD3D12GraphicsRequirementsKHR

(function), 331

xrGetInputSourceLocalizedName (function), 278

xrGetInstanceProcAddr (function), 48

xrGetInstanceProperties (function), 77

xrGetOpenGLESGraphicsRequirementsKHR

(function), 354

xrGetOpenGLGraphicsRequirementsKHR

(function), 347

xrGetReferenceSpaceBoundsRect (function), 134

xrGetSystem (function), 84

xrGetSystemProperties (function), 87

xrGetViewConfigurationProperties (function), 163

xrGetVisibilityMaskKHR (function), 361

xrGetVulkanDeviceExtensionsKHR (function), 374

xrGetVulkanGraphicsDevice2KHR (function), 382

Index | 443

xrGetVulkanGraphicsDeviceKHR (function), 371

xrGetVulkanGraphicsRequirements2KHR

(function), 377

xrGetVulkanGraphicsRequirementsKHR

(function), 370

xrGetVulkanInstanceExtensionsKHR (function),

372

XrGraphicsBindingD3D11KHR (type), 321

XrGraphicsBindingD3D12KHR (type), 328

XrGraphicsBindingOpenGLESAndroidKHR (type),

351

XrGraphicsBindingOpenGLWaylandKHR (type),

344

XrGraphicsBindingOpenGLWin32KHR (type), 340

XrGraphicsBindingOpenGLXcbKHR (type), 343

XrGraphicsBindingOpenGLXlibKHR (type), 341

XrGraphicsBindingVulkan2KHR (type), 388

XrGraphicsBindingVulkanKHR (type), 366

XrGraphicsRequirementsD3D11KHR (type), 323

XrGraphicsRequirementsD3D12KHR (type), 330

XrGraphicsRequirementsOpenGLESKHR (type),

353

XrGraphicsRequirementsOpenGLKHR (type), 346

XrGraphicsRequirementsVulkan2KHR (type), 378

XrGraphicsRequirementsVulkanKHR (type), 369

H

XrHapticActionInfo (type), 257

XrHapticBaseHeader (type), 269

XrHapticVibration (type), 270

I

XR_INFINITE_DURATION (define), 29

xrInitializeLoaderKHR (function), 335

XrInputSourceLocalizedNameFlagBits (type), 280

XrInputSourceLocalizedNameFlags (type), 280

XrInputSourceLocalizedNameGetInfo (type), 279

XrInstance (type), 66

XrInstanceCreateFlagBits (type), 75

XrInstanceCreateFlags (type), 74

XrInstanceCreateInfo (type), 73

XrInstanceCreateInfoAndroidKHR (type), 284

XrInstanceProperties (type), 78

XrInteractionProfileState (type), 253

XrInteractionProfileSuggestedBinding (type), 248

L

XR_LOADER_INFO_STRUCT_VERSION (define), 55

XrLoaderInitInfoAndroidKHR (type), 337

XrLoaderInitInfoBaseHeaderKHR (type), 334

XrLoaderInterfaceStructs (type), 55

xrLocateSpace (function), 144

xrLocateSpaces (function), 151

xrLocateSpacesKHR (function), 402

xrLocateViews (function), 205

M

XR_MAKE_VERSION (define), 428

XR_MAX_EVENT_DATA_SIZE (define), 45

XR_MAY_ALIAS (define), 12

XR_MIN_COMPOSITION_LAYERS_SUPPORTED

(define), 89

XR_MIN_HAPTIC_DURATION (define), 271

N

XR_NO_DURATION (define), 29

XR_NULL_HANDLE (define), 430

XR_NULL_PATH (define), 93

XR_NULL_SYSTEM_ID (define), 84

XrNegotiateApiLayerRequest (type), 59

xrNegotiateLoaderApiLayerInterface (function),

57

XrNegotiateLoaderInfo (type), 54

xrNegotiateLoaderRuntimeInterface (function), 52

XrNegotiateRuntimeRequest (type), 56

O

XrObjectType (type), 25

XrOffset2Df (type), 34

XrOffset2Di (type), 35

P

PFN_xrCreateApiLayerInstance, 51

PFN_xrGetInstanceProcAddr, 51

PFN_xrVoidFunction, 51

XrPath (type), 91

xrPathToString (function), 95

xrPollEvent (function), 42

XrPosef (type), 33

444 | Index

Q

XrQuaternionf (type), 33

R

XR_RUNTIME_INFO_STRUCT_VERSION (define), 57

XrRect2Df (type), 37

XrRect2Di (type), 37

XrReferenceSpaceCreateInfo (type), 140

XrReferenceSpaceType (type), 130

xrReleaseSwapchainImage (function), 203

