
The OpenXR™ 1.1.36 Specification (with
all registered extensions)

The Khronos
®
 OpenXR Working Group

Version 1.1.36: from git ref release-1.1.36

Table of Contents

Preamble . 1

1. Introduction . 3

1.1. What is OpenXR?. 3

1.2. The Programmer’s View of OpenXR. 3

1.3. The Implementor’s View of OpenXR . 3

1.4. Our View of OpenXR. 4

1.5. Filing Bug Reports. 4

1.6. Document Conventions . 4

2. Fundamentals . 6

2.1. API Version Numbers and Semantics. 6

2.2. String Encoding . 8

2.3. Threading Behavior . 8

2.4. Multiprocessing Behavior. 10

2.5. Runtime. 10

2.6. Extensions. 10

2.7. API Layers. 11

2.8. Type Aliasing . 13

2.9. Valid Usage . 14

2.10. Return Codes . 18

2.11. Handles . 31

2.12. Object Handle Types . 32

2.13. Buffer Size Parameters . 34

2.14. Time . 36

2.15. Duration . 37

2.16. Prediction Time Limits . 38

2.17. Colors. 38

2.18. Coordinate System . 39

2.19. Common Data Types . 42

2.20. Angles . 48

2.21. Boolean Values . 49

2.22. Events . 50

2.23. System resource lifetime. 55

3. API Initialization. 56

3.1. Exported Functions . 56

3.2. Function Pointers . 56

3.3. Runtime Interface Negotiation . 59

3.4. API Layer Interface Negotiation . 65

4. Instance. 74

4.1. API Layers and Extensions . 74

4.2. Instance Lifecycle . 79

4.3. Instance Information . 85

4.4. Platform-Specific Instance Creation. 87

4.5. Instance Enumerated Type String Functions. 88

5. System . 91

5.1. Form Factors . 91

5.2. Getting the XrSystemId . 92

5.3. System Properties . 95

6. Path Tree and Semantic Paths . 99

6.1. Path Atom Type . 99

6.2. Well-Formed Path Strings . 101

6.3. Reserved Paths . 105

6.4. Interaction Profile Paths . 112

7. Spaces . 144

7.1. Reference Spaces . 145

7.2. Action Spaces . 151

7.3. Space Lifecycle . 152

7.4. Locating Spaces . 159

8. View Configurations . 174

8.1. Primary View Configurations . 174

8.2. View Configuration API. 176

8.3. Example View Configuration Code. 183

9. Session. 186

9.1. Session Lifecycle . 186

9.2. Session Creation . 188

9.3. Session Control . 192

9.4. Session States. 197

10. Rendering. 202

10.1. Swapchain Image Management . 202

10.2. View and Projection State. 220

10.3. Frame Synchronization. 225

10.4. Frame Submission . 229

10.5. Frame Rate . 235

10.6. Compositing . 236

11. Input and Haptics. 249

11.1. Action Overview . 249

11.2. Action Sets . 251

11.3. Creating Actions . 255

11.4. Suggested Bindings . 260

11.5. Current Interaction Profile. 266

11.6. Reading Input Action State. 270

11.7. Output Actions and Haptics . 282

11.8. Input Action State Synchronization . 287

11.9. Bound Sources. 290

12. List of Current Extensions . 297

12.1. XR_KHR_android_create_instance . 302

12.2. XR_KHR_android_surface_swapchain. 304

12.3. XR_KHR_android_thread_settings . 307

12.4. XR_KHR_binding_modification . 311

12.5. XR_KHR_composition_layer_color_scale_bias . 314

12.6. XR_KHR_composition_layer_cube . 317

12.7. XR_KHR_composition_layer_cylinder . 320

12.8. XR_KHR_composition_layer_depth . 324

12.9. XR_KHR_composition_layer_equirect . 328

12.10. XR_KHR_composition_layer_equirect2 . 332

12.11. XR_KHR_convert_timespec_time . 335

12.12. XR_KHR_D3D11_enable . 338

12.13. XR_KHR_D3D12_enable . 345

12.14. XR_KHR_loader_init. 352

12.15. XR_KHR_loader_init_android . 355

12.16. XR_KHR_opengl_enable . 357

12.17. XR_KHR_opengl_es_enable . 368

12.18. XR_KHR_swapchain_usage_input_attachment_bit. 375

12.19. XR_KHR_visibility_mask . 376

12.20. XR_KHR_vulkan_enable . 382

12.21. XR_KHR_vulkan_enable2 . 395

12.22. XR_KHR_vulkan_swapchain_format_list . 413

12.23. XR_KHR_win32_convert_performance_counter_time. 416

12.24. XR_EXT_active_action_set_priority . 419

12.25. XR_EXT_conformance_automation . 422

12.26. XR_EXT_debug_utils. 431

12.27. XR_EXT_dpad_binding . 457

12.28. XR_EXT_eye_gaze_interaction . 466

12.29. XR_EXT_future . 473

12.30. XR_EXT_hand_interaction . 493

12.31. XR_EXT_hand_joints_motion_range. 506

12.32. XR_EXT_hand_tracking . 508

12.33. XR_EXT_hand_tracking_data_source. 528

12.34. XR_EXT_performance_settings . 533

12.35. XR_EXT_plane_detection . 544

12.36. XR_EXT_thermal_query . 571

12.37. XR_EXT_user_presence . 575

12.38. XR_EXT_view_configuration_depth_range. 581

12.39. XR_EXT_win32_appcontainer_compatible . 584

12.40. XR_ALMALENCE_digital_lens_control. 585

12.41. XR_EPIC_view_configuration_fov. 589

12.42. XR_FB_android_surface_swapchain_create. 591

12.43. XR_FB_body_tracking . 594

12.44. XR_FB_color_space. 612

12.45. XR_FB_composition_layer_alpha_blend . 619

12.46. XR_FB_composition_layer_depth_test . 622

12.47. XR_FB_composition_layer_image_layout . 624

12.48. XR_FB_composition_layer_secure_content . 627

12.49. XR_FB_composition_layer_settings . 630

12.50. XR_FB_display_refresh_rate. 633

12.51. XR_FB_eye_tracking_social. 640

12.52. XR_FB_face_tracking . 652

12.53. XR_FB_face_tracking2 . 666

12.54. XR_FB_foveation. 706

12.55. XR_FB_foveation_configuration . 714

12.56. XR_FB_foveation_vulkan . 717

12.57. XR_FB_hand_tracking_aim. 719

12.58. XR_FB_hand_tracking_capsules . 723

12.59. XR_FB_hand_tracking_mesh . 726

12.60. XR_FB_haptic_amplitude_envelope . 733

12.61. XR_FB_haptic_pcm . 735

12.62. XR_FB_keyboard_tracking . 741

12.63. XR_FB_passthrough . 749

12.64. XR_FB_passthrough_keyboard_hands. 779

12.65. XR_FB_render_model . 782

12.66. XR_FB_scene . 795

12.67. XR_FB_scene_capture . 811

12.68. XR_FB_space_warp. 816

12.69. XR_FB_spatial_entity . 820

12.70. XR_FB_spatial_entity_container . 836

12.71. XR_FB_spatial_entity_query. 840

12.72. XR_FB_spatial_entity_sharing . 854

12.73. XR_FB_spatial_entity_storage . 860

12.74. XR_FB_spatial_entity_storage_batch . 868

12.75. XR_FB_spatial_entity_user . 874

12.76. XR_FB_swapchain_update_state . 879

12.77. XR_FB_swapchain_update_state_android_surface. 884

12.78. XR_FB_swapchain_update_state_opengl_es. 886

12.79. XR_FB_swapchain_update_state_vulkan . 889

12.80. XR_FB_touch_controller_pro . 892

12.81. XR_FB_touch_controller_proximity . 896

12.82. XR_FB_triangle_mesh . 899

12.83. XR_HTC_anchor . 915

12.84. XR_HTC_facial_tracking . 921

12.85. XR_HTC_foveation . 947

12.86. XR_HTC_hand_interaction . 956

12.87. XR_HTC_passthrough . 958

12.88. XR_HTC_vive_wrist_tracker_interaction. 967

12.89. XR_HUAWEI_controller_interaction . 969

12.90. XR_META_automatic_layer_filter . 972

12.91. XR_META_environment_depth . 973

12.92. XR_META_foveation_eye_tracked. 997

12.93. XR_META_headset_id . 1004

12.94. XR_META_local_dimming. 1007

12.95. XR_META_passthrough_color_lut. 1009

12.96. XR_META_passthrough_preferences . 1021

12.97. XR_META_performance_metrics . 1025

12.98. XR_META_recommended_layer_resolution. 1034

12.99. XR_META_spatial_entity_mesh . 1039

12.100. XR_META_touch_controller_plus . 1044

12.101. XR_META_virtual_keyboard . 1047

12.102. XR_META_vulkan_swapchain_create_info . 1088

12.103. XR_ML_compat . 1090

12.104. XR_ML_frame_end_info . 1093

12.105. XR_ML_global_dimmer. 1096

12.106. XR_ML_localization_map . 1098

12.107. XR_ML_marker_understanding . 1119

12.108. XR_ML_user_calibration. 1157

12.109. XR_MND_headless . 1162

12.110. XR_MSFT_composition_layer_reprojection . 1164

12.111. XR_MSFT_controller_model . 1170

12.112. XR_MSFT_first_person_observer . 1183

12.113. XR_MSFT_hand_interaction. 1185

12.114. XR_MSFT_hand_tracking_mesh . 1188

12.115. XR_MSFT_holographic_window_attachment . 1208

12.116. XR_MSFT_perception_anchor_interop . 1212

12.117. XR_MSFT_scene_marker . 1216

12.118. XR_MSFT_scene_understanding. 1231

12.119. XR_MSFT_scene_understanding_serialization . 1284

12.120. XR_MSFT_secondary_view_configuration . 1291

12.121. XR_MSFT_spatial_anchor . 1303

12.122. XR_MSFT_spatial_anchor_persistence . 1310

12.123. XR_MSFT_spatial_graph_bridge . 1323

12.124. XR_MSFT_unbounded_reference_space. 1335

12.125. XR_OCULUS_audio_device_guid . 1337

12.126. XR_OCULUS_external_camera . 1340

12.127. XR_OPPO_controller_interaction . 1346

12.128. XR_QCOM_tracking_optimization_settings . 1349

12.129. XR_ULTRALEAP_hand_tracking_forearm . 1353

12.130. XR_VALVE_analog_threshold . 1356

12.131. XR_VARJO_composition_layer_depth_test . 1359

12.132. XR_VARJO_environment_depth_estimation . 1363

12.133. XR_VARJO_foveated_rendering . 1365

12.134. XR_VARJO_marker_tracking . 1373

12.135. XR_VARJO_view_offset . 1385

12.136. XR_VARJO_xr4_controller_interaction . 1388

12.137. XR_YVR_controller_interaction . 1390

13. List of Provisional Extensions. 1394

13.1. XR_EXTX_overlay . 1395

13.2. XR_HTCX_vive_tracker_interaction . 1402

13.3. XR_MNDX_egl_enable . 1411

13.4. XR_MNDX_force_feedback_curl . 1413

14. List of Deprecated Extensions. 1421

14.1. XR_KHR_locate_spaces . 1422

14.2. XR_KHR_maintenance1 . 1432

14.3. XR_EXT_hp_mixed_reality_controller . 1435

14.4. XR_EXT_local_floor . 1437

14.5. XR_EXT_palm_pose . 1441

14.6. XR_EXT_samsung_odyssey_controller. 1444

14.7. XR_EXT_uuid . 1446

14.8. XR_BD_controller_interaction . 1448

14.9. XR_HTC_vive_cosmos_controller_interaction . 1453

14.10. XR_HTC_vive_focus3_controller_interaction. 1456

14.11. XR_ML_ml2_controller_interaction . 1459

14.12. XR_MND_swapchain_usage_input_attachment_bit . 1461

14.13. XR_OCULUS_android_session_state_enable. 1463

14.14. XR_VARJO_quad_views . 1465

15. Core Revisions (Informative) . 1468

15.1. Version 1.1 . 1468

15.2. Loader Runtime and API Layer Negotiation Version 1.0 . 1470

15.3. Version 1.0 . 1471

Appendix . 1476

Code Style Conventions . 1476

Application Binary Interface. 1476

Android Notes. 1497

Glossary . 1497

Abbreviations . 1499

Dedication (Informative) . 1501

Contributors (Informative) . 1503

Index . 1507

Preamble

Copyright (c) 2017-2024, The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos. Except

as described by these terms, it or any components may not be reproduced, republished, distributed,

transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior

written permission of Khronos.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification for

any purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other intellectual

property rights are granted under these terms.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,

regarding this Specification, including, without limitation: merchantability, fitness for a particular

purpose, non-infringement of any intellectual property, correctness, accuracy, completeness,

timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters, Contributors

or Members, or their respective partners, officers, directors, employees, agents or representatives be

liable for any damages, whether direct, indirect, special or consequential damages for lost revenues,

lost profits, or otherwise, arising from or in connection with these materials.

This document contains extensions which are not ratified by Khronos, and as such is not a ratified

Specification, though it contains text from (and is a superset of) the ratified OpenXR Specification that

can be found at https://registry.khronos.org/OpenXR/specs/1.1-khr/html/xrspec.html (core with KHR

extensions).

The Khronos Intellectual Property Rights Policy defines the terms 'Scope', 'Compliant Portion', and

'Necessary Patent Claims'.

Some parts of this Specification are purely informative and so are EXCLUDED from the Scope of this

Specification. The Document Conventions section of the Introduction defines how these parts of the

Specification are identified.

Where this Specification uses technical terminology, defined in the Glossary or otherwise, that refer to

enabling technologies that are not expressly set forth in this Specification, those enabling technologies

are EXCLUDED from the Scope of this Specification. For clarity, enabling technologies not disclosed

with particularity in this Specification (e.g. semiconductor manufacturing technology, hardware

architecture, processor architecture or microarchitecture, memory architecture, compiler technology,

object oriented technology, basic operating system technology, compression technology, algorithms,

and so on) are NOT to be considered expressly set forth; only those application program interfaces and

data structures disclosed with particularity are included in the Scope of this Specification.

For purposes of the Khronos Intellectual Property Rights Policy as it relates to the definition of

Necessary Patent Claims, all recommended or optional features, behaviors and functionality set forth

in this Specification, if implemented, are considered to be included as Compliant Portions.

Preamble | 1

https://registry.khronos.org/OpenXR/specs/1.1-khr/html/xrspec.html

Khronos® and Vulkan® are registered trademarks, and glTF™ is a trademark of The Khronos Group

Inc. OpenXR™ is a trademark owned by The Khronos Group Inc. and is registered as a trademark in

China, the European Union, Japan and the United Kingdom. OpenGL® is a registered trademark and

the OpenGL ES™ and OpenGL SC™ logos are trademarks of Hewlett Packard Enterprise used under

license by Khronos. All other product names, trademarks, and/or company names are used solely for

identification and belong to their respective owners.

2 | Preamble

Chapter 1. Introduction

This chapter is informative except for the section on Normative Terminology.

This document, referred to as the "OpenXR Specification" or just the "Specification" hereafter, describes

OpenXR: what it is, how it acts, and what is required to implement it. We assume that the reader has a

basic understanding of computer graphics and the technologies involved in virtual and augmented

reality. This means familiarity with the essentials of computer graphics algorithms and terminology,

modern GPUs (Graphic Processing Units), tracking technologies, head mounted devices, and input

modalities.

The canonical version of the Specification is available in the official OpenXR Registry, located at URL

https://registry.khronos.org/OpenXR

1.1. What is OpenXR?

OpenXR is an API (Application Programming Interface) for XR applications. XR refers to a continuum

of real-and-virtual combined environments generated by computers through human-machine

interaction and is inclusive of the technologies associated with virtual reality (VR), augmented reality

(AR) and mixed reality (MR). OpenXR is the interface between an application and an in-process or out-

of-process "XR runtime system", or just "runtime" hereafter. The runtime may handle such

functionality as frame composition, peripheral management, and raw tracking information.

Optionally, a runtime may support device layer plugins which allow access to a variety of hardware

across a commonly defined interface.

1.2. The Programmer’s View of OpenXR

To the application programmer, OpenXR is a set of functions that interface with a runtime to perform

commonly required operations such as accessing controller/peripheral state, getting current and/or

predicted tracking positions, and submitting rendered frames.

A typical OpenXR program begins with a call to create an instance which establishes a connection to a

runtime. Then a call is made to create a system which selects for use a physical display and a subset of

input, tracking, and graphics devices. Subsequently a call is made to create buffers into which the

application will render one or more views using the appropriate graphics APIs for the platform. Finally

calls are made to create a session and begin the application’s XR rendering loop.

1.3. The Implementor’s View of OpenXR

To the runtime implementor, OpenXR is a set of functions that control the operation of the XR system

and establishes the lifecycle of a XR application.

Chapter 1. Introduction | 3

https://registry.khronos.org/OpenXR

The implementor’s task is to provide a software library on the host which implements the OpenXR API,

while mapping the work for each OpenXR function to the graphics hardware as appropriate for the

capabilities of the device.

1.4. Our View of OpenXR

We view OpenXR as a mechanism for interacting with VR/AR/MR systems in a platform-agnostic way.

We expect this model to result in a specification that satisfies the needs of both programmers and

runtime implementors. It does not, however, necessarily provide a model for implementation. A

runtime implementation must produce results conforming to those produced by the specified

methods, but may carry out particular procedures in ways that are more efficient than the one

specified.

1.5. Filing Bug Reports

Issues with and bug reports on the OpenXR Specification and the API Registry can be filed in the

Khronos OpenXR GitHub repository, located at URL

https://github.com/KhronosGroup/OpenXR-Docs

Please tag issues with appropriate labels, such as “Specification”, “Ref Pages” or “Registry”, to help us

triage and assign them appropriately. Unfortunately, GitHub does not currently let users who do not

have write access to the repository set GitHub labels on issues. In the meantime, they can be added to

the title line of the issue set in brackets, e.g. “[Specification]”.

1.6. Document Conventions

The OpenXR specification is intended for use by both implementors of the API and application

developers seeking to make use of the API, forming a contract between these parties. Specification text

may address either party; typically the intended audience can be inferred from context, though some

sections are defined to address only one of these parties. (For example, Valid Usage sections only

address application developers). Any requirements, prohibitions, recommendations or options defined

by normative terminology are imposed only on the audience of that text.

1.6.1. Normative Terminology

The key words must, required, should, may, and optional in this document, when denoted as above,

are to be interpreted as described in RFC 2119:

https://tools.ietf.org/html/rfc2119

must

When used alone, this word, or the term required, means that the definition is an absolute

requirement of the specification. When followed by not (“must not”), the phrase means that the

4 | Chapter 1. Introduction

https://github.com/KhronosGroup/OpenXR-Docs
https://tools.ietf.org/html/rfc2119

definition is an absolute prohibition of the specification.

should

When used alone, this word means that there may exist valid reasons in particular circumstances to

ignore a particular item, but the full implications must be understood and carefully weighed before

choosing a different course. When followed by not (“should not”), the phrase means that there may

exist valid reasons in particular circumstances when the particular behavior is acceptable or even

useful, but the full implications should be understood and the case carefully weighed before

implementing any behavior described with this label.

may

This word, or the adjective optional, means that an item is truly optional. One vendor may choose

to include the item because a particular marketplace requires it or because the vendor feels that it

enhances the product while another vendor may omit the same item.

The additional terms can and cannot are to be interpreted as follows:

can

This word means that the particular behavior described is a valid choice for an application, and is

never used to refer to runtime behavior.

cannot

This word means that the particular behavior described is not achievable by an application, for

example, an entry point does not exist. There is an important distinction between cannot and must not, as used in this

Specification. Cannot means something the application literally is unable to express

or accomplish through the API, while must not means something that the application

is capable of expressing through the API, but that the consequences of doing so are

undefined and potentially unrecoverable for the runtime.

Chapter 1. Introduction | 5

Chapter 2. Fundamentals

2.1. API Version Numbers and Semantics

Multi-part version numbers are used in several places in the OpenXR API.

// Provided by XR_VERSION_1_0

typedef uint64_t XrVersion;

In each such use, the API major version number, minor version number, and patch version number

are packed into a 64-bit integer, referred to as XrVersion, as follows:

Version Numbers

• The major version number is a 16-bit integer packed into bits 63-48.

• The minor version number is a 16-bit integer packed into bits 47-32.

• The patch version number is a 32-bit integer packed into bits 31-0.

Differences in any of the version numbers indicate a change to the API, with each part of the version

number indicating a different scope of change, as follows. Note

The rules below apply to OpenXR versions 1.0 or later. Prerelease versions of OpenXR

may use different rules for versioning.

A difference in patch version numbers indicates that some usually small part of the specification or

header has been modified, typically to fix a bug, and may have an impact on the behavior of existing

functionality. Differences in the patch version number must affect neither full compatibility nor

backwards compatibility between two versions, nor may it add additional interfaces to the API.

Runtimes may use patch version number to determine whether to enable implementation changes,

such as bug fixes, that impact functionality. Runtimes should document any changes that are tied to

the patch version. Application developers should retest their application on all runtimes they support

after compiling with a new version.

A difference in minor version numbers indicates that some amount of new functionality has been

added. This will usually include new interfaces in the header, and may also include behavior changes

and bug fixes. Functionality may be deprecated in a minor revision, but must not be removed. When a

new minor version is introduced, the patch version continues where the last minor version left off,

making patch versions unique inside major versions. Differences in the minor version number should

6 | Chapter 2. Fundamentals

not affect backwards compatibility, but will affect full compatibility.

A difference in major version numbers indicates a large set of changes to the API, potentially including

new functionality and header interfaces, behavioral changes, removal of deprecated features,

modification or outright replacement of any feature, and is thus very likely to break compatibility.

Differences in the major version number will typically require significant modification to application

code in order for it to function properly.

The following table attempts to detail the changes that may occur versus when they must not be

updated during an update to any of the major, minor, or patch version numbers:

Table 1. Scenarios Which May Cause a Version Change

Reason Major Version Minor Version Patch Version

Extensions

Added/Removed*
may may may

Spec-Optional Behavior

Changed*
may may may

Spec Required Behavior

Changed*
may may must not

Core Interfaces Added* may may must not

Weak Deprecation* may may must not

Strong Deprecation* may must not must not

Core Interfaces

Changed/Removed*
may must not must not

In the above table, the following identify the various cases in detail:

Extensions Added/Removed An extension may be added or removed with a change at this

patch level.

Specification-Optional Behavior

Changed

Some optional behavior laid out in this specification has

changed. Usually this will involve a change in behavior that is

marked with the normative language should or may. For

example, a runtime that previously did not validate a particular

use case may now begin validating that use case.

Specification-Required Behavior

Changed

A behavior of runtimes that is required by this specification may

have changed. For example, a previously optional validation may

now have become mandatory for runtimes.

Core Interfaces Added New interfaces may have been added to this specification (and to

the OpenXR header file) in revisions at this level.

Chapter 2. Fundamentals | 7

Weak Deprecation An interface may have been weakly deprecated at this level. This

may happen if there is now a better way to accomplish the same

thing. Applications making this call should behave the same as

before the deprecation, but following the new path may be more

performant, lower latency, or otherwise yield better results. It is

possible that some runtimes may choose to give run-time

warnings that the feature has been weakly deprecated and will

likely be strongly deprecated or removed in the future.

Strong Deprecation An interface may have been strongly deprecated at this level. This

means that the interface must still exist (so applications that are

compiled against it will still run) but it may now be a no-op, or it

may be that its behavior has been significantly changed. It may

be that this functionality is no longer necessary, or that its

functionality has been subsumed by another call. This should not

break an application, but some behavior may be different or

unanticipated.

Interfaces Changed/Removed An interface may have been changed — with different

parameters or return types — at this level. An interface or feature

may also have been removed entirely. It is almost certain that

rebuilding applications will be required.

2.2. String Encoding

This API uses strings as input and output for some functions. Unless otherwise specified, all such

strings are NULL terminated UTF-8 encoded case-sensitive character arrays.

2.3. Threading Behavior

The OpenXR API is intended to provide scalable performance when used on multiple host threads. All

functions must support being called concurrently from multiple threads, but certain parameters, or

components of parameters are defined to be externally synchronized. This means that the caller must

guarantee that no more than one thread is using such a parameter at a given time.

More precisely, functions use simple stores to update software structures representing objects. A

parameter declared as externally synchronized may have its software structures updated at any time

during the host execution of the function. If two functions operate on the same object and at least one

of the functions declares the object to be externally synchronized, then the caller must guarantee not

only that the functions do not execute simultaneously, but also that the two functions are separated by

an appropriate memory barrier if needed.

For all functions which destroy an object handle, the application must externally synchronize the

object handle parameter and any child handles.

8 | Chapter 2. Fundamentals

Externally Synchronized Parameters

• The instance parameter, and any child handles, in xrDestroyInstance

• The session parameter, and any child handles, in xrDestroySession

• The space parameter, and any child handles, in xrDestroySpace

• The swapchain parameter, and any child handles, in xrDestroySwapchain

• The actionSet parameter, and any child handles, in xrDestroyActionSet

• The action parameter, and any child handles, in xrDestroyAction

• The objectHandle member of the nameInfo parameter in xrSetDebugUtilsObjectNameEXT

• The instance parameter, and any child handles, in xrCreateDebugUtilsMessengerEXT

• The messenger parameter in xrDestroyDebugUtilsMessengerEXT

• The anchor parameter, and any child handles, in xrDestroySpatialAnchorMSFT

• The nodeBinding parameter, and any child handles, in

xrDestroySpatialGraphNodeBindingMSFT

• The handTracker parameter, and any child handles, in xrDestroyHandTrackerEXT

• The bodyTracker parameter, and any child handles, in xrDestroyBodyTrackerFB

• The sceneObserver parameter, and any child handles, in xrDestroySceneObserverMSFT

• The scene parameter, and any child handles, in xrDestroySceneMSFT

• The facialTracker parameter, and any child handles, in xrDestroyFacialTrackerHTC

• The profile parameter, and any child handles, in xrDestroyFoveationProfileFB

• The mesh parameter, and any child handles, in xrDestroyTriangleMeshFB

• The passthrough parameter, and any child handles, in xrDestroyPassthroughFB

• The layer parameter, and any child handles, in xrDestroyPassthroughLayerFB

• The instance parameter, and any child handles, in xrDestroyGeometryInstanceFB

• The markerDetector parameter, and any child handles, in xrDestroyMarkerDetectorML

• The map parameter, and any child handles, in xrDestroyExportedLocalizationMapML

• The spatialAnchorStore parameter, and any child handles, in

xrDestroySpatialAnchorStoreConnectionMSFT

• The faceTracker parameter, and any child handles, in xrDestroyFaceTrackerFB

• The eyeTracker parameter, and any child handles, in xrDestroyEyeTrackerFB

• The keyboard parameter, and any child handles, in xrDestroyVirtualKeyboardMETA

• The user parameter, and any child handles, in xrDestroySpaceUserFB

• The colorLut parameter, and any child handles, in xrDestroyPassthroughColorLutMETA

Chapter 2. Fundamentals | 9

• The faceTracker parameter, and any child handles, in xrDestroyFaceTracker2FB

• The environmentDepthProvider parameter, and any child handles, in

xrDestroyEnvironmentDepthProviderMETA

• The swapchain parameter, and any child handles, in

xrDestroyEnvironmentDepthSwapchainMETA

• The passthrough parameter, and any child handles, in xrDestroyPassthroughHTC

• The planeDetector parameter, and any child handles, in xrDestroyPlaneDetectorEXT

• The future member of the cancelInfo parameter in xrCancelFutureEXT

Implicit Externally Synchronized Parameters

• The session parameter by any other xrWaitFrame call in xrWaitFrame

• The session parameter by any other xrBeginFrame or xrEndFrame call in xrBeginFrame

• The session parameter by any other xrBeginFrame or xrEndFrame call in xrEndFrame

• The XrInstance used to create messenger, and all of its child handles in

xrDestroyDebugUtilsMessengerEXT

• The buffers returned from calls to xrTriangleMeshGetVertexBufferFB and

xrTriangleMeshGetIndexBufferFB on mesh in xrDestroyTriangleMeshFB

2.4. Multiprocessing Behavior

The OpenXR API does not explicitly recognize nor require support for multiple processes using the

runtime simultaneously, nor does it prevent a runtime from providing such support.

2.5. Runtime

An OpenXR runtime is software which implements the OpenXR API. There may be more than one

OpenXR runtime installed on a system, but only one runtime can be active at any given time.

2.6. Extensions

OpenXR is an extensible API that grows through the addition of new features. Similar to other Khronos

APIs, extensions may expose new OpenXR functions or modify the behavior of existing OpenXR

functions. Extensions are optional, and therefore must be enabled by the application before the

extended functionality is made available. Because extensions are optional, they may be implemented

only on a subset of runtimes, graphics platforms, or operating systems. Therefore, an application

should first query which extensions are available before enabling.

10 | Chapter 2. Fundamentals

The application queries the available list of extensions using the

xrEnumerateInstanceExtensionProperties function. Once an application determines which extensions

are supported, it can enable some subset of them during the call to xrCreateInstance.

OpenXR extensions have unique names that convey information about what functionality is provided.

The names have the following format:

Extension Name Formatting

• The prefix "XR_" to identify this as an OpenXR extension

• A string identifier for the vendor tag, which corresponds to the company or group exposing

the extension. The vendor tag must use only uppercase letters and decimal digits. Some

examples include:

◦ "KHR" for Khronos extensions, supported by multiple vendors.

◦ "EXT" for non-Khronos extensions supported by multiple vendors.

• An underscore "_".

• A string uniquely identifying the extension. The string is a compound of substrings which

must use only lower case letters and decimal digits. The substrings are delimited with single

underscores.

For example: XR_KHR_composition_layer_cube is an OpenXR extension created by the Khronos (KHR)

OpenXR Working Group to support cube composition layers.

The public list of available extensions known and configured for inclusion in this document at the time

of this specification being generated appears in the List of Extensions appendix at the end of this

document.

2.7. API Layers

OpenXR is designed to be a layered API, which means that a user or application may insert API layers

between the application and the runtime implementation. These API layers provide additional

functionality by intercepting OpenXR functions from the layer above and performing different

operations than would otherwise be performed without the layer. In the simplest cases, the layer

simply calls the next layer down with the same arguments, but a more complex layer may implement

API functionality that is not present in the layers or runtime below it. This mechanism is essentially an

architected "function shimming" or "intercept" feature that is designed into OpenXR and meant to

replace more informal methods of "hooking" API calls.

2.7.1. Examples of API Layers

Chapter 2. Fundamentals | 11

Validation Layer

The layered API approach employed by OpenXR allows for potentially expensive validation of correct

API usage to be implemented in a "validation" layer. Such a layer allows the application developer to

develop their application with a validation layer active to ensure that the application is using the API

correctly. A validation layer confirms that the application has set up object state correctly, has provided

the required data for each function, ensures that required resources are available, etc. If a validation

layer detects a problem, it issues an error message that can be logged or captured by the application

via a callback. After the developer has determined that the application is correct, they turn off a

validation layer to allow the application to run in a production environment without repeatedly

incurring the validation expense. (Note that some validation of correct API usage is required to be

implemented by the runtime.)

API Logging Layer

Another example of an API layer is an API logging layer that simply serializes all the API calls to an

output sink in a text format, including printing out argument values and structure contents.

API Trace Layer

A related API trace layer produces a trace file that contains all the information provided to the API so

that the trace file can be played back by a replay program.

2.7.2. Naming API Layers

To organize API layer names and prevent collisions in the API layer name namespace, API layers must

be named using the following convention:

XR_APILAYER_<VENDOR-TAG>_short_name

Vendors are responsible for registering a vendor tag with the OpenXR working group, and just like for

implementors, they must maintain their vendor namespace.

Example of an API layer name produced by the Acme company for the "check best practices" API layer:

XR_APILAYER_ACME_check_best_practices

2.7.3. Activating API Layers

Application Activation

Applications can determine the API layers that are available to them by calling the

xrEnumerateApiLayerProperties function to obtain a list of available API layers. Applications then can

select the desired API layers from this list and provide them to the xrCreateInstance function when

12 | Chapter 2. Fundamentals

creating an instance.

System Activation

Application users or users performing roles such as system integrator or system administrator may

configure a system to activate API layers without involvement from the applications. These platform-

dependent steps may include the installation of API layer-related files, setting environment variables,

or other platform-specific operations. The options that are available for configuring the API layers in

this manner are also dependent on the platform and/or runtime.

2.7.4. API Layer Extensions

API layers may implement OpenXR functions that are not supported by the underlying runtime. In

order to expose these new features, the API layer must expose this functionality in the form of an

OpenXR extension. It must not expose new OpenXR functions without an associated extension.

For example, an OpenXR API-logging API layer might expose an API function to allow the application to

turn logging on for only a portion of its execution. Since new functions must be exposed through an

extension, the vendor has created an extension called XR_ACME_logging_on_off to contain these new

functions. The application should query if the API layer supports the extension and then, only if it

exists, enable both the extension and the API layer by name during xrCreateInstance.

To find out what extensions an API layer supports, an application must first verify that the API layer

exists on the current system by calling xrEnumerateApiLayerProperties. After verifying an API layer of

interest exists, the application then should call xrEnumerateInstanceExtensionProperties and provide

the API layer name as the first parameter. This will return the list of extensions implemented by that

API layer.

2.8. Type Aliasing

Type aliasing refers to the situation in which the actual type of a element does not match the declared

type. Some C and C++ compilers assume that the actual type matches the declared type in some

configurations, and may be so configured by default at common optimization levels. In such a

compiler configured with that assumption, violating the assumption may produce undefined behavior.

This compiler feature is typically referred to as "strict aliasing," and it can usually be enabled or

disabled via compiler options. The OpenXR specification does not support strict aliasing, as there are

some cases in which an application intentionally provides a struct with a type that differs from the

declared type. For example, XrFrameEndInfo::layers is an array of type const

XrCompositionLayerBaseHeader code:* const. However, each element of the array must be of one of

the specific layer types, such as XrCompositionLayerQuad. Similarly, xrEnumerateSwapchainImages

accepts an array of XrSwapchainImageBaseHeader, whereas the actual type passed must be an array

of a type such as XrSwapchainImageVulkanKHR.

For OpenXR to work correctly, the compiler must support the type aliasing described here.

Chapter 2. Fundamentals | 13

// Provided by XR_VERSION_1_0

#if !defined(XR_MAY_ALIAS)

#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4))

#define XR_MAY_ALIAS __attribute__((__may_alias__))

#else

#define XR_MAY_ALIAS

#endif

#endif

As a convenience, some types and pointers that are known at specification time to alias values of

different types have been annotated with the XR_MAY_ALIAS definition. If this macro is not defined

before including OpenXR headers, and a new enough Clang or GCC compiler is used, it is defined to a

compiler-specific attribute annotation to inform these compilers that those pointers may alias.

However, there is no guarantee that all aliasing types or pointers have been correctly marked with this

macro, so thorough testing is still recommended if you choose (at your own risk) to permit your

compiler to perform type-based aliasing analysis.

2.9. Valid Usage

Valid usage defines a set of conditions which must be met in order to achieve well-defined run-time

behavior in an application. These conditions depend only on API state, and the parameters or objects

whose usage is constrained by the condition.

Some valid usage conditions have dependencies on runtime limits or feature availability. It is possible

to validate these conditions against the API’s minimum or maximum supported values for these limits

and features, or some subset of other known values.

Valid usage conditions should apply to a function or structure where complete information about the

condition would be known during execution of an application. This is such that a validation API layer

or linter can be written directly against these statements at the point they are specified.

2.9.1. Implicit Valid Usage

Some valid usage conditions apply to all functions and structures in the API, unless explicitly denoted

otherwise for a specific function or structure. These conditions are considered implicit. Implicit valid

usage conditions are described in detail below.

2.9.2. Valid Usage for Object Handles

Any input parameter to a function that is an object handle must be a valid object handle, unless

otherwise specified. An object handle is valid if and only if all of the following conditions hold:

14 | Chapter 2. Fundamentals

Object Handle Validity Conditions

• It has been created or allocated by a previous, successful call to the API.

• It has not been destroyed by a previous call to the API.

• Its parent handle is also valid.

There are contexts in which an object handle is optional or otherwise unspecified. In those cases, the

API uses XR_NULL_HANDLE, which has the integer value 0.

2.9.3. Valid Usage for Pointers

Any parameter that is a pointer must be a valid pointer when the specification indicates that the

runtime uses the pointer. A pointer is valid if and only if it points at memory containing values of the

number and type(s) expected by the function, and all fundamental types accessed through the pointer

(e.g. as elements of an array or as members of a structure) satisfy the alignment requirements of the

host processor.

2.9.4. Valid Usage for Enumerated Types

Any parameter of an enumerated type must be a valid enumerant for that type. An enumerant is valid

if and only if the enumerant is defined as part of the enumerated type in question.

2.9.5. Valid Usage for Flags

A collection of flags is represented by a bitmask using the type XrFlags64:

typedef uint64_t XrFlags64;

Bitmasks are passed to many functions and structures to compactly represent options and are stored in

memory defined by the XrFlags64 type. But the API does not use the XrFlags64 type directly. Instead, a

Xr*Flags type is used which is an alias of the XrFlags64 type. The API also defines a set of constant bit

definitions used to set the bitmasks.

Any Xr*Flags member or parameter used in the API must be a valid combination of bit flags. A valid

combination is either zero or the bitwise OR of valid bit flags. A bit flag is valid if and only if:

Chapter 2. Fundamentals | 15

Bit Flag Validity

• The bit flag is one of the constant bit definitions defined by the same Xr*Flags type as the

Xr*Flags member or parameter. (Valid flag values may also be defined by extensions but will

appear in the specification with all other valid flag values for that type.)

• The flag is allowed in the context in which it is being used. For example, in some cases,

certain bit flags or combinations of bit flags are mutually exclusive.

2.9.6. Valid Usage for Structure Types

Any parameter that is a structure containing a type member must have a value of type which is a valid

XrStructureType value matching the type of the structure. As a general rule, the name of this value is

obtained by taking the structure name, stripping the leading Xr, prefixing each capital letter with an

underscore, converting the entire resulting string to upper case, and prefixing it with XR_TYPE_.

The only exceptions to this rule are API and Operating System names which are converted in a way

that produces a more readable value:

Structure Type Format Exceptions

• OpenGL ⇒ _OPENGL

• OpenGLES ⇒ _OPENGL_ES

• EGL ⇒ _EGL

• D3D ⇒ _D3D

2.9.7. Valid Usage for Structure Pointer Chains

Any structure containing a void* next member must have a value of next that is either NULL, or points to

a valid structure that also contains type and next member values. The set of structures connected by

next pointers is referred to as a next chain.

In order to use a structure type defined by an extension in a next chain, the proper extension must

have been previously enabled during xrCreateInstance. A runtime must ignore all unrecognized

structures in a next chain, including those associated with an extension that has not been enabled.

Some structures for use in a chain are described in the core OpenXR specification and are mentioned

in the Member Descriptions. Any structure described in this document intended for use in a chain is

mentioned in a "See also" list in the implicit valid usage of the structure they chain to. Most chained

structures are associated with extensions, and are described in the base OpenXR Specification under

the List of Extensions. Vendor-specific extensions may be found there as well, or may only be available

from the vendor’s website or internal document repositories.

16 | Chapter 2. Fundamentals

Unless otherwise specified: Chained structs which are output structs may be modified by the runtime

with the exception of the type and next fields. Upon return from any function, all type and next fields

in the chain must be unmodified.

Useful Base Structures

As a convenience to runtimes and layers needing to iterate through a structure pointer chain, the

OpenXR API provides the following base structures:

The XrBaseInStructure structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrBaseInStructure {

 XrStructureType type;

 const struct XrBaseInStructure* next;

} XrBaseInStructure;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain.

XrBaseInStructure can be used to facilitate iterating through a read-only structure pointer chain.

The XrBaseOutStructure structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrBaseOutStructure {

 XrStructureType type;

 struct XrBaseOutStructure* next;

} XrBaseOutStructure;

Chapter 2. Fundamentals | 17

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain.

XrBaseOutStructure can be used to facilitate iterating through a structure pointer chain that returns

data back to the application.

These structures allow for some type safety and can be used by OpenXR API functions that operate on

generic inputs and outputs.

Next Chain Structure Uniqueness

Applications should ensure that they create and insert no more than one occurrence of each type of

extension structure in a given next chain. Other components of OpenXR (such as the OpenXR loader or

an API Layer) may insert duplicate structures into this chain. This provides those components the

ability to update a structure that appears in the next chain by making a modified copy of that same

structure and placing the new version at the beginning of the chain. The benefit of allowing this

duplication is each component is no longer required to create a copy of the entire next chain just to

update one structure. When duplication is present, all other OpenXR components must process only

the first instance of a structure of a given type, and then ignore all instances of a structure of that same

type.

If a component makes such a structure copy, and the original structure is also used to return content,

then that component must copy the necessary content from the copied structure and into the original

version of the structure upon completion of the function prior to proceeding back up the call stack.

This is to ensure that OpenXR behavior is consistent whether or not that particular OpenXR component

is present and/or enabled on the system.

2.9.8. Valid Usage for Nested Structures

The above conditions also apply recursively to members of structures provided as input to a function,

either as a direct argument to the function, or themselves a member of another structure.

Specifics on valid usage of each function are covered in their individual sections.

2.10. Return Codes

The core API is designed to capture most, but not all, instances of incorrect usage. As such, most

functions provide return codes. Functions in the API return their status via return codes that are in

one of the two categories below.

18 | Chapter 2. Fundamentals

Return Code Categories

• Successful completion codes are returned when a function needs to communicate success or

status information. All successful completion codes are non-negative values.

• Run time error codes are returned when a function needs to communicate a failure that

could only be detected at run time. All run time error codes are negative values.

typedef enum XrResult {

 XR_SUCCESS = 0,

 XR_TIMEOUT_EXPIRED = 1,

 XR_SESSION_LOSS_PENDING = 3,

 XR_EVENT_UNAVAILABLE = 4,

 XR_SPACE_BOUNDS_UNAVAILABLE = 7,

 XR_SESSION_NOT_FOCUSED = 8,

 XR_FRAME_DISCARDED = 9,

 XR_ERROR_VALIDATION_FAILURE = -1,

 XR_ERROR_RUNTIME_FAILURE = -2,

 XR_ERROR_OUT_OF_MEMORY = -3,

 XR_ERROR_API_VERSION_UNSUPPORTED = -4,

 XR_ERROR_INITIALIZATION_FAILED = -6,

 XR_ERROR_FUNCTION_UNSUPPORTED = -7,

 XR_ERROR_FEATURE_UNSUPPORTED = -8,

 XR_ERROR_EXTENSION_NOT_PRESENT = -9,

 XR_ERROR_LIMIT_REACHED = -10,

 XR_ERROR_SIZE_INSUFFICIENT = -11,

 XR_ERROR_HANDLE_INVALID = -12,

 XR_ERROR_INSTANCE_LOST = -13,

 XR_ERROR_SESSION_RUNNING = -14,

 XR_ERROR_SESSION_NOT_RUNNING = -16,

 XR_ERROR_SESSION_LOST = -17,

 XR_ERROR_SYSTEM_INVALID = -18,

 XR_ERROR_PATH_INVALID = -19,

 XR_ERROR_PATH_COUNT_EXCEEDED = -20,

 XR_ERROR_PATH_FORMAT_INVALID = -21,

 XR_ERROR_PATH_UNSUPPORTED = -22,

 XR_ERROR_LAYER_INVALID = -23,

 XR_ERROR_LAYER_LIMIT_EXCEEDED = -24,

 XR_ERROR_SWAPCHAIN_RECT_INVALID = -25,

 XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED = -26,

 XR_ERROR_ACTION_TYPE_MISMATCH = -27,

 XR_ERROR_SESSION_NOT_READY = -28,

 XR_ERROR_SESSION_NOT_STOPPING = -29,

 XR_ERROR_TIME_INVALID = -30,

Chapter 2. Fundamentals | 19

 XR_ERROR_REFERENCE_SPACE_UNSUPPORTED = -31,

 XR_ERROR_FILE_ACCESS_ERROR = -32,

 XR_ERROR_FILE_CONTENTS_INVALID = -33,

 XR_ERROR_FORM_FACTOR_UNSUPPORTED = -34,

 XR_ERROR_FORM_FACTOR_UNAVAILABLE = -35,

 XR_ERROR_API_LAYER_NOT_PRESENT = -36,

 XR_ERROR_CALL_ORDER_INVALID = -37,

 XR_ERROR_GRAPHICS_DEVICE_INVALID = -38,

 XR_ERROR_POSE_INVALID = -39,

 XR_ERROR_INDEX_OUT_OF_RANGE = -40,

 XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED = -41,

 XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED = -42,

 XR_ERROR_NAME_DUPLICATED = -44,

 XR_ERROR_NAME_INVALID = -45,

 XR_ERROR_ACTIONSET_NOT_ATTACHED = -46,

 XR_ERROR_ACTIONSETS_ALREADY_ATTACHED = -47,

 XR_ERROR_LOCALIZED_NAME_DUPLICATED = -48,

 XR_ERROR_LOCALIZED_NAME_INVALID = -49,

 XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING = -50,

 XR_ERROR_RUNTIME_UNAVAILABLE = -51,

 // Provided by XR_VERSION_1_1

 XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED = -1000710001,

 // Provided by XR_VERSION_1_1

 XR_ERROR_PERMISSION_INSUFFICIENT = -1000710000,

 // Provided by XR_KHR_android_thread_settings

 XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR = -1000003000,

 // Provided by XR_KHR_android_thread_settings

 XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR = -1000003001,

 // Provided by XR_MSFT_spatial_anchor

 XR_ERROR_CREATE_SPATIAL_ANCHOR_FAILED_MSFT = -1000039001,

 // Provided by XR_MSFT_secondary_view_configuration

 XR_ERROR_SECONDARY_VIEW_CONFIGURATION_TYPE_NOT_ENABLED_MSFT = -1000053000,

 // Provided by XR_MSFT_controller_model

 XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT = -1000055000,

 // Provided by XR_MSFT_composition_layer_reprojection

 XR_ERROR_REPROJECTION_MODE_UNSUPPORTED_MSFT = -1000066000,

 // Provided by XR_MSFT_scene_understanding

 XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT = -1000097000,

 // Provided by XR_MSFT_scene_understanding

 XR_ERROR_SCENE_COMPONENT_ID_INVALID_MSFT = -1000097001,

 // Provided by XR_MSFT_scene_understanding

 XR_ERROR_SCENE_COMPONENT_TYPE_MISMATCH_MSFT = -1000097002,

 // Provided by XR_MSFT_scene_understanding

 XR_ERROR_SCENE_MESH_BUFFER_ID_INVALID_MSFT = -1000097003,

 // Provided by XR_MSFT_scene_understanding

 XR_ERROR_SCENE_COMPUTE_FEATURE_INCOMPATIBLE_MSFT = -1000097004,

 // Provided by XR_MSFT_scene_understanding

 XR_ERROR_SCENE_COMPUTE_CONSISTENCY_MISMATCH_MSFT = -1000097005,

20 | Chapter 2. Fundamentals

 // Provided by XR_FB_display_refresh_rate

 XR_ERROR_DISPLAY_REFRESH_RATE_UNSUPPORTED_FB = -1000101000,

 // Provided by XR_FB_color_space

 XR_ERROR_COLOR_SPACE_UNSUPPORTED_FB = -1000108000,

 // Provided by XR_FB_spatial_entity

 XR_ERROR_SPACE_COMPONENT_NOT_SUPPORTED_FB = -1000113000,

 // Provided by XR_FB_spatial_entity

 XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB = -1000113001,

 // Provided by XR_FB_spatial_entity

 XR_ERROR_SPACE_COMPONENT_STATUS_PENDING_FB = -1000113002,

 // Provided by XR_FB_spatial_entity

 XR_ERROR_SPACE_COMPONENT_STATUS_ALREADY_SET_FB = -1000113003,

 // Provided by XR_FB_passthrough

 XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB = -1000118000,

 // Provided by XR_FB_passthrough

 XR_ERROR_FEATURE_ALREADY_CREATED_PASSTHROUGH_FB = -1000118001,

 // Provided by XR_FB_passthrough

 XR_ERROR_FEATURE_REQUIRED_PASSTHROUGH_FB = -1000118002,

 // Provided by XR_FB_passthrough

 XR_ERROR_NOT_PERMITTED_PASSTHROUGH_FB = -1000118003,

 // Provided by XR_FB_passthrough

 XR_ERROR_INSUFFICIENT_RESOURCES_PASSTHROUGH_FB = -1000118004,

 // Provided by XR_FB_passthrough

 XR_ERROR_UNKNOWN_PASSTHROUGH_FB = -1000118050,

 // Provided by XR_FB_render_model

 XR_ERROR_RENDER_MODEL_KEY_INVALID_FB = -1000119000,

 // Provided by XR_FB_render_model

 XR_RENDER_MODEL_UNAVAILABLE_FB = 1000119020,

 // Provided by XR_VARJO_marker_tracking

 XR_ERROR_MARKER_NOT_TRACKED_VARJO = -1000124000,

 // Provided by XR_VARJO_marker_tracking

 XR_ERROR_MARKER_ID_INVALID_VARJO = -1000124001,

 // Provided by XR_ML_marker_understanding

 XR_ERROR_MARKER_DETECTOR_PERMISSION_DENIED_ML = -1000138000,

 // Provided by XR_ML_marker_understanding

 XR_ERROR_MARKER_DETECTOR_LOCATE_FAILED_ML = -1000138001,

 // Provided by XR_ML_marker_understanding

 XR_ERROR_MARKER_DETECTOR_INVALID_DATA_QUERY_ML = -1000138002,

 // Provided by XR_ML_marker_understanding

 XR_ERROR_MARKER_DETECTOR_INVALID_CREATE_INFO_ML = -1000138003,

 // Provided by XR_ML_marker_understanding

 XR_ERROR_MARKER_INVALID_ML = -1000138004,

 // Provided by XR_ML_localization_map

 XR_ERROR_LOCALIZATION_MAP_INCOMPATIBLE_ML = -1000139000,

 // Provided by XR_ML_localization_map

 XR_ERROR_LOCALIZATION_MAP_UNAVAILABLE_ML = -1000139001,

 // Provided by XR_ML_localization_map

 XR_ERROR_LOCALIZATION_MAP_FAIL_ML = -1000139002,

Chapter 2. Fundamentals | 21

 // Provided by XR_ML_localization_map

 XR_ERROR_LOCALIZATION_MAP_IMPORT_EXPORT_PERMISSION_DENIED_ML = -1000139003,

 // Provided by XR_ML_localization_map

 XR_ERROR_LOCALIZATION_MAP_PERMISSION_DENIED_ML = -1000139004,

 // Provided by XR_ML_localization_map

 XR_ERROR_LOCALIZATION_MAP_ALREADY_EXISTS_ML = -1000139005,

 // Provided by XR_ML_localization_map

 XR_ERROR_LOCALIZATION_MAP_CANNOT_EXPORT_CLOUD_MAP_ML = -1000139006,

 // Provided by XR_MSFT_spatial_anchor_persistence

 XR_ERROR_SPATIAL_ANCHOR_NAME_NOT_FOUND_MSFT = -1000142001,

 // Provided by XR_MSFT_spatial_anchor_persistence

 XR_ERROR_SPATIAL_ANCHOR_NAME_INVALID_MSFT = -1000142002,

 // Provided by XR_MSFT_scene_marker

 XR_SCENE_MARKER_DATA_NOT_STRING_MSFT = 1000147000,

 // Provided by XR_FB_spatial_entity_sharing

 XR_ERROR_SPACE_MAPPING_INSUFFICIENT_FB = -1000169000,

 // Provided by XR_FB_spatial_entity_sharing

 XR_ERROR_SPACE_LOCALIZATION_FAILED_FB = -1000169001,

 // Provided by XR_FB_spatial_entity_sharing

 XR_ERROR_SPACE_NETWORK_TIMEOUT_FB = -1000169002,

 // Provided by XR_FB_spatial_entity_sharing

 XR_ERROR_SPACE_NETWORK_REQUEST_FAILED_FB = -1000169003,

 // Provided by XR_FB_spatial_entity_sharing

 XR_ERROR_SPACE_CLOUD_STORAGE_DISABLED_FB = -1000169004,

 // Provided by XR_META_passthrough_color_lut

 XR_ERROR_PASSTHROUGH_COLOR_LUT_BUFFER_SIZE_MISMATCH_META = -1000266000,

 // Provided by XR_META_environment_depth

 XR_ENVIRONMENT_DEPTH_NOT_AVAILABLE_META = 1000291000,

 // Provided by XR_QCOM_tracking_optimization_settings

 XR_ERROR_HINT_ALREADY_SET_QCOM = -1000306000,

 // Provided by XR_HTC_anchor

 XR_ERROR_NOT_AN_ANCHOR_HTC = -1000319000,

 // Provided by XR_EXT_plane_detection

 XR_ERROR_SPACE_NOT_LOCATABLE_EXT = -1000429000,

 // Provided by XR_EXT_plane_detection

 XR_ERROR_PLANE_DETECTION_PERMISSION_DENIED_EXT = -1000429001,

 // Provided by XR_EXT_future

 XR_ERROR_FUTURE_PENDING_EXT = -1000469001,

 // Provided by XR_EXT_future

 XR_ERROR_FUTURE_INVALID_EXT = -1000469002,

 // Provided by XR_KHR_maintenance1

 XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED_KHR =

XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED,

 // Provided by XR_KHR_maintenance1

 XR_ERROR_PERMISSION_INSUFFICIENT_KHR = XR_ERROR_PERMISSION_INSUFFICIENT,

 XR_RESULT_MAX_ENUM = 0x7FFFFFFF

} XrResult;

22 | Chapter 2. Fundamentals

All return codes in the API are reported via XrResult return values.

The following are common suffixes shared across many of the return codes:

• _INVALID: The specified handle, atom, or value is formatted incorrectly, or the specified handle was

never created or has been destroyed.

• _UNSUPPORTED: The specified handle, atom, enumerant, or value is formatted correctly but cannot be

used for the lifetime of this function’s parent handle.

• _UNAVAILABLE: The specified handle, atom, enumerant, or value is supported by the handle taken by

this function, but is not usable at this moment.

Success Codes

Enum Description

XR_SUCCESS Function successfully completed.

XR_TIMEOUT_EXPIRED The specified timeout time occurred before the

operation could complete.

XR_SESSION_LOSS_PENDING The session will be lost soon.

XR_EVENT_UNAVAILABLE No event was available.

XR_SPACE_BOUNDS_UNAVAILABLE The space’s bounds are not known at the moment.

XR_SESSION_NOT_FOCUSED The session is not in the focused state.

XR_FRAME_DISCARDED A frame has been discarded from composition.

XR_RENDER_MODEL_UNAVAILABLE_FB The model is unavailable. (Added by the

XR_FB_render_model extension)

XR_SCENE_MARKER_DATA_NOT_STRING_MSFT Marker does not encode a string. (Added by the

XR_MSFT_scene_marker extension)

XR_ENVIRONMENT_DEPTH_NOT_AVAILABLE_META Warning: The requested depth image is not yet

available. (Added by the

XR_META_environment_depth extension)

Error Codes

Enum Description

XR_ERROR_VALIDATION_FAILURE The function usage was invalid in some way.

XR_ERROR_RUNTIME_FAILURE The runtime failed to handle the function in an

unexpected way that is not covered by another

error result.

XR_ERROR_OUT_OF_MEMORY A memory allocation has failed.

Chapter 2. Fundamentals | 23

Enum Description

XR_ERROR_API_VERSION_UNSUPPORTED The runtime does not support the requested API

version.

XR_ERROR_INITIALIZATION_FAILED Initialization of object could not be completed.

XR_ERROR_FUNCTION_UNSUPPORTED The requested function was not found or is

otherwise unsupported.

XR_ERROR_FEATURE_UNSUPPORTED The requested feature is not supported.

XR_ERROR_EXTENSION_NOT_PRESENT A requested extension is not supported.

XR_ERROR_LIMIT_REACHED The runtime supports no more of the requested

resource.

XR_ERROR_SIZE_INSUFFICIENT The supplied size was smaller than required.

XR_ERROR_HANDLE_INVALID A supplied object handle was invalid.

XR_ERROR_INSTANCE_LOST The XrInstance was lost or could not be found. It

will need to be destroyed and optionally

recreated.

XR_ERROR_SESSION_RUNNING The session is already running.

XR_ERROR_SESSION_NOT_RUNNING The session is not yet running.

XR_ERROR_SESSION_LOST The XrSession was lost. It will need to be

destroyed and optionally recreated.

XR_ERROR_SYSTEM_INVALID The provided XrSystemId was invalid.

XR_ERROR_PATH_INVALID The provided XrPath was not valid.

XR_ERROR_PATH_COUNT_EXCEEDED The maximum number of supported semantic

paths has been reached.

XR_ERROR_PATH_FORMAT_INVALID The semantic path character format is invalid.

XR_ERROR_PATH_UNSUPPORTED The semantic path is unsupported.

XR_ERROR_LAYER_INVALID The layer was NULL or otherwise invalid.

XR_ERROR_LAYER_LIMIT_EXCEEDED The number of specified layers is greater than the

supported number.

XR_ERROR_SWAPCHAIN_RECT_INVALID The image rect was negatively sized or otherwise

invalid.

XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED The image format is not supported by the runtime

or platform.

XR_ERROR_ACTION_TYPE_MISMATCH The API used to retrieve an action’s state does not

match the action’s type.

XR_ERROR_SESSION_NOT_READY The session is not in the ready state.

24 | Chapter 2. Fundamentals

Enum Description

XR_ERROR_SESSION_NOT_STOPPING The session is not in the stopping state.

XR_ERROR_TIME_INVALID The provided XrTime was zero, negative, or out of

range.

XR_ERROR_REFERENCE_SPACE_UNSUPPORTED The specified reference space is not supported by

the runtime or system.

XR_ERROR_FILE_ACCESS_ERROR The file could not be accessed.

XR_ERROR_FILE_CONTENTS_INVALID The file’s contents were invalid.

XR_ERROR_FORM_FACTOR_UNSUPPORTED The specified form factor is not supported by the

current runtime or platform.

XR_ERROR_FORM_FACTOR_UNAVAILABLE The specified form factor is supported, but the

device is currently not available, e.g. not plugged

in or powered off.

XR_ERROR_API_LAYER_NOT_PRESENT A requested API layer is not present or could not

be loaded.

XR_ERROR_CALL_ORDER_INVALID The call was made without having made a

previously required call.

XR_ERROR_GRAPHICS_DEVICE_INVALID The given graphics device is not in a valid state.

The graphics device could be lost or initialized

without meeting graphics requirements.

XR_ERROR_POSE_INVALID The supplied pose was invalid with respect to the

requirements.

XR_ERROR_INDEX_OUT_OF_RANGE The supplied index was outside the range of valid

indices.

XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED The specified view configuration type is not

supported by the runtime or platform.

XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED The specified environment blend mode is not

supported by the runtime or platform.

XR_ERROR_NAME_DUPLICATED The name provided was a duplicate of an already-

existing resource.

XR_ERROR_NAME_INVALID The name provided was invalid.

XR_ERROR_ACTIONSET_NOT_ATTACHED A referenced action set is not attached to the

session.

XR_ERROR_ACTIONSETS_ALREADY_ATTACHED The session already has attached action sets.

XR_ERROR_LOCALIZED_NAME_DUPLICATED The localized name provided was a duplicate of

an already-existing resource.

Chapter 2. Fundamentals | 25

Enum Description

XR_ERROR_LOCALIZED_NAME_INVALID The localized name provided was invalid.

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING The xrGetGraphicsRequirements* call was not made

before calling xrCreateSession.

XR_ERROR_RUNTIME_UNAVAILABLE The loader was unable to find or load a runtime.

XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED One or more of the extensions being enabled has

dependency on extensions that are not enabled.

XR_ERROR_PERMISSION_INSUFFICIENT Insufficient permissions. This error is included for

use by vendor extensions. The precise definition

of XR_ERROR_PERMISSION_INSUFFICIENT and actions

possible by the developer or user to resolve it can

vary by platform, extension or function. The

developer should refer to the documentation of

the function that returned the error code and

extension it was defined.

XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR xrSetAndroidApplicationThreadKHR failed as

thread id is invalid. (Added by the

XR_KHR_android_thread_settings extension)

XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR xrSetAndroidApplicationThreadKHR failed setting

the thread attributes/priority. (Added by the

XR_KHR_android_thread_settings extension)

XR_ERROR_CREATE_SPATIAL_ANCHOR_FAILED_MSFT Spatial anchor could not be created at that

location. (Added by the XR_MSFT_spatial_anchor

extension)

XR_ERROR_SECONDARY_VIEW_CONFIGURATION_TYPE_NOT_E
NABLED_MSFT

The secondary view configuration was not

enabled when creating the session. (Added by the

XR_MSFT_secondary_view_configuration extension)

XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT The controller model key is invalid. (Added by the

XR_MSFT_controller_model extension)

XR_ERROR_REPROJECTION_MODE_UNSUPPORTED_MSFT The reprojection mode is not supported. (Added

by the XR_MSFT_composition_layer_reprojection

extension)

XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT Compute new scene not completed. (Added by the

XR_MSFT_scene_understanding extension)

XR_ERROR_SCENE_COMPONENT_ID_INVALID_MSFT Scene component id invalid. (Added by the

XR_MSFT_scene_understanding extension)

XR_ERROR_SCENE_COMPONENT_TYPE_MISMATCH_MSFT Scene component type mismatch. (Added by the

XR_MSFT_scene_understanding extension)

26 | Chapter 2. Fundamentals

Enum Description

XR_ERROR_SCENE_MESH_BUFFER_ID_INVALID_MSFT Scene mesh buffer id invalid. (Added by the

XR_MSFT_scene_understanding extension)

XR_ERROR_SCENE_COMPUTE_FEATURE_INCOMPATIBLE_MSFT Scene compute feature incompatible. (Added by

the XR_MSFT_scene_understanding extension)

XR_ERROR_SCENE_COMPUTE_CONSISTENCY_MISMATCH_MSFT Scene compute consistency mismatch. (Added by

the XR_MSFT_scene_understanding extension)

XR_ERROR_DISPLAY_REFRESH_RATE_UNSUPPORTED_FB The display refresh rate is not supported by the

platform. (Added by the

XR_FB_display_refresh_rate extension)

XR_ERROR_COLOR_SPACE_UNSUPPORTED_FB The color space is not supported by the runtime.

(Added by the XR_FB_color_space extension)

XR_ERROR_SPACE_COMPONENT_NOT_SUPPORTED_FB The component type is not supported for this

space. (Added by the XR_FB_spatial_entity

extension)

XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB The required component is not enabled for this

space. (Added by the XR_FB_spatial_entity

extension)

XR_ERROR_SPACE_COMPONENT_STATUS_PENDING_FB A request to set the component’s status is

currently pending. (Added by the

XR_FB_spatial_entity extension)

XR_ERROR_SPACE_COMPONENT_STATUS_ALREADY_SET_FB The component is already set to the requested

value. (Added by the XR_FB_spatial_entity

extension)

XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB The object state is unexpected for the issued

command. (Added by the XR_FB_passthrough

extension)

XR_ERROR_FEATURE_ALREADY_CREATED_PASSTHROUGH_FB Trying to create an MR feature when one was

already created and only one instance is allowed.

(Added by the XR_FB_passthrough extension)

XR_ERROR_FEATURE_REQUIRED_PASSTHROUGH_FB Requested functionality requires a feature to be

created first. (Added by the XR_FB_passthrough

extension)

XR_ERROR_NOT_PERMITTED_PASSTHROUGH_FB Requested functionality is not permitted -

application is not allowed to perform the

requested operation. (Added by the

XR_FB_passthrough extension)

Chapter 2. Fundamentals | 27

Enum Description

XR_ERROR_INSUFFICIENT_RESOURCES_PASSTHROUGH_FB There were insufficient resources available to

perform an operation. (Added by the

XR_FB_passthrough extension)

XR_ERROR_UNKNOWN_PASSTHROUGH_FB Unknown Passthrough error (no further details

provided). (Added by the XR_FB_passthrough

extension)

XR_ERROR_RENDER_MODEL_KEY_INVALID_FB The model key is invalid. (Added by the

XR_FB_render_model extension)

XR_ERROR_MARKER_NOT_TRACKED_VARJO Marker tracking is disabled or the specified

marker is not currently tracked. (Added by the

XR_VARJO_marker_tracking extension)

XR_ERROR_MARKER_ID_INVALID_VARJO The specified marker ID is not valid. (Added by the

XR_VARJO_marker_tracking extension)

XR_ERROR_MARKER_DETECTOR_PERMISSION_DENIED_ML The

com.magicleap.permission.MARKER_TRACKING

permission was denied. (Added by the

XR_ML_marker_understanding extension)

XR_ERROR_MARKER_DETECTOR_LOCATE_FAILED_ML The specified marker could not be located

spatially. (Added by the

XR_ML_marker_understanding extension)

XR_ERROR_MARKER_DETECTOR_INVALID_DATA_QUERY_ML The marker queried does not contain data of the

requested type. (Added by the

XR_ML_marker_understanding extension)

XR_ERROR_MARKER_DETECTOR_INVALID_CREATE_INFO_ML createInfo contains mutually exclusive

parameters, such as setting
XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_APRIL_TA

G_ML with XR_MARKER_TYPE_ARUCO_ML. (Added by the

XR_ML_marker_understanding extension)

XR_ERROR_MARKER_INVALID_ML The marker id passed to the function was invalid.

(Added by the XR_ML_marker_understanding

extension)

XR_ERROR_LOCALIZATION_MAP_INCOMPATIBLE_ML The localization map being imported is not

compatible with current OS or mode. (Added by

the XR_ML_localization_map extension)

XR_ERROR_LOCALIZATION_MAP_UNAVAILABLE_ML The localization map requested is not available.

(Added by the XR_ML_localization_map extension)

28 | Chapter 2. Fundamentals

Enum Description

XR_ERROR_LOCALIZATION_MAP_FAIL_ML The map localization service failed to fulfill the

request, retry later. (Added by the

XR_ML_localization_map extension)

XR_ERROR_LOCALIZATION_MAP_IMPORT_EXPORT_PERMISSI
ON_DENIED_ML

The

com.magicleap.permission.SPACE_IMPORT_EXPO

RT permission was denied. (Added by the

XR_ML_localization_map extension)

XR_ERROR_LOCALIZATION_MAP_PERMISSION_DENIED_ML The com.magicleap.permission.SPACE_MANAGER

permission was denied. (Added by the

XR_ML_localization_map extension)

XR_ERROR_LOCALIZATION_MAP_ALREADY_EXISTS_ML The map being imported already exists in the

system. (Added by the XR_ML_localization_map

extension)

XR_ERROR_LOCALIZATION_MAP_CANNOT_EXPORT_CLOUD_MA
P_ML

The map localization service cannot export cloud

based maps. (Added by the XR_ML_localization_map

extension)

XR_ERROR_SPATIAL_ANCHOR_NAME_NOT_FOUND_MSFT A spatial anchor was not found associated with

the spatial anchor name provided (Added by the

XR_MSFT_spatial_anchor_persistence extension)

XR_ERROR_SPATIAL_ANCHOR_NAME_INVALID_MSFT The spatial anchor name provided was not valid

(Added by the XR_MSFT_spatial_anchor_persistence

extension)

XR_ERROR_SPACE_MAPPING_INSUFFICIENT_FB Anchor import from cloud or export from device

failed. (Added by the

XR_FB_spatial_entity_sharing extension)

XR_ERROR_SPACE_LOCALIZATION_FAILED_FB Anchors were downloaded from the cloud but

failed to be imported/aligned on the device.

(Added by the XR_FB_spatial_entity_sharing

extension)

XR_ERROR_SPACE_NETWORK_TIMEOUT_FB Timeout occurred while waiting for network

request to complete. (Added by the

XR_FB_spatial_entity_sharing extension)

XR_ERROR_SPACE_NETWORK_REQUEST_FAILED_FB The network request failed. (Added by the

XR_FB_spatial_entity_sharing extension)

XR_ERROR_SPACE_CLOUD_STORAGE_DISABLED_FB Cloud storage is required for this operation but is

currently disabled. (Added by the

XR_FB_spatial_entity_sharing extension)

Chapter 2. Fundamentals | 29

Enum Description

XR_ERROR_PASSTHROUGH_COLOR_LUT_BUFFER_SIZE_MISMA
TCH_META

The provided data buffer did not match the

required size. (Added by the

XR_META_passthrough_color_lut extension)

XR_ERROR_HINT_ALREADY_SET_QCOM Tracking optimization hint is already set for the

domain. (Added by the

XR_QCOM_tracking_optimization_settings

extension)

XR_ERROR_NOT_AN_ANCHOR_HTC The provided space is valid but not an anchor.

(Added by the XR_HTC_anchor extension)

XR_ERROR_SPACE_NOT_LOCATABLE_EXT The space passed to the function was not

locatable. (Added by the XR_EXT_plane_detection

extension)

XR_ERROR_PLANE_DETECTION_PERMISSION_DENIED_EXT The permission for this resource was not granted.

(Added by the XR_EXT_plane_detection extension)

XR_ERROR_FUTURE_PENDING_EXT Returned by completion function to indicate

future is not ready. (Added by the XR_EXT_future

extension)

XR_ERROR_FUTURE_INVALID_EXT Returned by completion function to indicate

future is not valid. (Added by the XR_EXT_future

extension)

2.10.1. Convenience Macros

// Provided by XR_VERSION_1_0

#define XR_SUCCEEDED(result) ((result) >= 0)

A convenience macro that can be used to test if a function succeeded. Note that this evaluates to true

for all success codes, including a qualified success such as XR_FRAME_DISCARDED.

// Provided by XR_VERSION_1_0

#define XR_FAILED(result) ((result) < 0)

A convenience macro that can be used to test if a function has failed in some way. It evaluates to true

for all failure codes.

30 | Chapter 2. Fundamentals

// Provided by XR_VERSION_1_0

#define XR_UNQUALIFIED_SUCCESS(result) ((result) == 0)

A convenience macro that can be used to test a function’s failure. The XR_UNQUALIFIED_SUCCESS

macro evaluates to true exclusively when the provided XrResult is equal to XR_SUCCESS (0).

2.10.2. Validation

Except as noted below or in individual API specifications, valid API usage may be required by the

runtime. Runtimes may choose to validate some API usage and return an appropriate error code.

Application developers should use validation layers to catch and eliminate errors during development.

Once validated, applications should not enable validation layers by default.

If a function returns a run time error, unless otherwise specified any output parameters will have

undefined contents, except that if the output parameter is a structure with type and next fields, those

fields will be unmodified. Any output structures chained from next will also have undefined contents,

except that the type and next will be unmodified.

Unless otherwise specified, errors do not affect existing OpenXR objects. Objects that have already

been successfully created may still be used by the application.

XrResult code returns may be added to a given function in future versions of the specification.

Runtimes must return only XrResult codes from the set documented for the given application API

version.

Runtimes must ensure that incorrect usage by an application does not affect the integrity of the

operating system, the API implementation, or other API client applications in the system, and does not

allow one application to access data belonging to another application.

2.11. Handles

Objects which are allocated by the runtime on behalf of applications are represented by handles.

Handles are opaque identifiers for objects whose lifetime is controlled by applications via the create

and destroy functions. Example handle types include XrInstance, XrSession, and XrSwapchain.

Handles which have not been destroyed are unique for a given application process, but may be reused

after being destroyed. Unless otherwise specified, a successful handle creation function call returns a

new unique handle. Unless otherwise specified, handles are implicitly destroyed when their parent

handle is destroyed. Applications may destroy handles explicitly before the parent handle is destroyed,

and should do so if no longer needed, in order to conserve resources. Runtimes may detect

XR_NULL_HANDLE and other invalid handles passed where a valid handle is required and return

XR_ERROR_HANDLE_INVALID. However, runtimes are not required to do so unless otherwise specified, and

so use of any invalid handle may result in undefined behavior. When a function has an optional

Chapter 2. Fundamentals | 31

handle parameter, XR_NULL_HANDLE must be passed by the application if it does not pass a valid

handle.

All functions that take a handle parameter may return XR_ERROR_HANDLE_INVALID.

Handles form a hierarchy in which child handles fall under the validity and lifetime of parent handles.

For example, to create an XrSwapchain handle, applications must call xrCreateSwapchain and pass an

XrSession handle. Thus XrSwapchain is a child handle of XrSession.

2.12. Object Handle Types

The type of an object handle used in a function is usually determined by the specification of that

function, as discussed in Valid Usage for Object Handles. However, some functions accept or return

object handle parameters where the type of the object handle is unknown at execution time and is not

specified in the description of the function itself. For these functions, the XrObjectType may be used to

explicitly specify the type of a handle.

For example, an information-gathering or debugging mechanism implemented in a runtime extension

or API layer extension may return a list of object handles that are generated by the mechanism’s

operation. The same mechanism may also return a parallel list of object handle types that allow the

recipient of this information to easily determine the types of the handles.

In general, anywhere an object handle of more than one type can occur, the object handle type may be

provided to indicate its type.

// Provided by XR_VERSION_1_0

typedef enum XrObjectType {

 XR_OBJECT_TYPE_UNKNOWN = 0,

 XR_OBJECT_TYPE_INSTANCE = 1,

 XR_OBJECT_TYPE_SESSION = 2,

 XR_OBJECT_TYPE_SWAPCHAIN = 3,

 XR_OBJECT_TYPE_SPACE = 4,

 XR_OBJECT_TYPE_ACTION_SET = 5,

 XR_OBJECT_TYPE_ACTION = 6,

 // Provided by XR_EXT_debug_utils

 XR_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT = 1000019000,

 // Provided by XR_MSFT_spatial_anchor

 XR_OBJECT_TYPE_SPATIAL_ANCHOR_MSFT = 1000039000,

 // Provided by XR_MSFT_spatial_graph_bridge

 XR_OBJECT_TYPE_SPATIAL_GRAPH_NODE_BINDING_MSFT = 1000049000,

 // Provided by XR_EXT_hand_tracking

 XR_OBJECT_TYPE_HAND_TRACKER_EXT = 1000051000,

 // Provided by XR_FB_body_tracking

 XR_OBJECT_TYPE_BODY_TRACKER_FB = 1000076000,

32 | Chapter 2. Fundamentals

 // Provided by XR_MSFT_scene_understanding

 XR_OBJECT_TYPE_SCENE_OBSERVER_MSFT = 1000097000,

 // Provided by XR_MSFT_scene_understanding

 XR_OBJECT_TYPE_SCENE_MSFT = 1000097001,

 // Provided by XR_HTC_facial_tracking

 XR_OBJECT_TYPE_FACIAL_TRACKER_HTC = 1000104000,

 // Provided by XR_FB_foveation

 XR_OBJECT_TYPE_FOVEATION_PROFILE_FB = 1000114000,

 // Provided by XR_FB_triangle_mesh

 XR_OBJECT_TYPE_TRIANGLE_MESH_FB = 1000117000,

 // Provided by XR_FB_passthrough

 XR_OBJECT_TYPE_PASSTHROUGH_FB = 1000118000,

 // Provided by XR_FB_passthrough

 XR_OBJECT_TYPE_PASSTHROUGH_LAYER_FB = 1000118002,

 // Provided by XR_FB_passthrough

 XR_OBJECT_TYPE_GEOMETRY_INSTANCE_FB = 1000118004,

 // Provided by XR_ML_marker_understanding

 XR_OBJECT_TYPE_MARKER_DETECTOR_ML = 1000138000,

 // Provided by XR_ML_localization_map

 XR_OBJECT_TYPE_EXPORTED_LOCALIZATION_MAP_ML = 1000139000,

 // Provided by XR_MSFT_spatial_anchor_persistence

 XR_OBJECT_TYPE_SPATIAL_ANCHOR_STORE_CONNECTION_MSFT = 1000142000,

 // Provided by XR_FB_face_tracking

 XR_OBJECT_TYPE_FACE_TRACKER_FB = 1000201000,

 // Provided by XR_FB_eye_tracking_social

 XR_OBJECT_TYPE_EYE_TRACKER_FB = 1000202000,

 // Provided by XR_META_virtual_keyboard

 XR_OBJECT_TYPE_VIRTUAL_KEYBOARD_META = 1000219000,

 // Provided by XR_FB_spatial_entity_user

 XR_OBJECT_TYPE_SPACE_USER_FB = 1000241000,

 // Provided by XR_META_passthrough_color_lut

 XR_OBJECT_TYPE_PASSTHROUGH_COLOR_LUT_META = 1000266000,

 // Provided by XR_FB_face_tracking2

 XR_OBJECT_TYPE_FACE_TRACKER2_FB = 1000287012,

 // Provided by XR_META_environment_depth

 XR_OBJECT_TYPE_ENVIRONMENT_DEPTH_PROVIDER_META = 1000291000,

 // Provided by XR_META_environment_depth

 XR_OBJECT_TYPE_ENVIRONMENT_DEPTH_SWAPCHAIN_META = 1000291001,

 // Provided by XR_HTC_passthrough

 XR_OBJECT_TYPE_PASSTHROUGH_HTC = 1000317000,

 // Provided by XR_EXT_plane_detection

 XR_OBJECT_TYPE_PLANE_DETECTOR_EXT = 1000429000,

 XR_OBJECT_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrObjectType;

The XrObjectType enumeration defines values, each of which corresponds to a specific OpenXR handle

type. These values can be used to associate debug information with a particular type of object through

Chapter 2. Fundamentals | 33

one or more extensions.

The following table defines XrObjectType and OpenXR Handle relationships in the core specification:

XrObjectType OpenXR Handle Type

XR_OBJECT_TYPE_UNKNOWN Unknown/Undefined Handle

XR_OBJECT_TYPE_INSTANCE XrInstance

XR_OBJECT_TYPE_SESSION XrSession

XR_OBJECT_TYPE_SWAPCHAIN XrSwapchain

XR_OBJECT_TYPE_SPACE XrSpace

XR_OBJECT_TYPE_ACTION_SET XrActionSet

XR_OBJECT_TYPE_ACTION XrAction

2.13. Buffer Size Parameters

Functions with input/output buffer parameters take on either parameter form or structure form, as in

one of the following examples, with the element type being float in this case:

Parameter form:

XrResult xrFunction(uint32_t elementCapacityInput, uint32_t* elementCountOutput, float*

elements);

Structure form:

XrResult xrFunction(XrBuffer* buffer);

struct XrBuffer {

 uint32_t elementCapacityInput;

 uint32_t elementCountOutput;

 float* elements;

};

A "two-call idiom" should be employed by the application, first calling xrFunction (with a valid

elementCountOutput pointer if in parameter form), but passing NULL as elements and 0 as

elementCapacityInput, to retrieve the required buffer size as number of elements (number of floats in

this example). After allocating a buffer at least as large as elementCountOutput (in a structure) or the

value pointed to by elementCountOutput (as parameters), a pointer to the allocated buffer should be

passed as elements, along with the buffer’s length in elementCapacityInput, to a second call to xrFunction

to perform the retrieval of the data. If the element type of elements is a structure with type and next

fields, the application must set the type to the correct value, and must set next to a valid value. A valid

34 | Chapter 2. Fundamentals

value for next is generally either NULL or another structure with related data, in which type and next

are also valid, recursively. (See Valid Usage for Structure Pointer Chains for details.)

In the following discussion, "set elementCountOutput" should be interpreted as "set the value pointed to

by elementCountOutput" in parameter form and "set the value of elementCountOutput" in struct form.

These functions have the following behavior with respect to the array/buffer and its size parameters:

Buffer Size Parameter Behavior

• The elementCapacityInput and elementCountOutput arguments precede the array to which they

refer, in argument order.

• elementCapacityInput specifies the capacity in number of elements of the buffer to be written,

or 0 to indicate a request for the required buffer size.

• Independent of elementCapacityInput or elements parameters, the application must pass a

valid pointer for elementCountOutput if the function uses parameter form.

• Independent of elementCapacityInput or elements parameters, the function sets

elementCountOutput.

• The application may pass 0 for the elementCapacityInput parameter, to indicate a request for

the required array size. That is, passing a capacity of 0 does not return

XR_ERROR_SIZE_INSUFFICIENT. In this case, the following two points apply.

◦ The function must set elementCountOutput to the required size in number of elements.

◦ The elements parameter is ignored (any value passed is considered valid usage).

• If the elementCapacityInput is non-zero but less than required, the function nust: set

elementCountOutput to the required capacity, and must return XR_ERROR_SIZE_INSUFFICIENT.

After the function returns, the data in the array elements is undefined.

• If the elementCapacityInput is non-zero and the function returns successfully, the function

sets elementCountOutput to the count of the elements that have been written to elements.

• If the function fails for reasons unrelated to the element array capacity, the contents of the

values of (or pointed to by) elementCountOutput and elements are undefined.

• For clarity, if the element array refers to a string (element is of type char*),

elementCapacityInput and elementCountOutput refer to the string strlen plus 1 for a NULL

terminator.

Some functions have a given elementCapacityInput and elementCountOutput associated with more than

one element array (i.e. parallel arrays). In this case, the capacity/count and all its associated arrays will

share a common prefix. All of the preceding general requirements continue to apply.

Some functions fill multiple element arrays of varying sizes in one call. For these functions, the

elementCapacityInput, elementCountOutput, and elements array parameters or fields are repeated with

different prefixes. In this case, all of the preceding general requirements still apply, with these

Chapter 2. Fundamentals | 35

additional requirements:

• If the application sets any elementCapacityInput parameter or field to 0, the runtime must treat all

elementCapacityInput values as if they were set to 0.

• If all elementCapacityInput values are non-zero but any is insufficient to fit all elements of its

corresponding array, the runtime must return XR_ERROR_SIZE_INSUFFICIENT. As in the case of the

single array, the data in all arrays is undefined when XR_ERROR_SIZE_INSUFFICIENT is returned.

2.14. Time

Time is represented by a 64-bit signed integer representing nanoseconds (XrTime). The passage of time

must be monotonic and not real-time (i.e. wall clock time). Thus the time is always increasing at a

constant rate and is unaffected by clock changes, time zones, daylight savings, etc.

2.14.1. XrTime

typedef int64_t XrTime;

XrTime is a base value type that represents time as a signed 64-bit integer, representing the

monotonically-increasing count of nanoseconds that have elapsed since a runtime-chosen epoch.

XrTime always represents the time elapsed since that constant epoch, rather than a duration or a time

point relative to some moving epoch such as vsync time, etc. Durations are instead represented by

XrDuration.

A single runtime must use the same epoch for all simultaneous applications. Time must be

represented the same regardless of multiple processors or threads present in the system.

The period precision of time reported by the runtime is runtime-dependent, and may change. One

nanosecond is the finest possible period precision. A runtime may, for example, report time

progression with only microsecond-level granularity.

Time must not be assumed to correspond to a system clock time.

Unless specified otherwise, zero or a negative value is not a valid XrTime, and related functions must

return error XR_ERROR_TIME_INVALID. Applications must not initialize such XrTime fields to a zero value.

Instead, applications should always assign XrTime fields to the meaningful point in time they are

choosing to reason about, such as a frame’s predicted display time, or an action’s last change time.

The behavior of a runtime is undefined when time overflows beyond the maximum positive value that

can be represented by an XrTime. Runtimes should choose an epoch that minimizes the chance of

overflow. Runtimes should also choose an epoch that minimizes the chance of underflow below 0 for

applications performing a reasonable amount of historical pose lookback. For example, if the runtime

36 | Chapter 2. Fundamentals

chooses an epoch relative to its startup time, it should push the epoch into the past by enough time to

avoid applications performing reasonable pose lookback from reaching a negative XrTime value.

An application cannot assume that the system’s clock and the runtime’s clock will maintain a constant

relationship across frames and should avoid storing such an offset, as this may cause time drift.

Applications should instead always use time interop functions to convert a relevant time point across

the system’s clock and the runtime’s clock using extensions, for example,

XR_KHR_win32_convert_performance_counter_time or XR_KHR_convert_timespec_time.

2.15. Duration

Duration refers to an elapsed period of time, as opposed to an absolute timepoint.

2.15.1. XrDuration

typedef int64_t XrDuration;

The difference between two timepoints is a duration, and thus the difference between two XrTime

values is an XrDuration value. XrDuration is a base value type that represents duration as a signed 64-bit

integer, representing the signed number of nanoseconds between two timepoints.

Functions that refer to durations use XrDuration as opposed to XrTime. When an XrDuration is used as a

timeout parameter, the constants XR_NO_DURATION and XR_INFINITE_DURATION have special

meaning. A timeout with a duration that refers to the past (that is, a negative duration) must be

interpreted as a timeout of XR_NO_DURATION.

The interpretation of zero and negative durations in non-timeout uses is specified along with each

such use.

// Provided by XR_VERSION_1_0

#define XR_NO_DURATION 0

For the case of timeout durations, XR_NO_DURATION can be used to indicate that the timeout is

immediate.

// Provided by XR_VERSION_1_0

#define XR_INFINITE_DURATION 0x7fffffffffffffffLL

Chapter 2. Fundamentals | 37

XR_INFINITE_DURATION is a special value that can be used to indicate that the timeout never occurs.

2.16. Prediction Time Limits

Some functions involve prediction. For example, xrLocateViews accepts a display time for which to

return the resulting data. Prediction times provided by applications may refer to time in the past or the

future. Times in the past may be interpolated historical data. Runtimes have different practical limits

with respect to how far forward or backward prediction times can be accurate. There is no prescribed

forward limit the application can successfully request predictions for, though predictions may become

less accurate as they get farther into the future. With respect to backward prediction, the application

can pass a prediction time equivalent to the timestamp of the most recently received pose plus as

much as 50 milliseconds in the past to retrieve accurate historical data. Requested times predating this

time window, or requested times predating the earliest received pose, may result in a best effort data

whose accuracy reduced or unspecified.

2.17. Colors

The XrColor3f structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrColor3f {

 float r;

 float g;

 float b;

} XrColor3f;

Member Descriptions

• r is the red component of the color.

• g is the green component of the color.

• b is the blue component of the color.

Unless otherwise specified, colors are encoded as linear (not with sRGB nor other gamma compression)

values with individual components being in the range of 0.0 through 1.0.

The XrColor4f structure is defined as:

38 | Chapter 2. Fundamentals

// Provided by XR_VERSION_1_0

typedef struct XrColor4f {

 float r;

 float g;

 float b;

 float a;

} XrColor4f;

Member Descriptions

• r is the red component of the color.

• g is the green component of the color.

• b is the blue component of the color.

• a is the alpha component of the color.

Unless otherwise specified, colors are encoded as linear (not with sRGB nor other gamma compression)

values with individual components being in the range of 0.0 through 1.0, and without the RGB

components being premultiplied by the alpha component.

If color encoding is specified as being premultiplied by the alpha component, the RGB components are

set to zero if the alpha component is zero.

2.18. Coordinate System

This API uses a Cartesian right-handed coordinate system.

+y

+x

+z

Figure 1. Right Handed Coordinate System

The conventions for mapping coordinate axes of any particular space to meaningful directions depend

on and are documented with the description of the space.

The API uses 2D, 3D, and 4D floating-point vectors to describe points and directions in a space.

A two-dimensional vector is defined by the XrVector2f structure:

Chapter 2. Fundamentals | 39

typedef struct XrVector2f {

 float x;

 float y;

} XrVector2f;

Member Descriptions

• x is the x coordinate of the vector.

• y is the y coordinate of the vector.

If used to represent physical distances (rather than e.g. normalized direction) and not otherwise

specified, values must be in meters.

A three-dimensional vector is defined by the XrVector3f structure:

typedef struct XrVector3f {

 float x;

 float y;

 float z;

} XrVector3f;

Member Descriptions

• x is the x coordinate of the vector.

• y is the y coordinate of the vector.

• z is the z coordinate of the vector.

If used to represent physical distances (rather than e.g. velocity or angular velocity) and not otherwise

specified, values must be in meters.

A four-dimensional or homogeneous vector is defined by the XrVector4f structure:

40 | Chapter 2. Fundamentals

// Provided by XR_VERSION_1_0

typedef struct XrVector4f {

 float x;

 float y;

 float z;

 float w;

} XrVector4f;

Member Descriptions

• x is the x coordinate of the vector.

• y is the y coordinate of the vector.

• z is the z coordinate of the vector.

• w is the w coordinate of the vector.

If used to represent physical distances, x, y, and z values must be in meters.

Rotation is represented by a unit quaternion defined by the XrQuaternionf structure:

typedef struct XrQuaternionf {

 float x;

 float y;

 float z;

 float w;

} XrQuaternionf;

Member Descriptions

• x is the x coordinate of the quaternion.

• y is the y coordinate of the quaternion.