xrRequestExitSession (function), 181

XrResult (type), 18

xrResultToString (function), 80

S

XR_SUCCEEDED (define), 23

XrSession (type), 171

XrSessionActionSetsAttachInfo (type), 251

XrSessionBeginInfo (type), 179

XrSessionCreateFlagBits (type), 176

XrSessionCreateFlags (type), 176

XrSessionCreateInfo (type), 175

XrSessionState (type), 183

xrSetAndroidApplicationThreadKHR (function),

290

XrSpace (type), 129

XrSpaceLocation (type), 147

XrSpaceLocationData (type), 154

XrSpaceLocationDataKHR (type), 406

XrSpaceLocationFlagBits (type), 148

XrSpaceLocationFlags (type), 148

XrSpaceLocations (type), 153

XrSpaceLocationsKHR (type), 404

XrSpacesLocateInfo (type), 152

XrSpacesLocateInfoKHR (type), 403

XrSpaceVelocities (type), 155

XrSpaceVelocitiesKHR (type), 406

XrSpaceVelocity (type), 149

XrSpaceVelocityData (type), 156

XrSpaceVelocityDataKHR (type), 407

XrSpaceVelocityFlagBits (type), 150

XrSpaceVelocityFlags (type), 150

XrSpheref (type), 38

XrSpherefKHR (type), 412

xrStopHapticFeedback (function), 271

xrStringToPath (function), 93

XrStructureType (type), 424

xrStructureTypeToString (function), 81

xrSuggestInteractionProfileBindings (function),

246

XrSwapchain (type), 187

XrSwapchainCreateFlagBits (type), 193

XrSwapchainCreateFlags (type), 192

XrSwapchainCreateInfo (type), 190

XrSwapchainImageAcquireInfo (type), 200

XrSwapchainImageBaseHeader (type), 197

XrSwapchainImageD3D11KHR (type), 322

XrSwapchainImageD3D12KHR (type), 329

XrSwapchainImageOpenGLESKHR (type), 352

XrSwapchainImageOpenGLKHR (type), 345

XrSwapchainImageReleaseInfo (type), 204

XrSwapchainImageVulkan2KHR (type), 390

XrSwapchainImageVulkanKHR (type), 368

XrSwapchainImageWaitInfo (type), 202

XrSwapchainSubImage (type), 224

XrSwapchainUsageFlagBits (type), 193

XrSwapchainUsageFlags (type), 193

xrSyncActions (function), 272

XrSystemGetInfo (type), 85

XrSystemGraphicsProperties (type), 89

XrSystemId (type), 84

XrSystemProperties (type), 88

XrSystemTrackingProperties (type), 89

T

XR_TRUE (define), 41

XrTime (type), 28

U

XR_UNQUALIFIED_SUCCESS (define), 23

XrUuid (type), 39

V

XR_VERSION_MAJOR (define), 429

XR_VERSION_MINOR (define), 429

XR_VERSION_PATCH (define), 429

XrVector2f (type), 31

XrVector3f (type), 32

XrVector4f (type), 32

Index | 445

XrVersion (type), 6

XrView (type), 207

XrViewConfigurationProperties (type), 164

XrViewConfigurationType (type), 159

XrViewConfigurationView (type), 167

XrViewLocateInfo (type), 206

XrViewState (type), 208

XrViewStateFlagBits (type), 209

XrViewStateFlags (type), 209

XrVisibilityMaskKHR (type), 359

XrVisibilityMaskTypeKHR (type), 358

XrVulkanDeviceCreateFlagBitsKHR (type), 387

XrVulkanDeviceCreateFlagsKHR (type), 387

XrVulkanDeviceCreateInfoKHR (type), 385

XrVulkanGraphicsDeviceGetInfoKHR (type), 383

XrVulkanInstanceCreateFlagBitsKHR (type), 382

XrVulkanInstanceCreateFlagsKHR (type), 382

XrVulkanInstanceCreateInfoKHR (type), 380

XrVulkanSwapchainFormatListCreateInfoKHR

(type), 394

W

xrWaitFrame (function), 210

xrWaitSwapchainImage (function), 201

446 | Index

	The OpenXR™ 1.1.36 Specification (with all KHR extensions)
	Table of Contents
	Preamble
	Chapter 1. Introduction
	1.1. What is OpenXR?
	1.2. The Programmer’s View of OpenXR
	1.3. The Implementor’s View of OpenXR
	1.4. Our View of OpenXR
	1.5. Filing Bug Reports
	1.6. Document Conventions

	Chapter 2. Fundamentals
	2.1. API Version Numbers and Semantics
	2.2. String Encoding
	2.3. Threading Behavior
	2.4. Multiprocessing Behavior
	2.5. Runtime
	2.6. Extensions
	2.7. API Layers
	2.8. Type Aliasing
	2.9. Valid Usage
	2.10. Return Codes
	2.11. Handles
	2.12. Object Handle Types
	2.13. Buffer Size Parameters
	2.14. Time
	2.15. Duration
	2.16. Prediction Time Limits
	2.17. Colors
	2.18. Coordinate System
	2.19. Common Data Types
	2.20. Angles
	2.21. Boolean Values
	2.22. Events
	2.23. System resource lifetime

	Chapter 3. API Initialization
	3.1. Exported Functions
	3.2. Function Pointers
	3.3. Runtime Interface Negotiation
	3.4. API Layer Interface Negotiation

	Chapter 4. Instance
	4.1. API Layers and Extensions
	4.2. Instance Lifecycle
	4.3. Instance Information
	4.4. Platform-Specific Instance Creation
	4.5. Instance Enumerated Type String Functions

	Chapter 5. System
	5.1. Form Factors
	5.2. Getting the XrSystemId
	5.3. System Properties

	Chapter 6. Path Tree and Semantic Paths
	6.1. Path Atom Type
	6.2. Well-Formed Path Strings
	6.3. Reserved Paths
	6.4. Interaction Profile Paths

	Chapter 7. Spaces
	7.1. Reference Spaces
	7.2. Action Spaces
	7.3. Space Lifecycle
	7.4. Locating Spaces

	Chapter 8. View Configurations
	8.1. Primary View Configurations
	8.2. View Configuration API
	8.3. Example View Configuration Code

	Chapter 9. Session
	9.1. Session Lifecycle
	9.2. Session Creation
	9.3. Session Control
	9.4. Session States

	Chapter 10. Rendering
	10.1. Swapchain Image Management
	10.2. View and Projection State
	10.3. Frame Synchronization
	10.4. Frame Submission
	10.5. Frame Rate
	10.6. Compositing

	Chapter 11. Input and Haptics
	11.1. Action Overview
	11.2. Action Sets
	11.3. Creating Actions
	11.4. Suggested Bindings
	11.5. Current Interaction Profile
	11.6. Reading Input Action State
	11.7. Output Actions and Haptics
	11.8. Input Action State Synchronization
	11.9. Bound Sources

	Chapter 12. List of Current Extensions
	12.1. XR_KHR_android_create_instance
	12.2. XR_KHR_android_surface_swapchain
	12.3. XR_KHR_android_thread_settings
	12.4. XR_KHR_binding_modification
	12.5. XR_KHR_composition_layer_color_scale_bias
	12.6. XR_KHR_composition_layer_cube
	12.7. XR_KHR_composition_layer_cylinder
	12.8. XR_KHR_composition_layer_depth
	12.9. XR_KHR_composition_layer_equirect
	12.10. XR_KHR_composition_layer_equirect2
	12.11. XR_KHR_convert_timespec_time
	12.12. XR_KHR_D3D11_enable
	12.13. XR_KHR_D3D12_enable
	12.14. XR_KHR_loader_init
	12.15. XR_KHR_loader_init_android
	12.16. XR_KHR_opengl_enable
	12.17. XR_KHR_opengl_es_enable
	12.18. XR_KHR_swapchain_usage_input_attachment_bit
	12.19. XR_KHR_visibility_mask
	12.20. XR_KHR_vulkan_enable
	12.21. XR_KHR_vulkan_enable2
	12.22. XR_KHR_vulkan_swapchain_format_list
	12.23. XR_KHR_win32_convert_performance_counter_time

	Chapter 13. List of Deprecated Extensions
	13.1. XR_KHR_locate_spaces
	13.2. XR_KHR_maintenance1

	Chapter 14. Core Revisions (Informative)
	14.1. Version 1.1
	14.2. Loader Runtime and API Layer Negotiation Version 1.0
	14.3. Version 1.0

	Appendix
	Code Style Conventions
	Application Binary Interface
	Android Notes
	Glossary
	Abbreviations
	Dedication (Informative)
	Contributors (Informative)

	Index