• z is the z coordinate of the quaternion.

• w is the w coordinate of the quaternion.

A pose is defined by the XrPosef structure:

Chapter 2. Fundamentals | 41

typedef struct XrPosef {

 XrQuaternionf orientation;

 XrVector3f position;

} XrPosef;

Member Descriptions

• orientation is an XrQuaternionf representing the orientation within a space.

• position is an XrVector3f representing position within a space.

A construct representing a position and orientation within a space, with position expressed in meters,

and orientation represented as a unit quaternion. When using XrPosef the rotation described by

orientation is always applied before the translation described by position.

A runtime must return XR_ERROR_POSE_INVALID if the orientation norm deviates by more than 1% from

unit length.

2.19. Common Data Types

Some OpenXR data types are used in multiple structures. Those include the XrVector*f family of types,

the spatial types specified above, and the following categories of structures:

• offset

• extents

• rectangle

• field of view

Offsets are used to describe the direction and distance of an offset in two dimensions.

A floating-point offset is defined by the structure:

// Provided by XR_VERSION_1_0

typedef struct XrOffset2Df {

 float x;

 float y;

} XrOffset2Df;

42 | Chapter 2. Fundamentals

Member Descriptions

• x is the floating-point offset in the x direction.

• y is the floating-point offset in the y direction.

This structure is used for component values that may be real numbers, represented with single-

precision floating point. For representing offsets in discrete values, such as texels, the integer variant

XrOffset2Di is used instead.

If used to represent physical distances, values must be in meters.

An integer offset is defined by the structure:

typedef struct XrOffset2Di {

 int32_t x;

 int32_t y;

} XrOffset2Di;

Member Descriptions

• x is the integer offset in the x direction.

• y is the integer offset in the y direction.

This variant is for representing discrete values such as texels. For representing physical distances, the

floating-point variant XrOffset2Df is used instead.

Extents are used to describe the size of a rectangular region in two or three dimensions.

A two-dimensional floating-point extent is defined by the structure:

// Provided by XR_VERSION_1_0

typedef struct XrExtent2Df {

 float width;

 float height;

} XrExtent2Df;

Chapter 2. Fundamentals | 43

Member Descriptions

• width is the floating-point width of the extent.

• height is the floating-point height of the extent.

This structure is used for component values that may be real numbers, represented with single-

precision floating point. For representing extents in discrete values, such as texels, the integer variant

XrExtent2Di is used instead.

If used to represent physical distances, values must be in meters.

The width and height value must be non-negative.

The XrExtent3Df structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrExtent3Df {

 float width;

 float height;

 float depth;

} XrExtent3Df;

Member Descriptions

• width is the floating-point width of the extent (x).

• height is the floating-point height of the extent (y).

• depth is the floating-point depth of the extent (z).

This structure is used for component values that may be real numbers, represented with single-

precision floating point.

If used to represent physical distances, values must be in meters. The width, height, and depth values

must be non-negative.

A two-dimensional integer extent is defined by the structure:

44 | Chapter 2. Fundamentals

typedef struct XrExtent2Di {

 int32_t width;

 int32_t height;

} XrExtent2Di;

Member Descriptions

• width is the integer width of the extent.

• height is the integer height of the extent.

This variant is for representing discrete values such as texels. For representing physical distances, the

floating-point variant XrExtent2Df is used instead.

The width and height value must be non-negative.

Rectangles are used to describe a specific rectangular region in two dimensions. Rectangles must

include both an offset and an extent defined in the same units. For instance, if a rectangle is in meters,

both offset and extent must be in meters.

A rectangle with floating-point values is defined by the structure:

// Provided by XR_VERSION_1_0

typedef struct XrRect2Df {

 XrOffset2Df offset;

 XrExtent2Df extent;

} XrRect2Df;

Member Descriptions

• offset is the XrOffset2Df specifying the rectangle offset.

• extent is the XrExtent2Df specifying the rectangle extent.

This structure is used for component values that may be real numbers, represented with single-

precision floating point.

The offset is the position of the rectangle corner with minimum value coordinates. The other three

corners are computed by adding the XrExtent2Df::width to the x offset, XrExtent2Df::height to the y

offset, or both.

Chapter 2. Fundamentals | 45

A rectangle with integer values is defined by the structure:

typedef struct XrRect2Di {

 XrOffset2Di offset;

 XrExtent2Di extent;

} XrRect2Di;

Member Descriptions

• offset is the XrOffset2Di specifying the integer rectangle offset.

• extent is the XrExtent2Di specifying the integer rectangle extent.

This variant is for representing discrete values such as texels. For representing physical distances, the

floating-point variant XrRect2Df is used instead.

The offset is the position of the rectangle corner with minimum value coordinates. The other three

corners are computed by adding the XrExtent2Di::width to the x offset, XrExtent2Di::height to the y

offset, or both.

An XrSpheref structure describes the center and radius of a sphere bounds.

// Provided by XR_VERSION_1_1

typedef struct XrSpheref {

 XrPosef center;

 float radius;

} XrSpheref;

Member Descriptions

• center is an XrPosef representing the pose of the center of the sphere within the reference

frame of the corresponding XrSpace.

• radius is the finite non-negative radius of the sphere.

The runtime must return XR_ERROR_VALIDATION_FAILURE if radius is not a finite positive value.

An XrBoxf structure describes the pose and extents of an oriented box.

46 | Chapter 2. Fundamentals

// Provided by XR_VERSION_1_1

typedef struct XrBoxf {

 XrPosef center;

 XrExtent3Df extents;

} XrBoxf;

Member Descriptions

• center is an XrPosef defining the center position and orientation of the oriented bounding

box bound within the reference frame of the corresponding XrSpace.

• extents is an XrExtent3Df defining the edge-to-edge length of the box along each dimension

with center as the center.

The runtime must return XR_ERROR_VALIDATION_FAILURE if width, height or depth values are negative.

An XrFrustumf structure describes the pose, field of view, and far distance of a frustum.

// Provided by XR_VERSION_1_1

typedef struct XrFrustumf {

 XrPosef pose;

 XrFovf fov;

 float nearZ;

 float farZ;

} XrFrustumf;

Member Descriptions

• pose is an XrPosef defining the position and orientation of the tip of the frustum within the

reference frame of the corresponding XrSpace.

• fov is an XrFovf for the four sides of the frustum where angleLeft and angleRight are along

the X axis and angleUp and angleDown are along the Y axis of the frustum space.

• nearZ is the positive distance of the near plane of the frustum bound along the -Z direction of

the frustum space.

• farZ is the positive distance of the far plane of the frustum bound along the -Z direction of the

frustum space.

The runtime must return XR_ERROR_VALIDATION_FAILURE if farZ is less than or equal to zero.

Chapter 2. Fundamentals | 47

The runtime must return XR_ERROR_VALIDATION_FAILURE if nearZ is less than zero.

See XrFovf for validity requirements on fov.

The XrUuid structure is a 128-bit Universally Unique Identifier and is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrUuid {

 uint8_t data[XR_UUID_SIZE];

} XrUuid;

Member Descriptions

• data is a 128-bit Universally Unique Identifier.

The structure is composed of 16 octets, with the size and order of the fields defined in RFC 4122 section

4.1.2.

2.20. Angles

Where a value is provided as a function parameter or as a structure member and will be interpreted as

an angle, the value is defined to be in radians.

Field of view (FoV) is defined by the structure:

typedef struct XrFovf {

 float angleLeft;

 float angleRight;

 float angleUp;

 float angleDown;

} XrFovf;

48 | Chapter 2. Fundamentals

https://www.rfc-editor.org/rfc/rfc4122.html#section-4.1.2
https://www.rfc-editor.org/rfc/rfc4122.html#section-4.1.2

Member Descriptions

• angleLeft is the angle of the left side of the field of view. For a symmetric field of view this

value is negative.

• angleRight is the angle of the right side of the field of view.

• angleUp is the angle of the top part of the field of view.

• angleDown is the angle of the bottom part of the field of view. For a symmetric field of view

this value is negative.

Angles to the right of the center and upwards from the center are positive, and angles to the left of the

center and down from the center are negative. The total horizontal field of view is angleRight minus

angleLeft, and the total vertical field of view is angleUp minus angleDown. For a symmetric FoV,

angleRight and angleUp will have positive values, angleLeft will be -angleRight, and angleDown will be -

angleUp.

The angles must be specified in radians, and must be between -π/2 and π/2 exclusively.

When angleLeft > angleRight, the content of the view must be flipped horizontally. When angleDown >

angleUp, the content of the view must be flipped vertically.

2.21. Boolean Values

typedef uint32_t XrBool32;

Boolean values used by OpenXR are of type XrBool32 and are 32-bits wide as suggested by the name.

The only valid values are the following:

Enumerant Descriptions

• XR_TRUE represents a true value.

• XR_FALSE represents a false value.

#define XR_TRUE 1

Chapter 2. Fundamentals | 49

#define XR_FALSE 0

2.22. Events

Events are messages sent from the runtime to the application.

2.22.1. Event Polling

Events are placed in a queue within the runtime. The application must read from the queue with

regularity. Events are read from the queue one at a time via xrPollEvent. Every type of event is

identified by an individual structure type, with each such structure beginning with an

XrEventDataBaseHeader.

Example 1. Proper Method for Receiving OpenXR Event Data

XrInstance instance; // previously initialized

// Initialize an event buffer to hold the output.

XrEventDataBuffer event = {XR_TYPE_EVENT_DATA_BUFFER};

XrResult result = xrPollEvent(instance, &event);

if (result == XR_SUCCESS) {

 switch (event.type) {

 case XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED: {

 const XrEventDataSessionStateChanged& session_state_changed_event =

 reinterpret_cast<XrEventDataSessionStateChanged>(&event);

 // ...

 break;

 }

 case XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING: {

 const XrEventDataInstanceLossPending& instance_loss_pending_event =

 reinterpret_cast<XrEventDataInstanceLossPending>(&event);

 // ...

 break;

 }

 }

}

xrPollEvent

The xrPollEvent function is defined as:

50 | Chapter 2. Fundamentals

// Provided by XR_VERSION_1_0

XrResult xrPollEvent(

 XrInstance instance,

 XrEventDataBuffer* eventData);

Parameter Descriptions

• instance is a valid XrInstance.

• eventData is a pointer to a valid XrEventDataBuffer.

xrPollEvent polls for the next event and returns an event if one is available. xrPollEvent returns

immediately regardless of whether an event was available. The event (if present) is unilaterally

removed from the queue if a valid XrInstance is provided. On return, the eventData parameter is filled

with the event’s data and the type field is changed to the event’s type. Runtimes may create valid next

chains depending on enabled extensions, but they must guarantee that any such chains point only to

objects which fit completely within the original XrEventDataBuffer pointed to by eventData.

The runtime must discard queued events which contain destroyed or otherwise invalid handles. The

runtime must not return events containing handles that have been destroyed or are otherwise invalid

at the time of the call to xrPollEvent.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• eventData must be a pointer to an XrEventDataBuffer structure

Return Codes

Success

• XR_SUCCESS

• XR_EVENT_UNAVAILABLE

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

Chapter 2. Fundamentals | 51

Table 2. Event Descriptions

Event Description

XrEventDataEventsLost event queue has overflowed and some events

were lost

XrEventDataInstanceLossPending application is about to lose the instance

XrEventDataInteractionProfileChanged current interaction profile for one or more top

level user paths has changed

XrEventDataReferenceSpaceChangePending runtime will begin operating with updated

definitions or bounds for a reference space

XrEventDataSessionStateChanged the application’s session has changed lifecycle

state

The XrEventDataBaseHeader structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrEventDataBaseHeader {

 XrStructureType type;

 const void* next;

} XrEventDataBaseHeader;

Parameter Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

The XrEventDataBaseHeader is a generic structure used to identify the common event data elements.

Upon receipt, the XrEventDataBaseHeader pointer should be type-cast to a pointer of the appropriate

event data type based on the type parameter.

52 | Chapter 2. Fundamentals

Valid Usage (Implicit)

• type must be one of the following XrStructureType values:

XR_TYPE_EVENT_DATA_DISPLAY_REFRESH_RATE_CHANGED_FB, XR_TYPE_EVENT_DATA_EVENTS_LOST,

XR_TYPE_EVENT_DATA_EYE_CALIBRATION_CHANGED_ML, XR_TYPE_EVENT_DATA_HEADSET_FIT_CHANGED_ML,

XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING, XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED,

XR_TYPE_EVENT_DATA_LOCALIZATION_CHANGED_ML,

XR_TYPE_EVENT_DATA_MAIN_SESSION_VISIBILITY_CHANGED_EXTX,

XR_TYPE_EVENT_DATA_MARKER_TRACKING_UPDATE_VARJO, XR_TYPE_EVENT_DATA_PERF_SETTINGS_EXT,

XR_TYPE_EVENT_DATA_REFERENCE_SPACE_CHANGE_PENDING,

XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED, XR_TYPE_EVENT_DATA_SPACE_ERASE_COMPLETE_FB,

XR_TYPE_EVENT_DATA_SPACE_LIST_SAVE_COMPLETE_FB,

XR_TYPE_EVENT_DATA_SPACE_QUERY_COMPLETE_FB,

XR_TYPE_EVENT_DATA_SPACE_QUERY_RESULTS_AVAILABLE_FB,

XR_TYPE_EVENT_DATA_SPACE_SAVE_COMPLETE_FB,

XR_TYPE_EVENT_DATA_SPACE_SET_STATUS_COMPLETE_FB,

XR_TYPE_EVENT_DATA_SPACE_SHARE_COMPLETE_FB,

XR_TYPE_EVENT_DATA_SPATIAL_ANCHOR_CREATE_COMPLETE_FB,

XR_TYPE_EVENT_DATA_VISIBILITY_MASK_CHANGED_KHR,
XR_TYPE_EVENT_DATA_VIVE_TRACKER_CONNECTED_HTCX

• next must be NULL or a valid pointer to the next structure in a structure chain

typedef struct XrEventDataBuffer {

 XrStructureType type;

 const void* next;

 uint8_t varying[4000];

} XrEventDataBuffer;

Parameter Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• varying is a fixed sized output buffer big enough to hold returned data elements for all

specified event data types.

The XrEventDataBuffer is a structure passed to xrPollEvent large enough to contain any returned

event data element. The maximum size is specified by XR_MAX_EVENT_DATA_SIZE.

Chapter 2. Fundamentals | 53

#valid-usage-for-structure-pointer-chains

An application can set (or reset) only the type member and clear the next member of an

XrEventDataBuffer before passing it as an input to xrPollEvent. The runtime must ignore the contents

of the varying field and overwrite it without reading it.

A pointer to an XrEventDataBuffer may be type-cast to an XrEventDataBaseHeader pointer, or a

pointer to any other appropriate event data based on the type parameter.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_BUFFER

• next must be NULL or a valid pointer to the next structure in a structure chain

// Provided by XR_VERSION_1_0

#define XR_MAX_EVENT_DATA_SIZE sizeof(XrEventDataBuffer)

XR_MAX_EVENT_DATA_SIZE is the size of XrEventDataBuffer, including the size of the

XrEventDataBuffer::type and XrEventDataBuffer::next members.

XrEventDataEventsLost

The XrEventDataEventsLost structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrEventDataEventsLost {

 XrStructureType type;

 const void* next;

 uint32_t lostEventCount;

} XrEventDataEventsLost;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• lostEventCount is the number of events which have overflowed since the last call to

xrPollEvent.

54 | Chapter 2. Fundamentals

#valid-usage-for-structure-pointer-chains

Receiving the XrEventDataEventsLost event structure indicates that the event queue overflowed and

some events were removed at the position within the queue at which this event was found.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_EVENTS_LOST

• next must be NULL or a valid pointer to the next structure in a structure chain

Other event structures are defined in later chapters in the context where their definition is most

relevant.

2.23. System resource lifetime

The creator of an underlying system resource is responsible for ensuring the resource’s lifetime

matches the lifetime of the associated OpenXR handle.

Resources passed as inputs from the application to the runtime when creating an OpenXR handle

should not be freed while that handle is valid. A runtime must not free resources passed as inputs or

decrease their reference counts (if applicable) from the initial value. For example, the graphics device

handle (or pointer) passed in to xrCreateSession in XrGraphicsBinding* structure should be kept alive

when the corresponding XrSession handle is valid, and should be freed by the application after the

XrSession handle is destroyed.

Resources created by the runtime should not be freed by the application, and the application should

maintain the same reference count (if applicable) at the destruction of the OpenXR handle as it had at

its creation. For example, the ID3D*Texture2D objects in the XrSwapchainImageD3D* are created by the

runtime and associated with the lifetime of the XrSwapchain handle. The application should not keep

additional reference counts on any ID3D*Texture2D objects past the lifetime of the XrSwapchain handle,

or make extra reference count decrease after destroying the XrSwapchain handle.

Chapter 2. Fundamentals | 55

#valid-usage-for-structure-pointer-chains

Chapter 3. API Initialization

Before using an OpenXR runtime, an application must initialize it by creating an XrInstance object.

The following functions are useful for gathering information about the API layers and extensions

installed on the system and creating the instance.

Instance Creation Functions

• xrEnumerateApiLayerProperties

• xrEnumerateInstanceExtensionProperties

• xrCreateInstance

xrEnumerateApiLayerProperties and xrEnumerateInstanceExtensionProperties can be called before

calling xrCreateInstance.

3.1. Exported Functions

A dynamically linked library (.dll or .so) that implements the API loader must export all core OpenXR

API functions. However, the application can gain access to extension functions by obtaining pointers to

these functions through the use of xrGetInstanceProcAddr.

3.2. Function Pointers

Function pointers for all OpenXR functions can be obtained with the function xrGetInstanceProcAddr.

// Provided by XR_VERSION_1_0

XrResult xrGetInstanceProcAddr(

 XrInstance instance,

 const char* name,

 PFN_xrVoidFunction* function);

Parameter Descriptions

• instance is the instance that the function pointer will be compatible with, or NULL for

functions not dependent on any instance.

• name is the name of the function to obtain.

• function is the address of the function pointer to get.

56 | Chapter 3. API Initialization

xrGetInstanceProcAddr itself is obtained in a platform- and loader- specific manner. Typically, the

loader library will export this function as a function symbol, so applications can link against the loader

library, or load it dynamically and look up the symbol using platform-specific APIs. Loaders must

export function symbols for all core OpenXR functions. Because of this, applications that use only the

core OpenXR functions have no need to use xrGetInstanceProcAddr.

Because an application can call xrGetInstanceProcAddr before creating an instance,

xrGetInstanceProcAddr returns a valid function pointer when the instance parameter is

XR_NULL_HANDLE and the name parameter is one of the following strings:

No Instance Required

• xrEnumerateInstanceExtensionProperties

• xrEnumerateApiLayerProperties

• xrCreateInstance

xrGetInstanceProcAddr must return XR_ERROR_HANDLE_INVALID if name is not one of the above strings and

instance is XR_NULL_HANDLE. xrGetInstanceProcAddr may return XR_ERROR_HANDLE_INVALID if name is

not one of the above strings and instance is invalid but not XR_NULL_HANDLE.

xrGetInstanceProcAddr must return XR_ERROR_FUNCTION_UNSUPPORTED if instance is a valid instance and

the string specified in name is not the name of an OpenXR core or enabled extension function.

If name is the name of an extension function, then the result returned by xrGetInstanceProcAddr will

depend upon how the instance was created. If instance was created with the related extension’s name

appearing in the XrInstanceCreateInfo::enabledExtensionNames array, then xrGetInstanceProcAddr

returns a valid function pointer. If the related extension’s name did not appear in the

XrInstanceCreateInfo::enabledExtensionNames array during the creation of instance, then

xrGetInstanceProcAddr returns XR_ERROR_FUNCTION_UNSUPPORTED. Because of this, function pointers

returned by xrGetInstanceProcAddr using one XrInstance may not be valid when used with objects

related to a different XrInstance.

The returned function pointer is of type PFN_xrVoidFunction, and must be cast to the type of the

function being queried.

The table below defines the various use cases for xrGetInstanceProcAddr and return value (“fp” is

“function pointer”) for each case.

Table 3. xrGetInstanceProcAddr behavior

instance parameter name parameter return value

* NULL undefined

invalid instance * undefined

Chapter 3. API Initialization | 57

instance parameter name parameter return value

NULL xrEnumerateInstanceExte

nsionProperties

fp

NULL xrEnumerateApiLayerPro

perties

fp

NULL xrCreateInstance fp

NULL * (any name not covered

above)

NULL

instance core OpenXR function fp
1

instance enabled extension

function for instance

fp
1

instance * (any name not covered

above)

NULL

1

The returned function pointer must only be called with a handle (the first parameter) that is

instance or a child of instance.

Valid Usage (Implicit)

• If instance is not XR_NULL_HANDLE, instance must be a valid XrInstance handle

• name must be a null-terminated UTF-8 string

• function must be a pointer to a PFN_xrVoidFunction value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

58 | Chapter 3. API Initialization

typedef void (XRAPI_PTR *PFN_xrVoidFunction)(void);

Parameter Descriptions

• no parameters.

PFN_xrVoidFunction is a generic function pointer type returned by queries, specifically those to

xrGetInstanceProcAddr.

typedef XrResult (XRAPI_PTR *PFN_xrGetInstanceProcAddr)(XrInstance instance, const char*

name, PFN_xrVoidFunction* function);

PFN_xrGetInstanceProcAddr is a function pointer type for xrGetInstanceProcAddr.

typedef struct XrApiLayerCreateInfo XrApiLayerCreateInfo;

typedef XrResult (XRAPI_PTR *PFN_xrCreateApiLayerInstance)(

 const XrInstanceCreateInfo* info,

 const XrApiLayerCreateInfo* apiLayerInfo,

 XrInstance* instance);

PFN_xrCreateApiLayerInstance is a function pointer type for xrCreateApiLayerInstance.

Note: This function pointer type is only used by an OpenXR loader library, and never by an application.

3.3. Runtime Interface Negotiation

In order to negotiate the runtime interface version with the loader, the runtime must implement the

xrNegotiateLoaderRuntimeInterface function.

Chapter 3. API Initialization | 59

 Note

The API described in this section is solely intended for use between an OpenXR loader

and a runtime (and/or an API layer, where noted). Applications use the appropriate

loader library for their platform to load the active runtime and configured API layers,

rather than making these calls directly. This section is included in the specification to

ensure consistency between runtimes in their interactions with the loader.

Be advised that as this is not application-facing API, some of the typical OpenXR API

conventions are not followed in this section.

The xrNegotiateLoaderRuntimeInterface function is defined as:

// Provided by XR_LOADER_VERSION_1_0

XrResult xrNegotiateLoaderRuntimeInterface(

 const XrNegotiateLoaderInfo* loaderInfo,

 XrNegotiateRuntimeRequest* runtimeRequest);

Parameter Descriptions

• loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure.

• runtimeRequest must be a valid pointer to an XrNegotiateRuntimeRequest structure, with

minimal initialization, as subsequently described, to be fully populated by the called runtime.

xrNegotiateLoaderRuntimeInterface should be directly exported by a runtime so that using e.g.

GetProcAddress on Windows or dlsym on POSIX platforms returns a valid function pointer to it.

The runtime must return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on

loaderInfo are true:

• XrNegotiateLoaderInfo::structType is not XR_LOADER_INTERFACE_STRUCT_LOADER_INFO

• XrNegotiateLoaderInfo::structVersion is not XR_LOADER_INFO_STRUCT_VERSION

• XrNegotiateLoaderInfo::structSize is not sizeof(XrNegotiateLoaderInfo)

The runtime must also return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on

runtimeRequest are true:

• XrNegotiateRuntimeRequest::structType is not XR_LOADER_INTERFACE_STRUCT_RUNTIME_REQUEST

• XrNegotiateRuntimeRequest::structVersion is not XR_RUNTIME_INFO_STRUCT_VERSION

• XrNegotiateRuntimeRequest::structSize is not sizeof(XrNegotiateRuntimeRequest)

60 | Chapter 3. API Initialization

The runtime must determine if it supports the loader’s request. The runtime does not support the

loader’s request if either of the following is true:

• the runtime does not support the interface versions supported by the loader as specified by the

parameters XrNegotiateLoaderInfo::minInterfaceVersion and XrNegotiateLoaderInfo

::maxInterfaceVersion

• the runtime does not support the API versions supported by the loader as specified by the

parameters XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

The runtime must return XR_ERROR_INITIALIZATION_FAILED if it does not support the loader’s request.

If the function succeeds, the runtime must set the XrNegotiateRuntimeRequest

::runtimeInterfaceVersion with the runtime interface version it desires to support. The

XrNegotiateRuntimeRequest::runtimeInterfaceVersion set must be between XrNegotiateLoaderInfo

::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion.

If the function succeeds, the runtime must set the XrNegotiateRuntimeRequest::runtimeApiVersion with

the API version of OpenXR it will execute under. The XrNegotiateRuntimeRequest::runtimeApiVersion

set must be between XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

If the function succeeds, the runtime must set the XrNegotiateRuntimeRequest::getInstanceProcAddr

with a valid function pointer for the loader to use to query function pointers to the remaining OpenXR

functions supported by the runtime.

If the function succeeds, the runtime must return XR_SUCCESS.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to calling

xrNegotiateLoaderRuntimeInterface

• loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure

• runtimeRequest must be a pointer to an XrNegotiateRuntimeRequest structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_INITIALIZATION_FAILED

The XrNegotiateLoaderInfo structure is used to pass information about the loader to a runtime or an

API layer.

Chapter 3. API Initialization | 61

The XrNegotiateLoaderInfo structure is defined as:

typedef struct XrNegotiateLoaderInfo {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 uint32_t minInterfaceVersion;

 uint32_t maxInterfaceVersion;

 XrVersion minApiVersion;

 XrVersion maxApiVersion;

} XrNegotiateLoaderInfo;

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_LOADER_INFO.

• structVersion must be a valid version of the structure. The value

XR_LOADER_INFO_STRUCT_VERSION describes the current latest version of this structure.

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrNegotiateLoaderInfo)).

• minInterfaceVersion is the minimum runtime or API layer interface version supported by the

loader.

• maxInterfaceVersion is the maximum valid version of the runtime or API layer interface

version supported by the loader, currently defined using

XR_CURRENT_LOADER_RUNTIME_VERSION or XR_CURRENT_LOADER_API_LAYER_VERSION.

• minApiVersion is the minimum supported version of the OpenXR API by the loader as

formatted by XR_MAKE_VERSION. Patch is ignored.

• maxApiVersion is the maximum supported version of the OpenXR API by the loader as

formatted by XR_MAKE_VERSION. Patch is ignored.

This structure is an input from the loader to the runtime in an xrNegotiateLoaderRuntimeInterface

call, as well as from the loader to an API layer in an xrNegotiateLoaderApiLayerInterface call.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using XrNegotiateLoaderInfo

• structType must be a valid XrLoaderInterfaceStructs value

The XrLoaderInterfaceStructs enumeration is defined as:

62 | Chapter 3. API Initialization

typedef enum XrLoaderInterfaceStructs {

 XR_LOADER_INTERFACE_STRUCT_UNINTIALIZED = 0,

 XR_LOADER_INTERFACE_STRUCT_LOADER_INFO = 1,

 XR_LOADER_INTERFACE_STRUCT_API_LAYER_REQUEST = 2,

 XR_LOADER_INTERFACE_STRUCT_RUNTIME_REQUEST = 3,

 XR_LOADER_INTERFACE_STRUCT_API_LAYER_CREATE_INFO = 4,

 XR_LOADER_INTERFACE_STRUCT_API_LAYER_NEXT_INFO = 5,

 XR_LOADER_INTERFACE_STRUCTS_MAX_ENUM = 0x7FFFFFFF

} XrLoaderInterfaceStructs;

This enumeration serves a similar purpose in the runtime and API layer interface negotiation (loader)

API as XrStructureType serves in the application-facing API.

// Provided by XR_LOADER_VERSION_1_0

#define XR_LOADER_INFO_STRUCT_VERSION 1

XR_LOADER_INFO_STRUCT_VERSION is the current version of the XrNegotiateLoaderInfo structure. It

is used to populate the XrNegotiateLoaderInfo::structVersion field.

// Provided by XR_LOADER_VERSION_1_0

#define XR_CURRENT_LOADER_RUNTIME_VERSION 1

XR_CURRENT_LOADER_RUNTIME_VERSION is the current version of the overall OpenXR Loader

Runtime interface. It is used to populate maximum and minimum interface version fields in

XrNegotiateLoaderInfo when loading a runtime.

// Provided by XR_LOADER_VERSION_1_0

#define XR_CURRENT_LOADER_API_LAYER_VERSION 1

XR_CURRENT_LOADER_API_LAYER_VERSION is the current version of the overall OpenXR Loader API

Layer interface. It is used to populate maximum and minimum interface version fields in

XrNegotiateLoaderInfo when loading an API layer.

The XrNegotiateRuntimeRequest structure is used to pass information about the runtime back to the

loader.

Chapter 3. API Initialization | 63

The XrNegotiateRuntimeRequest structure is defined as:

typedef struct XrNegotiateRuntimeRequest {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 uint32_t runtimeInterfaceVersion;

 XrVersion runtimeApiVersion;

 PFN_xrGetInstanceProcAddr getInstanceProcAddr;

} XrNegotiateRuntimeRequest;

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_RUNTIME_REQUEST.

• structVersion must be a valid version of the structure. The value

XR_RUNTIME_INFO_STRUCT_VERSION is used to describe the current version of this

structure.

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrNegotiateRuntimeRequest))

• runtimeInterfaceVersion is the version of the runtime interface version being requested by

the runtime. Must: not be outside of the bounds of the XrNegotiateLoaderInfo

::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion values (inclusive).

• runtimeApiVersion is the version of the OpenXR API supported by this runtime as formatted

by XR_MAKE_VERSION. Patch is ignored.

• getInstanceProcAddr is a pointer to the runtime’s xrGetInstanceProcAddr implementation that

will be used by the loader to populate a dispatch table of OpenXR functions supported by the

runtime.

This is an output structure from runtime negotiation. The loader must populate structType,

structVersion, and structSize to ensure correct interpretation by the runtime, while the runtime

populates the rest of the fields in a successful call to xrNegotiateLoaderRuntimeInterface.

64 | Chapter 3. API Initialization

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using

XrNegotiateRuntimeRequest

• structType must be a valid XrLoaderInterfaceStructs value

• getInstanceProcAddr must be a valid PFN_xrGetInstanceProcAddr value

// Provided by XR_LOADER_VERSION_1_0

#define XR_RUNTIME_INFO_STRUCT_VERSION 1

XR_RUNTIME_INFO_STRUCT_VERSION is the current version of the XrNegotiateRuntimeRequest

structure. It is used to populate the XrNegotiateRuntimeRequest::structVersion field.

3.4. API Layer Interface Negotiation

In order to negotiate the API layer interface version with the loader, an OpenXR API layer must

implement the xrNegotiateLoaderApiLayerInterface function. Note

The API described in this section is solely intended for use between an OpenXR loader

and an API layer. Applications use the appropriate loader library for their platform to

load the active runtime and configured API layers, rather than making these calls

directly. This section is included in the specification to ensure consistency between

runtimes in their interactions with the loader.

Be advised that as this is not application-facing API, some of the typical OpenXR API

conventions are not followed in this section.

The xrNegotiateLoaderApiLayerInterface function is defined as:

// Provided by XR_LOADER_VERSION_1_0

XrResult xrNegotiateLoaderApiLayerInterface(

 const XrNegotiateLoaderInfo* loaderInfo,

 const char* layerName,

 XrNegotiateApiLayerRequest* apiLayerRequest);

Chapter 3. API Initialization | 65

Parameter Descriptions

• loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure.

• layerName must be NULL or a valid C-style NULL-terminated string listing the name of an API

layer which the loader is attempting to negotiate with.

• apiLayerRequest must be a valid pointer to an XrNegotiateApiLayerRequest structure, with

minimal initialization, as subsequently described, to be fully populated by the called API

layer.

xrNegotiateLoaderApiLayerInterface should be directly exported by an API layer so that using e.g.

GetProcAddress on Windows or dlsym on POSIX platforms returns a valid function pointer to it.

The API layer must return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on

loaderInfo are true:

• XrNegotiateLoaderInfo::structType is not XR_LOADER_INTERFACE_STRUCT_LOADER_INFO

• XrNegotiateLoaderInfo::structVersion is not XR_LOADER_INFO_STRUCT_VERSION

• XrNegotiateLoaderInfo::structSize is not sizeof(XrNegotiateLoaderInfo)

The API layer must also return XR_ERROR_INITIALIZATION_FAILED if any of the following conditions on

apiLayerRequest are true:

• XrNegotiateApiLayerRequest::structType is not XR_LOADER_INTERFACE_STRUCT_API_LAYER_REQUEST

• XrNegotiateApiLayerRequest::structVersion is not XR_API_LAYER_INFO_STRUCT_VERSION

• XrNegotiateApiLayerRequest::structSize is not sizeof(XrNegotiateApiLayerRequest)

The API layer must determine if it supports the loader’s request. The API layer does not support the

loader’s request if either of the following is true:

• the API layer does not support the interface versions supported by the loader as specified by the

parameters XrNegotiateLoaderInfo::minInterfaceVersion and XrNegotiateLoaderInfo

::maxInterfaceVersion

• the API layer does not support the API versions supported by the loader as specified by the

parameters XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

The API layer must return XR_ERROR_INITIALIZATION_FAILED if it does not support the loader’s request.

If the function succeeds, the API layer must set the XrNegotiateApiLayerRequest

::layerInterfaceVersion with the API layer interface version it desires to support. The

XrNegotiateApiLayerRequest::layerInterfaceVersion set must be between XrNegotiateLoaderInfo

::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion.

If the function succeeds, the API layer must set the XrNegotiateApiLayerRequest::layerApiVersion with

66 | Chapter 3. API Initialization

the API version of OpenXR it will execute under. The XrNegotiateApiLayerRequest::layerApiVersion set

must be between XrNegotiateLoaderInfo::minApiVersion and XrNegotiateLoaderInfo::maxApiVersion.

If the function succeeds, the API layer must set the XrNegotiateApiLayerRequest::getInstanceProcAddr

with a valid function pointer for the loader to use to query function pointers to the remaining OpenXR

functions supported by the API layer.

If the function succeeds, the API layer must set the XrNegotiateApiLayerRequest

::createApiLayerInstance with a valid function pointer to an implementation of

xrCreateApiLayerInstance for the loader to use to create the instance through the API layer call chain.

If the function succeeds, the API layer must return XR_SUCCESS.

The API layer must not call into another API layer from its implementation of the

xrNegotiateLoaderApiLayerInterface function. The loader must handle all API layer negotiations with

each API layer individually.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to calling

xrNegotiateLoaderApiLayerInterface

• loaderInfo must be a pointer to a valid XrNegotiateLoaderInfo structure

• layerName must be a null-terminated UTF-8 string

• apiLayerRequest must be a pointer to an XrNegotiateApiLayerRequest structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_INITIALIZATION_FAILED

The XrNegotiateApiLayerRequest structure is used to pass information about the API layer back to the

loader.

The XrNegotiateApiLayerRequest structure is defined as:

Chapter 3. API Initialization | 67

typedef struct XrNegotiateApiLayerRequest {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 uint32_t layerInterfaceVersion;

 XrVersion layerApiVersion;

 PFN_xrGetInstanceProcAddr getInstanceProcAddr;

 PFN_xrCreateApiLayerInstance createApiLayerInstance;

} XrNegotiateApiLayerRequest;

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_API_LAYER_REQUEST.

• structVersion must be a valid version of the structure. The value

XR_API_LAYER_INFO_STRUCT_VERSION is used to describe the current latest version of this

structure.

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrNegotiateApiLayerRequest)).

• layerInterfaceVersion is the version of the API layer interface version being requested by the

API layer. Should not be outside of the bounds of the XrNegotiateLoaderInfo

::minInterfaceVersion and XrNegotiateLoaderInfo::maxInterfaceVersion values (inclusive).

• layerApiVersion is the version of the OpenXR API supported by this API layer as formatted by

XR_MAKE_VERSION. Patch is ignored.

• getInstanceProcAddr is a pointer to the API layer’s xrGetInstanceProcAddr implementation

that will be used by the loader to populate a dispatch table of OpenXR functions supported by

the API layer.

• createApiLayerInstance is a pointer to the API layer’s xrCreateApiLayerInstance

implementation that will be used by the loader during a call to xrCreateInstance when an API

layer is active. This is used because API layers need additional information at

xrCreateInstance time.

This is an output structure from API layer negotiation. The loader must populate structType,

structVersion, and structSize before calling to ensure correct interpretation by the API layer, while the

API layer populates the rest of the fields in a successful call to xrNegotiateLoaderApiLayerInterface.

68 | Chapter 3. API Initialization

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using

XrNegotiateApiLayerRequest

• structType must be a valid XrLoaderInterfaceStructs value

• getInstanceProcAddr must be a valid PFN_xrGetInstanceProcAddr value

• createApiLayerInstance must be a valid PFN_xrCreateApiLayerInstance value

// Provided by XR_LOADER_VERSION_1_0

#define XR_API_LAYER_INFO_STRUCT_VERSION 1

XR_API_LAYER_INFO_STRUCT_VERSION is the current version of the XrNegotiateApiLayerRequest

structure. It is used to populate the XrNegotiateApiLayerRequest::structVersion field.

The xrCreateApiLayerInstance function is defined as:

// Provided by XR_LOADER_VERSION_1_0

XrResult xrCreateApiLayerInstance(

 const XrInstanceCreateInfo* info,

 const XrApiLayerCreateInfo* layerInfo,

 XrInstance* instance);

Parameter Descriptions

• info is a pointer to the XrInstanceCreateInfo information passed by the application into the

outer xrCreateInstance function.

• layerInfo is a pointer to an XrApiLayerCreateInfo structure that contains special information

required by a API layer during its create instance process. This is generated by the loader.

• instance is a pointer to store the returned instance in, just as in the standard

xrCreateInstance function.

An API layer’s implementation of the xrCreateApiLayerInstance function is invoked during the

loader’s implementation of xrCreateInstance, if the layer in question is enabled.

An API layer needs additional information during xrCreateInstance calls, so each API layer must

implement the xrCreateApiLayerInstance function, which is a special API layer function.

Chapter 3. API Initialization | 69

An API layer must not implement xrCreateInstance.

xrCreateApiLayerInstance must be called by the loader during its implementation of the

xrCreateInstance function.

The loader must call the first API layer’s xrCreateApiLayerInstance function passing in the pointer to

the created XrApiLayerCreateInfo.

The XrApiLayerCreateInfo::nextInfo must be a linked-list of XrApiLayerNextInfo structures with

information about each of the API layers that are to be enabled. Note that this does not operate like a

next chain in the OpenXR application API, but instead describes the enabled API layers from outermost

to innermost.

The API layer may validate that it is getting the correct next information by checking that the

XrApiLayerNextInfo::layerName matches the expected value.

The API layer must use the information in its XrApiLayerNextInfo to call down the call chain to the

next xrCreateApiLayerInstance:

• The API layer must copy the XrApiLayerCreateInfo structure into its own structure.

• The API layer must then update its copy of the XrApiLayerCreateInfo structure, setting

XrApiLayerCreateInfo::XrApiLayerCreateInfo::nextInfo to point to the XrApiLayerNextInfo for the

next API layer (e.g. layerInfoCopy→nextInfo = layerInfo→nextInfo→next;).

• The API layer must then use the pointer to its XrApiLayerCreateInfo structure (instead of the one

that was passed in) when it makes a call to the xrCreateApiLayerInstance function.

• If the nested xrCreateApiLayerInstance call succeeds, the API layer may choose to setup its own

dispatch table to the next API layer’s functions using the returned XrInstance and the next API

layer’s xrGetInstanceProcAddr.

• The API layer must return the XrResult returned from the next API layer.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to calling

xrCreateApiLayerInstance

• info must be a pointer to a valid XrInstanceCreateInfo structure

• layerInfo must be a pointer to a valid XrApiLayerCreateInfo structure

• instance must be a pointer to an XrInstance handle

70 | Chapter 3. API Initialization

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_INITIALIZATION_FAILED

The XrApiLayerCreateInfo structure contains special information required by a API layer during its

create instance process.

The XrApiLayerCreateInfo structure is defined as:

typedef struct XrApiLayerCreateInfo {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 void* loaderInstance;

 char settings_file_location

[XR_API_LAYER_MAX_SETTINGS_PATH_SIZE];

 XrApiLayerNextInfo* nextInfo;

} XrApiLayerCreateInfo;

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_API_LAYER_CREATE_INFO.

• structVersion is the version of the structure being supplied by the loader (i.e.

XR_API_LAYER_CREATE_INFO_STRUCT_VERSION)

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrApiLayerCreateInfo))

• loaderInstance is deprecated and must be ignored.

• settings_file_location is the location of any usable API layer settings file. The size of

settings_file_location is given by XR_API_LAYER_MAX_SETTINGS_PATH_SIZE. This is

currently unused.

• nextInfo is a pointer to the XrApiLayerNextInfo structure which contains information to

work with the next API layer in the chain.

Chapter 3. API Initialization | 71

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using XrApiLayerCreateInfo

• structType must be a valid XrLoaderInterfaceStructs value

• loaderInstance must be a pointer value

• settings_file_location must be a null-terminated UTF-8 string whose length is less than or

equal to XR_API_LAYER_MAX_SETTINGS_PATH_SIZE

• nextInfo must be a pointer to an XrApiLayerNextInfo structure

// Provided by XR_LOADER_VERSION_1_0

#define XR_API_LAYER_CREATE_INFO_STRUCT_VERSION 1

XR_API_LAYER_CREATE_INFO_STRUCT_VERSION is the current version of the XrApiLayerCreateInfo

structure. It is used to populate the XrApiLayerCreateInfo::structVersion field.

// Provided by XR_LOADER_VERSION_1_0

#define XR_API_LAYER_MAX_SETTINGS_PATH_SIZE 512

XR_API_LAYER_MAX_SETTINGS_PATH_SIZE is the size of the XrApiLayerCreateInfo

::settings_file_location field.

The XrApiLayerNextInfo structure:

The XrApiLayerNextInfo structure is defined as:

typedef struct XrApiLayerNextInfo {

 XrLoaderInterfaceStructs structType;

 uint32_t structVersion;

 size_t structSize;

 char layerName[XR_MAX_API_LAYER_NAME_SIZE];

 PFN_xrGetInstanceProcAddr nextGetInstanceProcAddr;

 PFN_xrCreateApiLayerInstance nextCreateApiLayerInstance;

 struct XrApiLayerNextInfo* next;

} XrApiLayerNextInfo;

72 | Chapter 3. API Initialization

Member Descriptions

• structType must be XR_LOADER_INTERFACE_STRUCT_API_LAYER_NEXT_INFO

• structVersion must be a valid version of the structure and the version being supplied by the

loader (i.e. XR_API_LAYER_NEXT_INFO_STRUCT_VERSION).

• structSize must be the size in bytes of the current version of the structure (i.e.

sizeof(XrApiLayerNextInfo))

• layerName is the name of the intended next API layer, used to verify and debug the API layer

chain.

• nextGetInstanceProcAddr is a pointer to the next API layer’s xrGetInstanceProcAddr. This is

intended for use in populating a dispatch table to the next implementations in the chain.

• nextCreateApiLayerInstance is a pointer to the xrCreateApiLayerInstance function

implementation in the next API layer. This is to be called after the API layer has done any

localized creation, but before the API layer records any function addresses from the next API

layer using xrGetInstanceProcAddr.

• next is a pointer to the XrApiLayerNextInfo for the next API layer. If no API layer is after this,

it will be NULL.

Valid Usage (Implicit)

• The XR_LOADER_VERSION_1_0 extension must be enabled prior to using XrApiLayerNextInfo

• structType must be a valid XrLoaderInterfaceStructs value

• layerName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_API_LAYER_NAME_SIZE

• nextGetInstanceProcAddr must be a valid PFN_xrGetInstanceProcAddr value

• nextCreateApiLayerInstance must be a valid PFN_xrCreateApiLayerInstance value

• next must be a pointer to an XrApiLayerNextInfo structure

// Provided by XR_LOADER_VERSION_1_0

#define XR_API_LAYER_NEXT_INFO_STRUCT_VERSION 1

XR_API_LAYER_NEXT_INFO_STRUCT_VERSION is the current version of the XrApiLayerNextInfo

structure. It is used to populate the XrApiLayerNextInfo::structVersion field.

Chapter 3. API Initialization | 73

Chapter 4. Instance

XR_DEFINE_HANDLE(XrInstance)

An OpenXR instance is an object that allows an OpenXR application to communicate with an OpenXR

runtime. The application accomplishes this communication by calling xrCreateInstance and receiving a

handle to the resulting XrInstance object.

The XrInstance object stores and tracks OpenXR-related application state, without storing any such

state in the application’s global address space. This allows the application to create multiple instances

as well as safely encapsulate the application’s OpenXR state since this object is opaque to the

application. OpenXR runtimes may limit the number of simultaneous XrInstance objects that may be

created and used, but they must support the creation and usage of at least one XrInstance object per

process.

Physically, this state may be stored in any of the OpenXR loader, OpenXR API layers or the OpenXR

runtime components. The exact storage and distribution of this saved state is implementation-

dependent, except where indicated by this specification.

The tracking of OpenXR state in the instance allows the streamlining of the API, where the intended

instance is inferred from the highest ascendant of an OpenXR function’s target object. For example, in:

myResult = xrEndFrame(mySession, &myEndFrameDescription);

the XrSession object was created from an XrInstance object. The OpenXR loader typically keeps track of

the XrInstance that is the parent of the XrSession object in this example and directs the function to the

runtime associated with that instance. This tracking of OpenXR objects eliminates the need to specify

an XrInstance in every OpenXR function.

4.1. API Layers and Extensions

Additional functionality may be provided by API layers or extensions. An API layer must not add or

modify the definition of OpenXR functions, while an extension may do so.

The set of API layers to enable is specified when creating an instance, and those API layers are able to

intercept any functions dispatched to that instance or any of its child objects.

Example API layers may include (but are not limited to):

• an API layer to dump out OpenXR API calls

• an API layer to perform OpenXR validation

74 | Chapter 4. Instance

To determine what set of API layers are available, OpenXR provides the

xrEnumerateApiLayerProperties function:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateApiLayerProperties(

 uint32_t propertyCapacityInput,

 uint32_t* propertyCountOutput,

 XrApiLayerProperties* properties);

Parameter Descriptions

• propertyCapacityInput is the capacity of the properties array, or 0 to indicate a request to

retrieve the required capacity.

• propertyCountOutput is a pointer to the count of properties written, or a pointer to the

required capacity in the case that propertyCapacityInput is insufficient.

• properties is a pointer to an array of XrApiLayerProperties structures, but can be NULL if

propertyCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

properties size.

The list of available layers may change at any time due to actions outside of the OpenXR runtime, so

two calls to xrEnumerateApiLayerProperties with the same parameters may return different results,

or retrieve different propertyCountOutput values or properties contents.

Once an instance has been created, the layers enabled for that instance will continue to be enabled and

valid for the lifetime of that instance, even if some of them become unavailable for future instances.

Valid Usage (Implicit)

• propertyCountOutput must be a pointer to a uint32_t value

• If propertyCapacityInput is not 0, properties must be a pointer to an array of

propertyCapacityInput XrApiLayerProperties structures

Chapter 4. Instance | 75

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

The XrApiLayerProperties structure is defined as:

typedef struct XrApiLayerProperties {

 XrStructureType type;

 void* next;

 char layerName[XR_MAX_API_LAYER_NAME_SIZE];

 XrVersion specVersion;

 uint32_t layerVersion;

 char description[XR_MAX_API_LAYER_DESCRIPTION_SIZE];

} XrApiLayerProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• layerName is a string specifying the name of the API layer. Use this name in the

XrInstanceCreateInfo::enabledApiLayerNames array to enable this API layer for an instance.

• specVersion is the API version the API layer was written to, encoded as described in the API

Version Numbers and Semantics section.

• layerVersion is the version of this API layer. It is an integer, increasing with backward

compatible changes.

• description is a string providing additional details that can be used by the application to

identify the API layer.

76 | Chapter 4. Instance

Valid Usage (Implicit)

• type must be XR_TYPE_API_LAYER_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain

To enable a layer, the name of the layer should be added to XrInstanceCreateInfo

::enabledApiLayerNames when creating an XrInstance.

Loader implementations may provide mechanisms outside this API for enabling specific API layers.

API layers enabled through such a mechanism are implicitly enabled, while API layers enabled by

including the API layer name in XrInstanceCreateInfo::enabledApiLayerNames are explicitly enabled.

Except where otherwise specified, implicitly enabled and explicitly enabled API layers differ only in

the way they are enabled. Explicitly enabling an API layer that is implicitly enabled has no additional

effect.

Instance extensions are able to affect the operation of the instance and any of its child objects. As

stated earlier, extensions can expand the OpenXR API and provide new functions or augment

behavior.

Examples of extensions may be (but are not limited to):

Extension Examples

• an extension to include OpenXR functions to work with a new graphics API

• an extension to expose debug information via a callback

The application can determine the available instance extensions by calling

xrEnumerateInstanceExtensionProperties:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateInstanceExtensionProperties(

 const char* layerName,

 uint32_t propertyCapacityInput,

 uint32_t* propertyCountOutput,

 XrExtensionProperties* properties);

Chapter 4. Instance | 77

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• layerName is either NULL or a pointer to a string naming the API layer to retrieve extensions

from, as returned by xrEnumerateApiLayerProperties.

• propertyCapacityInput is the capacity of the properties array, or 0 to indicate a request to

retrieve the required capacity.

• propertyCountOutput is a pointer to the count of properties written, or a pointer to the

required capacity in the case that propertyCapacityInput is insufficient.

• properties is a pointer to an array of XrExtensionProperties structures, but can be NULL if

propertyCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

properties size.

Because the list of available layers may change externally between calls to

xrEnumerateInstanceExtensionProperties, two calls may retrieve different results if a layerName is

available in one call but not in another. The extensions supported by a layer may also change between

two calls, e.g. if the layer implementation is replaced by a different version between those calls.

Valid Usage (Implicit)

• If layerName is not NULL, layerName must be a null-terminated UTF-8 string

• propertyCountOutput must be a pointer to a uint32_t value

• If propertyCapacityInput is not 0, properties must be a pointer to an array of

propertyCapacityInput XrExtensionProperties structures

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_RUNTIME_UNAVAILABLE

• XR_ERROR_API_LAYER_NOT_PRESENT

78 | Chapter 4. Instance

The XrExtensionProperties structure is defined as:

typedef struct XrExtensionProperties {

 XrStructureType type;

 void* next;

 char extensionName[XR_MAX_EXTENSION_NAME_SIZE];

 uint32_t extensionVersion;

} XrExtensionProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• extensionName is a NULL terminated string specifying the name of the extension.

• extensionVersion is the version of this extension. It is an integer, incremented with backward

compatible changes.

Valid Usage (Implicit)

• type must be XR_TYPE_EXTENSION_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain

4.2. Instance Lifecycle

The xrCreateInstance function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateInstance(

 const XrInstanceCreateInfo* createInfo,

 XrInstance* instance);

Chapter 4. Instance | 79

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• createInfo points to an instance of XrInstanceCreateInfo controlling creation of the instance.

• instance points to an XrInstance handle in which the resulting instance is returned.

xrCreateInstance creates the XrInstance, then enables and initializes global API layers and extensions

requested by the application. If an extension is provided by an API layer, both the API layer and

extension must be specified at xrCreateInstance time. If a specified API layer cannot be found, no

XrInstance will be created and the function will return XR_ERROR_API_LAYER_NOT_PRESENT. Likewise, if a

specified extension cannot be found, the call must return XR_ERROR_EXTENSION_NOT_PRESENT and no

XrInstance will be created. Additionally, some runtimes may limit the number of concurrent instances

that may be in use. If the application attempts to create more instances than a runtime can

simultaneously support, xrCreateInstance may return XR_ERROR_LIMIT_REACHED.

If the XrApplicationInfo::applicationName is the empty string the runtime must return

XR_ERROR_NAME_INVALID.

If the XrInstanceCreateInfo structure contains a platform-specific extension for a platform other than

the target platform, XR_ERROR_INITIALIZATION_FAILED may be returned. If a mandatory platform-specific

extension is defined for the target platform but no matching extension struct is provided in

XrInstanceCreateInfo the runtime must return XR_ERROR_INITIALIZATION_FAILED.

Valid Usage (Implicit)

• createInfo must be a pointer to a valid XrInstanceCreateInfo structure

• instance must be a pointer to an XrInstance handle

80 | Chapter 4. Instance

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_RUNTIME_UNAVAILABLE

• XR_ERROR_NAME_INVALID

• XR_ERROR_INITIALIZATION_FAILED

• XR_ERROR_EXTENSION_NOT_PRESENT

• XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED

• XR_ERROR_API_VERSION_UNSUPPORTED

• XR_ERROR_API_LAYER_NOT_PRESENT

The XrInstanceCreateInfo structure is defined as:

typedef struct XrInstanceCreateInfo {

 XrStructureType type;

 const void* next;

 XrInstanceCreateFlags createFlags;

 XrApplicationInfo applicationInfo;

 uint32_t enabledApiLayerCount;

 const char* const* enabledApiLayerNames;

 uint32_t enabledExtensionCount;

 const char* const* enabledExtensionNames;

} XrInstanceCreateInfo;

Chapter 4. Instance | 81

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• createFlags is a bitmask of XrInstanceCreateFlags that identifies options that apply to the

creation.

• applicationInfo is an instance of XrApplicationInfo. This information helps runtimes

recognize behavior inherent to classes of applications. XrApplicationInfo is defined in detail

below.

• enabledApiLayerCount is the number of global API layers to enable.

• enabledApiLayerNames is a pointer to an array of enabledApiLayerCount strings containing the

names of API layers to enable for the created instance. See the API Layers and Extensions

section for further details.

• enabledExtensionCount is the number of global extensions to enable.

• enabledExtensionNames is a pointer to an array of enabledExtensionCount strings containing the

names of extensions to enable.

Valid Usage (Implicit)

• type must be XR_TYPE_INSTANCE_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrDebugUtilsMessengerCreateInfoEXT, XrInstanceCreateInfoAndroidKHR

• createFlags must be 0

• applicationInfo must be a valid XrApplicationInfo structure

• If enabledApiLayerCount is not 0, enabledApiLayerNames must be a pointer to an array of

enabledApiLayerCount null-terminated UTF-8 strings

• If enabledExtensionCount is not 0, enabledExtensionNames must be a pointer to an array of

enabledExtensionCount null-terminated UTF-8 strings

The XrInstanceCreateInfo::createFlags member is of the following type, and contains a bitwise-OR of

zero or more of the bits defined in XrInstanceCreateFlagBits.

typedef XrFlags64 XrInstanceCreateFlags;

82 | Chapter 4. Instance

#valid-usage-for-structure-pointer-chains

Valid bits for XrInstanceCreateFlags are defined by XrInstanceCreateFlagBits.

// Flag bits for XrInstanceCreateFlags

There are currently no instance creation flag bits defined. This is reserved for future use.

The XrApplicationInfo structure is defined as:

typedef struct XrApplicationInfo {

 char applicationName[XR_MAX_APPLICATION_NAME_SIZE];

 uint32_t applicationVersion;

 char engineName[XR_MAX_ENGINE_NAME_SIZE];

 uint32_t engineVersion;

 XrVersion apiVersion;

} XrApplicationInfo;

Member Descriptions

• applicationName is a non-empty string containing the name of the application.

• applicationVersion is an unsigned integer variable containing the developer-supplied version

number of the application.

• engineName is a string containing the name of the engine (if any) used to create the

application. It may be empty to indicate no specified engine.

• engineVersion is an unsigned integer variable containing the developer-supplied version

number of the engine used to create the application. May be zero to indicate no specified

engine.

• apiVersion is the version of this API against which the application will run, encoded as

described in the API Version Numbers and Semantics section. If the runtime does not support

the requested apiVersion it must return XR_ERROR_API_VERSION_UNSUPPORTED.

Valid Usage (Implicit)

• applicationName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_APPLICATION_NAME_SIZE

• engineName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_ENGINE_NAME_SIZE

Chapter 4. Instance | 83

 Note

When using the OpenXR API to implement a reusable engine that will be used by

many applications, engineName should be set to a unique string that identifies the

engine, and engineVersion should encode a representation of the engine’s version.

This way, all applications that share this engine version will provide the same

engineName and engineVersion to the runtime. The engine should then enable

individual applications to choose their specific applicationName and

applicationVersion, enabling one application to be distinguished from another

application.

When using the OpenXR API to implement an individual application without a shared

engine, the input engineName should be left empty and engineVersion should be set to

0. The applicationName should then be filled in with a unique string that identifies the

app and the applicationVersion should encode a representation of the application’s

version.

The xrDestroyInstance function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroyInstance(

 XrInstance instance);

The xrDestroyInstance function is used to destroy an XrInstance.

Parameter Descriptions

• instance is the handle to the instance to destroy.

XrInstance handles are destroyed using xrDestroyInstance. When an XrInstance is destroyed, all

handles that are children of that XrInstance are also destroyed.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

Thread Safety

• Access to instance, and any child handles, must be externally synchronized

84 | Chapter 4. Instance

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

4.3. Instance Information

The xrGetInstanceProperties function provides information about the instance and the associated

runtime.

// Provided by XR_VERSION_1_0

XrResult xrGetInstanceProperties(

 XrInstance instance,

 XrInstanceProperties* instanceProperties);

Parameter Descriptions

• instance is a handle to an XrInstance previously created with xrCreateInstance.

• instanceProperties points to an XrInstanceProperties which describes the instance.

The instanceProperties parameter must be filled out by the runtime in response to this call, with

information as defined in XrInstanceProperties.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• instanceProperties must be a pointer to an XrInstanceProperties structure

Chapter 4. Instance | 85

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

The XrInstanceProperties structure is defined as:

typedef struct XrInstanceProperties {

 XrStructureType type;

 void* next;

 XrVersion runtimeVersion;

 char runtimeName[XR_MAX_RUNTIME_NAME_SIZE];

} XrInstanceProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• runtimeVersion is the runtime’s version (not necessarily related to an OpenXR API version),

expressed in the format of XR_MAKE_VERSION.

• runtimeName is the name of the runtime.

Valid Usage (Implicit)

• type must be XR_TYPE_INSTANCE_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain

86 | Chapter 4. Instance

#valid-usage-for-structure-pointer-chains

4.4. Platform-Specific Instance Creation

Some amount of data required for instance creation is exposed through chained structures defined in

extensions. These structures may be optional or even required for instance creation on specific

platforms, but not on other platforms. Separating off platform-specific functionality into extension

structures prevents the primary XrInstanceCreateInfo structure from becoming too bloated with

unnecessary information.

See the List of Extensions appendix for the list of available extensions and their related structures.

These structures expand the XrInstanceCreateInfo parent struct using the XrInstanceCreateInfo::next

member. The specific list of structures that may be used for extending XrInstanceCreateInfo::next can

be found in the "Valid Usage (Implicit)" block immediately following the definition of the structure.

4.4.1. The Instance Lost Error

The XR_ERROR_INSTANCE_LOST error indicates that the XrInstance has become unusable. This can happen

if a critical runtime process aborts, if the connection to the runtime is otherwise no longer available, or

if the runtime encounters an error during any function execution which prevents it from being able to

support further function execution. Once XR_ERROR_INSTANCE_LOST is first returned, it must henceforth

be returned by all non-destroy functions that involve an XrInstance or child handle type until the

instance is destroyed. Applications must destroy the XrInstance. Applications may then attempt to

continue by recreating all relevant OpenXR objects, starting with a new XrInstance. A runtime may

generate an XrEventDataInstanceLossPending event when instance loss is detected.

4.4.2. XrEventDataInstanceLossPending

// Provided by XR_VERSION_1_0

typedef struct XrEventDataInstanceLossPending {

 XrStructureType type;

 const void* next;

 XrTime lossTime;

} XrEventDataInstanceLossPending;

Receiving the XrEventDataInstanceLossPending event structure indicates that the application is about

to lose the indicated XrInstance at the indicated lossTime in the future. The application should call

xrDestroyInstance and relinquish any instance-specific resources. This typically occurs to make way

for a replacement of the underlying runtime, such as via a software update.

After the application has destroyed all of its instances and their children and waited past the specified

time, it may then re-try xrCreateInstance in a loop waiting for whatever maintenance the runtime is

performing to complete. The runtime will return XR_ERROR_RUNTIME_UNAVAILABLE from xrCreateInstance

as long as it is unable to create the instance. Once the runtime has returned and is able to continue, it

Chapter 4. Instance | 87

must resume returning XR_SUCCESS from xrCreateInstance if valid data is passed in.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• lossTime is the absolute time at which the indicated instance will be considered lost and

become unusable.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING

• next must be NULL or a valid pointer to the next structure in a structure chain

4.5. Instance Enumerated Type String Functions

Applications often want to turn certain enum values from the runtime into strings for use in log

messages, to be localized in UI, or for various other reasons. OpenXR provides functions that turn

common enum types into UTF-8 strings for use in applications.

// Provided by XR_VERSION_1_0

XrResult xrResultToString(

 XrInstance instance,

 XrResult value,

 char buffer[XR_MAX_RESULT_STRING_SIZE]);

Parameter Descriptions

• instance is the handle of the instance to ask for the string.

• value is the XrResult value to turn into a string.

• buffer is the buffer that will be used to return the string in.

Returns the text version of the provided XrResult value as a UTF-8 string.

In all cases the returned string must be one of:

88 | Chapter 4. Instance

#valid-usage-for-structure-pointer-chains

Result String Return Values

• The literal string defined for the provide numeric value in the core spec or extension. (e.g. the

value 0 results in the string XR_SUCCESS)

• XR_UNKNOWN_SUCCESS_ concatenated with the positive result number expressed as a decimal

number.

• XR_UNKNOWN_FAILURE_ concatenated with the negative result number expressed as a decimal

number.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• value must be a valid XrResult value

• buffer must be a character array of length XR_MAX_RESULT_STRING_SIZE

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

The xrStructureTypeToString function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrStructureTypeToString(

 XrInstance instance,

 XrStructureType value,

 char buffer[XR_MAX_STRUCTURE_NAME_SIZE]);

Chapter 4. Instance | 89

Parameter Descriptions

• instance is the handle of the instance to ask for the string.

• value is the XrStructureType value to turn into a string.

• buffer is the buffer that will be used to return the string in.

Returns the text version of the provided XrStructureType value as a UTF-8 string.

In all cases the returned string must be one of:

Structure Type String Return Values

• The literal string defined for the provide numeric value in the core spec or extension. (e.g. the

value of XR_TYPE_INSTANCE_CREATE_INFO results in the string XR_TYPE_INSTANCE_CREATE_INFO)

• XR_UNKNOWN_STRUCTURE_TYPE_ concatenated with the structure type number expressed as a

decimal number.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• value must be a valid XrStructureType value

• buffer must be a character array of length XR_MAX_STRUCTURE_NAME_SIZE

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

90 | Chapter 4. Instance

Chapter 5. System

This API separates the concept of physical systems of XR devices from the logical objects that

applications interact with directly. A system represents a collection of related devices in the runtime,

often made up of several individual hardware components working together to enable XR experiences.

An XrSystemId is returned by xrGetSystem representing the system of devices the runtime will use to

support a given form factor. Each system may include: a VR/AR display, various forms of input

(gamepad, touchpad, motion controller), and other trackable objects.

The application uses the system to create a session, which can then be used to accept input from the

user and output rendered frames. The application also provides suggested bindings from its actions to

any number of input sources. The runtime may use this action information to activate only a subset of

devices and avoid wasting resources on devices that are not in use. Exactly which devices are active

once an XR system is selected will depend on the features provided by the runtime, and may vary from

runtime to runtime. For example, a runtime that is capable of mapping from one tracking system’s

space to another’s may support devices from multiple tracking systems simultaneously.

5.1. Form Factors

The first step in selecting a system is for the application to request its desired form factor. The form

factor defines how the display(s) moves in the environment relative to the user’s head and how the

user will interact with the XR experience. A runtime may support multiple form factors, such as on a

mobile phone that supports both slide-in VR headset experiences and handheld AR experiences.

While an application’s core XR rendering may span across form factors, its user interface will often be

written to target a particular form factor, requiring explicit tailoring to function well on other form

factors. For example, screen-space UI designed for a handheld phone will produce an uncomfortable

experience for users if presented in screen-space on an AR headset.

typedef enum XrFormFactor {

 XR_FORM_FACTOR_HEAD_MOUNTED_DISPLAY = 1,

 XR_FORM_FACTOR_HANDHELD_DISPLAY = 2,

 XR_FORM_FACTOR_MAX_ENUM = 0x7FFFFFFF

} XrFormFactor;

The predefined form factors which may be supported by OpenXR runtimes are:

Chapter 5. System | 91

Enumerant Descriptions

• XR_FORM_FACTOR_HEAD_MOUNTED_DISPLAY. The tracked display is attached to the user’s head. The

user cannot touch the display itself. A VR headset would be an example of this form factor.

• XR_FORM_FACTOR_HANDHELD_DISPLAY. The tracked display is held in the user’s hand, independent

from the user’s head. The user may be able to touch the display, allowing for screen-space UI.

A mobile phone running an AR experience using pass-through video would be an example of

this form factor.

5.2. Getting the XrSystemId

XR_DEFINE_ATOM(XrSystemId)

An XrSystemId is an opaque atom used by the runtime to identify a system. The value

XR_NULL_SYSTEM_ID is considered an invalid system.

// Provided by XR_VERSION_1_0

#define XR_NULL_SYSTEM_ID 0

The only XrSystemId value defined to be constant across all instances is the invalid system

XR_NULL_SYSTEM_ID. No supported system is associated with XR_NULL_SYSTEM_ID. Unless explicitly

permitted, it should not be passed to API calls or used as a structure attribute when a valid XrSystemId

is required.

The xrGetSystem function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetSystem(

 XrInstance instance,

 const XrSystemGetInfo* getInfo,

 XrSystemId* systemId);

92 | Chapter 5. System

Parameter Descriptions

• instance is the handle of the instance from which to get the information.

• getInfo is a pointer to an XrSystemGetInfo structure containing the application’s requests for

a system.

• systemId is the returned XrSystemId.

To get an XrSystemId, an application specifies its desired form factor to xrGetSystem and gets the

runtime’s XrSystemId associated with that configuration.

If the form factor is supported but temporarily unavailable, xrGetSystem must return

XR_ERROR_FORM_FACTOR_UNAVAILABLE. A runtime may return XR_SUCCESS on a subsequent call for a form

factor it previously returned XR_ERROR_FORM_FACTOR_UNAVAILABLE. For example, connecting or warming

up hardware might cause an unavailable form factor to become available.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• getInfo must be a pointer to a valid XrSystemGetInfo structure

• systemId must be a pointer to an XrSystemId value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_FORM_FACTOR_UNSUPPORTED

• XR_ERROR_FORM_FACTOR_UNAVAILABLE

The XrSystemGetInfo structure is defined as:

Chapter 5. System | 93

typedef struct XrSystemGetInfo {

 XrStructureType type;

 const void* next;

 XrFormFactor formFactor;

} XrSystemGetInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• formFactor is the XrFormFactor requested by the application.

The XrSystemGetInfo structure specifies attributes about a system as desired by an application.

Valid Usage (Implicit)

• type must be XR_TYPE_SYSTEM_GET_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• formFactor must be a valid XrFormFactor value

XrInstance instance; // previously initialized

XrSystemGetInfo system_get_info = {XR_TYPE_SYSTEM_GET_INFO};

system_get_info.formFactor = XR_FORM_FACTOR_HEAD_MOUNTED_DISPLAY;

XrSystemId systemId;

CHK_XR(xrGetSystem(instance, &system_get_info, &systemId));

// create session

// create swapchains

// begin session

// main loop

// end session

// destroy session

// no access to hardware after this point

94 | Chapter 5. System

#valid-usage-for-structure-pointer-chains

5.3. System Properties

The xrGetSystemProperties function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetSystemProperties(

 XrInstance instance,

 XrSystemId systemId,

 XrSystemProperties* properties);

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose properties will be queried.

• properties points to an instance of the XrSystemProperties structure, that will be filled with

returned information.

An application can call xrGetSystemProperties to retrieve information about the system such as

vendor ID, system name, and graphics and tracking properties.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• properties must be a pointer to an XrSystemProperties structure

Chapter 5. System | 95

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SYSTEM_INVALID

The XrSystemProperties structure is defined as:

typedef struct XrSystemProperties {

 XrStructureType type;

 void* next;

 XrSystemId systemId;

 uint32_t vendorId;

 char systemName[XR_MAX_SYSTEM_NAME_SIZE];

 XrSystemGraphicsProperties graphicsProperties;

 XrSystemTrackingProperties trackingProperties;

} XrSystemProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• vendorId is a unique identifier for the vendor of the system.

• systemId is the XrSystemId identifying the system.

• systemName is a string containing the name of the system.

• graphicsProperties is an XrSystemGraphicsProperties structure specifying the system

graphics properties.

• trackingProperties is an XrSystemTrackingProperties structure specifying system tracking

properties.

96 | Chapter 5. System

Valid Usage (Implicit)

• type must be XR_TYPE_SYSTEM_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSystemAnchorPropertiesHTC, XrSystemBodyTrackingPropertiesFB,

XrSystemColorSpacePropertiesFB, XrSystemEnvironmentDepthPropertiesMETA,

XrSystemEyeGazeInteractionPropertiesEXT, XrSystemEyeTrackingPropertiesFB,

XrSystemFaceTrackingProperties2FB, XrSystemFaceTrackingPropertiesFB,

XrSystemFacialTrackingPropertiesHTC, XrSystemForceFeedbackCurlPropertiesMNDX,

XrSystemFoveatedRenderingPropertiesVARJO,

XrSystemFoveationEyeTrackedPropertiesMETA,

XrSystemHandTrackingMeshPropertiesMSFT, XrSystemHandTrackingPropertiesEXT,

XrSystemHeadsetIdPropertiesMETA, XrSystemKeyboardTrackingPropertiesFB,

XrSystemMarkerTrackingPropertiesVARJO, XrSystemMarkerUnderstandingPropertiesML,

XrSystemPassthroughColorLutPropertiesMETA, XrSystemPassthroughProperties2FB,

XrSystemPassthroughPropertiesFB, XrSystemPlaneDetectionPropertiesEXT,

XrSystemRenderModelPropertiesFB, XrSystemSpaceWarpPropertiesFB,

XrSystemSpatialEntityPropertiesFB, XrSystemUserPresencePropertiesEXT,

XrSystemVirtualKeyboardPropertiesMETA

The runtime must report a valid vendor ID for the system. The vendor ID must be either the USB

vendor ID defined for the physical device or a Khronos vendor ID.

The XrSystemGraphicsProperties structure is defined as:

typedef struct XrSystemGraphicsProperties {

 uint32_t maxSwapchainImageHeight;

 uint32_t maxSwapchainImageWidth;

 uint32_t maxLayerCount;

} XrSystemGraphicsProperties;

Member Descriptions

• maxSwapchainImageHeight is the maximum swapchain image pixel height supported by this

system.

• maxSwapchainImageWidth is the maximum swapchain image pixel width supported by this

system.

• maxLayerCount is the maximum number of composition layers supported by this system. The

runtime must support at least XR_MIN_COMPOSITION_LAYERS_SUPPORTED layers.

Chapter 5. System | 97

#valid-usage-for-structure-pointer-chains

// Provided by XR_VERSION_1_0

#define XR_MIN_COMPOSITION_LAYERS_SUPPORTED 16

XR_MIN_COMPOSITION_LAYERS_SUPPORTED defines the minimum number of composition layers that

a conformant runtime must support. A runtime must return the XrSystemGraphicsProperties

::maxLayerCount at least the value of XR_MIN_COMPOSITION_LAYERS_SUPPORTED.

The XrSystemTrackingProperties structure is defined as:

typedef struct XrSystemTrackingProperties {

 XrBool32 orientationTracking;

 XrBool32 positionTracking;

} XrSystemTrackingProperties;

Member Descriptions

• orientationTracking is set to XR_TRUE to indicate the system supports orientational tracking of

the view pose(s), XR_FALSE otherwise.

• positionTracking is set to XR_TRUE to indicate the system supports positional tracking of the

view pose(s), XR_FALSE otherwise.

98 | Chapter 5. System

Chapter 6. Path Tree and Semantic Paths

OpenXR incorporates an internal semantic path tree model, also known as the path tree, with entities

associated with nodes organized in a logical tree and referenced by path name strings structured like a

filesystem path or URL. The path tree unifies a number of concepts used in this specification and a

runtime may add additional nodes as implementation details. As a general design principle, the most

application-facing paths should have semantic and hierarchical meaning in their name. Thus, these

paths are often referred to as semantic paths. However, path names in the path tree model may not all

have the same level or kind of semantic meaning.

In regular use in an application, path name strings are converted to instance-specific XrPath values

which are used in place of path strings. The mapping between XrPath values and their corresponding

path name strings may be considered to be tracked by the runtime in a one-to-one mapping in addition

to the natural tree structure of the referenced entities. Runtimes may use any internal implementation

that satisfies the requirements.

Formally, the runtime maintains an instance-specific bijective mapping between well-formed path

name strings and valid XrPath (uint64_t) values. These XrPath values are only valid within a single

XrInstance, and applications must not share these values between instances. Applications must

instead use the string representation of a path in their code and configuration, and obtain the correct

corresponding XrPath at runtime in each XrInstance. The term path or semantic path may refer

interchangeably to either the path name string or its associated XrPath value within an instance when

context makes it clear which type is being discussed.

Given that path trees are a unifying model in this specification, the entities referenced by paths can be

of diverse types. For example, they may be used to represent physical device or sensor components,

which may be of various component types. They may also be used to represent frames of reference that

are understood by the application and the runtime, as defined by an XrSpace. Additionally, to permit

runtime re-configuration and support hardware-independent development, any syntactically-valid

path string may be used to retrieve a corresponding XrPath without error given sufficient resources,

even if no logical or hardware entity currently corresponds to that path at the time of the call. Later

retrieval of the associated path string of such an XrPath using xrPathToString should succeed if the

other requirements of that call are met. However, using such an XrPath in a later call to any other API

function may result in an error if no entity of the type required by the call is available at the path at

that later time. A runtime should permit the entity referenced by a path to vary over time to naturally

reflect varying system configuration and hardware availability.

6.1. Path Atom Type

XR_DEFINE_ATOM(XrPath)

Chapter 6. Path Tree and Semantic Paths | 99

The XrPath is an atom that connects an application with a single path, within the context of a single

instance. There is a bijective mapping between well-formed path strings and atoms in use. This atom is

used — in place of the path name string it corresponds to — to retrieve state and perform other

operations.

As an XrPath is only shorthand for a well-formed path string, they have no explicit life cycle.

Lifetime is implicitly managed by the XrInstance. An XrPath must not be used unless it is received at

execution time from the runtime in the context of a particular XrInstance. Therefore, with the

exception of XR_NULL_PATH, XrPath values must not be specified as constant values in applications:

the corresponding path string should be used instead. During the lifetime of a given XrInstance, the

XrPath associated with that instance with any given well-formed path must not vary, and similarly the

well-formed path string that corresponds to a given XrPath in that instance must not vary. An XrPath

that is received from one XrInstance may not be used with another. Such an invalid use may be

detected and result in an error being returned, or it may result in undefined behavior.

Well-written applications should typically use a small, bounded set of paths in practice. However, the

runtime should support looking up the XrPath for a large number of path strings for maximum

compatibility. Runtime implementers should keep in mind that applications supporting diverse

systems may look up path strings in a quantity exceeding the number of non-empty entities predicted

or provided by any one runtime’s own path tree model, and this is not inherently an error. However,

system resources are finite and thus runtimes may signal exhaustion of resources dedicated to these

associations under certain conditions.

When discussing the behavior of runtimes at these limits, a new XrPath refers to an XrPath value that,

as of some point in time, has neither been received by the application nor tracked internally by the

runtime. In this case, since an application has not yet received the value of such an XrPath, the runtime

has not yet made any assertions about its association with any path string. In this context, new only

refers to the fact that the mapping has not necessarily been made constant for a given value/path

string pair for the remaining life of the associated instance by being revealed to the application. It does

not necessarily imply creation of the entity, if any, referred to by such a path. Similarly, it does not

imply the absence of such an entity prior to that point. Entities in the path tree have varied lifetime

that is independent from the duration of the mapping from path string to XrPath.

For flexibility, the runtime may internally track or otherwise make constant, in instance or larger

scope, any mapping of a path string to an XrPath value even before an application would otherwise

receive that value, thus making it no longer new by the above definition.

When the runtime’s resources to track the path string-XrPath mapping are exhausted, and the

application makes an API call that would have otherwise retrieved a new XrPath as defined above, the

runtime must return XR_ERROR_PATH_COUNT_EXCEEDED. This includes both explicit calls to xrStringToPath

as well as other calls that retrieve an XrPath in any other way.

The runtime should support creating as many paths as memory will allow and must return

XR_ERROR_PATH_COUNT_EXCEEDED from relevant functions when no more can be created.

100 | Chapter 6. Path Tree and Semantic Paths

// Provided by XR_VERSION_1_0

#define XR_NULL_PATH 0

The only XrPath value defined to be constant across all instances is the invalid path XR_NULL_PATH. No

well-formed path string is associated with XR_NULL_PATH. Unless explicitly permitted, it should not

be passed to API calls or used as a structure attribute when a valid XrPath is required.

6.2. Well-Formed Path Strings

Even though they look similar, semantic paths are not file paths. To avoid confusion with file path

directory traversal conventions, many file path conventions are explicitly disallowed from well-formed

path name strings.

A well-formed path name string must conform to the following rules:

• Path name strings must be constructed entirely from characters on the following list.

◦ Lower case ASCII letters: a-z

◦ Numeric digits: 0-9

◦ Dash: -

◦ Underscore: _

◦ Period: .

◦ Forward Slash: /

• Path name strings must start with a single forward slash character.

• Path name strings must not end with a forward slash character.

• Path name strings must not contain two or more adjacent forward slash characters.

• Path name strings must not contain two forward slash characters that are separated by only period

characters.

• Path name strings must not contain only period characters following the final forward slash

character in the string.

• The maximum string length for a path name string, including the terminating \0 character, is

defined by XR_MAX_PATH_LENGTH.

6.2.1. xrStringToPath

The xrStringToPath function is defined as:

Chapter 6. Path Tree and Semantic Paths | 101

// Provided by XR_VERSION_1_0

XrResult xrStringToPath(

 XrInstance instance,

 const char* pathString,

 XrPath* path);

Parameter Descriptions

• instance is an instance previously created.

• pathString is the path name string to retrieve the associated XrPath for.

• path is the output parameter, which must point to an XrPath. Given a well-formed path name

string, this will be populated with an opaque value that is constant for that path string during

the lifetime of that instance.

xrStringToPath retrieves the XrPath value for a well-formed path string. If such a value had not yet

been assigned by the runtime to the provided path string in this XrInstance, one must be assigned at

this point. All calls to this function with the same XrInstance and path string must retrieve the same

XrPath value. Upon failure, xrStringToPath must return an appropriate XrResult, and may set the

output parameter to XR_NULL_PATH. See Path Atom Type for the conditions under which an error

may be returned when this function is given a valid XrInstance and a well-formed path string.

If the runtime’s resources are exhausted and it cannot create the path, a return value of

XR_ERROR_PATH_COUNT_EXCEEDED must be returned. If the application specifies a string that is not a well-

formed path string, XR_ERROR_PATH_FORMAT_INVALID must be returned. A return value of XR_SUCCESS from xrStringToPath may not necessarily imply that the

runtime has a component or other source of data that will be accessible through that

semantic path. It only means that the path string supplied was well-formed and that

the retrieved XrPath maps to the given path string within and during the lifetime of

the XrInstance given.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• pathString must be a null-terminated UTF-8 string

• path must be a pointer to an XrPath value

102 | Chapter 6. Path Tree and Semantic Paths

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_PATH_FORMAT_INVALID

• XR_ERROR_PATH_COUNT_EXCEEDED

6.2.2. xrPathToString

// Provided by XR_VERSION_1_0

XrResult xrPathToString(

 XrInstance instance,

 XrPath path,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

Chapter 6. Path Tree and Semantic Paths | 103

Parameter Descriptions

• instance is an instance previously created.

• path is the valid XrPath value to retrieve the path string for.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of characters written to buffer (including the

terminating '\0'), or a pointer to the required capacity in the case that bufferCapacityInput is

insufficient.

• buffer is a pointer to an application-allocated buffer that will be filled with the semantic path

string. It can be NULL if bufferCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

xrPathToString retrieves the path name string associated with an XrPath, in the context of a given

XrInstance, in the form of a NULL terminated string placed into a caller-allocated buffer. Since the

mapping between a well-formed path name string and an XrPath is bijective, there will always be

exactly one string for each valid XrPath value. This can be useful if the calling application receives an

XrPath value that they had not previously retrieved via xrStringToPath. During the lifetime of the given

XrInstance, the path name string retrieved by this function for a given valid XrPath will not change. For

invalid paths, including XR_NULL_PATH, XR_ERROR_PATH_INVALID must be returned.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

104 | Chapter 6. Path Tree and Semantic Paths

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_PATH_INVALID

6.3. Reserved Paths

In order for some uses of semantic paths to work consistently across runtimes, it is necessary to

standardize several paths and require each runtime to use the same paths or patterns of paths for

certain classes of usage. Those paths are as follows.

6.3.1. /user paths

Some paths are used to refer to entities that are filling semantic roles in the system. These paths are all

under the /user subtree.

The reserved user paths are:

Reserved Semantic Paths

• /user/hand/left represents the user’s left hand. It might be tracked using a controller or other

device in the user’s left hand, or tracked without the user holding anything, e.g. using

computer vision.

• /user/hand/right represents the user’s right hand in analog to the left hand.

• /user/head represents inputs on the user’s head, often from a device such as a head-mounted

display. To reason about the user’s head, see the XR_REFERENCE_SPACE_TYPE_VIEW reference

space.

• /user/gamepad is a two-handed gamepad device held by the user.

• /user/treadmill is a treadmill or other locomotion-targeted input device.

Runtimes are not required to provide interaction at all of these paths. For instance, in a system with no

Chapter 6. Path Tree and Semantic Paths | 105

hand tracking, only /user/head would be active for interaction. In a system with only one controller, the

runtime may provide access to that controller via either /user/hand/left or /user/hand/right as it deems

appropriate.

The runtime may change the devices referred to by /user/hand/left and /user/hand/right at any time.

If more than two hand-held controllers or devices are active, the runtime must determine which two

are accessible as /user/hand/left and /user/hand/right.

6.3.2. Input subpaths

Devices on the source side of the input system need to define paths for each component that can be

bound to an action. This section describes the naming conventions for those input components.

Runtimes must ignore input source paths that use identifiers and component names that do not

appear in this specification or otherwise do not follow the pattern specified below.

Each input source path must match the following pattern:

• …/input/<identifier>[_<location>][/<component>]

Identifiers are often the label on the component or related to the type and location of the component.

When specifying a suggested binding there are several cases where the component part of the path can

be determined automatically. See Suggested Bindings for more details.

See Interaction Profiles for examples of input subpaths.

Standard identifiers

• trackpad - A 2D input source that usually includes click and touch component.

• thumbstick - A small 2D joystick that is meant to be used with the user’s thumb. These sometimes

include click and/or touch components.

• joystick - A 2D joystick that is meant to be used with the user’s entire hand, such as a flight stick.

These generally do not have click component, but might have touch components.

• trigger - A 1D analog input component that returns to a rest state when the user stops interacting

with it. These sometime include touch and/or click components.

• throttle - A 1D analog input component that remains in position when the user stops interacting

with it.

• trackball - A 2D relative input source. These sometimes include click components.

• pedal - A 1D analog input component that is similar to a trigger but meant to be operated by a foot

• system - A button with the specialised meaning that it enables the user to access system-level

functions and UI. Input data from system buttons is generally used internally by runtimes and may

not be available to applications.

• dpad_up, dpad_down, dpad_left, and dpad_right - A set of buttons arranged in a plus shape.

106 | Chapter 6. Path Tree and Semantic Paths

• diamond_up, diamond_down, diamond_left, and diamond_right - Gamepads often have a set of

four buttons arranged in a diamond shape. The labels on those buttons vary from gamepad to

gamepad, but their arrangement is consistent. These names are used for the A/B/X/Y buttons on a

Xbox controller, and the square/cross/circle/triangle button on a PlayStation controller.

• a, b, x, y, start, home, end, select - Standalone buttons are named for their physical labels. These are

the standard identifiers for such buttons. Extensions may add new identifiers as detailed in the

next section. Groups of four buttons in a diamond shape should use the diamond-prefix names

above instead of using the labels on the buttons themselves.

• volume_up, volume_down, mute_mic, play_pause, menu, view, back - Some other standard controls

are often identified by icons. These are their standard names.

• thumbrest - Some controllers have a place for the user to rest their thumb.

• shoulder - A button that is usually pressed with the index finger and is often positioned above a

trigger.

• squeeze - An input source that indicates that the user is squeezing their fist closed. This could be a

simple button or act more like a trigger. Sources with this identifier should either follow button or

trigger conventions for their components.

• wheel - A steering wheel.

• thumb_resting_surfaces - Any surfaces that a thumb may naturally rest on. This may include, but is

not limited to, face buttons, thumbstick, and thumbrest (Provided by XR_VERSION_1_1)

• stylus - Tip that can be used for writing or drawing. May be able to detect various pressure levels

(Provided by XR_VERSION_1_1)

• trigger_curl - This sensor detects how pointed or curled the user’s finger is on the trigger: 0 = fully

pointed, 1 = finger flat on surface (Provided by XR_VERSION_1_1)

• trigger_slide - This sensor represents how far the user is sliding their index finger along the surface

of the trigger: 0 = finger flat on the surface, 1 = finger fully drawn back (Provided by

XR_VERSION_1_1)

Standard pose identifiers

Input sources whose orientation and/or position are tracked also expose pose identifiers.

Standard pose identifiers for tracked hands or motion controllers as represented by /user/hand/left and

/user/hand/right are:

Chapter 6. Path Tree and Semantic Paths | 107

Figure 2. Example grip and aim poses for generic motion controllers

• grip - A pose that allows applications to reliably render a virtual object held in the user’s hand,

whether it is tracked directly or by a motion controller. The grip pose is defined as follows:

◦ The grip position:

▪ For tracked hands: The user’s palm centroid when closing the fist, at the surface of the palm.

▪ For handheld motion controllers: A fixed position within the controller that generally lines

up with the palm centroid when held by a hand in a neutral position. This position should

be adjusted left or right to center the position within the controller’s grip.

◦ The grip orientation’s +X axis: When you completely open your hand to form a flat 5-finger

pose, the ray that is normal to the user’s palm (away from the palm in the left hand, into the

palm in the right hand).

◦ The grip orientation’s -Z axis: When you close your hand partially (as if holding the controller),

the ray that goes through the center of the tube formed by your non-thumb fingers, in the

direction of little finger to thumb.

◦ The grip orientation’s +Y axis: orthogonal to +Z and +X using the right-hand rule.

• aim - A pose that allows applications to point in the world using the input source, according to the

platform’s conventions for aiming with that kind of source. The aim pose is defined as follows:

◦ For tracked hands: The ray that follows platform conventions for how the user aims at objects

in the world with their entire hand, with +Y up, +X to the right, and -Z forward. The ray chosen

will be runtime-dependent, often a ray emerging from the hand at a target pointed by moving

the forearm.

108 | Chapter 6. Path Tree and Semantic Paths

◦ For handheld motion controllers: The ray that follows platform conventions for how the user

targets objects in the world with the motion controller, with +Y up, +X to the right, and -Z

forward. This is usually for applications that are rendering a model matching the physical

controller, as an application rendering a virtual object in the user’s hand likely prefers to point

based on the geometry of that virtual object. The ray chosen will be runtime-dependent,

although this will often emerge from the frontmost tip of a motion controller.

• grip_surface - (Provided by XR_VERSION_1_1) A pose that allows applications to reliably anchor visual

content relative to the user’s physical hand, whether the user’s hand is tracked directly or its

position and orientation is inferred by a physical controller. The grip_surface pose is defined as

follows:

◦ The grip_surface position: The user’s physical palm centroid, at the surface of the palm. For the

avoidance of doubt, the palm does not include fingers.

◦ The grip_surface orientation’s +X axis: When a user is holding the controller and straightens

their index fingers pointing forward, the ray that is normal (perpendicular) to the user’s palm

(away from the palm in the left hand, into the palm in the right hand).

◦ The grip_surface orientation’s -Z axis: When a user is holding the controller and straightens

their index finger, the ray that is parallel to their finger’s pointing direction.

◦ The grip_surface orientation’s +Y axis: orthogonal to +Z and +X using the right-hand rule.

Figure 3. Example grip_surface pose for (from left to right) a generic motion controller, tracked hand, and a

digital hand avatar. The X axis is depicted in red. The Y axis is depicted in green. The Z axis is depicted in blue. Note

When the XR_EXT_palm_pose extension is available and enabled, an additional

"palm_ext" standard pose identifier is available, and a path is added to all interaction

profiles valid for /user/hand/left or /user/hand/right. This includes interaction profiles

defined in the core spec and in extensions.

Chapter 6. Path Tree and Semantic Paths | 109

 Note

When the XR_EXT_hand_interaction extension is available and enabled, additional

"pinch_ext" and "poke_ext" standard pose identifiers are available, and a path is

added to all interaction profiles valid for /user/hand/left or /user/hand/right. This

includes interaction profiles defined in the core spec and in extensions.

Standard locations

When a single device contains multiple input sources that use the same identifier, a location suffix is

added to create a unique identifier for that input source.

Standard locations are:

• left

• right

• left_upper

• left_lower

• right_upper

• right_lower

• upper

• lower

Standard components

Components are named for the specific boolean, scalar, or other value of the input source. Standard

components are:

• click - A physical switch has been pressed by the user. This is valid for all buttons, and is common

for trackpads, thumbsticks, triggers, and dpads. "click" components are always boolean.

• touch - The user has touched the input source. This is valid for all trackpads, and may be present

for any other kind of input source if the device includes the necessary sensor. "touch" components

are always boolean.

• force - A 1D scalar value that represents the user applying force to the input. It varies from 0 to 1,

with 0 being the rest state. This is present for any input source with a force sensor.

• value - A 1D scalar value that varies from 0 to 1, with 0 being the rest state. This is present for

triggers, throttles, and pedals. It may also be present for squeeze or other components.

• x, y - scalar components of 2D values. These vary in value from -1 to 1. These represent the 2D

position of the input source with 0 being the rest state on each axis. -1 means all the way left for x

axis or all the way down for y axis. +1 means all the way right for x axis or all the way up for y axis.

x and y components are present for trackpads, thumbsticks, and joysticks.

• twist - Some sources, such as flight sticks, have a sensor that allows the user to twist the input left

110 | Chapter 6. Path Tree and Semantic Paths

or right. For this component -1 means all the way left and 1 means all the way right.

• pose - The orientation and/or position of this input source. This component may exist for dedicated

pose identifiers like grip and aim, or may be defined on other identifiers such as trackpad to let

applications reason about the surface of that part.

• proximity - The user is in physical proximity of input source. This may be present for any kind of

input source representing a physical component, such as a button, if the device includes the

necessary sensor. The state of a "proximity" component must be XR_TRUE if the same input source is

returning XR_TRUE for either a "touch" or any other component that implies physical contact. The

runtime may return XR_TRUE for "proximity" when "touch" returns XR_FALSE which would indicate

that the user is hovering just above, but not touching the input source in question. "proximity"

components are always boolean. (Provided by XR_VERSION_1_1)

Output paths

Many devices also have subpaths for output features such as haptics. The runtime must ignore output

component paths that do not follow the pattern:

• …/output/<output_identifier>[_<location>]

Standard output identifiers are:

• haptic - A haptic element like an LRA (Linear Resonant Actuator) or vibration motor

• haptic_trigger - A haptic element located in the trigger (Provided by XR_VERSION_1_1)

• haptic_thumb - A haptic element located in the resting place of the thumb, like under the touchpad

(Provided by XR_VERSION_1_1)

Devices which contain multiple haptic elements with the same output identifier must use a location

suffix as specified above.

6.3.3. Adding input sources via extensions

Extensions may enable input source path identifiers, output source path identifiers, and component

names that are not included in the core specification, subject to the following conditions:

• EXT extensions must include the _ext suffix on any identifier or component name. E.g.

…/input/newidentifier_ext/newcomponent_ext

• Vendor extensions must include the vendor’s tag as a suffix on any identifier or component name.

E.g. …/input/newidentifier_vendor/newcomponent_vendor (where "vendor" is replaced with the

vendor’s actual extension tag.)

• Khronos (KHR) extensions may add undecorated identifier or component names.

These rules are in place to prevent extensions from adding first class undecorated names that become

defacto standards. Runtimes must ignore input source paths that do not follow the restrictions above.

Chapter 6. Path Tree and Semantic Paths | 111

Extensions may also add new location suffixes, and may do so by adding a new identifier and location

combination using the appropriate suffix. E.g. …/input/newidentifier_newlocation_ext

6.4. Interaction Profile Paths

An interaction profile path identifies a collection of buttons and other input sources in a physical

arrangement to allow applications and runtimes to coordinate action bindings.

Interaction profile paths are of the form:

• /interaction_profiles/<vendor_name>/<type_name> Note

When the XR_EXT_palm_pose extension is available and enabled, an additional input

component path is added to all core interaction profiles valid for /user/hand/left or

/user/hand/right. See the extension for more details.

6.4.1. Khronos Simple Controller Profile

Path: /interaction_profiles/khr/simple_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile provides basic pose, button, and haptic support for applications with simple

input needs. There is no hardware associated with the profile, and runtimes which support this profile

should map the input paths provided to whatever the appropriate paths are on the actual hardware.

Supported component paths:

• …/input/select/click

• …/input/menu/click

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose

112 | Chapter 6. Path Tree and Semantic Paths

 Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.2. Bytedance PICO Neo 3 controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/bytedance/pico_neo3_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Bytedance PICO Neo3

Controller.

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

Chapter 6. Path Tree and Semantic Paths | 113

◦ …/input/b/click

◦ …/input/b/touch

• …/input/menu/click

• …/input/system/click (may not be available for application use)

• …/input/trigger/click

• …/input/trigger/value

• …/input/trigger/touch

• …/input/thumbstick/y

• …/input/thumbstick/x

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/squeeze/click

• …/input/squeeze/value

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose

114 | Chapter 6. Path Tree and Semantic Paths

 Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.3. Bytedance PICO 4 controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/bytedance/pico4_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Bytedance PICO 4 Controller.

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

• …/input/system/click (may not be available for application use)

• …/input/trigger/click

• …/input/trigger/value

• …/input/trigger/touch

• …/input/thumbstick/y

• …/input/thumbstick/x

• …/input/thumbstick/click

Chapter 6. Path Tree and Semantic Paths | 115

• …/input/thumbstick/touch

• …/input/squeeze/click

• …/input/squeeze/value

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.4. Bytedance PICO G3 controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/bytedance/pico_g3_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

116 | Chapter 6. Path Tree and Semantic Paths

This interaction profile represents the input sources and haptics on the Bytedance PICO G3 Controller.

• …/input/trigger/click

• …/input/trigger/value

• …/input/menu/click

• …/input/grip/pose

• …/input/aim/pose

• …/input/thumbstick

• …/input/thumbstick/click Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose Note

When designing suggested bindings for this interaction profile, you may suggest

bindings for both /user/hand/left and /user/hand/right. However, only one of them will

be active at a given time, so do not design interactions that require simultaneous use

of both hands.

Chapter 6. Path Tree and Semantic Paths | 117

6.4.5. Google Daydream Controller Profile

Path: /interaction_profiles/google/daydream_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources on the Google Daydream Controller.

Supported component paths:

• …/input/select/click

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose

118 | Chapter 6. Path Tree and Semantic Paths

 Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.6. HP Mixed Reality Motion Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/hp/mixed_reality_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the HP Mixed Reality Motion

Controller.

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/y/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/b/click

• …/input/menu/click

• …/input/squeeze/value

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic

Chapter 6. Path Tree and Semantic Paths | 119

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.7. HTC Vive Controller Profile

Path: /interaction_profiles/htc/vive_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Vive Controller.

Supported component paths:

• …/input/system/click (may not be available for application use)

• …/input/squeeze/click

• …/input/menu/click

• …/input/trigger/click

120 | Chapter 6. Path Tree and Semantic Paths

• …/input/trigger/value

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.8. HTC Vive Cosmos Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/htc/vive_cosmos_controller

Valid for user paths:

Chapter 6. Path Tree and Semantic Paths | 121

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Vive Cosmos Controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/y/click

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/b/click

◦ …/input/system/click (may not be available for application use)

• …/input/shoulder/click

• …/input/squeeze/click

• …/input/trigger/click

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose

122 | Chapter 6. Path Tree and Semantic Paths

 Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.9. HTC Vive Focus 3 Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/htc/vive_focus3_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Vive Focus 3 Controller.

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/y/click

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/b/click

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/click

Chapter 6. Path Tree and Semantic Paths | 123

• …/input/squeeze/touch

• …/input/squeeze/value

• …/input/trigger/click

• …/input/trigger/touch

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

124 | Chapter 6. Path Tree and Semantic Paths

6.4.10. HTC Vive Pro Profile

Path: /interaction_profiles/htc/vive_pro

Valid for user paths:

• /user/head

This interaction profile represents the input sources on the Vive Pro headset.

Supported component paths:

• …/input/system/click (may not be available for application use)

• …/input/volume_up/click

• …/input/volume_down/click

• …/input/mute_mic/click

6.4.11. Magic Leap 2 Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/ml/ml2_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Magic Leap 2 controller.

Supported component paths:

• …/input/menu/click

• …/input/home/click (may not be available for application use)

• …/input/trigger/click

• …/input/trigger/value

• …/input/trackpad/y

• …/input/trackpad/x

• …/input/trackpad/click

• …/input/trackpad/force

• …/input/trackpad/touch

• …/input/aim/pose

Chapter 6. Path Tree and Semantic Paths | 125

• …/input/grip/pose

• …/input/shoulder/click

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.12. Microsoft Mixed Reality Motion Controller Profile

Path: /interaction_profiles/microsoft/motion_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Microsoft Mixed Reality

Controller.

Supported component paths:

126 | Chapter 6. Path Tree and Semantic Paths

• …/input/menu/click

• …/input/squeeze/click

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

Chapter 6. Path Tree and Semantic Paths | 127

6.4.13. Microsoft Xbox Controller Profile

Path: /interaction_profiles/microsoft/xbox_controller

Valid for user paths:

• /user/gamepad

This interaction profile represents the input sources and haptics on the Microsoft Xbox Controller.

Supported component paths:

• …/input/menu/click

• …/input/view/click

• …/input/a/click

• …/input/b/click

• …/input/x/click

• …/input/y/click

• …/input/dpad_down/click

• …/input/dpad_right/click

• …/input/dpad_up/click

• …/input/dpad_left/click

• …/input/shoulder_left/click

• …/input/shoulder_right/click

• …/input/thumbstick_left/click

• …/input/thumbstick_right/click

• …/input/trigger_left/value

• …/input/trigger_right/value

• …/input/thumbstick_left/x

• …/input/thumbstick_left/y

• …/input/thumbstick_right/x

• …/input/thumbstick_right/y

• …/output/haptic_left

• …/output/haptic_right

• …/output/haptic_left_trigger

• …/output/haptic_right_trigger

128 | Chapter 6. Path Tree and Semantic Paths

6.4.14. Oculus Go Controller Profile

Path: /interaction_profiles/oculus/go_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources on the Oculus Go controller.

Supported component paths:

• …/input/system/click (may not be available for application use)

• …/input/trigger/click

• …/input/back/click

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose

Chapter 6. Path Tree and Semantic Paths | 129

 Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.15. Oculus Touch Controller Profile

Path: /interaction_profiles/oculus/touch_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity (Provided by XR_VERSION_1_1)

• …/input/thumb_resting_surfaces/proximity (Provided by XR_VERSION_1_1)

• …/input/thumbstick/x

130 | Chapter 6. Path Tree and Semantic Paths

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.16. Meta Touch Pro Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_pro_controller

Valid for user paths:

• /user/hand/left

Chapter 6. Path Tree and Semantic Paths | 131

• /user/hand/right

This interaction profile represents the input sources and haptics on the Meta Touch Pro controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity

• …/input/trigger_curl/value

• …/input/trigger_slide/value

• …/input/thumb_resting_surfaces/proximity

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/thumbrest/force

• …/input/stylus/force

• …/input/grip/pose

• …/input/aim/pose

132 | Chapter 6. Path Tree and Semantic Paths

• …/output/haptic

• …/output/haptic_trigger

• …/output/haptic_thumb Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.17. Meta Touch Plus Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_plus_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Meta Touch Plus controller.

Supported component paths:

Chapter 6. Path Tree and Semantic Paths | 133

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/force

• …/input/trigger/proximity

• …/input/trigger_curl/value

• …/input/trigger_slide/value

• …/input/thumb_resting_surfaces/proximity

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose

134 | Chapter 6. Path Tree and Semantic Paths

 Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.18. Meta Touch Controller (Rift CV1) Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_controller_rift_cv1

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller and is

a legacy profile added to specifically represent the controller shipped with the Rift CV1.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

Chapter 6. Path Tree and Semantic Paths | 135

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity

• …/input/thumb_resting_surfaces/proximity

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose

136 | Chapter 6. Path Tree and Semantic Paths

 Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.19. Meta Touch Controller (Rift S / Quest 1) Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_controller_quest_1_rift_s

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller and is

a legacy profile added to specifically represent the controller shipped with the Rift S and Quest 1.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity

Chapter 6. Path Tree and Semantic Paths | 137

• …/input/thumb_resting_surfaces/proximity

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.20. Meta Touch Controller (Quest 2) Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/meta/touch_controller_quest_2

Valid for user paths:

138 | Chapter 6. Path Tree and Semantic Paths

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Oculus Touch controller and is

a legacy profile added to specifically represent the controller shipped with the Quest 2.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/value

• …/input/trigger/touch

• …/input/trigger/proximity

• …/input/thumb_resting_surfaces/proximity

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic

Chapter 6. Path Tree and Semantic Paths | 139

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

6.4.21. Samsung Odyssey Controller Profile

(Provided by XR_VERSION_1_1)

Path: /interaction_profiles/samsung/odyssey_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Samsung Odyssey Controller. It

is exactly the same, with the exception of the name of the interaction profile, as the Microsoft Mixed

Reality Controller interaction profile. It enables the application to differentiate the newer form factor

of motion controller released with the Samsung Odyssey headset. It enables the application to

customize the appearance and experience of the controller differently from the original mixed reality

motion controller.

Supported component paths:

140 | Chapter 6. Path Tree and Semantic Paths

• …/input/menu/click

• …/input/squeeze/click

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

Chapter 6. Path Tree and Semantic Paths | 141

6.4.22. Valve Index Controller Profile

Path: /interaction_profiles/valve/index_controller

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Valve Index controller.

Supported component paths:

• …/input/system/click (may not be available for application use)

• …/input/system/touch (may not be available for application use)

• …/input/a/click

• …/input/a/touch

• …/input/b/click

• …/input/b/touch

• …/input/squeeze/value

• …/input/squeeze/force

• …/input/trigger/click

• …/input/trigger/value

• …/input/trigger/touch

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/force

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic

142 | Chapter 6. Path Tree and Semantic Paths

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

Chapter 6. Path Tree and Semantic Paths | 143

Chapter 7. Spaces

Across both virtual reality and augmented reality, XR applications have a core need to map the location

of virtual objects to the corresponding real-world locations where they will be rendered. Spaces allow

applications to explicitly create and specify the frames of reference in which they choose to track the

real world, and then determine how those frames of reference move relative to one another over time.

XR_DEFINE_HANDLE(XrSpace)

Spaces are represented by XrSpace handles, which the application creates and then uses in API calls.

Whenever an application calls a function that returns coordinates, it provides an XrSpace to specify

the frame of reference in which those coordinates will be expressed. Similarly, when providing

coordinates to a function, the application specifies which XrSpace the runtime should use to interpret

those coordinates.

OpenXR defines a set of well-known reference spaces that applications use to bootstrap their spatial

reasoning. These reference spaces are: VIEW, LOCAL, LOCAL_FLOOR, and STAGE. Each reference space has a

well-defined meaning, which establishes where its origin is positioned and how its axes are oriented.

Runtimes whose tracking systems improve their understanding of the world over time may track

spaces independently. For example, even though a LOCAL space and a STAGE space each map their origin

to a static position in the world, a runtime with an inside-out tracking system may introduce slight

adjustments to the origin of each space on a continuous basis to keep each origin in place.

Beyond well-known reference spaces, runtimes expose other independently-tracked spaces, such as a

pose action space that tracks the pose of a motion controller over time.

When one or both spaces are tracking a dynamic object, passing in an updated time to xrLocateSpace

each frame will result in an updated relative pose. For example, the location of the left hand’s pose

action space in the STAGE reference space will change each frame as the user’s hand moves relative to

the stage’s predefined origin on the floor. In other XR APIs, it is common to report the "pose" of an

object relative to some presumed underlying global space. This API is careful to not explicitly define

such an underlying global space, because it does not apply to all systems. Some systems will support no

STAGE space, while others may support a STAGE space that switches between various physical stages with

dynamic availability. To satisfy this wide variability, "poses" are always described as the relationship

between two spaces.

Some devices improve their understanding of the world as the device is used. The location returned by

xrLocateSpace in later frames may change over time, even for spaces that track static objects, as either

the target space or base space adjusts its origin.

Composition layers submitted by the application include an XrSpace for the runtime to use to position

that layer over time. Composition layers whose XrSpace is relative to the VIEW reference space are

144 | Chapter 7. Spaces

implicitly "head-locked", even if they may not be "display-locked" for non-head-mounted form factors.

7.1. Reference Spaces

The XrReferenceSpaceType enumeration is defined as:

typedef enum XrReferenceSpaceType {

 XR_REFERENCE_SPACE_TYPE_VIEW = 1,

 XR_REFERENCE_SPACE_TYPE_LOCAL = 2,

 XR_REFERENCE_SPACE_TYPE_STAGE = 3,

 // Provided by XR_VERSION_1_1

 XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR = 1000426000,

 // Provided by XR_MSFT_unbounded_reference_space

 XR_REFERENCE_SPACE_TYPE_UNBOUNDED_MSFT = 1000038000,

 // Provided by XR_VARJO_foveated_rendering

 XR_REFERENCE_SPACE_TYPE_COMBINED_EYE_VARJO = 1000121000,

 // Provided by XR_ML_localization_map

 XR_REFERENCE_SPACE_TYPE_LOCALIZATION_MAP_ML = 1000139000,

 // Provided by XR_EXT_local_floor

 XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR_EXT = XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR,

 XR_REFERENCE_SPACE_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrReferenceSpaceType;

Brief introductions to core reference space types follow. Each has full requirements in a subsequent

section, linked from these descriptions.

Chapter 7. Spaces | 145

Enumerant Descriptions

• XR_REFERENCE_SPACE_TYPE_VIEW. The VIEW reference space tracks the view origin used to

generate view transforms for the primary viewer (or centroid of view origins if stereo), with

+Y up, +X to the right, and -Z forward. This space points in the forward direction for the

viewer without incorporating the user’s eye orientation, and is not gravity-aligned.

Runtimes must support VIEW reference space.

• XR_REFERENCE_SPACE_TYPE_LOCAL. The LOCAL reference space establishes a world-locked origin,

gravity-aligned to exclude pitch and roll, with +Y up, +X to the right, and -Z forward. This

space locks in both its initial position and orientation, which the runtime may define to be

either the initial position at application launch or some other calibrated zero position.

Runtimes must support LOCAL reference space.

• XR_REFERENCE_SPACE_TYPE_STAGE. The STAGE reference space is a runtime-defined flat,

rectangular space that is empty and can be walked around on. The origin is on the floor at

the center of the rectangle, with +Y up, and the X and Z axes aligned with the rectangle edges.

The runtime may not be able to locate spaces relative to the STAGE reference space if the user

has not yet defined one within the runtime-specific UI. Applications can use

xrGetReferenceSpaceBoundsRect to determine the extents of the STAGE reference space’s XZ

bounds rectangle, if defined.

Support for the STAGE reference space is optional.

• XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR (provided by XR_VERSION_1_1) Similar to LOCAL space, the

LOCAL_FLOOR reference space establishes a world-locked origin, gravity-aligned to exclude

pitch and roll, with +Y up, +X to the right, and -Z forward. However, the origin of this space is

defined to be on an estimate of the floor level.

Runtimes must support LOCAL_FLOOR reference space.

An XrSpace handle for a reference space is created using xrCreateReferenceSpace, by specifying the

chosen reference space type and a pose within the natural reference frame defined for that reference

space type.

Runtimes implement well-known reference spaces from XrReferenceSpaceType if they support

tracking of that kind. Available reference space types are indicated by xrEnumerateReferenceSpaces.

Note that other spaces can be created as well, such as pose action spaces created by

xrCreateActionSpace, which are not enumerated by that API.

7.1.1. View Reference Space

The XR_REFERENCE_SPACE_TYPE_VIEW or VIEW reference space tracks the view origin used to generate view

146 | Chapter 7. Spaces

transforms for the primary viewer (or centroid of view origins if stereo), with +Y up, +X to the right,

and -Z forward. This space points in the forward direction for the viewer without incorporating the

user’s eye orientation, and is not gravity-aligned.

The VIEW space is primarily useful when projecting from the user’s perspective into another space to

obtain a targeting ray, or when rendering small head-locked content such as a reticle. Content

rendered in the VIEW space will stay at a fixed point on head-mounted displays and may be

uncomfortable to view if too large. To obtain the ideal view and projection transforms to use each

frame for rendering world content, applications should call xrLocateViews instead of using this space.

7.1.2. Local Reference Space

The XR_REFERENCE_SPACE_TYPE_LOCAL or LOCAL reference space establishes a world-locked origin, gravity-

aligned to exclude pitch and roll, with +Y up, +X to the right, and -Z forward. This space locks in both its

initial position and orientation, which the runtime may define to be either the initial position at

application launch or some other calibrated zero position.

When a user needs to recenter the LOCAL space, a runtime may offer some system-level recentering

interaction that is transparent to the application, but which causes the current leveled head space to

become the new LOCAL space. When such a recentering occurs, the runtime must queue the

XrEventDataReferenceSpaceChangePending event, with the recentered LOCAL space origin only taking

effect for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal to the

XrEventDataReferenceSpaceChangePending::changeTime in that event.

When views, controllers or other spaces experience tracking loss relative to the LOCAL space, runtimes

should continue to provide inferred or last-known position and orientation values. These inferred

poses can, for example, be based on neck model updates, inertial dead reckoning, or a last-known

position, so long as it is still reasonable for the application to use that pose. While a runtime is

providing position data, it must continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT and

XR_VIEW_STATE_POSITION_VALID_BIT but it can clear XR_SPACE_LOCATION_POSITION_TRACKED_BIT and

XR_VIEW_STATE_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this way.

When tracking is recovered, runtimes should snap the pose of other spaces back into position relative

to the original origin of LOCAL space.

7.1.3. Stage Reference Space

The STAGE reference space is a runtime-defined flat, rectangular space that is empty and can be walked

around on. The origin is on the floor at the center of the rectangle, with +Y up, and the X and Z axes

aligned with the rectangle edges. The runtime may not be able to locate spaces relative to the STAGE

reference space if the user has not yet defined one within the runtime-specific UI. Applications can use

xrGetReferenceSpaceBoundsRect to determine the extents of the STAGE reference space’s XZ bounds

rectangle, if defined.

The STAGE space is useful when an application needs to render standing-scale content (no bounds) or

room-scale content (with bounds) that is relative to the physical floor.

Chapter 7. Spaces | 147

When the user redefines the origin or bounds of the current STAGE space, or the runtime otherwise

switches to a new STAGE space definition, the runtime must queue the

XrEventDataReferenceSpaceChangePending event, with the new STAGE space origin only taking effect

for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal to the

XrEventDataReferenceSpaceChangePending::changeTime in that event.

When views, controllers, or other spaces experience tracking loss relative to the STAGE space, runtimes

should continue to provide inferred or last-known position and orientation values. These inferred

poses can, for example, be based on neck model updates, inertial dead reckoning, or a last-known

position, so long as it is still reasonable for the application to use that pose. While a runtime is

providing position data, it must continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT and

XR_VIEW_STATE_POSITION_VALID_BIT but it can clear XR_SPACE_LOCATION_POSITION_TRACKED_BIT and

XR_VIEW_STATE_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this way.

When tracking is recovered, runtimes should snap the pose of other spaces back into position relative

to the original origin of the STAGE space.

7.1.4. Local Floor Reference Space

Local floor reference space, indicated by XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR, is closely related to the

LOCAL reference space. It always aligns with the LOCAL space, and matches it in X and Z position.

However, unlike the LOCAL space, the LOCAL_FLOOR space has its Y axis origin on the runtime’s best

estimate of the floor level under the origin of the LOCAL space.

The location of the origin of the LOCAL_FLOOR space must match the LOCAL space in the X and Z

coordinates but not in the Y coordinate.

The orientation of the LOCAL_FLOOR space must match the LOCAL space.

The runtime must establish the Y axis origin at its best estimate of the floor level under the origin of

the LOCAL space space, subject to requirements under the following conditions to match the floor level

of the STAGE space.

If all of the following conditions are true, the Y axis origin of the LOCAL_FLOOR space must match the Y

axis origin of the STAGE space:

• the STAGE space is supported

• the location of the LOCAL space relative to the STAGE space has valid position

(XR_SPACE_LOCATION_POSITION_VALID_BIT is set)

• bounds are available from xrGetReferenceSpaceBoundsRect for the STAGE space

• the position of the LOCAL space relative to the STAGE space is within the STAGE space XZ bounds

That is, if there is a stage with bounds, and if the local space and thus the local floor is logically within

the stage, the local floor and the stage share the same floor level.

When the origin of the LOCAL space is changed in orientation or XZ position, the origin of the

148 | Chapter 7. Spaces

LOCAL_FLOOR space must also change accordingly.

When a change in origin of the LOCAL_FLOOR space occurs, the runtime must queue the

XrEventDataReferenceSpaceChangePending event, with the changed LOCAL_FLOOR space origin only

taking effect for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal

to the XrEventDataReferenceSpaceChangePending::changeTime in that event.

The xrGetReferenceSpaceBoundsRect function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetReferenceSpaceBoundsRect(

 XrSession session,

 XrReferenceSpaceType referenceSpaceType,

 XrExtent2Df* bounds);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• referenceSpaceType is the reference space type whose bounds should be retrieved.

• bounds is the returned space extents.

XR systems may have limited real world spatial ranges in which users can freely move around while

remaining tracked. Applications sometimes wish to query these boundaries and alter application

behavior or content placement to ensure the user can complete the experience while remaining within

the boundary. Applications can query this information using xrGetReferenceSpaceBoundsRect.

When called, xrGetReferenceSpaceBoundsRect should return the extents of a rectangle that is clear of

obstacles down to the floor, allowing where the user can freely move while remaining tracked, if

available for that reference space. The returned extent represents the dimensions of an axis-aligned

bounding box where the XrExtent2Df::width and XrExtent2Df::height fields correspond to the X and Z

axes of the provided space, with the extents centered at the origin of the space. Not all systems or

spaces support boundaries. If a runtime is unable to provide bounds for a given space,

XR_SPACE_BOUNDS_UNAVAILABLE must be returned and all fields of bounds must be set to 0.

The returned extents are expressed relative to the natural origin of the provided

XrReferenceSpaceType and must not incorporate any origin offsets specified by the application during

calls to xrCreateReferenceSpace.

The runtime must return XR_ERROR_REFERENCE_SPACE_UNSUPPORTED if the XrReferenceSpaceType passed in

referenceSpaceType is not supported by this session.

When a runtime will begin operating with updated space bounds, the runtime must queue a

Chapter 7. Spaces | 149

corresponding XrEventDataReferenceSpaceChangePending event.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• referenceSpaceType must be a valid XrReferenceSpaceType value

• bounds must be a pointer to an XrExtent2Df structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SPACE_BOUNDS_UNAVAILABLE

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_REFERENCE_SPACE_UNSUPPORTED

The XrEventDataReferenceSpaceChangePending event structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrEventDataReferenceSpaceChangePending {

 XrStructureType type;

 const void* next;

 XrSession session;

 XrReferenceSpaceType referenceSpaceType;

 XrTime changeTime;

 XrBool32 poseValid;

 XrPosef poseInPreviousSpace;

} XrEventDataReferenceSpaceChangePending;

150 | Chapter 7. Spaces

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• session is the XrSession for which the reference space is changing.

• referenceSpaceType is the XrReferenceSpaceType that is changing.

• changeTime is the target XrTime after which xrLocateSpace or xrLocateViews will return values

that respect this change.

• poseValid is true if the runtime can determine the poseInPreviousSpace of the new space in

the previous space before the change.

• poseInPreviousSpace is an XrPosef defining the position and orientation of the new reference

space’s natural origin within the natural reference frame of its previous space.

The XrEventDataReferenceSpaceChangePending event is sent to the application to notify it that the

origin (and perhaps the bounds) of a reference space is changing. This may occur due to the user

recentering the space explicitly, or the runtime otherwise switching to a different space definition.

The reference space change must only take effect for xrLocateSpace or xrLocateViews calls whose

XrTime parameter is greater than or equal to the changeTime provided in that event. Runtimes should

provide a changeTime to applications that allows for a deep render pipeline to present frames that are

already in flight using the previous definition of the space. Runtimes should choose a changeTime that is

midway between the XrFrameState::predictedDisplayTime of future frames to avoid threshold issues

with applications that calculate future frame times using XrFrameState::predictedDisplayPeriod.

The poseInPreviousSpace provided here must only describe the change in the natural origin of the

reference space and must not incorporate any origin offsets specified by the application during calls to

xrCreateReferenceSpace. If the runtime does not know the location of the space’s new origin relative to

its previous origin, poseValid must be false, and the position and orientation of poseInPreviousSpace are

undefined. .Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_REFERENCE_SPACE_CHANGE_PENDING

• next must be NULL or a valid pointer to the next structure in a structure chain

7.2. Action Spaces

An XrSpace handle for a pose action is created using xrCreateActionSpace, by specifying the chosen

pose action and a pose within the action’s natural reference frame.

Runtimes support suggested pose action bindings to well-known user paths with …/pose subpaths if

Chapter 7. Spaces | 151

#valid-usage-for-structure-pointer-chains

they support tracking for that particular identifier.

Some example well-known pose action paths:

• /user/hand/left/input/grip

• /user/hand/left/input/aim

• /user/hand/right/input/grip

• /user/hand/right/input/aim

For definitions of these well-known pose device paths, see the discussion of device input subpaths in

the Semantic Paths chapter.

7.2.1. Action Spaces Lifetime

XrSpace handles created for a pose action must be unlocatable unless the action set that contains the

corresponding pose action was set as active via the most recent xrSyncActions call. If the underlying

device that is active for the action changes, the device this space is tracking must only change to track

the new device when xrSyncActions is called.

If xrLocateSpace is called with an unlocatable action space, the implementation must return no

position or orientation and both XR_SPACE_LOCATION_POSITION_VALID_BIT and

XR_SPACE_LOCATION_ORIENTATION_VALID_BIT must be unset. If XrSpaceVelocity is also supplied,

XR_SPACE_VELOCITY_LINEAR_VALID_BIT and XR_SPACE_VELOCITY_ANGULAR_VALID_BIT must be unset. If

xrLocateViews is called with an unlocatable action space, the implementation must return no position

or orientation and both XR_VIEW_STATE_POSITION_VALID_BIT and XR_VIEW_STATE_ORIENTATION_VALID_BIT

must be unset.

7.3. Space Lifecycle

There are a small set of core APIs that allow applications to reason about reference spaces, action

spaces, and their relative locations.

7.3.1. xrEnumerateReferenceSpaces

The xrEnumerateReferenceSpaces function is defined as:

152 | Chapter 7. Spaces

// Provided by XR_VERSION_1_0

XrResult xrEnumerateReferenceSpaces(

 XrSession session,

 uint32_t spaceCapacityInput,

 uint32_t* spaceCountOutput,

 XrReferenceSpaceType* spaces);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• spaceCapacityInput is the capacity of the spaces array, or 0 to indicate a request to retrieve the

required capacity.

• spaceCountOutput is a pointer to the count of spaces written, or a pointer to the required

capacity in the case that spaceCapacityInput is insufficient.

• spaces is a pointer to an application-allocated array that will be filled with the enumerant of

each supported reference space. It can be NULL if spaceCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

spaces size.

Enumerates the set of reference space types that this runtime supports for a given session. Runtimes

must always return identical buffer contents from this enumeration for the lifetime of the session.

If a session enumerates support for a given reference space type, calls to xrCreateReferenceSpace must

succeed for that session, with any transient unavailability of poses expressed later during calls to

xrLocateSpace.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• spaceCountOutput must be a pointer to a uint32_t value

• If spaceCapacityInput is not 0, spaces must be a pointer to an array of spaceCapacityInput

XrReferenceSpaceType values

Chapter 7. Spaces | 153

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

7.3.2. xrCreateReferenceSpace

The xrCreateReferenceSpace function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateReferenceSpace(

 XrSession session,

 const XrReferenceSpaceCreateInfo* createInfo,

 XrSpace* space);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• createInfo is the XrReferenceSpaceCreateInfo used to specify the space.

• space is the returned space handle.

Creates an XrSpace handle based on a chosen reference space. Application can provide an XrPosef to

define the position and orientation of the new space’s origin within the natural reference frame of the

reference space.

Multiple XrSpace handles may exist simultaneously, up to some limit imposed by the runtime. The

XrSpace handle must be eventually freed via the xrDestroySpace function.

154 | Chapter 7. Spaces

The runtime must return XR_ERROR_REFERENCE_SPACE_UNSUPPORTED if the given reference space type is not

supported by this session.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrReferenceSpaceCreateInfo structure

• space must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_REFERENCE_SPACE_UNSUPPORTED

• XR_ERROR_POSE_INVALID

The XrReferenceSpaceCreateInfo structure is defined as:

typedef struct XrReferenceSpaceCreateInfo {

 XrStructureType type;

 const void* next;

 XrReferenceSpaceType referenceSpaceType;

 XrPosef poseInReferenceSpace;

} XrReferenceSpaceCreateInfo;

Chapter 7. Spaces | 155

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• referenceSpaceType is the chosen XrReferenceSpaceType.

• poseInReferenceSpace is an XrPosef defining the position and orientation of the new space’s

origin within the natural reference frame of the reference space.

Valid Usage (Implicit)

• type must be XR_TYPE_REFERENCE_SPACE_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• referenceSpaceType must be a valid XrReferenceSpaceType value

7.3.3. xrCreateActionSpace

The xrCreateActionSpace function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateActionSpace(

 XrSession session,

 const XrActionSpaceCreateInfo* createInfo,

 XrSpace* space);

Parameter Descriptions

• session is the XrSession to create the action space in.

• createInfo is the XrActionSpaceCreateInfo used to specify the space.

• space is the returned space handle.

Creates an XrSpace handle based on a chosen pose action. Application can provide an XrPosef to

define the position and orientation of the new space’s origin within the natural reference frame of the

action space.

Multiple XrSpace handles may exist simultaneously, up to some limit imposed by the runtime. The

156 | Chapter 7. Spaces

#valid-usage-for-structure-pointer-chains

XrSpace handle must be eventually freed via the xrDestroySpace function or by destroying the parent

XrAction handle.

The runtime must return XR_ERROR_ACTION_TYPE_MISMATCH if the action provided in

XrActionSpaceCreateInfo::action is not of type XR_ACTION_TYPE_POSE_INPUT.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrActionSpaceCreateInfo structure

• space must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

The XrActionSpaceCreateInfo structure is defined as:

Chapter 7. Spaces | 157

typedef struct XrActionSpaceCreateInfo {

 XrStructureType type;

 const void* next;

 XrAction action;

 XrPath subactionPath;

 XrPosef poseInActionSpace;

} XrActionSpaceCreateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• action is a handle to a pose XrAction previously created with xrCreateAction.

• subactionPath is XR_NULL_PATH or an XrPath that was specified when the action was created.

If subactionPath is a valid path not specified when the action was created the runtime must

return XR_ERROR_PATH_UNSUPPORTED. If this parameter is set, the runtime must create a space

that is relative to only that subaction’s pose binding.

• poseInActionSpace is an XrPosef defining the position and orientation of the new space’s

origin within the natural reference frame of the pose action.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_SPACE_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• action must be a valid XrAction handle

7.3.4. xrDestroySpace

The xrDestroySpace function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroySpace(

 XrSpace space);

158 | Chapter 7. Spaces

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• space is a handle to an XrSpace previously created by a function such as

xrCreateReferenceSpace.

XrSpace handles are destroyed using xrDestroySpace. The runtime may still use this space if there are

active dependencies (e.g, compositions in progress).

Valid Usage (Implicit)

• space must be a valid XrSpace handle

Thread Safety

• Access to space, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

7.4. Locating Spaces

Applications use the xrLocateSpace function to find the pose of an XrSpace’s origin within a base

XrSpace at a given historical or predicted time. If an application wants to know the velocity of the

space’s origin, it can chain an XrSpaceVelocity structure to the next pointer of the XrSpaceLocation

structure when calling the xrLocateSpace function. Applications should inspect the output

XrSpaceLocationFlagBits and XrSpaceVelocityFlagBits to determine the validity and tracking status of

the components of the location.

7.4.1. xrLocateSpace

xrLocateSpace provides the physical location of a space in a base space at a specified time, if currently

known by the runtime.

Chapter 7. Spaces | 159

// Provided by XR_VERSION_1_0

XrResult xrLocateSpace(

 XrSpace space,

 XrSpace baseSpace,

 XrTime time,

 XrSpaceLocation* location);

Parameter Descriptions

• space identifies the target space to locate.

• baseSpace identifies the underlying space in which to locate space.

• time is the time for which the location should be provided.

• location provides the location of space in baseSpace.

For a time in the past, the runtime should locate the spaces based on the runtime’s most accurate

current understanding of how the world was at that historical time.

For a time in the future, the runtime should locate the spaces based on the runtime’s most up-to-date

prediction of how the world will be at that future time.

The minimum valid range of values for time are described in Prediction Time Limits. For values of time

outside this range, xrLocateSpace may return a location with no position and

XR_SPACE_LOCATION_POSITION_VALID_BIT unset.

Some devices improve their understanding of the world as the device is used. The location returned by

xrLocateSpace for a given space, baseSpace and time may change over time, even for spaces that track

static objects, as one or both spaces adjust their origins.

During tracking loss of space relative to baseSpace, runtimes should continue to provide inferred or

last-known XrPosef::position and XrPosef::orientation values. These inferred poses can, for example,

be based on neck model updates, inertial dead reckoning, or a last-known position, so long as it is still

reasonable for the application to use that pose. While a runtime is providing position data, it must

continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT but it can clear

XR_SPACE_LOCATION_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this

way.

If the runtime has not yet observed even a last-known pose for how to locate space in baseSpace (e.g.

one space is an action space bound to a motion controller that has not yet been detected, or the two

spaces are in disconnected fragments of the runtime’s tracked volume), the runtime should return a

location with no position and XR_SPACE_LOCATION_POSITION_VALID_BIT unset.

The runtime must return a location with both XR_SPACE_LOCATION_POSITION_VALID_BIT and

XR_SPACE_LOCATION_POSITION_TRACKED_BIT set when locating space and baseSpace if both spaces were

160 | Chapter 7. Spaces

created relative to the same entity (e.g. two action spaces for the same action), even if the entity is

currently untracked. The location in this case is the difference in the two spaces' application-specified

transforms relative to that common entity.

During tracking loss, the runtime should return a location with XR_SPACE_LOCATION_POSITION_VALID_BIT

and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT set and XR_SPACE_LOCATION_POSITION_TRACKED_BIT and

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT unset for spaces tracking two static entities in the world

when their relative pose is known to the runtime. This enables applications to continue to make use of

the runtime’s latest knowledge of the world.

If an XrSpaceVelocity structure is chained to the XrSpaceLocation::next pointer, and the velocity is

observed or can be calculated by the runtime, the runtime must fill in the linear velocity of the origin

of space within the reference frame of baseSpace and set the XR_SPACE_VELOCITY_LINEAR_VALID_BIT.

Similarly, if an XrSpaceVelocity structure is chained to the XrSpaceLocation::next pointer, and the

angular velocity is observed or can be calculated by the runtime, the runtime must fill in the angular

velocity of the origin of space within the reference frame of baseSpace and set the

XR_SPACE_VELOCITY_ANGULAR_VALID_BIT.

The following example code shows how an application can get both the location and velocity of a space

within a base space using the xrLocateSpace function by chaining an XrSpaceVelocity to the next

pointer of XrSpaceLocation and calling xrLocateSpace.

XrSpace space; // previously initialized

XrSpace baseSpace; // previously initialized

XrTime time; // previously initialized

XrSpaceVelocity velocity {XR_TYPE_SPACE_VELOCITY};

XrSpaceLocation location {XR_TYPE_SPACE_LOCATION, &velocity};

xrLocateSpace(space, baseSpace, time, &location);

Valid Usage (Implicit)

• space must be a valid XrSpace handle

• baseSpace must be a valid XrSpace handle

• location must be a pointer to an XrSpaceLocation structure

• Both of baseSpace and space must have been created, allocated, or retrieved from the same

XrSession

Chapter 7. Spaces | 161

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

The XrSpaceLocation structure is defined as:

typedef struct XrSpaceLocation {

 XrStructureType type;

 void* next;

 XrSpaceLocationFlags locationFlags;

 XrPosef pose;

} XrSpaceLocation;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain, such as XrSpaceVelocity.

• locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits, to indicate

which members contain valid data. If none of the bits are set, no other fields in this structure

should be considered to be valid or meaningful.

• pose is an XrPosef defining the position and orientation of the origin of xrLocateSpace::space

within the reference frame of xrLocateSpace::baseSpace.

162 | Chapter 7. Spaces

Valid Usage (Implicit)

• type must be XR_TYPE_SPACE_LOCATION

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrEyeGazeSampleTimeEXT, XrSpaceVelocity

• locationFlags must be 0 or a valid combination of XrSpaceLocationFlagBits values

The XrSpaceLocation::locationFlags member is of the following type, and contains a bitwise-OR of zero

or more of the bits defined in XrSpaceLocationFlagBits.

typedef XrFlags64 XrSpaceLocationFlags;

Valid bits for XrSpaceLocationFlags are defined by XrSpaceLocationFlagBits, which is specified as:

// Flag bits for XrSpaceLocationFlags

static const XrSpaceLocationFlags XR_SPACE_LOCATION_ORIENTATION_VALID_BIT = 0x00000001;

static const XrSpaceLocationFlags XR_SPACE_LOCATION_POSITION_VALID_BIT = 0x00000002;

static const XrSpaceLocationFlags XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT = 0x00000004;

static const XrSpaceLocationFlags XR_SPACE_LOCATION_POSITION_TRACKED_BIT = 0x00000008;

The flag bits have the following meanings:

Chapter 7. Spaces | 163

#valid-usage-for-structure-pointer-chains

Flag Descriptions

• XR_SPACE_LOCATION_ORIENTATION_VALID_BIT indicates that the pose field’s orientation field

contains valid data. For a space location tracking a device with its own inertial tracking,

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT should remain set when this bit is set.

Applications must not read the pose field’s orientation if this flag is unset.

• XR_SPACE_LOCATION_POSITION_VALID_BIT indicates that the pose field’s position field contains

valid data. When a space location loses tracking, runtimes should continue to provide valid

but untracked position values that are inferred or last-known, so long as it’s still meaningful

for the application to use that position, clearing XR_SPACE_LOCATION_POSITION_TRACKED_BIT until

positional tracking is recovered. Applications must not read the pose field’s position if this

flag is unset.

• XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT indicates that the pose field’s orientation field

represents an actively tracked orientation. For a space location tracking a device with its own

inertial tracking, this bit should remain set when XR_SPACE_LOCATION_ORIENTATION_VALID_BIT is

set. For a space location tracking an object whose orientation is no longer known during

tracking loss (e.g. an observed QR code), runtimes should continue to provide valid but

untracked orientation values, so long as it’s still meaningful for the application to use that

orientation.

• XR_SPACE_LOCATION_POSITION_TRACKED_BIT indicates that the pose field’s position field

represents an actively tracked position. When a space location loses tracking, runtimes

should continue to provide valid but untracked position values that are inferred or last-

known, e.g. based on neck model updates, inertial dead reckoning, or a last-known position,

so long as it’s still meaningful for the application to use that position.

The XrSpaceVelocity structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrSpaceVelocity {

 XrStructureType type;

 void* next;

 XrSpaceVelocityFlags velocityFlags;

 XrVector3f linearVelocity;

 XrVector3f angularVelocity;

} XrSpaceVelocity;

164 | Chapter 7. Spaces

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• velocityFlags is a bitfield, with bit masks defined in XrSpaceVelocityFlagBits, to indicate

which members contain valid data. If none of the bits are set, no other fields in this structure

should be considered to be valid or meaningful.

• linearVelocity is the relative linear velocity of the origin of xrLocateSpace::space with

respect to and expressed in the reference frame of xrLocateSpace::baseSpace, in units of

meters per second.

• angularVelocity is the relative angular velocity of xrLocateSpace::space with respect to

xrLocateSpace::baseSpace. The vector’s direction is expressed in the reference frame of

xrLocateSpace::baseSpace and is parallel to the rotational axis of xrLocateSpace::space. The

vector’s magnitude is the relative angular speed of xrLocateSpace::space in radians per

second. The vector follows the right-hand rule for torque/rotation.

Valid Usage (Implicit)

• type must be XR_TYPE_SPACE_VELOCITY

• next must be NULL or a valid pointer to the next structure in a structure chain

• velocityFlags must be 0 or a valid combination of XrSpaceVelocityFlagBits values

The XrSpaceVelocity::velocityFlags member is of the following type, and contains a bitwise-OR of zero

or more of the bits defined in XrSpaceVelocityFlagBits.

typedef XrFlags64 XrSpaceVelocityFlags;

Valid bits for XrSpaceVelocityFlags are defined by XrSpaceVelocityFlagBits, which is specified as:

// Flag bits for XrSpaceVelocityFlags

static const XrSpaceVelocityFlags XR_SPACE_VELOCITY_LINEAR_VALID_BIT = 0x00000001;

static const XrSpaceVelocityFlags XR_SPACE_VELOCITY_ANGULAR_VALID_BIT = 0x00000002;

The flag bits have the following meanings:

Chapter 7. Spaces | 165

#valid-usage-for-structure-pointer-chains

Flag Descriptions

• XR_SPACE_VELOCITY_LINEAR_VALID_BIT  — Indicates that the linearVelocity member contains

valid data. Applications must not read the linearVelocity field if this flag is unset.

• XR_SPACE_VELOCITY_ANGULAR_VALID_BIT  — Indicates that the angularVelocity member contains

valid data. Applications must not read the angularVelocity field if this flag is unset.

7.4.2. Locate spaces

Applications can use xrLocateSpaces function to locate an array of spaces.

The xrLocateSpaces function is defined as:

// Provided by XR_VERSION_1_1

XrResult xrLocateSpaces(

 XrSession session,

 const XrSpacesLocateInfo* locateInfo,

 XrSpaceLocations* spaceLocations);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• locateInfo is a pointer to an XrSpacesLocateInfo that provides the input information to locate

spaces.

• spaceLocations is a pointer to an XrSpaceLocations for the runtime to return the locations of

the specified spaces in the base space.

xrLocateSpaces provides the physical location of one or more spaces in a base space at a specified time,

if currently known by the runtime.

The XrSpacesLocateInfo::time, the XrSpacesLocateInfo::baseSpace, and each space in

XrSpacesLocateInfo::spaces, in the locateInfo parameter, all follow the same specifics as the

corresponding inputs to the xrLocateSpace function.

166 | Chapter 7. Spaces

Valid Usage (Implicit)

• session must be a valid XrSession handle

• locateInfo must be a pointer to a valid XrSpacesLocateInfo structure

• spaceLocations must be a pointer to an XrSpaceLocations structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_TIME_INVALID

The XrSpacesLocateInfo structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrSpacesLocateInfo {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

 uint32_t spaceCount;

 const XrSpace* spaces;

} XrSpacesLocateInfo;

Chapter 7. Spaces | 167

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace identifies the underlying space in which to locate spaces.

• time is the time for which the location is requested.

• spaceCount is a uint32_t specifying the count of elements in the spaces array.

• spaces is an array of valid XrSpace handles to be located.

The time, the baseSpace, and each space in spaces all follow the same specifics as the corresponding

inputs to the xrLocateSpace function.

The baseSpace and all of the XrSpace handles in the spaces array must be valid and share the same

parent XrSession.

If the time is invalid, the xrLocateSpaces must return XR_ERROR_TIME_INVALID.

The spaceCount must be a positive number, i.e. the array spaces must not be empty. Otherwise, the

runtime must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• type must be XR_TYPE_SPACES_LOCATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

• spaces must be a pointer to an array of spaceCount valid XrSpace handles

• The spaceCount parameter must be greater than 0

• Both of baseSpace and the elements of spaces must have been created, allocated, or retrieved

from the same XrSession

The XrSpaceLocations structure is defined as:

168 | Chapter 7. Spaces

#valid-usage-for-structure-pointer-chains

// Provided by XR_VERSION_1_1

typedef struct XrSpaceLocations {

 XrStructureType type;

 void* next;

 uint32_t locationCount;

 XrSpaceLocationData* locations;

} XrSpaceLocations;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain, such as XrSpaceVelocities.

• locationCount is a uint32_t specifying the count of elements in the locations array.

• locations is an array of XrSpaceLocations for the runtime to populate with the locations of

the specified spaces in the XrSpacesLocateInfo::baseSpace at the specified

XrSpacesLocateInfo::time.

The XrSpaceLocations structure contains an array of space locations in the member locations, to be

used as output for xrLocateSpaces. The application must allocate this array to be populated with the

function output. The locationCount value must be the same as XrSpacesLocateInfo::spaceCount,

otherwise, the xrLocateSpaces function must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• type must be XR_TYPE_SPACE_LOCATIONS

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSpaceVelocities

• locations must be a pointer to an array of locationCount XrSpaceLocationData structures

• The locationCount parameter must be greater than 0

The XrSpaceLocationData structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrSpaceLocationData {

 XrSpaceLocationFlags locationFlags;

 XrPosef pose;

} XrSpaceLocationData;

Chapter 7. Spaces | 169

#valid-usage-for-structure-pointer-chains

Member Descriptions

• locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits. It behaves the

same as XrSpaceLocation::locationFlags.

• pose is an XrPosef that behaves the same as XrSpaceLocation::pose.

This is a single element of the array in XrSpaceLocations::locations, and is used to return the pose and

location flags for a single space with respect to the specified base space from a call to xrLocateSpaces.

It does not accept chained structures to allow for easier use in dynamically allocated container

datatypes. Chained structures are possible with the XrSpaceLocations that describes an array of these

elements.

7.4.3. Locate space velocities

Applications can request the velocities of spaces by chaining the XrSpaceVelocities structure to the

next pointer of XrSpaceLocations when calling xrLocateSpaces.

The XrSpaceVelocities structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrSpaceVelocities {

 XrStructureType type;

 void* next;

 uint32_t velocityCount;

 XrSpaceVelocityData* velocities;

} XrSpaceVelocities;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• velocityCount is a uint32_t specifying the count of elements in the velocities array.

• velocities is an array of XrSpaceVelocityData for the runtime to populate with the velocities

of the specified spaces in the XrSpacesLocateInfo::baseSpace at the specified

XrSpacesLocateInfo::time.

The velocities member contains an array of space velocities in the member velocities, to be used as

output for xrLocateSpaces. The application must allocate this array to be populated with the function

output. The velocityCount value must be the same as XrSpacesLocateInfo::spaceCount, otherwise, the

170 | Chapter 7. Spaces

xrLocateSpaces function must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• type must be XR_TYPE_SPACE_VELOCITIES

• next must be NULL or a valid pointer to the next structure in a structure chain

• velocities must be a pointer to an array of velocityCount XrSpaceVelocityData structures

• The velocityCount parameter must be greater than 0

The XrSpaceVelocityData structure is defined as:

// Provided by XR_VERSION_1_1

typedef struct XrSpaceVelocityData {

 XrSpaceVelocityFlags velocityFlags;

 XrVector3f linearVelocity;

 XrVector3f angularVelocity;

} XrSpaceVelocityData;

Member Descriptions

• velocityFlags is a bitfield, with bit values defined in XrSpaceVelocityFlagBits. It behaves the

same as XrSpaceVelocity::velocityFlags.

• linearVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::linearVelocity.

• angularVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::angularVelocity.

This is a single element of the array in XrSpaceVelocities::velocities, and is used to return the linear

and angular velocity and velocity flags for a single space with respect to the specified base space from

a call to xrLocateSpaces. It does not accept chained structures to allow for easier use in dynamically

allocated container datatypes.

7.4.4. Example code for xrLocateSpaces

The following example code shows how an application retrieves both the location and velocity of one

or more spaces in a base space at a given time using the xrLocateSpaces function.

XrInstance instance; // previously initialized

XrSession session; // previously initialized

XrSpace baseSpace; // previously initialized

Chapter 7. Spaces | 171

#valid-usage-for-structure-pointer-chains

std::vector<XrSpace> spacesToLocate; // previously initialized

// Prepare output buffers to receive data and get reused in frame loop.

std::vector<XrSpaceLocationData> locationBuffer(spacesToLocate.size());

std::vector<XrSpaceVelocityData> velocityBuffer(spacesToLocate.size());

// Get function pointer for xrLocateSpaces.

PFN_xrLocateSpaces xrLocateSpaces;

CHK_XR(xrGetInstanceProcAddr(instance, "xrLocateSpaces",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &xrLocateSpaces)));

// application frame loop

while (1) {

 // Typically the time is the predicted display time returned from xrWaitFrame.

 XrTime displayTime; // previously initialized.

 XrSpacesLocateInfo locateInfo{XR_TYPE_SPACES_LOCATE_INFO};

 locateInfo.baseSpace = baseSpace;

 locateInfo.time = displayTime;

 locateInfo.spaceCount = (uint32_t)spacesToLocate.size();

 locateInfo.spaces = spacesToLocate.data();

 XrSpaceLocations locations{XR_TYPE_SPACE_LOCATIONS};

 locations.locationCount = (uint32_t)locationBuffer.size();

 locations.locations = locationBuffer.data();

 XrSpaceVelocities velocities{XR_TYPE_SPACE_VELOCITIES};

 velocities.velocityCount = (uint32_t)velocityBuffer.size();

 velocities.velocities = velocityBuffer.data();

 locations.next = &velocities;

 CHK_XR(xrLocateSpaces(session, &locateInfo, &locations));

 for (uint32_t i = 0; i < spacesToLocate.size(); i++) {

 const auto positionAndOrientationTracked =

 XR_SPACE_LOCATION_POSITION_TRACKED_BIT |

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;

 const auto orientationOnlyTracked = XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;

 if ((locationBuffer[i].locationFlags & positionAndOrientationTracked) ==

positionAndOrientationTracked) {

 // if the location is 6dof tracked

 do_something(locationBuffer[i].pose.position);

 do_something(locationBuffer[i].pose.orientation);

 const auto velocityValidBits =

 XR_SPACE_VELOCITY_LINEAR_VALID_BIT | XR_SPACE_VELOCITY_ANGULAR_VALID_BIT;

172 | Chapter 7. Spaces

 if ((velocityBuffer[i].velocityFlags & velocityValidBits) ==

velocityValidBits) {

 do_something(velocityBuffer[i].linearVelocity);

 do_something(velocityBuffer[i].angularVelocity);

 }

 }

 else if ((locationBuffer[i].locationFlags & orientationOnlyTracked) ==

orientationOnlyTracked) {

 // if the location is 3dof tracked

 do_something(locationBuffer[i].pose.orientation);

 if ((velocityBuffer[i].velocityFlags & XR_SPACE_VELOCITY_ANGULAR_VALID_BIT)

== XR_SPACE_VELOCITY_ANGULAR_VALID_BIT) {

 do_something(velocityBuffer[i].angularVelocity);

 }

 }

 }

}

Chapter 7. Spaces | 173

Chapter 8. View Configurations

A view configuration is a semantically meaningful set of one or more views for which an application

can render images. A primary view configuration is a view configuration intended to be presented to

the viewer interacting with the XR application. This distinction allows the later addition of additional

views, for example views which are intended for spectators.

A typical head-mounted VR system has a view configuration with two views, while a typical phone-

based AR system has a view configuration with a single view. A simple multi-wall projection-based

(CAVE-like) VR system may have a view configuration with at least one view for each display surface

(wall, floor, ceiling) in the room.

For any supported form factor, a system will support one or more primary view configurations.

Supporting more than one primary view configuration can be useful if a system supports a special

view configuration optimized for the hardware but also supports a more broadly used view

configuration as a compatibility fallback.

View configurations are identified with an XrViewConfigurationType.

8.1. Primary View Configurations

typedef enum XrViewConfigurationType {

 XR_VIEW_CONFIGURATION_TYPE_PRIMARY_MONO = 1,

 XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO = 2,

 // Provided by XR_VERSION_1_1

 XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET = 1000037000,

 // Provided by XR_MSFT_first_person_observer

 XR_VIEW_CONFIGURATION_TYPE_SECONDARY_MONO_FIRST_PERSON_OBSERVER_MSFT = 1000054000,

 // Provided by XR_VARJO_quad_views

 XR_VIEW_CONFIGURATION_TYPE_PRIMARY_QUAD_VARJO =

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET,

 XR_VIEW_CONFIGURATION_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrViewConfigurationType;

The application selects its primary view configuration type when calling xrBeginSession, and that

configuration remains constant for the lifetime of the session, until xrEndSession is called.

The number of views and the semantic meaning of each view index within a given view configuration

is well-defined, specified below for all core view configurations. The predefined primary view

configuration types are:

174 | Chapter 8. View Configurations

Enumerant Descriptions

• XR_VIEW_CONFIGURATION_TYPE_PRIMARY_MONO. One view representing the form factor’s one

primary display. For example, an AR phone’s screen. This configuration requires one element

in XrViewConfigurationProperties and one projection in each XrCompositionLayerProjection

layer.

• XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO. Two views representing the form factor’s two

primary displays, which map to a left-eye and right-eye view. This configuration requires two

views in XrViewConfigurationProperties and two views in each

XrCompositionLayerProjection layer. View index 0 must represent the left eye and view

index 1 must represent the right eye.

• XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET. Four views representing the

form factor’s primary stereo displays. This view configuration type represents a hardware

independent way of providing foveated rendering. The view configuration adds two foveated

inset views for the left and right eye separately to the already defined two views specified in

the XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO view configuration. View index 0 must

represent the left eye and view index 1 must represent the right eye as specified in

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO view configuration, and view index 2 must

represent the left eye inset view and view index 3 must represent the right eye inset view.

The new inset view 2 and view 3 must, after applying the pose and FoV projection to same

plane, be contained within view 0 and 1 respectively. The inset views may have a higher

resolution with respect to the same field of view as the corresponding wide FoV view for each

eye. The runtime may blend between the views at the edges, so the application must not omit

the inner field of view from being rendered in the outer view. The fov returned by

xrLocateViews for each inset view relative to the corresponding outer stereo view may

change at run-time, the pose for inset view and stereo view for each eye respectively must

have the same values. The benefits of the

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET view

configuration type can be demonstrated by looking at the rendered pixel count.

For example, a Varjo Aero requires a pair of stereo views rendered at 4148 x

3556 (14.7 million pixels) to achieve a pixel density of 35 pixels per degree. By

using four views, with an eye-tracked foveated inset covering about 1/9th of the

full FoV and rendered with the same 35 pixels per degree and while the

remaining views are dropped to 14 pixels per degree, the resolution of the inset

is 1076 x 1076 (1.1 million pixels) and the resolution of the stereo views is 1660 x

1420 (2.3 million pixels). The total pixel count is 75% less with

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET over the

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO view configuration type.

Chapter 8. View Configurations | 175

Figure 4. View configurations. The numbers in the figure is the view indices of the specific view.

8.2. View Configuration API

First an application needs to select which primary view configuration it wants to use. If it supports

multiple configurations, an application can call xrEnumerateViewConfigurations before creating an

176 | Chapter 8. View Configurations

XrSession to get a list of the view configuration types supported for a given system.

The application can then call xrGetViewConfigurationProperties and

xrEnumerateViewConfigurationViews to get detailed information about each view configuration type

and its individual views.

8.2.1. xrEnumerateViewConfigurations

The xrEnumerateViewConfigurations function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateViewConfigurations(

 XrInstance instance,

 XrSystemId systemId,

 uint32_t viewConfigurationTypeCapacityInput,

 uint32_t* viewConfigurationTypeCountOutput,

 XrViewConfigurationType* viewConfigurationTypes);

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose view configurations will be enumerated.

• viewConfigurationTypeCapacityInput is the capacity of the viewConfigurationTypes array, or 0

to indicate a request to retrieve the required capacity.

• viewConfigurationTypeCountOutput is a pointer to the count of viewConfigurationTypes written,

or a pointer to the required capacity in the case that viewConfigurationTypeCapacityInput is

insufficient.

• viewConfigurationTypes is a pointer to an array of XrViewConfigurationType values, but can

be NULL if viewConfigurationTypeCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

viewConfigurationTypes size.

xrEnumerateViewConfigurations enumerates the view configuration types supported by the

XrSystemId. The supported set for that system must not change during the lifetime of its XrInstance.

The returned list of primary view configurations should be in order from what the runtime

considered highest to lowest user preference. Thus the first enumerated view configuration type

should be the one the runtime prefers the application to use if possible.

Runtimes must always return identical buffer contents from this enumeration for the given systemId

and for the lifetime of the instance.

Chapter 8. View Configurations | 177

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• viewConfigurationTypeCountOutput must be a pointer to a uint32_t value

• If viewConfigurationTypeCapacityInput is not 0, viewConfigurationTypes must be a pointer to

an array of viewConfigurationTypeCapacityInput XrViewConfigurationType values

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SYSTEM_INVALID

8.2.2. xrGetViewConfigurationProperties

The xrGetViewConfigurationProperties function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetViewConfigurationProperties(

 XrInstance instance,

 XrSystemId systemId,

 XrViewConfigurationType viewConfigurationType,

 XrViewConfigurationProperties* configurationProperties);

178 | Chapter 8. View Configurations

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose view configuration is being queried.

• viewConfigurationType is the XrViewConfigurationType of the configuration to get.

• configurationProperties is a pointer to view configuration properties to return.

xrGetViewConfigurationProperties queries properties of an individual view configuration.

Applications must use one of the supported view configuration types returned by

xrEnumerateViewConfigurations. If viewConfigurationType is not supported by this XrInstance the

runtime must return XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• viewConfigurationType must be a valid XrViewConfigurationType value

• configurationProperties must be a pointer to an XrViewConfigurationProperties structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_SYSTEM_INVALID

8.2.3. XrViewConfigurationProperties

The XrViewConfigurationProperties structure is defined as:

Chapter 8. View Configurations | 179

typedef struct XrViewConfigurationProperties {

 XrStructureType type;

 void* next;

 XrViewConfigurationType viewConfigurationType;

 XrBool32 fovMutable;

} XrViewConfigurationProperties;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• viewConfigurationType is the XrViewConfigurationType of the configuration.

• fovMutable indicates if the view field of view can be modified by the application.

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW_CONFIGURATION_PROPERTIES

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewConfigurationType must be a valid XrViewConfigurationType value

8.2.4. xrEnumerateViewConfigurationViews

The xrEnumerateViewConfigurationViews function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateViewConfigurationViews(

 XrInstance instance,

 XrSystemId systemId,

 XrViewConfigurationType viewConfigurationType,

 uint32_t viewCapacityInput,

 uint32_t* viewCountOutput,

 XrViewConfigurationView* views);

180 | Chapter 8. View Configurations

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose view configuration is being queried.

• viewConfigurationType is the XrViewConfigurationType of the configuration to get.

• viewCapacityInput is the capacity of the views array, or 0 to indicate a request to retrieve the

required capacity.

• viewCountOutput is a pointer to the count of views written, or a pointer to the required

capacity in the case that viewCapacityInput is 0.

• views is a pointer to an array of XrViewConfigurationView values, but can be NULL if

viewCapacityInput is 0.

Each XrViewConfigurationType defines the number of views associated with it. Applications can query

more details of each view element using xrEnumerateViewConfigurationViews. If the supplied

viewConfigurationType is not supported by this XrInstance and XrSystemId, the runtime must return

XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

Runtimes must always return identical buffer contents from this enumeration for the given systemId

and viewConfigurationType for the lifetime of the instance.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• viewConfigurationType must be a valid XrViewConfigurationType value

• viewCountOutput must be a pointer to a uint32_t value

• If viewCapacityInput is not 0, views must be a pointer to an array of viewCapacityInput

XrViewConfigurationView structures

Chapter 8. View Configurations | 181

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_SYSTEM_INVALID

8.2.5. XrViewConfigurationView

Each XrViewConfigurationView specifies properties related to rendering of an individual view within a

view configuration.

The XrViewConfigurationView structure is defined as:

typedef struct XrViewConfigurationView {

 XrStructureType type;

 void* next;

 uint32_t recommendedImageRectWidth;

 uint32_t maxImageRectWidth;

 uint32_t recommendedImageRectHeight;

 uint32_t maxImageRectHeight;

 uint32_t recommendedSwapchainSampleCount;

 uint32_t maxSwapchainSampleCount;

} XrViewConfigurationView;

182 | Chapter 8. View Configurations

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• recommendedImageRectWidth is the optimal width of XrSwapchainSubImage::imageRect to use

when rendering this view into a swapchain.

• maxImageRectWidth is the maximum width of XrSwapchainSubImage::imageRect supported

when rendering this view into a swapchain.

• recommendedImageRectHeight is the optimal height of XrSwapchainSubImage::imageRect to use

when rendering this view into a swapchain.

• maxImageRectHeight is the maximum height of XrSwapchainSubImage::imageRect supported

when rendering this view into a swapchain.

• recommendedSwapchainSampleCount is the recommended number of sub-data element samples

to create for each swapchain image that will be rendered into for this view.

• maxSwapchainSampleCount is the maximum number of sub-data element samples supported for

swapchain images that will be rendered into for this view.

See XrSwapchainSubImage for more information about XrSwapchainSubImage::imageRect values, and

XrSwapchainCreateInfo for more information about creating swapchains appropriately sized to

support those XrSwapchainSubImage::imageRect values.

The array of XrViewConfigurationView returned by the runtime must adhere to the rules defined in

XrViewConfigurationType, such as the count and association to the left and right eyes.

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW_CONFIGURATION_VIEW

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrFoveatedViewConfigurationViewVARJO, XrViewConfigurationDepthRangeEXT,

XrViewConfigurationViewFovEPIC

8.3. Example View Configuration Code

XrInstance instance; // previously initialized

XrSystemId system; // previously initialized

XrSession session; // previously initialized

XrSpace sceneSpace; // previously initialized

Chapter 8. View Configurations | 183

#valid-usage-for-structure-pointer-chains

// Enumerate the view configurations paths.

uint32_t configurationCount;

CHK_XR(xrEnumerateViewConfigurations(instance, system, 0, &configurationCount, nullptr));

std::vector<XrViewConfigurationType> configurationTypes(configurationCount);

CHK_XR(xrEnumerateViewConfigurations(instance, system, configurationCount,

&configurationCount, configurationTypes.data()));

bool configFound = false;

XrViewConfigurationType viewConfig = XR_VIEW_CONFIGURATION_TYPE_MAX_ENUM;

for(uint32_t i = 0; i < configurationCount; ++i)

{

 if (configurationTypes[i] == XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO)

 {

 configFound = true;

 viewConfig = configurationTypes[i];

 break; // Pick the first supported, i.e. preferred, view configuration.

 }

}

if (!configFound)

 return; // Cannot support any view configuration of this system.

// Get detailed information of each view element.

uint32_t viewCount;

CHK_XR(xrEnumerateViewConfigurationViews(instance, system,

 viewConfig,

 0,

 &viewCount,

 nullptr));

std::vector<XrViewConfigurationView> configViews(viewCount,

{XR_TYPE_VIEW_CONFIGURATION_VIEW});

CHK_XR(xrEnumerateViewConfigurationViews(instance, system,

 viewConfig,

 viewCount,

 &viewCount,

 configViews.data()));

// Set the primary view configuration for the session.

XrSessionBeginInfo beginInfo = {XR_TYPE_SESSION_BEGIN_INFO};

beginInfo.primaryViewConfigurationType = viewConfig;

CHK_XR(xrBeginSession(session, &beginInfo));

// Allocate a buffer according to viewCount.

std::vector<XrView> views(viewCount, {XR_TYPE_VIEW});

// Run a per-frame loop.

184 | Chapter 8. View Configurations

while (!quit)

{

 // Wait for a new frame.

 XrFrameWaitInfo frameWaitInfo{XR_TYPE_FRAME_WAIT_INFO};

 XrFrameState frameState{XR_TYPE_FRAME_STATE};

 CHK_XR(xrWaitFrame(session, &frameWaitInfo, &frameState));

 // Begin frame immediately before GPU work

 XrFrameBeginInfo frameBeginInfo { XR_TYPE_FRAME_BEGIN_INFO };

 CHK_XR(xrBeginFrame(session, &frameBeginInfo));

 std::vector<XrCompositionLayerBaseHeader*> layers;

 XrCompositionLayerProjectionView projViews[2] = { /*...*/ };

 XrCompositionLayerProjection layerProj{ XR_TYPE_COMPOSITION_LAYER_PROJECTION};

 if (frameState.shouldRender) {

 XrViewLocateInfo viewLocateInfo{XR_TYPE_VIEW_LOCATE_INFO};

 viewLocateInfo.viewConfigurationType = viewConfig;

 viewLocateInfo.displayTime = frameState.predictedDisplayTime;

 viewLocateInfo.space = sceneSpace;

 XrViewState viewState{XR_TYPE_VIEW_STATE};

 XrView views[2] = { {XR_TYPE_VIEW}, {XR_TYPE_VIEW}};

 uint32_t viewCountOutput;

 CHK_XR(xrLocateViews(session, &viewLocateInfo, &viewState, configViews.size(),

&viewCountOutput, views));

 // ...

 // Use viewState and frameState for scene render, and fill in projViews[2]

 // ...

 // Assemble composition layers structure

 layerProj.layerFlags = XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT;

 layerProj.space = sceneSpace;

 layerProj.viewCount = 2;

 layerProj.views = projViews;

 layers.push_back(reinterpret_cast<XrCompositionLayerBaseHeader*>(&layerProj));

 }

 // End frame and submit layers, even if layers is empty due to shouldRender = false

 XrFrameEndInfo frameEndInfo{ XR_TYPE_FRAME_END_INFO};

 frameEndInfo.displayTime = frameState.predictedDisplayTime;

 frameEndInfo.environmentBlendMode = XR_ENVIRONMENT_BLEND_MODE_OPAQUE;

 frameEndInfo.layerCount = (uint32_t)layers.size();

 frameEndInfo.layers = layers.data();

 CHK_XR(xrEndFrame(session, &frameEndInfo));

}

Chapter 8. View Configurations | 185

Chapter 9. Session

XR_DEFINE_HANDLE(XrSession)

A session represents an application’s intention to display XR content to the user.

9.1. Session Lifecycle

runtime: session is ready

user: request exit XR

IDLE

xrGetSystem...

xrBeginSession

READY

runtime: stop session

SYNCHRONIZED

STOPPING
xrDestroySession

EXITING

 xrDestroyInstance

LOSS_PENDING

runtime: losing system or device

any

app: optio...

xrCreateInstance

VISIBLE

FOCUSED

xrEndSession

xrDestroySession

user: optionally relaunch XR...

xrDestroyInstance

app: quit app: quit

Text is not SVG - cannot display

Figure 5. Session Life-cycle A typical XR session coordinates the application and the runtime through session

control functions and session state events.

1. The application creates a session by choosing a system and a graphics API and

passing them into xrCreateSession. The newly created session is in the

XR_SESSION_STATE_IDLE state.

2. The application can regularly call xrPollEvent to monitor for session state changes

via XrEventDataSessionStateChanged events.

3. When the runtime determines that the system is ready to start transitioning to this

session’s XR content, the application receives a notification of session state change

to XR_SESSION_STATE_READY. Once the application is also ready to proceed and

display its XR content, it calls xrBeginSession and starts its frame loop, which

186 | Chapter 9. Session

begins a running session.

4. While the session is running, the application is expected to continuously execute

its frame loop by calling xrWaitFrame, xrBeginFrame and xrEndFrame each

frame, establishing synchronization with the runtime. Once the runtime is

synchronized with the application’s frame loop and ready to display application’s

frames, the session moves into the XR_SESSION_STATE_SYNCHRONIZED state. In this

state, the submitted frames will not be displayed or visible to the user yet.

5. When the runtime intends to display frames from the application, it notifies with

XR_SESSION_STATE_VISIBLE state, and sets XrFrameState::shouldRender to true in

xrWaitFrame. The application should render XR content and submit the

composition layers to xrEndFrame.

6. When the runtime determines the application is eligible to receive XR inputs, e.g.

motion controller or hand tracking inputs, it notifies with

XR_SESSION_STATE_FOCUSED state. The application can expect to receive active action

inputs.

7. When the runtime determines the application has lost XR input focus, it moves the

session state from XR_SESSION_STATE_FOCUSED to XR_SESSION_STATE_VISIBLE state. The

application may need to change its own internal state while input is unavailable.

Since the session is still visible, the application needs to render and submit frames

at full frame rate, but may wish to change visually to indicate its input suspended

state. When the runtime returns XR focus back to the application, it moves the

session state back to XR_SESSION_STATE_FOCUSED.

8. When the runtime needs to end a running session due to the user closing or

switching the application, the runtime will change the session state through

appropriate intermediate ones and finally to XR_SESSION_STATE_STOPPING. When the

application receives the XR_SESSION_STATE_STOPPING event, it should stop its frame

loop and then call xrEndSession to tell the runtime to stop the running session.

9. After xrEndSession, the runtime transitions the session state to

XR_SESSION_STATE_IDLE. If the XR session is temporarily paused in the background,

the runtime will keep the session state at XR_SESSION_STATE_IDLE and later

transition the session state back to XR_SESSION_STATE_READY when the XR session is

resumed. If the runtime determines that its use of this XR session has concluded, it

will transition the session state from XR_SESSION_STATE_IDLE to

XR_SESSION_STATE_EXITING.

10. When the application receives the XR_SESSION_STATE_EXITING event, it releases the

resources related to the session and calls xrDestroySession.

A session is considered running after a successful call to xrBeginSession and remains running until

any call is made to xrEndSession. Certain functions are only valid to call when a session is running,

such as xrWaitFrame, or else the XR_ERROR_SESSION_NOT_RUNNING error must be returned by the runtime.

A session is considered not running before a successful call to xrBeginSession and becomes not

Chapter 9. Session | 187

running again after any call is made to xrEndSession. Certain functions are only valid to call when a

session is not running, such as xrBeginSession, or else the XR_ERROR_SESSION_RUNNING error must be

returned by the runtime.

If an error is returned from xrBeginSession, the session remains in its current running or not running

state. Calling xrEndSession always transitions a session to the not running state, regardless of any

errors returned.

Only running sessions may become focused sessions that receive XR input. When a session is not

running, the application must not submit frames. This is important because without a running session,

the runtime no longer has to spend resources on sub-systems (tracking etc.) that are no longer needed

by the application.

An application must call xrBeginSession when the session is in the XR_SESSION_STATE_READY state, or

XR_ERROR_SESSION_NOT_READY will be returned; it must call xrEndSession when the session is in the

XR_SESSION_STATE_STOPPING state, otherwise XR_ERROR_SESSION_NOT_STOPPING will be returned. This is to

allow the runtimes to seamlessly transition from one application’s session to another.

The application can call xrDestroySession at any time during the session life cycle, however, it must

stop using the XrSession handle immediately in all threads and stop using any related resources.

Therefore, it’s typically undesirable to destroy a running session and instead it’s recommended to wait

for XR_SESSION_STATE_EXITING to destroy a session.

9.2. Session Creation

To present graphical content on an output device, OpenXR applications need to pick a graphics API

which is supported by the runtime. Unextended OpenXR does not support any graphics APIs natively

but provides a number of extensions of which each runtime can support any subset. These extensions

can be activated during XrInstance create time.

During XrSession creation the application must provide information about which graphics API it

intends to use by adding an XrGraphicsBinding* struct of one (and only one) of the enabled graphics API

extensions to the next chain of XrSessionCreateInfo. The application must call the

xrGet*GraphicsRequirements method (where * is a placeholder) provided by the chosen graphics API

extension before attempting to create the session (for example, xrGetD3D11GraphicsRequirementsKHR

xrGetD3D12GraphicsRequirementsKHR xrGetOpenGLGraphicsRequirementsKHR

xrGetVulkanGraphicsRequirementsKHR xrGetVulkanGraphicsRequirements2KHR).

Unless specified differently in the graphics API extension, the application is responsible for creating a

valid graphics device binding based on the requirements returned by xrGet*GraphicsRequirements

methods (for details refer to the extension specification of the graphics API).

The xrCreateSession function is defined as:

188 | Chapter 9. Session

// Provided by XR_VERSION_1_0

XrResult xrCreateSession(

 XrInstance instance,

 const XrSessionCreateInfo* createInfo,

 XrSession* session);

Parameter Descriptions

• instance is the instance from which XrSessionCreateInfo::systemId was retrieved.

• createInfo is a pointer to an XrSessionCreateInfo structure containing information about

how to create the session.

• session is a pointer to a handle in which the created XrSession is returned.

Creates a session using the provided createInfo and returns a handle to that session. This session is

created in the XR_SESSION_STATE_IDLE state, and a corresponding XrEventDataSessionStateChanged

event to the XR_SESSION_STATE_IDLE state must be generated as the first such event for the new session.

The runtime must return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE

may be returned due to legacy behavior) on calls to xrCreateSession if a function named like

xrGet*GraphicsRequirements has not been called for the same instance and XrSessionCreateInfo

::systemId. (See graphics binding extensions for details.)

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• createInfo must be a pointer to a valid XrSessionCreateInfo structure

• session must be a pointer to an XrSession handle

Chapter 9. Session | 189

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_SYSTEM_INVALID

• XR_ERROR_INITIALIZATION_FAILED

• XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING

• XR_ERROR_GRAPHICS_DEVICE_INVALID

The XrSessionCreateInfo structure is defined as:

typedef struct XrSessionCreateInfo {

 XrStructureType type;

 const void* next;

 XrSessionCreateFlags createFlags;

 XrSystemId systemId;

} XrSessionCreateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR. Note that in most cases one graphics API extension specific struct

needs to be in this next chain.

• createFlags identifies XrSessionCreateFlags that apply to the creation.

• systemId is the XrSystemId representing the system of devices to be used by this session.

190 | Chapter 9. Session

Valid Usage

• systemId must be a valid XrSystemId or XR_ERROR_SYSTEM_INVALID must be returned.

• next, unless otherwise specified via an extension, must contain exactly one graphics API

binding structure (a structure whose name begins with “XrGraphicsBinding”) or

XR_ERROR_GRAPHICS_DEVICE_INVALID must be returned.

Valid Usage (Implicit)

• type must be XR_TYPE_SESSION_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrGraphicsBindingD3D11KHR, XrGraphicsBindingD3D12KHR, XrGraphicsBindingEGLMNDX,

XrGraphicsBindingOpenGLESAndroidKHR, XrGraphicsBindingOpenGLWaylandKHR,

XrGraphicsBindingOpenGLWin32KHR, XrGraphicsBindingOpenGLXcbKHR,

XrGraphicsBindingOpenGLXlibKHR, XrGraphicsBindingVulkanKHR,

XrHolographicWindowAttachmentMSFT, XrSessionCreateInfoOverlayEXTX

• createFlags must be 0

The XrSessionCreateInfo::createFlags member is of the following type, and contains a bitwise-OR of

zero or more of the bits defined in XrSessionCreateFlagBits.

typedef XrFlags64 XrSessionCreateFlags;

Valid bits for XrSessionCreateFlags are defined by XrSessionCreateFlagBits.

// Flag bits for XrSessionCreateFlags

There are currently no session creation flags. This is reserved for future use.

The xrDestroySession function is defined as.

Chapter 9. Session | 191

#valid-usage-for-structure-pointer-chains

// Provided by XR_VERSION_1_0

XrResult xrDestroySession(

 XrSession session);

Parameter Descriptions

• session is the session to destroy.

XrSession handles are destroyed using xrDestroySession. When an XrSession is destroyed, all handles

that are children of that XrSession are also destroyed.

The application is responsible for ensuring that it has no calls using session in progress when the

session is destroyed.

xrDestroySession can be called when the session is in any session state.

Valid Usage (Implicit)

• session must be a valid XrSession handle

Thread Safety

• Access to session, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

9.3. Session Control

The xrBeginSession function is defined as:

192 | Chapter 9. Session

// Provided by XR_VERSION_1_0

XrResult xrBeginSession(

 XrSession session,

 const XrSessionBeginInfo* beginInfo);

Parameter Descriptions

• session is a valid XrSession handle.

• beginInfo is a pointer to an XrSessionBeginInfo structure.

When the application receives XrEventDataSessionStateChanged event with the

XR_SESSION_STATE_READY state, the application should then call xrBeginSession to start rendering frames

for display to the user.

After this function successfully returns, the session is considered to be running. The application

should then start its frame loop consisting of some sequence of xrWaitFrame/xrBeginFrame

/xrEndFrame calls.

If the session is already running when the application calls xrBeginSession, the runtime must return

error XR_ERROR_SESSION_RUNNING. If the session is not running when the application calls xrBeginSession,

but the session is not yet in the XR_SESSION_STATE_READY state, the runtime must return error

XR_ERROR_SESSION_NOT_READY.

Note that a runtime may decide not to show the user any given frame from a session at any time, for

example if the user has switched to a different application’s running session. The application should

check whether xrWaitFrame returns XrFrameState::shouldRender set to true before rendering a given

frame to determine whether that frame will be visible to the user.

Runtime session frame state must start in a reset state when a session transitions to running so that no

state is carried over from when the same session was previously running. Frame state in this context

includes xrWaitFrame, xrBeginFrame, and xrEndFrame call order enforcement.

If XrSessionBeginInfo::primaryViewConfigurationType in beginInfo is not supported by the XrSystemId

used to create the session, the runtime must return XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• beginInfo must be a pointer to a valid XrSessionBeginInfo structure

Chapter 9. Session | 193

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_SESSION_RUNNING

• XR_ERROR_SESSION_NOT_READY

The XrSessionBeginInfo structure is defined as:

typedef struct XrSessionBeginInfo {

 XrStructureType type;

 const void* next;

 XrViewConfigurationType primaryViewConfigurationType;

} XrSessionBeginInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• primaryViewConfigurationType is the XrViewConfigurationType to use during this session to

provide images for the form factor’s primary displays.

194 | Chapter 9. Session

Valid Usage (Implicit)

• type must be XR_TYPE_SESSION_BEGIN_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSecondaryViewConfigurationSessionBeginInfoMSFT

• primaryViewConfigurationType must be a valid XrViewConfigurationType value

The xrEndSession function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEndSession(

 XrSession session);

Parameter Descriptions

• session is a handle to a running XrSession.

When the application receives XrEventDataSessionStateChanged event with the

XR_SESSION_STATE_STOPPING state, the application should stop its frame loop and then call xrEndSession

to end the running session. This function signals to the runtime that the application will no longer call

xrWaitFrame, xrBeginFrame or xrEndFrame from any thread allowing the runtime to safely transition

the session to XR_SESSION_STATE_IDLE. The application must also avoid reading input state or sending

haptic output after calling xrEndSession.

If the session is not running when the application calls xrEndSession, the runtime must return error

XR_ERROR_SESSION_NOT_RUNNING. If the session is still running when the application calls xrEndSession,

but the session is not yet in the XR_SESSION_STATE_STOPPING state, the runtime must return error

XR_ERROR_SESSION_NOT_STOPPING.

If the application wishes to exit a running session, the application can call xrRequestExitSession so that

the session transitions from XR_SESSION_STATE_IDLE to XR_SESSION_STATE_EXITING.

Valid Usage (Implicit)

• session must be a valid XrSession handle

Chapter 9. Session | 195

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SESSION_NOT_STOPPING

• XR_ERROR_SESSION_NOT_RUNNING

When an application wishes to exit a running session, it can call xrRequestExitSession, requesting that

the runtime transition through the various intermediate session states including

XR_SESSION_STATE_STOPPING to XR_SESSION_STATE_EXITING.

On platforms where an application’s lifecycle is managed by the system, session state changes may be

implicitly triggered by application lifecycle state changes. On such platforms, using platform-specific

methods to alter application lifecycle state may be the preferred method of provoking session state

changes. The behavior of xrRequestExitSession is not altered, however explicit session exit may not

interact with the platform-specific application lifecycle.

The xrRequestExitSession function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrRequestExitSession(

 XrSession session);

Parameter Descriptions

• session is a handle to a running XrSession.

If session is not running when xrRequestExitSession is called, XR_ERROR_SESSION_NOT_RUNNING must be

returned.

196 | Chapter 9. Session

Valid Usage (Implicit)

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SESSION_NOT_RUNNING

9.4. Session States

While events can be expanded upon, there are a minimum set of lifecycle events which can occur

which all OpenXR applications must be aware of. These events are detailed below.

9.4.1. XrEventDataSessionStateChanged

The XrEventDataSessionStateChanged structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrEventDataSessionStateChanged {

 XrStructureType type;

 const void* next;

 XrSession session;

 XrSessionState state;

 XrTime time;

} XrEventDataSessionStateChanged;

Chapter 9. Session | 197

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• session is the XrSession which has changed state.

• state is the current XrSessionState of the session.

• time is an XrTime which indicates the time of the state change.

Receiving the XrEventDataSessionStateChanged event structure indicates that the application has

changed lifecycle state.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrSessionState enumerates the possible session lifecycle states:

typedef enum XrSessionState {

 XR_SESSION_STATE_UNKNOWN = 0,

 XR_SESSION_STATE_IDLE = 1,

 XR_SESSION_STATE_READY = 2,

 XR_SESSION_STATE_SYNCHRONIZED = 3,

 XR_SESSION_STATE_VISIBLE = 4,

 XR_SESSION_STATE_FOCUSED = 5,

 XR_SESSION_STATE_STOPPING = 6,

 XR_SESSION_STATE_LOSS_PENDING = 7,

 XR_SESSION_STATE_EXITING = 8,

 XR_SESSION_STATE_MAX_ENUM = 0x7FFFFFFF

} XrSessionState;

198 | Chapter 9. Session

#valid-usage-for-structure-pointer-chains

Enumerant Descriptions

• XR_SESSION_STATE_UNKNOWN. An unknown state. The runtime must not return this value in an

XrEventDataSessionStateChanged event.

• XR_SESSION_STATE_IDLE. The initial state after calling xrCreateSession or returned to after

calling xrEndSession.

• XR_SESSION_STATE_READY. The application is ready to call xrBeginSession and sync its frame

loop with the runtime.

• XR_SESSION_STATE_SYNCHRONIZED. The application has synced its frame loop with the runtime

but is not visible to the user.

• XR_SESSION_STATE_VISIBLE. The application has synced its frame loop with the runtime and is

visible to the user but cannot receive XR input.

• XR_SESSION_STATE_FOCUSED. The application has synced its frame loop with the runtime, is

visible to the user and can receive XR input.

• XR_SESSION_STATE_STOPPING. The application should exit its frame loop and call xrEndSession.

• XR_SESSION_STATE_LOSS_PENDING. The session is in the process of being lost. The application

should destroy the current session and can optionally recreate it.

• XR_SESSION_STATE_EXITING. The application should end its XR experience and not

automatically restart it.

The XR_SESSION_STATE_UNKNOWN state must not be returned by the runtime, and is only defined to avoid 0

being a valid state.

Receiving the XR_SESSION_STATE_IDLE state indicates that the runtime considers the session is idle.

Applications in this state should minimize resource consumption but continue to call xrPollEvent at

some reasonable cadence.

Receiving the XR_SESSION_STATE_READY state indicates that the runtime desires the application to prepare

rendering resources, begin its session and synchronize its frame loop with the runtime.

The application does this by successfully calling xrBeginSession and then running its frame loop by

calling xrWaitFrame, xrBeginFrame and xrEndFrame in a loop. If the runtime wishes to return the

session to the XR_SESSION_STATE_IDLE state, it must wait until the application calls xrBeginSession. After

returning from the xrBeginSession call, the runtime may then immediately transition forward through

the XR_SESSION_STATE_SYNCHRONIZED state to the XR_SESSION_STATE_STOPPING state, to request that the

application end this session. If the system supports a user engagement sensor and runtime is in

XR_SESSION_STATE_IDLE state, the runtime may wait until the user starts engaging with the device before

transitioning to the XR_SESSION_STATE_READY state.

Receiving the XR_SESSION_STATE_SYNCHRONIZED state indicates that the application has synchronized its

frame loop with the runtime, but its frames are not visible to the user. The application should continue

Chapter 9. Session | 199

running its frame loop by calling xrWaitFrame, xrBeginFrame and xrEndFrame, although it should

avoid heavy GPU work so that other visible applications can take CPU and GPU precedence. The

application can save resources here by skipping rendering and not submitting any composition layers

until xrWaitFrame returns an XrFrameState with shouldRender set to true. A runtime may use this

frame synchronization to facilitate seamless switching from a previous XR application to this

application on a frame boundary.

Receiving the XR_SESSION_STATE_VISIBLE state indicates that the application has synchronized its frame

loop with the runtime, and the session’s frames will be visible to the user, but the session is not eligible

to receive XR input. An application may be visible but not have focus, for example when the runtime is

composing a modal pop-up on top of the application’s rendered frames. The application should

continue running its frame loop, rendering and submitting its composition layers, although it may

wish to pause its experience, as users cannot interact with the application at this time. It is important

for applications to continue rendering when visible, even when they do not have focus, so the user

continues to see something reasonable underneath modal pop-ups. Runtimes should make input

actions inactive while the application is unfocused, and applications should react to an inactive input

action by skipping rendering of that action’s input avatar (depictions of hands or other tracked objects

controlled by the user).

Receiving the XR_SESSION_STATE_FOCUSED state indicates that the application has synchronized its frame

loop with the runtime, the session’s frames will be visible to the user, and the session is eligible to

receive XR input. The runtime should only give one session XR input focus at any given time. The

application should be running its frame loop, rendering and submitting composition layers, including

input avatars (depictions of hands or other tracked objects controlled by the user) for any input actions

that are active. The runtime should avoid rendering its own input avatars when an application is

focused, unless input from a given source is being captured by the runtime at the moment.

Receiving the XR_SESSION_STATE_STOPPING state indicates that the runtime has determined that the

application should halt its rendering loop. Applications should exit their rendering loop and call

xrEndSession when in this state. A possible reason for this would be to minimize contention between

multiple applications. If the system supports a user engagement sensor and the session is running, the

runtime may transition to the XR_SESSION_STATE_STOPPING state when the user stops engaging with the

device.

Receiving the XR_SESSION_STATE_EXITING state indicates the runtime wishes the application to terminate

its XR experience, typically due to a user request via a runtime user interface. Applications should

gracefully end their process when in this state if they do not have a non-XR user experience.

Receiving the XR_SESSION_STATE_LOSS_PENDING state indicates the runtime is no longer able to operate

with the current session, for example due to the loss of a display hardware connection. An application

should call xrDestroySession and may end its process or decide to poll xrGetSystem at some

reasonable cadence to get a new XrSystemId, and re-initialize all graphics resources related to the new

system, and then create a new session using xrCreateSession. After the event is queued, subsequent

calls to functions that accept XrSession parameters must no longer return any success code other than

XR_SESSION_LOSS_PENDING for the given XrSession handle. The XR_SESSION_LOSS_PENDING success result is

returned for an unspecified grace period of time, and the functions that return it simulate success in

200 | Chapter 9. Session

their behavior. If the runtime has no reasonable way to successfully complete a given function (e.g.

xrCreateSwapchain) when a lost session is pending, or if the runtime is not able to provide the

application a grace period, the runtime may return XR_ERROR_SESSION_LOST. Thereafter, functions which

accept XrSession parameters for the lost session may return XR_ERROR_SESSION_LOST to indicate that the

function failed and the given session was lost. The XrSession handle and child handles are henceforth

unusable and should be destroyed by the application in order to immediately free up resources

associated with those handles.

Chapter 9. Session | 201

Chapter 10. Rendering

10.1. Swapchain Image Management

XR_DEFINE_HANDLE(XrSwapchain)

Normal XR applications will want to present rendered images to the user. To allow this, the runtime

provides images organized in swapchains for the application to render into. The runtime must allow

applications to create multiple swapchains.

Swapchain image format support by the runtime is specified by the xrEnumerateSwapchainFormats

function. Runtimes should support R8G8B8A8 and R8G8B8A8 sRGB formats if possible.

Swapchain images can be 2D or 2D Array.

Rendering operations involving composition of submitted layers are assumed to be internally

performed by the runtime in linear color space. Images submitted in sRGB color space must be created

using an API-specific sRGB format (e.g. DXGI_FORMAT_R8G8B8A8_UNORM_SRGB, GL_SRGB8_ALPHA8,

VK_FORMAT_R8G8B8A8_SRGB) to apply automatic sRGB-to-linear conversion when read by the runtime. All

other formats will be treated as linear values. Note

OpenXR applications should avoid submitting linear encoded 8 bit color data (e.g.

DXGI_FORMAT_R8G8B8A8_UNORM) whenever possible as it may result in color banding.

Gritz, L. and d’Eon, E. 2007. The Importance of Being Linear. In: H. Nguyen, ed., GPU

Gems 3. Addison-Wesley Professional. https://developer.nvidia.com/gpugems/

gpugems3/part-iv-image-effects/chapter-24-importance-being-linear Note

DXGI resources will be created with their associated TYPELESS format, but the

runtime will use the application-specified format for reading the data.

The xrEnumerateSwapchainFormats function is defined as:

202 | Chapter 10. Rendering

https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-24-importance-being-linear
https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-24-importance-being-linear

// Provided by XR_VERSION_1_0

XrResult xrEnumerateSwapchainFormats(

 XrSession session,

 uint32_t formatCapacityInput,

 uint32_t* formatCountOutput,

 int64_t* formats);

Parameter Descriptions

• session is the session that enumerates the supported formats.

• formatCapacityInput is the capacity of the formats, or 0 to retrieve the required capacity.

• formatCountOutput is a pointer to the count of uint64_t formats written, or a pointer to the

required capacity in the case that formatCapacityInput is insufficient.

• formats is a pointer to an array of int64_t format ids, but can be NULL if formatCapacityInput is

0. The format ids are specific to the specified graphics API.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

formats size.

xrEnumerateSwapchainFormats enumerates the texture formats supported by the current session. The

type of formats returned are dependent on the graphics API specified in xrCreateSession. For example,

if a DirectX graphics API was specified, then the enumerated formats correspond to the DXGI formats,

such as DXGI_FORMAT_R8G8B8A8_UNORM_SRGB. Texture formats should be in order from highest to lowest

runtime preference. The application should use the highest preference format that it supports for

optimal performance and quality.

With an OpenGL-based graphics API, the texture formats correspond to OpenGL internal formats.

With a Direct3D-based graphics API, xrEnumerateSwapchainFormats never returns typeless formats

(e.g. DXGI_FORMAT_R8G8B8A8_TYPELESS). Only concrete formats are returned, and only concrete formats

may be specified by applications for swapchain creation.

Runtimes must always return identical buffer contents from this enumeration for the lifetime of the

session.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• formatCountOutput must be a pointer to a uint32_t value

• If formatCapacityInput is not 0, formats must be a pointer to an array of formatCapacityInput

int64_t values

Chapter 10. Rendering | 203

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

The xrCreateSwapchain function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateSwapchain(

 XrSession session,

 const XrSwapchainCreateInfo* createInfo,

 XrSwapchain* swapchain);

Parameter Descriptions

• session is the session that creates the image.

• createInfo is a pointer to an XrSwapchainCreateInfo structure containing parameters to be

used to create the image.

• swapchain is a pointer to a handle in which the created XrSwapchain is returned.

Creates an XrSwapchain handle. The returned swapchain handle may be subsequently used in API

calls. Multiple XrSwapchain handles may exist simultaneously, up to some limit imposed by the

runtime. The XrSwapchain handle must be eventually freed via the xrDestroySwapchain function. The

runtime must return XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED if the image format specified in the

XrSwapchainCreateInfo is unsupported. The runtime must return XR_ERROR_FEATURE_UNSUPPORTED if any

bit of the create or usage flags specified in the XrSwapchainCreateInfo is unsupported.

204 | Chapter 10. Rendering

Valid Usage (Implicit)

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrSwapchainCreateInfo structure

• swapchain must be a pointer to an XrSwapchain handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_SWAPCHAIN_FORMAT_UNSUPPORTED

• XR_ERROR_FEATURE_UNSUPPORTED

The XrSwapchainCreateInfo structure is defined as:

Chapter 10. Rendering | 205

typedef struct XrSwapchainCreateInfo {

 XrStructureType type;

 const void* next;

 XrSwapchainCreateFlags createFlags;

 XrSwapchainUsageFlags usageFlags;

 int64_t format;

 uint32_t sampleCount;

 uint32_t width;

 uint32_t height;

 uint32_t faceCount;

 uint32_t arraySize;

 uint32_t mipCount;

} XrSwapchainCreateInfo;

206 | Chapter 10. Rendering

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• createFlags is a bitmask of XrSwapchainCreateFlagBits describing additional properties of

the swapchain.

• usageFlags is a bitmask of XrSwapchainUsageFlagBits describing the intended usage of the

swapchain’s images. The usage flags define how the corresponding graphics API objects are

created. A mismatch may result in swapchain images that do not support the application’s

usage.

• format is a graphics API-specific texture format identifier. For example, if the graphics API

specified in xrCreateSession is Vulkan, then this format is a Vulkan format such as

VK_FORMAT_R8G8B8A8_SRGB. The format identifies the format that the runtime will interpret the

texture as upon submission. Valid formats are indicated by xrEnumerateSwapchainFormats.

• sampleCount is the number of sub-data element samples in the image, must not be 0 or greater

than the graphics API’s maximum limit.

• width is the width of the image, must not be 0 or greater than the graphics API’s maximum

limit.

• height is the height of the image, must not be 0 or greater than the graphics API’s maximum

limit.

• faceCount is the number of faces, which must be either 6 (for cubemaps) or 1.

• arraySize is the number of array layers in the image or 1 for a 2D image, must not be 0 or

greater than the graphics API’s maximum limit.

• mipCount describes the number of levels of detail available for minified sampling of the

image, must not be 0 or greater than the graphics API’s maximum limit.

Valid Usage (Implicit)

• type must be XR_TYPE_SWAPCHAIN_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrAndroidSurfaceSwapchainCreateInfoFB,

XrSecondaryViewConfigurationSwapchainCreateInfoMSFT,

XrSwapchainCreateInfoFoveationFB, XrVulkanSwapchainCreateInfoMETA

• createFlags must be 0 or a valid combination of XrSwapchainCreateFlagBits values

• usageFlags must be 0 or a valid combination of XrSwapchainUsageFlagBits values

Chapter 10. Rendering | 207

#valid-usage-for-structure-pointer-chains

The XrSwapchainCreateInfo::createFlags member is of the following type, and contains a bitwise-OR of

zero or more of the bits defined in XrSwapchainCreateFlagBits.

typedef XrFlags64 XrSwapchainCreateFlags;

Valid bits for XrSwapchainCreateFlags are defined by XrSwapchainCreateFlagBits, which is specified

as:

// Flag bits for XrSwapchainCreateFlags

static const XrSwapchainCreateFlags XR_SWAPCHAIN_CREATE_PROTECTED_CONTENT_BIT =

0x00000001;

static const XrSwapchainCreateFlags XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT = 0x00000002;

The flag bits have the following meanings:

Flag Descriptions

• XR_SWAPCHAIN_CREATE_PROTECTED_CONTENT_BIT indicates that the swapchain’s images will be

protected from CPU access, using a mechanism such as Vulkan protected memory.

• XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT indicates that the application will acquire and release

only one image to this swapchain over its entire lifetime. The runtime must allocate only one

swapchain image.

A runtime may implement any of these, but is not required to. A runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateSwapchain if an XrSwapchainCreateFlags bit is requested

but not implemented.

XrSwapchainUsageFlags specify the intended usage of the swapchain images. The

XrSwapchainCreateInfo::usageFlags member is of this type, and contains a bitwise-OR of one or more

of the bits defined in XrSwapchainUsageFlagBits.

typedef XrFlags64 XrSwapchainUsageFlags;

When images are created, the runtime needs to know how the images are used in a way that requires

more information than simply the image format. The XrSwapchainCreateInfo passed to

xrCreateSwapchain must match the intended usage.

208 | Chapter 10. Rendering

Flags include:

// Flag bits for XrSwapchainUsageFlags

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT = 0x00000001;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT =

0x00000002;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT = 0x00000004;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT = 0x00000008;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT = 0x00000010;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_SAMPLED_BIT = 0x00000020;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT = 0x00000040;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND =

0x00000080;

static const XrSwapchainUsageFlags XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR =

0x00000080; // alias of XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND

The flag bits have the following meanings:

Flag Descriptions

• XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT  — Specifies that the image may be a color

rendering target.

• XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT  — Specifies that the image may be a

depth/stencil rendering target.

• XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT  — Specifies that the image may be accessed out of

order and that access may be via atomic operations.

• XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT  — Specifies that the image may be used as the source of

a transfer operation.

• XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT  — Specifies that the image may be used as the

destination of a transfer operation.

• XR_SWAPCHAIN_USAGE_SAMPLED_BIT  — Specifies that the image may be sampled by a shader.

• XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT  — Specifies that the image may be reinterpreted as

another image format.

• XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND  — Specifies that the image may be used as a

input attachment. (Added by the XR_MND_swapchain_usage_input_attachment_bit extension)

• XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR  — Specifies that the image may be used as a

input attachment. (Added by the XR_KHR_swapchain_usage_input_attachment_bit extension)

The number of images in each swapchain is implementation-defined except in the case of a static

Chapter 10. Rendering | 209

swapchain. To obtain the number of images actually allocated, call xrEnumerateSwapchainImages.

With a Direct3D-based graphics API, the swapchain returned by xrCreateSwapchain will be a typeless

format if the requested format has a typeless analogue. Applications are required to reinterpret the

swapchain as a compatible non-typeless type. Upon submitting such swapchains to the runtime, they

are interpreted as the format specified by the application in the XrSwapchainCreateInfo.

Swapchains will be created with graphics API-specific flags appropriate to the type of underlying

image and its usage.

Runtimes must honor underlying graphics API limits when creating resources.

xrEnumerateSwapchainFormats never returns typeless formats (e.g. DXGI_FORMAT_R8G8B8A8_TYPELESS).

Only concrete formats are returned, and only concrete formats may be specified by applications for

swapchain creation.

The xrDestroySwapchain function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroySwapchain(

 XrSwapchain swapchain);

Parameter Descriptions

• swapchain is the swapchain to destroy.

All submitted graphics API commands that refer to swapchain must have completed execution.

Runtimes may continue to utilize swapchain images after xrDestroySwapchain is called.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

Thread Safety

• Access to swapchain, and any child handles, must be externally synchronized

210 | Chapter 10. Rendering

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

Swapchain images are acquired, waited on, and released by index, but the number of images in a

swapchain is implementation-defined. Additionally, rendering to images requires access to the

underlying image primitive of the graphics API being used. Applications may query and cache the

images at any time after swapchain creation.

The xrEnumerateSwapchainImages function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateSwapchainImages(

 XrSwapchain swapchain,

 uint32_t imageCapacityInput,

 uint32_t* imageCountOutput,

 XrSwapchainImageBaseHeader* images);

Parameter Descriptions

• swapchain is the XrSwapchain to get images from.

• imageCapacityInput is the capacity of the images array, or 0 to indicate a request to retrieve the

required capacity.

• imageCountOutput is a pointer to the count of images written, or a pointer to the required

capacity in the case that imageCapacityInput is insufficient.

• images is a pointer to an array of graphics API-specific XrSwapchainImage structures, all of the

same type, based on XrSwapchainImageBaseHeader. It can be NULL if imageCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

images size.

Fills an array of graphics API-specific XrSwapchainImage structures. The resources must be constant and

valid for the lifetime of the XrSwapchain.

Runtimes must always return identical buffer contents from this enumeration for the lifetime of the

swapchain.

Chapter 10. Rendering | 211

Note: images is a pointer to an array of structures of graphics API-specific type, not an array of

structure pointers.

The pointer submitted as images will be treated as an array of the expected graphics API-specific type

based on the graphics API used at session creation time. If the type member of any array element

accessed in this way does not match the expected value, the runtime must return

XR_ERROR_VALIDATION_FAILURE. Note

Under a typical memory model, a runtime must treat the supplied pointer as an

opaque blob beginning with XrSwapchainImageBaseHeader, until after it has verified

the XrSwapchainImageBaseHeader::type.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

• imageCountOutput must be a pointer to a uint32_t value

• If imageCapacityInput is not 0, images must be a pointer to an array of imageCapacityInput

XrSwapchainImageBaseHeader-based structures. See also: XrSwapchainImageD3D11KHR,

XrSwapchainImageD3D12KHR, XrSwapchainImageOpenGLESKHR,

XrSwapchainImageOpenGLKHR, XrSwapchainImageVulkanKHR

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

The XrSwapchainImageBaseHeader structure is defined as:

212 | Chapter 10. Rendering

typedef struct XrSwapchainImageBaseHeader {

 XrStructureType type;

 void* next;

} XrSwapchainImageBaseHeader;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

The XrSwapchainImageBaseHeader is a base structure that is extended by graphics API-specific

XrSwapchainImage* child structures.

Valid Usage (Implicit)

• type must be one of the following XrStructureType values:

XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR, XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR,

XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR, XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR,
XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

Before an application builds graphics API command buffers that refer to an image in a swapchain, it

must acquire the image from the swapchain. The acquire operation determines the index of the next

image to be used in the swapchain. The order in which images are acquired is undefined. The runtime

must allow the application to acquire more than one image from a single (non-static) swapchain at a

time, for example if the application implements a multiple frame deep rendering pipeline.

The xrAcquireSwapchainImage function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrAcquireSwapchainImage(

 XrSwapchain swapchain,

 const XrSwapchainImageAcquireInfo* acquireInfo,

 uint32_t* index);

Chapter 10. Rendering | 213

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• swapchain is the swapchain from which to acquire an image.

• acquireInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrSwapchainImageAcquireInfo.

• index is the returned image index that has been acquired.

Acquires the image corresponding to the index position in the array returned by

xrEnumerateSwapchainImages. The runtime must return XR_ERROR_CALL_ORDER_INVALID if the next

available index has already been acquired and not yet released with xrReleaseSwapchainImage. If the

swapchain was created with the XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT set in XrSwapchainCreateInfo

::createFlags, this function must not have been previously called for this swapchain. The runtime

must return XR_ERROR_CALL_ORDER_INVALID if a swapchain created with the

XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT set in XrSwapchainCreateInfo::createFlags and this function has

been successfully called previously for this swapchain.

This function only provides the index of the swapchain image, for example for use in recording

command buffers. It does not wait for the image to be usable by the application. The application must

call xrWaitSwapchainImage for each "acquire" call before submitting graphics commands that write to

the image.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

• If acquireInfo is not NULL, acquireInfo must be a pointer to a valid

XrSwapchainImageAcquireInfo structure

• index must be a pointer to a uint32_t value

214 | Chapter 10. Rendering

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_CALL_ORDER_INVALID

The XrSwapchainImageAcquireInfo structure is defined as:

typedef struct XrSwapchainImageAcquireInfo {

 XrStructureType type;

 const void* next;

} XrSwapchainImageAcquireInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrAcquireSwapchainImage

will accept a NULL argument for xrAcquireSwapchainImage::acquireInfo for applications that are not

using any relevant extensions.

Valid Usage (Implicit)

• type must be XR_TYPE_SWAPCHAIN_IMAGE_ACQUIRE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

Chapter 10. Rendering | 215

#valid-usage-for-structure-pointer-chains

The xrWaitSwapchainImage function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrWaitSwapchainImage(

 XrSwapchain swapchain,

 const XrSwapchainImageWaitInfo* waitInfo);

Parameter Descriptions

• swapchain is the swapchain from which to wait for an image.

• waitInfo is a pointer to an XrSwapchainImageWaitInfo structure.

Before an application begins writing to a swapchain image, it must first wait on the image, to avoid

writing to it before the compositor has finished reading from it. xrWaitSwapchainImage will implicitly

wait on the oldest acquired swapchain image which has not yet been successfully waited on. Once a

swapchain image has been successfully waited on without timeout, the app must release before

waiting on the next acquired swapchain image.

This function may block for longer than the timeout specified in XrSwapchainImageWaitInfo due to

scheduling or contention.

If the timeout expires without the image becoming available for writing, XR_TIMEOUT_EXPIRED must be

returned. If xrWaitSwapchainImage returns XR_TIMEOUT_EXPIRED, the next call to

xrWaitSwapchainImage will wait on the same image index again until the function succeeds with

XR_SUCCESS. Note that this is not an error code; XR_SUCCEEDED(XR_TIMEOUT_EXPIRED) is true.

The runtime must eventually relinquish ownership of a swapchain image to the application and must

not block indefinitely.

The runtime must return XR_ERROR_CALL_ORDER_INVALID if no image has been acquired by calling

xrAcquireSwapchainImage.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

• waitInfo must be a pointer to a valid XrSwapchainImageWaitInfo structure

216 | Chapter 10. Rendering

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_TIMEOUT_EXPIRED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_CALL_ORDER_INVALID

The XrSwapchainImageWaitInfo structure describes a swapchain image wait operation. It is defined

as:

typedef struct XrSwapchainImageWaitInfo {

 XrStructureType type;

 const void* next;

 XrDuration timeout;

} XrSwapchainImageWaitInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• timeout indicates how many nanoseconds the call may block waiting for the image to become

available for writing.

Chapter 10. Rendering | 217

Valid Usage (Implicit)

• type must be XR_TYPE_SWAPCHAIN_IMAGE_WAIT_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

Once an application is done submitting commands that reference the swapchain image, the application

must release the swapchain image. xrReleaseSwapchainImage will implicitly release the oldest

swapchain image which has been acquired. The swapchain image must have been successfully waited

on without timeout before it is released. xrEndFrame will use the most recently released swapchain

image. In each frame submitted to the compositor, only one image index from each swapchain will be

used. Note that in case the swapchain contains 2D image arrays, one array is referenced per swapchain

index and thus the whole image array may be used in one frame.

The xrReleaseSwapchainImage function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrReleaseSwapchainImage(

 XrSwapchain swapchain,

 const XrSwapchainImageReleaseInfo* releaseInfo);

Parameter Descriptions

• swapchain is the XrSwapchain from which to release an image.

• releaseInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrSwapchainImageReleaseInfo.

If the swapchain was created with the XR_SWAPCHAIN_CREATE_STATIC_IMAGE_BIT set in

XrSwapchainCreateInfo::createFlags structure, this function must not have been previously called for

this swapchain.

The runtime must return XR_ERROR_CALL_ORDER_INVALID if no image has been waited on by calling

xrWaitSwapchainImage.

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

• If releaseInfo is not NULL, releaseInfo must be a pointer to a valid

XrSwapchainImageReleaseInfo structure

218 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_CALL_ORDER_INVALID

The XrSwapchainImageReleaseInfo structure is defined as:

typedef struct XrSwapchainImageReleaseInfo {

 XrStructureType type;

 const void* next;

} XrSwapchainImageReleaseInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrReleaseSwapchainImage

will accept a NULL argument for xrReleaseSwapchainImage::releaseInfo for applications that are not

using any relevant extensions.

Valid Usage (Implicit)

• type must be XR_TYPE_SWAPCHAIN_IMAGE_RELEASE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

Chapter 10. Rendering | 219

#valid-usage-for-structure-pointer-chains

10.2. View and Projection State

An application uses xrLocateViews to retrieve the viewer pose and projection parameters needed to

render each view for use in a composition projection layer.

The xrLocateViews function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrLocateViews(

 XrSession session,

 const XrViewLocateInfo* viewLocateInfo,

 XrViewState* viewState,

 uint32_t viewCapacityInput,

 uint32_t* viewCountOutput,

 XrView* views);

Parameter Descriptions

• session is a handle to the provided XrSession.

• viewLocateInfo is a pointer to a valid XrViewLocateInfo structure.

• viewState is the output structure with the viewer state information.

• viewCapacityInput is an input parameter which specifies the capacity of the views array. The

required capacity must be same as defined by the corresponding XrViewConfigurationType.

• viewCountOutput is an output parameter which identifies the valid count of views.

• views is an array of XrView.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

views size.

The xrLocateViews function returns the view and projection info for a particular display time. This

time is typically the target display time for a given frame. Repeatedly calling xrLocateViews with the

same time may not necessarily return the same result. Instead the prediction gets increasingly

accurate as the function is called closer to the given time for which a prediction is made. This allows an

application to get the predicted views as late as possible in its pipeline to get the least amount of

latency and prediction error.

xrLocateViews returns an array of XrView elements, one for each view of the specified view

configuration type, along with an XrViewState containing additional state data shared across all views.

The eye each view corresponds to is statically defined in XrViewConfigurationType in case the

application wants to apply eye-specific rendering traits. The XrViewState and XrView member data

220 | Chapter 10. Rendering

may change on subsequent calls to xrLocateViews, and so applications must not assume it to be

constant.

If an application gives a viewLocateInfo with a XrViewLocateInfo::viewConfigurationType that was not

passed in the session’s call to xrBeginSession via the XrSessionBeginInfo::

primaryViewConfigurationType, or enabled though an extension, then the runtime must return

XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• viewLocateInfo must be a pointer to a valid XrViewLocateInfo structure

• viewState must be a pointer to an XrViewState structure

• viewCountOutput must be a pointer to a uint32_t value

• If viewCapacityInput is not 0, views must be a pointer to an array of viewCapacityInput XrView

structures

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_TIME_INVALID

The XrViewLocateInfo structure is defined as:

Chapter 10. Rendering | 221

typedef struct XrViewLocateInfo {

 XrStructureType type;

 const void* next;

 XrViewConfigurationType viewConfigurationType;

 XrTime displayTime;

 XrSpace space;

} XrViewLocateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• viewConfigurationType is XrViewConfigurationType to query for.

• displayTime is the time for which the view poses are predicted.

• space is the XrSpace in which the pose in each XrView is expressed.

The XrViewLocateInfo structure contains the display time and space used to locate the view XrView

structures.

The runtime must return error XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED if the given

viewConfigurationType is not one of the supported type reported by xrEnumerateViewConfigurations.

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW_LOCATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrViewLocateFoveatedRenderingVARJO

• viewConfigurationType must be a valid XrViewConfigurationType value

• space must be a valid XrSpace handle

The XrView structure is defined as:

222 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

typedef struct XrView {

 XrStructureType type;

 void* next;

 XrPosef pose;

 XrFovf fov;

} XrView;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• pose is an XrPosef defining the location and orientation of the view in the space specified by

the xrLocateViews function.

• fov is the XrFovf for the four sides of the projection.

The XrView structure contains view pose and projection state necessary to render a single projection

view in the view configuration.

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrViewState structure is defined as:

typedef struct XrViewState {

 XrStructureType type;

 void* next;

 XrViewStateFlags viewStateFlags;

} XrViewState;

Chapter 10. Rendering | 223

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• viewStateFlags is a bitmask of XrViewStateFlagBits indicating state for all views.

The XrViewState contains additional view state from xrLocateViews common to all views of the active

view configuration.

Valid Usage (Implicit)

• type must be XR_TYPE_VIEW_STATE

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewStateFlags must be 0 or a valid combination of XrViewStateFlagBits values

The XrViewStateFlags specifies the validity and quality of the corresponding XrView array returned by

xrLocateViews. The XrViewState::viewStateFlags member is of this type, and contains a bitwise-OR of

zero or more of the bits defined in XrViewStateFlagBits.

typedef XrFlags64 XrViewStateFlags;

Valid bits for XrViewStateFlags are defined by XrViewStateFlagBits, which is specified as:

// Flag bits for XrViewStateFlags

static const XrViewStateFlags XR_VIEW_STATE_ORIENTATION_VALID_BIT = 0x00000001;

static const XrViewStateFlags XR_VIEW_STATE_POSITION_VALID_BIT = 0x00000002;

static const XrViewStateFlags XR_VIEW_STATE_ORIENTATION_TRACKED_BIT = 0x00000004;

static const XrViewStateFlags XR_VIEW_STATE_POSITION_TRACKED_BIT = 0x00000008;

The flag bits have the following meanings:

224 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

Flag Descriptions

• XR_VIEW_STATE_ORIENTATION_VALID_BIT indicates whether all XrView orientations contain valid

data. Applications must not read any of the XrView pose orientation fields if this flag is unset.

XR_VIEW_STATE_ORIENTATION_TRACKED_BIT should generally remain set when this bit is set for

views on a tracked headset or handheld device.

• XR_VIEW_STATE_POSITION_VALID_BIT indicates whether all XrView positions contain valid data.

Applications must not read any of the XrView::pose position fields if this flag is unset. When

a view loses tracking, runtimes should continue to provide valid but untracked view position

values that are inferred or last-known, so long as it’s still meaningful for the application to

render content using that position, clearing XR_VIEW_STATE_POSITION_TRACKED_BIT until

tracking is recovered.

• XR_VIEW_STATE_ORIENTATION_TRACKED_BIT indicates whether all XrView orientations represent

an actively tracked orientation. This bit should generally remain set when

XR_VIEW_STATE_ORIENTATION_VALID_BIT is set for views on a tracked headset or handheld

device.

• XR_VIEW_STATE_POSITION_TRACKED_BIT indicates whether all XrView positions represent an

actively tracked position. When a view loses tracking, runtimes should continue to provide

valid but untracked view position values that are inferred or last-known, e.g. based on neck

model updates, inertial dead reckoning, or a last-known position, so long as it’s still

meaningful for the application to render content using that position.

10.3. Frame Synchronization

An application synchronizes its rendering loop to the runtime by calling xrWaitFrame.

The xrWaitFrame function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrWaitFrame(

 XrSession session,

 const XrFrameWaitInfo* frameWaitInfo,

 XrFrameState* frameState);

Chapter 10. Rendering | 225

Parameter Descriptions

• session is a valid XrSession handle.

• frameWaitInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrFrameWaitInfo.

• frameState is a pointer to a valid XrFrameState, an output parameter.

xrWaitFrame throttles the application frame loop in order to synchronize application frame

submissions with the display. xrWaitFrame returns a predicted display time for the next time that the

runtime predicts a composited frame will be displayed. The runtime may affect this computation by

changing the return values and throttling of xrWaitFrame in response to feedback from frame

submission and completion times in xrEndFrame. A subsequent xrWaitFrame call must block until the

previous frame has been begun with xrBeginFrame and must unblock independently of the

corresponding call to xrEndFrame. Refer to xrBeginSession for details on how a transition to session

running resets the frame function call order.

When less than one frame interval has passed since the previous return from xrWaitFrame, the

runtime should block until the beginning of the next frame interval. If more than one frame interval

has passed since the last return from xrWaitFrame, the runtime may return immediately or block until

the beginning of the next frame interval.

In the case that an application has pipelined frame submissions, the application should compute the

appropriate target display time using both the predicted display time and predicted display interval.

The application should use the computed target display time when requesting space and view

locations for rendering.

The XrFrameState::predictedDisplayTime returned by xrWaitFrame must be monotonically increasing.

The runtime may dynamically adjust the start time of the frame interval relative to the display

hardware’s refresh cycle to minimize graphics processor contention between the application and the

compositor.

xrWaitFrame must be callable from any thread, including a different thread than xrBeginFrame

/xrEndFrame are being called from.

Calling xrWaitFrame must be externally synchronized by the application, concurrent calls may result

in undefined behavior.

The runtime must return XR_ERROR_SESSION_NOT_RUNNING if the session is not running.

226 | Chapter 10. Rendering

 Note

The engine simulation should advance based on the display time. Every stage in the

engine pipeline should use the exact same display time for one particular application-

generated frame. An accurate and consistent display time across all stages and

threads in the engine pipeline is important to avoid object motion judder. If the

application has multiple pipeline stages, the application should pass its computed

display time through its pipeline, as xrWaitFrame must be called only once per frame.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• If frameWaitInfo is not NULL, frameWaitInfo must be a pointer to a valid XrFrameWaitInfo

structure

• frameState must be a pointer to an XrFrameState structure

Thread Safety

• Access to the session parameter by any other xrWaitFrame call must be externally

synchronized

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SESSION_NOT_RUNNING

The XrFrameWaitInfo structure is defined as:

Chapter 10. Rendering | 227

typedef struct XrFrameWaitInfo {

 XrStructureType type;

 const void* next;

} XrFrameWaitInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrWaitFrame must accept a

NULL argument for xrWaitFrame::frameWaitInfo for applications that are not using any relevant

extensions.

Valid Usage (Implicit)

• type must be XR_TYPE_FRAME_WAIT_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrFrameState structure is defined as:

typedef struct XrFrameState {

 XrStructureType type;

 void* next;

 XrTime predictedDisplayTime;

 XrDuration predictedDisplayPeriod;

 XrBool32 shouldRender;

} XrFrameState;

228 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• predictedDisplayTime is the anticipated display XrTime for the next application-generated

frame.

• predictedDisplayPeriod is the XrDuration of the display period for the next application-

generated frame, for use in predicting display times beyond the next one.

• shouldRender is XR_TRUE if the application should render its layers as normal and submit them

to xrEndFrame. When this value is XR_FALSE, the application should avoid heavy GPU work

where possible, for example by skipping layer rendering and then omitting those layers

when calling xrEndFrame.

XrFrameState describes the time at which the next frame will be displayed to the user.

predictedDisplayTime must refer to the midpoint of the interval during which the frame is displayed.

The runtime may report a different predictedDisplayPeriod from the hardware’s refresh cycle.

For any frame where shouldRender is XR_FALSE, the application should avoid heavy GPU work for that

frame, for example by not rendering its layers. This typically happens when the application is

transitioning into or out of a running session, or when some system UI is fully covering the application

at the moment. As long as the session is running, the application should keep running the frame loop

to maintain the frame synchronization to the runtime, even if this requires calling xrEndFrame with

all layers omitted.

Valid Usage (Implicit)

• type must be XR_TYPE_FRAME_STATE

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSecondaryViewConfigurationFrameStateMSFT

10.4. Frame Submission

Every application must call xrBeginFrame before calling xrEndFrame, and should call xrEndFrame

before calling xrBeginFrame again. Calling xrEndFrame again without a prior call to xrBeginFrame

must result in XR_ERROR_CALL_ORDER_INVALID being returned by xrEndFrame. An application may call

xrBeginFrame again if the prior xrEndFrame fails or if the application wishes to discard an in-progress

frame. A successful call to xrBeginFrame again with no intervening xrEndFrame call must result in the

success code XR_FRAME_DISCARDED being returned from xrBeginFrame. In this case it is assumed that the

xrBeginFrame refers to the next frame and the previously begun frame is forfeited by the application.

Chapter 10. Rendering | 229

#valid-usage-for-structure-pointer-chains

An application may call xrEndFrame without having called xrReleaseSwapchainImage since the

previous call to xrEndFrame for any swapchain passed to xrEndFrame. Applications should call

xrBeginFrame right before executing any graphics device work for a given frame, as opposed to calling

it afterwards. The runtime must only compose frames whose xrBeginFrame and xrEndFrame both

return success codes. While xrBeginFrame and xrEndFrame do not need to be called on the same

thread, the application must handle synchronization if they are called on separate threads.

The xrBeginFrame function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrBeginFrame(

 XrSession session,

 const XrFrameBeginInfo* frameBeginInfo);

Parameter Descriptions

• session is a valid XrSession handle.

• frameBeginInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrFrameBeginInfo.

xrBeginFrame is called prior to the start of frame rendering. The application should still call

xrBeginFrame but omit rendering work for the frame if XrFrameState::shouldRender is XR_FALSE.

Runtimes must not perform frame synchronization or throttling through the xrBeginFrame function

and should instead do so through xrWaitFrame.

The runtime must return the error code XR_ERROR_CALL_ORDER_INVALID if there was no corresponding

successful call to xrWaitFrame. The runtime must return the success code XR_FRAME_DISCARDED if a prior

xrBeginFrame has been called without an intervening call to xrEndFrame. Refer to xrBeginSession for

details on how a transition to session running resets the frame function call order.

The runtime must return XR_ERROR_SESSION_NOT_RUNNING if the session is not running.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• If frameBeginInfo is not NULL, frameBeginInfo must be a pointer to a valid XrFrameBeginInfo

structure

230 | Chapter 10. Rendering

Thread Safety

• Access to the session parameter by any other xrBeginFrame or xrEndFrame call must be

externally synchronized

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_FRAME_DISCARDED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SESSION_NOT_RUNNING

• XR_ERROR_CALL_ORDER_INVALID

The XrFrameBeginInfo structure is defined as:

typedef struct XrFrameBeginInfo {

 XrStructureType type;

 const void* next;

} XrFrameBeginInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

Because this structure only exists to support extension-specific structures, xrBeginFrame will accept a

Chapter 10. Rendering | 231

NULL argument for xrBeginFrame::frameBeginInfo for applications that are not using any relevant

extensions.

Valid Usage (Implicit)

• type must be XR_TYPE_FRAME_BEGIN_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

The xrEndFrame function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEndFrame(

 XrSession session,

 const XrFrameEndInfo* frameEndInfo);

Parameter Descriptions

• session is a valid XrSession handle.

• frameEndInfo is a pointer to a valid XrFrameEndInfo.

xrEndFrame may return immediately to the application. XrFrameEndInfo::displayTime should be

computed using values returned by xrWaitFrame. The runtime should be robust against variations in

the timing of calls to xrWaitFrame, since a pipelined system may call xrWaitFrame on a separate

thread from xrBeginFrame and xrEndFrame without any synchronization guarantees. Note

An accurate predicted display time is very important to avoid black pull-in by

reprojection and to reduce motion judder in case the runtime does not implement a

translational reprojection. Reprojection should never display images before the

display refresh period they were predicted for, even if they are completed early,

because this will cause motion judder just the same. In other words, the better the

predicted display time, the less latency experienced by the user.

Every call to xrEndFrame must be preceded by a successful call to xrBeginFrame. Failure to do so

must result in XR_ERROR_CALL_ORDER_INVALID being returned by xrEndFrame. Refer to xrBeginSession

for details on how a transition to session running resets the frame function call order. XrFrameEndInfo

may reference swapchains into which the application has rendered for this frame. From each

XrSwapchain only one image index is implicitly referenced per frame, the one corresponding to the

last call to xrReleaseSwapchainImage. However, a specific swapchain (and by extension a specific

232 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

swapchain image index) may be referenced in XrFrameEndInfo multiple times. This can be used for

example to render a side by side image into a single swapchain image and referencing it twice with

differing image rectangles in different layers.

If no layers are provided then the display must be cleared.

XR_ERROR_LAYER_INVALID must be returned if an unknown, unsupported layer type, or NULL pointer is

passed as one of the XrFrameEndInfo::layers.

XR_ERROR_LAYER_INVALID must be returned if a layer references a swapchain that has no released

swapchain image.

XR_ERROR_LAYER_LIMIT_EXCEEDED must be returned if XrFrameEndInfo::layerCount exceeds

XrSystemGraphicsProperties::maxLayerCount or if the runtime is unable to composite the specified

layers due to resource constraints.

XR_ERROR_SWAPCHAIN_RECT_INVALID must be returned if XrFrameEndInfo::layers contains a composition

layer which references pixels outside of the associated swapchain image or if negatively sized.

XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED must be returned if

XrFrameEndInfo::environmentBlendMode is not supported.

XR_ERROR_SESSION_NOT_RUNNING must be returned if the session is not running. Note

Applications should discard frames for which xrEndFrame returns a recoverable

error over attempting to resubmit the frame with different frame parameters to

provide a more consistent experience across different runtime implementations.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• frameEndInfo must be a pointer to a valid XrFrameEndInfo structure

Thread Safety

• Access to the session parameter by any other xrBeginFrame or xrEndFrame call must be

externally synchronized

Chapter 10. Rendering | 233

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

• XR_ERROR_SWAPCHAIN_RECT_INVALID

• XR_ERROR_SESSION_NOT_RUNNING

• XR_ERROR_POSE_INVALID

• XR_ERROR_LAYER_LIMIT_EXCEEDED

• XR_ERROR_LAYER_INVALID

• XR_ERROR_ENVIRONMENT_BLEND_MODE_UNSUPPORTED

• XR_ERROR_CALL_ORDER_INVALID

The XrFrameEndInfo structure is defined as:

typedef struct XrFrameEndInfo {

 XrStructureType type;

 const void* next;

 XrTime displayTime;

 XrEnvironmentBlendMode environmentBlendMode;

 uint32_t layerCount;

 const XrCompositionLayerBaseHeader* const* layers;

} XrFrameEndInfo;

234 | Chapter 10. Rendering

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• displayTime is the XrTime at which this frame should be displayed.

• environmentBlendMode is the XrEnvironmentBlendMode value representing the desired

environment blend mode for this frame.

• layerCount is the number of composition layers in this frame. The maximum supported layer

count is identified by XrSystemGraphicsProperties::maxLayerCount. If layerCount is greater

than the maximum supported layer count then XR_ERROR_LAYER_LIMIT_EXCEEDED must be

returned.

• layers is a pointer to an array of XrCompositionLayerBaseHeader pointers.

Valid Usage (Implicit)

• type must be XR_TYPE_FRAME_END_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrFrameEndInfoML, XrGlobalDimmerFrameEndInfoML,

XrLocalDimmingFrameEndInfoMETA, XrSecondaryViewConfigurationFrameEndInfoMSFT

• environmentBlendMode must be a valid XrEnvironmentBlendMode value

• If layerCount is not 0, layers must be a pointer to an array of layerCount valid

XrCompositionLayerBaseHeader-based structures. See also: XrCompositionLayerCubeKHR,

XrCompositionLayerCylinderKHR, XrCompositionLayerEquirect2KHR,

XrCompositionLayerEquirectKHR, XrCompositionLayerPassthroughHTC,

XrCompositionLayerProjection, XrCompositionLayerQuad

All layers submitted to xrEndFrame will be presented to the primary view configuration of the running

session.

10.5. Frame Rate

For every application-generated frame, the application may call xrEndFrame to submit the application-

generated composition layers. In addition, the application must call xrWaitFrame when the

application is ready to begin preparing the next set of frame layers. xrEndFrame may return

immediately to the application, but xrWaitFrame must block for an amount of time that depends on

throttling of the application by the runtime. The earliest the runtime will return from xrWaitFrame is

when it determines that the application should start drawing the next frame.

Chapter 10. Rendering | 235

#valid-usage-for-structure-pointer-chains

10.6. Compositing

Composition layers are submitted by the application via the xrEndFrame call. All composition layers to

be drawn must be submitted with every xrEndFrame call. A layer that is omitted in this call will not be

drawn by the runtime layer compositor. All views associated with projection layers must be supplied,

or XR_ERROR_VALIDATION_FAILURE must be returned by xrEndFrame.

Composition layers must be drawn in the same order as they are specified in via XrFrameEndInfo,

with the 0th layer drawn first. Layers must be drawn with a "painter’s algorithm," with each

successive layer potentially overwriting the destination layers whether or not the new layers are

virtually closer to the viewer.

10.6.1. Composition Layer Flags

XrCompositionLayerFlags specifies options for individual composition layers, and contains a bitwise-

OR of zero or more of the bits defined in XrCompositionLayerFlagBits.

typedef XrFlags64 XrCompositionLayerFlags;

Valid bits for XrCompositionLayerFlags are defined by XrCompositionLayerFlagBits, which is specified

as:

// Flag bits for XrCompositionLayerFlags

static const XrCompositionLayerFlags

XR_COMPOSITION_LAYER_CORRECT_CHROMATIC_ABERRATION_BIT = 0x00000001;

static const XrCompositionLayerFlags XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT

= 0x00000002;

static const XrCompositionLayerFlags XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT =

0x00000004;

The flag bits have the following meanings:

236 | Chapter 10. Rendering

Flag Descriptions

• XR_COMPOSITION_LAYER_CORRECT_CHROMATIC_ABERRATION_BIT (deprecated — ignored)  — Enables

chromatic aberration correction when not done by default. This flag has no effect on any

known conformant runtime, and is officially deprecated in OpenXR 1.1.

• XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT  — Enables the layer texture alpha

channel.

• XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT  — Indicates the texture color channels have

not been premultiplied by the texture alpha channel.

10.6.2. Composition Layer Blending

All types of composition layers are subject to blending with other layers. Blending of layers can be

controlled by layer per-texel source alpha. Layer swapchain textures may contain an alpha channel,

depending on the image format. If a submitted swapchain’s texture format does not include an alpha

channel or if the XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT is unset, then the layer alpha is

initialized to one.

If the swapchain texture format color encoding is other than RGBA, it is converted to RGBA.

If the texture color channels are encoded without premultiplying by alpha, the

XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT should be set. The effect of this bit alters the layer

color as follows:

LayerColor.RGB *= LayerColor.A

LayerColor is then clamped to a range of [0.0, 1.0].

The layer blending operation is defined as:

CompositeColor = LayerColor + CompositeColor * (1 - LayerColor.A)

Before the first layer is composited, all components of CompositeColor are initialized to zero.

10.6.3. Composition Layer Types

Composition layers allow an application to offload the composition of the final image to a runtime-

supplied compositor. This reduces the application’s rendering complexity since details such as frame-

rate interpolation and distortion correction can be performed by the runtime. The core specification

defines XrCompositionLayerProjection and XrCompositionLayerQuad layer types.

The projection layer type represents planar projected images rendered from the eye point of each eye

Chapter 10. Rendering | 237

using a perspective projection. This layer type is typically used to render the virtual world from the

user’s perspective.

The quad layer type describes a posable planar rectangle in the virtual world for displaying two-

dimensional content. Quad layers can subtend a smaller portion of the display’s field of view, allowing

a better match between the resolutions of the XrSwapchain image and footprint of that image in the

final composition. This improves legibility for user interface elements or heads-up displays and allows

optimal sampling during any composition distortion corrections the runtime might employ.

The classes below describe the layer types in the layer composition system.

The XrCompositionLayerBaseHeader structure is defined as:

typedef struct XrCompositionLayerBaseHeader {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

} XrCompositionLayerBaseHeader;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.

• space is the XrSpace in which the layer will be kept stable over time.

All composition layer structures begin with the elements described in the

XrCompositionLayerBaseHeader. The XrCompositionLayerBaseHeader structure is not intended to be

directly used, but forms a basis for defining current and future structures containing composition

layer information. The XrFrameEndInfo structure contains an array of pointers to these polymorphic

header structures. All composition layer type pointers must be type-castable as an

XrCompositionLayerBaseHeader pointer.

238 | Chapter 10. Rendering

Valid Usage (Implicit)

• type must be one of the following XrStructureType values:

XR_TYPE_COMPOSITION_LAYER_CUBE_KHR, XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR,

XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR, XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR,

XR_TYPE_COMPOSITION_LAYER_PASSTHROUGH_HTC, XR_TYPE_COMPOSITION_LAYER_PROJECTION,
XR_TYPE_COMPOSITION_LAYER_QUAD

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrCompositionLayerAlphaBlendFB, XrCompositionLayerColorScaleBiasKHR,

XrCompositionLayerDepthTestFB, XrCompositionLayerImageLayoutFB,

XrCompositionLayerPassthroughFB, XrCompositionLayerSecureContentFB,

XrCompositionLayerSettingsFB

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

Many composition layer structures also contain one or more references to generic layer data stored in

an XrSwapchainSubImage structure.

The XrSwapchainSubImage structure is defined as:

typedef struct XrSwapchainSubImage {

 XrSwapchain swapchain;

 XrRect2Di imageRect;

 uint32_t imageArrayIndex;

} XrSwapchainSubImage;

Member Descriptions

• swapchain is the XrSwapchain to be displayed.

• imageRect is an XrRect2Di representing the valid portion of the image to use, in pixels. It also

implicitly defines the transform from normalized image coordinates into pixel coordinates.

The coordinate origin depends on which graphics API is being used. See the graphics API

extension details for more information on the coordinate origin definition. Note that the

compositor may bleed in pixels from outside the bounds in some cases, for instance due to

mipmapping.

• imageArrayIndex is the image array index, with 0 meaning the first or only array element.

Chapter 10. Rendering | 239

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• swapchain must be a valid XrSwapchain handle

Runtimes must return XR_ERROR_VALIDATION_FAILURE if the XrSwapchainSubImage::imageArrayIndex is

equal to or greater than the XrSwapchainCreateInfo::arraySize that the XrSwapchainSubImage

::swapchain was created with.

Projection Composition

The XrCompositionLayerProjection layer represents planar projected images rendered from the eye

point of each eye using a standard perspective projection.

The XrCompositionLayerProjection structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrCompositionLayerProjection {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 uint32_t viewCount;

 const XrCompositionLayerProjectionView* views;

} XrCompositionLayerProjection;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.

• space is the XrSpace in which the pose of each XrCompositionLayerProjectionView is

evaluated over time by the compositor.

• viewCount is the count of views in the views array. This must be equal to the number of view

poses returned by xrLocateViews.

• views is the array of type XrCompositionLayerProjectionView containing each projection

layer view.

240 | Chapter 10. Rendering

 Note

Because a runtime may reproject the layer over time, a projection layer should specify

an XrSpace in which to maximize stability of the layer content. For example, a

projection layer containing world-locked content should use an XrSpace which is also

world-locked, such as the LOCAL or STAGE reference spaces. In the case that the

projection layer should be head-locked, such as a heads up display, the VIEW reference

space would provide the highest quality layer reprojection.

Valid Usage (Implicit)

• type must be XR_TYPE_COMPOSITION_LAYER_PROJECTION

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrCompositionLayerDepthTestVARJO, XrCompositionLayerReprojectionInfoMSFT,

XrCompositionLayerReprojectionPlaneOverrideMSFT

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• views must be a pointer to an array of viewCount valid XrCompositionLayerProjectionView

structures

• The viewCount parameter must be greater than 0

The XrCompositionLayerProjectionView structure is defined as:

typedef struct XrCompositionLayerProjectionView {

 XrStructureType type;

 const void* next;

 XrPosef pose;

 XrFovf fov;

 XrSwapchainSubImage subImage;

} XrCompositionLayerProjectionView;

Chapter 10. Rendering | 241

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• pose is an XrPosef defining the location and orientation of this projection element in the space

of the corresponding XrCompositionLayerProjectionView.

• fov is the XrFovf for this projection element.

• subImage is the image layer XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

The count and order of view poses submitted with XrCompositionLayerProjection must be the same

order as that returned by xrLocateViews. The XrCompositionLayerProjectionView::pose and

XrCompositionLayerProjectionView::fov should almost always derive from XrView::pose and XrView

::fov as found in the xrLocateViews::views array. However, applications may submit an

XrCompositionLayerProjectionView which has a different view or FOV than that from xrLocateViews.

In this case, the runtime will map the view and FOV to the system display appropriately. In the case

that two submitted views within a single layer overlap, they must be composited in view array order.

Valid Usage (Implicit)

• type must be XR_TYPE_COMPOSITION_LAYER_PROJECTION_VIEW

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrCompositionLayerDepthInfoKHR, XrCompositionLayerSpaceWarpInfoFB

• subImage must be a valid XrSwapchainSubImage structure

Quad Layer Composition

The XrCompositionLayerQuad structure defined as:

242 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

// Provided by XR_VERSION_1_0

typedef struct XrCompositionLayerQuad {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchainSubImage subImage;

 XrPosef pose;

 XrExtent2Df size;

} XrCompositionLayerQuad;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.

• space is the XrSpace in which the pose of the quad layer is evaluated over time.

• eyeVisibility is the XrEyeVisibility for this layer.

• subImage is the image layer XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

• pose is an XrPosef defining the position and orientation of the quad in the reference frame of

the space.

• size is the width and height of the quad in meters.

The XrCompositionLayerQuad layer is useful for user interface elements or 2D content rendered into

the virtual world. The layer’s XrSwapchainSubImage::swapchain image is applied to a quad in the

virtual world space. Only front face of the quad surface is visible; the back face is not visible and must

not be drawn by the runtime. A quad layer has no thickness; it is a two-dimensional object positioned

and oriented in 3D space. The position of a quad refers to the center of the quad within the given

XrSpace. The orientation of the quad refers to the orientation of the normal vector from the front face.

The size of a quad refers to the quad’s size in the x-y plane of the given XrSpace’s coordinate system. A

quad with a position of {0,0,0}, rotation of {0,0,0,1} (no rotation), and a size of {1,1} refers to a 1 meter x

1 meter quad centered at {0,0,0} with its front face normal vector coinciding with the +z axis.

Chapter 10. Rendering | 243

Valid Usage (Implicit)

• type must be XR_TYPE_COMPOSITION_LAYER_QUAD

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• subImage must be a valid XrSwapchainSubImage structure

The XrEyeVisibility enum selects which of the viewer’s eyes to display a layer to:

typedef enum XrEyeVisibility {

 XR_EYE_VISIBILITY_BOTH = 0,

 XR_EYE_VISIBILITY_LEFT = 1,

 XR_EYE_VISIBILITY_RIGHT = 2,

 XR_EYE_VISIBILITY_MAX_ENUM = 0x7FFFFFFF

} XrEyeVisibility;

Enumerant Descriptions

• XR_EYE_VISIBILITY_BOTH displays the layer to both eyes.

• XR_EYE_VISIBILITY_LEFT displays the layer to the viewer’s physical left eye.

• XR_EYE_VISIBILITY_RIGHT displays the layer to the viewer’s physical right eye.

10.6.4. Environment Blend Mode

After the compositor has blended and flattened all layers (including any layers added by the runtime

itself), it will then present this image to the system’s display. The composited image will then blend

with the user’s view of the physical world behind the displays in one of three modes, based on the

application’s chosen environment blend mode. VR applications will generally choose the

XR_ENVIRONMENT_BLEND_MODE_OPAQUE blend mode, while AR applications will generally choose either the

XR_ENVIRONMENT_BLEND_MODE_ADDITIVE or XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND mode.

Applications select their environment blend mode each frame as part of their call to xrEndFrame. The

application can inspect the set of supported environment blend modes for a given system using

xrEnumerateEnvironmentBlendModes, and prepare their assets and rendering techniques differently

based on the blend mode they choose. For example, a black shadow rendered using the

244 | Chapter 10. Rendering

#valid-usage-for-structure-pointer-chains

XR_ENVIRONMENT_BLEND_MODE_ADDITIVE blend mode will appear transparent, and so an application in that

mode may render a glow as a grounding effect around the black shadow to ensure the shadow can be

seen. Similarly, an application designed for XR_ENVIRONMENT_BLEND_MODE_OPAQUE or

XR_ENVIRONMENT_BLEND_MODE_ADDITIVE rendering may choose to leave garbage in their alpha channel as a

side effect of a rendering optimization, but this garbage would appear as visible display artifacts if the

environment blend mode was instead XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND.

Not all systems will support all environment blend modes. For example, a VR headset may not support

the XR_ENVIRONMENT_BLEND_MODE_ADDITIVE or XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND modes unless it has

video passthrough, while an AR headset with an additive display may not support the

XR_ENVIRONMENT_BLEND_MODE_OPAQUE or XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND modes.

For devices that can support multiple environment blend modes, such as AR phones with video

passthrough, the runtime may optimize power consumption on the device in response to the

environment blend mode that the application chooses each frame. For example, if an application on a

video passthrough phone knows that it is currently rendering a 360-degree background covering all

screen pixels, it can submit frames with an environment blend mode of

XR_ENVIRONMENT_BLEND_MODE_OPAQUE, saving the runtime the cost of compositing a camera-based underlay

of the physical world behind the application’s layers.

The xrEnumerateEnvironmentBlendModes function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateEnvironmentBlendModes(

 XrInstance instance,

 XrSystemId systemId,

 XrViewConfigurationType viewConfigurationType,

 uint32_t environmentBlendModeCapacityInput,

 uint32_t* environmentBlendModeCountOutput,

 XrEnvironmentBlendMode* environmentBlendModes);

Chapter 10. Rendering | 245

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose environment blend modes will be enumerated.

• viewConfigurationType is the XrViewConfigurationType to enumerate.

• environmentBlendModeCapacityInput is the capacity of the environmentBlendModes array, or 0 to

indicate a request to retrieve the required capacity.

• environmentBlendModeCountOutput is a pointer to the count of environmentBlendModes written, or

a pointer to the required capacity in the case that environmentBlendModeCapacityInput is

insufficient.

• environmentBlendModes is a pointer to an array of XrEnvironmentBlendMode values, but can

be NULL if environmentBlendModeCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

environmentBlendModes size.

Enumerates the set of environment blend modes that this runtime supports for a given view

configuration of the system. Environment blend modes should be in order from highest to lowest

runtime preference.

Runtimes must always return identical buffer contents from this enumeration for the given systemId

and viewConfigurationType for the lifetime of the instance.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• viewConfigurationType must be a valid XrViewConfigurationType value

• environmentBlendModeCountOutput must be a pointer to a uint32_t value

• If environmentBlendModeCapacityInput is not 0, environmentBlendModes must be a pointer to an

array of environmentBlendModeCapacityInput XrEnvironmentBlendMode values

246 | Chapter 10. Rendering

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_SYSTEM_INVALID

The possible blend modes are specified by the XrEnvironmentBlendMode enumeration:

typedef enum XrEnvironmentBlendMode {

 XR_ENVIRONMENT_BLEND_MODE_OPAQUE = 1,

 XR_ENVIRONMENT_BLEND_MODE_ADDITIVE = 2,

 XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND = 3,

 XR_ENVIRONMENT_BLEND_MODE_MAX_ENUM = 0x7FFFFFFF

} XrEnvironmentBlendMode;

Chapter 10. Rendering | 247

Enumerant Descriptions

• XR_ENVIRONMENT_BLEND_MODE_OPAQUE. The composition layers will be displayed with no view of

the physical world behind them. The composited image will be interpreted as an RGB image,

ignoring the composited alpha channel. This is the typical mode for VR experiences, although

this mode can also be supported on devices that support video passthrough.

• XR_ENVIRONMENT_BLEND_MODE_ADDITIVE. The composition layers will be additively blended with

the real world behind the display. The composited image will be interpreted as an RGB image,

ignoring the composited alpha channel during the additive blending. This will cause black

composited pixels to appear transparent. This is the typical mode for an AR experience on a

see-through headset with an additive display, although this mode can also be supported on

devices that support video passthrough.

• XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND. The composition layers will be alpha-blended with

the real world behind the display. The composited image will be interpreted as an RGBA

image, with the composited alpha channel determining each pixel’s level of blending with the

real world behind the display. This is the typical mode for an AR experience on a phone or

headset that supports video passthrough.

248 | Chapter 10. Rendering

Chapter 11. Input and Haptics

11.1. Action Overview

OpenXR applications communicate with input devices using XrActions. Actions are created at

initialization time and later used to request input device state, create action spaces, or control haptic

events. Input action handles represent 'actions' that the application is interested in obtaining the state

of, not direct input device hardware. For example, instead of the application directly querying the state

of the A button when interacting with a menu, an OpenXR application instead creates a menu_select

action at startup then asks OpenXR for the state of the action.

The application recommends that the action be assigned to a specific input source on the input device

for a known interaction profile, but runtimes have the ability to choose a different control depending

on user preference, input device availability, or any other reason. This abstraction ensures that

applications can run on a wide variety of input hardware and maximize user accessibility.

Example usage:

XrInstance instance; // previously initialized

XrSession session; // previously initialized

// Create an action set

XrActionSetCreateInfo actionSetInfo{XR_TYPE_ACTION_SET_CREATE_INFO};

strcpy(actionSetInfo.actionSetName, "gameplay");

strcpy(actionSetInfo.localizedActionSetName, "Gameplay");

actionSetInfo.priority = 0;

XrActionSet inGameActionSet;

CHK_XR(xrCreateActionSet(instance, &actionSetInfo, &inGameActionSet));

// create a "teleport" input action

XrActionCreateInfo actioninfo{XR_TYPE_ACTION_CREATE_INFO};

strcpy(actioninfo.actionName, "teleport");

actioninfo.actionType = XR_ACTION_TYPE_BOOLEAN_INPUT;

strcpy(actioninfo.localizedActionName, "Teleport");

XrAction teleportAction;

CHK_XR(xrCreateAction(inGameActionSet, &actioninfo, &teleportAction));

// create a "player_hit" output action

XrActionCreateInfo hapticsactioninfo{XR_TYPE_ACTION_CREATE_INFO};

strcpy(hapticsactioninfo.actionName, "player_hit");

hapticsactioninfo.actionType = XR_ACTION_TYPE_VIBRATION_OUTPUT;

strcpy(hapticsactioninfo.localizedActionName, "Player hit");

XrAction hapticsAction;

CHK_XR(xrCreateAction(inGameActionSet, &hapticsactioninfo, &hapticsAction));

Chapter 11. Input and Haptics | 249

XrPath triggerClickPath, hapticPath;

CHK_XR(xrStringToPath(instance, "/user/hand/right/input/trigger/click",

&triggerClickPath));

CHK_XR(xrStringToPath(instance, "/user/hand/right/output/haptic", &hapticPath))

XrPath interactionProfilePath;

CHK_XR(xrStringToPath(instance, "/interaction_profiles/vendor_x/profile_x",

&interactionProfilePath));

XrActionSuggestedBinding bindings[2];

bindings[0].action = teleportAction;

bindings[0].binding = triggerClickPath;

bindings[1].action = hapticsAction;

bindings[1].binding = hapticPath;

XrInteractionProfileSuggestedBinding

suggestedBindings{XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING};

suggestedBindings.interactionProfile = interactionProfilePath;

suggestedBindings.suggestedBindings = bindings;

suggestedBindings.countSuggestedBindings = 2;

CHK_XR(xrSuggestInteractionProfileBindings(instance, &suggestedBindings));

XrSessionActionSetsAttachInfo attachInfo{XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO};

attachInfo.countActionSets = 1;

attachInfo.actionSets = &inGameActionSet;

CHK_XR(xrAttachSessionActionSets(session, &attachInfo));

// application main loop

while (1)

{

 // sync action data

 XrActiveActionSet activeActionSet{inGameActionSet, XR_NULL_PATH};

 XrActionsSyncInfo syncInfo{XR_TYPE_ACTIONS_SYNC_INFO};

 syncInfo.countActiveActionSets = 1;

 syncInfo.activeActionSets = &activeActionSet;

 CHK_XR(xrSyncActions(session, &syncInfo));

 // query input action state

 XrActionStateBoolean teleportState{XR_TYPE_ACTION_STATE_BOOLEAN};

 XrActionStateGetInfo getInfo{XR_TYPE_ACTION_STATE_GET_INFO};

 getInfo.action = teleportAction;

 CHK_XR(xrGetActionStateBoolean(session, &getInfo, &teleportState));

 if (teleportState.changedSinceLastSync && teleportState.currentState)

 {

 // fire haptics using output action

 XrHapticVibration vibration{XR_TYPE_HAPTIC_VIBRATION};

 vibration.amplitude = 0.5;

250 | Chapter 11. Input and Haptics

 vibration.duration = 300;

 vibration.frequency = 3000;

 XrHapticActionInfo hapticActionInfo{XR_TYPE_HAPTIC_ACTION_INFO};

 hapticActionInfo.action = hapticsAction;

 CHK_XR(xrApplyHapticFeedback(session, &hapticActionInfo, (const

XrHapticBaseHeader*)&vibration));

 }

}

11.2. Action Sets

XR_DEFINE_HANDLE(XrActionSet)

Action sets are application-defined collections of actions. They are attached to a given XrSession with a

xrAttachSessionActionSets call. They are enabled or disabled by the application via xrSyncActions

depending on the current application context. For example, a game may have one set of actions that

apply to controlling a character and another set for navigating a menu system. When these actions are

grouped into two XrActionSet handles they can be selectively enabled and disabled using a single

function call.

Actions are passed a handle to their XrActionSet when they are created.

Action sets are created by calling xrCreateActionSet:

The xrCreateActionSet function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateActionSet(

 XrInstance instance,

 const XrActionSetCreateInfo* createInfo,

 XrActionSet* actionSet);

Chapter 11. Input and Haptics | 251

Parameter Descriptions

• instance is a handle to an XrInstance.

• createInfo is a pointer to a valid XrActionSetCreateInfo structure that defines the action set

being created.

• actionSet is a pointer to an XrActionSet where the created action set is returned.

The xrCreateActionSet function creates an action set and returns a handle to the created action set.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• createInfo must be a pointer to a valid XrActionSetCreateInfo structure

• actionSet must be a pointer to an XrActionSet handle

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_PATH_FORMAT_INVALID

• XR_ERROR_NAME_INVALID

• XR_ERROR_NAME_DUPLICATED

• XR_ERROR_LOCALIZED_NAME_INVALID

• XR_ERROR_LOCALIZED_NAME_DUPLICATED

The XrActionSetCreateInfo structure is defined as:

252 | Chapter 11. Input and Haptics

typedef struct XrActionSetCreateInfo {

 XrStructureType type;

 const void* next;

 char actionSetName[XR_MAX_ACTION_SET_NAME_SIZE];

 char localizedActionSetName[XR_MAX_LOCALIZED_ACTION_SET_NAME_SIZE];

 uint32_t priority;

} XrActionSetCreateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• actionSetName is an array containing a NULL terminated non-empty string with the name of

this action set.

• localizedActionSetName is an array containing a NULL terminated UTF-8 string that can be

presented to the user as a description of the action set. This string should be presented in the

system’s current active locale.

• priority defines which action sets' actions are active on a given input source when actions on

multiple active action sets are bound to the same input source. Larger priority numbers take

precedence over smaller priority numbers.

When multiple actions are bound to the same input source, the priority of each action set determines

which bindings are suppressed. Runtimes must ignore input sources from action sets with a lower

priority number if those specific input sources are also present in active actions within a higher

priority action set. If multiple action sets with the same priority are bound to the same input source

and that is the highest priority number, runtimes must process all those bindings at the same time.

Two actions are considered to be bound to the same input source if they use the same identifier and

optional location path segments, even if they have different component segments.

When runtimes are ignoring bindings because of priority, they must treat the binding to that input

source as though they do not exist. That means the isActive field must be XR_FALSE when retrieving

action data, and that the runtime must not provide any visual, haptic, or other feedback related to the

binding of that action to that input source. Other actions in the same action set which are bound to

input sources that do not collide are not affected and are processed as normal.

If actionSetName or localizedActionSetName are empty strings, the runtime must return

XR_ERROR_NAME_INVALID or XR_ERROR_LOCALIZED_NAME_INVALID respectively. If actionSetName or

localizedActionSetName are duplicates of the corresponding field for any existing action set in the

specified instance, the runtime must return XR_ERROR_NAME_DUPLICATED or

XR_ERROR_LOCALIZED_NAME_DUPLICATED respectively. If the conflicting action set is destroyed, the

Chapter 11. Input and Haptics | 253

conflicting field is no longer considered duplicated. If actionSetName contains characters which are not

allowed in a single level of a well-formed path string, the runtime must return

XR_ERROR_PATH_FORMAT_INVALID.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_SET_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• actionSetName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_ACTION_SET_NAME_SIZE

• localizedActionSetName must be a null-terminated UTF-8 string whose length is less than or

equal to XR_MAX_LOCALIZED_ACTION_SET_NAME_SIZE

The xrDestroyActionSet function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroyActionSet(

 XrActionSet actionSet);

Parameter Descriptions

• actionSet is the action set to destroy.

Action set handles can be destroyed by calling xrDestroyActionSet. When an action set handle is

destroyed, all handles of actions in that action set are also destroyed.

The implementation must not free underlying resources for the action set while there are other valid

handles that refer to those resources. The implementation may release resources for an action set

when all of the action spaces for actions in that action set have been destroyed. See Action Spaces

Lifetime for details.

Resources for all action sets in an instance must be freed when the instance containing those actions

sets is destroyed.

Valid Usage (Implicit)

• actionSet must be a valid XrActionSet handle

254 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Thread Safety

• Access to actionSet, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

11.3. Creating Actions

XR_DEFINE_HANDLE(XrAction)

Action handles are used to refer to individual actions when retrieving action data, creating action

spaces, or sending haptic events.

The xrCreateAction function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrCreateAction(

 XrActionSet actionSet,

 const XrActionCreateInfo* createInfo,

 XrAction* action);

Parameter Descriptions

• actionSet is a handle to an XrActionSet.

• createInfo is a pointer to a valid XrActionCreateInfo structure that defines the action being

created.

• action is a pointer to an XrAction where the created action is returned.

xrCreateAction creates an action and returns its handle.

Chapter 11. Input and Haptics | 255

If actionSet has been included in a call to xrAttachSessionActionSets, the implementation must return

XR_ERROR_ACTIONSETS_ALREADY_ATTACHED.

Valid Usage (Implicit)

• actionSet must be a valid XrActionSet handle

• createInfo must be a pointer to a valid XrActionCreateInfo structure

• action must be a pointer to an XrAction handle

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_PATH_FORMAT_INVALID

• XR_ERROR_NAME_INVALID

• XR_ERROR_NAME_DUPLICATED

• XR_ERROR_LOCALIZED_NAME_INVALID

• XR_ERROR_LOCALIZED_NAME_DUPLICATED

• XR_ERROR_ACTIONSETS_ALREADY_ATTACHED

The XrActionCreateInfo structure is defined as:

256 | Chapter 11. Input and Haptics

typedef struct XrActionCreateInfo {

 XrStructureType type;

 const void* next;

 char actionName[XR_MAX_ACTION_NAME_SIZE];

 XrActionType actionType;

 uint32_t countSubactionPaths;

 const XrPath* subactionPaths;

 char localizedActionName[XR_MAX_LOCALIZED_ACTION_NAME_SIZE];

} XrActionCreateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• actionName is an array containing a NULL terminated string with the name of this action.

• actionType is the XrActionType of the action to be created.

• countSubactionPaths is the number of elements in the subactionPaths array. If subactionPaths

is NULL, this parameter must be 0.

• subactionPaths is an array of XrPath or NULL. If this array is specified, it contains one or more

subaction paths that the application intends to query action state for.

• localizedActionName is an array containing a NULL terminated UTF-8 string that can be

presented to the user as a description of the action. This string should be in the system’s

current active locale.

Subaction paths are a mechanism that enables applications to use the same action name and handle on

multiple devices. Applications can query action state using subaction paths that differentiate data

coming from each device. This allows the runtime to group logically equivalent actions together in

system UI. For instance, an application could create a single pick_up action with the /user/hand/left and

/user/hand/right subaction paths and use the subaction paths to independently query the state of

pick_up_with_left_hand and pick_up_with_right_hand.

Applications can create actions with or without the subactionPaths set to a list of paths. If this list of

paths is omitted (i.e. subactionPaths is set to NULL, and countSubactionPaths is set to 0), the application is

opting out of filtering action results by subaction paths and any call to get action data must also omit

subaction paths.

If subactionPaths is specified and any of the following conditions are not satisfied, the runtime must

return XR_ERROR_PATH_UNSUPPORTED:

• Each path provided is one of:

Chapter 11. Input and Haptics | 257

◦ /user/head

◦ /user/hand/left

◦ /user/hand/right

◦ /user/gamepad

• No path appears in the list more than once

Extensions may append additional top level user paths to the above list. Note

Earlier revisions of the spec mentioned /user but it could not be implemented as

specified and was removed as errata.

The runtime must return XR_ERROR_PATH_UNSUPPORTED in the following circumstances:

• The application specified subaction paths at action creation and the application called

xrGetActionState* or a haptic function with an empty subaction path array.

• The application called xrGetActionState* or a haptic function with a subaction path that was not

specified when the action was created.

If actionName or localizedActionName are empty strings, the runtime must return XR_ERROR_NAME_INVALID

or XR_ERROR_LOCALIZED_NAME_INVALID respectively. If actionName or localizedActionName are duplicates of

the corresponding field for any existing action in the specified action set, the runtime must return

XR_ERROR_NAME_DUPLICATED or XR_ERROR_LOCALIZED_NAME_DUPLICATED respectively. If the conflicting action is

destroyed, the conflicting field is no longer considered duplicated. If actionName contains characters

which are not allowed in a single level of a well-formed path string, the runtime must return

XR_ERROR_PATH_FORMAT_INVALID.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_CREATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• actionName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_ACTION_NAME_SIZE

• actionType must be a valid XrActionType value

• If countSubactionPaths is not 0, subactionPaths must be a pointer to an array of

countSubactionPaths valid XrPath values

• localizedActionName must be a null-terminated UTF-8 string whose length is less than or

equal to XR_MAX_LOCALIZED_ACTION_NAME_SIZE

The XrActionType parameter takes one of the following values:

258 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

typedef enum XrActionType {

 XR_ACTION_TYPE_BOOLEAN_INPUT = 1,

 XR_ACTION_TYPE_FLOAT_INPUT = 2,

 XR_ACTION_TYPE_VECTOR2F_INPUT = 3,

 XR_ACTION_TYPE_POSE_INPUT = 4,

 XR_ACTION_TYPE_VIBRATION_OUTPUT = 100,

 XR_ACTION_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrActionType;

Enumerant Descriptions

• XR_ACTION_TYPE_BOOLEAN_INPUT. The action can be passed to xrGetActionStateBoolean to

retrieve a boolean value.

• XR_ACTION_TYPE_FLOAT_INPUT. The action can be passed to xrGetActionStateFloat to retrieve a

float value.

• XR_ACTION_TYPE_VECTOR2F_INPUT. The action can be passed to xrGetActionStateVector2f to

retrieve a 2D float vector.

• XR_ACTION_TYPE_POSE_INPUT. The action can can be passed to xrCreateActionSpace to create a

space.

• XR_ACTION_TYPE_VIBRATION_OUTPUT. The action can be passed to xrApplyHapticFeedback to send

a haptic event to the runtime.

The xrDestroyAction function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrDestroyAction(

 XrAction action);

Parameter Descriptions

• action is the action to destroy.

Action handles can be destroyed by calling xrDestroyAction. Handles for actions that are part of an

action set are automatically destroyed when the action set’s handle is destroyed.

The implementation must not destroy the underlying resources for an action when xrDestroyAction is

Chapter 11. Input and Haptics | 259

called. Those resources are still used to make action spaces locatable and when processing action

priority in xrSyncActions. Destroying the action handle removes the application’s access to these

resources, but has no other change on actions.

Resources for all actions in an instance must be freed when the instance containing those actions sets

is destroyed.

Valid Usage (Implicit)

• action must be a valid XrAction handle

Thread Safety

• Access to action, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_HANDLE_INVALID

11.3.1. Input Actions & Output Actions

Input actions are used to read sensors like buttons or joysticks while output actions are used for

triggering haptics or motion platforms. The type of action created by xrCreateAction depends on the

value of the XrActionType argument.

A given action can either be used for either input or output, but not both. Input actions are queried

using one of the xrGetActionState* function calls, while output actions are set using the haptics calls. If

either call is used with an action of the wrong type XR_ERROR_ACTION_TYPE_MISMATCH must be returned.

11.4. Suggested Bindings

Applications suggest bindings for their actions to runtimes so that raw input data is mapped

appropriately to the application’s actions. Suggested bindings also serve as a signal indicating the

hardware that has been tested by the application developer. Applications can suggest bindings by

calling xrSuggestInteractionProfileBindings for each interaction profile that the application is

developed and tested with. If bindings are provided for an appropriate interaction profile, the runtime

may select one and input will begin to flow. Interaction profile selection changes must only happen

260 | Chapter 11. Input and Haptics

when xrSyncActions is called. Applications can call xrGetCurrentInteractionProfile during on a

running session to learn what the active interaction profile are for a top level user path. If this value

ever changes, the runtime must send an XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED event to the

application to indicate that the value should be queried again.

The bindings suggested by this system are only a hint to the runtime. Some runtimes may choose to

use a different device binding depending on user preference, accessibility settings, or for any other

reason. If the runtime is using the values provided by suggested bindings, it must make a best effort to

convert the input value to the created action and apply certain rules to that use so that suggested

bindings function in the same way across runtimes. If an input value cannot be converted to the type

of the action, the value must be ignored and not contribute to the state of the action.

For actions created with XR_ACTION_TYPE_BOOLEAN_INPUT when the runtime is obeying suggested

bindings: Boolean input sources must be bound directly to the action. If the path is to a scalar value, a

threshold must be applied to the value and values over that threshold will be XR_TRUE. The runtime

should use hysteresis when applying this threshold. The threshold and hysteresis range may vary

from device to device or component to component and are left as an implementation detail. If the path

refers to the parent of input values instead of to an input value itself, the runtime must use

…/example/path/click instead of …/example/path if it is available. If a parent path does not have a

…/click subpath, the runtime must use …/value and apply the same thresholding that would be applied

to any scalar input. In any other situation the runtime may provide an alternate binding for the action

or it will be unbound.

For actions created with XR_ACTION_TYPE_FLOAT_INPUT when the runtime is obeying suggested bindings:

If the input value specified by the path is scalar, the input value must be bound directly to the float. If

the path refers to the parent of input values instead of to an input value itself, the runtime must use

…/example/path/value instead of …/example/path as the source of the value. If a parent path does not

have a …/value subpath, the runtime must use …/click. If the input value is boolean, the runtime must

supply 0.0 or 1.0 as a conversion of the boolean value. In any other situation, the runtime may provide

an alternate binding for the action or it will be unbound.

For actions created with XR_ACTION_TYPE_VECTOR2F_INPUT when the runtime is obeying suggested

bindings: The suggested binding path must refer to the parent of input values instead of to the input

values themselves, and that parent path must contain subpaths …/x and …/y. …/x and …/y must be

bound to 'x' and 'y' of the vector, respectively. In any other situation, the runtime may provide an

alternate binding for the action or it will be unbound.

For actions created with XR_ACTION_TYPE_POSE_INPUT when the runtime is obeying suggested bindings:

Pose input sources must be bound directly to the action. If the path refers to the parent of input values

instead of to an input value itself, the runtime must use …/example/path/pose instead of

…/example/path if it is available. In any other situation the runtime may provide an alternate binding

for the action or it will be unbound.

The xrSuggestInteractionProfileBindings function is defined as:

Chapter 11. Input and Haptics | 261

// Provided by XR_VERSION_1_0

XrResult xrSuggestInteractionProfileBindings(

 XrInstance instance,

 const XrInteractionProfileSuggestedBinding* suggestedBindings);

Parameter Descriptions

• instance is the XrInstance for which the application would like to set suggested bindings

• suggestedBindings is the XrInteractionProfileSuggestedBinding that the application would like

to set

The xrSuggestInteractionProfileBindings function provides action bindings for a single interaction

profile. The application can call xrSuggestInteractionProfileBindings once per interaction profile that it

supports.

The application can provide any number of bindings for each action.

If the application successfully calls xrSuggestInteractionProfileBindings more than once for an

interaction profile, the runtime must discard the previous suggested bindings and replace them with

the new suggested bindings for that profile.

If the interaction profile path does not follow the structure defined in Interaction Profiles or suggested

bindings contain paths that do not follow the format defined in Input subpaths (further described in

XrActionSuggestedBinding), the runtime must return XR_ERROR_PATH_UNSUPPORTED. If the interaction

profile or input source for any of the suggested bindings does not exist in the allowlist defined in

Interaction Profile Paths, the runtime must return XR_ERROR_PATH_UNSUPPORTED. A runtime must accept

every valid binding in the allowlist though it is free to ignore any of them.

If the action set for any action referenced in the suggestedBindings parameter has been included in a

call to xrAttachSessionActionSets, the implementation must return

XR_ERROR_ACTIONSETS_ALREADY_ATTACHED.

Valid Usage (Implicit)

• instance must be a valid XrInstance handle

• suggestedBindings must be a pointer to a valid XrInteractionProfileSuggestedBinding

structure

262 | Chapter 11. Input and Haptics

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSETS_ALREADY_ATTACHED

The XrInteractionProfileSuggestedBinding structure is defined as:

typedef struct XrInteractionProfileSuggestedBinding {

 XrStructureType type;

 const void* next;

 XrPath interactionProfile;

 uint32_t countSuggestedBindings;

 const XrActionSuggestedBinding* suggestedBindings;

} XrInteractionProfileSuggestedBinding;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• interactionProfile is the XrPath of an interaction profile.

• countSuggestedBindings is the number of suggested bindings in the array pointed to by

suggestedBindings.

• suggestedBindings is a pointer to an array of XrActionSuggestedBinding structures that define

all of the application’s suggested bindings for the specified interaction profile.

Chapter 11. Input and Haptics | 263

Valid Usage (Implicit)

• type must be XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrBindingModificationsKHR

• suggestedBindings must be a pointer to an array of countSuggestedBindings valid

XrActionSuggestedBinding structures

• The countSuggestedBindings parameter must be greater than 0

The XrActionSuggestedBinding structure is defined as:

typedef struct XrActionSuggestedBinding {

 XrAction action;

 XrPath binding;

} XrActionSuggestedBinding;

Member Descriptions

• action is the XrAction handle for an action

• binding is the XrPath of a binding for the action specified in action. This path is any top level

user path plus input source path, for example /user/hand/right/input/trigger/click. See

suggested bindings for more details.

Valid Usage (Implicit)

• action must be a valid XrAction handle

The xrAttachSessionActionSets function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrAttachSessionActionSets(

 XrSession session,

 const XrSessionActionSetsAttachInfo* attachInfo);

264 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession to attach the action sets to.

• attachInfo is the XrSessionActionSetsAttachInfo to provide information to attach action sets

to the session.

xrAttachSessionActionSets attaches the XrActionSet handles in XrSessionActionSetsAttachInfo

::actionSets to the session. Action sets must be attached in order to be synchronized with

xrSyncActions.

When an action set is attached to a session, that action set becomes immutable. See xrCreateAction and

xrSuggestInteractionProfileBindings for details.

After action sets are attached to a session, if any unattached actions are passed to functions for the

same session, then for those functions the runtime must return XR_ERROR_ACTIONSET_NOT_ATTACHED.

The runtime must return XR_ERROR_ACTIONSETS_ALREADY_ATTACHED if xrAttachSessionActionSets is called

more than once for a given session.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• attachInfo must be a pointer to a valid XrSessionActionSetsAttachInfo structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_ACTIONSETS_ALREADY_ATTACHED

The XrSessionActionSetsAttachInfo structure is defined as:

Chapter 11. Input and Haptics | 265

typedef struct XrSessionActionSetsAttachInfo {

 XrStructureType type;

 const void* next;

 uint32_t countActionSets;

 const XrActionSet* actionSets;

} XrSessionActionSetsAttachInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• countActionSets is an integer specifying the number of valid elements in the actionSets array.

• actionSets is a pointer to an array of one or more XrActionSet handles to be attached to the

session.

Valid Usage (Implicit)

• type must be XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• actionSets must be a pointer to an array of countActionSets valid XrActionSet handles

• The countActionSets parameter must be greater than 0

11.5. Current Interaction Profile

The xrGetCurrentInteractionProfile function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetCurrentInteractionProfile(

 XrSession session,

 XrPath topLevelUserPath,

 XrInteractionProfileState* interactionProfile);

266 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession for which the application would like to retrieve the current

interaction profile.

• topLevelUserPath is the top level user path the application would like to retrieve the

interaction profile for.

• interactionProfile is a pointer to an XrInteractionProfileState structure to receive the

current interaction profile.

xrGetCurrentInteractionProfile retrieves the current interaction profile for a top level user path.

The runtime must return only interaction profiles for which the application has provided suggested

bindings with xrSuggestInteractionProfileBindings or XR_NULL_PATH. The runtime may return

interaction profiles that do not represent physically present hardware, for example if the runtime is

using a known interaction profile to bind to hardware that the application is not aware of. The runtime

may return the last-known interaction profile in the event that no controllers are active.

If xrAttachSessionActionSets has not yet been called for the session, the runtime must return

XR_ERROR_ACTIONSET_NOT_ATTACHED. If topLevelUserPath is not one of the top level user paths described in

/user paths, the runtime must return XR_ERROR_PATH_UNSUPPORTED.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• interactionProfile must be a pointer to an XrInteractionProfileState structure

Chapter 11. Input and Haptics | 267

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrInteractionProfileState structure is defined as:

typedef struct XrInteractionProfileState {

 XrStructureType type;

 void* next;

 XrPath interactionProfile;

} XrInteractionProfileState;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• interactionProfile is the XrPath of the interaction profile path for the

xrGetCurrentInteractionProfile::topLevelUserPath used to retrieve this state, or

XR_NULL_PATH if there is no active interaction profile at that top level user path.

The runtime must only include interaction profiles that the application has provided bindings for via

xrSuggestInteractionProfileBindings or XR_NULL_PATH. If the runtime is rebinding an interaction

profile provided by the application to a device that the application did not provide bindings for, it

268 | Chapter 11. Input and Haptics

must return the interaction profile path that it is emulating. If the runtime is unable to provide input

because it cannot emulate any of the application-provided interaction profiles, it must return

XR_NULL_PATH.

Valid Usage (Implicit)

• type must be XR_TYPE_INTERACTION_PROFILE_STATE

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataInteractionProfileChanged structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrEventDataInteractionProfileChanged {

 XrStructureType type;

 const void* next;

 XrSession session;

} XrEventDataInteractionProfileChanged;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• session is the XrSession for which at least one of the interaction profiles for a top level path

has changed.

The XrEventDataInteractionProfileChanged event is queued to notify the application that the current

interaction profile for one or more top level user paths has changed. This event must only be sent for

interaction profiles that the application indicated its support for via

xrSuggestInteractionProfileBindings. This event must only be queued for running sessions.

Upon receiving this event, an application can call xrGetCurrentInteractionProfile for each top level

user path in use, if its behavior depends on the current interaction profile.

Valid Usage (Implicit)

• type must be XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED

• next must be NULL or a valid pointer to the next structure in a structure chain

Chapter 11. Input and Haptics | 269

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

11.6. Reading Input Action State

The current state of an input action can be obtained by calling the xrGetActionState* function call that

matches the XrActionType provided when the action was created. If a mismatched call is used to

retrieve the state XR_ERROR_ACTION_TYPE_MISMATCH must be returned. xrGetActionState* calls for an

action in an action set never bound to the session with xrAttachSessionActionSets must return

XR_ERROR_ACTIONSET_NOT_ATTACHED.

The result of calls to xrGetActionState* for an XrAction and subaction path must not change between

calls to xrSyncActions. When the combination of the parent XrActionSet and subaction path for an

action is passed to xrSyncActions, the runtime must update the results from xrGetActionState* after

this call with any changes to the state of the underlying hardware. When the parent action set and

subaction path for an action is removed from or added to the list of active action sets passed to

xrSyncActions, the runtime must update isActive to reflect the new active state after this call. In all

cases the runtime must not change the results of xrGetActionState* calls between calls to

xrSyncActions.

When xrGetActionState* or haptic output functions are called while the session is not focused, the

runtime must set the isActive value to XR_FALSE and suppress all haptic output. Furthermore, the

runtime should stop all in-progress haptic events when a session loses focus.

When retrieving action state, lastChangeTime must be set to the runtime’s best estimate of when the

physical state of the part of the device bound to that action last changed.

The currentState value is computed based on the current sync, combining the underlying input

sources bound to the provided subactionPaths within this action.

The changedSinceLastSync value must be XR_TRUE if the computed currentState value differs from the

currentState value that would have been computed as of the previous sync for the same

subactionPaths. If there is no previous sync, or the action was not active for the previous sync, the

changedSinceLastSync value must be set to XR_FALSE.

The isActive value must be XR_TRUE whenever an action is bound and a source is providing state data

for the current sync. If the action is unbound or no source is present, the isActive value must be

XR_FALSE. For any action which is inactive, the runtime must return zero (or XR_FALSE) for state,

XR_FALSE for changedSinceLastSync, and 0 for lastChangeTime.

11.6.1. Resolving a single action bound to multiple inputs or outputs

It is often the case that a single action will be bound to multiple physical inputs simultaneously. In

these circumstances, the runtime must resolve the ambiguity in that multiple binding as follows:

The current state value is selected based on the type of the action:

• Boolean actions - The current state must be the result of a boolean OR of all bound inputs

• Float actions - The current state must be the state of the input with the largest absolute value

270 | Chapter 11. Input and Haptics

• Vector2 actions - The current state must be the state of the input with the longest length

• Pose actions - The current state must be the state of a single pose source. The source of the pose

must only be changed during a call to xrSyncAction. The runtime should only change the source in

response to user actions, such as picking up a new controller, or external events, such as a

controller running out of battery.

• Haptic actions - The runtime must send output events to all bound haptic devices

11.6.2. Structs to describe action and subaction paths

The XrActionStateGetInfo structure is used to provide action and subaction paths when calling

xrGetActionState* function. It is defined as:

typedef struct XrActionStateGetInfo {

 XrStructureType type;

 const void* next;

 XrAction action;

 XrPath subactionPath;

} XrActionStateGetInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• action is the XrAction being queried.

• subactionPath is the subaction path XrPath to query data from, or XR_NULL_PATH to specify

all subaction paths. If the subaction path is specified, it is one of the subaction paths that

were specified when the action was created. If the subaction path was not specified when the

action was created, the runtime must return XR_ERROR_PATH_UNSUPPORTED. If this parameter is

specified, the runtime must return data that originates only from the subaction paths

specified.

See XrActionCreateInfo for a description of subaction paths, and the restrictions on their use.

Chapter 11. Input and Haptics | 271

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_GET_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• action must be a valid XrAction handle

The XrHapticActionInfo structure is used to provide action and subaction paths when calling

xr*HapticFeedback function. It is defined as:

typedef struct XrHapticActionInfo {

 XrStructureType type;

 const void* next;

 XrAction action;

 XrPath subactionPath;

} XrHapticActionInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• action is the XrAction handle for the desired output haptic action.

• subactionPath is the subaction path XrPath of the device to send the haptic event to, or

XR_NULL_PATH to specify all subaction paths. If the subaction path is specified, it is one of

the subaction paths that were specified when the action was created. If the subaction path

was not specified when the action was created, the runtime must return

XR_ERROR_PATH_UNSUPPORTED. If this parameter is specified, the runtime must trigger the haptic

events only on the device from the subaction path.

See XrActionCreateInfo for a description of subaction paths, and the restrictions on their use.

Valid Usage (Implicit)

• type must be XR_TYPE_HAPTIC_ACTION_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• action must be a valid XrAction handle

272 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

11.6.3. Boolean Actions

xrGetActionStateBoolean retrieves the current state of a boolean action. It is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetActionStateBoolean(

 XrSession session,

 const XrActionStateGetInfo* getInfo,

 XrActionStateBoolean* state);

Parameter Descriptions

• session is the XrSession to query.

• getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths

information.

• state is a pointer to a valid XrActionStateBoolean into which the state will be placed.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrActionStateGetInfo structure

• state must be a pointer to an XrActionStateBoolean structure

Chapter 11. Input and Haptics | 273

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStateBoolean structure is defined as:

typedef struct XrActionStateBoolean {

 XrStructureType type;

 void* next;

 XrBool32 currentState;

 XrBool32 changedSinceLastSync;

 XrTime lastChangeTime;

 XrBool32 isActive;

} XrActionStateBoolean;

274 | Chapter 11. Input and Haptics

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• currentState is the current state of the action.

• changedSinceLastSync is XR_TRUE if the value of currentState is different than it was before the

most recent call to xrSyncActions. This parameter can be combined with currentState to

detect rising and falling edges since the previous call to xrSyncActions. E.g. if both

changedSinceLastSync and currentState are XR_TRUE then a rising edge (XR_FALSE to XR_TRUE) has

taken place.

• lastChangeTime is the XrTime associated with the most recent change to this action’s state.

• isActive is XR_TRUE if and only if there exists an input source that is contributing to the

current state of this action.

When multiple input sources are bound to this action, the currentState follows the previously defined

rule to resolve ambiguity.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_BOOLEAN

• next must be NULL or a valid pointer to the next structure in a structure chain

11.6.4. Scalar and Vector Actions

xrGetActionStateFloat retrieves the current state of a floating-point action. It is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetActionStateFloat(

 XrSession session,

 const XrActionStateGetInfo* getInfo,

 XrActionStateFloat* state);

Chapter 11. Input and Haptics | 275

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession to query.

• getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths

information.

• state is a pointer to a valid XrActionStateFloat into which the state will be placed.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrActionStateGetInfo structure

• state must be a pointer to an XrActionStateFloat structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStateFloat structure is defined as:

276 | Chapter 11. Input and Haptics

typedef struct XrActionStateFloat {

 XrStructureType type;

 void* next;

 float currentState;

 XrBool32 changedSinceLastSync;

 XrTime lastChangeTime;

 XrBool32 isActive;

} XrActionStateFloat;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• currentState is the current state of the Action.

• changedSinceLastSync is XR_TRUE if the value of currentState is different than it was before the

most recent call to xrSyncActions.

• lastChangeTime is the XrTime associated with the most recent change to this action’s state.

• isActive is XR_TRUE if and only if there exists an input source that is contributing to the

current state of this action.

When multiple input sources are bound to this action, the currentState follows the previously defined

rule to resolve ambiguity.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_FLOAT

• next must be NULL or a valid pointer to the next structure in a structure chain

xrGetActionStateVector2f retrieves the current state of a two-dimensional vector action. It is defined

as:

// Provided by XR_VERSION_1_0

XrResult xrGetActionStateVector2f(

 XrSession session,

 const XrActionStateGetInfo* getInfo,

 XrActionStateVector2f* state);

Chapter 11. Input and Haptics | 277

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession to query.

• getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths

information.

• state is a pointer to a valid XrActionStateVector2f into which the state will be placed.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrActionStateGetInfo structure

• state must be a pointer to an XrActionStateVector2f structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStateVector2f structure is defined as:

278 | Chapter 11. Input and Haptics

typedef struct XrActionStateVector2f {

 XrStructureType type;

 void* next;

 XrVector2f currentState;

 XrBool32 changedSinceLastSync;

 XrTime lastChangeTime;

 XrBool32 isActive;

} XrActionStateVector2f;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• currentState is the current XrVector2f state of the Action.

• changedSinceLastSync is XR_TRUE if the value of currentState is different than it was before the

most recent call to xrSyncActions.

• lastChangeTime is the XrTime associated with the most recent change to this action’s state.

• isActive is XR_TRUE if and only if there exists an input source that is contributing to the

current state of this action.

When multiple input sources are bound to this action, the currentState follows the previously defined

rule to resolve ambiguity.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_VECTOR2F

• next must be NULL or a valid pointer to the next structure in a structure chain

11.6.5. Pose Actions

The xrGetActionStatePose function is defined as:

Chapter 11. Input and Haptics | 279

#valid-usage-for-structure-pointer-chains

// Provided by XR_VERSION_1_0

XrResult xrGetActionStatePose(

 XrSession session,

 const XrActionStateGetInfo* getInfo,

 XrActionStatePose* state);

Parameter Descriptions

• session is the XrSession to query.

• getInfo is a pointer to XrActionStateGetInfo to provide action and subaction paths

information.

• state is a pointer to a valid XrActionStatePose into which the state will be placed.

xrGetActionStatePose returns information about the binding and active state for the specified action.

To determine the pose of this action at a historical or predicted time, the application can create an

action space using xrCreateActionSpace. Then, after each sync, the application can locate the pose of

this action space within a base space using xrLocateSpace.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrActionStateGetInfo structure

• state must be a pointer to an XrActionStatePose structure

280 | Chapter 11. Input and Haptics

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrActionStatePose structure is defined as:

typedef struct XrActionStatePose {

 XrStructureType type;

 void* next;

 XrBool32 isActive;

} XrActionStatePose;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• isActive is XR_TRUE if and only if there exists an input source that is being tracked by this pose

action.

A pose action must not be bound to multiple input sources, according to the previously defined rule.

Chapter 11. Input and Haptics | 281

Valid Usage (Implicit)

• type must be XR_TYPE_ACTION_STATE_POSE

• next must be NULL or a valid pointer to the next structure in a structure chain

11.7. Output Actions and Haptics

Haptic feedback is sent to a device using the xrApplyHapticFeedback function. The hapticEvent points

to a supported event structure. All event structures have in common that the first element is an

XrHapticBaseHeader which can be used to determine the type of the haptic event.

Haptic feedback may be immediately halted for a haptic action using the xrStopHapticFeedback

function.

Output action requests activate immediately and must not wait for the next call to xrSyncActions.

If a haptic event is sent to an action before a previous haptic event completes, the latest event will take

precedence and the runtime must cancel all preceding incomplete haptic events on that action.

Output action requests must be discarded and have no effect on hardware if the application’s session

is not focused.

Output action requests for an action in an action set never attached to the session with

xrAttachSessionActionSets must return XR_ERROR_ACTIONSET_NOT_ATTACHED.

The only haptics type supported by unextended OpenXR is XrHapticVibration.

The xrApplyHapticFeedback function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrApplyHapticFeedback(

 XrSession session,

 const XrHapticActionInfo* hapticActionInfo,

 const XrHapticBaseHeader* hapticFeedback);

282 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession to start outputting to.

• hapticActionInfo is a pointer to XrHapticActionInfo to provide action and subaction paths

information.

• hapticFeedback is a pointer to a haptic event structure which starts with an

XrHapticBaseHeader.

Triggers a haptic event through the specified action of type XR_ACTION_TYPE_VIBRATION_OUTPUT. The

runtime should deliver this request to the appropriate device, but exactly which device, if any, this

event is sent to is up to the runtime to decide. If an appropriate device is unavailable the runtime may

ignore this request for haptic feedback.

If session is not focused, the runtime must return XR_SESSION_NOT_FOCUSED, and not trigger a haptic

event.

If another haptic event from this session is currently happening on the device bound to this action, the

runtime must interrupt that other event and replace it with the new one.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• hapticActionInfo must be a pointer to a valid XrHapticActionInfo structure

• hapticFeedback must be a pointer to a valid XrHapticBaseHeader-based structure. See also:

XrHapticAmplitudeEnvelopeVibrationFB, XrHapticPcmVibrationFB, XrHapticVibration

Chapter 11. Input and Haptics | 283

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SESSION_NOT_FOCUSED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrHapticBaseHeader structure is defined as:

typedef struct XrHapticBaseHeader {

 XrStructureType type;

 const void* next;

} XrHapticBaseHeader;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

284 | Chapter 11. Input and Haptics

Valid Usage (Implicit)

• type must be one of the following XrStructureType values:

XR_TYPE_HAPTIC_AMPLITUDE_ENVELOPE_VIBRATION_FB, XR_TYPE_HAPTIC_PCM_VIBRATION_FB,
XR_TYPE_HAPTIC_VIBRATION

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrHapticVibration structure is defined as:

// Provided by XR_VERSION_1_0

typedef struct XrHapticVibration {

 XrStructureType type;

 const void* next;

 XrDuration duration;

 float frequency;

 float amplitude;

} XrHapticVibration;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• duration is the number of nanoseconds the vibration should last. If

XR_MIN_HAPTIC_DURATION is specified, the runtime must produce a short haptics pulse of

minimal supported duration for the haptic device.

• frequency is the frequency of the vibration in Hz. If XR_FREQUENCY_UNSPECIFIED is

specified, it is left to the runtime to decide the optimal frequency value to use.

• amplitude is the amplitude of the vibration between 0.0 and 1.0.

The XrHapticVibration is used in calls to xrApplyHapticFeedback that trigger vibration output actions.

The duration, and frequency parameters may be clamped to implementation-dependent ranges.

Chapter 11. Input and Haptics | 285

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• type must be XR_TYPE_HAPTIC_VIBRATION

• next must be NULL or a valid pointer to the next structure in a structure chain

XR_MIN_HAPTIC_DURATION is used to indicate to the runtime that a short haptic pulse of the minimal

supported duration for the haptic device.

// Provided by XR_VERSION_1_0

#define XR_MIN_HAPTIC_DURATION -1

XR_FREQUENCY_UNSPECIFIED is used to indicate that the application wants the runtime to decide

what the optimal frequency is for the haptic pulse.

// Provided by XR_VERSION_1_0

#define XR_FREQUENCY_UNSPECIFIED 0

The xrStopHapticFeedback function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrStopHapticFeedback(

 XrSession session,

 const XrHapticActionInfo* hapticActionInfo);

Parameter Descriptions

• session is the XrSession to stop outputting to.

• hapticActionInfo is a pointer to an XrHapticActionInfo to provide action and subaction path

information.

If a haptic event from this XrAction is in progress, when this function is called the runtime must stop

that event.

If session is not focused, the runtime must return XR_SESSION_NOT_FOCUSED.

286 | Chapter 11. Input and Haptics

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• session must be a valid XrSession handle

• hapticActionInfo must be a pointer to a valid XrHapticActionInfo structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SESSION_NOT_FOCUSED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

11.8. Input Action State Synchronization

The xrSyncActions function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrSyncActions(

 XrSession session,

 const XrActionsSyncInfo* syncInfo);

Chapter 11. Input and Haptics | 287

Parameter Descriptions

• session is a handle to the XrSession that all provided action set handles belong to.

• syncInfo is an XrActionsSyncInfo providing information to synchronize action states.

xrSyncActions updates the current state of input actions. Repeated input action state queries between

subsequent synchronization calls must return the same values. The XrActionSet structures referenced

in the XrActionsSyncInfo::activeActionSets must have been previously attached to the session via

xrAttachSessionActionSets. If any action sets not attached to this session are passed to xrSyncActions it

must return XR_ERROR_ACTIONSET_NOT_ATTACHED. Subsets of the bound action sets can be synchronized in

order to control which actions are seen as active.

If session is not focused, the runtime must return XR_SESSION_NOT_FOCUSED, and all action states in the

session must be inactive.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• syncInfo must be a pointer to a valid XrActionsSyncInfo structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SESSION_NOT_FOCUSED

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSET_NOT_ATTACHED

288 | Chapter 11. Input and Haptics

The XrActionsSyncInfo structure is defined as:

typedef struct XrActionsSyncInfo {

 XrStructureType type;

 const void* next;

 uint32_t countActiveActionSets;

 const XrActiveActionSet* activeActionSets;

} XrActionsSyncInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• countActiveActionSets is an integer specifying the number of valid elements in the

activeActionSets array.

• activeActionSets is NULL or a pointer to an array of one or more XrActiveActionSet structures

that should be synchronized.

Valid Usage (Implicit)

• type must be XR_TYPE_ACTIONS_SYNC_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrActiveActionSetPrioritiesEXT

• If countActiveActionSets is not 0, activeActionSets must be a pointer to an array of

countActiveActionSets valid XrActiveActionSet structures

The XrActiveActionSet structure is defined as:

typedef struct XrActiveActionSet {

 XrActionSet actionSet;

 XrPath subactionPath;

} XrActiveActionSet;

Chapter 11. Input and Haptics | 289

#valid-usage-for-structure-pointer-chains

Member Descriptions

• actionSet is the handle of the action set to activate.

• subactionPath is a subaction path that was declared when one or more actions in the action

set was created or XR_NULL_PATH. If the application wants to activate the action set on more

than one subaction path, it can include additional XrActiveActionSet structs with the other

subactionPath values. Using XR_NULL_PATH as the value for subactionPath, acts as a wildcard

for all subaction paths on the actions in the action set. If the subaction path was not specified

on any of the actions in the actionSet when that action was created, the runtime must return

XR_ERROR_PATH_UNSUPPORTED.

This structure defines a single active action set and subaction path combination. Applications can

provide a list of these structures to the xrSyncActions function.

Valid Usage (Implicit)

• actionSet must be a valid XrActionSet handle

11.9. Bound Sources

An application can use the xrEnumerateBoundSourcesForAction and xrGetInputSourceLocalizedName

calls to prompt the user which physical inputs to use in order to perform an action. The bound sources

are XrPath semantic paths representing the physical controls that an action is bound to. An action may

be bound to multiple sources at one time, for example an action named hold could be bound to both

the X and A buttons.

Once the bound sources for an action are obtained, the application can gather additional information

about it. xrGetInputSourceLocalizedName returns a localized human-readable string describing the

bound physical control, e.g. 'A Button'.

The xrEnumerateBoundSourcesForAction function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrEnumerateBoundSourcesForAction(

 XrSession session,

 const XrBoundSourcesForActionEnumerateInfo* enumerateInfo,

 uint32_t sourceCapacityInput,

 uint32_t* sourceCountOutput,

 XrPath* sources);

290 | Chapter 11. Input and Haptics

Parameter Descriptions

• session is the XrSession being queried.

• enumerateInfo is an XrBoundSourcesForActionEnumerateInfo providing the query

information.

• sourceCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve the

required capacity.

• sourceCountOutput is a pointer to the count of sources, or a pointer to the required capacity in

the case that sourceCapacityInput is insufficient.

• sources is a pointer to an application-allocated array that will be filled with the XrPath values

for all bound sources. It can be NULL if sourceCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

sources size.

If an action is unbound, xrEnumerateBoundSourcesForAction must assign 0 to the value pointed-to by

sourceCountOutput and not modify the array.

xrEnumerateBoundSourcesForAction must return XR_ERROR_ACTIONSET_NOT_ATTACHED if passed an action

in an action set never attached to the session with xrAttachSessionActionSets.

As bindings for actions do not change between calls to xrSyncActions,

xrEnumerateBoundSourcesForAction must enumerate the same set of bound sources, or absence of

bound sources, for a given query (defined by the enumerateInfo parameter) between any two calls to

xrSyncActions. Note

The XrPath bound sources returned by the runtime are opaque values and should not

be inspected or persisted. They are only intended for use in conjunction with

xrGetInputSourceLocalizedName.

Valid Usage (Implicit)

• session must be a valid XrSession handle

• enumerateInfo must be a pointer to a valid XrBoundSourcesForActionEnumerateInfo

structure

• sourceCountOutput must be a pointer to a uint32_t value

• If sourceCapacityInput is not 0, sources must be a pointer to an array of sourceCapacityInput

XrPath values

Chapter 11. Input and Haptics | 291

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrBoundSourcesForActionEnumerateInfo structure is defined as:

typedef struct XrBoundSourcesForActionEnumerateInfo {

 XrStructureType type;

 const void* next;

 XrAction action;

} XrBoundSourcesForActionEnumerateInfo;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• action is the handle of the action to query.

292 | Chapter 11. Input and Haptics

Valid Usage (Implicit)

• type must be XR_TYPE_BOUND_SOURCES_FOR_ACTION_ENUMERATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• action must be a valid XrAction handle

The xrGetInputSourceLocalizedName function is defined as:

// Provided by XR_VERSION_1_0

XrResult xrGetInputSourceLocalizedName(

 XrSession session,

 const XrInputSourceLocalizedNameGetInfo* getInfo,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

Parameter Descriptions

• session is a handle to the XrSession associated with the action that reported this bound

source.

• getInfo is an XrInputSourceLocalizedNameGetInfo providing the query information.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of name characters written to buffer (including

the terminating \0), or a pointer to the required capacity in the case that bufferCapacityInput

is insufficient.

• buffer is a pointer to an application-allocated buffer that will be filled with the bound source

name. It can be NULL if bufferCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

xrGetInputSourceLocalizedName returns a string for the bound source in the current system locale.

If xrAttachSessionActionSets has not yet been called for the session, the runtime must return

XR_ERROR_ACTIONSET_NOT_ATTACHED.

Chapter 11. Input and Haptics | 293

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• session must be a valid XrSession handle

• getInfo must be a pointer to a valid XrInputSourceLocalizedNameGetInfo structure

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrInputSourceLocalizedNameGetInfo structure is defined as:

typedef struct XrInputSourceLocalizedNameGetInfo {

 XrStructureType type;

 const void* next;

 XrPath sourcePath;

 XrInputSourceLocalizedNameFlags whichComponents;

} XrInputSourceLocalizedNameGetInfo;

294 | Chapter 11. Input and Haptics

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• sourcePath is an XrPath representing a bound source returned by

xrEnumerateBoundSourcesForAction.

• whichComponents is any set of flags from XrInputSourceLocalizedNameFlagBits.

The result of passing an XrPath sourcePath not retrieved from xrEnumerateBoundSourcesForAction is

not specified.

Valid Usage (Implicit)

• type must be XR_TYPE_INPUT_SOURCE_LOCALIZED_NAME_GET_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• whichComponents must be a valid combination of XrInputSourceLocalizedNameFlagBits values

• whichComponents must not be 0

The XrInputSourceLocalizedNameGetInfo::whichComponents parameter is of the following type, and

contains a bitwise-OR of one or more of the bits defined in XrInputSourceLocalizedNameFlagBits.

typedef XrFlags64 XrInputSourceLocalizedNameFlags;

// Flag bits for XrInputSourceLocalizedNameFlags

static const XrInputSourceLocalizedNameFlags XR_INPUT_SOURCE_LOCALIZED_NAME_USER_PATH_BIT

= 0x00000001;

static const XrInputSourceLocalizedNameFlags

XR_INPUT_SOURCE_LOCALIZED_NAME_INTERACTION_PROFILE_BIT = 0x00000002;

static const XrInputSourceLocalizedNameFlags XR_INPUT_SOURCE_LOCALIZED_NAME_COMPONENT_BIT

= 0x00000004;

The flag bits have the following meanings:

Chapter 11. Input and Haptics | 295

#valid-usage-for-structure-pointer-chains

Flag Descriptions

• XR_INPUT_SOURCE_LOCALIZED_NAME_USER_PATH_BIT indicates that the runtime must include the

user path portion of the string in the result, if available. E.g. Left Hand.

• XR_INPUT_SOURCE_LOCALIZED_NAME_INTERACTION_PROFILE_BIT indicates that the runtime must

include the interaction profile portion of the string in the result, if available. E.g. Vive

Controller.

• XR_INPUT_SOURCE_LOCALIZED_NAME_COMPONENT_BIT indicates that the runtime must include the

input component portion of the string in the result, if available. E.g. Trigger.

296 | Chapter 11. Input and Haptics

Chapter 12. List of Current Extensions

• XR_KHR_android_create_instance

• XR_KHR_android_surface_swapchain

• XR_KHR_android_thread_settings

• XR_KHR_binding_modification

• XR_KHR_composition_layer_color_scale_bias

• XR_KHR_composition_layer_cube

• XR_KHR_composition_layer_cylinder

• XR_KHR_composition_layer_depth

• XR_KHR_composition_layer_equirect

• XR_KHR_composition_layer_equirect2

• XR_KHR_convert_timespec_time

• XR_KHR_D3D11_enable

• XR_KHR_D3D12_enable

• XR_KHR_loader_init

• XR_KHR_loader_init_android

• XR_KHR_opengl_enable

• XR_KHR_opengl_es_enable

• XR_KHR_swapchain_usage_input_attachment_bit

• XR_KHR_visibility_mask

• XR_KHR_vulkan_enable

• XR_KHR_vulkan_enable2

• XR_KHR_vulkan_swapchain_format_list

• XR_KHR_win32_convert_performance_counter_time

• XR_EXT_active_action_set_priority

• XR_EXT_conformance_automation

• XR_EXT_debug_utils

• XR_EXT_dpad_binding

• XR_EXT_eye_gaze_interaction

• XR_EXT_future

• XR_EXT_hand_interaction

Chapter 12. List of Current Extensions | 297

• XR_EXT_hand_joints_motion_range

• XR_EXT_hand_tracking

• XR_EXT_hand_tracking_data_source

• XR_EXT_performance_settings

• XR_EXT_plane_detection

• XR_EXT_thermal_query

• XR_EXT_user_presence

• XR_EXT_view_configuration_depth_range

• XR_EXT_win32_appcontainer_compatible

• XR_ALMALENCE_digital_lens_control

• XR_EPIC_view_configuration_fov

• XR_FB_android_surface_swapchain_create

• XR_FB_body_tracking

• XR_FB_color_space

• XR_FB_composition_layer_alpha_blend

• XR_FB_composition_layer_depth_test

• XR_FB_composition_layer_image_layout

• XR_FB_composition_layer_secure_content

• XR_FB_composition_layer_settings

• XR_FB_display_refresh_rate

• XR_FB_eye_tracking_social

• XR_FB_face_tracking

• XR_FB_face_tracking2

• XR_FB_foveation

• XR_FB_foveation_configuration

• XR_FB_foveation_vulkan

• XR_FB_hand_tracking_aim

• XR_FB_hand_tracking_capsules

• XR_FB_hand_tracking_mesh

• XR_FB_haptic_amplitude_envelope

• XR_FB_haptic_pcm

• XR_FB_keyboard_tracking

298 | Chapter 12. List of Current Extensions

• XR_FB_passthrough

• XR_FB_passthrough_keyboard_hands

• XR_FB_render_model

• XR_FB_scene

• XR_FB_scene_capture

• XR_FB_space_warp

• XR_FB_spatial_entity

• XR_FB_spatial_entity_container

• XR_FB_spatial_entity_query

• XR_FB_spatial_entity_sharing

• XR_FB_spatial_entity_storage

• XR_FB_spatial_entity_storage_batch

• XR_FB_spatial_entity_user

• XR_FB_swapchain_update_state

• XR_FB_swapchain_update_state_android_surface

• XR_FB_swapchain_update_state_opengl_es

• XR_FB_swapchain_update_state_vulkan

• XR_FB_touch_controller_pro

• XR_FB_touch_controller_proximity

• XR_FB_triangle_mesh

• XR_HTC_anchor

• XR_HTC_facial_tracking

• XR_HTC_foveation

• XR_HTC_hand_interaction

• XR_HTC_passthrough

• XR_HTC_vive_wrist_tracker_interaction

• XR_HUAWEI_controller_interaction

• XR_META_automatic_layer_filter

• XR_META_environment_depth

• XR_META_foveation_eye_tracked

• XR_META_headset_id

• XR_META_local_dimming

Chapter 12. List of Current Extensions | 299

• XR_META_passthrough_color_lut

• XR_META_passthrough_preferences

• XR_META_performance_metrics

• XR_META_recommended_layer_resolution

• XR_META_spatial_entity_mesh

• XR_META_touch_controller_plus

• XR_META_virtual_keyboard

• XR_META_vulkan_swapchain_create_info

• XR_ML_compat

• XR_ML_frame_end_info

• XR_ML_global_dimmer

• XR_ML_localization_map

• XR_ML_marker_understanding

• XR_ML_user_calibration

• XR_MND_headless

• XR_MSFT_composition_layer_reprojection

• XR_MSFT_controller_model

• XR_MSFT_first_person_observer

• XR_MSFT_hand_interaction

• XR_MSFT_hand_tracking_mesh

• XR_MSFT_holographic_window_attachment

• XR_MSFT_perception_anchor_interop

• XR_MSFT_scene_marker

• XR_MSFT_scene_understanding

• XR_MSFT_scene_understanding_serialization

• XR_MSFT_secondary_view_configuration

• XR_MSFT_spatial_anchor

• XR_MSFT_spatial_anchor_persistence

• XR_MSFT_spatial_graph_bridge

• XR_MSFT_unbounded_reference_space

• XR_OCULUS_audio_device_guid

• XR_OCULUS_external_camera

300 | Chapter 12. List of Current Extensions

• XR_OPPO_controller_interaction

• XR_QCOM_tracking_optimization_settings

• XR_ULTRALEAP_hand_tracking_forearm

• XR_VALVE_analog_threshold

• XR_VARJO_composition_layer_depth_test

• XR_VARJO_environment_depth_estimation

• XR_VARJO_foveated_rendering

• XR_VARJO_marker_tracking

• XR_VARJO_view_offset

• XR_VARJO_xr4_controller_interaction

• XR_YVR_controller_interaction

Chapter 12. List of Current Extensions | 301

12.1. XR_KHR_android_create_instance

Name String

XR_KHR_android_create_instance

Extension Type

Instance extension

Registered Extension Number

9

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-07-17

IP Status

No known IP claims.

Contributors

Robert Menzel, NVIDIA

Martin Renschler, Qualcomm

Krzysztof Kosiński, Google

Overview

When the application creates an XrInstance object on Android systems, additional information from

the application has to be provided to the XR runtime.

The Android XR runtime must return error XR_ERROR_VALIDATION_FAILURE if the additional information

is not provided by the application or if the additional parameters are invalid.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_INSTANCE_CREATE_INFO_ANDROID_KHR

302 | Chapter 12. List of Current Extensions

New Enums

New Structures

The XrInstanceCreateInfoAndroidKHR structure is defined as:

// Provided by XR_KHR_android_create_instance

typedef struct XrInstanceCreateInfoAndroidKHR {

 XrStructureType type;

 const void* next;

 void* applicationVM;

 void* applicationActivity;

} XrInstanceCreateInfoAndroidKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• applicationVM is a pointer to the JNI’s opaque JavaVM structure, cast to a void pointer.

• applicationActivity is a JNI reference to an android.app.Activity that will drive the session

lifecycle of this instance, cast to a void pointer.

XrInstanceCreateInfoAndroidKHR contains additional Android specific information needed when

calling xrCreateInstance. The applicationVM field should be populated with the JavaVM structure

received by the JNI_OnLoad function, while the applicationActivity field will typically contain a

reference to a Java activity object received through an application-specific native method. The

XrInstanceCreateInfoAndroidKHR structure must be provided in the next chain of the

XrInstanceCreateInfo structure when calling xrCreateInstance.

Valid Usage (Implicit)

• The XR_KHR_android_create_instance extension must be enabled prior to using

XrInstanceCreateInfoAndroidKHR

• type must be XR_TYPE_INSTANCE_CREATE_INFO_ANDROID_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• applicationVM must be a pointer value

• applicationActivity must be a pointer value

Chapter 12. List of Current Extensions | 303

#valid-usage-for-structure-pointer-chains

New Functions

Issues

Version History

• Revision 1, 2017-05-26 (Robert Menzel)

◦ Initial draft

• Revision 2, 2019-01-24 (Martin Renschler)

◦ Added error code, reformatted

• Revision 3, 2019-07-17 (Krzysztof Kosiński)

◦ Non-substantive clarifications.

12.2. XR_KHR_android_surface_swapchain

Name String

XR_KHR_android_surface_swapchain

Extension Type

Instance extension

Registered Extension Number

5

Revision

4

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-05-30

IP Status

No known IP claims.

Contributors

Krzysztof Kosiński, Google

Johannes van Waveren, Oculus

Martin Renschler, Qualcomm

Overview

A common activity in XR is to view an image stream. Image streams are often the result of camera

304 | Chapter 12. List of Current Extensions

previews or decoded video streams. On Android, the basic primitive representing the producer end of

an image queue is the class android.view.Surface. This extension provides a special swapchain that

uses an android.view.Surface as its producer end.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

To create an XrSwapchain object and an Android Surface object call:

// Provided by XR_KHR_android_surface_swapchain

XrResult xrCreateSwapchainAndroidSurfaceKHR(

 XrSession session,

 const XrSwapchainCreateInfo* info,

 XrSwapchain* swapchain,

 jobject* surface);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• info is a pointer to an XrSwapchainCreateInfo structure.

• swapchain is a pointer to a handle in which the created XrSwapchain is returned.

• surface is a pointer to a jobject where the created Android Surface is returned.

xrCreateSwapchainAndroidSurfaceKHR creates an XrSwapchain object returned in swapchain and an

Android Surface jobject returned in surface. The jobject must be valid to be passed back to Java code

using JNI and must be valid to be used with ordinary Android APIs for submitting images to Surfaces.

The returned XrSwapchain must be valid to be referenced in XrSwapchainSubImage structures to

show content on the screen. The width and height passed in XrSwapchainCreateInfo may not be

persistent throughout the life cycle of the created swapchain, since on Android, the size of the images

is controlled by the producer and possibly changes at any time.

The only function that is allowed to be called on the XrSwapchain returned from this function is

xrDestroySwapchain. For example, calling any of the functions xrEnumerateSwapchainImages,

Chapter 12. List of Current Extensions | 305

xrAcquireSwapchainImage, xrWaitSwapchainImage or xrReleaseSwapchainImage is invalid.

When the application receives the XrEventDataSessionStateChanged event with the

XR_SESSION_STATE_STOPPING state, it must ensure that no threads are writing to any of the Android

surfaces created with this extension before calling xrEndSession. The effect of writing frames to the

Surface when the session is in states other than XR_SESSION_STATE_VISIBLE or XR_SESSION_STATE_FOCUSED

is undefined.

xrCreateSwapchainAndroidSurfaceKHR must return the same set of error codes as

xrCreateSwapchain under the same circumstances, plus XR_ERROR_FUNCTION_UNSUPPORTED in case the

function is not supported.

Valid Usage of XrSwapchainCreateInfo members

• The XrSwapchainCreateInfo::format,

XrSwapchainCreateInfo::sampleCount,

XrSwapchainCreateInfo::faceCount,

XrSwapchainCreateInfo::arraySize and

XrSwapchainCreateInfo::mipCount

members of the structure passed as the info parameter must be zero.

Valid Usage (Implicit)

• The XR_KHR_android_surface_swapchain extension must be enabled prior to calling

xrCreateSwapchainAndroidSurfaceKHR

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSwapchainCreateInfo structure

• swapchain must be a pointer to an XrSwapchain handle

• surface must be a pointer to a jobject value

306 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

Issues

Version History

• Revision 1, 2017-01-17 (Johannes van Waveren)

◦ Initial draft

• Revision 2, 2017-10-30 (Kaye Mason)

◦ Changed images to swapchains, used snippet includes. Added issue for Surfaces.

• Revision 3, 2018-05-16 (Krzysztof Kosiński)

◦ Refactored to use Surface instead of SurfaceTexture.

• Revision 4, 2019-01-24 (Martin Renschler)

◦ Refined the specification of the extension

12.3. XR_KHR_android_thread_settings

Name String

XR_KHR_android_thread_settings

Extension Type

Instance extension

Chapter 12. List of Current Extensions | 307

Registered Extension Number

4

Revision

6

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-12-04

IP Status

No known IP claims.

Contributors

Cass Everitt, Oculus

Johannes van Waveren, Oculus

Martin Renschler, Qualcomm

Krzysztof Kosiński, Google

Xiang Wei, Meta

Overview

For XR to be comfortable, it is important for applications to deliver frames quickly and consistently. In

order to make sure the important application threads get their full share of time, these threads must be

identified to the system, which will adjust their scheduling priority accordingly.

New Object Types

New Flag Types

New Enum Constants

XrResult enumeration is extended with:

• XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR

• XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR

New Enums

The possible thread types are specified by the XrAndroidThreadTypeKHR enumeration:

308 | Chapter 12. List of Current Extensions

// Provided by XR_KHR_android_thread_settings

typedef enum XrAndroidThreadTypeKHR {

 XR_ANDROID_THREAD_TYPE_APPLICATION_MAIN_KHR = 1,

 XR_ANDROID_THREAD_TYPE_APPLICATION_WORKER_KHR = 2,

 XR_ANDROID_THREAD_TYPE_RENDERER_MAIN_KHR = 3,

 XR_ANDROID_THREAD_TYPE_RENDERER_WORKER_KHR = 4,

 XR_ANDROID_THREAD_TYPE_MAX_ENUM_KHR = 0x7FFFFFFF

} XrAndroidThreadTypeKHR;

Enumerants

• XR_ANDROID_THREAD_TYPE_APPLICATION_MAIN_KHR

hints the XR runtime that the thread is doing time critical CPU tasks

• XR_ANDROID_THREAD_TYPE_APPLICATION_WORKER_KHR

hints the XR runtime that the thread is doing background CPU tasks

• XR_ANDROID_THREAD_TYPE_RENDERER_MAIN_KHR

hints the XR runtime that the thread is doing time critical graphics device tasks

• XR_ANDROID_THREAD_TYPE_RENDERER_WORKER_KHR

hints the XR runtime that the thread is doing background graphics device tasks

New Structures

New Functions

To declare a thread to be of a certain XrAndroidThreadTypeKHR type call:

// Provided by XR_KHR_android_thread_settings

XrResult xrSetAndroidApplicationThreadKHR(

 XrSession session,

 XrAndroidThreadTypeKHR threadType,

 uint32_t threadId);

Chapter 12. List of Current Extensions | 309

Parameter Descriptions

• session is a valid XrSession handle.

• threadType is a classification of the declared thread allowing the XR runtime to apply the

relevant priority and attributes. If such settings fail, the runtime must return

XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR.

• threadId is the kernel thread ID of the declared thread, as returned by gettid() or

android.os.process.myTid(). If the thread ID is invalid, the runtime must return

XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR.

xrSetAndroidApplicationThreadKHR allows to declare an XR-critical thread and to classify it.

Valid Usage (Implicit)

• The XR_KHR_android_thread_settings extension must be enabled prior to calling

xrSetAndroidApplicationThreadKHR

• session must be a valid XrSession handle

• threadType must be a valid XrAndroidThreadTypeKHR value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_ANDROID_THREAD_SETTINGS_ID_INVALID_KHR

• XR_ERROR_ANDROID_THREAD_SETTINGS_FAILURE_KHR

Version History

310 | Chapter 12. List of Current Extensions

• Revision 1, 2017-01-17 (Johannes van Waveren)

◦ Initial draft.

• Revision 2, 2017-10-31 (Armelle Laine)

◦ Move the performance settings to EXT extension.

• Revision 3, 2018-12-20 (Paul Pedriana)

◦ Revised the error code naming to use KHR and renamed xrSetApplicationThreadKHR →

xrSetAndroidApplicationThreadKHR.

• Revision 4, 2019-01-24 (Martin Renschler)

◦ Added enum specification, reformatting

• Revision 5, 2019-07-17 (Krzysztof Kosiński)

◦ Clarify the type of thread identifier used by the extension.

• Revision 6, 2023-12-04 (Xiang Wei)

◦ Revise/fix the hints of enum specification

12.4. XR_KHR_binding_modification

Name String

XR_KHR_binding_modification

Extension Type

Instance extension

Registered Extension Number

121

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-07-29

IP Status

No known IP claims.

Contributors

Joe Ludwig, Valve

Chapter 12. List of Current Extensions | 311

Contacts

Joe Ludwig, Valve

Overview

This extension adds an optional structure that can be included on the

XrInteractionProfileSuggestedBinding::next chain passed to xrSuggestInteractionProfileBindings to

specify additional information to modify default binding behavior.

This extension does not define any actual modification structs, but includes the list of modifications

and the XrBindingModificationBaseHeaderKHR structure to allow other extensions to provide specific

modifications.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_BINDING_MODIFICATIONS_KHR

New Enums

New Structures

The XrBindingModificationsKHR structure is defined as:

// Provided by XR_KHR_binding_modification

typedef struct XrBindingModificationsKHR {

 XrStructureType type;

 const void* next;

 uint32_t bindingModificationCount;

 const XrBindingModificationBaseHeaderKHR* const* bindingModifications;

} XrBindingModificationsKHR;

312 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• bindingModificationCount is the number of binding modifications in the array pointed to by

bindingModifications.

• bindingModifications is a pointer to an array of pointers to binding modification structures

based on XrBindingModificationBaseHeaderKHR, that define all of the application’s

suggested binding modifications for the specified interaction profile.

Valid Usage (Implicit)

• The XR_KHR_binding_modification extension must be enabled prior to using

XrBindingModificationsKHR

• type must be XR_TYPE_BINDING_MODIFICATIONS_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• If bindingModificationCount is not 0, bindingModifications must be a pointer to an array of

bindingModificationCount valid XrBindingModificationBaseHeaderKHR-based structures. See

also: XrInteractionProfileAnalogThresholdVALVE, XrInteractionProfileDpadBindingEXT

The XrBindingModificationBaseHeaderKHR structure is defined as:

// Provided by XR_KHR_binding_modification

typedef struct XrBindingModificationBaseHeaderKHR {

 XrStructureType type;

 const void* next;

} XrBindingModificationBaseHeaderKHR;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or in this extension.

The XrBindingModificationBaseHeaderKHR is a base structure is overridden by XrBindingModification*

Chapter 12. List of Current Extensions | 313

#valid-usage-for-structure-pointer-chains

child structures.

Valid Usage (Implicit)

• The XR_KHR_binding_modification extension must be enabled prior to using

XrBindingModificationBaseHeaderKHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 1, 2020-08-06 (Joe Ludwig)

◦ Initial draft.

12.5. XR_KHR_composition_layer_color_scale_bias

Name String

XR_KHR_composition_layer_color_scale_bias

Extension Type

Instance extension

Registered Extension Number

35

Revision

5

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-28

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Cass Everitt, Oculus

314 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Martin Renschler, Qualcomm

Overview

Color scale and bias are applied to a layer color during composition, after its conversion to

premultiplied alpha representation.

If specified, colorScale and colorBias must be used to alter the LayerColor as follows:

• colorScale = max(vec4(0, 0, 0, 0), colorScale)

• LayerColor.RGB = LayerColor.A > 0 ? LayerColor.RGB / LayerColor.A : vec3(0, 0, 0)

• LayerColor = LayerColor * colorScale + colorBias

• LayerColor.RGB *= LayerColor.A

This extension specifies the XrCompositionLayerColorScaleBiasKHR structure, which, if present in the

XrCompositionLayerBaseHeader::next chain, must be applied to the composition layer.

This extension does not define a new composition layer type, but rather it defines a transform that

may be applied to the color derived from existing composition layer types.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_COLOR_SCALE_BIAS_KHR

New Enums

New Structures

The XrCompositionLayerColorScaleBiasKHR structure is defined as:

// Provided by XR_KHR_composition_layer_color_scale_bias

typedef struct XrCompositionLayerColorScaleBiasKHR {

 XrStructureType type;

 const void* next;

 XrColor4f colorScale;

 XrColor4f colorBias;

} XrCompositionLayerColorScaleBiasKHR;

Chapter 12. List of Current Extensions | 315

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• colorScale is an XrColor4f which will modulate the color sourced from the images.

• colorBias is an XrColor4f which will offset the color sourced from the images.

XrCompositionLayerColorScaleBiasKHR contains the information needed to scale and bias the color of

layer textures.

The XrCompositionLayerColorScaleBiasKHR structure can be applied by applications to composition

layers by adding an instance of the struct to the XrCompositionLayerBaseHeader::next list.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_color_scale_bias extension must be enabled prior to using

XrCompositionLayerColorScaleBiasKHR

• type must be XR_TYPE_COMPOSITION_LAYER_COLOR_SCALE_BIAS_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 1, 2017-09-13 (Paul Pedriana)

◦ Initial implementation.

• Revision 2, 2019-01-24 (Martin Renschler)

◦ Formatting, spec language changes

• Revision 3, 2019-01-28 (Paul Pedriana)

◦ Revised math to remove premultiplied alpha before applying color scale and offset, then

restoring.

• Revision 4, 2019-07-17 (Cass Everitt)

◦ Non-substantive updates to the spec language and equations.

• Revision 5, 2020-05-20 (Cass Everitt)

◦ Changed extension name, simplified language.

316 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

12.6. XR_KHR_composition_layer_cube

Name String

XR_KHR_composition_layer_cube

Extension Type

Instance extension

Registered Extension Number

7

Revision

8

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Johannes van Waveren, Oculus

Cass Everitt, Oculus

Paul Pedriana, Oculus

Gloria Kennickell, Oculus

Sam Martin, ARM

Kaye Mason, Google, Inc.

Martin Renschler, Qualcomm

Contacts

Cass Everitt, Oculus

Paul Pedriana, Oculus

Overview

This extension adds an additional layer type that enables direct sampling from cubemaps.

The cube layer is the natural layer type for hardware accelerated environment maps. Without

updating the image source, the user can look all around, and the compositor can display what they are

looking at without intervention from the application.

New Object Types

Chapter 12. List of Current Extensions | 317

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_CUBE_KHR

New Enums

New Structures

The XrCompositionLayerCubeKHR structure is defined as:

// Provided by XR_KHR_composition_layer_cube

typedef struct XrCompositionLayerCubeKHR {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchain swapchain;

 uint32_t imageArrayIndex;

 XrQuaternionf orientation;

} XrCompositionLayerCubeKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layerFlags is any flags to apply to this layer.

• space is the XrSpace in which the orientation of the cube layer is evaluated over time.

• eyeVisibility is the eye represented by this layer.

• swapchain is the swapchain, which must have been created with a XrSwapchainCreateInfo

::faceCount of 6.

• imageArrayIndex is the image array index, with 0 meaning the first or only array element.

• orientation is the orientation of the environment map in the space.

XrCompositionLayerCubeKHR contains the information needed to render a cube map when calling

318 | Chapter 12. List of Current Extensions

xrEndFrame. XrCompositionLayerCubeKHR is an alias type for the base struct

XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_cube extension must be enabled prior to using

XrCompositionLayerCubeKHR

• type must be XR_TYPE_COMPOSITION_LAYER_CUBE_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• swapchain must be a valid XrSwapchain handle

• Both of space and swapchain must have been created, allocated, or retrieved from the same

XrSession

New Functions

Issues

Version History

• Revision 0, 2017-02-01 (Johannes van Waveren)

◦ Initial draft.

• Revision 1, 2017-05-19 (Sam Martin)

◦ Initial draft, moving the 3 layer types to an extension.

• Revision 2, 2017-08-30 (Paul Pedriana)

◦ Updated the specification.

• Revision 3, 2017-10-12 (Cass Everitt)

◦ Updated to reflect per-eye structs and the change to swapchains

• Revision 4, 2017-10-18 (Kaye Mason)

◦ Update to flatten structs to remove per-eye arrays.

• Revision 5, 2017-12-05 (Paul Pedriana)

◦ Updated to break out the cylinder and equirect features into separate extensions.

• Revision 6, 2017-12-07 (Paul Pedriana)

◦ Updated to use transform components instead of transform matrices.

Chapter 12. List of Current Extensions | 319

#valid-usage-for-structure-pointer-chains

• Revision 7, 2017-12-07 (Paul Pedriana)

◦ Updated to convert XrPosef to XrQuaternionf (there’s no position component).

• Revision 8, 2019-01-24 (Martin Renschler)

◦ Updated struct to use XrSwapchainSubImage, reformat and spec language changes, eye

parameter description update

12.7. XR_KHR_composition_layer_cylinder

Name String

XR_KHR_composition_layer_cylinder

Extension Type

Instance extension

Registered Extension Number

18

Revision

4

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

James Hughes, Oculus

Paul Pedriana, Oculus

Martin Renschler, Qualcomm

Contacts

Paul Pedriana, Oculus

Cass Everitt, Oculus

Overview

This extension adds an additional layer type where the XR runtime must map a texture stemming

from a swapchain onto the inside of a cylinder section. It can be imagined much the same way a

curved television display looks to a viewer. This is not a projection type of layer but rather an object-in-

world type of layer, similar to XrCompositionLayerQuad. Only the interior of the cylinder surface must

320 | Chapter 12. List of Current Extensions

be visible; the exterior of the cylinder is not visible and must not be drawn by the runtime.

The cylinder characteristics are specified by the following parameters:

 XrPosef pose;

 float radius;

 float centralAngle;

 float aspectRatio;

These can be understood via the following diagram, which is a top-down view of a horizontally

oriented cylinder. The aspect ratio drives how tall the cylinder will appear based on the other

parameters. Typically the aspectRatio would be set to be the aspect ratio of the texture being used, so

that it looks the same within the cylinder as it does in 2D.

a

p r

-z
U=1U=0

+x

V=1

V=0

p
+x-x

+y

-y

(+y is out of the plane of the diagram)

Figure 6. Cylinder Layer Parameters

• r — Radius

• a — Central angle in (0, 2π)

• p — Origin of pose transform

• U/V — UV coordinates

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

Chapter 12. List of Current Extensions | 321

• XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR

New Enums

New Structures

The XrCompositionLayerCylinderKHR structure is defined as:

// Provided by XR_KHR_composition_layer_cylinder

typedef struct XrCompositionLayerCylinderKHR {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchainSubImage subImage;

 XrPosef pose;

 float radius;

 float centralAngle;

 float aspectRatio;

} XrCompositionLayerCylinderKHR;

322 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layerFlags specifies options for the layer.

• space is the XrSpace in which the pose of the cylinder layer is evaluated over time.

• eyeVisibility is the eye represented by this layer.

• subImage identifies the image XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

• pose is an XrPosef defining the position and orientation of the center point of the view of the

cylinder within the reference frame of the space.

• radius is the non-negative radius of the cylinder. Values of zero or floating point positive

infinity are treated as an infinite cylinder.

• centralAngle is the angle of the visible section of the cylinder, based at 0 radians, in the range

of [0, 2π). It grows symmetrically around the 0 radian angle.

• aspectRatio is the ratio of the visible cylinder section width / height. The height of the

cylinder is given by: (cylinder radius × cylinder angle) / aspectRatio.

XrCompositionLayerCylinderKHR contains the information needed to render a texture onto a cylinder

when calling xrEndFrame. XrCompositionLayerCylinderKHR is an alias type for the base struct

XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_cylinder extension must be enabled prior to using

XrCompositionLayerCylinderKHR

• type must be XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

Chapter 12. List of Current Extensions | 323

#valid-usage-for-structure-pointer-chains

Version History

• Revision 1, 2017-05-19 (Paul Pedriana)

◦ Initial version. This was originally part of a single extension which supported multiple such

extension layer types.

• Revision 2, 2017-12-07 (Paul Pedriana)

◦ Updated to use transform components instead of transform matrices.

• Revision 3, 2018-03-05 (Paul Pedriana)

◦ Added improved documentation and brought the documentation in line with the existing core

spec.

• Revision 4, 2019-01-24 (Martin Renschler)

◦ Reformatted, spec language changes, eye parameter description update

12.8. XR_KHR_composition_layer_depth

Name String

XR_KHR_composition_layer_depth

Extension Type

Instance extension

Registered Extension Number

11

Revision

6

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Bryce Hutchings, Microsoft

Andreas Loeve Selvik, Arm

Martin Renschler, Qualcomm

324 | Chapter 12. List of Current Extensions

Overview

This extension defines an extra layer type which allows applications to submit depth images along

with color images in projection layers, i.e. XrCompositionLayerProjection.

The XR runtime may use this information to perform more accurate reprojections taking depth into

account. Use of this extension does not affect the order of layer composition as described in

Compositing.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR

New Enums

New Structures

When submitting depth images along with projection layers, add the

XrCompositionLayerDepthInfoKHR to the next chain for all XrCompositionLayerProjectionView

structures in the given layer.

The XrCompositionLayerDepthInfoKHR structure is defined as:

// Provided by XR_KHR_composition_layer_depth

typedef struct XrCompositionLayerDepthInfoKHR {

 XrStructureType type;

 const void* next;

 XrSwapchainSubImage subImage;

 float minDepth;

 float maxDepth;

 float nearZ;

 float farZ;

} XrCompositionLayerDepthInfoKHR;

Chapter 12. List of Current Extensions | 325

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• subImage identifies the depth image XrSwapchainSubImage to be associated with the color

swapchain. The swapchain must have been created with a XrSwapchainCreateInfo

::faceCount of 1.

• minDepth and maxDepth are the window space depths that correspond to the near and far

frustum planes, respectively. minDepth must be less than maxDepth. minDepth and maxDepth must

be in the range [0, 1].

• nearZ and farZ are the positive distances in meters to the near and far frustum planes,

respectively. nearZ and farZ must not be equal. nearZ and farZ must be in the range (0,

+infinity]. Note

The window space depth values minDepth and maxDepth are akin to the parameters of

glDepthRange that specify the mapping from normalized device coordinates into

window space. Note

A reversed mapping of depth, such that points closer to the view have a window space

depth that is greater than points further away can be achieved by making nearZ >

farZ.

XrCompositionLayerDepthInfoKHR contains the information needed to associate depth with the color

information in a projection layer. When submitting depth images along with projection layers, add the

XrCompositionLayerDepthInfoKHR to the next chain for all XrCompositionLayerProjectionView

structures in the given layer.

The homogeneous transform from view space z to window space depth is given by the following

matrix, where a = minDepth, b = maxDepth, n = nearZ, and f = farZ.

326 | Chapter 12. List of Current Extensions

Figure 7. Homogeneous transform from view space to window space depth

Homogeneous values are constructed from real values by appending a w component with value 1.0.

General homogeneous values are projected back to real space by dividing by the w component.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_depth extension must be enabled prior to using

XrCompositionLayerDepthInfoKHR

• type must be XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

1. Should the range of minDepth and maxDepth be constrained to [0,1]?

RESOLVED: Yes.

There is no compelling mathematical reason for this constraint, however, it does not impose any

hardship currently, and the constraint could be relaxed in a future version of the extension if

needed.

2. Should we require minDepth be less than maxDepth?

RESOLVED: Yes.

There is no compelling mathematical reason for this constraint, however, it does not impose any

Chapter 12. List of Current Extensions | 327

#valid-usage-for-structure-pointer-chains

hardship currently, and the constraint could be relaxed in a future version of the extension if

needed. Reverse z mappings can be achieved by making nearZ > farZ.

3. Does this extension support view space depth images?

RESOLVED: No.

The formulation of the transform between view and window depths implies projected depth. A

different extension would be needed to support a different interpretation of depth.

4. Is there any constraint on the resolution of the depth subimage?

RESOLVED: No.

The resolution of the depth image need not match that of the corresponding color image.

Version History

• Revision 1, 2017-08-18 (Paul Pedriana)

◦ Initial proposal.

• Revision 2, 2017-10-30 (Kaye Mason)

◦ Migration from Images to Swapchains.

• Revision 3, 2018-07-20 (Bryce Hutchings)

◦ Support for swapchain texture arrays

• Revision 4, 2018-12-17 (Andreas Loeve Selvik)

◦ depthImageRect in pixels instead of UVs

• Revision 5, 2019-01-24 (Martin Renschler)

◦ changed depthSwapchain/depthImageRect/depthImageArrayIndex

to XrSwapchainSubImage

◦ reformat and spec language changes

◦ removed vendor specific terminology

• Revision 6, 2022-02-16 (Cass Everitt)

◦ Provide homogeneous transform as function of provided parameters

12.9. XR_KHR_composition_layer_equirect

Name String

XR_KHR_composition_layer_equirect

Extension Type

Instance extension

328 | Chapter 12. List of Current Extensions

Registered Extension Number

19

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Johannes van Waveren, Oculus

Cass Everitt, Oculus

Paul Pedriana, Oculus

Gloria Kennickell, Oculus

Martin Renschler, Qualcomm

Contacts

Cass Everitt, Oculus

Paul Pedriana, Oculus

Overview

This extension adds an additional layer type where the XR runtime must map an equirectangular

coded image stemming from a swapchain onto the inside of a sphere.

The equirect layer type provides most of the same benefits as a cubemap, but from an equirect 2D

image source. This image source is appealing mostly because equirect environment maps are very

common, and the highest quality you can get from them is by sampling them directly in the

compositor.

This is not a projection type of layer but rather an object-in-world type of layer, similar to

XrCompositionLayerQuad. Only the interior of the sphere surface must be visible; the exterior of the

sphere is not visible and must not be drawn by the runtime.

New Object Types

New Flag Types

New Enum Constants

Chapter 12. List of Current Extensions | 329

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR

New Enums

New Structures

The XrCompositionLayerEquirectKHR structure is defined as:

// Provided by XR_KHR_composition_layer_equirect

typedef struct XrCompositionLayerEquirectKHR {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchainSubImage subImage;

 XrPosef pose;

 float radius;

 XrVector2f scale;

 XrVector2f bias;

} XrCompositionLayerEquirectKHR;

330 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layerFlags specifies options for the layer.

• space is the XrSpace in which the pose of the equirect layer is evaluated over time.

• eyeVisibility is the eye represented by this layer.

• subImage identifies the image XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

• pose is an XrPosef defining the position and orientation of the center point of the sphere onto

which the equirect image data is mapped, relative to the reference frame of the space.

• radius is the non-negative radius of the sphere onto which the equirect image data is

mapped. Values of zero or floating point positive infinity are treated as an infinite sphere.

• scale is an XrVector2f indicating a scale of the texture coordinates after the mapping to 2D.

• bias is an XrVector2f indicating a bias of the texture coordinates after the mapping to 2D.

XrCompositionLayerEquirectKHR contains the information needed to render an equirectangular

image onto a sphere when calling xrEndFrame. XrCompositionLayerEquirectKHR is an alias type for

the base struct XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_equirect extension must be enabled prior to using

XrCompositionLayerEquirectKHR

• type must be XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• subImage must be a valid XrSwapchainSubImage structure

New Functions

Issues

Version History

Chapter 12. List of Current Extensions | 331

#valid-usage-for-structure-pointer-chains

• Revision 1, 2017-05-19 (Paul Pedriana)

◦ Initial version. This was originally part of a single extension which supported multiple such

extension layer types.

• Revision 2, 2017-12-07 (Paul Pedriana)

◦ Updated to use transform components instead of transform matrices.

• Revision 3, 2019-01-24 (Martin Renschler)

◦ Reformatted, spec language changes, eye parameter description update

12.10. XR_KHR_composition_layer_equirect2

Name String

XR_KHR_composition_layer_equirect2

Extension Type

Instance extension

Registered Extension Number

92

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Johannes van Waveren, Oculus

Cass Everitt, Oculus

Paul Pedriana, Oculus

Gloria Kennickell, Oculus

Martin Renschler, Qualcomm

Contacts

Cass Everitt, Oculus

Overview

332 | Chapter 12. List of Current Extensions

This extension adds an additional layer type where the XR runtime must map an equirectangular

coded image stemming from a swapchain onto the inside of a sphere.

The equirect layer type provides most of the same benefits as a cubemap, but from an equirect 2D

image source. This image source is appealing mostly because equirect environment maps are very

common, and the highest quality you can get from them is by sampling them directly in the

compositor.

This is not a projection type of layer but rather an object-in-world type of layer, similar to

XrCompositionLayerQuad. Only the interior of the sphere surface must be visible; the exterior of the

sphere is not visible and must not be drawn by the runtime.

This extension uses a different parameterization more in keeping with the formulation of

KHR_composition_layer_cylinder but is functionally equivalent to KHR_composition_layer_equirect.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR

New Enums

New Structures

The XrCompositionLayerEquirect2KHR structure is defined as:

// Provided by XR_KHR_composition_layer_equirect2

typedef struct XrCompositionLayerEquirect2KHR {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrEyeVisibility eyeVisibility;

 XrSwapchainSubImage subImage;

 XrPosef pose;

 float radius;

 float centralHorizontalAngle;

 float upperVerticalAngle;

 float lowerVerticalAngle;

} XrCompositionLayerEquirect2KHR;

Chapter 12. List of Current Extensions | 333

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layerFlags specifies options for the layer.

• space is the XrSpace in which the pose of the equirect layer is evaluated over time.

• eyeVisibility is the eye represented by this layer.

• subImage identifies the image XrSwapchainSubImage to use. The swapchain must have been

created with a XrSwapchainCreateInfo::faceCount of 1.

• pose is an XrPosef defining the position and orientation of the center point of the sphere onto

which the equirect image data is mapped, relative to the reference frame of the space.

• radius is the non-negative radius of the sphere onto which the equirect image data is

mapped. Values of zero or floating point positive infinity are treated as an infinite sphere.

• centralHorizontalAngle defines the visible horizontal angle of the sphere, based at 0 radians,

in the range of [0, 2π]. It grows symmetrically around the 0 radian angle.

• upperVerticalAngle defines the upper vertical angle of the visible portion of the sphere, in the

range of [-π/2, π/2].

• lowerVerticalAngle defines the lower vertical angle of the visible portion of the sphere, in the

range of [-π/2, π/2].

XrCompositionLayerEquirect2KHR contains the information needed to render an equirectangular

image onto a sphere when calling xrEndFrame. XrCompositionLayerEquirect2KHR is an alias type for

the base struct XrCompositionLayerBaseHeader used in XrFrameEndInfo.

Valid Usage (Implicit)

• The XR_KHR_composition_layer_equirect2 extension must be enabled prior to using

XrCompositionLayerEquirect2KHR

• type must be XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of XrCompositionLayerFlagBits values

• space must be a valid XrSpace handle

• eyeVisibility must be a valid XrEyeVisibility value

• subImage must be a valid XrSwapchainSubImage structure

334 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

New Functions

Issues

Version History

• Revision 1, 2020-05-08 (Cass Everitt)

◦ Initial version.

◦ Kept contributors from the original equirect extension.

12.11. XR_KHR_convert_timespec_time

Name String

XR_KHR_convert_timespec_time

Extension Type

Instance extension

Registered Extension Number

37

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Overview

This extension provides two functions for converting between timespec monotonic time and XrTime.

The xrConvertTimespecTimeToTimeKHR function converts from timespec time to XrTime, while the

xrConvertTimeToTimespecTimeKHR function converts XrTime to timespec monotonic time. The

primary use case for this functionality is to be able to synchronize events between the local system and

the OpenXR system.

New Object Types

Chapter 12. List of Current Extensions | 335

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

To convert from timespec monotonic time to XrTime, call:

// Provided by XR_KHR_convert_timespec_time

XrResult xrConvertTimespecTimeToTimeKHR(

 XrInstance instance,

 const struct timespec* timespecTime,

 XrTime* time);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• timespecTime is a timespec obtained from clock_gettime with CLOCK_MONOTONIC.

• time is the resulting XrTime that is equivalent to the timespecTime.

The xrConvertTimespecTimeToTimeKHR function converts a time obtained by the clock_gettime

function to the equivalent XrTime.

If the output time cannot represent the input timespecTime, the runtime must return

XR_ERROR_TIME_INVALID.

Valid Usage (Implicit)

• The XR_KHR_convert_timespec_time extension must be enabled prior to calling

xrConvertTimespecTimeToTimeKHR

• instance must be a valid XrInstance handle

• timespecTime must be a pointer to a valid timespec value

• time must be a pointer to an XrTime value

336 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_TIME_INVALID

To convert from XrTime to timespec monotonic time, call:

// Provided by XR_KHR_convert_timespec_time

XrResult xrConvertTimeToTimespecTimeKHR(

 XrInstance instance,

 XrTime time,

 struct timespec* timespecTime);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• time is an XrTime.

• timespecTime is the resulting timespec time that is equivalent to a timespec obtained from

clock_gettime with CLOCK_MONOTONIC.

The xrConvertTimeToTimespecTimeKHR function converts an XrTime to time as if generated by

clock_gettime.

If the output timespecTime cannot represent the input time, the runtime must return

XR_ERROR_TIME_INVALID.

Chapter 12. List of Current Extensions | 337

Valid Usage (Implicit)

• The XR_KHR_convert_timespec_time extension must be enabled prior to calling

xrConvertTimeToTimespecTimeKHR

• instance must be a valid XrInstance handle

• timespecTime must be a pointer to a timespec value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_TIME_INVALID

Issues

Version History

• Revision 1, 2019-01-24 (Paul Pedriana)

◦ Initial draft

12.12. XR_KHR_D3D11_enable

Name String

XR_KHR_D3D11_enable

Extension Type

Instance extension

Registered Extension Number

28

338 | Chapter 12. List of Current Extensions

Revision

9

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2018-11-16

IP Status

No known IP claims.

Contributors

Bryce Hutchings, Microsoft

Paul Pedriana, Oculus

Mark Young, LunarG

Minmin Gong, Microsoft

Matthieu Bucchianeri, Microsoft

Overview

This extension enables the use of the D3D11 graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to use any D3D11 swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingD3D11KHR structure in order to create a D3D11-based XrSession. Note that during

this process the application is responsible for creating all the required D3D11 objects, including a

graphics device to be used for rendering.

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you must define

XR_USE_GRAPHICS_API_D3D11 before including the OpenXR platform header openxr_platform.h, in all

portions of your library or application that include it. Swapchain Flag Bits

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingD3D11KHR

must be interpreted as follows by the runtime, so that the returned swapchain images used by the

application may be used as if they were created with the corresponding D3D11_BIND_FLAG flags. The

runtime may set additional bind flags but must not restrict usage.

XrSwapchainUsageFlagBits Corresponding D3D11 bind flag bits

XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT D3D11_BIND_RENDER_TARGET

XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT D3D11_BIND_DEPTH_STENCIL

XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT D3D11_BIND_UNORDERED_ACCESS

Chapter 12. List of Current Extensions | 339

XrSwapchainUsageFlagBits Corresponding D3D11 bind flag bits

XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT ignored

XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT ignored

XR_SWAPCHAIN_USAGE_SAMPLED_BIT D3D11_BIND_SHADER_RESOURCE

XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT ignored

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR

(Added by

XR_KHR_swapchain_usage_input_attachment_bit and

only available when that extension is enabled)

ignored

All D3D11 swapchain textures are created with D3D11_USAGE_DEFAULT usage.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_D3D11_KHR

• XR_TYPE_GRAPHICS_BINDING_D3D11_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information

required to work with the D3D11 API executing on certain operating systems.

The XrGraphicsBindingD3D11KHR structure is defined as:

// Provided by XR_KHR_D3D11_enable

typedef struct XrGraphicsBindingD3D11KHR {

 XrStructureType type;

 const void* next;

 ID3D11Device* device;

} XrGraphicsBindingD3D11KHR;

340 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• device is a pointer to a valid ID3D11Device to use.

When creating a D3D11-backed XrSession, the application will provide a pointer to an

XrGraphicsBindingD3D11KHR in the XrSessionCreateInfo::next field of structure passed to

xrCreateSession. The D3D11 device specified in XrGraphicsBindingD3D11KHR::device must be created

in accordance with the requirements retrieved through xrGetD3D11GraphicsRequirementsKHR,

otherwise xrCreateSession must return XR_ERROR_GRAPHICS_DEVICE_INVALID.

Valid Usage (Implicit)

• The XR_KHR_D3D11_enable extension must be enabled prior to using

XrGraphicsBindingD3D11KHR

• type must be XR_TYPE_GRAPHICS_BINDING_D3D11_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• device must be a pointer to an ID3D11Device value

The XrSwapchainImageD3D11KHR structure is defined as:

// Provided by XR_KHR_D3D11_enable

typedef struct XrSwapchainImageD3D11KHR {

 XrStructureType type;

 void* next;

 ID3D11Texture2D* texture;

} XrSwapchainImageD3D11KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• texture is a pointer to a valid ID3D11Texture2D to use.

Chapter 12. List of Current Extensions | 341

#valid-usage-for-structure-pointer-chains

If a given session was created with XrGraphicsBindingD3D11KHR, the following conditions must apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageD3D11KHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageD3D11KHR.

The OpenXR runtime must interpret the top-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing up,

near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_D3D11_enable extension must be enabled prior to using

XrSwapchainImageD3D11KHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsD3D11KHR structure is defined as:

// Provided by XR_KHR_D3D11_enable

typedef struct XrGraphicsRequirementsD3D11KHR {

 XrStructureType type;

 void* next;

 LUID adapterLuid;

 D3D_FEATURE_LEVEL minFeatureLevel;

} XrGraphicsRequirementsD3D11KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• adapterLuid identifies what graphics device needs to be used.

• minFeatureLevel is the minimum feature level that the D3D11 device must be initialized with.

XrGraphicsRequirementsD3D11KHR is populated by xrGetD3D11GraphicsRequirementsKHR.

342 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_KHR_D3D11_enable extension must be enabled prior to using

XrGraphicsRequirementsD3D11KHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_D3D11_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• adapterLuid must be a valid LUID value

• minFeatureLevel must be a valid D3D_FEATURE_LEVEL value

New Functions

Some computer systems may have multiple graphics devices, each of which may have independent

external display outputs. XR systems that connect to such graphics devices are typically connected to a

single device. Applications need to know what graphics device the XR system is connected to so that

they can use that graphics device to generate XR images.

To retrieve the D3D11 feature level and graphics device for an instance and system, call:

// Provided by XR_KHR_D3D11_enable

XrResult xrGetD3D11GraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsD3D11KHR* graphicsRequirements);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsD3D11KHR output structure.

The xrGetD3D11GraphicsRequirementsKHR function identifies to the application what graphics device

(Windows LUID) needs to be used and the minimum feature level to use. The runtime must return

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to

legacy behavior) on calls to xrCreateSession if xrGetD3D11GraphicsRequirementsKHR has not been

called for the same instance and systemId. The LUID and feature level that

xrGetD3D11GraphicsRequirementsKHR returns must be used to create the ID3D11Device that the

application passes to xrCreateSession in the XrGraphicsBindingD3D11KHR.

Chapter 12. List of Current Extensions | 343

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_KHR_D3D11_enable extension must be enabled prior to calling

xrGetD3D11GraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsD3D11KHR structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Issues

Version History

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Split XR_KHR_D3D_enable into XR_KHR_D3D11_enable

◦ Rename and expand xrGetD3DGraphicsDeviceKHR functionality to
xrGetD3D11GraphicsRequirementsKHR

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

• Revision 5, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

344 | Chapter 12. List of Current Extensions

• Revision 8, 2021-09-09 (Bryce Hutchings)

◦ Document mapping for XrSwapchainUsageFlags

• Revision 9, 2021-12-28 (Matthieu Bucchianeri)

◦ Added missing XR_ERROR_GRAPHICS_DEVICE_INVALID error condition

12.13. XR_KHR_D3D12_enable

Name String

XR_KHR_D3D12_enable

Extension Type

Instance extension

Registered Extension Number

29

Revision

9

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-03-18

IP Status

No known IP claims.

Contributors

Bryce Hutchings, Microsoft

Paul Pedriana, Oculus

Mark Young, LunarG

Minmin Gong, Microsoft

Dan Ginsburg, Valve

Matthieu Bucchianeri, Microsoft

Overview

This extension enables the use of the D3D12 graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to use any D3D12 swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingD3D12KHR structure in order to create a D3D12-based XrSession. Note that during

this process the application is responsible for creating all the required D3D12 objects, including a

Chapter 12. List of Current Extensions | 345

graphics device and queue to be used for rendering.

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you must define

XR_USE_GRAPHICS_API_D3D12 before including the OpenXR platform header openxr_platform.h, in all

portions of your library or application that include it.

Swapchain Image Resource State

When an application acquires a swapchain image by calling xrAcquireSwapchainImage in a session

create using XrGraphicsBindingD3D12KHR, the OpenXR runtime must guarantee that:

• The color rendering target image has a resource state match with
D3D12_RESOURCE_STATE_RENDER_TARGET

• The depth rendering target image has a resource state match with
D3D12_RESOURCE_STATE_DEPTH_WRITE

• The ID3D12CommandQueue specified in XrGraphicsBindingD3D12KHR can write to the image.

When an application releases a swapchain image by calling xrReleaseSwapchainImage, in a session

create using XrGraphicsBindingD3D12KHR, the OpenXR runtime must interpret the image as:

• Having a resource state match with D3D12_RESOURCE_STATE_RENDER_TARGET if the image is a color

rendering target

• Having a resource state match with D3D12_RESOURCE_STATE_DEPTH_WRITE if the image is a depth

rendering target

• Being available for read/write on the ID3D12CommandQueue specified in XrGraphicsBindingD3D12KHR.

The application is responsible for transitioning the swapchain image back to the resource state and

queue availability that the OpenXR runtime requires. If the image is not in a resource state match with

the above specifications the runtime may exhibit undefined behavior.

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingD3D12KHR

must be interpreted as follows by the runtime, so that the returned swapchain images used by the

application may be used as if they were created with the corresponding D3D12_BIND_FLAG flags and

heap type. The runtime may set additional resource flags but must not restrict usage.

XrSwapchainUsageFlagBits Corresponding D3D12 resource flag bits

XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET

XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL

XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS

XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT ignored

XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT ignored

346 | Chapter 12. List of Current Extensions

XrSwapchainUsageFlagBits Corresponding D3D12 resource flag bits

XR_SWAPCHAIN_USAGE_SAMPLED_BIT omitted D3D12_RESOURCE_FLAG_DENY_SHADER_RESOURCE

XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT ignored

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR

(Added by

XR_KHR_swapchain_usage_input_attachment_bit and

only available when that extension is enabled)

ignored

All D3D12 swapchain textures are created with D3D12_HEAP_TYPE_DEFAULT usage.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_D3D12_KHR

• XR_TYPE_GRAPHICS_BINDING_D3D12_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information

required to work with the D3D12 API executing on certain operating systems.

The XrGraphicsBindingD3D12KHR structure is defined as:

// Provided by XR_KHR_D3D12_enable

typedef struct XrGraphicsBindingD3D12KHR {

 XrStructureType type;

 const void* next;

 ID3D12Device* device;

 ID3D12CommandQueue* queue;

} XrGraphicsBindingD3D12KHR;

Chapter 12. List of Current Extensions | 347

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• device is a pointer to a valid ID3D12Device to use.

• queue is a pointer to a valid ID3D12CommandQueue to use.

When creating a D3D12-backed XrSession, the application will provide a pointer to an

XrGraphicsBindingD3D12KHR in the XrSessionCreateInfo::next field of structure passed to

xrCreateSession. The D3D12 device specified in XrGraphicsBindingD3D12KHR::device must be created

in accordance with the requirements retrieved through xrGetD3D12GraphicsRequirementsKHR,

otherwise xrCreateSession must return XR_ERROR_GRAPHICS_DEVICE_INVALID.

Valid Usage (Implicit)

• The XR_KHR_D3D12_enable extension must be enabled prior to using

XrGraphicsBindingD3D12KHR

• type must be XR_TYPE_GRAPHICS_BINDING_D3D12_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• device must be a pointer to an ID3D12Device value

• queue must be a pointer to an ID3D12CommandQueue value

The XrSwapchainImageD3D12KHR structure is defined as:

// Provided by XR_KHR_D3D12_enable

typedef struct XrSwapchainImageD3D12KHR {

 XrStructureType type;

 void* next;

 ID3D12Resource* texture;

} XrSwapchainImageD3D12KHR;

348 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• texture is a pointer to a valid ID3D12Texture2D to use.

If a given session was created with XrGraphicsBindingD3D12KHR, the following conditions must apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageD3D12KHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageD3D12KHR.

The OpenXR runtime must interpret the top-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing up,

near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_D3D12_enable extension must be enabled prior to using

XrSwapchainImageD3D12KHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsD3D12KHR structure is defined as:

// Provided by XR_KHR_D3D12_enable

typedef struct XrGraphicsRequirementsD3D12KHR {

 XrStructureType type;

 void* next;

 LUID adapterLuid;

 D3D_FEATURE_LEVEL minFeatureLevel;

} XrGraphicsRequirementsD3D12KHR;

Chapter 12. List of Current Extensions | 349

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• adapterLuid identifies what graphics device needs to be used.

• minFeatureLevel is the minimum feature level that the D3D12 device must be initialized with.

XrGraphicsRequirementsD3D12KHR is populated by xrGetD3D12GraphicsRequirementsKHR.

Valid Usage (Implicit)

• The XR_KHR_D3D12_enable extension must be enabled prior to using

XrGraphicsRequirementsD3D12KHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_D3D12_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• adapterLuid must be a valid LUID value

• minFeatureLevel must be a valid D3D_FEATURE_LEVEL value

New Functions

Some computer systems may have multiple graphics devices, each of which may have independent

external display outputs. XR systems that connect to such graphics devices are typically connected to a

single device. Applications need to know what graphics device the XR system is connected to so that

they can use that graphics device to generate XR images.

To retrieve the D3D12 feature level and graphics device for an instance and system, call:

// Provided by XR_KHR_D3D12_enable

XrResult xrGetD3D12GraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsD3D12KHR* graphicsRequirements);

350 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsD3D12KHR output structure.

The xrGetD3D12GraphicsRequirementsKHR function identifies to the application what graphics device

(Windows LUID) needs to be used and the minimum feature level to use. The runtime must return

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to

legacy behavior) on calls to xrCreateSession if xrGetD3D12GraphicsRequirementsKHR has not been

called for the same instance and systemId. The LUID and feature level that

xrGetD3D12GraphicsRequirementsKHR returns must be used to create the ID3D12Device that the

application passes to xrCreateSession in the XrGraphicsBindingD3D12KHR.

Valid Usage (Implicit)

• The XR_KHR_D3D12_enable extension must be enabled prior to calling

xrGetD3D12GraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsD3D12KHR structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Issues

Version History

Chapter 12. List of Current Extensions | 351

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Split XR_KHR_D3D_enable into XR_KHR_D3D12_enable

◦ Rename and expand xrGetD3DGraphicsDeviceKHR functionality to
xrGetD3D12GraphicsRequirementsKHR

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

• Revision 5, 2019-01-29 (Dan Ginsburg)

◦ Added swapchain image resource state details.

• Revision 6, 2020-03-18 (Minmin Gong)

◦ Specified depth swapchain image resource state.

• Revision 7, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

• Revision 8, 2021-09-09 (Bryce Hutchings)

◦ Document mapping for XrSwapchainUsageFlags

• Revision 9, 2021-12-28 (Matthieu Bucchianeri)

◦ Added missing XR_ERROR_GRAPHICS_DEVICE_INVALID error condition

12.14. XR_KHR_loader_init

Name String

XR_KHR_loader_init

Extension Type

Instance extension

Registered Extension Number

89

Revision

2

Extension and Version Dependencies

OpenXR 1.0

352 | Chapter 12. List of Current Extensions

Last Modified Date

2023-05-08

IP Status

No known IP claims.

Contributors

Cass Everitt, Facebook

Robert Blenkinsopp, Ultraleap

Overview

On some platforms, before loading can occur the loader must be initialized with platform-specific

parameters.

Unlike other extensions, the presence of this extension is signaled by a successful call to

xrGetInstanceProcAddr to retrieve the function pointer for xrInitializeLoaderKHR using

XR_NULL_HANDLE as the instance parameter.

If this extension is supported, its use may be required on some platforms and the use of the

xrInitializeLoaderKHR function must precede other OpenXR calls except xrGetInstanceProcAddr.

This function exists as part of the loader library that the application is using and the loader must pass

calls to xrInitializeLoaderKHR to the active runtime, and all enabled API layers that expose a

xrInitializeLoaderKHR function exposed either through their manifest, or through their

implementation of xrGetInstanceProcAddr.

If the xrInitializeLoaderKHR function is discovered through the manifest, xrInitializeLoaderKHR will

be called before xrNegotiateLoaderRuntimeInterface or xrNegotiateLoaderApiLayerInterface has been

called on the runtime or layer respectively.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

The XrLoaderInitInfoBaseHeaderKHR structure is defined as:

Chapter 12. List of Current Extensions | 353

// Provided by XR_KHR_loader_init

typedef struct XrLoaderInitInfoBaseHeaderKHR {

 XrStructureType type;

 const void* next;

} XrLoaderInitInfoBaseHeaderKHR;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

Valid Usage (Implicit)

• The XR_KHR_loader_init extension must be enabled prior to using

XrLoaderInitInfoBaseHeaderKHR

• type must be XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To initialize an OpenXR loader with platform or implementation-specific parameters, call:

// Provided by XR_KHR_loader_init

XrResult xrInitializeLoaderKHR(

 const XrLoaderInitInfoBaseHeaderKHR* loaderInitInfo);

Parameter Descriptions

• loaderInitInfo is a pointer to an XrLoaderInitInfoBaseHeaderKHR structure, which is a

polymorphic type defined by other platform- or implementation-specific extensions.

Issues

Version History

354 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

• Revision 2, 2023-05-08 (Robert Blenkinsoppp)

◦ Explicitly state that the call to xrInitializeLoaderKHR should be passed to the runtime and

enabled API layers.

• Revision 1, 2020-05-07 (Cass Everitt)

◦ Initial draft

12.15. XR_KHR_loader_init_android

Name String

XR_KHR_loader_init_android

Extension Type

Instance extension

Registered Extension Number

90

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_KHR_loader_init

Last Modified Date

2020-05-07

IP Status

No known IP claims.

Contributors

Cass Everitt, Facebook

Overview

On Android, some loader implementations need the application to provide additional information on

initialization. This extension defines the parameters needed by such implementations. If this is

available on a given implementation, an application must make use of it.

On implementations where use of this is required, the following condition must apply:

• Whenever an OpenXR function accepts an XrLoaderInitInfoBaseHeaderKHR pointer, the runtime

(and loader) must also accept a pointer to an XrLoaderInitInfoAndroidKHR.

Chapter 12. List of Current Extensions | 355

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR

New Enums

New Structures

The XrLoaderInitInfoAndroidKHR structure is defined as:

// Provided by XR_KHR_loader_init_android

typedef struct XrLoaderInitInfoAndroidKHR {

 XrStructureType type;

 const void* next;

 void* applicationVM;

 void* applicationContext;

} XrLoaderInitInfoAndroidKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• applicationVM is a pointer to the JNI’s opaque JavaVM structure, cast to a void pointer.

• applicationContext is a JNI reference to an android.content.Context associated with the

application, cast to a void pointer.

356 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_KHR_loader_init_android extension must be enabled prior to using

XrLoaderInitInfoAndroidKHR

• type must be XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• applicationVM must be a pointer value

• applicationContext must be a pointer value

New Functions

Issues

Version History

• Revision 1, 2020-05-07 (Cass Everitt)

◦ Initial draft

12.16. XR_KHR_opengl_enable

Name String

XR_KHR_opengl_enable

Extension Type

Instance extension

Registered Extension Number

24

Revision

10

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-07-02

IP Status

No known IP claims.

Chapter 12. List of Current Extensions | 357

#valid-usage-for-structure-pointer-chains

Contributors

Mark Young, LunarG

Bryce Hutchings, Microsoft

Paul Pedriana, Oculus

Minmin Gong, Microsoft

Robert Menzel, NVIDIA

Jakob Bornecrantz, Collabora

Paulo Gomes, Samsung Electronics

Overview

This extension enables the use of the OpenGL graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to provide any OpenGL swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingOpenGL*KHR structure in order to create an OpenGL-based XrSession. Note that during

this process the application is responsible for creating an OpenGL context to be used for rendering.

The runtime however will provide the OpenGL textures to render into in the form of a swapchain.

This extension provides mechanisms for the application to interact with images acquired by calling

xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, the application must define

XR_USE_GRAPHICS_API_OPENGL, as well as an appropriate window system define supported by this

extension, before including the OpenXR platform header openxr_platform.h, in all portions of the

library or application that include it. The window system defines currently supported by this extension

are:

• XR_USE_PLATFORM_WIN32

• XR_USE_PLATFORM_XLIB

• XR_USE_PLATFORM_XCB

• XR_USE_PLATFORM_WAYLAND

Note that a runtime implementation of this extension is only required to support the structs

introduced by this extension which belong to the platform it is running on.

Note that the OpenGL context given to the call xrCreateSession must not be bound in another thread

when calling the functions: xrCreateSession, xrDestroySession, xrBeginFrame, xrEndFrame,

xrCreateSwapchain, xrDestroySwapchain, xrEnumerateSwapchainImages, xrAcquireSwapchainImage,

xrWaitSwapchainImage and xrReleaseSwapchainImage. It may be bound in the thread calling those

functions. The runtime must not access the context from any other function. In particular the

application must be able to call xrWaitFrame from a different thread than the rendering thread.

Swapchain Flag Bits

358 | Chapter 12. List of Current Extensions

All XrSwapchainUsageFlags valid values passed in a session created using

XrGraphicsBindingOpenGLWin32KHR, XrGraphicsBindingOpenGLXlibKHR,

XrGraphicsBindingOpenGLXcbKHR or XrGraphicsBindingOpenGLWaylandKHR should be ignored as

there is no mapping to OpenGL texture settings. Note

In such a session, a runtime may use a supporting graphics API, such as Vulkan, to

allocate images that are intended to alias with OpenGL textures, and be part of an

XrSwapchain. A runtime which allocates the texture with a different graphics API

may need to enable several usage flags on the underlying native texture resource to

ensure compatibility with OpenGL.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_WIN32_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_XLIB_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_XCB_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_WAYLAND_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information

required to work with the OpenGL API executing on certain operating systems.

These structures are only available when the corresponding XR_USE_PLATFORM_ macro is defined before

including openxr_platform.h.

The XrGraphicsBindingOpenGLWin32KHR structure is defined as:

Chapter 12. List of Current Extensions | 359

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsBindingOpenGLWin32KHR {

 XrStructureType type;

 const void* next;

 HDC hDC;

 HGLRC hGLRC;

} XrGraphicsBindingOpenGLWin32KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• hDC is a valid Windows HW device context handle.

• hGLRC is a valid Windows OpenGL rendering context handle.

When creating an OpenGL-backed XrSession on Microsoft Windows, the application will provide a

pointer to an XrGraphicsBindingOpenGLWin32KHR in the next chain of the XrSessionCreateInfo. As no

standardized way exists for OpenGL to create the graphics context on a specific GPU, the runtime must

assume that the application uses the operating systems default GPU. If the GPU used by the runtime

does not match the GPU on which the OpenGL context of the application got created, xrCreateSession

must return XR_ERROR_GRAPHICS_DEVICE_INVALID.

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_WIN32.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLWin32KHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_WIN32_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• hDC must be a valid HDC value

• hGLRC must be a valid HGLRC value

The XrGraphicsBindingOpenGLXlibKHR structure is defined as:

360 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsBindingOpenGLXlibKHR {

 XrStructureType type;

 const void* next;

 Display* xDisplay;

 uint32_t visualid;

 GLXFBConfig glxFBConfig;

 GLXDrawable glxDrawable;

 GLXContext glxContext;

} XrGraphicsBindingOpenGLXlibKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• xDisplay is a valid X11 Display.

• visualid is a valid X11 visual identifier.

• glxFBConfig is a valid X11 OpenGL GLX GLXFBConfig.

• glxDrawable is a valid X11 OpenGL GLX GLXDrawable.

• glxContext is a valid X11 OpenGL GLX GLXContext.

When creating an OpenGL-backed XrSession on any Linux/Unix platform that utilizes X11 and GLX, via

the Xlib library, the application will provide a pointer to an XrGraphicsBindingOpenGLXlibKHR in the

next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_XLIB.

Chapter 12. List of Current Extensions | 361

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLXlibKHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_XLIB_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• xDisplay must be a pointer to a Display value

• glxFBConfig must be a valid GLXFBConfig value

• glxDrawable must be a valid GLXDrawable value

• glxContext must be a valid GLXContext value

The XrGraphicsBindingOpenGLXcbKHR structure is defined as:

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsBindingOpenGLXcbKHR {

 XrStructureType type;

 const void* next;

 xcb_connection_t* connection;

 uint32_t screenNumber;

 xcb_glx_fbconfig_t fbconfigid;

 xcb_visualid_t visualid;

 xcb_glx_drawable_t glxDrawable;

 xcb_glx_context_t glxContext;

} XrGraphicsBindingOpenGLXcbKHR;

362 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• connection is a valid xcb_connection_t.

• screenNumber is an index indicating which screen should be used for rendering.

• fbconfigid is a valid XCB OpenGL GLX xcb_glx_fbconfig_t.

• visualid is a valid XCB OpenGL GLX xcb_visualid_t.

• glxDrawable is a valid XCB OpenGL GLX xcb_glx_drawable_t.

• glxContext is a valid XCB OpenGL GLX xcb_glx_context_t.

When creating an OpenGL-backed XrSession on any Linux/Unix platform that utilizes X11 and GLX, via

the Xlib library, the application will provide a pointer to an XrGraphicsBindingOpenGLXcbKHR in the

next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_XCB.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLXcbKHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_XCB_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• connection must be a pointer to an xcb_connection_t value

• fbconfigid must be a valid xcb_glx_fbconfig_t value

• visualid must be a valid xcb_visualid_t value

• glxDrawable must be a valid xcb_glx_drawable_t value

• glxContext must be a valid xcb_glx_context_t value

The XrGraphicsBindingOpenGLWaylandKHR structure is defined as:

Chapter 12. List of Current Extensions | 363

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsBindingOpenGLWaylandKHR {

 XrStructureType type;

 const void* next;

 struct wl_display* display;

} XrGraphicsBindingOpenGLWaylandKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• display is a valid Wayland wl_display.

When creating an OpenGL-backed XrSession on any Linux/Unix platform that utilizes the Wayland

protocol with its compositor, the application will provide a pointer to an

XrGraphicsBindingOpenGLWaylandKHR in the next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_WAYLAND.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLWaylandKHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_WAYLAND_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• display must be a pointer to a wl_display value

The XrSwapchainImageOpenGLKHR structure is defined as:

// Provided by XR_KHR_opengl_enable

typedef struct XrSwapchainImageOpenGLKHR {

 XrStructureType type;

 void* next;

 uint32_t image;

} XrSwapchainImageOpenGLKHR;

364 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• image is the OpenGL texture handle associated with this swapchain image.

If a given session was created with a XrGraphicsBindingOpenGL*KHR, the following conditions must apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageOpenGLKHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageOpenGLKHR.

The OpenXR runtime must interpret the bottom-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing up,

near Z plane at -1, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrSwapchainImageOpenGLKHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsOpenGLKHR structure is defined as:

// Provided by XR_KHR_opengl_enable

typedef struct XrGraphicsRequirementsOpenGLKHR {

 XrStructureType type;

 void* next;

 XrVersion minApiVersionSupported;

 XrVersion maxApiVersionSupported;

} XrGraphicsRequirementsOpenGLKHR;

Chapter 12. List of Current Extensions | 365

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minApiVersionSupported is the minimum version of OpenGL that the runtime supports. Uses

XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

• maxApiVersionSupported is the maximum version of OpenGL that the runtime has been tested

on and is known to support. Newer OpenGL versions might work if they are compatible. Uses

XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

XrGraphicsRequirementsOpenGLKHR is populated by xrGetOpenGLGraphicsRequirementsKHR with

the runtime’s OpenGL API version requirements.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to using

XrGraphicsRequirementsOpenGLKHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To query OpenGL API version requirements for an instance and system, call:

// Provided by XR_KHR_opengl_enable

XrResult xrGetOpenGLGraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsOpenGLKHR* graphicsRequirements);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsOpenGLKHR output structure.

366 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

The xrGetOpenGLGraphicsRequirementsKHR function identifies to the application the minimum

OpenGL version requirement and the highest known tested OpenGL version. The runtime must return

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to

legacy behavior) on calls to xrCreateSession if xrGetOpenGLGraphicsRequirementsKHR has not been

called for the same instance and systemId.

Valid Usage (Implicit)

• The XR_KHR_opengl_enable extension must be enabled prior to calling

xrGetOpenGLGraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsOpenGLKHR structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Issues

Version History

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Add new xrGetOpenGLGraphicsRequirementsKHR

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

Chapter 12. List of Current Extensions | 367

• Revision 5, 2019-01-25 (Robert Menzel)

◦ Description updated

• Revision 6, 2019-07-02 (Robert Menzel)

◦ Minor fixes

• Revision 7, 2019-07-08 (Rylie Pavlik)

◦ Adjusted member name in XCB struct

• Revision 8, 2019-11-28 (Jakob Bornecrantz)

◦ Added note about context not allowed to be current in a different thread.

• Revision 9, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

• Revision 10, 2021-08-31 (Paulo F. Gomes)

◦ Document handling of XrSwapchainUsageFlags

12.17. XR_KHR_opengl_es_enable

Name String

XR_KHR_opengl_es_enable

Extension Type

Instance extension

Registered Extension Number

25

Revision

8

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-07-12

IP Status

No known IP claims.

Contributors

Mark Young, LunarG

Bryce Hutchings, Microsoft

Paul Pedriana, Oculus

368 | Chapter 12. List of Current Extensions

Minmin Gong, Microsoft

Robert Menzel, NVIDIA

Martin Renschler, Qualcomm

Paulo Gomes, Samsung Electronics

Overview

This extension must be provided by runtimes supporting applications using OpenGL ES APIs for

rendering. OpenGL ES applications need this extension to obtain compatible swapchain images which

the runtime is required to supply. The runtime needs the following OpenGL ES objects from the

application in order to interact properly with the OpenGL ES driver: EGLDisplay, EGLConfig and

EGLContext.

These are passed from the application to the runtime in a XrGraphicsBindingOpenGLESAndroidKHR

structure when creating the XrSession. Although not restricted to Android, the OpenGL ES extension is

currently tailored for Android.

Note that the application is responsible for creating the required OpenGL ES objects, including an

OpenGL ES context to be used for rendering.

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, the application source code

must define XR_USE_GRAPHICS_API_OPENGL_ES, as well as an appropriate window system define,

before including the OpenXR platform header openxr_platform.h, in all portions of your library or

application that include it. The only window system define currently supported by this extension is:

• XR_USE_PLATFORM_ANDROID

Swapchain Flag Bits

All XrSwapchainUsageFlags valid values passed in a session created using

XrGraphicsBindingOpenGLESAndroidKHR should be ignored as there is no mapping to OpenGL ES

texture settings. Note

In such a session, a runtime may use a supporting graphics API, such as Vulkan, to

allocate images that are intended to alias with OpenGLES textures, and be part of an

XrSwapchain. A runtime which allocates the texture with a different graphics API

may need to enable several usage flags on the underlying native texture resource to

ensure compatibility with OpenGL ES.

New Object Types

New Flag Types

Chapter 12. List of Current Extensions | 369

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_ES_KHR

• XR_TYPE_GRAPHICS_BINDING_OPENGL_ES_ANDROID_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR

New Enums

New Structures

The following structures are provided to supply supporting runtimes the necessary information

required to work with the OpenGL ES API executing on certain operating systems.

These structures are only available when the corresponding XR_USE_PLATFORM_ macro is defined before

including openxr_platform.h.

The XrGraphicsBindingOpenGLESAndroidKHR structure is defined as:

// Provided by XR_KHR_opengl_es_enable

typedef struct XrGraphicsBindingOpenGLESAndroidKHR {

 XrStructureType type;

 const void* next;

 EGLDisplay display;

 EGLConfig config;

 EGLContext context;

} XrGraphicsBindingOpenGLESAndroidKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• display is a valid Android OpenGL ES EGLDisplay.

• config is a valid Android OpenGL ES EGLConfig.

• context is a valid Android OpenGL ES EGLContext.

When creating an OpenGL ES-backed XrSession on Android, the application will provide a pointer to

an XrGraphicsBindingOpenGLESAndroidKHR structure in the next chain of the XrSessionCreateInfo.

370 | Chapter 12. List of Current Extensions

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_ANDROID.

Valid Usage (Implicit)

• The XR_KHR_opengl_es_enable extension must be enabled prior to using

XrGraphicsBindingOpenGLESAndroidKHR

• type must be XR_TYPE_GRAPHICS_BINDING_OPENGL_ES_ANDROID_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• display must be a valid EGLDisplay value

• config must be a valid EGLConfig value

• context must be a valid EGLContext value

The XrSwapchainImageOpenGLESKHR structure is defined as:

// Provided by XR_KHR_opengl_es_enable

typedef struct XrSwapchainImageOpenGLESKHR {

 XrStructureType type;

 void* next;

 uint32_t image;

} XrSwapchainImageOpenGLESKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• image is an index indicating the current OpenGL ES swapchain image to use.

If a given session was created with a XrGraphicsBindingOpenGLES*KHR, the following conditions must

apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageOpenGLESKHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageOpenGLESKHR

structure.

Chapter 12. List of Current Extensions | 371

#valid-usage-for-structure-pointer-chains

The OpenXR runtime must interpret the bottom-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing up,

near Z plane at -1, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_opengl_es_enable extension must be enabled prior to using

XrSwapchainImageOpenGLESKHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrGraphicsRequirementsOpenGLESKHR structure is defined as:

// Provided by XR_KHR_opengl_es_enable

typedef struct XrGraphicsRequirementsOpenGLESKHR {

 XrStructureType type;

 void* next;

 XrVersion minApiVersionSupported;

 XrVersion maxApiVersionSupported;

} XrGraphicsRequirementsOpenGLESKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minApiVersionSupported is the minimum version of OpenGL ES that the runtime supports.

Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch version

component.

• maxApiVersionSupported is the maximum version of OpenGL ES that the runtime has been

tested on and is known to support. Newer OpenGL ES versions might work if they are

compatible. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch

version component.

XrGraphicsRequirementsOpenGLESKHR is populated by xrGetOpenGLESGraphicsRequirementsKHR

with the runtime’s OpenGL ES API version requirements.

372 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_KHR_opengl_es_enable extension must be enabled prior to using

XrGraphicsRequirementsOpenGLESKHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_ES_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To query OpenGL ES API version requirements for an instance and system, call:

// Provided by XR_KHR_opengl_es_enable

XrResult xrGetOpenGLESGraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsOpenGLESKHR* graphicsRequirements);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsOpenGLESKHR output structure.

The xrGetOpenGLESGraphicsRequirementsKHR function identifies to the application the minimum

OpenGL ES version requirement and the highest known tested OpenGL ES version. The runtime must

return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned

due to legacy behavior) on calls to xrCreateSession if xrGetOpenGLESGraphicsRequirementsKHR has

not been called for the same instance and systemId.

Valid Usage (Implicit)

• The XR_KHR_opengl_es_enable extension must be enabled prior to calling

xrGetOpenGLESGraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsOpenGLESKHR

structure

Chapter 12. List of Current Extensions | 373

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Issues

Version History

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Add new xrGetOpenGLESGraphicsRequirementsKHR

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

• Revision 5, 2019-01-25 (Robert Menzel)

◦ Description updated

• Revision 6, 2019-07-12 (Martin Renschler)

◦ Description updated

• Revision 7, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

• Revision 8, 2021-08-27 (Paulo F. Gomes)

◦ Document handling of XrSwapchainUsageFlags

374 | Chapter 12. List of Current Extensions

12.18. XR_KHR_swapchain_usage_input_attachment_bit

Name String

XR_KHR_swapchain_usage_input_attachment_bit

Extension Type

Instance extension

Registered Extension Number

166

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-05-11

IP Status

No known IP claims.

Contributors

Jakob Bornecrantz, Collabora

Rylie Pavlik, Collabora

Overview

This extension enables an application to specify that swapchain images should be created in a way so

that they can be used as input attachments. At the time of writing this bit only affects Vulkan

swapchains.

New Object Types

New Flag Types

New Enum Constants

XrSwapchainUsageFlagBits enumeration is extended with:

• XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR - indicates that the image format may be used as an

input attachment.

New Enums

Chapter 12. List of Current Extensions | 375

New Structures

New Functions

Issues

Version History

• Revision 1, 2020-07-23 (Jakob Bornecrantz)

◦ Initial draft

• Revision 2, 2020-07-24 (Jakob Bornecrantz)

◦ Added note about only affecting Vulkan

◦ Changed from MNDX to MND

• Revision 3, 2021-05-11 (Rylie Pavlik, Collabora, Ltd.)

◦ Updated for promotion from MND to KHR

12.19. XR_KHR_visibility_mask

Name String

XR_KHR_visibility_mask

Extension Type

Instance extension

Registered Extension Number

32

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2018-07-05

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Alex Turner, Microsoft

376 | Chapter 12. List of Current Extensions

Contacts

Paul Pedriana, Oculus

Overview

This extension support the providing of a per-view drawing mask for applications. The primary

purpose of this is to enable performance improvements that result from avoiding drawing on areas

that are not visible to the user. A common occurrence in head-mounted VR hardware is that the optical

system’s frustum does not intersect precisely with the rectangular display it is viewing. As a result, it

may be that there are parts of the display that are not visible to the user, such as the corners of the

display. In such cases it would be unnecessary for the application to draw into those parts.

New Object Types

New Flag Types

New Enum Constants

New Enums

XrVisibilityMaskTypeKHR identifies the different types of mask specification that is supported. The

application can request a view mask in any of the formats identified by these types.

// Provided by XR_KHR_visibility_mask

typedef enum XrVisibilityMaskTypeKHR {

 XR_VISIBILITY_MASK_TYPE_HIDDEN_TRIANGLE_MESH_KHR = 1,

 XR_VISIBILITY_MASK_TYPE_VISIBLE_TRIANGLE_MESH_KHR = 2,

 XR_VISIBILITY_MASK_TYPE_LINE_LOOP_KHR = 3,

 XR_VISIBILITY_MASK_TYPE_MAX_ENUM_KHR = 0x7FFFFFFF

} XrVisibilityMaskTypeKHR;

Chapter 12. List of Current Extensions | 377

Enumerant Descriptions

• XR_VISIBILITY_MASK_TYPE_HIDDEN_TRIANGLE_MESH_KHR refers to a two dimensional triangle mesh

on the view surface which should not be drawn to by the application. XrVisibilityMaskKHR

refers to a set of triangles identified by vertices and vertex indices. The index count will thus

be a multiple of three. The triangle vertices will be returned in counter-clockwise order as

viewed from the user perspective.

• XR_VISIBILITY_MASK_TYPE_VISIBLE_TRIANGLE_MESH_KHR refers to a two dimensional triangle

mesh on the view surface which should be drawn to by the application. XrVisibilityMaskKHR

refers to a set of triangles identified by vertices and vertex indices. The index count will thus

be a multiple of three. The triangle vertices will be returned in counter-clockwise order as

viewed from the user perspective.

• XR_VISIBILITY_MASK_TYPE_LINE_LOOP_KHR refers to a single multi-segmented line loop on the

view surface which encompasses the view area which should be drawn by the application. It

is the border that exists between the visible and hidden meshes identified by

XR_VISIBILITY_MASK_TYPE_HIDDEN_TRIANGLE_MESH_KHR and

XR_VISIBILITY_MASK_TYPE_VISIBLE_TRIANGLE_MESH_KHR. The line is counter-clockwise,

contiguous, and non-self crossing, with the last point implicitly connecting to the first point.

There is one vertex per point, the index count will equal the vertex count, and the indices

will refer to the vertices.

New Structures

The XrVisibilityMaskKHR structure is an input/output struct which specifies the view mask.

// Provided by XR_KHR_visibility_mask

typedef struct XrVisibilityMaskKHR {

 XrStructureType type;

 void* next;

 uint32_t vertexCapacityInput;

 uint32_t vertexCountOutput;

 XrVector2f* vertices;

 uint32_t indexCapacityInput;

 uint32_t indexCountOutput;

 uint32_t* indices;

} XrVisibilityMaskKHR;

378 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• vertexCapacityInput is the capacity of the vertices array, or 0 to indicate a request to retrieve

the required capacity.

• vertexCountOutput is filled in by the runtime with the count of vertices written or the required

capacity in the case that vertexCapacityInput or indexCapacityInput is insufficient.

• vertices is an array of vertices filled in by the runtime that specifies mask coordinates in the

z=-1 plane of the rendered view—i.e. one meter in front of the view. When rendering the

mask for use in a projection layer, these vertices must be transformed by the application’s

projection matrix used for the respective XrCompositionLayerProjectionView.

• indexCapacityInput is the capacity of the indices array, or 0 to indicate a request to retrieve

the required capacity.

• indexCountOutput is filled in by the runtime with the count of indices written or the required

capacity in the case that vertexCapacityInput or indexCapacityInput is insufficient.

• indices is an array of indices filled in by the runtime, specifying the indices of the mask

geometry in the vertices array.

Valid Usage (Implicit)

• The XR_KHR_visibility_mask extension must be enabled prior to using XrVisibilityMaskKHR

• type must be XR_TYPE_VISIBILITY_MASK_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• If vertexCapacityInput is not 0, vertices must be a pointer to an array of vertexCapacityInput

XrVector2f structures

• If indexCapacityInput is not 0, indices must be a pointer to an array of indexCapacityInput

uint32_t values

The XrEventDataVisibilityMaskChangedKHR structure specifies an event which indicates that a given

view mask has changed. The application should respond to the event by calling

xrGetVisibilityMaskKHR to retrieve the updated mask. This event is per-view, so if the masks for

multiple views in a configuration change then multiple instances of this event will be sent to the

application, one per view.

Chapter 12. List of Current Extensions | 379

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_visibility_mask

typedef struct XrEventDataVisibilityMaskChangedKHR {

 XrStructureType type;

 const void* next;

 XrSession session;

 XrViewConfigurationType viewConfigurationType;

 uint32_t viewIndex;

} XrEventDataVisibilityMaskChangedKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• session is the XrSession for which the view mask has changed.

• viewConfigurationType is the view configuration whose mask has changed.

• viewIndex is the individual view within the view configuration to which the change refers.

Valid Usage (Implicit)

• The XR_KHR_visibility_mask extension must be enabled prior to using

XrEventDataVisibilityMaskChangedKHR

• type must be XR_TYPE_EVENT_DATA_VISIBILITY_MASK_CHANGED_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrGetVisibilityMaskKHR function is defined as:

// Provided by XR_KHR_visibility_mask

XrResult xrGetVisibilityMaskKHR(

 XrSession session,

 XrViewConfigurationType viewConfigurationType,

 uint32_t viewIndex,

 XrVisibilityMaskTypeKHR visibilityMaskType,

 XrVisibilityMaskKHR* visibilityMask);

380 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• viewConfigurationType is the view configuration from which to retrieve mask information.

• viewIndex is the individual view within the view configuration from which to retrieve mask

information.

• visibilityMaskType is the type of visibility mask requested.

• visibilityMask is an input/output struct which specifies the view mask.

xrGetVisibilityMaskKHR retrieves the view mask for a given view. This function follows the two-call

idiom for filling multiple buffers in a struct. Specifically, if either XrVisibilityMaskKHR

::vertexCapacityInput or XrVisibilityMaskKHR::indexCapacityInput is 0, the runtime must respond as if

both fields were set to 0, returning the vertex count and index count through XrVisibilityMaskKHR

::vertexCountOutput or XrVisibilityMaskKHR::indexCountOutput respectively. If a view mask for the

specified view isn’t available, the returned vertex and index counts must be 0.

Valid Usage (Implicit)

• The XR_KHR_visibility_mask extension must be enabled prior to calling

xrGetVisibilityMaskKHR

• session must be a valid XrSession handle

• viewConfigurationType must be a valid XrViewConfigurationType value

• visibilityMaskType must be a valid XrVisibilityMaskTypeKHR value

• visibilityMask must be a pointer to an XrVisibilityMaskKHR structure

Chapter 12. List of Current Extensions | 381

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

Issues

Version History

• Revision 1, 2018-07-05 (Paul Pedriana)

◦ Initial version.

• Revision 2, 2019-07-15 (Alex Turner)

◦ Adjust two-call idiom usage.

12.20. XR_KHR_vulkan_enable

Name String

XR_KHR_vulkan_enable

Extension Type

Instance extension

Registered Extension Number

26

Revision

8

382 | Chapter 12. List of Current Extensions

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-25

IP Status

No known IP claims.

Contributors

Mark Young, LunarG

Paul Pedriana, Oculus

Ed Hutchins, Oculus

Andres Rodriguez, Valve

Dan Ginsburg, Valve

Bryce Hutchings, Microsoft

Minmin Gong, Microsoft

Robert Menzel, NVIDIA

Paulo Gomes, Samsung Electronics

Overview

This extension enables the use of the Vulkan graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to use any Vulkan swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingVulkanKHR structure in order to create a Vulkan-based XrSession. Note that during

this process the application is responsible for creating all the required Vulkan objects.

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you must define

XR_USE_GRAPHICS_API_VULKAN before including the OpenXR platform header openxr_platform.h, in

all portions of your library or application that include it.

Initialization

Some of the requirements for creating a valid XrGraphicsBindingVulkanKHR include correct

initialization of a VkInstance, VkPhysicalDevice, and VkDevice.

A runtime may require that the VkInstance be initialized to a specific Vulkan API version. Additionally,

the runtime may require a set of instance extensions to be enabled in the VkInstance. These

requirements can be queried by the application using xrGetVulkanGraphicsRequirementsKHR and

xrGetVulkanInstanceExtensionsKHR, respectively.

Similarly, the runtime may require the VkDevice to have a set of device extensions enabled, which can

Chapter 12. List of Current Extensions | 383

be queried using xrGetVulkanDeviceExtensionsKHR.

In order to satisfy the VkPhysicalDevice requirements, the application can query

xrGetVulkanGraphicsDeviceKHR to identify the correct VkPhysicalDevice.

Populating an XrGraphicsBindingVulkanKHR with a VkInstance, VkDevice, or VkPhysicalDevice that does

not meet the requirements outlined by this extension may result in undefined behavior by the OpenXR

runtime.

The API version, instance extension, device extension and physical device requirements only apply to

the VkInstance, VkDevice, and VkPhysicalDevice objects which the application wishes to associate with

an XrGraphicsBindingVulkanKHR.

Concurrency

Vulkan requires that concurrent access to a VkQueue from multiple threads be externally synchronized.

Therefore, OpenXR functions that may access the VkQueue specified in the

XrGraphicsBindingVulkanKHR must also be externally synchronized.

The list of OpenXR functions where the OpenXR runtime may access the VkQueue are:

• xrBeginFrame

• xrEndFrame

• xrAcquireSwapchainImage

• xrReleaseSwapchainImage

The runtime must not access the VkQueue in any OpenXR function that is not listed above or in an

extension definition.

Swapchain Image Layout

When an application acquires a swapchain image by calling xrAcquireSwapchainImage in a session

created using XrGraphicsBindingVulkanKHR, the OpenXR runtime must guarantee that:

• The image has a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for

color images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.

• The VkQueue specified in XrGraphicsBindingVulkanKHR has ownership of the image.

When an application releases a swapchain image by calling xrReleaseSwapchainImage, in a session

created using XrGraphicsBindingVulkanKHR, the OpenXR runtime must interpret the image as:

• Having a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for color

images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.

• Being owned by the VkQueue specified in XrGraphicsBindingVulkanKHR.

The application is responsible for transitioning the swapchain image back to the image layout and

384 | Chapter 12. List of Current Extensions

queue ownership that the OpenXR runtime requires. If the image is not in a layout compatible with the

above specifications the runtime may exhibit undefined behavior.

Swapchain Flag Bits

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingVulkanKHR

must be interpreted as follows by the runtime, so that the returned swapchain images used by the

application may be used as if they were created with at least the specified VkImageUsageFlagBits or

VkImageCreateFlagBits set.

XrSwapchainUsageFlagBits Corresponding Vulkan flag bit

XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT VK_IMAGE_USAGE_STORAGE_BIT

XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT VK_IMAGE_USAGE_TRANSFER_SRC_BIT

XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT VK_IMAGE_USAGE_TRANSFER_DST_BIT

XR_SWAPCHAIN_USAGE_SAMPLED_BIT VK_IMAGE_USAGE_SAMPLED_BIT

XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR

(Added by

XR_KHR_swapchain_usage_input_attachment_bit and

only available when that extension is enabled)

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND

(Added by the now deprecated

XR_MND_swapchain_usage_input_attachment_bit

extension and only available when that extension

is enabled)

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR

• XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR

• XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR

New Enums

New Structures

Chapter 12. List of Current Extensions | 385

The following structures are provided to supply supporting runtimes the necessary information

required to work with the Vulkan API executing on certain operating systems.

The XrGraphicsBindingVulkanKHR structure is defined as:

// Provided by XR_KHR_vulkan_enable

typedef struct XrGraphicsBindingVulkanKHR {

 XrStructureType type;

 const void* next;

 VkInstance instance;

 VkPhysicalDevice physicalDevice;

 VkDevice device;

 uint32_t queueFamilyIndex;

 uint32_t queueIndex;

} XrGraphicsBindingVulkanKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• instance is a valid Vulkan VkInstance.

• physicalDevice is a valid Vulkan VkPhysicalDevice.

• device is a valid Vulkan VkDevice.

• queueFamilyIndex is a valid queue family index on device.

• queueIndex is a valid queue index on device to be used for synchronization.

When creating a Vulkan-backed XrSession, the application will provide a pointer to an

XrGraphicsBindingVulkanKHR in the next chain of the XrSessionCreateInfo.

386 | Chapter 12. List of Current Extensions

Valid Usage

• instance must have enabled a Vulkan API version in the range specified by

XrGraphicsBindingVulkanKHR

• instance must have enabled all the instance extensions specified by

xrGetVulkanInstanceExtensionsKHR

• physicalDevice VkPhysicalDevice must match the device specified by

xrGetVulkanGraphicsDeviceKHR

• device must have enabled all the device extensions specified by

xrGetVulkanDeviceExtensionsKHR

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to using

XrGraphicsBindingVulkanKHR

• type must be XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• instance must be a valid VkInstance value

• physicalDevice must be a valid VkPhysicalDevice value

• device must be a valid VkDevice value

The XrSwapchainImageVulkanKHR structure is defined as:

// Provided by XR_KHR_vulkan_enable

typedef struct XrSwapchainImageVulkanKHR {

 XrStructureType type;

 void* next;

 VkImage image;

} XrSwapchainImageVulkanKHR;

Chapter 12. List of Current Extensions | 387

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• image is a valid Vulkan VkImage to use.

If a given session was created with XrGraphicsBindingVulkanKHR, the following conditions must

apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageVulkanKHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageVulkanKHR.

The OpenXR runtime must interpret the top-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing down,

near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to using

XrSwapchainImageVulkanKHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSwapchainImageFoveationVulkanFB

The XrGraphicsRequirementsVulkanKHR structure is defined as:

// Provided by XR_KHR_vulkan_enable

typedef struct XrGraphicsRequirementsVulkanKHR {

 XrStructureType type;

 void* next;

 XrVersion minApiVersionSupported;

 XrVersion maxApiVersionSupported;

} XrGraphicsRequirementsVulkanKHR;

388 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minApiVersionSupported is the minimum Vulkan Instance API version that the runtime

supports. Uses XR_MAKE_VERSION on major and minor API version, ignoring any patch

version component.

• maxApiVersionSupported is the maximum Vulkan Instance API version that the runtime has

been tested on and is known to support. Newer Vulkan Instance API versions might work if

they are compatible. Uses XR_MAKE_VERSION on major and minor API version, ignoring any

patch version component.

XrGraphicsRequirementsVulkanKHR is populated by xrGetVulkanGraphicsRequirementsKHR with the

runtime’s Vulkan API version requirements.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to using

XrGraphicsRequirementsVulkanKHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

To query Vulkan API version requirements, call:

// Provided by XR_KHR_vulkan_enable

XrResult xrGetVulkanGraphicsRequirementsKHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsVulkanKHR* graphicsRequirements);

Chapter 12. List of Current Extensions | 389

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsVulkanKHR output structure.

The xrGetVulkanGraphicsRequirementsKHR function identifies to the application the minimum

Vulkan version requirement and the highest known tested Vulkan version. The runtime must return

XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING (XR_ERROR_VALIDATION_FAILURE may be returned due to

legacy behavior) on calls to xrCreateSession if xrGetVulkanGraphicsRequirementsKHR has not been

called for the same instance and systemId.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to calling

xrGetVulkanGraphicsRequirementsKHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsVulkanKHR structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

Some computer systems may have multiple graphics devices, each of which may have independent

external display outputs. XR systems that connect to such graphics devices are typically connected to a

single device. Applications need to know what graphics device the XR system is connected to so that

they can use that graphics device to generate XR images.

To identify what graphics device needs to be used for an instance and system, call:

390 | Chapter 12. List of Current Extensions

// Provided by XR_KHR_vulkan_enable

XrResult xrGetVulkanGraphicsDeviceKHR(

 XrInstance instance,

 XrSystemId systemId,

 VkInstance vkInstance,

 VkPhysicalDevice* vkPhysicalDevice);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• vkInstance is a valid Vulkan VkInstance.

• vkPhysicalDevice is a pointer to a VkPhysicalDevice value to populate.

xrGetVulkanGraphicsDeviceKHR function identifies to the application what graphics device (Vulkan

VkPhysicalDevice) needs to be used. xrGetVulkanGraphicsDeviceKHR must be called prior to calling

xrCreateSession, and the VkPhysicalDevice that xrGetVulkanGraphicsDeviceKHR returns should be

passed to xrCreateSession in the XrGraphicsBindingVulkanKHR.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to calling

xrGetVulkanGraphicsDeviceKHR

• instance must be a valid XrInstance handle

• vkInstance must be a valid VkInstance value

• vkPhysicalDevice must be a pointer to a VkPhysicalDevice value

Chapter 12. List of Current Extensions | 391

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

// Provided by XR_KHR_vulkan_enable

XrResult xrGetVulkanInstanceExtensionsKHR(

 XrInstance instance,

 XrSystemId systemId,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of characters written (including terminating \0),

or a pointer to the required capacity in the case that bufferCapacityInput is insufficient.

• buffer is a pointer to an array of characters, but can be NULL if bufferCapacityInput is 0. The

format of the output is a single space (ASCII 0x20) delimited string of extension names.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

392 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to calling

xrGetVulkanInstanceExtensionsKHR

• instance must be a valid XrInstance handle

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SYSTEM_INVALID

// Provided by XR_KHR_vulkan_enable

XrResult xrGetVulkanDeviceExtensionsKHR(

 XrInstance instance,

 XrSystemId systemId,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

Chapter 12. List of Current Extensions | 393

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of characters written (including terminating \0),

or a pointer to the required capacity in the case that bufferCapacityInput is insufficient.

• buffer is a pointer to an array of characters, but can be NULL if bufferCapacityInput is 0. The

format of the output is a single space (ASCII 0x20) delimited string of extension names.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable extension must be enabled prior to calling

xrGetVulkanDeviceExtensionsKHR

• instance must be a valid XrInstance handle

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SYSTEM_INVALID

394 | Chapter 12. List of Current Extensions

Issues

Version History

• Revision 1, 2018-05-07 (Mark Young)

◦ Initial draft

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Replace session parameter with instance and systemId parameters.

◦ Move xrGetVulkanDeviceExtensionsKHR, xrGetVulkanInstanceExtensionsKHR and

xrGetVulkanGraphicsDeviceKHR functions into this extension

◦ Add new XrGraphicsRequirementsVulkanKHR function.

• Revision 3, 2018-11-15 (Paul Pedriana)

◦ Specified the swapchain texture coordinate origin.

• Revision 4, 2018-11-16 (Minmin Gong)

◦ Specified Y direction and Z range in clip space

• Revision 5, 2019-01-24 (Robert Menzel)

◦ Description updated

• Revision 6, 2019-01-25 (Andres Rodriguez)

◦ Reword sections of the spec to shift requirements on to the runtime instead of the app

• Revision 7, 2020-08-06 (Bryce Hutchings)

◦ Added new XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING error code

• Revision 8, 2021-01-21 (Rylie Pavlik, Collabora, Ltd.)

◦ Document mapping for XrSwapchainUsageFlags

12.21. XR_KHR_vulkan_enable2

Name String

XR_KHR_vulkan_enable2

Extension Type

Instance extension

Registered Extension Number

91

Revision

2

Chapter 12. List of Current Extensions | 395

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-05-04

IP Status

No known IP claims.

Contributors

Mark Young, LunarG

Paul Pedriana, Oculus

Ed Hutchins, Oculus

Andres Rodriguez, Valve

Dan Ginsburg, Valve

Bryce Hutchings, Microsoft

Minmin Gong, Microsoft

Robert Menzel, NVIDIA

Paulo Gomes, Samsung Electronics

12.21.1. Overview

This extension enables the use of the Vulkan graphics API in an OpenXR runtime. Without this

extension, the OpenXR runtime may not be able to use any Vulkan swapchain images.

This extension provides the mechanisms necessary for an application to generate a valid

XrGraphicsBindingVulkan2KHR structure in order to create a Vulkan-based XrSession.

This extension also provides mechanisms for the application to interact with images acquired by

calling xrEnumerateSwapchainImages.

In order to expose the structures, types, and functions of this extension, you must define

XR_USE_GRAPHICS_API_VULKAN before including the OpenXR platform header openxr_platform.h, in

all portions of your library or application that include it. Note

This extension is intended as an alternative to XR_KHR_vulkan_enable, and does not

depend on it.

12.21.2. Initialization

When operating in Vulkan mode, the OpenXR runtime and the application will share the Vulkan queue

described in the XrGraphicsBindingVulkan2KHR structure. This section of the document describes the

mechanisms this extension exposes to ensure the shared Vulkan queue is compatible with the runtime

and the application’s requirements.

396 | Chapter 12. List of Current Extensions

Vulkan Version Requirements

First, a compatible Vulkan version must be agreed upon. To query the runtime’s Vulkan API version

requirements an application will call:

// Provided by XR_KHR_vulkan_enable2

XrResult xrGetVulkanGraphicsRequirements2KHR(

 XrInstance instance,

 XrSystemId systemId,

 XrGraphicsRequirementsVulkanKHR* graphicsRequirements);

The xrGetVulkanGraphicsRequirements2KHR function identifies to the application the runtime’s

minimum Vulkan version requirement and the highest known tested Vulkan version.

xrGetVulkanGraphicsRequirements2KHR must be called prior to calling xrCreateSession. The runtime

must return XR_ERROR_GRAPHICS_REQUIREMENTS_CALL_MISSING on calls to xrCreateSession if

xrGetVulkanGraphicsRequirements2KHR has not been called for the same instance and systemId.

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• graphicsRequirements is the XrGraphicsRequirementsVulkan2KHR output structure.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to calling

xrGetVulkanGraphicsRequirements2KHR

• instance must be a valid XrInstance handle

• graphicsRequirements must be a pointer to an XrGraphicsRequirementsVulkanKHR structure

Chapter 12. List of Current Extensions | 397

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

The XrGraphicsRequirementsVulkan2KHR structure populated by

xrGetVulkanGraphicsRequirements2KHR is defined as:

// Provided by XR_KHR_vulkan_enable2

// XrGraphicsRequirementsVulkan2KHR is an alias for XrGraphicsRequirementsVulkanKHR

typedef struct XrGraphicsRequirementsVulkanKHR {

 XrStructureType type;

 void* next;

 XrVersion minApiVersionSupported;

 XrVersion maxApiVersionSupported;

} XrGraphicsRequirementsVulkanKHR;

typedef XrGraphicsRequirementsVulkanKHR XrGraphicsRequirementsVulkan2KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minApiVersionSupported is the minimum version of Vulkan that the runtime supports. Uses

XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

• maxApiVersionSupported is the maximum version of Vulkan that the runtime has been tested

on and is known to support. Newer Vulkan versions might work if they are compatible. Uses

XR_MAKE_VERSION on major and minor API version, ignoring any patch version component.

398 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrGraphicsRequirementsVulkan2KHR

• Note: XrGraphicsRequirementsVulkan2KHR is an alias for

XrGraphicsRequirementsVulkanKHR, so the following items replicate the implicit valid usage

for XrGraphicsRequirementsVulkanKHR

• type must be XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

Vulkan Instance Creation

Second, a compatible VkInstance must be created. The xrCreateVulkanInstanceKHR entry point is a

wrapper around vkCreateInstance intended for this purpose. When called, the runtime must aggregate

the requirements specified by the application with its own requirements and forward the VkInstance

creation request to the vkCreateInstance function pointer returned by pfnGetInstanceProcAddr.

// Provided by XR_KHR_vulkan_enable2

XrResult xrCreateVulkanInstanceKHR(

 XrInstance instance,

 const XrVulkanInstanceCreateInfoKHR* createInfo,

 VkInstance* vulkanInstance,

 VkResult* vulkanResult);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• createInfo extensible input struct of type XrVulkanInstanceCreateInfoKHR

• vulkanInstance points to a VkInstance handle to populate with the new Vulkan instance.

• vulkanResult points to a VkResult to populate with the result of the vkCreateInstance operation

as returned by XrVulkanInstanceCreateInfoKHR::pfnGetInstanceProcAddr.

Chapter 12. List of Current Extensions | 399

#valid-usage-for-structure-pointer-chains
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/vkCreateInstance.html

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to calling

xrCreateVulkanInstanceKHR

• instance must be a valid XrInstance handle

• createInfo must be a pointer to a valid XrVulkanInstanceCreateInfoKHR structure

• vulkanInstance must be a pointer to a VkInstance value

• vulkanResult must be a pointer to a VkResult value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_SYSTEM_INVALID

The XrVulkanInstanceCreateInfoKHR structure contains the input parameters to

xrCreateVulkanInstanceKHR.

400 | Chapter 12. List of Current Extensions

// Provided by XR_KHR_vulkan_enable2

typedef struct XrVulkanInstanceCreateInfoKHR {

 XrStructureType type;

 const void* next;

 XrSystemId systemId;

 XrVulkanInstanceCreateFlagsKHR createFlags;

 PFN_vkGetInstanceProcAddr pfnGetInstanceProcAddr;

 const VkInstanceCreateInfo* vulkanCreateInfo;

 const VkAllocationCallbacks* vulkanAllocator;

} XrVulkanInstanceCreateInfoKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension

• systemId is an XrSystemId handle for the system which will be used to create a session.

• createFlags is a bitmask of XrVulkanInstanceCreateFlagBitsKHR

• pfnGetInstanceProcAddr is a function pointer to vkGetInstanceProcAddr or a compatible entry

point.

• vulkanCreateInfo is the VkInstanceCreateInfo as specified by Vulkan.

• vulkanAllocator is the VkAllocationCallbacks as specified by Vulkan.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrVulkanInstanceCreateInfoKHR

• type must be XR_TYPE_VULKAN_INSTANCE_CREATE_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• createFlags must be 0

• pfnGetInstanceProcAddr must be a valid PFN_vkGetInstanceProcAddr value

• vulkanCreateInfo must be a pointer to a valid VkInstanceCreateInfo value

• If vulkanAllocator is not NULL, vulkanAllocator must be a pointer to a valid

VkAllocationCallbacks value

The XrVulkanInstanceCreateInfoKHR::createFlags member is of the following type, and contains a

bitwise-OR of zero or more of the bits defined in XrVulkanInstanceCreateFlagBitsKHR.

Chapter 12. List of Current Extensions | 401

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkInstanceCreateInfo.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkInstanceCreateInfo.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkAllocationCallbacks.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkAllocationCallbacks.html
#valid-usage-for-structure-pointer-chains

typedef XrFlags64 XrVulkanInstanceCreateFlagsKHR;

Valid bits for XrVulkanInstanceCreateFlagsKHR are defined by XrVulkanInstanceCreateFlagBitsKHR.

// Flag bits for XrVulkanInstanceCreateFlagsKHR

There are currently no Vulkan instance creation flag bits defined. This is reserved for future use.

Physical Device Selection

Third, a VkPhysicalDevice must be chosen. Some computer systems may have multiple graphics

devices, each of which may have independent external display outputs. The runtime must report a

VkPhysicalDevice that is compatible with the OpenXR implementation when

xrGetVulkanGraphicsDevice2KHR is invoked. The application will use this VkPhysicalDevice to interact

with the OpenXR runtime.

// Provided by XR_KHR_vulkan_enable2

XrResult xrGetVulkanGraphicsDevice2KHR(

 XrInstance instance,

 const XrVulkanGraphicsDeviceGetInfoKHR* getInfo,

 VkPhysicalDevice* vulkanPhysicalDevice);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• getInfo extensible input struct of type XrVulkanGraphicsDeviceGetInfoKHR

• vulkanPhysicalDevice is a pointer to a VkPhysicalDevice handle to populate.

402 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to calling

xrGetVulkanGraphicsDevice2KHR

• instance must be a valid XrInstance handle

• getInfo must be a pointer to a valid XrVulkanGraphicsDeviceGetInfoKHR structure

• vulkanPhysicalDevice must be a pointer to a VkPhysicalDevice value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SYSTEM_INVALID

The XrVulkanGraphicsDeviceGetInfoKHR structure contains the input parameters to

xrCreateVulkanInstanceKHR.

// Provided by XR_KHR_vulkan_enable2

typedef struct XrVulkanGraphicsDeviceGetInfoKHR {

 XrStructureType type;

 const void* next;

 XrSystemId systemId;

 VkInstance vulkanInstance;

} XrVulkanGraphicsDeviceGetInfoKHR;

Chapter 12. List of Current Extensions | 403

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• vulkanInstance is a valid Vulkan VkInstance.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrVulkanGraphicsDeviceGetInfoKHR

• type must be XR_TYPE_VULKAN_GRAPHICS_DEVICE_GET_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• vulkanInstance must be a valid VkInstance value

Vulkan Device Creation

Fourth, a compatible VkDevice must be created. The xrCreateVulkanDeviceKHR entry point is a

wrapper around vkCreateDevice intended for this purpose. When called, the runtime must aggregate

the requirements specified by the application with its own requirements and forward the VkDevice

creation request to the vkCreateDevice function pointer returned by XrVulkanInstanceCreateInfoKHR

::pfnGetInstanceProcAddr.

// Provided by XR_KHR_vulkan_enable2

XrResult xrCreateVulkanDeviceKHR(

 XrInstance instance,

 const XrVulkanDeviceCreateInfoKHR* createInfo,

 VkDevice* vulkanDevice,

 VkResult* vulkanResult);

404 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/vkCreateDevice.html

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• createInfo extensible input struct of type XrCreateVulkanDeviceCreateInfoKHR

• vulkanDevice points to a VkDevice handle to populate with the new Vulkan device.

• vulkanResult points to a VkResult to populate with the result of the vkCreateDevice operation

as returned by XrVulkanInstanceCreateInfoKHR::pfnGetInstanceProcAddr.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to calling

xrCreateVulkanDeviceKHR

• instance must be a valid XrInstance handle

• createInfo must be a pointer to a valid XrVulkanDeviceCreateInfoKHR structure

• vulkanDevice must be a pointer to a VkDevice value

• vulkanResult must be a pointer to a VkResult value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_SYSTEM_INVALID

The XrVulkanDeviceCreateInfoKHR structure contains the input parameters to

xrCreateVulkanDeviceKHR.

Chapter 12. List of Current Extensions | 405

// Provided by XR_KHR_vulkan_enable2

typedef struct XrVulkanDeviceCreateInfoKHR {

 XrStructureType type;

 const void* next;

 XrSystemId systemId;

 XrVulkanDeviceCreateFlagsKHR createFlags;

 PFN_vkGetInstanceProcAddr pfnGetInstanceProcAddr;

 VkPhysicalDevice vulkanPhysicalDevice;

 const VkDeviceCreateInfo* vulkanCreateInfo;

 const VkAllocationCallbacks* vulkanAllocator;

} XrVulkanDeviceCreateInfoKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• systemId is an XrSystemId handle for the system which will be used to create a session.

• createFlags is a bitmask of XrVulkanDeviceCreateFlagBitsKHR

• pfnGetInstanceProcAddr is a function pointer to vkGetInstanceProcAddr or a compatible entry

point.

• vulkanPhysicalDevice must match xrGetVulkanGraphicsDeviceKHR.

• vulkanCreateInfo is the VkDeviceCreateInfo as specified by Vulkan.

• vulkanAllocator is the VkAllocationCallbacks as specified by Vulkan.

If the vulkanPhysicalDevice parameter does not match the output of xrGetVulkanGraphicsDeviceKHR,

then the runtime must return XR_ERROR_HANDLE_INVALID.

406 | Chapter 12. List of Current Extensions

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDeviceCreateInfo.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDeviceCreateInfo.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkAllocationCallbacks.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkAllocationCallbacks.html

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrVulkanDeviceCreateInfoKHR

• type must be XR_TYPE_VULKAN_DEVICE_CREATE_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• createFlags must be 0

• pfnGetInstanceProcAddr must be a valid PFN_vkGetInstanceProcAddr value

• vulkanPhysicalDevice must be a valid VkPhysicalDevice value

• vulkanCreateInfo must be a pointer to a valid VkDeviceCreateInfo value

• If vulkanAllocator is not NULL, vulkanAllocator must be a pointer to a valid

VkAllocationCallbacks value

XrVulkanDeviceCreateFlagsKHR specify details of device creation. The

XrVulkanDeviceCreateInfoKHR::createFlags member is of the following type, and contains a bitwise-

OR of zero or more of the bits defined in XrVulkanDeviceCreateFlagBitsKHR.

typedef XrFlags64 XrVulkanDeviceCreateFlagsKHR;

Valid bits for XrVulkanDeviceCreateFlagsKHR are defined by XrVulkanDeviceCreateFlagBitsKHR.

// Flag bits for XrVulkanDeviceCreateFlagsKHR

There are currently no Vulkan device creation flag bits defined. This is reserved for future use.

Queue Selection

Last, the application selects a VkQueue from the VkDevice that has the VK_QUEUE_GRAPHICS_BIT set. Note

The runtime may schedule work on the VkQueue specified in the binding, or it may

schedule work on any hardware queue in a foreign logical device.

Chapter 12. List of Current Extensions | 407

#valid-usage-for-structure-pointer-chains

Vulkan Graphics Binding

When creating a Vulkan-backed XrSession, the application will chain a pointer to an

XrGraphicsBindingVulkan2KHR to the XrSessionCreateInfo parameter of xrCreateSession. With the

data collected in the previous sections, the application now has all the necessary information to

populate an XrGraphicsBindingVulkan2KHR structure for session creation.

// Provided by XR_KHR_vulkan_enable2

// XrGraphicsBindingVulkan2KHR is an alias for XrGraphicsBindingVulkanKHR

typedef struct XrGraphicsBindingVulkanKHR {

 XrStructureType type;

 const void* next;

 VkInstance instance;

 VkPhysicalDevice physicalDevice;

 VkDevice device;

 uint32_t queueFamilyIndex;

 uint32_t queueIndex;

} XrGraphicsBindingVulkanKHR;

typedef XrGraphicsBindingVulkanKHR XrGraphicsBindingVulkan2KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• instance is a valid Vulkan VkInstance.

• physicalDevice is a valid Vulkan VkPhysicalDevice.

• device is a valid Vulkan VkDevice.

• queueFamilyIndex is a valid queue family index on device.

• queueIndex is a valid queue index on device to be used for synchronization.

408 | Chapter 12. List of Current Extensions

Valid Usage

• instance must have enabled a Vulkan API version in the range specified by

xrGetVulkanGraphicsRequirements2KHR

• instance must have been created using xrCreateVulkanInstanceKHR

• physicalDevice VkPhysicalDevice must match the device specified by

xrGetVulkanGraphicsDevice2KHR

• device must have been created using xrCreateVulkanDeviceKHR

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrGraphicsBindingVulkan2KHR

• Note: XrGraphicsBindingVulkan2KHR is an alias for XrGraphicsBindingVulkanKHR, so the

following items replicate the implicit valid usage for XrGraphicsBindingVulkanKHR

• type must be XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• instance must be a valid VkInstance value

• physicalDevice must be a valid VkPhysicalDevice value

• device must be a valid VkDevice value

Populating an XrGraphicsBindingVulkan2KHR structure with a member that does not meet the

requirements outlined by this extension may result in undefined behavior by the OpenXR runtime.

The requirements outlined in this extension only apply to the VkInstance, VkDevice, VkPhysicalDevice

and VkQueue objects which the application wishes to associate with an XrGraphicsBindingVulkan2KHR.

12.21.3. Concurrency

Vulkan requires that concurrent access to a VkQueue from multiple threads be externally synchronized.

Therefore, OpenXR functions that may access the VkQueue specified in the

XrGraphicsBindingVulkan2KHR must also be externally synchronized by the OpenXR application.

The list of OpenXR functions where the OpenXR runtime may access the VkQueue are:

• xrBeginFrame

• xrEndFrame

• xrAcquireSwapchainImage

• xrReleaseSwapchainImage

Chapter 12. List of Current Extensions | 409

#valid-usage-for-structure-pointer-chains

The runtime must not access the VkQueue in any OpenXR function that is not listed above or in an

extension definition.

Failure by the application to synchronize access to VkQueue may result in undefined behavior in the

OpenXR runtime.

12.21.4. Swapchain Interactions

Swapchain Images

When an application interacts with XrSwapchainImageBaseHeader structures in a Vulkan-backed

XrSession, the application can interpret these to be XrSwapchainImageVulkan2KHR structures. These

are defined as:

// Provided by XR_KHR_vulkan_enable2

// XrSwapchainImageVulkan2KHR is an alias for XrSwapchainImageVulkanKHR

typedef struct XrSwapchainImageVulkanKHR {

 XrStructureType type;

 void* next;

 VkImage image;

} XrSwapchainImageVulkanKHR;

typedef XrSwapchainImageVulkanKHR XrSwapchainImageVulkan2KHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• image is a valid Vulkan VkImage to use.

If a given session was created with XrGraphicsBindingVulkan2KHR, the following conditions must

apply.

• Calls to xrEnumerateSwapchainImages on an XrSwapchain in that session must return an array of

XrSwapchainImageVulkan2KHR structures.

• Whenever an OpenXR function accepts an XrSwapchainImageBaseHeader pointer as a parameter

in that session, the runtime must also accept a pointer to an XrSwapchainImageVulkan2KHR.

The OpenXR runtime must interpret the top-left corner of the swapchain image as the coordinate

origin unless specified otherwise by extension functionality.

410 | Chapter 12. List of Current Extensions

The OpenXR runtime must interpret the swapchain images in a clip space of positive Y pointing down,

near Z plane at 0, and far Z plane at 1.

Valid Usage (Implicit)

• The XR_KHR_vulkan_enable2 extension must be enabled prior to using

XrSwapchainImageVulkan2KHR

• Note: XrSwapchainImageVulkan2KHR is an alias for XrSwapchainImageVulkanKHR, so the

following items replicate the implicit valid usage for XrSwapchainImageVulkanKHR

• type must be XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSwapchainImageFoveationVulkanFB

Swapchain Image Layout

When an application acquires a swapchain image by calling xrAcquireSwapchainImage in a session

created using XrGraphicsBindingVulkan2KHR, the OpenXR runtime must guarantee that:

• The image has a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for

color images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.

• The VkQueue specified in XrGraphicsBindingVulkan2KHR has ownership of the image.

When an application releases a swapchain image by calling xrReleaseSwapchainImage, in a session

created using XrGraphicsBindingVulkan2KHR, the OpenXR runtime must interpret the image as:

• Having a memory layout compatible with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for color

images, or VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for depth images.

• Being owned by the VkQueue specified in XrGraphicsBindingVulkan2KHR.

• Being referenced by command buffers submitted to the VkQueue specified in

XrGraphicsBindingVulkan2KHR which have not yet completed execution.

The application is responsible for transitioning the swapchain image back to the image layout and

queue ownership that the OpenXR runtime requires. If the image is not in a layout compatible with the

above specifications the runtime may exhibit undefined behavior.

Swapchain Flag Bits

All XrSwapchainUsageFlags values passed in a session created using XrGraphicsBindingVulkan2KHR

must be interpreted as follows by the runtime, so that the returned swapchain images used by the

application may be used as if they were created with at least the specified VkImageUsageFlagBits or

VkImageCreateFlagBits set.

Chapter 12. List of Current Extensions | 411

#valid-usage-for-structure-pointer-chains

XrSwapchainUsageFlagBits Corresponding Vulkan flag bit

XR_SWAPCHAIN_USAGE_COLOR_ATTACHMENT_BIT VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_UNORDERED_ACCESS_BIT VK_IMAGE_USAGE_STORAGE_BIT

XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT VK_IMAGE_USAGE_TRANSFER_SRC_BIT

XR_SWAPCHAIN_USAGE_TRANSFER_DST_BIT VK_IMAGE_USAGE_TRANSFER_DST_BIT

XR_SWAPCHAIN_USAGE_SAMPLED_BIT VK_IMAGE_USAGE_SAMPLED_BIT

XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_KHR

(Added by

XR_KHR_swapchain_usage_input_attachment_bit and

only available when that extension is enabled)

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND

(Added by the now deprecated

XR_MND_swapchain_usage_input_attachment_bit

extension and only available when that extension

is enabled)

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

12.21.5. Appendix

Questions

1. Should the xrCreateVulkanDeviceKHR and xrCreateVulkanInstanceKHR functions have an output

parameter that returns the combined list of parameters used to create the Vulkan device/instance?

◦ No. If the application is interested in capturing this data it can set the pfnGetInstanceProcAddr

parameter to a local callback that captures the relevant information.

Quick Reference

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN2_KHR (alias of XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR)

• XR_TYPE_GRAPHICS_BINDING_VULKAN2_KHR (alias of XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR)

• XR_TYPE_SWAPCHAIN_IMAGE_VULKAN2_KHR (alias of XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR)

New Structures

• XrVulkanInstanceCreateInfoKHR

• XrVulkanDeviceCreateInfoKHR

412 | Chapter 12. List of Current Extensions

• XrVulkanGraphicsDeviceGetInfoKHR

• XrGraphicsBindingVulkan2KHR (alias of XrGraphicsBindingVulkanKHR)

• XrSwapchainImageVulkan2KHR (alias of XrSwapchainImageVulkanKHR)

• XrGraphicsRequirementsVulkan2KHR (alias of XrGraphicsRequirementsVulkanKHR)

New Functions

• xrCreateVulkanInstanceKHR

• xrCreateVulkanDeviceKHR

• xrGetVulkanGraphicsDevice2KHR

• xrGetVulkanGraphicsRequirements2KHR

Version History

• Revision 1, 2020-05-04 (Andres Rodriguez)

◦ Initial draft

• Revision 2, 2021-01-21 (Rylie Pavlik, Collabora, Ltd.)

◦ Document mapping for XrSwapchainUsageFlags

12.22. XR_KHR_vulkan_swapchain_format_list

Name String

XR_KHR_vulkan_swapchain_format_list

Extension Type

Instance extension

Registered Extension Number

15

Revision

4

Extension and Version Dependencies

OpenXR 1.0

and

XR_KHR_vulkan_enable

Last Modified Date

2020-01-01

Chapter 12. List of Current Extensions | 413

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Dan Ginsburg, Valve

Overview

Vulkan has the VK_KHR_image_format_list extension which allows applications to tell the vkCreateImage

function which formats the application intends to use when VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT is

specified. This OpenXR extension exposes that Vulkan extension to OpenXR applications. In the same

way that a Vulkan-based application can pass a VkImageFormatListCreateInfo struct to the vkCreateImage

function, an OpenXR application can pass an identically configured

XrVulkanSwapchainFormatListCreateInfoKHR structure to xrCreateSwapchain.

Applications using this extension to specify more than one swapchain format must create OpenXR

swapchains with the XR_SWAPCHAIN_USAGE_MUTABLE_FORMAT_BIT bit set.

Runtimes implementing this extension must support the XR_KHR_vulkan_enable or the

XR_KHR_vulkan_enable2 extension. When XR_KHR_vulkan_enable is used, the runtime must add

VK_KHR_image_format_list to the list of extensions enabled in xrCreateVulkanDeviceKHR.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

 XR_TYPE_VULKAN_SWAPCHAIN_FORMAT_LIST_CREATE_INFO_KHR

New Enums

New Structures

414 | Chapter 12. List of Current Extensions

// Provided by XR_KHR_vulkan_swapchain_format_list

typedef struct XrVulkanSwapchainFormatListCreateInfoKHR {

 XrStructureType type;

 const void* next;

 uint32_t viewFormatCount;

 const VkFormat* viewFormats;

} XrVulkanSwapchainFormatListCreateInfoKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• viewFormatCount is the number of view formats passed in viewFormats.

• viewFormats is an array of VkFormat.

Valid Usage (Implicit)

• The XR_KHR_vulkan_swapchain_format_list extension must be enabled prior to using

XrVulkanSwapchainFormatListCreateInfoKHR

• type must be XR_TYPE_VULKAN_SWAPCHAIN_FORMAT_LIST_CREATE_INFO_KHR

• next must be NULL or a valid pointer to the next structure in a structure chain

• If viewFormatCount is not 0, viewFormats must be a pointer to an array of viewFormatCount valid

VkFormat values

New Functions

Issues

Version History

• Revision 1, 2017-09-13 (Paul Pedriana)

◦ Initial proposal.

• Revision 2, 2018-06-21 (Bryce Hutchings)

◦ Update reference of XR_KHR_vulkan_extension_requirements to XR_KHR_vulkan_enable

• Revision 3, 2020-01-01 (Andres Rodriguez)

◦ Update for XR_KHR_vulkan_enable2

• Revision 4, 2021-01-21 (Rylie Pavlik, Collabora, Ltd.)

Chapter 12. List of Current Extensions | 415

#valid-usage-for-structure-pointer-chains

◦ Fix reference to the mutable-format bit in Vulkan.

12.23.

XR_KHR_win32_convert_performance_counter_time

Name String

XR_KHR_win32_convert_performance_counter_time

Extension Type

Instance extension

Registered Extension Number

36

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-01-24

IP Status

No known IP claims.

Contributors

Paul Pedriana, Oculus

Bryce Hutchings, Microsoft

Overview

This extension provides two functions for converting between the Windows performance counter

(QPC) time stamps and XrTime. The xrConvertWin32PerformanceCounterToTimeKHR function converts

from Windows performance counter time stamps to XrTime, while the

xrConvertTimeToWin32PerformanceCounterKHR function converts XrTime to Windows performance

counter time stamps. The primary use case for this functionality is to be able to synchronize events

between the local system and the OpenXR system.

New Object Types

New Flag Types

New Enum Constants

416 | Chapter 12. List of Current Extensions

New Enums

New Structures

New Functions

To convert from a Windows performance counter time stamp to XrTime, call:

// Provided by XR_KHR_win32_convert_performance_counter_time

XrResult xrConvertWin32PerformanceCounterToTimeKHR(

 XrInstance instance,

 const LARGE_INTEGER* performanceCounter,

 XrTime* time);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• performanceCounter is a time returned by QueryPerformanceCounter.

• time is the resulting XrTime that is equivalent to the performanceCounter.

The xrConvertWin32PerformanceCounterToTimeKHR function converts a time stamp obtained by the

QueryPerformanceCounter Windows function to the equivalent XrTime.

If the output time cannot represent the input performanceCounter, the runtime must return

XR_ERROR_TIME_INVALID.

Valid Usage (Implicit)

• The XR_KHR_win32_convert_performance_counter_time extension must be enabled prior to

calling xrConvertWin32PerformanceCounterToTimeKHR

• instance must be a valid XrInstance handle

• performanceCounter must be a pointer to a valid LARGE_INTEGER value

• time must be a pointer to an XrTime value

Chapter 12. List of Current Extensions | 417

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_TIME_INVALID

To convert from XrTime to a Windows performance counter time stamp, call:

// Provided by XR_KHR_win32_convert_performance_counter_time

XrResult xrConvertTimeToWin32PerformanceCounterKHR(

 XrInstance instance,

 XrTime time,

 LARGE_INTEGER* performanceCounter);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• time is an XrTime.

• performanceCounter is the resulting Windows performance counter time stamp that is

equivalent to the time.

The xrConvertTimeToWin32PerformanceCounterKHR function converts an XrTime to time as if

generated by the QueryPerformanceCounter Windows function.

If the output performanceCounter cannot represent the input time, the runtime must return

XR_ERROR_TIME_INVALID.

418 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_KHR_win32_convert_performance_counter_time extension must be enabled prior to

calling xrConvertTimeToWin32PerformanceCounterKHR

• instance must be a valid XrInstance handle

• performanceCounter must be a pointer to a LARGE_INTEGER value

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_TIME_INVALID

Issues

Version History

• Revision 1, 2019-01-24 (Paul Pedriana)

◦ Initial draft

12.24. XR_EXT_active_action_set_priority

Name String

XR_EXT_active_action_set_priority

Extension Type

Instance extension

Registered Extension Number

374

Chapter 12. List of Current Extensions | 419

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-08-19

IP Status

No known IP claims.

Contributors

Jules Blok, Epic Games

Lachlan Ford, Microsoft

Overview

The properties of an XrActionSet become immutable after it has been attached to a session. This

currently includes the priority of the action set preventing the application from changing the priority

number for the duration of the session.

Given that most runtimes do not actually require this number to be immutable this extension adds the

ability to provide a different priority number for every XrActiveActionSet provided to xrSyncActions.

When updating the action state with xrSyncActions, the application can provide a pointer to an

XrActiveActionSetPrioritiesEXT structure in the next chain of XrActionsSyncInfo. This structure

contains an array of XrActiveActionSetPriorityEXT structures mapping active action sets to their

priority numbers.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_ACTIVE_ACTION_SET_PRIORITIES_EXT

New Enums

New Structures

The XrActiveActionSetPrioritiesEXT structure is defined as:

420 | Chapter 12. List of Current Extensions

// Provided by XR_EXT_active_action_set_priority

typedef struct XrActiveActionSetPrioritiesEXT {

 XrStructureType type;

 const void* next;

 uint32_t actionSetPriorityCount;

 const XrActiveActionSetPriorityEXT* actionSetPriorities;

} XrActiveActionSetPrioritiesEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• actionSetPriorityCount is an integer specifying the number of valid elements in the

actionSetPriorities array.

• actionSetPriorities is a pointer to an array that maps action sets to their active priority

numbers. If an action set is specified multiple times, the runtime may return

XR_ERROR_VALIDATION_FAILURE from xrSyncActions.

Valid Usage (Implicit)

• The XR_EXT_active_action_set_priority extension must be enabled prior to using

XrActiveActionSetPrioritiesEXT

• type must be XR_TYPE_ACTIVE_ACTION_SET_PRIORITIES_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• actionSetPriorities must be a pointer to an array of actionSetPriorityCount valid

XrActiveActionSetPriorityEXT structures

• The actionSetPriorityCount parameter must be greater than 0

The runtime must ignore any priority numbers for action sets that were not specified as an active

action set in the XrActionsSyncInfo structure as this would have no effect.

The priority numbers provided in XrActiveActionSetPriorityEXT must override the priority number of

the active action set starting with the xrSyncActions call it is provided to, until the first subsequent call

to xrSyncActions.

When a subsequent call is made to xrSyncActions where an active action set does not have a

corresponding priority number specified in the XrActiveActionSetPriorityEXT structure the priority

number for that action set must revert back to the priority number provided in XrActionSetCreateInfo

Chapter 12. List of Current Extensions | 421

#valid-usage-for-structure-pointer-chains

when that action set was created.

The XrActiveActionSetPriorityEXT structure is defined as:

// Provided by XR_EXT_active_action_set_priority

typedef struct XrActiveActionSetPriorityEXT {

 XrActionSet actionSet;

 uint32_t priorityOverride;

} XrActiveActionSetPriorityEXT;

Member Descriptions

• actionSet is the handle of the XrActionSet to set the priority number for.

• priorityOverride is an integer specifying the priority of the action set while it is active.

Valid Usage (Implicit)

• The XR_EXT_active_action_set_priority extension must be enabled prior to using

XrActiveActionSetPriorityEXT

• actionSet must be a valid XrActionSet handle

New Functions

Issues

• Can the same action set have a different priority on each subaction path?

◦ No. To avoid additional complexity each action set can only be specified once in the array of

priorities which does not include the subaction path.

Version History

• Revision 1, 2022-08-19 (Jules Blok)

◦ Initial proposal.

12.25. XR_EXT_conformance_automation

Name String

XR_EXT_conformance_automation

422 | Chapter 12. List of Current Extensions

Extension Type

Instance extension

Registered Extension Number

48

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-04-14

IP Status

No known IP claims.

Contributors

Lachlan Ford, Microsoft

Rylie Pavlik, Collabora

Overview

The XR_EXT_conformance_automation allows conformance test and runtime developers to provide

hints to the underlying runtime as to what input the test is expecting. This enables runtime authors to

automate the testing of their runtime conformance. This is useful for achieving rapidly iterative

runtime development whilst maintaining conformance for runtime releases.

This extension provides the following capabilities:

• The ability to toggle the active state of an input device.

• The ability to set the state of an input device button or other input component.

• The ability to set the location of the input device.

Applications may call these functions at any time. The runtime must do its best to honor the request of

applications calling these functions, however it does not guarantee that any state change will be

reflected immediately, at all, or with the exact value that was requested. Applications are thus advised

to wait for the state change to be observable and to not assume that the value they requested will be

the value observed. If any of the functions of this extension are called, control over input must be

removed from the physical hardware of the system.

Chapter 12. List of Current Extensions | 423

Warning

This extension is not intended for use by non-conformance-test applications. A runtime may

require a runtime-specified configuration such as a "developer mode" to be enabled before

reporting support for this extension or providing a non-stub implementation of it.

Do not use this functionality in a non-conformance-test application!

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

// Provided by XR_EXT_conformance_automation

XrResult xrSetInputDeviceActiveEXT(

 XrSession session,

 XrPath interactionProfile,

 XrPath topLevelPath,

 XrBool32 isActive);

Parameter Descriptions

• session is the XrSession to set the input device state in.

• interactionProfile is the path representing the interaction profile of the input device (e.g.

/interaction_profiles/khr/simple_controller).

• topLevelPath is the path representing the input device (e.g. /user/hand/left).

• isActive is the requested activation state of the input device.

424 | Chapter 12. List of Current Extensions

Valid Usage

• session must be a valid session handle.

• topLevelPath must be a valid top level path.

Valid Usage (Implicit)

• The XR_EXT_conformance_automation extension must be enabled prior to calling

xrSetInputDeviceActiveEXT

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

// Provided by XR_EXT_conformance_automation

XrResult xrSetInputDeviceStateBoolEXT(

 XrSession session,

 XrPath topLevelPath,

 XrPath inputSourcePath,

 XrBool32 state);

Chapter 12. List of Current Extensions | 425

Parameter Descriptions

• session is the XrSession to set the input device state in.

• topLevelPath is the path representing the input device (e.g. /user/hand/left).

• inputSourcePath is the full path of the input component for which we wish to set the state for

(e.g. /user/hand/left/input/select/click).

• state is the requested boolean state of the input device.

Valid Usage

• session must be a valid session handle.

• topLevelPath must be a valid top level path.

• inputSourcePath must be a valid input source path.

Valid Usage (Implicit)

• The XR_EXT_conformance_automation extension must be enabled prior to calling

xrSetInputDeviceStateBoolEXT

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

426 | Chapter 12. List of Current Extensions

// Provided by XR_EXT_conformance_automation

XrResult xrSetInputDeviceStateFloatEXT(

 XrSession session,

 XrPath topLevelPath,

 XrPath inputSourcePath,

 float state);

Parameter Descriptions

• session is the XrSession to set the input device state in.

• topLevelPath is the path representing the input device (e.g. /user/hand/left).

• inputSourcePath is the full path of the input component for which we wish to set the state for

(e.g. /user/hand/left/input/trigger/value).

• state is the requested float state of the input device.

Valid Usage

• session must be a valid session handle.

• topLevelPath must be a valid top level path.

• inputSourcePath must be a valid input source path.

Valid Usage (Implicit)

• The XR_EXT_conformance_automation extension must be enabled prior to calling

xrSetInputDeviceStateFloatEXT

• session must be a valid XrSession handle

Chapter 12. List of Current Extensions | 427

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

// Provided by XR_EXT_conformance_automation

XrResult xrSetInputDeviceStateVector2fEXT(

 XrSession session,

 XrPath topLevelPath,

 XrPath inputSourcePath,

 XrVector2f state);

Parameter Descriptions

• session is the XrSession to set the input device state in.

• topLevelPath is the path representing the input device (e.g. /user/hand/left).

• inputSourcePath is the full path of the input component for which we wish to set the state for

(e.g. /user/hand/left/input/thumbstick).

• state is the requested two-dimensional state of the input device.

428 | Chapter 12. List of Current Extensions

Valid Usage

• session must be a valid session handle.

• topLevelPath must be a valid top level path.

• inputSourcePath must be a valid input source path.

Valid Usage (Implicit)

• The XR_EXT_conformance_automation extension must be enabled prior to calling

xrSetInputDeviceStateVector2fEXT

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

// Provided by XR_EXT_conformance_automation

XrResult xrSetInputDeviceLocationEXT(

 XrSession session,

 XrPath topLevelPath,

 XrPath inputSourcePath,

 XrSpace space,

 XrPosef pose);

Chapter 12. List of Current Extensions | 429

Parameter Descriptions

• session is the XrSession to set the input device state in.

• topLevelPath is the path representing the input device (e.g. /user/hand/left).

• inputSourcePath is the full path of the input component for which we wish to set the pose for

(e.g. /user/hand/left/input/grip/pose).

• pose is the requested pose state of the input device.

Valid Usage

• session must be a valid session handle.

• topLevelPath must be a valid top level path.

• inputSourcePath must be a valid input source path.

• space must be a valid XrSpace.

• pose must be a valid XrPosef.

Valid Usage (Implicit)

• The XR_EXT_conformance_automation extension must be enabled prior to calling

xrSetInputDeviceLocationEXT

• session must be a valid XrSession handle

• space must be a valid XrSpace handle

• space must have been created, allocated, or retrieved from session

430 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_POSE_INVALID

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

New Function Pointers

Issues

None

Version History

• Revision 1, 2019-10-01 (Lachlan Ford)

◦ Initial draft

• Revision 2, 2021-03-04 (Rylie Pavlik)

◦ Correct errors in function parameter documentation.

• Revision 3, 2021-04-14 (Rylie Pavlik)

◦ Fix missing error code

12.26. XR_EXT_debug_utils

Name String

XR_EXT_debug_utils

Extension Type

Instance extension

Chapter 12. List of Current Extensions | 431

Registered Extension Number

20

Revision

5

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-04-14

IP Status

No known IP claims.

Contributors

Mark Young, LunarG

Karl Schultz, LunarG

Rylie Pavlik, Collabora

Overview

Due to the nature of the OpenXR interface, there is very little error information available to the

developer and application. By using the XR_EXT_debug_utils extension, developers can obtain more

information. When combined with validation layers, even more detailed feedback on the application’s

use of OpenXR will be provided.

This extension provides the following capabilities:

• The ability to create a debug messenger which will pass along debug messages to an application

supplied callback.

• The ability to identify specific OpenXR handles using a name to improve tracking.

12.26.1. Object Debug Annotation

It can be useful for an application to provide its own content relative to a specific OpenXR handle.

Object Naming

xrSetDebugUtilsObjectNameEXT allows application developers to associate user-defined information

with OpenXR handles.

This is useful when paired with the callback that you register when creating an

XrDebugUtilsMessengerEXT object. When properly used, debug messages will contain not only the

corresponding object handle, but the associated object name as well.

432 | Chapter 12. List of Current Extensions

An application can change the name associated with an object simply by calling

xrSetDebugUtilsObjectNameEXT again with a new string. If the objectName member of the

XrDebugUtilsObjectNameInfoEXT structure is an empty string, then any previously set name is

removed.

12.26.2. Debug Messengers

OpenXR allows an application to register arbitrary number of callbacks with all the OpenXR

components wishing to report debug information. Some callbacks can log the information to a file,

others can cause a debug break point or any other behavior defined by the application. A primary

producer of callback messages are the validation layers. If the extension is enabled, an application can

register callbacks even when no validation layers are enabled. The OpenXR loader, other layers, and

runtimes may also produce callback messages.

The debug messenger will provide detailed feedback on the application’s use of OpenXR when events

of interest occur. When an event of interest does occur, the debug messenger will submit a debug

message to the debug callback that was provided during its creation. Additionally, the debug

messenger is responsible with filtering out debug messages that the callback isn’t interested in and will

only provide desired debug messages.

12.26.3. Debug Message Categorization

Messages that are triggered by the debug messenger are categorized by their message type and

severity. Additionally, each message has a string value identifying its messageId. These 3 bits of

information can be used to filter out messages so you only receive reports on the messages you desire.

In fact, during debug messenger creation, the severity and type flag values are provided to indicate

what messages should be allowed to trigger the user’s callback.

Message Type

The message type indicates the general category the message falls under. Currently we have the

following message types:

Table 4. XR_EXT_debug_utils Message Type Flag Descriptions

Enum Description

XR_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT Specifies a general purpose event type. This is

typically a non-validation, non-performance

event.

XR_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT Specifies an event caused during a validation

against the OpenXR specification that may

indicate invalid OpenXR usage.

XR_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT Specifies a potentially non-optimal use of OpenXR.

Chapter 12. List of Current Extensions | 433

Enum Description

XR_DEBUG_UTILS_MESSAGE_TYPE_CONFORMANCE_BIT_EXT Specifies a non-conformant OpenXR result. This is

typically caused by a layer or runtime returning

non-conformant data.

A message may correspond to more than one type. For example, if a validation warning also could

impact performance, then the message might be identified with both the

XR_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT and XR_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT

flag bits.

Message Severity

The severity of a message is a flag that indicates how important the message is using standard logging

naming. The severity flag bit values are shown in the following table.

Table 5. XR_EXT_debug_utils Message Severity Flag Descriptions

Enum Description

XR_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT Specifies the most verbose output indicating all

diagnostic messages from the OpenXR loader,

layers, and drivers should be captured.

XR_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT Specifies an informational message such as

resource details that might be handy when

debugging an application.

XR_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT Specifies use of OpenXR that could be an

application bug. Such cases may not be

immediately harmful, such as providing too many

swapchain images. Other cases may point to

behavior that is almost certainly bad when

unintended, such as using a swapchain image

whose memory has not been filled. In general, if

you see a warning but you know that the behavior

is intended/desired, then simply ignore the

warning.

XR_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT Specifies an error that may cause undefined

behavior, including an application crash. Note

The values of XrDebugUtilsMessageSeverityFlagBitsEXT are sorted based on severity.

The higher the flag value, the more severe the message. This allows for simple

boolean operation comparisons when looking at

XrDebugUtilsMessageSeverityFlagBitsEXT values.

434 | Chapter 12. List of Current Extensions

Message IDs

The XrDebugUtilsMessengerCallbackDataEXT structure contains a messageId that may be a string

identifying the message ID for the triggering debug message. This may be blank, or it may simply

contain the name of an OpenXR component (like "OpenXR Loader"). However, when certain API layers

or runtimes are used, especially the OpenXR core_validation API layer, then this value is intended to

uniquely identify the message generated. If a certain warning/error message constantly fires, a user

can simply look at the unique ID in their callback handler and manually filter it out.

For validation layers, this messageId value actually can be used to find the section of the OpenXR

specification that the layer believes to have been violated. See the core_validation API Layer

documentation for more information on how this can be done.

12.26.4. Session Labels

All OpenXR work is performed inside of an XrSession. There are times that it helps to label areas in

your OpenXR session to allow easier debugging. This can be especially true if your application creates

more than one session. There are two kinds of labels provided in this extension:

• Region labels

• Individual labels

To begin identifying a region using a debug label inside a session, you may use the

xrSessionBeginDebugUtilsLabelRegionEXT function. Calls to xrSessionBeginDebugUtilsLabelRegionEXT

may be nested allowing you to identify smaller and smaller labeled regions within your code. Using

this, you can build a "call-stack" of sorts with labels since any logging callback will contain the list of all

active session label regions.

To end the last session label region that was begun, you must call

xrSessionEndDebugUtilsLabelRegionEXT. Each xrSessionBeginDebugUtilsLabelRegionEXT must have a

matching xrSessionEndDebugUtilsLabelRegionEXT. All of a session’s label regions must be closed

before the xrDestroySession function is called for the given XrSession.

An individual debug label may be inserted at any time using xrSessionInsertDebugUtilsLabelEXT. The

xrSessionInsertDebugUtilsLabelEXT is used to indicate a particular location within the execution of the

application’s session functions. The next call to xrSessionInsertDebugUtilsLabelEXT,

xrSessionBeginDebugUtilsLabelRegionEXT, or xrSessionEndDebugUtilsLabelRegionEXT overrides this

value.

New Object Types

XR_DEFINE_HANDLE(XrDebugUtilsMessengerEXT)

Chapter 12. List of Current Extensions | 435

XrDebugUtilsMessengerEXT represents a callback function and associated filters registered with the

runtime.

New Flag Types

typedef XrFlags64 XrDebugUtilsMessageSeverityFlagsEXT;

// Flag bits for XrDebugUtilsMessageSeverityFlagsEXT

static const XrDebugUtilsMessageSeverityFlagsEXT

XR_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT = 0x00000001;

static const XrDebugUtilsMessageSeverityFlagsEXT

XR_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT = 0x00000010;

static const XrDebugUtilsMessageSeverityFlagsEXT

XR_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT = 0x00000100;

static const XrDebugUtilsMessageSeverityFlagsEXT

XR_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT = 0x00001000;

typedef XrFlags64 XrDebugUtilsMessageTypeFlagsEXT;

// Flag bits for XrDebugUtilsMessageTypeFlagsEXT

static const XrDebugUtilsMessageTypeFlagsEXT XR_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT

= 0x00000001;

static const XrDebugUtilsMessageTypeFlagsEXT

XR_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT = 0x00000002;

static const XrDebugUtilsMessageTypeFlagsEXT

XR_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT = 0x00000004;

static const XrDebugUtilsMessageTypeFlagsEXT

XR_DEBUG_UTILS_MESSAGE_TYPE_CONFORMANCE_BIT_EXT = 0x00000008;

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT

• XR_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT

436 | Chapter 12. List of Current Extensions

• XR_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT

• XR_TYPE_DEBUG_UTILS_LABEL_EXT

New Enums

New Structures

// Provided by XR_EXT_debug_utils

typedef struct XrDebugUtilsObjectNameInfoEXT {

 XrStructureType type;

 const void* next;

 XrObjectType objectType;

 uint64_t objectHandle;

 const char* objectName;

} XrDebugUtilsObjectNameInfoEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• objectType is an XrObjectType specifying the type of the object to be named.

• objectHandle is the object to be named.

• objectName is a NULL terminated UTF-8 string specifying the name to apply to objectHandle.

Valid Usage

• If objectType is XR_OBJECT_TYPE_UNKNOWN, objectHandle must not be XR_NULL_HANDLE

• If objectType is not XR_OBJECT_TYPE_UNKNOWN, objectHandle must be XR_NULL_HANDLE or an

OpenXR handle of the type associated with objectType

Chapter 12. List of Current Extensions | 437

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to using

XrDebugUtilsObjectNameInfoEXT

• type must be XR_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• objectType must be a valid XrObjectType value

• If objectName is not NULL, objectName must be a null-terminated UTF-8 string

// Provided by XR_EXT_debug_utils

typedef struct XrDebugUtilsLabelEXT {

 XrStructureType type;

 const void* next;

 const char* labelName;

} XrDebugUtilsLabelEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• labelName is a NULL terminated UTF-8 string specifying the label name.

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to using XrDebugUtilsLabelEXT

• type must be XR_TYPE_DEBUG_UTILS_LABEL_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• labelName must be a null-terminated UTF-8 string

438 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

// Provided by XR_EXT_debug_utils

typedef struct XrDebugUtilsMessengerCallbackDataEXT {

 XrStructureType type;

 const void* next;

 const char* messageId;

 const char* functionName;

 const char* message;

 uint32_t objectCount;

 XrDebugUtilsObjectNameInfoEXT* objects;

 uint32_t sessionLabelCount;

 XrDebugUtilsLabelEXT* sessionLabels;

} XrDebugUtilsMessengerCallbackDataEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• messageId is a NULL terminated string that identifies the message in a unique way. If the

callback is triggered by a validation layer, this string corresponds the Valid Usage ID (VUID)

that can be used to jump to the appropriate location in the OpenXR specification. This value

may be NULL if no unique message identifier is associated with the message.

• functionName is a NULL terminated string that identifies the OpenXR function that was

executing at the time the message callback was triggered. This value may be NULL in cases

where it is difficult to determine the originating OpenXR function.

• message is a NULL terminated string detailing the trigger conditions.

• objectCount is a count of items contained in the objects array. This may be 0.

• objects is NULL or a pointer to an array of XrDebugUtilsObjectNameInfoEXT objects related to

the detected issue. The array is roughly in order of importance, but the 0th element is always

guaranteed to be the most important object for this message.

• sessionLabelCount is a count of items contained in the sessionLabels array. This may be 0.

• sessionLabels is NULL or a pointer to an array of XrDebugUtilsLabelEXT active in the current

XrSession at the time the callback was triggered. Refer to Session Labels for more

information.

Chapter 12. List of Current Extensions | 439

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to using

XrDebugUtilsMessengerCallbackDataEXT

• type must be XR_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If messageId is not NULL, messageId must be a null-terminated UTF-8 string

• If functionName is not NULL, functionName must be a null-terminated UTF-8 string

• message must be a null-terminated UTF-8 string

An XrDebugUtilsMessengerCallbackDataEXT is a messenger object that handles passing along debug

messages to a provided debug callback. Note

This structure should only be considered valid during the lifetime of the triggered

callback.

The labels listed inside sessionLabels are organized in time order, with the most recently generated

label appearing first, and the oldest label appearing last.

// Provided by XR_EXT_debug_utils

typedef struct XrDebugUtilsMessengerCreateInfoEXT {

 XrStructureType type;

 const void* next;

 XrDebugUtilsMessageSeverityFlagsEXT messageSeverities;

 XrDebugUtilsMessageTypeFlagsEXT messageTypes;

 PFN_xrDebugUtilsMessengerCallbackEXT userCallback;

 void* userData;

} XrDebugUtilsMessengerCreateInfoEXT;

440 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• messageSeverities is a bitmask of XrDebugUtilsMessageSeverityFlagBitsEXT specifying which

severity of event(s) that will cause this callback to be called.

• messageTypes is a combination of XrDebugUtilsMessageTypeFlagBitsEXT specifying which

type of event(s) will cause this callback to be called.

• userCallback is the application defined callback function to call.

• userData is arbitrary user data to be passed to the callback.

Valid Usage

• userCallback must be a valid PFN_xrDebugUtilsMessengerCallbackEXT

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to using

XrDebugUtilsMessengerCreateInfoEXT

• type must be XR_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• messageSeverities must be a valid combination of XrDebugUtilsMessageSeverityFlagBitsEXT

values

• messageSeverities must not be 0

• messageTypes must be a valid combination of XrDebugUtilsMessageTypeFlagBitsEXT values

• messageTypes must not be 0

• userCallback must be a valid PFN_xrDebugUtilsMessengerCallbackEXT value

For each XrDebugUtilsMessengerEXT that is created the XrDebugUtilsMessengerCreateInfoEXT

::messageSeverities and XrDebugUtilsMessengerCreateInfoEXT::messageTypes determine when that

XrDebugUtilsMessengerCreateInfoEXT::userCallback is called. The process to determine if the user’s

userCallback is triggered when an event occurs is as follows:

• The runtime will perform a bitwise AND of the event’s XrDebugUtilsMessageSeverityFlagBitsEXT

with the XrDebugUtilsMessengerCreateInfoEXT::messageSeverities provided during creation of the

XrDebugUtilsMessengerEXT object.

Chapter 12. List of Current Extensions | 441

#valid-usage-for-structure-pointer-chains

• If this results in 0, the message is skipped.

• The runtime will perform bitwise AND of the event’s XrDebugUtilsMessageTypeFlagBitsEXT with

the XrDebugUtilsMessengerCreateInfoEXT::messageTypes provided during the creation of the

XrDebugUtilsMessengerEXT object.

• If this results in 0, the message is skipped.

• If the message of the current event is not skipped, the callback will be called with the message.

The callback will come directly from the component that detected the event, unless some other layer

intercepts the calls for its own purposes (filter them in a different way, log to a system error log, etc.).

An application can receive multiple callbacks if multiple XrDebugUtilsMessengerEXT objects are

created. A callback will always be executed in the same thread as the originating OpenXR call. Note

A callback can be called from multiple threads simultaneously if the application is

making OpenXR calls from multiple threads.

New Functions

// Provided by XR_EXT_debug_utils

XrResult xrSetDebugUtilsObjectNameEXT(

 XrInstance instance,

 const XrDebugUtilsObjectNameInfoEXT* nameInfo);

Parameter Descriptions

• instance is the XrInstance that the object was created under.

• nameInfo is a pointer to an instance of the XrDebugUtilsObjectNameInfoEXT structure

specifying the parameters of the name to set on the object.

Valid Usage

• In the structure pointed to by nameInfo, XrDebugUtilsObjectNameInfoEXT::objectType must

not be XR_OBJECT_TYPE_UNKNOWN

• In the structure pointed to by nameInfo, XrDebugUtilsObjectNameInfoEXT::objectHandle must

not be XR_NULL_HANDLE

442 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to calling

xrSetDebugUtilsObjectNameEXT

• instance must be a valid XrInstance handle

• nameInfo must be a pointer to a valid XrDebugUtilsObjectNameInfoEXT structure

Thread Safety

• Access to the objectHandle member of the nameInfo parameter must be externally

synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

Applications may change the name associated with an object simply by calling

xrSetDebugUtilsObjectNameEXT again with a new string. If XrDebugUtilsObjectNameInfoEXT

::objectName is an empty string, then any previously set name is removed.

// Provided by XR_EXT_debug_utils

XrResult xrCreateDebugUtilsMessengerEXT(

 XrInstance instance,

 const XrDebugUtilsMessengerCreateInfoEXT* createInfo,

 XrDebugUtilsMessengerEXT* messenger);

Chapter 12. List of Current Extensions | 443

Parameter Descriptions

• instance is the instance the messenger will be used with.

• createInfo points to an XrDebugUtilsMessengerCreateInfoEXT structure, which contains the

callback pointer as well as defines the conditions under which this messenger will trigger the

callback.

• messenger is a pointer to which the created XrDebugUtilsMessengerEXT object is returned.

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to calling

xrCreateDebugUtilsMessengerEXT

• instance must be a valid XrInstance handle

• createInfo must be a pointer to a valid XrDebugUtilsMessengerCreateInfoEXT structure

• messenger must be a pointer to an XrDebugUtilsMessengerEXT handle

Thread Safety

• Access to instance, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

The application must ensure that xrCreateDebugUtilsMessengerEXT is not executed in parallel with

any OpenXR function that is also called with instance or child of instance.

444 | Chapter 12. List of Current Extensions

When an event of interest occurs a debug messenger calls its XrDebugUtilsMessengerCreateInfoEXT

::userCallback with a debug message from the producer of the event. Additionally, the debug

messenger must filter out any debug messages that the application’s callback is not interested in based

on XrDebugUtilsMessengerCreateInfoEXT flags, as described below.

// Provided by XR_EXT_debug_utils

XrResult xrDestroyDebugUtilsMessengerEXT(

 XrDebugUtilsMessengerEXT messenger);

Parameter Descriptions

• messenger the XrDebugUtilsMessengerEXT object to destroy. messenger is an externally

synchronized object and must not be used on more than one thread at a time. This means

that xrDestroyDebugUtilsMessengerEXT must not be called when a callback is active.

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to calling

xrDestroyDebugUtilsMessengerEXT

• messenger must be a valid XrDebugUtilsMessengerEXT handle

Thread Safety

• Access to messenger must be externally synchronized

• Access to the XrInstance used to create messenger, and all of its child handles must be

externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

Chapter 12. List of Current Extensions | 445

The application must ensure that xrDestroyDebugUtilsMessengerEXT is not executed in parallel with

any OpenXR function that is also called with the instance or child of instance that it was created with.

// Provided by XR_EXT_debug_utils

XrResult xrSubmitDebugUtilsMessageEXT(

 XrInstance instance,

 XrDebugUtilsMessageSeverityFlagsEXT messageSeverity,

 XrDebugUtilsMessageTypeFlagsEXT messageTypes,

 const XrDebugUtilsMessengerCallbackDataEXT* callbackData);

Parameter Descriptions

• instance is the debug stream’s XrInstance.

• messageSeverity is a single bit value of XrDebugUtilsMessageSeverityFlagsEXT severity of this

event/message.

• messageTypes is an XrDebugUtilsMessageTypeFlagsEXT bitmask of

XrDebugUtilsMessageTypeFlagBitsEXT specifying which types of event to identify this

message with.

• callbackData contains all the callback related data in the

XrDebugUtilsMessengerCallbackDataEXT structure.

Valid Usage

• For each structure in XrDebugUtilsMessengerCallbackDataEXT::objects, the value of

XrDebugUtilsObjectNameInfoEXT::objectType must not be XR_OBJECT_TYPE_UNKNOWN

446 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to calling

xrSubmitDebugUtilsMessageEXT

• instance must be a valid XrInstance handle

• messageSeverity must be a valid combination of XrDebugUtilsMessageSeverityFlagBitsEXT

values

• messageSeverity must not be 0

• messageTypes must be a valid combination of XrDebugUtilsMessageTypeFlagBitsEXT values

• messageTypes must not be 0

• callbackData must be a pointer to a valid XrDebugUtilsMessengerCallbackDataEXT structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

The application can also produce a debug message, and submit it into the OpenXR messaging system.

The call will propagate through the layers and generate callback(s) as indicated by the message’s flags.

The parameters are passed on to the callback in addition to the userData value that was defined at the

time the messenger was created.

// Provided by XR_EXT_debug_utils

XrResult xrSessionBeginDebugUtilsLabelRegionEXT(

 XrSession session,

 const XrDebugUtilsLabelEXT* labelInfo);

Chapter 12. List of Current Extensions | 447

Parameter Descriptions

• session is the XrSession that a label region should be associated with.

• labelInfo is the XrDebugUtilsLabelEXT containing the label information for the region that

should be begun.

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to calling

xrSessionBeginDebugUtilsLabelRegionEXT

• session must be a valid XrSession handle

• labelInfo must be a pointer to a valid XrDebugUtilsLabelEXT structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The xrSessionBeginDebugUtilsLabelRegionEXT function begins a label region within session.

// Provided by XR_EXT_debug_utils

XrResult xrSessionEndDebugUtilsLabelRegionEXT(

 XrSession session);

448 | Chapter 12. List of Current Extensions

Parameter Descriptions

• session is the XrSession that a label region should be associated with.

Valid Usage

• xrSessionEndDebugUtilsLabelRegionEXT must be called only after a matching

xrSessionBeginDebugUtilsLabelRegionEXT.

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to calling

xrSessionEndDebugUtilsLabelRegionEXT

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

This function ends the last label region begun with the xrSessionBeginDebugUtilsLabelRegionEXT

function within the same session.

Chapter 12. List of Current Extensions | 449

// Provided by XR_EXT_debug_utils

XrResult xrSessionInsertDebugUtilsLabelEXT(

 XrSession session,

 const XrDebugUtilsLabelEXT* labelInfo);

Parameter Descriptions

• session is the XrSession that a label region should be associated with.

• labelInfo is the XrDebugUtilsLabelEXT containing the label information for the region that

should be begun.

Valid Usage (Implicit)

• The XR_EXT_debug_utils extension must be enabled prior to calling

xrSessionInsertDebugUtilsLabelEXT

• session must be a valid XrSession handle

• labelInfo must be a pointer to a valid XrDebugUtilsLabelEXT structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The xrSessionInsertDebugUtilsLabelEXT function inserts an individual label within session. The

individual labels are useful for different reasons based on the type of debugging scenario. When used

with something active like a profiler or debugger, it identifies a single point of time. When used with

logging, the individual label identifies that a particular location has been passed at the point the log

message is triggered. Because of this usage, individual labels only exist in a log until the next call to any

450 | Chapter 12. List of Current Extensions

of the label functions:

• xrSessionBeginDebugUtilsLabelRegionEXT

• xrSessionEndDebugUtilsLabelRegionEXT

• xrSessionInsertDebugUtilsLabelEXT

New Function Pointers

// Provided by XR_EXT_debug_utils

typedef XrBool32 (XRAPI_PTR *PFN_xrDebugUtilsMessengerCallbackEXT)(

 XrDebugUtilsMessageSeverityFlagsEXT messageSeverity,

 XrDebugUtilsMessageTypeFlagsEXT messageTypes,

 const XrDebugUtilsMessengerCallbackDataEXT* callbackData,

 void* userData);

Parameter Descriptions

• messageSeverity indicates the single bit value of XrDebugUtilsMessageSeverityFlagsEXT that

triggered this callback.

• messageTypes indicates the XrDebugUtilsMessageTypeFlagsEXT specifying which types of

event triggered this callback.

• callbackData contains all the callback related data in the

XrDebugUtilsMessengerCallbackDataEXT structure.

• userData is the user data provided when the XrDebugUtilsMessengerEXT was created.

The callback must not call xrDestroyDebugUtilsMessengerEXT.

The callback returns an XrBool32 that indicates to the calling layer the application’s desire to abort the

call. A value of XR_TRUE indicates that the application wants to abort this call. If the application returns

XR_FALSE, the function must not be aborted. Applications should always return XR_FALSE so that they

see the same behavior with and without validation layers enabled.

If the application returns XR_TRUE from its callback and the OpenXR call being aborted returns an

XrResult, the layer will return XR_ERROR_VALIDATION_FAILURE.

The object pointed to by callbackData (and any pointers in it recursively) must be valid during the

lifetime of the triggered callback. It may become invalid afterwards.

Examples

Example 1

Chapter 12. List of Current Extensions | 451

XR_EXT_debug_utils allows an application to register multiple callbacks with any OpenXR component

wishing to report debug information. Some callbacks may log the information to a file, others may

cause a debug break point or other application defined behavior. An application can register callbacks

even when no validation layers are enabled, but they will only be called for loader and, if

implemented, driver events.

To capture events that occur while creating or destroying an instance an application can link an

XrDebugUtilsMessengerCreateInfoEXT structure to the next element of the XrInstanceCreateInfo

structure given to xrCreateInstance. This callback is only valid for the duration of the xrCreateInstance

and the xrDestroyInstance call. Use xrCreateDebugUtilsMessengerEXT to create persistent callback

objects.

Example uses: Create three callback objects. One will log errors and warnings to the debug console

using Windows OutputDebugString. The second will cause the debugger to break at that callback when

an error happens and the third will log warnings to stdout.

 extern XrInstance instance; // previously initialized

 // Must call extension functions through a function pointer:

 PFN_xrCreateDebugUtilsMessengerEXT pfnCreateDebugUtilsMessengerEXT;

 CHK_XR(xrGetInstanceProcAddr(instance, "xrCreateDebugUtilsMessengerEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnCreateDebugUtilsMessengerEXT)));

 PFN_xrDestroyDebugUtilsMessengerEXT pfnDestroyDebugUtilsMessengerEXT;

 CHK_XR(xrGetInstanceProcAddr(instance, "xrDestroyDebugUtilsMessengerEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnDestroyDebugUtilsMessengerEXT)));

 XrDebugUtilsMessengerCreateInfoEXT callback1 = {

 XR_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT, // type

 NULL, // next

 XR_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT | // messageSeverities

 XR_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT,

 XR_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | // messageTypes

 XR_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT,

 myOutputDebugString, // userCallback

 NULL // userData

 };

 XrDebugUtilsMessengerEXT messenger1 = XR_NULL_HANDLE;

 CHK_XR(pfnCreateDebugUtilsMessengerEXT(instance, &callback1, &messenger1));

 callback1.messageSeverities = XR_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;

 callback1.userCallback = myDebugBreak;

 callback1.userData = NULL;

 XrDebugUtilsMessengerEXT messenger2 = XR_NULL_HANDLE;

 CHK_XR(pfnCreateDebugUtilsMessengerEXT(instance, &callback1, &messenger2));

452 | Chapter 12. List of Current Extensions

 XrDebugUtilsMessengerCreateInfoEXT callback3 = {

 XR_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT, // type

 NULL, // next

 XR_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT, // messageSeverities

 XR_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | // messageTypes

 XR_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT,

 myStdOutLogger, // userCallback

 NULL // userData

 };

 XrDebugUtilsMessengerEXT messenger3 = XR_NULL_HANDLE;

 CHK_XR(pfnCreateDebugUtilsMessengerEXT(instance, &callback3, &messenger3));

 // ...

 // Remove callbacks when cleaning up

 pfnDestroyDebugUtilsMessengerEXT(messenger1);

 pfnDestroyDebugUtilsMessengerEXT(messenger2);

 pfnDestroyDebugUtilsMessengerEXT(messenger3);

Example 2

Associate a name with an XrSpace, for easier debugging in external tools or with validation layers that

can print a friendly name when referring to objects in error messages.

Chapter 12. List of Current Extensions | 453

 extern XrInstance instance; // previously initialized

 extern XrSpace space; // previously initialized

 // Must call extension functions through a function pointer:

 PFN_xrSetDebugUtilsObjectNameEXT pfnSetDebugUtilsObjectNameEXT;

 CHK_XR(xrGetInstanceProcAddr(instance, "xrSetDebugUtilsObjectNameEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnSetDebugUtilsObjectNameEXT)));

 // Set a name on the space

 const XrDebugUtilsObjectNameInfoEXT spaceNameInfo = {

 XR_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT, // type

 NULL, // next

 XR_OBJECT_TYPE_SPACE, // objectType

 (uint64_t)space, // objectHandle

 "My Object-Specific Space", // objectName

 };

 pfnSetDebugUtilsObjectNameEXT(instance, &spaceNameInfo);

 // A subsequent error might print:

 // Space "My Object-Specific Space" (0xc0dec0dedeadbeef) is used

 // with an XrSession that is not it's parent.

Example 3

Labeling the workload with naming information so that any form of analysis can display a more

usable visualization of where actions occur in the lifetime of a session.

 extern XrInstance instance; // previously initialized

 extern XrSession session; // previously initialized

 // Must call extension functions through a function pointer:

 PFN_xrSessionBeginDebugUtilsLabelRegionEXT pfnSessionBeginDebugUtilsLabelRegionEXT;

 CHK_XR(xrGetInstanceProcAddr(instance, "xrSessionBeginDebugUtilsLabelRegionEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnSessionBeginDebugUtilsLabelRegionEXT)));

 PFN_xrSessionEndDebugUtilsLabelRegionEXT pfnSessionEndDebugUtilsLabelRegionEXT;

 CHK_XR(xrGetInstanceProcAddr(instance, "xrSessionEndDebugUtilsLabelRegionEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnSessionEndDebugUtilsLabelRegionEXT)));

 PFN_xrSessionInsertDebugUtilsLabelEXT pfnSessionInsertDebugUtilsLabelEXT;

 CHK_XR(xrGetInstanceProcAddr(instance, "xrSessionInsertDebugUtilsLabelEXT",

454 | Chapter 12. List of Current Extensions

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnSessionInsertDebugUtilsLabelEXT)));

 XrSessionBeginInfo session_begin_info = {

 XR_TYPE_SESSION_BEGIN_INFO,

 nullptr,

 XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO

 };

 xrBeginSession(session, &session_begin_info);

 const XrDebugUtilsLabelEXT session_active_region_label = {

 XR_TYPE_DEBUG_UTILS_LABEL_EXT, // type

 NULL, // next

 "Session active", // labelName

 };

 // Start an annotated region of calls under the 'Session Active' name

 pfnSessionBeginDebugUtilsLabelRegionEXT(session, &session_active_region_label);

 // Brackets added for clarity

 {

 XrDebugUtilsLabelEXT individual_label = {

 XR_TYPE_DEBUG_UTILS_LABEL_EXT, // type

 NULL, // next

 "WaitFrame", // labelName

 };

 const char wait_frame_label[] = "WaitFrame";

 individual_label.labelName = wait_frame_label;

 pfnSessionInsertDebugUtilsLabelEXT(session, &individual_label);

 XrFrameWaitInfo wait_frame_info; // initialization omitted for readability

 XrFrameState frame_state = {XR_TYPE_FRAME_STATE, nullptr};

 xrWaitFrame(session, &wait_frame_info, &frame_state);

 // Do stuff 1

 const XrDebugUtilsLabelEXT session_frame_region_label = {

 XR_TYPE_DEBUG_UTILS_LABEL_EXT, // type

 NULL, // next

 "Session Frame 123", // labelName

 };

 // Start an annotated region of calls under the 'Session Frame 123' name

 pfnSessionBeginDebugUtilsLabelRegionEXT(session, &session_frame_region_label);

 // Brackets added for clarity

 {

Chapter 12. List of Current Extensions | 455

 const char begin_frame_label[] = "BeginFrame";

 individual_label.labelName = begin_frame_label;

 pfnSessionInsertDebugUtilsLabelEXT(session, &individual_label);

 XrFrameBeginInfo begin_frame_info; // initialization omitted for readability

 xrBeginFrame(session, &begin_frame_info);

 // Do stuff 2

 const char end_frame_label[] = "EndFrame";

 individual_label.labelName = end_frame_label;

 pfnSessionInsertDebugUtilsLabelEXT(session, &individual_label);

 XrFrameEndInfo end_frame_info; // initialization omitted for readability

 xrEndFrame(session, &end_frame_info);

 }

 // End the session/begun region started above

 // (in this case it's the "Session Frame 123" label)

 pfnSessionEndDebugUtilsLabelRegionEXT(session);

 }

 // End the session/begun region started above

 // (in this case it's the "Session Active" label)

 pfnSessionEndDebugUtilsLabelRegionEXT(session);

In the above example, if an error occurred in the // Do stuff 1 section, then your debug utils callback

would contain the following data in its sessionLabels array:

• [0] = individual_label with labelName = "WaitFrame"

• [1] = session_active_region_label with labelName = "Session active"

However, if an error occurred in the // Do stuff 2 section, then your debug utils callback would

contain the following data in its sessionLabels array:

• [0] = individual_label with labelName = "BeginFrame"

• [1] = session_frame_region_label with labelName = "Session Frame 123"

• [2] = session_active_region_label with labelName = "Session active"

You’ll notice that "WaitFrame" is no longer available as soon as the next call to another function like

xrSessionBeginDebugUtilsLabelRegionEXT.

Issues

None

456 | Chapter 12. List of Current Extensions

Version History

• Revision 1, 2018-02-19 (Mark Young / Karl Schultz)

◦ Initial draft, based on VK_EXT_debug_utils.

• Revision 2, 2018-11-16 (Mark Young)

◦ Clean up some language based on changes going into the Vulkan VK_EXT_debug_utils extension

by Peter Kraus (aka @krOoze).

◦ Added session labels

• Revision 3, 2019-07-19 (Rylie Pavlik)

◦ Update examples.

◦ Improve formatting.

• Revision 4, 2021-04-04 (Rylie Pavlik)

◦ Fix missing error code.

◦ Improve formatting.

• Revision 5, 2023-07-25 (John Kearney, Meta)

◦ XrDebugUtilsMessengerCallbackDataEXT parameters messageId and functionName to be optional.

12.27. XR_EXT_dpad_binding

Name String

XR_EXT_dpad_binding

Extension Type

Instance extension

Registered Extension Number

79

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_KHR_binding_modification

Last Modified Date

2022-04-20

Chapter 12. List of Current Extensions | 457

IP Status

No known IP claims.

Contributors

Joe Ludwig, Valve

Keith Bradner, Valve

Rune Berg, Valve

Nathan Nuber, Valve

Jakob Bornecrantz, Collabora

Rylie Pavlik, Collabora

Jules Blok, Epic Games

Overview

This extension allows the application to bind one or more digital actions to a trackpad or thumbstick as

though it were a dpad by defining additional component paths to suggest bindings for. The behavior of

this dpad-like mapping may be customized using XrInteractionProfileDpadBindingEXT.

Applications must also enable the XR_KHR_binding_modification extension that this builds on top of.

New Component Paths

When this extension is enabled, a runtime must accept otherwise-valid suggested bindings that refer

to the following component paths added to certain existing input source paths.

• For a given interaction profile,

◦ For each input source path valid in that interaction profile that has identifier trackpad but

without a component specified (i.e. …/input/trackpad or …/input/trackpad_<location>), a runtime

must accept the following components appended to that path in a suggested binding:

▪ …/dpad_up

▪ …/dpad_down

▪ …/dpad_left

▪ …/dpad_right

▪ …/dpad_center

◦ For each input source path valid in that interaction profile that has identifier thumbstick but

without a component specified (i.e. …/input/thumbstick or …/input/thumbstick_<location>), a

runtime must accept the following components appended to that path in a suggested binding:

▪ …/dpad_up

▪ …/dpad_down

▪ …/dpad_left

▪ …/dpad_right

458 | Chapter 12. List of Current Extensions

While a runtime may ignore accepted suggested bindings, and may use their contents as suggestions

for automatic remapping when not obeying them, this extension defines interpretations the runtime

must make in the case that a suggested binding using one of these paths is being obeyed.

An application can pass XrInteractionProfileDpadBindingEXT in the XrBindingModificationsKHR

::bindingModifications array associated with a suggested binding to customize the behavior of this

mapping in the case that suggested bindings are being obeyed, and to provide remapping hints in

other cases. If no XrInteractionProfileDpadBindingEXT structure is present in

XrBindingModificationsKHR::bindingModifications for a given action set and component-less input

source path, the runtime must behave as if one were passed with the following values:

• forceThreshold = 0.5

• forceThresholdReleased = 0.4

• centerRegion = 0.5

• wedgeAngle = ½ π

• isSticky = XR_FALSE

• onHaptic = NULL

• offHaptic = NULL

For the purposes of description, the (-1, 1) ranges of the x and y components of trackpad and

thumbstick inputs are depicted in this extension as if their scale were equal between axes. However,

this is not required by this extension: while their numeric scale is treated as equal, their physical scale

may not be.

Each of the component paths defined by this extension behave as boolean inputs. The center

component …/dpad_center (only present when the path identifier is trackpad) must not be active at the

same time as any other dpad component. For the other components, zero, one, or (depending on the

wedgeAngle) two of them may be active at any time, though only adjacent components on a single

logical dpad may be active simultaneously. For example, …/dpad_down and …/dpad_left are adjacent,

and thus may be active simultaneously, while …/dpad_up and …/dpad_down are not adjacent and must

not be active simultaneously. Note

If wedgeAngle > ½ π, it is possible for two components referring to adjacent directions

(excluding …/dpad_center) to be active at the same time, as the directional regions

overlap. If wedgeAngle < ½ π, there are wedges between directional regions that

correspond to no dpad component.

The following components are defined by possibly-overlapping truncated wedges pointing away from

0, 0 in x, y input space, with their angular size of XrInteractionProfileDpadBindingEXT::wedgeAngle

centered around the indicated direction.

• …/dpad_up: direction (0, 1)

Chapter 12. List of Current Extensions | 459

• …/dpad_down: direction (0, -1)

• …/dpad_left: direction (-1, 0)

• …/dpad_right: direction (1, 0)

Typical values for wedgeAngle are ½ π (or 90°) for regions that do not overlap or ¾ π (or 135°) for

regions are evenly divided between the exclusive region for one cardinal direction and the overlap

with neighboring regions.

Each of these regions are truncated by an arc to exclude the area within a radius of

XrInteractionProfileDpadBindingEXT::centerRegion away from 0, 0. When used with an input path with

an identifier of trackpad, the area within this radius corresponds to the …/dpad_center component.

When used with an input path with an identifier of thumbstick, the area within this radius is a region

where all dpad components must be inactive.

Figure 8. Wedge Angles

Behavior

For both the trackpad and thumbstick input identifiers, there are conditions that must be true for any

dpad component to report active. If these conditions are true, the selection of which component or

components are active, if any, takes place.

• Activation of a dpad component when appended to an input path with identifier trackpad on the

values of the …/x and …/y components, as well as on an overall activation state. If the overall state is

inactive, the runtime must treat all corresponding dpad components as inactive.

◦ If the component …/click is also valid for the trackpad, the overall activation state is equal to the

value of the …/click.

◦ If the component …/click is not valid for the trackpad, but the component …/force is valid, the

overall activation state depends on the value of that …/force component, as well as the previous

overall activation state for hysteresis. The …/force component value hysteresis thresholds for

460 | Chapter 12. List of Current Extensions

overall activation are XrInteractionProfileDpadBindingEXT::forceThreshold and

forceThresholdReleased. More explicitly:

▪ If the previous overall state was inactive, the current overall state must be active if and only

if the value of the …/force component is greater than or equal to forceThreshold.

▪ If the previous overall state was active, the current state must be inactive if and only if the

value of the …/force component is strictly less than forceThresholdReleased.

• Activation of a dpad component when appended to an input path with identifier thumbstick

depends only on the value of the …/x and …/y components of that input.

◦ If the thumbstick x and y values correspond to a deflection from center of less than

centerRegion, all dpad components must be reported as inactive.

Hysteresis is desirable to avoid an unintentional, rapid toggling between the active and inactive state

that can occur when the amount of force applied by the user is very close to the threshold at which the

input is considered active. Hysteresis is optional, and is achieved through a difference between

forceThreshold and forceThresholdReleased.

When XrInteractionProfileDpadBindingEXT::isSticky is XR_FALSE, and the above logic indicates that

some dpad component is active, a runtime obeying suggested bindings must select which dpad

components to report as active based solely on the current x, y values.

If XrInteractionProfileDpadBindingEXT::isSticky is XR_TRUE, the region(s) to be made active must be

latched when the above logic begins to indicate that some dpad component is active, and the x and y

values are within at least one region. The latched region(s) must continue to be reported as active until

the activation logic indicates that all dpad components must be inactive. The latched region(s) remain

active even if the input leaves that region or enters another region.

The runtime must latch the x and y values, and thus the region or regions (in the case of overlapping

dpad component wedges), when the sticky activation toggle becomes true. The latched regions must

continue to be true until the input returns to the center region (for a thumbstick) or is released (for a

trackpad). In this way, sticky dpads maintain their selected region across touch/click transitions.

Chapter 12. List of Current Extensions | 461

Examples for isSticky == XR_TRUE

• Trackpad example: If the user clicks a trackpad in the …/dpad_up region, then (while clicked)

slides their finger to the …/dpad_down region, …/dpad_up will remain true.

• Thumbstick example: If the user presses up on the thumbstick and activates the …/dpad_up

region, then slides the thumbstick around to the …/dpad_down region without crossing the

centerRegion, …/dpad_up is the virtual input that will be true.

• Thumbstick example: If the user presses up on the thumbstick and activates the …/dpad_up

region, then slides the thumbstick directly down and through the region specified by

centerRegion to …/dpad_down. Initially …/dpad_up will activate. Then when the thumbstick

enters the centerRegion it will deactivate. Finally, when entering the …/dpad_down region

…/dpad_down will activate.

New Structures

The XrInteractionProfileDpadBindingEXT structure is defined as:

// Provided by XR_EXT_dpad_binding

typedef struct XrInteractionProfileDpadBindingEXT {

 XrStructureType type;

 const void* next;

 XrPath binding;

 XrActionSet actionSet;

 float forceThreshold;

 float forceThresholdReleased;

 float centerRegion;

 float wedgeAngle;

 XrBool32 isSticky;

 const XrHapticBaseHeader* onHaptic;

 const XrHapticBaseHeader* offHaptic;

} XrInteractionProfileDpadBindingEXT;

462 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• binding is the input path used for the specified actions in the suggested binding list to be used

as a dpad. E.g. path:/user/hand/right/input/thumbstick

• actionSet is the action set for which this dpad will be active. The implementation must use

the parameters from this structure for any actions from this action set that are bound to one

of the dpad subpaths for this input path.

• forceThreshold a number in the half-open range (0, 1] representing the force value threshold

at or above which (≥) a dpad input will transition from inactive to active.

• forceThresholdReleased a number in the half-open range (0, 1] representing the force value

threshold strictly below which (<) a dpad input will transition from active to inactive.

• centerRegion defines the center region of the thumbstick or trackpad. This is the radius, in the

input value space, of a logically circular region in the center of the input, in the range (0, 1).

• wedgeAngle indicates the angle in radians of each direction region and is a value in the half-

open range [0, π).

• isSticky indicates that the implementation will latch the first region that is activated and

continue to indicate that the binding for that region is true until the user releases the input

underlying the virtual dpad.

• onHaptic is the haptic output that the runtime must trigger when the binding changes from

false to true. If this field is NULL, the runtime must not trigger any haptic output on the

threshold. This field can point to any supported sub-type of XrHapticBaseHeader.

• offHaptic is the haptic output that the runtime must trigger when the binding changes from

true to false. If this field is NULL, the runtime must not trigger any haptic output on the

threshold. This field can point to any supported sub-type of XrHapticBaseHeader.

The XrInteractionProfileDpadBindingEXT structure is an input struct that defines how to use any two-

axis input to provide dpad-like functionality to the application. The struct must be added for each

input that should be treated as a dpad to the XrBindingModificationsKHR::bindingModifications array

in the XrBindingModificationsKHR structure (See XR_KHR_binding_modification extension).

Runtimes are free to ignore any of the fields when not obeying the bindings, but may use it for

automatic rebindings of actions.

The implementation must return XR_ERROR_VALIDATION_FAILURE from

xrSuggestInteractionProfileBindings if any of the following are true:

• forceThreshold or forceThresholdReleased are outside the half-open range (0, 1]

Chapter 12. List of Current Extensions | 463

• forceThreshold < forceThresholdReleased

• centerRegion is outside the exclusive range (0, 1)

• wedgeAngle outside the half-open range [0, π)

If more than one XrInteractionProfileDpadBindingEXT is provided for the same input identifier,

including top level path (e.g. /user/hand/left/input/thumbstick), and two or more of them specify the

same actionset, the runtime must return XR_ERROR_VALIDATION_FAILURE. If the same input identifier,

including top level path, is used for more than one action set, in addition to inputs being suppressed by

higher priority action sets, haptic events from dpads are also suppressed.

For example, a Valve Index controller binding with a "Walking" action set can have a dpad on each of:

• left thumbstick

• right thumbstick

• left trackpad

• right trackpad

Another action set can also have a dpad active on each of those inputs, and they can have different

settings. If both action sets are active, the higher priority one trumps the lower priority one, and the

lower priority one is suppressed.

Valid Usage (Implicit)

• The XR_EXT_dpad_binding extension must be enabled prior to using

XrInteractionProfileDpadBindingEXT

• type must be XR_TYPE_INTERACTION_PROFILE_DPAD_BINDING_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• actionSet must be a valid XrActionSet handle

• If onHaptic is not NULL, onHaptic must be a pointer to a valid XrHapticBaseHeader-based

structure. See also: XrHapticAmplitudeEnvelopeVibrationFB, XrHapticPcmVibrationFB,

XrHapticVibration

• If offHaptic is not NULL, offHaptic must be a pointer to a valid XrHapticBaseHeader-based

structure. See also: XrHapticAmplitudeEnvelopeVibrationFB, XrHapticPcmVibrationFB,

XrHapticVibration

New Functions

Issues

• What if an interaction profile is added that contains a trackpad identifier, for which there is neither

a …/click or a …/force component?

464 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

◦ Equivalent logic would apply to whatever component is available to distinguish action from

inaction.

• Is zero a valid wedge angle? Is π?

◦ Yes, though it is mostly useless, as it makes the directional regions empty in size and thus

impossible to activate. The user could only activate …/dpad_center on a trackpad identifier. π is

not a valid wedge angle because that would imply being able to activate three adjacent

directions, of which two must be opposite. In practice, the sensors underlying these inputs

make it effectively impossible to input an exact floating point value.

Example

The following sample code shows how to create dpad bindings using this extension.

 1 // Create dpad paths

 2 XrPath pathThumbstick, pathDpadUp, pathDpadDown;

 3 xrStringToPath(pInstance, "/user/hand/left/input/thumbstick", &pathThumbstick);

 4 xrStringToPath(pInstance, "/user/hand/left/input/thumbstick/dpad_up", &pathDpadUp

);

 5 xrStringToPath(pInstance, "/user/hand/left/input/thumbstick/dpad_down",

 &pathDpadDown);

 6

 7 // Set dpad binding modifiers

 8 XrInteractionProfileDpadBindingEXT xrDpadModification {

 XR_TYPE_INTERACTION_PROFILE_DPAD_BINDING_EXT };

 9 xrDpadModification.actionSet = xrActionSet_Main;

10 xrDpadModification.binding = pathThumbstick;

11 xrDpadModification.centerRegion = 0.25f;

12 xrDpadModification.wedgeAngle = 2.0f;

13 // A gap between these next two members creates hysteresis, to avoid rapid

 toggling

14 xrDpadModification.forceThreshold = 0.8f;

15 xrDpadModification.forceThresholdReleased = 0.2f;

16

17 // Add dpad binding modifiers to binding modifications vector

18 std::vector< XrInteractionProfileDpadBindingEXT > vBindingModifs;

19 vBindingModifs.push_back(xrDpadModification);

20

21 std::vector< XrBindingModificationBaseHeaderKHR* > vBindingModifsBase;

22 for (XrInteractionProfileDpadBindingEXT &modif : vBindingModifs)

23 {

24 vBindingModifsBase.push_back(reinterpret_cast<

 XrBindingModificationBaseHeaderKHR* >(&modif));

25 }

26

27 XrBindingModificationsKHR xrBindingModifications {

 XR_TYPE_BINDING_MODIFICATIONS_KHR };

Chapter 12. List of Current Extensions | 465

28 xrBindingModifications.bindingModifications = vBindingModifsBase.data();

29 xrBindingModifications.bindingModificationCount = (uint32_t)vBindingModifsBase

 .size();

30

31 // Set dpad input path as suggested binding for an action

32 XrActionSuggestedBinding xrActionBindingTeleport, xrActionBindingMenu;

33

34 xrActionBindingTeleport.action = xrAction_Teleport;

35 xrActionBindingTeleport.binding = pathDpadUp;

36

37 xrActionBindingMenu.action = xrAction_Menu;

38 xrActionBindingMenu.binding = pathDpadDown;

39

40 std::vector< XrActionSuggestedBinding > vActionBindings;

41 vActionBindings.push_back(xrActionBindingTeleport);

42 vActionBindings.push_back(xrActionBindingMenu);

43

44 // Create interaction profile/controller path

45 XrPath xrInteractionProfilePath;

46 xrStringToPath(pInstance, "/interaction_profiles/valve/index_controller",

 &xrInteractionProfilePath);

47

48 // Set suggested binding to interaction profile

49 XrInteractionProfileSuggestedBinding xrInteractionProfileSuggestedBinding {

 XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING };

50 xrInteractionProfileSuggestedBinding.interactionProfile =

 xrInteractionProfilePath;

51 xrInteractionProfileSuggestedBinding.suggestedBindings = vActionBindings.data();

52 xrInteractionProfileSuggestedBinding.countSuggestedBindings = (uint32_t

)vActionBindings.size();

53

54 // Set binding modifications to interaction profile's suggested binding

55 xrInteractionProfileSuggestedBinding.next = &xrBindingModifications;

56

57 // Finally, suggest interaction profile bindings to runtime

58 xrSuggestInteractionProfileBindings(pInstance,

 &xrInteractionProfileSuggestedBinding);

Version History

• Revision 1, 2022-02-18 (Rune Berg)

◦ Initial extension description

12.28. XR_EXT_eye_gaze_interaction

466 | Chapter 12. List of Current Extensions

Name String

XR_EXT_eye_gaze_interaction

Extension Type

Instance extension

Registered Extension Number

31

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-02-20

IP Status

No known IP claims.

Contributors

Denny Rönngren, Tobii

Yin Li, Microsoft

Alex Turner, Microsoft

Paul Pedriana, Oculus

Rémi Arnaud, Varjo

Blake Taylor, Magic Leap

Lachlan Ford, Microsoft

Cass Everitt, Oculus

Overview

This extension provides an XrPath for getting eye gaze input from an eye tracker to enable eye gaze

interactions.

The intended use for this extension is to provide:

• system properties to inform if eye gaze interaction is supported by the current device.

• an XrPath for real time eye tracking that exposes an accurate and precise eye gaze pose to be used

to enable eye gaze interactions.

• a structure XrEyeGazeSampleTimeEXT that allows for an application to retrieve more information

regarding the eye tracking samples.

With these building blocks, an application can discover if the XR runtime has access to an eye tracker,

Chapter 12. List of Current Extensions | 467

bind the eye gaze pose to the action system, determine if the eye tracker is actively tracking the users

eye gaze, and use the eye gaze pose as an input signal to build eye gaze interactions.

12.28.1. Eye tracker

An eye tracker is a sensory device that tracks eyes and accurately maps what the user is looking at. The

main purpose of this extension is to provide accurate and precise eye gaze for the application.

Eye tracking data can be sensitive personal information and is closely linked to personal privacy and

integrity. It is strongly recommended that applications that store or transfer eye tracking data always

ask the user for active and specific acceptance to do so.

If a runtime supports a permission system to control application access to the eye tracker, then the

runtime must set the isActive field to XR_FALSE on the supplied XrActionStatePose structure, and must

clear XR_SPACE_LOCATION_POSITION_TRACKED_BIT, XR_SPACE_LOCATION_POSITION_VALID_BIT,

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT when

locating using the tracked space until the application has been allowed access to the eye tracker. When

the application access has been allowed, the runtime may set isActive on the supplied

XrActionStatePose structure to XR_TRUE and may set XR_SPACE_LOCATION_POSITION_TRACKED_BIT,

XR_SPACE_LOCATION_POSITION_VALID_BIT XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT and

XR_SPACE_LOCATION_ORIENTATION_VALID_BIT when locating using the tracked space.

12.28.2. Device enumeration

When the eye gaze input extension is enabled an application may pass in a

XrSystemEyeGazeInteractionPropertiesEXT structure in next chain structure when calling

xrGetSystemProperties to acquire information about the connected eye tracker.

The runtime must populate the XrSystemEyeGazeInteractionPropertiesEXT structure with the relevant

information to the XrSystemProperties returned by the xrGetSystemProperties call.

// Provided by XR_EXT_eye_gaze_interaction

typedef struct XrSystemEyeGazeInteractionPropertiesEXT {

 XrStructureType type;

 void* next;

 XrBool32 supportsEyeGazeInteraction;

} XrSystemEyeGazeInteractionPropertiesEXT;

468 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsEyeGazeInteraction the runtime must set this value to XR_TRUE when eye gaze

sufficient for use cases such as aiming or targeting is supported by the current device,

otherwise the runtime must set this to XR_FALSE.

Valid Usage (Implicit)

• The XR_EXT_eye_gaze_interaction extension must be enabled prior to using

XrSystemEyeGazeInteractionPropertiesEXT

• type must be XR_TYPE_SYSTEM_EYE_GAZE_INTERACTION_PROPERTIES_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

12.28.3. Eye gaze input

This extension exposes a new interaction profile path /interaction_profiles/ext/eye_gaze_interaction that

is valid for the user path

• /user/eyes_ext

for supported input source

• …/input/gaze_ext/pose

Note

The interaction profile path /interaction_profiles/ext/eye_gaze_interaction defined here does not

follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/ext/eye_gaze_interaction_ext, to allow for modifications

when promoted to a KHR extension or the core specification.

The eye gaze pose is natively oriented with +Y up, +X to the right, and -Z forward and not gravity-

aligned, similar to the XR_REFERENCE_SPACE_TYPE_VIEW. The eye gaze pose may originate from a point

positioned between the user’s eyes. At any point of time both the position and direction of the eye pose

is tracked or untracked. This means that the runtime must set both

XR_SPACE_LOCATION_POSITION_TRACKED_BIT and XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT or clear both

XR_SPACE_LOCATION_POSITION_TRACKED_BIT and XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT.

Chapter 12. List of Current Extensions | 469

#valid-usage-for-structure-pointer-chains

One particularity for eye trackers compared to most other spatial input is that the runtime may not

have the capability to predict or interpolate eye gaze poses. Runtimes that cannot predict or

interpolate eye gaze poses must clamp the gaze pose requested in the xrLocateSpace call to the value

nearest to time requested in the call. To allow for an application to reason about high accuracy eye

tracking, the application can chain in an XrEyeGazeSampleTimeEXT to the next pointer of the

XrSpaceLocation structure passed into the xrLocateSpace call. The runtime must set time in the

XrEyeGazeSampleTimeEXT structure to the clamped, predicted or interpolated time. The application

should inspect the time field to understand when in time the pose is expressed. The time field may be

in the future if a runtime can predict gaze poses. The runtime must set the time field to 0 if the sample

time is not available.

When the runtime provides a nominal eye gaze pose, the XR_SPACE_LOCATION_POSITION_TRACKED_BIT

must be set if the eye otherwise has a fully-tracked pose relative to the other space. A runtime can

provide a sub-nominal eye-gaze pose but must then clear the XR_SPACE_LOCATION_POSITION_TRACKED_BIT.

An application can expect that a nominal eye gaze pose can be used for use cases such as aiming or

targeting, while a sub-nominal eye gaze pose has degraded performance and should not be relied on

for all input scenarios. Applications should be very careful when using sub-nominal eye gaze pose,

since the behavior can vary considerably for different users and manufacturers, and some

manufacturers may not provide sub-nominal eye gaze pose at all.

With current technology, some eye trackers may need to undergo an explicit calibration routine to

provide a nominal accurate and precise eye gaze pose. If the eye tracker is in an uncalibrated state

when the first call to xrSyncActions is made with an eye gaze action enabled, then the runtime should

request eye tracker calibration from the user if it has not yet been requested.

// Provided by XR_EXT_eye_gaze_interaction

typedef struct XrEyeGazeSampleTimeEXT {

 XrStructureType type;

 void* next;

 XrTime time;

} XrEyeGazeSampleTimeEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• time is when in time the eye gaze pose is expressed.

470 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_EXT_eye_gaze_interaction extension must be enabled prior to using

XrEyeGazeSampleTimeEXT

• type must be XR_TYPE_EYE_GAZE_SAMPLE_TIME_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

12.28.4. Sample code

The following example code shows how to bind the eye pose to the action system.

extern XrInstance instance;

extern XrSession session;

extern XrPosef pose_identity;

// Create action set

XrActionSetCreateInfo actionSetInfo{XR_TYPE_ACTION_SET_CREATE_INFO};

strcpy(actionSetInfo.actionSetName, "gameplay");

strcpy(actionSetInfo.localizedActionSetName, "Gameplay");

actionSetInfo.priority = 0;

XrActionSet gameplayActionSet;

CHK_XR(xrCreateActionSet(instance, &actionSetInfo, &gameplayActionSet));

// Create user intent action

XrActionCreateInfo actionInfo{XR_TYPE_ACTION_CREATE_INFO};

strcpy(actionInfo.actionName, "user_intent");

actionInfo.actionType = XR_ACTION_TYPE_POSE_INPUT;

strcpy(actionInfo.localizedActionName, "User Intent");

XrAction userIntentAction;

CHK_XR(xrCreateAction(gameplayActionSet, &actionInfo, &userIntentAction));

// Create suggested bindings

XrPath eyeGazeInteractionProfilePath;

CHK_XR(xrStringToPath(instance, "/interaction_profiles/ext/eye_gaze_interaction",

&eyeGazeInteractionProfilePath));

XrPath gazePosePath;

CHK_XR(xrStringToPath(instance, "/user/eyes_ext/input/gaze_ext/pose", &gazePosePath));

XrActionSuggestedBinding bindings;

bindings.action = userIntentAction;

bindings.binding = gazePosePath;

XrInteractionProfileSuggestedBinding suggestedBindings

Chapter 12. List of Current Extensions | 471

#valid-usage-for-structure-pointer-chains

{XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING};

suggestedBindings.interactionProfile = eyeGazeInteractionProfilePath;

suggestedBindings.suggestedBindings = &bindings;

suggestedBindings.countSuggestedBindings = 1;

CHK_XR(xrSuggestInteractionProfileBindings(instance, &suggestedBindings));

XrSessionActionSetsAttachInfo attachInfo{XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO};

attachInfo.countActionSets = 1;

attachInfo.actionSets = &gameplayActionSet;

CHK_XR(xrAttachSessionActionSets(session, &attachInfo));

XrActionSpaceCreateInfo createActionSpaceInfo{XR_TYPE_ACTION_SPACE_CREATE_INFO};

createActionSpaceInfo.action = userIntentAction;

createActionSpaceInfo.poseInActionSpace = pose_identity;

XrSpace gazeActionSpace;

CHK_XR(xrCreateActionSpace(session, &createActionSpaceInfo, &gazeActionSpace));

XrReferenceSpaceCreateInfo createReferenceSpaceInfo{XR_TYPE_REFERENCE_SPACE_CREATE_INFO};

createReferenceSpaceInfo.referenceSpaceType = XR_REFERENCE_SPACE_TYPE_LOCAL;

createReferenceSpaceInfo.poseInReferenceSpace = pose_identity;

XrSpace localReferenceSpace;

CHK_XR(xrCreateReferenceSpace(session, &createReferenceSpaceInfo, &localReferenceSpace));

while(true)

{

 XrActiveActionSet activeActionSet{gameplayActionSet, XR_NULL_PATH};

 XrTime time;

 XrActionsSyncInfo syncInfo{XR_TYPE_ACTIONS_SYNC_INFO};

 syncInfo.countActiveActionSets = 1;

 syncInfo.activeActionSets = &activeActionSet;

 CHK_XR(xrSyncActions(session, &syncInfo));

 XrActionStatePose actionStatePose{XR_TYPE_ACTION_STATE_POSE};

 XrActionStateGetInfo getActionStateInfo{XR_TYPE_ACTION_STATE_GET_INFO};

 getActionStateInfo.action = userIntentAction;

 CHK_XR(xrGetActionStatePose(session, &getActionStateInfo, &actionStatePose));

 if(actionStatePose.isActive){

 XrEyeGazeSampleTimeEXT eyeGazeSampleTime{XR_TYPE_EYE_GAZE_SAMPLE_TIME_EXT};

 XrSpaceLocation gazeLocation{XR_TYPE_SPACE_LOCATION, &eyeGazeSampleTime};

 CHK_XR(xrLocateSpace(gazeActionSpace, localReferenceSpace, time, &gazeLocation));

 // Do things

 }

}

472 | Chapter 12. List of Current Extensions

Version History

• Revision 1, 2020-02-20 (Denny Rönngren)

◦ Initial version

• Revision 2, 2022-05-27 (Bryce Hutchings)

◦ Remove error-prone XrEyeGazeSampleTimeEXT validation requirement

12.29. XR_EXT_future

Name String

XR_EXT_future

Extension Type

Instance extension

Registered Extension Number

470

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

Bryce Hutchings, Microsoft

Andreas Selvik, Meta

Ron Bessems, Magic Leap

Yin Li, Microsoft Corporation

Baolin Fu, Bytedance

Cass Everitt, Meta Platforms

Charlton Rodda, Collabora

Jakob Bornecrantz, NVIDIA

John Kearney, Meta Platforms

Jonathan Wright, Meta Platforms

Jun Yan, ByteDance

Junyi Wang, Bytedance Ltd.

Karthik Kadappan, Magic Leap

Natalie Fleury, Meta Platforms

Nathan Nuber, Valve

Nikita Lutsenko, Meta Platforms

Robert Blenkinsopp, Ultraleap

Rylie Pavlik, Collabora

Chapter 12. List of Current Extensions | 473

Tim Mowrer, Meta Platforms

Wenlin Mao, Meta Platforms

Will Fu, Bytedance

Zhipeng Liu, Bytedance

12.29.1. Overview

In XR systems there are certain operations that are long running and do not reasonably complete

within a normal frame loop. This extension introduces the concept of a future which supports creation

of asynchronous (async) functions for such long running operations. This extension does not include

any asynchronous operations: it is expected that other extensions will use these futures and their

associated conventions in this extension to define their asynchronous operations.

An XrFutureEXT represents the future result of an asynchronous operation, comprising an XrResult and

possibly additional outputs. Long running operations immediately return an XrFutureEXT when started,

letting the application poll the state of the future, and get the result once ready by calling a "complete"-

function.

12.29.2. Getting a future

The XrFutureEXT basetype is defined as:

// Provided by XR_EXT_future

XR_DEFINE_OPAQUE_64(XrFutureEXT)

Asynchronous functions return an XrFutureEXT token as a placeholder for a value that will be returned

later. An XrFutureEXT returned by a successful call to a function starting an asynchronous operation

should normally start in the XR_FUTURE_STATE_PENDING_EXT state, but may skip directly to

XR_FUTURE_STATE_READY_EXT if the result is immediately available.

The value XR_NULL_FUTURE_EXT, numerically equal to 0, is never a valid XrFutureEXT value.

Note that an XrFutureEXT token is neither a handle nor an atom type (such as XrPath). It belongs to a

new category and is defined as an opaque 64-bit value. See Future Scope for details on the scope and

lifecycle of a future.

Style note: Functions that return an XrFutureEXT should be named with the suffix "Async", e.g.

xrPerformLongTaskAsync. This function must not set the XrFutureEXT to XR_NULL_FUTURE_EXT when the

function returns XR_SUCCESS.

12.29.3. Waiting for a future to become ready

The xrPollFutureEXT function is defined as:

474 | Chapter 12. List of Current Extensions

// Provided by XR_EXT_future

XrResult xrPollFutureEXT(

 XrInstance instance,

 const XrFuturePollInfoEXT* pollInfo,

 XrFuturePollResultEXT* pollResult);

Parameter Descriptions

• instance is an XrInstance handle

• pollInfo is a pointer to an XrFuturePollInfoEXT structure.

• pollResult is a pointer to an XrFuturePollResultEXT structure to be populated on a successful

call.

Applications can use this function to check the current state of a future, typically while waiting for the

async operation to complete and the future to become "ready" to complete. Note

Each XrFutureEXT value must be externally synchronized by the application when

calling completion, polling, and cancellation functions, and when destroying the

associated handle.

Valid Usage (Implicit)

• The XR_EXT_future extension must be enabled prior to calling xrPollFutureEXT

• instance must be a valid XrInstance handle

• pollInfo must be a pointer to a valid XrFuturePollInfoEXT structure

• pollResult must be a pointer to an XrFuturePollResultEXT structure

Chapter 12. List of Current Extensions | 475

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_FUTURE_INVALID_EXT

The XrFuturePollInfoEXT structure is defined as:

// Provided by XR_EXT_future

typedef struct XrFuturePollInfoEXT {

 XrStructureType type;

 const void* next;

 XrFutureEXT future;

} XrFuturePollInfoEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• future is the XrFutureEXT future being polled.

An XrFuturePollInfoEXT structure is used to pass future to xrPollFutureEXT.

Valid Usage (Implicit)

• The XR_EXT_future extension must be enabled prior to using XrFuturePollInfoEXT

• type must be XR_TYPE_FUTURE_POLL_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

476 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

The XrFuturePollResultEXT structure is defined as:

// Provided by XR_EXT_future

typedef struct XrFuturePollResultEXT {

 XrStructureType type;

 void* next;

 XrFutureStateEXT state;

} XrFuturePollResultEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• state is the XrFutureStateEXT of the XrFutureEXT passed to xrPollFutureEXT.

An XrFuturePollResultEXT structure is used to return the result of xrPollFutureEXT.

Valid Usage (Implicit)

• The XR_EXT_future extension must be enabled prior to using XrFuturePollResultEXT

• type must be XR_TYPE_FUTURE_POLL_RESULT_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

12.29.4. Completing a Future

Extensions that provide async functions returning a future should also provide a matching completion

function to "complete" the future in order to return the result of the asynchronous operation. This

function should be named with the suffix "Complete" replacing the "Async" suffix, e.g.

xrPerformLongTaskComplete is a suitable completion function name corresponding to

xrPerformLongTaskAsync.

A completion function must populate a structure that must be based on

XrFutureCompletionBaseHeaderEXT to return the result of the asynchronous operation. Such a

structure may be static_cast to and from XrFutureCompletionBaseHeaderEXT, allowing generic

handling of the asynchronous operation results as well as polymorphic output from such an operation.

The XrResult returned from a completion function must not be used to return the result of the

asynchronous operation. Instead, the XrResult returned from a completion function must indicate

both whether the completion function was called correctly, and if the completion of the future

succeeded.

Chapter 12. List of Current Extensions | 477

#valid-usage-for-structure-pointer-chains

For instance, a completion function returning XR_ERROR_HANDLE_INVALID means that a handle passed to

the completion function was invalid, not that a handle associated with the asynchronous operation is

invalid. Note that XR_SUCCESS should be returned from the completion function even if the

asynchronous operation itself was a failure; that failure is indicated in

XrFutureCompletionBaseHeaderEXT::futureResult rather than the return value of the completion

function.

When a completion function is called with a future that is in the XR_FUTURE_STATE_PENDING_EXT state, the

runtime must return XR_ERROR_FUTURE_PENDING_EXT.

The XrResult of the asynchronous operation must be returned in the futureResult of the return

structure extending XrFutureCompletionBaseHeaderEXT. Completion functions which only need to

return an XrResult may populate the XrFutureCompletionEXT structure provided by this extension as

their output structure.

Once a completion function is called on a future with a valid output structure and returns XR_SUCCESS,

the future is considered completed, and therefore invalidated. Any usage of this future thereafter

must return XR_ERROR_FUTURE_INVALID_EXT.

Passing a completed future to any function accepting futures must return XR_ERROR_FUTURE_INVALID_EXT.

The runtime may release any resources associated with an XrFutureEXT once the future has been

completed or invalidated. Note

Each XrFutureEXT value must be externally synchronized by the application when

calling completion, polling, and cancellation functions, and when destroying the

associated handle.

The XrFutureCompletionBaseHeaderEXT structure is defined as:

// Provided by XR_EXT_future

typedef struct XrFutureCompletionBaseHeaderEXT {

 XrStructureType type;

 void* next;

 XrResult futureResult;

} XrFutureCompletionBaseHeaderEXT;

478 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• futureResult is XrResult of the async operation associated with future passed to the

completion function.

XrFutureCompletionBaseHeaderEXT is a base header for the result of a future completion function.

Valid Usage (Implicit)

• The XR_EXT_future extension must be enabled prior to using

XrFutureCompletionBaseHeaderEXT

• type must be XR_TYPE_FUTURE_COMPLETION_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• futureResult must be a valid XrResult value

The XrFutureCompletionEXT structure is defined as:

// Provided by XR_EXT_future

typedef struct XrFutureCompletionEXT {

 XrStructureType type;

 void* next;

 XrResult futureResult;

} XrFutureCompletionEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• futureResult is XrResult of the async operation associated with future passed to the

completion function.

This is a minimal implementation of XrFutureCompletionBaseHeaderEXT, containing only the fields

present in the base header structure. It is intended for use by asynchronous operations that do not

have other outputs or return values beyond an XrResult value, as the output parameter of their

Chapter 12. List of Current Extensions | 479

#valid-usage-for-structure-pointer-chains

completion function.

Valid Usage (Implicit)

• The XR_EXT_future extension must be enabled prior to using XrFutureCompletionEXT

• type must be XR_TYPE_FUTURE_COMPLETION_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• futureResult must be a valid XrResult value

12.29.5. Two-Call Idiom in Asynchronous Operations

OpenXR uses a two-call idiom for interfaces that return arrays or buffers of variable size.

Asynchronous operations returning such an array or buffer similarly use the structure style of that

two-call idiom, with small modifications to the typical completion function conventions to account for

this pattern.

For completion functions returning an array or buffer using the two-call idiom, the future must be

marked as completed if the output array size is sufficient for all elements of the data and was thus

populated by the completion function. If the output array size is not sufficient, the runtime must not

mark the future as completed nor invalidated.

For an array of zero data elements, this means the first call to the two-call idiom completion function

must mark the future as completed and invalidated, even if the array is a NULL pointer. If

XrFutureCompletionBaseHeaderEXT::futureResult is a failure the runtime must invalidate the future

after the first call, and any further usage of this future must return XR_ERROR_FUTURE_INVALID_EXT.

For non-zero output arrays where XrFutureCompletionBaseHeaderEXT::futureResult is not a failure,

XrFutureCompletionBaseHeaderEXT::futureResult must be identical for both calls to the completion

function.

This definition allows asynchronous operations to return dynamically sized outputs by using the two-

call idiom in a familiar way.

12.29.6. Cancelling a future

The xrCancelFutureEXT function is defined as:

// Provided by XR_EXT_future

XrResult xrCancelFutureEXT(

 XrInstance instance,

 const XrFutureCancelInfoEXT* cancelInfo);

480 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• instance is an XrInstance handle

• cancelInfo is a pointer to an XrFutureCancelInfoEXT structure.

This function cancels the future and signals that the async operation is not required. After a future has

been cancelled any functions using this future must return XR_ERROR_FUTURE_INVALID_EXT.

A runtime may stop the asynchronous operation associated with a future after an app has cancelled it. Note

Each XrFutureEXT value must be externally synchronized by the application when

calling completion, polling, and cancellation functions, or destroying the associated

handle.

Valid Usage (Implicit)

• The XR_EXT_future extension must be enabled prior to calling xrCancelFutureEXT

• instance must be a valid XrInstance handle

• cancelInfo must be a pointer to a valid XrFutureCancelInfoEXT structure

Thread Safety

• Access to the future member of the cancelInfo parameter must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_FUTURE_INVALID_EXT

Chapter 12. List of Current Extensions | 481

The XrFutureCancelInfoEXT structure is defined as:

// Provided by XR_EXT_future

typedef struct XrFutureCancelInfoEXT {

 XrStructureType type;

 const void* next;

 XrFutureEXT future;

} XrFutureCancelInfoEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• future is XrFutureEXT to cancel.

An XrFutureCancelInfoEXT describes which future to cancel.

Valid Usage (Implicit)

• The XR_EXT_future extension must be enabled prior to using XrFutureCancelInfoEXT

• type must be XR_TYPE_FUTURE_CANCEL_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

12.29.7. XrFutureEXT Lifecycle

The XrFutureStateEXT enumerates the possible future lifecycle states:

// Provided by XR_EXT_future

typedef enum XrFutureStateEXT {

 XR_FUTURE_STATE_PENDING_EXT = 1,

 XR_FUTURE_STATE_READY_EXT = 2,

 XR_FUTURE_STATE_MAX_ENUM_EXT = 0x7FFFFFFF

} XrFutureStateEXT;

482 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Enumerant Descriptions

• XR_FUTURE_STATE_PENDING_EXT. The state of a future that is waiting for the async operation to

conclude. This is typically the initial state of a future returned from an async function.

• XR_FUTURE_STATE_READY_EXT. The state of a future when the result of the async operation is

ready. The application can retrieve the result by calling the associated completion function.

PENDING

xrFooAsync

READY

Async operation completes xrCancelFutureEXT

xrFooComplete

xrCancelFutureEXT

xrDestroy* associated handleAsync operation is completes immediately

Invalid

Figure 9. XrFutureEXT Life-cycle

A future that is not invalidated (or completed) may be in one of two states, Pending and Ready,

represented by XR_FUTURE_STATE_PENDING_EXT and XR_FUTURE_STATE_READY_EXT respectively.

• When successfully returned from an async function the future starts out as Pending. In this state the

future may be polled, but must not be passed to a completion function. Applications should wait

for the future to become ready and keep polling the state of the future. If a pending future is passed

to the associated completion function, it must return XR_ERROR_FUTURE_PENDING_EXT.

• Once the asynchronous operation succeeds or fails, the state of the future moves to Ready. In the

ready state the future may be "Completed" with the Complete function. See Completing a Future.

• After being successfully completed, the future becomes invalidated if the completion function

Chapter 12. List of Current Extensions | 483

returns a success code, and in the case of two-call idioms, the array was not NULL.

• After a call to xrCancelFutureEXT, the future becomes invalidated immediately and any resources

associated with it may be freed (including handles)

• When the associated handle is destroyed, the futures become invalidated. See Future Scope.

A future returned from an async function must be in either the state XR_FUTURE_STATE_PENDING_EXT or

XR_FUTURE_STATE_READY_EXT. A runtime may skip the Pending state and go directly to Ready if the result is

immediately available.

12.29.8. Future Scope

An XrFutureEXT is scoped to the "associated handle" of the future. The associated handle is the handle

passed to the asynchronous operation that returns the XrFutureEXT. When the associated handle is

destroyed, the runtime must invalidate the future and may free any associated resources. Note

For example, for a hypothetical async function xrGetFooAsync(Session session,

XrFooGetInfo info, XrFutureEXT* future) then XrSession is the associated handle, and

if the app calls xrDestroySession(…) the returned future becomes invalid.

Likewise, for xrRequestBar(BarGenerator barGenerator, XrBarGenerateInfo info,

XrFutureEXT* future), the hypothetical BarGenerator is the associated handle that

scopes the future.

12.29.9. Extension Guidelines for Asynchronous Functions

Extensions exposing asynchronous functions using XR_EXT_future should follow the following patterns:

1. Functions returning a future should use the suffix "Async", prior to an author/vendor tag if

applicable. For example:

◦ xrGetFooAsync(…)

◦ xrRequestBarAsyncKHR(…)

◦ xrCreateObjectAsyncVENDOR(…)

2. The name of the future out parameter should be future. For example:

◦ xrGetFooAsync(…, XrFutureEXT* future)

◦ xrRequestBarAsyncKHR(…, XrFutureEXT* future)

◦ xrCreateObjectAsyncVENDOR(…, XrFutureEXT* future)

3. Functions completing a future should match the name of the function returning the future, but

with "Complete" rather than "Async" as the suffix. This is a deviation from the normal pattern in

OpenXR, if "complete" is considered to be the verb; however this provides for a useful sorting order

keeping the "Async" and "Complete" functions adjacent, and fits the pattern of using suffixes for

484 | Chapter 12. List of Current Extensions

asynchronous functions. The completion function must use the same handle type as the

corresponding async function and the runtime must return XR_ERROR_HANDLE_INVALID if the handle

value passed to the completion function is different from the value passed to the async function

that returned the future. For example:

◦ xrGetFooComplete(…)

◦ xrRequestBarCompleteKHR(…),

◦ xrCreateObjectCompleteVENDOR(…)

4. The output structure used in the "Complete" function should extend

XrFutureCompletionBaseHeaderEXT (starting with type, next, and futureResult fields).

5. If an operation requires more than the basic XrFutureCompletionEXT output, the output structure

populated by the "Complete" function should be named based on the function that returned the

future, with the suffix "Completion". For example:

◦ xrGetFooComplete populates XrGetFooCompletion

◦ xrRequestBarComplete populates XrRequestBarCompletionKHR

◦ xrCreateObjectCompleteVENDOR populates XrCreateObjectCompletionVENDOR

6. The XrFutureEXT parameter in the "Complete" function should be named future. For example:

◦ xrGetFooComplete(…, XrFutureEXT future)

◦ xrRequestBarCompleteKHR(…, XrFutureEXT future)

◦ xrCreateObjectCompleteVENDOR(…, XrFutureEXT future)

7. The parameter with the completion structure should be named completion. e.g.

◦ xrGetFooComplete(…, XrFutureEXT future, XrGetFooCompletion* completion)

◦ xrRequestBarCompleteKHR(…, XrFutureEXT future, XrRequestBarCompletionKHR* completion)

◦ xrCreateObjectCompleteVENDOR(…, XrFutureEXT future, XrCreateObjectCompletionVENDOR*
completion)

12.29.10. Asynchronous function patterns

xrCreate functions

/****************************/

/* Foo extension definition */

/****************************/

typedef void *XrFoo; // Handle definition

typedef struct XrFooObjectCreateInfo {

 XrStructureType type;

 const void *next;

} XrFooObjectCreateInfo;

#define XR_TYPE_FOO_OBJECT_CREATE_INFO ((XrStructureType)1100092000U)

Chapter 12. List of Current Extensions | 485

// extends struct XrFutureCompletionBaseHeader using "parentstruct"

typedef struct XrFooObjectCreateCompletionEXT {

 XrStructureType type;

 void *XR_MAY_ALIAS next;

 XrResult futureResult;

 XrFoo foo;

} XrFooObjectCreateCompletionEXT;

#define XR_TYPE_FOO_OBJECT_CREATE_COMPLETION ((XrStructureType)1100092001U)

typedef XrResult(XRAPI_PTR *PFN_xrCreateFooObjectAsync)(

 XrSession session, const XrFooObjectCreateInfo *createInfo,

 XrFutureEXT *future);

typedef XrResult(XRAPI_PTR *PFN_xrCreateFooObjectComplete)(

 XrSession session, XrFutureEXT future,

 XrFooObjectCreateCompletionEXT *completion);

/*************************/

/* End Foo definition */

/*************************/

PFN_xrCreateFooObjectAsync xrCreateFooObjectAsync; // previously initialized

PFN_xrCreateFooObjectComplete

 xrCreateFooObjectComplete; // previously initialized

PFN_xrPollFutureEXT xrPollFutureEXT; // previously initialized

XrInstance instance; // previously initialized

XrSession session; // previously initialized

XrFutureEXT futureFooObject;

XrResult result;

XrFooObjectCreateInfo createInfo{XR_TYPE_FOO_OBJECT_CREATE_INFO};

result = xrCreateFooObjectAsync(session, &createInfo, &futureFooObject);

CHK_XR(result);

bool keepLooping = true;

bool futureReady = false;

while (keepLooping) {

 XrFuturePollInfoEXT pollInfo{XR_TYPE_FUTURE_POLL_INFO_EXT};

 XrFuturePollResultEXT pollResult{XR_TYPE_FUTURE_POLL_RESULT_EXT};

 pollInfo.future = futureFooObject;

 CHK_XR(xrPollFutureEXT(instance, &pollInfo, &pollResult));

 if (pollResult.state == XR_FUTURE_STATE_READY_EXT) {

 futureReady = true;

 keepLooping = false;

 } else {

 // sleep(10);

 }

486 | Chapter 12. List of Current Extensions

}

if (futureReady) {

 XrFooObjectCreateCompletionEXT completion{

 XR_TYPE_FOO_OBJECT_CREATE_COMPLETION};

 result = xrCreateFooObjectComplete(session, futureFooObject, &completion);

 CHK_XR(result); // Result of the complete function

 CHK_XR(completion.futureResult); // Return code of the create function

 // completion.fooObject is now valid and may be used!

}

Two-call idiom

/****************************/

/* Foo extension definition */

/****************************/

typedef struct XrFooObjectCreateInfo {

 XrStructureType type;

 const void *next;

} XrFooObjectCreateInfo;

#define XR_TYPE_FOO_OBJECTS_CREATE_INFO ((XrStructureType)1100092002U)

// extends struct XrFutureCompletionBaseHeader using "parentstruct"

typedef struct XrFooObjectsCreateCompletionEXT {

 XrStructureType type;

 void *next;

 XrResult futureResult;

 uint32_t elementCapacityInput;

 uint32_t elementCapacityOutput;

 float *elements;

} XrFooObjectsCreateCompletionEXT;

#define XR_TYPE_FOO_OBJECTS_CREATE_COMPLETION ((XrStructureType)1100092003U)

typedef XrResult(XRAPI_PTR *PFN_xrCreateFooObjectsAsync)(

 XrSession session, const XrFooObjectCreateInfo *createInfo,

 XrFutureEXT *future);

typedef XrResult(XRAPI_PTR *PFN_xrCreateFooObjectsComplete)(

 XrSession session, XrFutureEXT future,

 XrFooObjectsCreateCompletionEXT *completion);

/*************************/

/* End Foo definition */

/*************************/

PFN_xrCreateFooObjectsAsync xrCreateFooObjectsAsync; // previously initialized

PFN_xrCreateFooObjectsComplete

Chapter 12. List of Current Extensions | 487

 xrCreateFooObjectsComplete; // previously initialized

PFN_xrPollFutureEXT xrPollFutureEXT; // previously initialized

XrInstance instance; // previously initialized

XrSession session; // previously initialized

XrFutureEXT futureFooObjects;

XrResult result;

XrFooObjectCreateInfo createInfo{XR_TYPE_FOO_OBJECTS_CREATE_INFO};

result = xrCreateFooObjectsAsync(session, &createInfo, &futureFooObjects);

CHK_XR(result);

bool keepLooping = true;

bool futureReady = false;

while (keepLooping) {

 XrFuturePollInfoEXT pollInfo{XR_TYPE_FUTURE_POLL_INFO_EXT};

 XrFuturePollResultEXT pollResult{XR_TYPE_FUTURE_POLL_RESULT_EXT};

 pollInfo.future = futureFooObjects;

 CHK_XR(xrPollFutureEXT(instance, &pollInfo, &pollResult));

 if (pollResult.state == XR_FUTURE_STATE_READY_EXT) {

 futureReady = true;

 keepLooping = false;

 } else {

 // sleep(10);

 }

}

if (futureReady) {

 XrFooObjectsCreateCompletionEXT completion{

 XR_TYPE_FOO_OBJECTS_CREATE_COMPLETION};

 result = xrCreateFooObjectsComplete(session, futureFooObjects, &completion);

 CHK_XR(result); // Result of the complete function

 CHK_XR(completion.futureResult);

 std::vector<float> floatValues(completion.elementCapacityOutput);

 completion.elementCapacityInput = (uint32_t)floatValues.size();

 completion.elements = floatValues.data();

 result = xrCreateFooObjectsComplete(session, futureFooObjects, &completion);

 CHK_XR(result); // Result of the complete function

}

// completion.elements has now been filled with values by the runtime.

488 | Chapter 12. List of Current Extensions

Sample code

/***/

/* Slow Foo extension definition */

/***/

// extends struct XrFutureCompletionBaseHeader using "parentstruct"

typedef struct XrSlowFooCompletionEXT {

 XrStructureType type;

 void *XR_MAY_ALIAS next;

 XrResult futureResult;

 float foo;

} XrSlowFooCompletionEXT;

#define XR_TYPE_SLOW_FOO_COMPLETION_EXT ((XrStructureType)1100092005U)

typedef struct XrSlowFooInfoEXT {

 XrStructureType type;

 void *XR_MAY_ALIAS next;

} XrSlowFooInfoEXT;

#define XR_TYPE_SLOW_FOO_INFO_EXT ((XrStructureType)1100092006U)

typedef XrResult(XRAPI_PTR *PFN_xrSlowFooAsyncEXT)(XrSession session,

 XrSlowFooInfoEXT slowFooInfo,

 XrFutureEXT *future);

typedef XrResult(XRAPI_PTR *PFN_xrSlowFooCompleteEXT)(

 XrSession session, XrFutureEXT future, XrSlowFooCompletionEXT *completion);

/***/

/* End Slow Foo extension definition */

/***/

class MyGame {

 void OnSlowFooRequest() {

 if (m_slowFooFuture == XR_NULL_FUTURE_EXT) {

 // Make initial request.

 XrSlowFooInfoEXT fooInfo{XR_TYPE_SLOW_FOO_INFO_EXT};

 XrResult result = xrSlowFooAsyncEXT(session, fooInfo, &m_slowFooFuture);

 CHK_XR(result);

 }

 }

 void OnGameTickOrSomeOtherReoccurringFunction() {

 // Check if a future is outstanding

 if (m_slowFooFuture == XR_NULL_FUTURE_EXT) {

 return;

 }

Chapter 12. List of Current Extensions | 489

 // Poll for state of future

 XrFuturePollInfoEXT pollInfo{XR_TYPE_FUTURE_POLL_INFO_EXT};

 XrFuturePollResultEXT pollResult{XR_TYPE_FUTURE_POLL_RESULT_EXT};

 pollInfo.future = m_slowFooFuture;

 CHK_XR(xrPollFutureEXT(instance, &pollInfo, &pollResult));

 if (pollResult.state == XR_FUTURE_STATE_READY_EXT) {

 // Complete the future, consuming the result

 XrSlowFooCompletionEXT completion{XR_TYPE_SLOW_FOO_COMPLETION_EXT};

 XrResult result =

 xrSlowFooCompleteEXT(session, m_slowFooFuture, &completion);

 // Check XrResult from the completion function

 CHK_XR(result);

 // Check XrResult from the async operation

 CHK_XR(completion.futureResult);

 m_fooValue = completion.foo;

 m_slowFooFuture = XR_NULL_FUTURE_EXT;

 }

 }

 XrFutureEXT m_slowFooFuture{XR_NULL_FUTURE_EXT};

 float m_fooValue{0.0f};

 PFN_xrSlowFooAsyncEXT xrSlowFooAsyncEXT; // previously initialized

 PFN_xrSlowFooCompleteEXT xrSlowFooCompleteEXT; // previously initialized

 PFN_xrPollFutureEXT xrPollFutureEXT; // previously initialized

 XrInstance instance; // previously initialized

 XrSession session; // previously initialized

};

Multi-threaded code

class MyThreadedGame {

 MyThreadedGame() {

 // Start the thread

 m_processThread = std::thread(&MyThreadedGame::ThreadFunction, this);

 StartSlowFooRequest();

 }

 ~MyThreadedGame() {

 // all functions using futures must be synchronized.

 CancelSlowFooRequestFuture();

 m_abort = true;

 m_processThread.join();

 }

490 | Chapter 12. List of Current Extensions

 void StartSlowFooRequest() {

 std::unique_lock<std::mutex> lock(m_mutex);

 if (m_slowFooFuture == XR_NULL_FUTURE_EXT) {

 // Make initial request.

 XrSlowFooInfoEXT fooInfo{XR_TYPE_SLOW_FOO_INFO_EXT};

 XrResult result = xrSlowFooAsyncEXT(session, fooInfo, &m_slowFooFuture);

 CHK_XR(result);

 }

 }

 void CancelSlowFooRequestFuture() {

 std::unique_lock<std::mutex> lock(m_mutex);

 if (m_slowFooFuture != XR_NULL_FUTURE_EXT) {

 XrFutureCancelInfoEXT cancel_info{XR_TYPE_FUTURE_CANCEL_INFO_EXT};

 cancel_info.future = m_slowFooFuture;

 xrCancelFutureEXT(instance, &cancel_info);

 m_slowFooFuture = XR_NULL_FUTURE_EXT;

 }

 }

 void CheckFooRequestCompletion() {

 std::unique_lock<std::mutex> lock(m_mutex);

 // Check if a future is outstanding

 if (m_slowFooFuture == XR_NULL_FUTURE_EXT) {

 return;

 }

 // Poll for state of future

 XrFuturePollInfoEXT pollInfo{XR_TYPE_FUTURE_POLL_INFO_EXT};

 XrFuturePollResultEXT pollResult{XR_TYPE_FUTURE_POLL_RESULT_EXT};

 pollInfo.future = m_slowFooFuture;

 CHK_XR(xrPollFutureEXT(instance, &pollInfo, &pollResult));

 if (pollResult.state == XR_FUTURE_STATE_READY_EXT) {

 // Complete the future, consuming the result

 XrSlowFooCompletionEXT completion{XR_TYPE_SLOW_FOO_COMPLETION_EXT};

 XrResult result =

 xrSlowFooCompleteEXT(session, m_slowFooFuture, &completion);

 // Check XrResult from the completion function

 CHK_XR(result);

 // Check XrResult from the async operation

 CHK_XR(completion.futureResult);

 m_fooValue = completion.foo;

 m_slowFooFuture = XR_NULL_FUTURE_EXT;

 // Do something with the foo value.

Chapter 12. List of Current Extensions | 491

 }

 }

 void ThreadFunction() {

 while (!m_abort) {

 // other logic here

 CheckFooRequestCompletion();

 // sleep if needed.

 }

 }

 XrFutureEXT m_slowFooFuture{XR_NULL_FUTURE_EXT};

 float m_fooValue{0.0f};

 bool m_abort{false};

 std::mutex m_mutex;

 std::thread m_processThread;

};

New Base Types

• XrFutureEXT

New Functions

• xrPollFutureEXT

• xrCancelFutureEXT

New Structures

• XrFutureCompletionEXT

• XrFutureCompletionBaseHeaderEXT

• XrFuturePollInfoEXT

• XrFuturePollResultEXT

• XrFutureCancelInfoEXT

New Enum Constants

• XR_NULL_FUTURE_EXT

XrStructureType enumeration is extended with:

• XR_TYPE_FUTURE_CANCEL_INFO_EXT

• XR_TYPE_FUTURE_POLL_INFO_EXT

492 | Chapter 12. List of Current Extensions

• XR_TYPE_FUTURE_POLL_RESULT_EXT

• XR_TYPE_FUTURE_COMPLETION_EXT

XrResult enumeration is extended with:

• XR_ERROR_FUTURE_PENDING_EXT

• XR_ERROR_FUTURE_INVALID_EXT

Issues

• Should there be a state for completed functions that is separate from "invalid"?

◦ Resolved.

◦ Answer: No. This would force an implementing runtime to remember old futures forever. In

order to allow implementations that delete all associated data about a future after completion,

we cannot differentiate between a future that never existed and one that was completed.

Similarly, invalidated/completed is not formally a "state" for futures in the final API.

Version History

• Revision 1, 2023-02-14 (Andreas Løve Selvik, Meta Platforms and Ron Bessems, Magic Leap)

◦ Initial extension description

12.30. XR_EXT_hand_interaction

Name String

XR_EXT_hand_interaction

Extension Type

Instance extension

Registered Extension Number

303

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_palm_pose

Contributors

Yin Li, Microsoft

Chapter 12. List of Current Extensions | 493

Alex Turner, Microsoft

Casey Meekhof, Microsoft

Lachlan Ford, Microsoft

Eric Provencher, Unity Technologies

Bryan Dube, Unity Technologies

Peter Kuhn, Unity Technologies

Tanya Li, Unity Technologies

Jakob Bornecrantz, Collabora

Jonathan Wright, Meta Platforms

Federico Schliemann, Meta Platforms

Andreas Loeve Selvik, Meta Platforms

Nathan Nuber, Valve

Joe Ludwig, Valve

Rune Berg, Valve

Adam Harwood, Ultraleap

Robert Blenkinsopp, Ultraleap

Paulo Gomes, Samsung Electronics

Ron Bessems, Magic Leap

Bastiaan Olij, Godot Engine

12.30.1. Overview

This extension defines four commonly used action poses for all user hand interaction profiles

including both hand tracking devices and motion controller devices.

This extension also introduces a new interaction profile specifically designed for hand tracking devices

to input through the OpenXR action system. Though, for runtimes with controller inputs, the runtime

should also provide this interaction profile through action mappings from the controller inputs, so

that an application whose suggested action bindings solely depending on this hand interaction profile

is usable on such runtimes as well.

12.30.2. Action poses for hand interactions

The following four action poses (i.e. "pinch," "poke," "aim," and "grip") enable a hand and finger

interaction model, whether the tracking inputs are provided by a hand tracking device or a motion

controller device.

The runtime must support all of the following action subpaths on all interaction profiles that are valid

for the user paths of /user/hand/left and /user/hand/right, including those interaction profiles enabled

through extensions.

• …/input/aim/pose

• …/input/grip/pose

• …/input/pinch_ext/pose

494 | Chapter 12. List of Current Extensions

• …/input/poke_ext/pose

Aim pose

The …/input/aim/pose is designed for interacting with objects out of arm’s reach. For example, using a

virtual laser pointer to aim at a virtual button on the wall is an interaction suited to the "aim" pose.

This is the same "aim" pose defined in Standard pose identifiers. Every tracked controller profile

already supports this pose.

Figure 10. Example aim pose.

Position

The position of an "aim" pose is typically in front of the user’s hand and moves together with the

corresponding hand, so that the user is able to easily see the aiming ray cast to the target in the world

and adjust for aim.

Orientation

The orientation of an "aim" pose is typically stabilized so that it is suitable to render an aiming ray

emerging from the user’s hand pointing into the world.

Chapter 12. List of Current Extensions | 495

The -Z direction is the forward direction of the aiming gesture, that is, where the aiming ray is pointing

at.

The +Y direction is a runtime defined direction based on the hand tracking device or ergonomics of the

controller in the user’s hand. It is typically pointing up in the world when the user is performing the

aiming gesture naturally forward with a hand or controller in front of the user body.

The +X direction is orthogonal to +Y and +Z using the right-hand rule.

When targeting an object out of arm’s reach, the runtime may optimize the "aim" pose stability for

pointing at a target, therefore the rotation of the "aim" pose may account for forearm or shoulder

motion as well as hand rotation. Hence, the "aim" pose may not always rigidly attach to the user’s hand

rotation. If the application desires to rotate the targeted remote object in place, it should use the

rotation of the "grip" pose instead of "aim" pose, as if the user is remotely holding the object and

rotating it.

Grip pose

The …/input/grip/pose is designed for holding an object with a full hand grip gesture, for example,

grasping and pushing a door’s handle or holding and swinging a sword.

This is the same "grip" pose defined in Standard pose identifiers. Every tracked controller profile

already supports this pose.

The runtime should optimize the "grip" pose orientation so that it stabilizes large virtual objects held

in the user’s hand.

496 | Chapter 12. List of Current Extensions

Y

X

Z

Y
Z

X

Text is not SVG - cannot display

Figure 11. Example grip pose.

Position

The position of the "grip" pose is at the centroid of the user’s palm when the user makes a fist or holds

a tube-like object in the hand.

Orientation

The orientation of the "grip" pose may be used to render a virtual object held in the hand, for example,

holding the grip of a virtual sword.

The Z axis of the grip pose goes through the center of the user’s curled fingers when the user makes a

fist or holds a controller, and the -Z direction (forward) goes from the little finger to the index finger.

When the user completely opens their hand to form a flat 5-finger pose and the palms face each other,

the ray that is normal to the user’s palms defines the X axis. The +X direction points away from the

palm of the left hand and into the palm of the right hand. That is to say, in the described pose, the +X

direction points to the user’s right for both hands. To further illustrate: if the user is holding a stick by

Chapter 12. List of Current Extensions | 497

making a fist with each hand in front of the body and pointing the stick up, the +X direction points to

the user’s right for both hands.

The +Y direction is orthogonal to +Z and +X using the right-hand rule.

Pinch pose

The …/input/pinch_ext/pose is designed for interacting with a small object within arm’s reach using a

finger and thumb with a "pinch" gesture. For example, turning a key to open a lock or moving the knob

on a slider control are interactions suited to the "pinch" pose.

The runtime should stabilize the "pinch" pose while the user is performing the "pinch" gesture.

Y

X

Z

Y

Z

X

Text is not SVG - cannot display

Figure 12. Example pinch pose.

Position

When the input is provided by a hand tracking device, the position of the "pinch" pose is typically

where the index and thumb fingertips will touch each other for a "pinch" gesture.

The runtime may provide the "pinch" pose using any finger based on the current user’s preference for

accessibility support. An application typically designs the "pinch" pose interaction assuming the

"pinch" is performed using the index finger and thumb.

When the input is provided by a motion controller device, the position of the "pinch" pose is typically

based on a fixed offset from the grip pose in front of the controller, where the user can naturally

interact with a small object. The runtime should avoid obstructing the "pinch" pose with the physical

profile of the motion controller.

Orientation

498 | Chapter 12. List of Current Extensions

The "pinch" pose orientation must rotate together with the hand rotation.

X

Y

Z

Text is not SVG - cannot display

Figure 13. Example pinch orientation on right hand.

The "pinch" pose’s orientation may be used to render a virtual object being held by a "pinch" gesture,

for example, holding a key as illustrated in picture above.

If this virtual key is within a plane as illustrated in the above picture, the Y and Z axes of the "pinch"

pose are within this plane.

The +Z axis is the backward direction of the "pinch" pose, typically the direction from the "pinch"

position pointing to the mid point of thumb and finger proximal joints.

When the user puts both hands in front of the body at the same height, palms facing each other and

fingers pointing forward, then performs a "pinch" gesture with both hands, the +Y direction for both

hands should be roughly pointing up.

The X direction follows the right-hand rule using the Z and Y axes.

If the input is provided by a motion controller device, the orientation of the "pinch" pose is typically

based on a fixed-rotation offset from the "grip" pose orientation that roughly follows the above

Chapter 12. List of Current Extensions | 499

definition when the user is holding the controller naturally.

Poke pose

The …/input/poke_ext/pose is designed for interactions using a fingertip to touch and push a small

object. For example, pressing a push button with a fingertip, swiping to scroll a browser view, or typing

on a virtual keyboard are interactions suited to the "poke" pose.

The application may use the "poke" pose as a point to interact with virtual objects, and this pose is

typically enough for simple interactions.

The application may also use a volumetric representation of a "poke" gesture using a sphere combined

with the "poke" pose. The center of such a sphere is located the distance of one radius in the +Z

direction of the "poke" pose, such that the "poke" pose falls on the surface of the sphere and the sphere

models the shape of the fingertip.

Y

X

Z

Y

Z

X

Text is not SVG - cannot display

Figure 14. Example poke pose.

Position

When input is provided by a hand tracking device, the position of the "poke" pose is at the surface of

the extended index fingertip. The runtime may provide the "poke" pose using other fingers for

accessibility support.

500 | Chapter 12. List of Current Extensions

When input is provided by a motion controller, the position of the "poke" pose is typically based on a

fixed offset from the "grip" pose in front of the controller, where touching and pushing a small object

feels natural using the controller. The runtime should avoid obstructing the "poke" pose with the

physical profile of the motion controller.

Orientation

The +Y direction of the "poke" pose is the up direction in the world when the user is extending the

index finger forward with palm facing down. When using a motion controller, +Y matches the up

direction in the world when the user extends the index finger forward while holding the controller

with palm facing down.

The +Z direction points from the fingertip towards the knuckle and parallel to the index finger distal

bone, i.e. backwards when the user is holding a controller naturally in front of the body and pointing

index finger forward.

The +X direction is orthogonal to +Y and +Z using the right-hand rule.

The "poke" pose must rotate together with the tip of the finger or the controller’s "grip" pose.

12.30.3. The interaction profile for hand tracking devices

The hand interaction profile is designed for runtimes which provide hand inputs using hand tracking

devices instead of controllers with triggers or buttons. This allows hand tracking devices to provide

commonly used gestures and action poses to the OpenXR action system.

In addition to hand tracking devices, runtimes with controller inputs should also implement this

interaction profile through action bindings, so that an application whose suggested action bindings

solely depending on this hand interaction profile is usable on such runtimes as well.

Interaction profile path:

• /interaction_profiles/ext/hand_interaction_ext

Valid for top level user path:

• /user/hand/left

• /user/hand/right

Supported component paths:

• …/input/aim/pose

• …/input/grip/pose

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

• …/input/pinch_ext/value

Chapter 12. List of Current Extensions | 501

• …/input/pinch_ext/ready_ext

• …/input/aim_activate_ext/value

• …/input/aim_activate_ext/ready_ext

• …/input/grasp_ext/value

• …/input/grasp_ext/ready_ext Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose

This interaction profile supports the above four action poses, as well as the following three groups of

action inputs.

Pinch action

This interaction profile supports …/input/pinch_ext/value and …/input/pinch_ext/ready_ext actions.

The …/input/pinch_ext/value is a 1D analog input component indicating the extent which the user is

bringing their finger and thumb together to perform a "pinch" gesture.

The …/input/pinch_ext/value can be used as either a boolean or float action type, where the value

XR_TRUE or 1.0f represents that the finger and thumb are touching each other.

The …/input/pinch_ext/value must be at value 0.0f or XR_FALSE when the hand is in a natural and

relaxed open state without the user making any extra effort.

The …/input/pinch_ext/value should be linear to the distance between the finger and thumb tips when

they are in the range to change "pinch" value from 0 to 1.

The …/input/pinch_ext/ready_ext is a boolean input, where the value XR_TRUE indicates that the fingers

502 | Chapter 12. List of Current Extensions

used to perform the "pinch" gesture are properly tracked by the hand tracking device and the hand

shape is observed to be ready to perform or is performing a "pinch" gesture.

The …/input/pinch_ext/value must be 0.0f or XR_FALSE when the …/input/pinch_ext/ready_ext is XR_FALSE.

The runtime may drive the input of the "pinch" gesture using any finger with the thumb to support

accessibility.

Aim activate action

This interaction profile supports …/input/aim_activate_ext/value and …/input/aim_activate_ext/ready_ext

actions.

The …/input/aim_activate_ext/value is a 1D analog input component indicating that the user activated

the action on the target that the user is pointing at with the aim pose.

The "aim_activate" gesture is runtime defined, and it should be chosen so that the "aim" pose tracking

is stable and usable for pointing at a distant target while the gesture is being performed.

The …/input/aim_activate_ext/value can be used as either a boolean or float action type, where the

value XR_TRUE or 1.0f represents that the aimed-at target is being fully interacted with.

The …/input/aim_activate_ext/ready_ext is a boolean input, where the value XR_TRUE indicates that the

fingers to perform the "aim_activate" gesture are properly tracked by the hand tracking device and the

hand shape is observed to be ready to perform or is performing an "aim_activate" gesture.

The …/input/aim_activate_ext/value must be 0.0f or XR_FALSE when the

…/input/aim_activate_ext/ready_ext is XR_FALSE.

Grasp action

This interaction profile supports …/input/grasp_ext/value action.

The …/input/grasp_ext/value is a 1D analog input component indicating that the user is making a fist.

The …/input/grasp_ext/value can be used as either a boolean or float action type, where the value

XR_TRUE or 1.0f represents that the fist is tightly closed.

The …/input/grasp_ext/value must be at value 0.0f or XR_FALSE when the hand is in a natural and

relaxed open state without the user making any extra effort.

The …/input/grasp_ext/ready_ext is a boolean input, where the value XR_TRUE indicates that the hand

performing the grasp action is properly tracked by the hand tracking device and it is observed to be

ready to perform or is performing the grasp action.

The …/input/grasp_ext/value must be 0.0f or XR_FALSE when the …/input/grasp_ext/ready_ext is XR_FALSE.

Chapter 12. List of Current Extensions | 503

Hand interaction gestures overlap

The values of the above "pinch", "grasp", and "aim_activate" input actions may not be mutually

exclusive when the input is provided by a hand tracking device. The application should not assume

these actions are distinctively activated as action inputs provided by buttons or triggers on a

controller. The application should suggest action bindings considering the intent of the action and

their paired action pose.

Using hand interaction profile with controllers

The runtimes with controller inputs should support the /interaction_profiles/ext/hand_interaction_ext

profile using input mapping, so that applications can solely rely on the

/interaction_profiles/ext/hand_interaction_ext profile to build XR experiences.

If the application desires to further customize the action poses with more flexible use of controller

interaction profiles, the application can also provide action binding suggestions of controller profile

using specific buttons or triggers to work together with the commonly used four action poses.

504 | Chapter 12. List of Current Extensions

 Typical usages of action poses with hand or controller profiles

• The …/input/grip/pose is typically used for holding a large object in the user’s hand.

When using a hand interaction profile, it is typically paired with

…/input/grasp_ext/value for the user to directly manipulate an object held in a

hand. When using a controller interaction profile, the "grip" pose is typically

paired with a "squeeze" button or trigger that gives the user the sense of tightly

holding an object.

• The …/input/pinch_ext/pose is typically used for directly manipulating a small

object using the pinch gesture. When using a hand interaction profile, it is

typically paired with the …/input/pinch_ext/value gesture. When using a controller

interaction profile, it is typically paired with a trigger manipulated with the index

finger, which typically requires curling the index finger and applying pressure

with the fingertip.

• The …/input/poke_ext/pose is typically used for contact-based interactions using the

motion of the hand or fingertip. It typically does not pair with other hand gestures

or buttons on the controller. The application typically uses a sphere collider with

the "poke" pose to visualize the pose and detect touch with a virtual object.

• The …/input/aim/pose is typically used for aiming at objects out of arm’s reach.

When using a hand interaction profile, it is typically paired with

…/input/aim_activate_ext/value to optimize aiming ray stability while performing

the gesture. When using a controller interaction profile, the "aim" pose is typically

paired with a trigger or a button for aim and fire operations.

• Because controllers are typically mapping buttons or triggers for the above hand

interaction values, they typically report XR_TRUE for their corresponding

…/ready_ext action. This is because the buttons and triggers are always prepared

and capable of receiving actions.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2021-08-06 (Yin Li)

Chapter 12. List of Current Extensions | 505

◦ Initial extension description

12.31. XR_EXT_hand_joints_motion_range

Name String

XR_EXT_hand_joints_motion_range

Extension Type

Instance extension

Registered Extension Number

81

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_EXT_hand_tracking

Last Modified Date

2021-04-15

IP Status

No known IP claims.

Contributors

Joe van den Heuvel, Valve

Rune Berg, Valve

Joe Ludwig, Valve

Jakob Bornecrantz, Collabora

Overview

This extension augments the XR_EXT_hand_tracking extension to enable applications to request that the

XrHandJointLocationsEXT returned by xrLocateHandJointsEXT should return hand joint locations

conforming to a range of motion specified by the application.

The application must enable the XR_EXT_hand_tracking extension in order to use this extension.

New Object Types

New Flag Types

New Enum Constants

506 | Chapter 12. List of Current Extensions

New Enums

The XrHandJointsMotionRangeEXT describes the hand joints' range of motion returned by

xrLocateHandJointsEXT.

Runtimes must support both XR_HAND_JOINTS_MOTION_RANGE_CONFORMING_TO_CONTROLLER_EXT and

XR_HAND_JOINTS_MOTION_RANGE_UNOBSTRUCTED_EXT for each controller interaction profile that supports

hand joint data.

// Provided by XR_EXT_hand_joints_motion_range

typedef enum XrHandJointsMotionRangeEXT {

 XR_HAND_JOINTS_MOTION_RANGE_UNOBSTRUCTED_EXT = 1,

 XR_HAND_JOINTS_MOTION_RANGE_CONFORMING_TO_CONTROLLER_EXT = 2,

 XR_HAND_JOINTS_MOTION_RANGE_MAX_ENUM_EXT = 0x7FFFFFFF

} XrHandJointsMotionRangeEXT;

Enumerant Descriptions

• XR_HAND_JOINTS_MOTION_RANGE_UNOBSTRUCTED_EXT This option refers to the range of motion of a

human hand, without any obstructions. Input systems that obstruct the movement of the

user’s hand (e.g.: a held controller preventing the user from making a fist) or have only

limited ability to track finger positions must use the information available to them to

emulate an unobstructed range of motion.

• XR_HAND_JOINTS_MOTION_RANGE_CONFORMING_TO_CONTROLLER_EXT This option refers to the range of

motion of the hand joints taking into account any physical limits imposed by the controller

itself. This will tend to be the most accurate pose compared to the user’s actual hand pose,

but might not allow a closed fist for example.

◦ If the current interaction profile represents a controller, or other device that obstructs the

hand, the implementation must return joint locations conforming to the shape of that

device. If the current interaction profile is being emulated by a different physical

controller, the implementation may return joint locations conforming to the shape of

either the current interaction profile or the actual physical controller.

◦ If the current interaction profile does not represent a controller, the implementation

must return joint locations based on the unobstructed joint locations.

New Structures

The XrHandJointsMotionRangeInfoEXT is a structure that an application can chain in

XrHandJointsLocateInfoEXT to request the joint motion range specified by the handJointsMotionRange

field.

Chapter 12. List of Current Extensions | 507

Runtimes must return the appropriate joint locations depending on the handJointsMotionRange field

and the currently active interaction profile.

// Provided by XR_EXT_hand_joints_motion_range

typedef struct XrHandJointsMotionRangeInfoEXT {

 XrStructureType type;

 const void* next;

 XrHandJointsMotionRangeEXT handJointsMotionRange;

} XrHandJointsMotionRangeInfoEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• handJointsMotionRange is an XrHandJointsMotionRangeEXT that defines the hand joint range

of motion the application wants.

Valid Usage (Implicit)

• The XR_EXT_hand_joints_motion_range extension must be enabled prior to using

XrHandJointsMotionRangeInfoEXT

• type must be XR_TYPE_HAND_JOINTS_MOTION_RANGE_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• handJointsMotionRange must be a valid XrHandJointsMotionRangeEXT value

New Functions

Issues

Version History

• Revision 1, 2021-04-15 (Rune Berg)

◦ Initial extension description

12.32. XR_EXT_hand_tracking

508 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Name String

XR_EXT_hand_tracking

Extension Type

Instance extension

Registered Extension Number

52

Revision

4

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-04-15

IP Status

No known IP claims.

Contributors

Yin Li, Microsoft

Lachlan Ford, Microsoft

Alex Turner, Microsoft

Bryce Hutchings, Microsoft

Cass Everitt, Oculus

Blake Taylor, Magic Leap

Joe van den Heuvel, Valve

Rune Berg, Valve

Valerie Benson, Ultraleap

Rylie Pavlik, Collabora

12.32.1. Overview

This extension enables applications to locate the individual joints of hand tracking inputs. It enables

applications to render hands in XR experiences and interact with virtual objects using hand joints.

12.32.2. Inspect system capability

An application can inspect whether the system is capable of hand tracking input by extending the

XrSystemProperties with XrSystemHandTrackingPropertiesEXT structure when calling

xrGetSystemProperties.

Chapter 12. List of Current Extensions | 509

// Provided by XR_EXT_hand_tracking

typedef struct XrSystemHandTrackingPropertiesEXT {

 XrStructureType type;

 void* next;

 XrBool32 supportsHandTracking;

} XrSystemHandTrackingPropertiesEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsHandTracking is an XrBool32, indicating if current system is capable of hand tracking

input.

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to using

XrSystemHandTrackingPropertiesEXT

• type must be XR_TYPE_SYSTEM_HAND_TRACKING_PROPERTIES_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

If a runtime returns XR_FALSE for supportsHandTracking, the runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateHandTrackerEXT.

12.32.3. Create a hand tracker handle

The XrHandTrackerEXT handle represents the resources for hand tracking of the specific hand.

XR_DEFINE_HANDLE(XrHandTrackerEXT)

An application creates separate XrHandTrackerEXT handles for left and right hands. This handle can

be used to locate hand joints using xrLocateHandJointsEXT function.

A hand tracker provides joint locations with an unobstructed range of motion of an empty human

hand.

510 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

 Note

This behavior can be modified by the XR_EXT_hand_joints_motion_range extension

An application can create an XrHandTrackerEXT handle using xrCreateHandTrackerEXT function.

// Provided by XR_EXT_hand_tracking

XrResult xrCreateHandTrackerEXT(

 XrSession session,

 const XrHandTrackerCreateInfoEXT* createInfo,

 XrHandTrackerEXT* handTracker);

Parameter Descriptions

• session is an XrSession in which the hand tracker will be active.

• createInfo is the XrHandTrackerCreateInfoEXT used to specify the hand tracker.

• handTracker is the returned XrHandTrackerEXT handle.

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to calling

xrCreateHandTrackerEXT

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrHandTrackerCreateInfoEXT structure

• handTracker must be a pointer to an XrHandTrackerEXT handle

Chapter 12. List of Current Extensions | 511

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_FEATURE_UNSUPPORTED

If the system does not support hand tracking, runtime must return XR_ERROR_FEATURE_UNSUPPORTED from

xrCreateHandTrackerEXT. In this case, the runtime must return XR_FALSE for

XrSystemHandTrackingPropertiesEXT::supportsHandTracking when the function xrGetSystemProperties

is called, so that the application can avoid creating a hand tracker.

The XrHandTrackerCreateInfoEXT structure describes the information to create an XrHandTrackerEXT

handle.

// Provided by XR_EXT_hand_tracking

typedef struct XrHandTrackerCreateInfoEXT {

 XrStructureType type;

 const void* next;

 XrHandEXT hand;

 XrHandJointSetEXT handJointSet;

} XrHandTrackerCreateInfoEXT;

512 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• hand is an XrHandEXT which describes which hand the tracker is tracking.

• handJointSet is an XrHandJointSetEXT describe the set of hand joints to retrieve.

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to using

XrHandTrackerCreateInfoEXT

• type must be XR_TYPE_HAND_TRACKER_CREATE_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrHandPoseTypeInfoMSFT, XrHandTrackingDataSourceInfoEXT

• hand must be a valid XrHandEXT value

• handJointSet must be a valid XrHandJointSetEXT value

The XrHandEXT describes which hand the XrHandTrackerEXT is tracking.

// Provided by XR_EXT_hand_tracking

typedef enum XrHandEXT {

 XR_HAND_LEFT_EXT = 1,

 XR_HAND_RIGHT_EXT = 2,

 XR_HAND_MAX_ENUM_EXT = 0x7FFFFFFF

} XrHandEXT;

Enumerant Descriptions

• XR_HAND_LEFT_EXT specifies the hand tracker will be tracking the user’s left hand.

• XR_HAND_RIGHT_EXT specifies the hand tracker will be tracking the user’s right hand.

The XrHandJointSetEXT enum describes the set of hand joints to track when creating an

XrHandTrackerEXT.

Chapter 12. List of Current Extensions | 513

#valid-usage-for-structure-pointer-chains

// Provided by XR_EXT_hand_tracking

typedef enum XrHandJointSetEXT {

 XR_HAND_JOINT_SET_DEFAULT_EXT = 0,

 // Provided by XR_ULTRALEAP_hand_tracking_forearm

 XR_HAND_JOINT_SET_HAND_WITH_FOREARM_ULTRALEAP = 1000149000,

 XR_HAND_JOINT_SET_MAX_ENUM_EXT = 0x7FFFFFFF

} XrHandJointSetEXT;

Enumerant Descriptions

• XR_HAND_JOINT_SET_DEFAULT_EXT indicates that the created XrHandTrackerEXT tracks the set of

hand joints described by XrHandJointEXT enum, i.e. the xrLocateHandJointsEXT function

returns an array of joint locations with the count of XR_HAND_JOINT_COUNT_EXT and can be

indexed using XrHandJointEXT.

xrDestroyHandTrackerEXT function releases the handTracker and the underlying resources when

finished with hand tracking experiences.

// Provided by XR_EXT_hand_tracking

XrResult xrDestroyHandTrackerEXT(

 XrHandTrackerEXT handTracker);

Parameter Descriptions

• handTracker is an XrHandTrackerEXT previously created by xrCreateHandTrackerEXT.

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to calling

xrDestroyHandTrackerEXT

• handTracker must be a valid XrHandTrackerEXT handle

Thread Safety

• Access to handTracker, and any child handles, must be externally synchronized

514 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

12.32.4. Locate hand joints

The xrLocateHandJointsEXT function locates an array of hand joints to a base space at given time.

// Provided by XR_EXT_hand_tracking

XrResult xrLocateHandJointsEXT(

 XrHandTrackerEXT handTracker,

 const XrHandJointsLocateInfoEXT* locateInfo,

 XrHandJointLocationsEXT* locations);

Parameter Descriptions

• handTracker is an XrHandTrackerEXT previously created by xrCreateHandTrackerEXT.

• locateInfo is a pointer to XrHandJointsLocateInfoEXT describing information to locate hand

joints.

• locations is a pointer to XrHandJointLocationsEXT receiving the returned hand joint

locations.

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to calling xrLocateHandJointsEXT

• handTracker must be a valid XrHandTrackerEXT handle

• locateInfo must be a pointer to a valid XrHandJointsLocateInfoEXT structure

• locations must be a pointer to an XrHandJointLocationsEXT structure

Chapter 12. List of Current Extensions | 515

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

The XrHandJointsLocateInfoEXT structure describes the information to locate hand joints.

// Provided by XR_EXT_hand_tracking

typedef struct XrHandJointsLocateInfoEXT {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

} XrHandJointsLocateInfoEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace is an XrSpace within which the returned hand joint locations will be represented.

• time is an XrTime at which to locate the hand joints.

516 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to using

XrHandJointsLocateInfoEXT

• type must be XR_TYPE_HAND_JOINTS_LOCATE_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrHandJointsMotionRangeInfoEXT

• baseSpace must be a valid XrSpace handle

XrHandJointLocationsEXT structure returns the state of the hand joint locations.

// Provided by XR_EXT_hand_tracking

typedef struct XrHandJointLocationsEXT {

 XrStructureType type;

 void* next;

 XrBool32 isActive;

 uint32_t jointCount;

 XrHandJointLocationEXT* jointLocations;

} XrHandJointLocationsEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain, such as

XrHandJointVelocitiesEXT.

• isActive is an XrBool32 indicating if the hand tracker is actively tracking.

• jointCount is a uint32_t describing the count of elements in jointLocations array.

• jointLocations is an array of XrHandJointLocationEXT receiving the returned hand joint

locations.

The application must allocate the memory for the output array jointLocations that can contain at least

jointCount of XrHandJointLocationEXT.

The application must set jointCount as described by the XrHandJointSetEXT when creating the

XrHandTrackerEXT otherwise the runtime must return XR_ERROR_VALIDATION_FAILURE.

The runtime must return jointLocations representing the range of motion of a human hand, without

any obstructions. Input systems that obstruct the movement of the user’s hand (e.g.: a held controller

Chapter 12. List of Current Extensions | 517

#valid-usage-for-structure-pointer-chains

preventing the user from making a fist) or that have only limited ability to track finger positions must

use the information available to them to emulate an unobstructed range of motion.

The runtime must update the jointLocations array ordered so that the application can index elements

using the corresponding hand joint enum (e.g. XrHandJointEXT) as described by XrHandJointSetEXT

when creating the XrHandTrackerEXT. For example, when the XrHandTrackerEXT is created with

XR_HAND_JOINT_SET_DEFAULT_EXT, the application must set the jointCount to

XR_HAND_JOINT_COUNT_EXT, and the runtime must fill the jointLocations array ordered so that it

may be indexed by the XrHandJointEXT enum.

If the returned isActive is true, the runtime must return all joint locations with both

XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT set. Although, in

this case, some joint space locations may be untracked (i.e. XR_SPACE_LOCATION_POSITION_TRACKED_BIT or

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT is unset).

If the returned isActive is false, it indicates the hand tracker did not detect the hand input or the

application lost input focus. In this case, the runtime must return all jointLocations with neither

XR_SPACE_LOCATION_POSITION_VALID_BIT nor XR_SPACE_LOCATION_ORIENTATION_VALID_BIT set.

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to using

XrHandJointLocationsEXT

• type must be XR_TYPE_HAND_JOINT_LOCATIONS_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrHandJointVelocitiesEXT, XrHandTrackingAimStateFB, XrHandTrackingCapsulesStateFB,

XrHandTrackingDataSourceStateEXT, XrHandTrackingScaleFB

• jointLocations must be a pointer to an array of jointCount XrHandJointLocationEXT

structures

• The jointCount parameter must be greater than 0

XrHandJointLocationEXT structure describes the position, orientation, and radius of a hand joint.

// Provided by XR_EXT_hand_tracking

typedef struct XrHandJointLocationEXT {

 XrSpaceLocationFlags locationFlags;

 XrPosef pose;

 float radius;

} XrHandJointLocationEXT;

518 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits, to indicate

which members contain valid data. If none of the bits are set, no other fields in this structure

should be considered to be valid or meaningful.

• pose is an XrPosef defining the position and orientation of the origin of a hand joint within

the reference frame of the corresponding XrHandJointsLocateInfoEXT::baseSpace.

• radius is a float value radius of the corresponding joint in units of meters.

If the returned locationFlags has XR_SPACE_LOCATION_POSITION_VALID_BIT set, the returned radius must

be a positive value.

If the returned locationFlags has XR_SPACE_LOCATION_POSITION_VALID_BIT unset, the returned radius

value is undefined and should be avoided.

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to using XrHandJointLocationEXT

• locationFlags must be 0 or a valid combination of XrSpaceLocationFlagBits values

The application can chain an XrHandJointVelocitiesEXT structure to the next pointer of

XrHandJointLocationsEXT when calling xrLocateHandJointsEXT to retrieve the hand joint velocities.

// Provided by XR_EXT_hand_tracking

typedef struct XrHandJointVelocitiesEXT {

 XrStructureType type;

 void* next;

 uint32_t jointCount;

 XrHandJointVelocityEXT* jointVelocities;

} XrHandJointVelocitiesEXT;

Chapter 12. List of Current Extensions | 519

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• jointCount is a uint32_t describing the number of elements in jointVelocities array.

• jointVelocities is an array of XrHandJointVelocityEXT receiving the returned hand joint

velocities.

The application must allocate the memory for the output array jointVelocities that can contain at

least jointCount of XrHandJointVelocityEXT.

The application must input jointCount as described by the XrHandJointSetEXT when creating the

XrHandTrackerEXT. Otherwise, the runtime must return XR_ERROR_VALIDATION_FAILURE.

The runtime must update the jointVelocities array in the order so that the application can index

elements using the corresponding hand joint enum (e.g. XrHandJointEXT) as described by the

XrHandJointSetEXT when creating the XrHandTrackerEXT. For example, when the XrHandTrackerEXT

is created with XR_HAND_JOINT_SET_DEFAULT_EXT, the application must set the jointCount to

XR_HAND_JOINT_COUNT_EXT, and the returned jointVelocities array must be ordered to be indexed

by enum XrHandJointEXT enum.

If the returned XrHandJointLocationsEXT::isActive is false, it indicates the hand tracker did not detect

a hand input or the application lost input focus. In this case, the runtime must return all

jointVelocities with neither XR_SPACE_VELOCITY_LINEAR_VALID_BIT nor

XR_SPACE_VELOCITY_ANGULAR_VALID_BIT set.

If an XrHandJointVelocitiesEXT structure is chained to XrHandJointLocationsEXT::next, the returned

XrHandJointLocationsEXT::isActive is true, and the velocity is observed or can be calculated by the

runtime, the runtime must fill in the linear velocity of each hand joint within the reference frame of

XrHandJointsLocateInfoEXT::baseSpace and set the XR_SPACE_VELOCITY_LINEAR_VALID_BIT. Similarly, if an

XrHandJointVelocitiesEXT structure is chained to XrHandJointLocationsEXT::next, the returned

XrHandJointLocationsEXT::isActive is true, and the angular velocity is observed or can be calculated

by the runtime, the runtime must fill in the angular velocity of each joint within the reference frame

of XrHandJointsLocateInfoEXT::baseSpace and set the XR_SPACE_VELOCITY_ANGULAR_VALID_BIT.

520 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to using

XrHandJointVelocitiesEXT

• type must be XR_TYPE_HAND_JOINT_VELOCITIES_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• jointVelocities must be a pointer to an array of jointCount XrHandJointVelocityEXT

structures

• The jointCount parameter must be greater than 0

XrHandJointVelocityEXT structure describes the linear and angular velocity of a hand joint.

// Provided by XR_EXT_hand_tracking

typedef struct XrHandJointVelocityEXT {

 XrSpaceVelocityFlags velocityFlags;

 XrVector3f linearVelocity;

 XrVector3f angularVelocity;

} XrHandJointVelocityEXT;

Member Descriptions

• velocityFlags is a bitfield, with bit masks defined in XrSpaceVelocityFlagBits, to indicate

which members contain valid data. If none of the bits are set, no other fields in this structure

should be considered to be valid or meaningful.

• linearVelocity is the relative linear velocity of the hand joint with respect to and expressed

in the reference frame of the corresponding XrHandJointsLocateInfoEXT::baseSpace, in units

of meters per second.

• angularVelocity is the relative angular velocity of the hand joint with respect to the

corresponding XrHandJointsLocateInfoEXT::baseSpace. The vector’s direction is expressed in

the reference frame of the corresponding XrHandJointsLocateInfoEXT::baseSpace and is

parallel to the rotational axis of the hand joint. The vector’s magnitude is the relative angular

speed of the hand joint in radians per second. The vector follows the right-hand rule for

torque/rotation.

Chapter 12. List of Current Extensions | 521

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_EXT_hand_tracking extension must be enabled prior to using XrHandJointVelocityEXT

• velocityFlags must be a valid combination of XrSpaceVelocityFlagBits values

• velocityFlags must not be 0

12.32.5. Example code for locating hand joints

The following example code demonstrates how to locate all hand joints relative to a world space.

XrInstance instance; // previously initialized

XrSystemId systemId; // previously initialized

XrSession session; // previously initialized

XrSpace worldSpace; // previously initialized, e.g. from

 // XR_REFERENCE_SPACE_TYPE_LOCAL

// Inspect hand tracking system properties

XrSystemHandTrackingPropertiesEXT handTrackingSystemProperties{

 XR_TYPE_SYSTEM_HAND_TRACKING_PROPERTIES_EXT};

XrSystemProperties systemProperties{XR_TYPE_SYSTEM_PROPERTIES,

 &handTrackingSystemProperties};

CHK_XR(xrGetSystemProperties(instance, systemId, &systemProperties));

if (!handTrackingSystemProperties.supportsHandTracking) {

 // The system does not support hand tracking

 return;

}

// Get function pointer for xrCreateHandTrackerEXT

PFN_xrCreateHandTrackerEXT pfnCreateHandTrackerEXT;

CHK_XR(xrGetInstanceProcAddr(instance, "xrCreateHandTrackerEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnCreateHandTrackerEXT)));

// Create a hand tracker for left hand that tracks default set of hand joints.

XrHandTrackerEXT leftHandTracker{};

{

 XrHandTrackerCreateInfoEXT createInfo{XR_TYPE_HAND_TRACKER_CREATE_INFO_EXT};

 createInfo.hand = XR_HAND_LEFT_EXT;

 createInfo.handJointSet = XR_HAND_JOINT_SET_DEFAULT_EXT;

 CHK_XR(pfnCreateHandTrackerEXT(session, &createInfo, &leftHandTracker));

}

// Allocate buffers to receive joint location and velocity data before frame

// loop starts

522 | Chapter 12. List of Current Extensions

XrHandJointLocationEXT jointLocations[XR_HAND_JOINT_COUNT_EXT];

XrHandJointVelocityEXT jointVelocities[XR_HAND_JOINT_COUNT_EXT];

XrHandJointVelocitiesEXT velocities{XR_TYPE_HAND_JOINT_VELOCITIES_EXT};

velocities.jointCount = XR_HAND_JOINT_COUNT_EXT;

velocities.jointVelocities = jointVelocities;

XrHandJointLocationsEXT locations{XR_TYPE_HAND_JOINT_LOCATIONS_EXT};

locations.next = &velocities;

locations.jointCount = XR_HAND_JOINT_COUNT_EXT;

locations.jointLocations = jointLocations;

// Get function pointer for xrLocateHandJointsEXT

PFN_xrLocateHandJointsEXT pfnLocateHandJointsEXT;

CHK_XR(xrGetInstanceProcAddr(instance, "xrLocateHandJointsEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnLocateHandJointsEXT)));

while (1) {

 // ...

 // For every frame in frame loop

 // ...

 XrFrameState frameState; // previously returned from xrWaitFrame

 const XrTime time = frameState.predictedDisplayTime;

 XrHandJointsLocateInfoEXT locateInfo{XR_TYPE_HAND_JOINTS_LOCATE_INFO_EXT};

 locateInfo.baseSpace = worldSpace;

 locateInfo.time = time;

 CHK_XR(pfnLocateHandJointsEXT(leftHandTracker, &locateInfo, &locations));

 if (locations.isActive) {

 // The returned joint location array can be directly indexed with

 // XrHandJointEXT enum.

 const XrPosef &indexTipInWorld =

 jointLocations[XR_HAND_JOINT_INDEX_TIP_EXT].pose;

 const XrPosef &thumbTipInWorld =

 jointLocations[XR_HAND_JOINT_THUMB_TIP_EXT].pose;

 // using the returned radius and velocity of index finger tip.

 const float indexTipRadius =

 jointLocations[XR_HAND_JOINT_INDEX_TIP_EXT].radius;

 const XrHandJointVelocityEXT &indexTipVelocity =

 jointVelocities[XR_HAND_JOINT_INDEX_TIP_EXT];

 }

}

Chapter 12. List of Current Extensions | 523

12.32.6. Conventions of hand joints

This extension defines 26 joints for hand tracking: 4 joints for the thumb finger, 5 joints for the other

four fingers, and the wrist and palm of the hands.

524 | Chapter 12. List of Current Extensions

// Provided by XR_EXT_hand_tracking

typedef enum XrHandJointEXT {

 XR_HAND_JOINT_PALM_EXT = 0,

 XR_HAND_JOINT_WRIST_EXT = 1,

 XR_HAND_JOINT_THUMB_METACARPAL_EXT = 2,

 XR_HAND_JOINT_THUMB_PROXIMAL_EXT = 3,

 XR_HAND_JOINT_THUMB_DISTAL_EXT = 4,

 XR_HAND_JOINT_THUMB_TIP_EXT = 5,

 XR_HAND_JOINT_INDEX_METACARPAL_EXT = 6,

 XR_HAND_JOINT_INDEX_PROXIMAL_EXT = 7,

 XR_HAND_JOINT_INDEX_INTERMEDIATE_EXT = 8,

 XR_HAND_JOINT_INDEX_DISTAL_EXT = 9,

 XR_HAND_JOINT_INDEX_TIP_EXT = 10,

 XR_HAND_JOINT_MIDDLE_METACARPAL_EXT = 11,

 XR_HAND_JOINT_MIDDLE_PROXIMAL_EXT = 12,

 XR_HAND_JOINT_MIDDLE_INTERMEDIATE_EXT = 13,

 XR_HAND_JOINT_MIDDLE_DISTAL_EXT = 14,

 XR_HAND_JOINT_MIDDLE_TIP_EXT = 15,

 XR_HAND_JOINT_RING_METACARPAL_EXT = 16,

 XR_HAND_JOINT_RING_PROXIMAL_EXT = 17,

 XR_HAND_JOINT_RING_INTERMEDIATE_EXT = 18,

 XR_HAND_JOINT_RING_DISTAL_EXT = 19,

 XR_HAND_JOINT_RING_TIP_EXT = 20,

 XR_HAND_JOINT_LITTLE_METACARPAL_EXT = 21,

 XR_HAND_JOINT_LITTLE_PROXIMAL_EXT = 22,

 XR_HAND_JOINT_LITTLE_INTERMEDIATE_EXT = 23,

 XR_HAND_JOINT_LITTLE_DISTAL_EXT = 24,

 XR_HAND_JOINT_LITTLE_TIP_EXT = 25,

 XR_HAND_JOINT_MAX_ENUM_EXT = 0x7FFFFFFF

} XrHandJointEXT;

The finger joints, except the tips, are named after the corresponding bone at the further end of the

bone from the finger tips. The joint’s orientation is defined at a fully opened hand pose facing down as

in the above picture. Note

Many applications and game engines use names to identify joints rather than using

indices. If possible, applications should use the joint name part of the XrHandJointEXT

enum plus a hand identifier to help prevent joint name clashes (e.g.

Index_Metacarpal_L, Thumb_Tip_R). Using consistent names increases the portability

of assets between applications and engines. Including the hand in the identifier

prevents ambiguity when both hands are used in the same skeleton, such as when

they are combined with additional joints to form a full body skeleton.

The backward (+Z) direction is parallel to the corresponding bone and points away from the finger tip.

Chapter 12. List of Current Extensions | 525

The up (+Y) direction is pointing out of the back of and perpendicular to the corresponding finger nail

at the fully opened hand pose. The X direction is perpendicular to Y and Z and follows the right hand

rule.

The wrist joint is located at the pivot point of the wrist which is location invariant when twisting hand

without moving the forearm. The backward (+Z) direction is parallel to the line from wrist joint to

middle finger metacarpal joint, and points away from the finger tips. The up (+Y) direction points out

towards back of hand and perpendicular to the skin at wrist. The X direction is perpendicular to the Y

and Z directions and follows the right hand rule.

The palm joint is located at the center of the middle finger’s metacarpal bone. The backward (+Z)

direction is parallel to the middle finger’s metacarpal bone, and points away from the finger tips. The

up (+Y) direction is perpendicular to palm surface and pointing towards the back of the hand. The X

direction is perpendicular to the Y and Z directions and follows the right hand rule.

The radius of each joint is the distance from the joint to the skin in meters. The application can use a

sphere at the joint location with joint radius for collision detection for interactions, such as pushing a

virtual button using the index finger tip.

For example, suppose the radius of the palm joint is r then the app can offset {0, -r, 0} to palm joint

location to get the surface of hand palm center, or offset {0, r, 0} to get the back surface of the hand.

Note that the palm joint for the hand tracking is not the same as …/input/grip/pose when hand tracking

is provided by controller tracking. A "grip" pose is located at the center of the controller handle when

user is holding a controller, outside of the user’s hand. A "palm" pose is located at the center of middle

finger metacarpal bone which is inside the user’s hand.

// Provided by XR_EXT_hand_tracking

#define XR_HAND_JOINT_COUNT_EXT 26

XR_HAND_JOINT_COUNT_EXT defines the number of hand joint enumerants defined in

XrHandJointEXT

New Object Types

• XrHandTrackerEXT

New Flag Types

New Enum Constants

• XR_HAND_JOINT_COUNT_EXT

XrObjectType enumeration is extended with:

526 | Chapter 12. List of Current Extensions

• XR_OBJECT_TYPE_HAND_TRACKER_EXT

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_HAND_TRACKING_PROPERTIES_EXT

• XR_TYPE_HAND_TRACKER_CREATE_INFO_EXT

• XR_TYPE_HAND_JOINTS_LOCATE_INFO_EXT

• XR_TYPE_HAND_JOINT_LOCATIONS_EXT

• XR_TYPE_HAND_JOINT_VELOCITIES_EXT

New Enums

• XrHandEXT

• XrHandJointEXT

• XrHandJointSetEXT

New Structures

• XrSystemHandTrackingPropertiesEXT

• XrHandTrackerCreateInfoEXT

• XrHandJointsLocateInfoEXT

• XrHandJointLocationEXT

• XrHandJointVelocityEXT

• XrHandJointLocationsEXT

• XrHandJointVelocitiesEXT

New Functions

• xrCreateHandTrackerEXT

• xrDestroyHandTrackerEXT

• xrLocateHandJointsEXT

Issues

Version History

• Revision 1, 2019-09-16 (Yin LI)

◦ Initial extension description

• Revision 2, 2020-04-20 (Yin LI)

◦ Replace hand joint spaces to locate hand joints function.

Chapter 12. List of Current Extensions | 527

• Revision 3, 2021-04-13 (Rylie Pavlik, Rune Berg)

◦ Fix example code to properly use xrGetInstanceProcAddr.

◦ Add recommended bone names

• Revision 4, 2021-04-15 (Rune Berg)

◦ Clarify that use of this extension produces an unobstructed hand range of motion.

12.33. XR_EXT_hand_tracking_data_source

Name String

XR_EXT_hand_tracking_data_source

Extension Type

Instance extension

Registered Extension Number

429

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_EXT_hand_tracking

Last Modified Date

2023-01-23

IP Status

No known IP claims.

Contributors

Jakob Bornecrantz, Collabora

John Kearney, Meta

Robert Memmott, Meta

Andreas Selvik, Meta

Yin Li, Microsoft

Robert Blenkinsopp, Ultraleap

Nathan Nuber, Valve

Contacts

John Kearney, Meta

528 | Chapter 12. List of Current Extensions

Overview

This extension augments the XR_EXT_hand_tracking extension.

Runtimes may support a variety of data sources for hand joint data for XR_EXT_hand_tracking, and some

runtimes and devices may use joint data from multiple sources. This extension allows an application

and the runtime to communicate about and make use of those data sources in a cooperative manner.

This extension allows the application to specify the data sources that it wants data from when creating

a hand tracking handle, and allows the runtime to specify the currently active data source.

The application must enable the XR_EXT_hand_tracking extension in order to use this extension.

The XrHandTrackingDataSourceEXT enum describes a hand tracking data source when creating an

XrHandTrackerEXT handle.

// Provided by XR_EXT_hand_tracking_data_source

typedef enum XrHandTrackingDataSourceEXT {

 XR_HAND_TRACKING_DATA_SOURCE_UNOBSTRUCTED_EXT = 1,

 XR_HAND_TRACKING_DATA_SOURCE_CONTROLLER_EXT = 2,

 XR_HAND_TRACKING_DATA_SOURCE_MAX_ENUM_EXT = 0x7FFFFFFF

} XrHandTrackingDataSourceEXT;

The application can use XrHandTrackingDataSourceEXT with XrHandTrackingDataSourceInfoEXT

when calling xrCreateHandTrackerEXT to tell the runtime all supported data sources for the

application for the hand tracking inputs.

The application can use it with XrHandTrackingDataSourceStateEXT when calling

xrLocateHandJointsEXT to inspect what data source the runtime used for the returned hand joint

locations.

If the XR_EXT_hand_joints_motion_range extension is supported by the runtime and the data source is

XR_HAND_TRACKING_DATA_SOURCE_CONTROLLER_EXT, then it is expected that application will use that

extension when retrieving hand joint poses.

Chapter 12. List of Current Extensions | 529

Enumerant Descriptions

• XR_HAND_TRACKING_DATA_SOURCE_UNOBSTRUCTED_EXT - This data source value indicates that the

hand tracking data source supports using individual fingers and joints separately. Examples

of such sources include optical hand tracking, data gloves, or motion capture devices.

• XR_HAND_TRACKING_DATA_SOURCE_CONTROLLER_EXT - This data source value indicates that the hand

tracking data source is a motion controller. The runtime must not supply this data source if

the controller providing the data is not actively held in the user’s hand, but may still provide

data if the runtime is unable to detect if the controller is not in the user’s hand, or a user

selected policy changes this behavior. Unless specified otherwise by another extension, data

returned from XR_HAND_TRACKING_DATA_SOURCE_CONTROLLER_EXT must behave as

XR_HAND_JOINTS_MOTION_RANGE_UNOBSTRUCTED_EXT.

The XrHandTrackingDataSourceInfoEXT structure is defined as:

// Provided by XR_EXT_hand_tracking_data_source

typedef struct XrHandTrackingDataSourceInfoEXT {

 XrStructureType type;

 const void* next;

 uint32_t requestedDataSourceCount;

 XrHandTrackingDataSourceEXT* requestedDataSources;

} XrHandTrackingDataSourceInfoEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• requestedDataSourceCount is the number of elements in the requestedDataSources array.

• requestedDataSources is an array of XrHandTrackingDataSourceEXT that the application

accepts.

The XrHandTrackingDataSourceInfoEXT is a structure that an application can chain to

XrHandTrackerCreateInfoEXT::next to specify the hand tracking data sources that the application

accepts.

Because the hand tracking device may change during a running session, the runtime may return a

valid XrHandTrackerEXT handle even if there is no currently active hand tracking device or the active

device does not safisty any or all data sources requested by the applications’s call to

xrCreateHandTrackerEXT. The runtime may instead return XR_ERROR_FEATURE_UNSUPPORTED from

530 | Chapter 12. List of Current Extensions

xrCreateHandTrackerEXT, if for example the runtime believes it will never be able to satisfy the

request.

If any value in requestedDataSources is duplicated, the runtime must return

XR_ERROR_VALIDATION_FAILURE from the call to xrCreateHandTrackerEXT. If requestedDataSourceCount is

0, the runtime must return XR_ERROR_VALIDATION_FAILURE from the call to xrCreateHandTrackerEXT.

Valid Usage (Implicit)

• The XR_EXT_hand_tracking_data_source extension must be enabled prior to using

XrHandTrackingDataSourceInfoEXT

• type must be XR_TYPE_HAND_TRACKING_DATA_SOURCE_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If requestedDataSourceCount is not 0, requestedDataSources must be a pointer to an array of

requestedDataSourceCount XrHandTrackingDataSourceEXT values

The XrHandTrackingDataSourceStateEXT structure is defined as:

// Provided by XR_EXT_hand_tracking_data_source

typedef struct XrHandTrackingDataSourceStateEXT {

 XrStructureType type;

 void* next;

 XrBool32 isActive;

 XrHandTrackingDataSourceEXT dataSource;

} XrHandTrackingDataSourceStateEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• isActive indicating there is an active data source

• dataSource indicating the data source that was used to generate the hand tracking joints.

XrHandTrackingDataSourceStateEXT is a structure that an application can chain to

XrHandJointLocationsEXT::next when calling xrLocateHandJointsEXT to retrieve the data source of the

currently active hand tracking device.

When the returned isActive is XR_FALSE, it indicates the currently active hand tracking device does not

Chapter 12. List of Current Extensions | 531

#valid-usage-for-structure-pointer-chains

support any of the requested data sources. In these cases, the runtime must also return no valid

tracking locations for hand joints from this xrLocateHandJointsEXT function.

If the tracker was not created with XrHandTrackingDataSourceInfoEXT chained to

XrHandTrackerCreateInfoEXT::next, then the runtime must return XR_ERROR_VALIDATION_FAILURE, if

XrHandTrackingDataSourceStateEXT is passed in the call to xrLocateHandJointsEXT.

If there is an active hand tracking device that is one of the specified

XrHandTrackingDataSourceInfoEXT::requestedDataSources, the runtime must set isActive to XR_TRUE.

When the runtime sets isActive to XR_TRUE, the runtime must set dataSource indicate the active data

source. The runtime must return a dataSource that is a subset of the

XrHandTrackingDataSourceInfoEXT::requestedDataSources when creating the corresponding hand

tracker.

Valid Usage (Implicit)

• The XR_EXT_hand_tracking_data_source extension must be enabled prior to using

XrHandTrackingDataSourceStateEXT

• type must be XR_TYPE_HAND_TRACKING_DATA_SOURCE_STATE_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• dataSource must be a valid XrHandTrackingDataSourceEXT value

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with: * XR_TYPE_HAND_TRACKING_DATA_SOURCE_INFO_EXT *
XR_TYPE_HAND_TRACKING_DATA_SOURCE_STATE_EXT

New Enums

• XrHandTrackingDataSourceEXT

New Structures

• XrHandTrackingDataSourceInfoEXT

• XrHandTrackingDataSourceStateEXT

New Functions

Issues

1. Should this extension require XR_HAND_JOINTS_MOTION_RANGE_CONFORMING_TO_CONTROLLER_EXT if the

532 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

data source is XR_HAND_TRACKING_DATA_SOURCE_CONTROLLER_EXT and XR_EXT_hand_joints_motion_range is

not enabled?

RESOLVED: Yes.

It should not be required. We expect that a key use of the data from this extension will be

replicating data hand tracking joint data for social purposes. For that use-case, the data returned in

the style of XR_HAND_JOINTS_MOTION_RANGE_UNOBSTRUCTED_EXT is more appropriate.

This is consistent with XR_EXT_hand_tracking extension which requires that the jointLocations

represent the range of motion of a human hand, without any obstructions.

2. Should XrHandTrackingDataSourceInfoEXT include an isActive member or can it use isActive

from XrHandJointLocationsEXT?

RESOLVED: Yes.

Yes; XrHandTrackingDataSourceInfoEXT needs to include the isActive member and cannot use the

isActive from XrHandJointLocationsEXT as the meaning of these members is different.

The isActive member of XrHandTrackingDataSourceStateEXT allows the runtime to describe if the

tracking device is active. XrHandTrackingDataSourceStateEXT::isActive describes if the tracking

device is actively tracking. It is possible for a data source to be active but not actively tracking and

we want to represent if the device is active in this extension.

Version History

• Revision 1, 2023-01-23 (John Kearney)

◦ Initial extension description

12.34. XR_EXT_performance_settings

Name String

XR_EXT_performance_settings

Extension Type

Instance extension

Registered Extension Number

16

Revision

4

Chapter 12. List of Current Extensions | 533

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-04-14

IP Status

No known IP claims.

Contributors

Armelle Laine, Qualcomm Technologies Inc, on behalf of Qualcomm Innovation Center, Inc

Rylie Pavlik, Collabora

12.34.1. Overview

This extension defines an API for the application to give performance hints to the runtime and for the

runtime to send performance related notifications back to the application. This allows both sides to

dial in a suitable compromise between needed CPU and GPU performance, thermal sustainability and

a consistent good user experience throughout the session.

The goal is to render frames consistently, in time, under varying system load without consuming more

energy than necessary.

In summary, the APIs allow:

• setting performance level hints

• receiving performance related notifications

12.34.2. Setting Performance Levels Hints

Performance level hint definition

The XR performance level hints for a given hardware system are expressed as a level

XrPerfSettingsLevelEXT for each of the XR-critical processing domains XrPerfSettingsDomainEXT

(currently defined is a CPU and a GPU domain):

// Provided by XR_EXT_performance_settings, XR_EXT_thermal_query

typedef enum XrPerfSettingsDomainEXT {

 XR_PERF_SETTINGS_DOMAIN_CPU_EXT = 1,

 XR_PERF_SETTINGS_DOMAIN_GPU_EXT = 2,

 XR_PERF_SETTINGS_DOMAIN_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsDomainEXT;

534 | Chapter 12. List of Current Extensions

// Provided by XR_EXT_performance_settings

typedef enum XrPerfSettingsLevelEXT {

 XR_PERF_SETTINGS_LEVEL_POWER_SAVINGS_EXT = 0,

 XR_PERF_SETTINGS_LEVEL_SUSTAINED_LOW_EXT = 25,

 XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT = 50,

 XR_PERF_SETTINGS_LEVEL_BOOST_EXT = 75,

 XR_PERF_SETTINGS_LEVEL_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsLevelEXT;

This extension defines platform-independent level hints:

• XR_PERF_SETTINGS_LEVEL_POWER_SAVINGS_EXT is used by the application to indicate that it enters a non-

XR section (head-locked / static screen), during which power savings are to be prioritized.

Consistent XR compositing, consistent frame rendering, and low latency are not needed.

• XR_PERF_SETTINGS_LEVEL_SUSTAINED_LOW_EXT is used by the application to indicate that it enters a low

and stable complexity section, during which reducing power is more important than occasional

late rendering frames. With such a hint, the XR Runtime still strives for consistent XR compositing

(no tearing) within a thermally sustainable range(*), but is allowed to take measures to reduce

power, such as increasing latencies or reducing headroom.

• XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT is used by the application to indicate that it enters a

high or dynamic complexity section, during which the XR Runtime strives for consistent XR

compositing and frame rendering within a thermally sustainable range(*).

• XR_PERF_SETTINGS_LEVEL_BOOST_EXT is used to indicate that the application enters a section with very

high complexity, during which the XR Runtime is allowed to step up beyond the thermally

sustainable range. As not thermally sustainable, this level is meant to be used for short-term

durations (< 30 seconds).

(*) If the application chooses one of the two sustainable levels

(XR_PERF_SETTINGS_LEVEL_SUSTAINED_LOW_EXT or XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT), the device

may still run into thermal limits under non-nominal circumstances (high room temperature,

additional background loads, extended device operation) and therefore the application should also in

the sustainable modes be prepared to react to performance notifications (in particular

XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT and XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT in the

thermal sub-domain, see Notification level definition).

The XR Runtime shall select XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT as the default hint if the

application does not provide any. The function to call for setting performance level hints is

xrPerfSettingsSetPerformanceLevelEXT.

Chapter 12. List of Current Extensions | 535

// Provided by XR_EXT_performance_settings

XrResult xrPerfSettingsSetPerformanceLevelEXT(

 XrSession session,

 XrPerfSettingsDomainEXT domain,

 XrPerfSettingsLevelEXT level);

Example of using the short-term boost level hint

For a limited amount of time, both the Mobile and PC systems can provide a higher level of

performance than is thermally sustainable. It is desirable to make this extra computational power

available for short complex scenes, then go back to a sustainable lower level. This section describes

means for the application developer to apply settings directing the runtime to boost performance for a

short-term duration.

The application developer must pay attention to keep these boost periods very short and carefully

monitor the side effects, which may vary a lot between different hardware systems.

Sample code for temporarily boosting the performance

 1 extern XrInstance instance; ①
 2 extern XrSession session;

 3

 4 // Get function pointer for xrPerfSettingsSetPerformanceLevelEXT

 5 PFN_xrPerfSettingsSetPerformanceLevelEXT pfnPerfSettingsSetPerformanceLevelEXT;

 6 CHK_XR(xrGetInstanceProcAddr(instance, "xrPerfSettingsSetPerformanceLevelEXT",

 7 (PFN_xrVoidFunction*)(

 8 &pfnPerfSettingsSetPerformanceLevelEXT)));

 9

10 // before entering the high complexity section

11 pfnPerfSettingsSetPerformanceLevelEXT(session, XR_PERF_SETTINGS_DOMAIN_CPU_EXT,

 XR_PERF_SETTINGS_LEVEL_BOOST_EXT); ②
12 pfnPerfSettingsSetPerformanceLevelEXT(session, XR_PERF_SETTINGS_DOMAIN_GPU_EXT,

 XR_PERF_SETTINGS_LEVEL_BOOST_EXT);

13

14 // entering the high complexity section

15 // ... running

16 // end of the high complexity section

17

18 pfnPerfSettingsSetPerformanceLevelEXT(session, XR_PERF_SETTINGS_DOMAIN_CPU_EXT,

 XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT); ③
19 pfnPerfSettingsSetPerformanceLevelEXT(session, XR_PERF_SETTINGS_DOMAIN_GPU_EXT,

 XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT);①we assume that instance and session are initialized and their handles are available② setting performance level to XR_PERF_SETTINGS_LEVEL_BOOST_EXT on both CPU and GPU domains

536 | Chapter 12. List of Current Extensions

③ going back to the sustainable XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT

Example of using the sustained low level hint for the CPU domain

power reduction sample code

 1 extern XrInstance instance; ①
 2 extern XrSession session;

 3

 4 // Get function pointer for xrPerfSettingsSetPerformanceLevelEXT

 5 PFN_xrPerfSettingsSetPerformanceLevelEXT pfnPerfSettingsSetPerformanceLevelEXT;

 6 CHK_XR(xrGetInstanceProcAddr(instance, "xrPerfSettingsSetPerformanceLevelEXT",

 7 (PFN_xrVoidFunction*)(

 8 &pfnPerfSettingsSetPerformanceLevelEXT)));

 9

10 // before entering a low CPU complexity section

11 pfnPerfSettingsSetPerformanceLevelEXT(session, XR_PERF_SETTINGS_DOMAIN_CPU_EXT,

 XR_PERF_SETTINGS_LEVEL_SUSTAINED_LOW_EXT);

12 pfnPerfSettingsSetPerformanceLevelEXT(session, XR_PERF_SETTINGS_DOMAIN_GPU_EXT,

 XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT); ②
13

14 // entering the low complexity section

15 // ... running

16 // end of the low complexity section

17

18 pfnPerfSettingsSetPerformanceLevelEXT(session, XR_PERF_SETTINGS_DOMAIN_CPU_EXT,

 XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT); ③①we assume that instance and session are initialized and their handles are available② the developer may choose to only reduce CPU domain and keep the GPU domain at
XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT③ going back to the sustainable XR_PERF_SETTINGS_LEVEL_SUSTAINED_HIGH_EXT for CPU

12.34.3. Receiving Performance Related Notifications

The XR runtime shall provide performance related notifications to the application in the following

situations:

• the compositing performance within the runtime has reached a new level, either improved or

degraded from the previous one (subDomain is set to XR_PERF_SETTINGS_SUB_DOMAIN_COMPOSITING_EXT)

• the application rendering performance has reached a new level, either improved or degraded from

the previous one (subDomain is set to XR_PERF_SETTINGS_SUB_DOMAIN_RENDERING_EXT)

• the temperature of the device has reached a new level, either improved or degraded from the

previous one (subDomain is set to XR_PERF_SETTINGS_SUB_DOMAIN_THERMAL_EXT).

When degradation is observed, the application should take measures reducing its workload, helping

Chapter 12. List of Current Extensions | 537

the compositing or rendering subDomain to meet their deadlines, or the thermal subDomain to avoid or

stop throttling. When improvement is observed, the application can potentially rollback some of its

mitigations.

// Provided by XR_EXT_performance_settings

typedef struct XrEventDataPerfSettingsEXT {

 XrStructureType type;

 const void* next;

 XrPerfSettingsDomainEXT domain;

 XrPerfSettingsSubDomainEXT subDomain;

 XrPerfSettingsNotificationLevelEXT fromLevel;

 XrPerfSettingsNotificationLevelEXT toLevel;

} XrEventDataPerfSettingsEXT;

// Provided by XR_EXT_performance_settings

typedef enum XrPerfSettingsSubDomainEXT {

 XR_PERF_SETTINGS_SUB_DOMAIN_COMPOSITING_EXT = 1,

 XR_PERF_SETTINGS_SUB_DOMAIN_RENDERING_EXT = 2,

 XR_PERF_SETTINGS_SUB_DOMAIN_THERMAL_EXT = 3,

 XR_PERF_SETTINGS_SUB_DOMAIN_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsSubDomainEXT;

Compositing Sub-Domain

One of the major functions the runtime shall provide is the timely compositing of the submitted layers

in the background. The runtime has to share the CPU and GPU system resources for this operation with

the application. Since this is extremely time sensitive - the head room is only a few milliseconds - the

runtime may have to ask the application via notifications to cooperate and relinquish some usage of

the indicated resource (CPU or GPU domain). Performance issues in this area that the runtime notices

are notified to the application with the subDomain set to XR_PERF_SETTINGS_SUB_DOMAIN_COMPOSITING_EXT.

Rendering Sub-Domain

The application submits rendered layers to the runtime for compositing. Performance issues in this

area that the runtime notices (i.e. missing submission deadlines) are notified to the application with

the subDomain set to XR_PERF_SETTINGS_SUB_DOMAIN_RENDERING_EXT.

Thermal Sub-Domain

XR applications run at a high-performance level during long periods of time, across a game or an

entire movie session. As form factors shrink, especially on mobile solutions, the risk of reaching die

thermal runaway or reaching the limits on skin and battery temperatures increases. When thermal

limits are reached, the device mitigates the heat generation leading to severe performance reductions,

which greatly affects user experience (dropped frames, high latency).

538 | Chapter 12. List of Current Extensions

Better than dropping frames when it is too late, pro-active measures from the application should be

encouraged.

The performance notification with the subDomain set to XR_PERF_SETTINGS_SUB_DOMAIN_THERMAL_EXT

provides an early warning allowing the application to take mitigation actions.

Notification level definition

The levels are defined as follows:

// Provided by XR_EXT_performance_settings, XR_EXT_thermal_query

typedef enum XrPerfSettingsNotificationLevelEXT {

 XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT = 0,

 XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT = 25,

 XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT = 75,

 XR_PERF_SETTINGS_NOTIFICATION_LEVEL_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsNotificationLevelEXT;

• XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT notifies that the sub-domain has reached a level where no

further actions other than currently applied are necessary.

• XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT notifies that the sub-domain has reached an early

warning level where the application should start proactive mitigation actions with the goal to

return to the XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT level.

• XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT notifies that the sub-domain has reached a critical level

with significant performance degradation. The application should take drastic mitigation action.

The above definitions summarize the broad interpretation of the notification levels, however sub-

domain specific definitions of each level and their transitions are specified below:

• XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT

◦ For the compositing sub-domain, XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT indicates that the

composition headroom is consistently being met with sufficient margin.

Getting into XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT from

XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT indicates that the composition headroom was

consistently met with sufficient margin during a sufficient time period.

◦ For the rendering sub-domain, XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT indicates that frames

are being submitted in time to be used by the compositor.

Getting into XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT from

XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT indicates that during a sufficient time period, none

of the due layers was too late to be picked up by the compositor.

◦ For the thermal sub-domain, XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT indicates that the

current load should be sustainable in the near future.

Getting into XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT from

Chapter 12. List of Current Extensions | 539

XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT indicates that the runtime does not presuppose any

further temperature mitigation action on the application side, other than the current ones.

• XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT

◦ For the compositing sub-domain, XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT indicates that the

compositing headroom of the current frame was met but the margin is considered insufficient

by the runtime, and the application should reduce its workload in the notified domain to solve

this problem.

Getting into XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT from

XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT indicates that the compositing deadline was not

missed during a sufficient time period.

◦ For the rendering sub-domain, XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT indicates that at least

one layer is regularly late to be picked up by the compositor, resulting in a degraded user

experience, and that the application should take action to consistently provide frames in a more

timely manner.

Getting into XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT from

XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT indicates that the runtime has stopped any of its

own independent actions which are tied to the XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT

level.

◦ For the thermal sub-domain, the XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT indicates that the

runtime expects the device to overheat under the current load, and that the application should

take mitigating action in order to prevent thermal throttling.

Getting into XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT from

XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT indicates that the underlying system thermal

throttling has stopped.

• XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT

◦ For the compositing sub-domain, XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT indicates that

composition can no longer be maintained under the current workload. The runtime may take

independent action that will interfere with the application (e.g. limiting the framerate, ignoring

submitted layers, or shutting down the application) in order to correct this problem.

◦ For the rendering sub-domain, XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT indicates that at

least one layer is too often late to be picked up by the compositor, and consequently the

runtime may take independent action that will interfere with the application (e.g. informing the

user that the application is not responding, displaying a tracking environment in order to

maintain user orientation).

◦ For the thermal sub-domain, XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT indicates that the

underlying system is taking measures, such as thermal throttling to reduce the

temperature, impacting the XR experience.

Leaving XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT indicates that any mitigating actions by the

runtime (e.g. down-clocking the device to stay within thermal limits) have ended.

540 | Chapter 12. List of Current Extensions

Performance Settings API Reference

xrPerfSettingsSetPerformanceLevelEXT

// Provided by XR_EXT_performance_settings

XrResult xrPerfSettingsSetPerformanceLevelEXT(

 XrSession session,

 XrPerfSettingsDomainEXT domain,

 XrPerfSettingsLevelEXT level);

Parameter Descriptions

• session is a valid XrSession handle.

• domain: the processing domain for which the level hint is applied

• level: the level hint to be applied

Valid Usage (Implicit)

• The XR_EXT_performance_settings extension must be enabled prior to calling

xrPerfSettingsSetPerformanceLevelEXT

• session must be a valid XrSession handle

• domain must be a valid XrPerfSettingsDomainEXT value

• level must be a valid XrPerfSettingsLevelEXT value

Chapter 12. List of Current Extensions | 541

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

Refer to Performance level hint definition for the definition of the level enumerations.

XrEventDataPerformanceSettingsEXT

// Provided by XR_EXT_performance_settings

typedef struct XrEventDataPerfSettingsEXT {

 XrStructureType type;

 const void* next;

 XrPerfSettingsDomainEXT domain;

 XrPerfSettingsSubDomainEXT subDomain;

 XrPerfSettingsNotificationLevelEXT fromLevel;

 XrPerfSettingsNotificationLevelEXT toLevel;

} XrEventDataPerfSettingsEXT;

542 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• domain : processing domain in which a threshold has been crossed

• subDomain : system area in which a threshold has been crossed

• fromLevel : enumerated notification level which has been exited

• toLevel : enumerated notification level which has been entered

Valid Usage (Implicit)

• The XR_EXT_performance_settings extension must be enabled prior to using

XrEventDataPerfSettingsEXT

• type must be XR_TYPE_EVENT_DATA_PERF_SETTINGS_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

// Provided by XR_EXT_performance_settings, XR_EXT_thermal_query

typedef enum XrPerfSettingsDomainEXT {

 XR_PERF_SETTINGS_DOMAIN_CPU_EXT = 1,

 XR_PERF_SETTINGS_DOMAIN_GPU_EXT = 2,

 XR_PERF_SETTINGS_DOMAIN_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsDomainEXT;

// Provided by XR_EXT_performance_settings

typedef enum XrPerfSettingsSubDomainEXT {

 XR_PERF_SETTINGS_SUB_DOMAIN_COMPOSITING_EXT = 1,

 XR_PERF_SETTINGS_SUB_DOMAIN_RENDERING_EXT = 2,

 XR_PERF_SETTINGS_SUB_DOMAIN_THERMAL_EXT = 3,

 XR_PERF_SETTINGS_SUB_DOMAIN_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsSubDomainEXT;

Chapter 12. List of Current Extensions | 543

#valid-usage-for-structure-pointer-chains

// Provided by XR_EXT_performance_settings, XR_EXT_thermal_query

typedef enum XrPerfSettingsNotificationLevelEXT {

 XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT = 0,

 XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT = 25,

 XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT = 75,

 XR_PERF_SETTINGS_NOTIFICATION_LEVEL_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsNotificationLevelEXT;

Version History

• Revision 1, 2017-11-30 (Armelle Laine)

• Revision 2, 2021-04-13 (Rylie Pavlik)

◦ Correctly show function pointer retrieval in sample code

◦ Fix sample code callouts

• Revision 3, 2021-04-14 (Rylie Pavlik)

◦ Fix missing error code

• Revision 4, 2022-10-26 (Rylie Pavlik)

◦ Update XML markup to correct the generated valid usage

12.35. XR_EXT_plane_detection

Name String

XR_EXT_plane_detection

Extension Type

Instance extension

Registered Extension Number

430

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-06-26

Contributors

Aitor Font, Qualcomm

544 | Chapter 12. List of Current Extensions

Daniel Guttenberg, Qualcomm

Maximilian Mayer, Qualcomm

Martin Renschler, Qualcomm

Karthik Nagarajan, Qualcomm

Ron Bessems, Magic Leap

Karthik Kadappan, Magic Leap

12.35.1. Overview

This extension enables applications to detect planes in the scene.

12.35.2. Runtime support

To determine if this runtime supports detecting planes xrGetSystemProperties can be used.

XrSystemPlaneDetectionPropertiesEXT provides information on the features supported by the

runtime.

// Provided by XR_EXT_plane_detection

typedef struct XrSystemPlaneDetectionPropertiesEXT {

 XrStructureType type;

 void* next;

 XrPlaneDetectionCapabilityFlagsEXT supportedFeatures;

} XrSystemPlaneDetectionPropertiesEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• supportedFeatures is a bitfield, with bit masks defined in

XrPlaneDetectionCapabilityFlagBitsEXT.

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to using

XrSystemPlaneDetectionPropertiesEXT

• type must be XR_TYPE_SYSTEM_PLANE_DETECTION_PROPERTIES_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

Chapter 12. List of Current Extensions | 545

#valid-usage-for-structure-pointer-chains

The XrSystemPlaneDetectionPropertiesEXT::supportedFeatures member is of the following type, and

contains a bitwise-OR of zero or more of the bits defined in XrPlaneDetectionCapabilityFlagBitsEXT.

// Provided by XR_EXT_plane_detection

typedef XrFlags64 XrPlaneDetectionCapabilityFlagsEXT;

Valid bits for XrPlaneDetectionCapabilityFlagsEXT are defined by

XrPlaneDetectionCapabilityFlagBitsEXT, which is specified as:

// Flag bits for XrPlaneDetectionCapabilityFlagsEXT

static const XrPlaneDetectionCapabilityFlagsEXT

XR_PLANE_DETECTION_CAPABILITY_PLANE_DETECTION_BIT_EXT = 0x00000001;

static const XrPlaneDetectionCapabilityFlagsEXT

XR_PLANE_DETECTION_CAPABILITY_PLANE_HOLES_BIT_EXT = 0x00000002;

static const XrPlaneDetectionCapabilityFlagsEXT

XR_PLANE_DETECTION_CAPABILITY_SEMANTIC_CEILING_BIT_EXT = 0x00000004;

static const XrPlaneDetectionCapabilityFlagsEXT

XR_PLANE_DETECTION_CAPABILITY_SEMANTIC_FLOOR_BIT_EXT = 0x00000008;

static const XrPlaneDetectionCapabilityFlagsEXT

XR_PLANE_DETECTION_CAPABILITY_SEMANTIC_WALL_BIT_EXT = 0x00000010;

static const XrPlaneDetectionCapabilityFlagsEXT

XR_PLANE_DETECTION_CAPABILITY_SEMANTIC_PLATFORM_BIT_EXT = 0x00000020;

static const XrPlaneDetectionCapabilityFlagsEXT

XR_PLANE_DETECTION_CAPABILITY_ORIENTATION_BIT_EXT = 0x00000040;

The flag bits have the following meanings:

546 | Chapter 12. List of Current Extensions

Flag Descriptions

• XR_PLANE_DETECTION_CAPABILITY_PLANE_DETECTION_BIT_EXT  — plane detection is supported

• XR_PLANE_DETECTION_CAPABILITY_PLANE_HOLES_BIT_EXT  — polygon buffers for holes in planes

can be generated

• XR_PLANE_DETECTION_CAPABILITY_SEMANTIC_CEILING_BIT_EXT  — plane detection supports ceiling

semantic classification

• XR_PLANE_DETECTION_CAPABILITY_SEMANTIC_FLOOR_BIT_EXT  — plane detection supports floor

semantic classification

• XR_PLANE_DETECTION_CAPABILITY_SEMANTIC_WALL_BIT_EXT  — plane detection supports wall

semantic classification

• XR_PLANE_DETECTION_CAPABILITY_SEMANTIC_PLATFORM_BIT_EXT  — plane detection supports

platform semantic classification (for example table tops)

• XR_PLANE_DETECTION_CAPABILITY_ORIENTATION_BIT_EXT  — plane detection supports plane

orientation classification. If not supported planes are always classified as ARBITRARY.

12.35.3. Create a plane detection handle

// Provided by XR_EXT_plane_detection

XR_DEFINE_HANDLE(XrPlaneDetectorEXT)

The XrPlaneDetectorEXT handle represents the resources for detecting one or more planes.

An application may create separate XrPlaneDetectorEXT handles for different sets of planes. This

handle can be used to detect planes using other functions in this extension.

Plane detection provides locations of planes in the scene.

The xrCreatePlaneDetectorEXT function is defined as:

// Provided by XR_EXT_plane_detection

XrResult xrCreatePlaneDetectorEXT(

 XrSession session,

 const XrPlaneDetectorCreateInfoEXT* createInfo,

 XrPlaneDetectorEXT* planeDetector);

Chapter 12. List of Current Extensions | 547

Parameter Descriptions

• session is an XrSession in which the plane detection will be active.

• createInfo is the XrPlaneDetectorCreateInfoEXT used to specify the plane detection.

• planeDetector is the returned XrPlaneDetectorEXT handle.

An application creates an XrPlaneDetectorEXT handle using xrCreatePlaneDetectorEXT function.

If the system does not support plane detection, the runtime must return XR_ERROR_FEATURE_UNSUPPORTED

from xrCreatePlaneDetectorEXT.

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to calling

xrCreatePlaneDetectorEXT

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrPlaneDetectorCreateInfoEXT structure

• planeDetector must be a pointer to an XrPlaneDetectorEXT handle

548 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_PLANE_DETECTION_PERMISSION_DENIED_EXT

• XR_ERROR_FEATURE_UNSUPPORTED

The XrPlaneDetectorCreateInfoEXT structure is defined as:

// Provided by XR_EXT_plane_detection

typedef struct XrPlaneDetectorCreateInfoEXT {

 XrStructureType type;

 const void* next;

 XrPlaneDetectorFlagsEXT flags;

} XrPlaneDetectorCreateInfoEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags must be a valid combination of XrPlaneDetectorFlagsEXT flags or zero.

The XrPlaneDetectorCreateInfoEXT structure describes the information to create an

Chapter 12. List of Current Extensions | 549

XrPlaneDetectorEXT handle.

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to using

XrPlaneDetectorCreateInfoEXT

• type must be XR_TYPE_PLANE_DETECTOR_CREATE_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be 0 or a valid combination of XrPlaneDetectorFlagBitsEXT values

The XrPlaneDetectorCreateInfoEXT::flags member is of the following type, and contains a bitwise-OR

of zero or more of the bits defined in XrPlaneDetectorFlagBitsEXT.

// Provided by XR_EXT_plane_detection

typedef XrFlags64 XrPlaneDetectorFlagsEXT;

Valid bits for XrPlaneDetectorFlagsEXT are defined by XrPlaneDetectorFlagBitsEXT, which is specified

as:

// Flag bits for XrPlaneDetectorFlagsEXT

static const XrPlaneDetectorFlagsEXT XR_PLANE_DETECTOR_ENABLE_CONTOUR_BIT_EXT =

0x00000001;

The flag bits have the following meanings:

Flag Descriptions

• XR_PLANE_DETECTOR_ENABLE_CONTOUR_BIT_EXT  — populate the plane contour information

The xrDestroyPlaneDetectorEXT function is defined as:

// Provided by XR_EXT_plane_detection

XrResult xrDestroyPlaneDetectorEXT(

 XrPlaneDetectorEXT planeDetector);

550 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• planeDetector is an XrPlaneDetectorEXT previously created by xrCreatePlaneDetectorEXT.

xrDestroyPlaneDetectorEXT function releases the planeDetector and the underlying resources when

finished with plane detection experiences.

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to calling

xrDestroyPlaneDetectorEXT

• planeDetector must be a valid XrPlaneDetectorEXT handle

Thread Safety

• Access to planeDetector, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

12.35.4. Detecting planes

The xrBeginPlaneDetectionEXT function is defined as:

// Provided by XR_EXT_plane_detection

XrResult xrBeginPlaneDetectionEXT(

 XrPlaneDetectorEXT planeDetector,

 const XrPlaneDetectorBeginInfoEXT* beginInfo);

Chapter 12. List of Current Extensions | 551

Parameter Descriptions

• planeDetector is an XrPlaneDetectorEXT previously created by xrCreatePlaneDetectorEXT.

• beginInfo is a pointer to XrPlaneDetectorBeginInfoEXT containing plane detection

parameters.

The xrBeginPlaneDetectionEXT function begins the detection of planes in the scene. Detecting planes in

a scene is an asynchronous operation. xrGetPlaneDetectionStateEXT can be used to determine if the

query has finished. Once it has finished the results may be retrieved via xrGetPlaneDetectionsEXT. If a

detection has already been started on a plane detector handle, calling xrBeginPlaneDetectionEXT again

on the same handle will cancel the operation in progress and start a new detection with the new filter

parameters.

The bounding volume is resolved and fixed relative to LOCAL space at the time of the call to

xrBeginPlaneDetectionEXT using XrPlaneDetectorBeginInfoEXT::baseSpace,

XrPlaneDetectorBeginInfoEXT::time, XrPlaneDetectorBeginInfoEXT::boundingBoxPose and

XrPlaneDetectorBeginInfoEXT::boundingBoxExtent. The runtime must resolve the location defined by

XrPlaneDetectorBeginInfoEXT::baseSpace at the time of the call. The XrPlaneDetectorBeginInfoEXT

::boundingBoxPose is the pose of the center of the box defined by XrPlaneDetectorBeginInfoEXT

::boundingBoxExtent.

The runtime must return XR_ERROR_SPACE_NOT_LOCATABLE_EXT if the XrPlaneDetectorBeginInfoEXT

::baseSpace is not locatable at the time of the call.

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to calling

xrBeginPlaneDetectionEXT

• planeDetector must be a valid XrPlaneDetectorEXT handle

• beginInfo must be a pointer to a valid XrPlaneDetectorBeginInfoEXT structure

552 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

• XR_ERROR_SPACE_NOT_LOCATABLE_EXT

• XR_ERROR_POSE_INVALID

The XrPlaneDetectorBeginInfoEXT structure describes the information to detect planes.

// Provided by XR_EXT_plane_detection

typedef struct XrPlaneDetectorBeginInfoEXT {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

 uint32_t orientationCount;

 const XrPlaneDetectorOrientationEXT* orientations;

 uint32_t semanticTypeCount;

 const XrPlaneDetectorSemanticTypeEXT* semanticTypes;

 uint32_t maxPlanes;

 float minArea;

 XrPosef boundingBoxPose;

 XrExtent3DfEXT boundingBoxExtent;

} XrPlaneDetectorBeginInfoEXT;

Chapter 12. List of Current Extensions | 553

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace is the XrSpace that the boundingBoxPose is defined in.

• time is an XrTime at which to detect the planes.

• orientationCount the number of elements in the orientations.

• orientations an array of XrPlaneDetectorOrientationEXT. If this field is null no orientation

filtering is applied. If any orientations are present only planes with any of the orientation

listed are returned.

• semanticTypeCount the number of elements in the semanticTypes.

• semanticTypes an array of XrPlaneDetectorSemanticTypeEXT. If this field is null no semantic

type filtering is applied. If any semantic types are present only planes with matching

semantic types are returned.

• maxPlanes is the maximum number of planes the runtime may return. This number must be

larger than 0. If the number is 0 the runtime must return XR_ERROR_VALIDATION_FAILURE.

• minArea is the minimum area in square meters a plane must have to be returned. A runtime

may have a lower limit under which planes are not detected regardless of minArea and

silently drop planes lower than the internal minimum.

• boundingBoxPose is the pose of the center of the bounding box of the volume to use for

detection in baseSpace.

• boundingBoxExtent is the extent of the bounding box to use for detection. If any part of a plane

falls within the bounding box it should be considered for inclusion subject to the other

filters. This means that planes may extend beyond the bounding box. A runtime may have an

upper limit on the detection range and silently clip the results to that internally.

554 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to using

XrPlaneDetectorBeginInfoEXT

• type must be XR_TYPE_PLANE_DETECTOR_BEGIN_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

• If orientationCount is not 0, orientations must be a pointer to an array of orientationCount

valid XrPlaneDetectorOrientationEXT values

• If semanticTypeCount is not 0, semanticTypes must be a pointer to an array of semanticTypeCount

valid XrPlaneDetectorSemanticTypeEXT values

The xrGetPlaneDetectionStateEXT function is defined as:

// Provided by XR_EXT_plane_detection

XrResult xrGetPlaneDetectionStateEXT(

 XrPlaneDetectorEXT planeDetector,

 XrPlaneDetectionStateEXT* state);

Parameter Descriptions

• planeDetector is an XrPlaneDetectorEXT previously created by xrCreatePlaneDetectorEXT.

• state is a pointer to XrPlaneDetectionStateEXT.

The xrGetPlaneDetectionStateEXT function retrieves the state of the plane query and must be called

before calling xrGetPlaneDetectionsEXT.

If the plane detection has not yet finished state must be XR_PLANE_DETECTION_STATE_PENDING_EXT. If the

plane detection has finished state must be XR_PLANE_DETECTION_STATE_DONE_EXT. If no plane detection

was previously started XR_PLANE_DETECTION_STATE_NONE_EXT must be returned. For all three states the

function must return XR_SUCCESS.

When a query error occurs the function must return XR_SUCCESS and the appropriate error state value

must be set.

Chapter 12. List of Current Extensions | 555

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to calling

xrGetPlaneDetectionStateEXT

• planeDetector must be a valid XrPlaneDetectorEXT handle

• state must be a pointer to an XrPlaneDetectionStateEXT value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The xrGetPlaneDetectionsEXT function is defined as:

// Provided by XR_EXT_plane_detection

XrResult xrGetPlaneDetectionsEXT(

 XrPlaneDetectorEXT planeDetector,

 const XrPlaneDetectorGetInfoEXT* info,

 XrPlaneDetectorLocationsEXT* locations);

Parameter Descriptions

• planeDetector is an XrPlaneDetectorEXT previously created by xrCreatePlaneDetectorEXT.

• info is a pointer to XrPlaneDetectorGetInfoEXT.

• locations is a pointer to XrPlaneDetectorLocationsEXT receiving the returned plane

locations.

556 | Chapter 12. List of Current Extensions

xrGetPlaneDetectionsEXT must return XR_ERROR_CALL_ORDER_INVALID if the detector state reported by

xrGetPlaneDetectionStateEXT is not XR_PLANE_DETECTION_STATE_DONE_EXT for the current query started

by xrBeginPlaneDetectionEXT.

If the XrPlaneDetectorGetInfoEXT::baseSpace is not locatable XR_ERROR_SPACE_NOT_LOCATABLE_EXT must

be returned.

Once xrBeginPlaneDetectionEXT is called again, the previous results for that handle are no longer

available. The application should cache them before calling xrBeginPlaneDetectionEXT again if it

needs access to that data while waiting for updated detection results.

Upon the completion of a detection cycle (xrBeginPlaneDetectionEXT, xrGetPlaneDetectionStateEXT to

xrGetPlaneDetectionsEXT) the runtime must keep a snapshot of the plane data and no data may be

modified. Calling xrGetPlaneDetectionsEXT multiple times with the same baseSpace and time must

return the same plane pose data.

The current snapshot, if any, must be discarded upon calling xrBeginPlaneDetectionEXT.

If the XrEventDataReferenceSpaceChangePending is queued and the changeTime elapsed while the

application is holding cached data the application may use the event data to adjusted poses

accordingly.

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to calling

xrGetPlaneDetectionsEXT

• planeDetector must be a valid XrPlaneDetectorEXT handle

• info must be a pointer to a valid XrPlaneDetectorGetInfoEXT structure

• locations must be a pointer to an XrPlaneDetectorLocationsEXT structure

Chapter 12. List of Current Extensions | 557

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

• XR_ERROR_SPACE_NOT_LOCATABLE_EXT

• XR_ERROR_CALL_ORDER_INVALID

XrPlaneDetectorGetInfoEXT structure contains the information required to retrieve the detected

planes.

// Provided by XR_EXT_plane_detection

typedef struct XrPlaneDetectorGetInfoEXT {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

} XrPlaneDetectorGetInfoEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• baseSpace the plane pose will be relative to this XrSpace at time.

• time is the XrTime at which to evaluate the coordinates relative to the baseSpace.

558 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to using

XrPlaneDetectorGetInfoEXT

• type must be XR_TYPE_PLANE_DETECTOR_GET_INFO_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

XrPlaneDetectorLocationsEXT structure contains information on the detected planes.

// Provided by XR_EXT_plane_detection

typedef struct XrPlaneDetectorLocationsEXT {

 XrStructureType type;

 void* next;

 uint32_t planeLocationCapacityInput;

 uint32_t planeLocationCountOutput;

 XrPlaneDetectorLocationEXT* planeLocations;

} XrPlaneDetectorLocationsEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• planeLocationCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve

the required capacity.

• planeLocationCountOutput is the number of planes, or the required capacity in the case that

planeLocationCapacityInput is insufficient.

• planeLocations is an array of XrPlaneDetectorLocationEXT. It can be NULL if

planeLocationCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

planeLocations size.

Chapter 12. List of Current Extensions | 559

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to using

XrPlaneDetectorLocationsEXT

• type must be XR_TYPE_PLANE_DETECTOR_LOCATIONS_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If planeLocationCapacityInput is not 0, planeLocations must be a pointer to an array of

planeLocationCapacityInput XrPlaneDetectorLocationEXT structures

XrPlaneDetectorLocationEXT structure describes the position and orientation of a plane.

// Provided by XR_EXT_plane_detection

typedef struct XrPlaneDetectorLocationEXT {

 XrStructureType type;

 void* next;

 uint64_t planeId;

 XrSpaceLocationFlags locationFlags;

 XrPosef pose;

 XrExtent2Df extents;

 XrPlaneDetectorOrientationEXT orientation;

 XrPlaneDetectorSemanticTypeEXT semanticType;

 uint32_t polygonBufferCount;

} XrPlaneDetectorLocationEXT;

560 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• planeId is a uint64_t unique identifier of the plane. The planeId should remain the same for

the duration of the XrPlaneDetectorEXT handle for a physical plane. A runtime on occasion

may assign a different id to the same physical plane, for example when several planes merge

into one plane. planeId must remain valid until the next call to xrBeginPlaneDetectionEXT or

xrDestroyPlaneDetectorEXT. This id is used by xrGetPlanePolygonBufferEXT.

• locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits, to indicate

which members contain valid data. If none of the bits are set, no other fields in this structure

should be considered to be valid or meaningful.

• pose is an XrPosef defining the position and orientation of the origin of a plane within the

reference frame of the corresponding XrPlaneDetectorGetInfoEXT::baseSpace.

• extents is the extent of the plane along the x-axis (width) and z-axis (height) centered on the

pose.

• orientation is the detected orientation of the plane.

• semanticType XrPlaneDetectorSemanticTypeEXT type of the plane.

• polygonBufferCount is the number of polygon buffers associated with this plane. If this is zero

no polygon buffer was generated. The first polygon buffer is always the outside contour. If

contours are requested with XR_PLANE_DETECTOR_ENABLE_CONTOUR_BIT_EXT this value must

always be at least 1.

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to using

XrPlaneDetectorLocationEXT

• type must be XR_TYPE_PLANE_DETECTOR_LOCATION_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• locationFlags must be 0 or a valid combination of XrSpaceLocationFlagBits values

• If orientation is not 0, orientation must be a valid XrPlaneDetectorOrientationEXT value

• If semanticType is not 0, semanticType must be a valid XrPlaneDetectorSemanticTypeEXT value

The XrPlaneDetectorOrientationEXT enumeration identifies the different general categories of

orientations of detected planes.

Chapter 12. List of Current Extensions | 561

#valid-usage-for-structure-pointer-chains

// Provided by XR_EXT_plane_detection

typedef enum XrPlaneDetectorOrientationEXT {

 XR_PLANE_DETECTOR_ORIENTATION_HORIZONTAL_UPWARD_EXT = 0,

 XR_PLANE_DETECTOR_ORIENTATION_HORIZONTAL_DOWNWARD_EXT = 1,

 XR_PLANE_DETECTOR_ORIENTATION_VERTICAL_EXT = 2,

 XR_PLANE_DETECTOR_ORIENTATION_ARBITRARY_EXT = 3,

 XR_PLANE_DETECTOR_ORIENTATION_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPlaneDetectorOrientationEXT;

The enums have the following meanings:

Enum Description

XR_PLANE_DETECTOR_ORIENTATION_HORIZONTAL_UPWARD_
EXT

The detected plane is horizontal and faces upward

(e.g. floor).

XR_PLANE_DETECTOR_ORIENTATION_HORIZONTAL_DOWNWAR
D_EXT

The detected plane is horizontal and faces

downward (e.g. ceiling).

XR_PLANE_DETECTOR_ORIENTATION_VERTICAL_EXT The detected plane is vertical (e.g. wall).

XR_PLANE_DETECTOR_ORIENTATION_ARBITRARY_EXT The detected plane has an arbitrary, non-vertical

and non-horizontal orientation.

The XrPlaneDetectorSemanticTypeEXT enumeration identifies the different semantic types of detected

planes.

// Provided by XR_EXT_plane_detection

typedef enum XrPlaneDetectorSemanticTypeEXT {

 XR_PLANE_DETECTOR_SEMANTIC_TYPE_UNDEFINED_EXT = 0,

 XR_PLANE_DETECTOR_SEMANTIC_TYPE_CEILING_EXT = 1,

 XR_PLANE_DETECTOR_SEMANTIC_TYPE_FLOOR_EXT = 2,

 XR_PLANE_DETECTOR_SEMANTIC_TYPE_WALL_EXT = 3,

 XR_PLANE_DETECTOR_SEMANTIC_TYPE_PLATFORM_EXT = 4,

 XR_PLANE_DETECTOR_SEMANTIC_TYPE_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPlaneDetectorSemanticTypeEXT;

The enums have the following meanings:

Enum Description

XR_PLANE_DETECTOR_SEMANTIC_TYPE_UNDEFINED_EXT The runtime was unable to classify this plane.

XR_PLANE_DETECTOR_SEMANTIC_TYPE_CEILING_EXT The detected plane is a ceiling.

XR_PLANE_DETECTOR_SEMANTIC_TYPE_FLOOR_EXT The detected plane is a floor.

562 | Chapter 12. List of Current Extensions

Enum Description

XR_PLANE_DETECTOR_SEMANTIC_TYPE_WALL_EXT The detected plane is a wall.

XR_PLANE_DETECTOR_SEMANTIC_TYPE_PLATFORM_EXT The detected plane is a platform, like a table.

The XrPlaneDetectionStateEXT enumeration identifies the possible states of the plane detector.

// Provided by XR_EXT_plane_detection

typedef enum XrPlaneDetectionStateEXT {

 XR_PLANE_DETECTION_STATE_NONE_EXT = 0,

 XR_PLANE_DETECTION_STATE_PENDING_EXT = 1,

 XR_PLANE_DETECTION_STATE_DONE_EXT = 2,

 XR_PLANE_DETECTION_STATE_ERROR_EXT = 3,

 XR_PLANE_DETECTION_STATE_FATAL_EXT = 4,

 XR_PLANE_DETECTION_STATE_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPlaneDetectionStateEXT;

Enumerant Descriptions

• XR_PLANE_DETECTION_STATE_NONE_EXT - The plane detector is not actively looking for planes; call

xrBeginPlaneDetectionEXT to start detection.

• XR_PLANE_DETECTION_STATE_PENDING_EXT - This plane detector is currently looking for planes but

not yet ready with results; call xrGetPlaneDetectionsEXT again, or call

xrBeginPlaneDetectionEXT to restart with new filter parameters.

• XR_PLANE_DETECTION_STATE_DONE_EXT - This plane detector has finished and results may now be

retrieved. The results are valid until xrBeginPlaneDetectionEXT or

xrDestroyPlaneDetectorEXT are called.

• XR_PLANE_DETECTION_STATE_ERROR_EXT - An error occurred. The query may be tried again.

• XR_PLANE_DETECTION_STATE_FATAL_EXT - An error occurred. The query must not be tried again.

12.35.5. Read plane polygon vertices

The xrGetPlanePolygonBufferEXT function is defined as:

Chapter 12. List of Current Extensions | 563

// Provided by XR_EXT_plane_detection

XrResult xrGetPlanePolygonBufferEXT(

 XrPlaneDetectorEXT planeDetector,

 uint64_t planeId,

 uint32_t polygonBufferIndex,

 XrPlaneDetectorPolygonBufferEXT* polygonBuffer);

Parameter Descriptions

• planeDetector is an XrPlaneDetectorEXT previously created by xrCreatePlaneDetectorEXT.

• planeId is the XrPlaneDetectorLocationEXT::planeId.

• polygonBufferIndex is the index of the polygon contour buffer to retrieve. This must be a

number from 0 to XrPlaneDetectorLocationEXT:polygonBufferCount -1. Index 0 retrieves the

outside contour, larger indexes retrieve holes in the plane.

• polygonBuffer is a pointer to XrPlaneDetectorPolygonBufferEXT receiving the returned plane

polygon buffer.

The xrGetPlanePolygonBufferEXT function retrieves the plane’s polygon buffer for the given planeId

and polygonBufferIndex. Calling xrGetPlanePolygonBufferEXT with polygonBufferIndex equal to 0 must

return the outside contour, if available. Calls with non-zero indices less than

XrPlaneDetectorLocationEXT::polygonBufferCount must return polygons corresponding to holes in the

plane. This feature may not be supported by all runtimes, check the

XrSystemPlaneDetectionPropertiesEXT::supportedFeatures for support.

Outside contour polygon vertices must be ordered in counter clockwise order. Vertices of holes must

be ordered in clockwise order. The right-hand rule is used to determine the direction of the normal of

this plane. The polygon contour data is relative to the pose of the plane and coplanar with it.

This function only retrieves polygons, which means that it needs to be converted to a regular mesh to

be rendered.

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to calling

xrGetPlanePolygonBufferEXT

• planeDetector must be a valid XrPlaneDetectorEXT handle

• polygonBuffer must be a pointer to an XrPlaneDetectorPolygonBufferEXT structure

564 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

XrPlaneDetectorPolygonBufferEXT is an input/output structure for reading plane contour polygon

vertices.

// Provided by XR_EXT_plane_detection

typedef struct XrPlaneDetectorPolygonBufferEXT {

 XrStructureType type;

 void* next;

 uint32_t vertexCapacityInput;

 uint32_t vertexCountOutput;

 XrVector2f* vertices;

} XrPlaneDetectorPolygonBufferEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• vertexCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve the

required capacity.

• vertexCountOutput is the count of vertices written, or the required capacity in the case that

vertexCapacityInput is insufficient.

• vertices is an array of XrVector2f that must be filled by the runtime with the positions of the

polygon vertices relative to the plane’s pose.

Chapter 12. List of Current Extensions | 565

Valid Usage (Implicit)

• The XR_EXT_plane_detection extension must be enabled prior to using

XrPlaneDetectorPolygonBufferEXT

• type must be XR_TYPE_PLANE_DETECTOR_POLYGON_BUFFER_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If vertexCapacityInput is not 0, vertices must be a pointer to an array of vertexCapacityInput

XrVector2f structures

The XrExtent3DfEXT structure is defined as:

// Provided by XR_EXT_plane_detection

// XrExtent3DfEXT is an alias for XrExtent3Df

typedef struct XrExtent3Df {

 float width;

 float height;

 float depth;

} XrExtent3Df;

typedef XrExtent3Df XrExtent3DfEXT;

Member Descriptions

• width the floating-point width of the extent.

• height the floating-point height of the extent.

• depth the floating-point depth of the extent.

The XrExtent3DfEXT structure describes a axis aligned three-dimensional floating-point extent: This

structure is used for component values that may be fractional (floating-point). If used to represent

physical distances, values must be in meters.

The width (X), height (Y) and depth (Z) values must be non-negative.

12.35.6. Example code for locating planes

The following example code demonstrates how to detect planes relative to a local space.

XrInstance instance; // previously initialized

566 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

XrSystemId systemId; // previously initialized

XrSession session; // previously initialized

XrSpace localSpace; // previously initialized, e.g. from

 // XR_REFERENCE_SPACE_TYPE_LOCAL

XrSpace viewSpace; // previously initialized, e.g. from

 // XR_REFERENCE_SPACE_TYPE_VIEW

// The function pointers are previously initialized using

// xrGetInstanceProcAddr.

PFN_xrCreatePlaneDetectorEXT xrCreatePlaneDetectorEXT; // previously initialized

PFN_xrBeginPlaneDetectionEXT xrBeginPlaneDetectionEXT; // previously initialized

PFN_xrGetPlaneDetectionStateEXT xrGetPlaneDetectionStateEXT; // previously initialized

PFN_xrGetPlaneDetectionsEXT xrGetPlaneDetectionsEXT; // previously initialized

PFN_xrGetPlanePolygonBufferEXT xrGetPlanePolygonBufferEXT; // previously initialized

XrSystemProperties properties{XR_TYPE_SYSTEM_PROPERTIES};

XrSystemPlaneDetectionPropertiesEXT

planeDetectionProperties{XR_TYPE_SYSTEM_PLANE_DETECTION_PROPERTIES_EXT};

properties.next = &planeDetectionProperties;

CHK_XR(xrGetSystemProperties(instance, systemId, &properties));

if (!(planeDetectionProperties.supportedFeatures &

XR_PLANE_DETECTION_CAPABILITY_PLANE_DETECTION_BIT_EXT)) {

 // plane detection is not supported.

 return;

}

// Create a plane detection

XrPlaneDetectorEXT planeDetector{};

{

 XrPlaneDetectorCreateInfoEXT createInfo{ XR_TYPE_PLANE_DETECTOR_CREATE_INFO_EXT };

 createInfo.flags = XR_PLANE_DETECTOR_ENABLE_CONTOUR_BIT_EXT;

 CHK_XR(xrCreatePlaneDetectorEXT(session, &createInfo, &planeDetector));

}

bool queryRunning = false;

std::vector<XrPlaneDetectorOrientationEXT> orientations;

orientations.push_back(XR_PLANE_DETECTOR_ORIENTATION_HORIZONTAL_UPWARD_EXT);

orientations.push_back(XR_PLANE_DETECTOR_ORIENTATION_HORIZONTAL_DOWNWARD_EXT);

std::vector<XrPlaneDetectorLocationEXT> cachedPlaneLocations;

auto processPlanes = [&](const XrTime time) {

 if (!queryRunning) {

Chapter 12. List of Current Extensions | 567

 XrPlaneDetectorBeginInfoEXT beginInfo{ XR_TYPE_PLANE_DETECTOR_BEGIN_INFO_EXT };

 XrPosef pose{};

 XrExtent3DfEXT extents = {10.0f, 10.0f, 10.0f};

 pose.orientation.w = 1.0f;

 beginInfo.baseSpace = viewSpace;

 beginInfo.time = time;

 beginInfo.boundingBoxPose = pose;

 beginInfo.boundingBoxExtent = extents;

 beginInfo.orientationCount = (uint32_t)orientations.size();

 beginInfo.orientations = orientations.data();

 CHK_XR(xrBeginPlaneDetectionEXT(planeDetector, &beginInfo));

 queryRunning = true;

 return;

 } else {

 XrPlaneDetectionStateEXT planeDetectionState;

 if (xrGetPlaneDetectionStateEXT(planeDetector, &planeDetectionState)!=XR_SUCCESS)

{

 queryRunning = false;

 return;

 }

 switch(planeDetectionState) {

 case XR_PLANE_DETECTION_STATE_DONE_EXT:

 // query has finished, process the results.

 break;

 case XR_PLANE_DETECTION_STATE_ERROR_EXT:

 // something temporary went wrong, just

 // retry

 queryRunning = false;

 return;

 case XR_PLANE_DETECTION_STATE_FATAL_EXT:

 // there was something wrong with the query

 // do not retry.

 // exit();

 return;

 case XR_PLANE_DETECTION_STATE_PENDING_EXT:

 // query is still processing, come back on the next loop.

 return;

 default:

 // restart the query.

 queryRunning = false;

 return;

 }

 XrPlaneDetectorGetInfoEXT planeGetInfo{};

 planeGetInfo.type = XR_TYPE_PLANE_DETECTOR_GET_INFO_EXT;

568 | Chapter 12. List of Current Extensions

 planeGetInfo.time = time;

 planeGetInfo.baseSpace = localSpace;

 XrPlaneDetectorLocationsEXT planeLocations{};

 planeLocations.type = XR_TYPE_PLANE_DETECTOR_LOCATIONS_EXT;

 planeLocations.planeLocationCapacityInput = 0;

 planeLocations.planeLocations = nullptr;

 if (xrGetPlaneDetectionsEXT(planeDetector, &planeGetInfo, &planeLocations) !=

XR_SUCCESS) {

 queryRunning = false;

 return;

 }

 if (planeLocations.planeLocationCountOutput > 0) {

 queryRunning = false;

 std::vector<XrPlaneDetectorLocationEXT>

 locationsBuffer(planeLocations.planeLocationCountOutput,

 { XR_TYPE_PLANE_DETECTOR_LOCATION_EXT });

 planeLocations.planeLocationCapacityInput =

 planeLocations.planeLocationCountOutput;

 planeLocations.planeLocations = locationsBuffer.data();

 CHK_XR(xrGetPlaneDetectionsEXT(planeDetector, &planeGetInfo,

&planeLocations));

 cachedPlaneLocations = locationsBuffer;

 for (int i = 0; i < planeLocations.planeLocationCountOutput; ++i) {

 const XrPosef& planeInLocalSpace = planeLocations.planeLocations[i].pose;

 auto planeId =

 planeLocations.planeLocations[i].planeId;

 auto polygonBufferCount =

 planeLocations.planeLocations[i].polygonBufferCount;

 for (uint32_t polygonBufferIndex=0; polygonBufferIndex <

polygonBufferCount; polygonBufferIndex++) {

 // polygonBufferIndex = 0 -> outside contour CCW

 // polygonBufferIndex > 0 -> holes CW

 XrPlaneDetectorPolygonBufferEXT polygonBuffer{};

 polygonBuffer.vertexCapacityInput = 0;

 CHK_XR(xrGetPlanePolygonBufferEXT(planeDetector,

 planeId, polygonBufferIndex, &polygonBuffer));

 // allocate space and use buffer

 }

 // plane planeInLocalSpace, planeType

Chapter 12. List of Current Extensions | 569

 }

 }

 }

};

while (1) {

 // ...

 // For every frame in frame loop

 // ...

 XrFrameState frameState; // previously returned from xrWaitFrame

 const XrTime time = frameState.predictedDisplayTime;

 processPlanes(time);

 // Draw the planes as needed from cachedPlaneLocations.

 // drawPlanes(cachedPlaneLocations);

 // ...

 // Finish frame loop

 // ...

}

New Object Types

• XrPlaneDetectorEXT

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_PLANE_DETECTOR_EXT

XrStructureType enumeration is extended with:

• XR_TYPE_PLANE_DETECTOR_CREATE_INFO_EXT

• XR_TYPE_PLANE_DETECTOR_BEGIN_INFO_EXT

• XR_TYPE_PLANE_DETECTOR_GET_INFO_EXT

• XR_TYPE_PLANE_DETECTOR_LOCATION_EXT

• XR_TYPE_PLANE_DETECTOR_POLYGON_BUFFER_EXT

• XR_TYPE_SYSTEM_PLANE_DETECTION_PROPERTIES_EXT

the XrResult enumeration is extended with:

• XR_ERROR_SPACE_NOT_LOCATABLE_EXT

570 | Chapter 12. List of Current Extensions

• XR_ERROR_PLANE_DETECTION_PERMISSION_DENIED_EXT

New Enums

• XrPlaneDetectorOrientationEXT

• XrPlaneDetectorFlagsEXT

• XrPlaneDetectionStateEXT

• XrPlaneDetectionCapabilityFlagsEXT

• XrPlaneDetectorSemanticTypeEXT

New Structures

• XrSystemPlaneDetectionPropertiesEXT

• XrPlaneDetectorCreateInfoEXT

• XrPlaneDetectorBeginInfoEXT

• XrPlaneDetectorGetInfoEXT

• XrPlaneDetectorLocationEXT

• XrPlaneDetectorPolygonBufferEXT

• XrExtent3DfEXT

New Functions

• xrCreatePlaneDetectorEXT

• xrDestroyPlaneDetectorEXT

• xrBeginPlaneDetectionEXT

• xrGetPlaneDetectionStateEXT

• xrGetPlaneDetectionsEXT

• xrGetPlanePolygonBufferEXT

Version History

• Revision 1, 2023-06-26 (Ron Bessems)

12.36. XR_EXT_thermal_query

Name String

XR_EXT_thermal_query

Extension Type

Instance extension

Chapter 12. List of Current Extensions | 571

Registered Extension Number

17

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-04-14

IP Status

No known IP claims.

Contributors

Armelle Laine, Qualcomm Technologies Inc, on behalf of Qualcomm Innovation Center, Inc

12.36.1. Overview

This extension provides an API to query a domain’s current thermal warning level and current

thermal trend.

12.36.2. Querying the current thermal level and trend

This query allows to determine the extent and urgency of the needed workload reduction and to verify

that the mitigation measures efficiently reduce the temperature.

This query allows the application to retrieve the current notificationLevel, allowing to quickly verify

whether the underlying system’s thermal throttling is still in effect.

It also provides the application with the remaining temperature headroom (tempHeadroom) until thermal

throttling occurs, and the current rate of change (tempSlope).

The most critical temperature of the domain is the one which is currently most likely to be relevant for

thermal throttling.

To query the status of a given domain:

// Provided by XR_EXT_thermal_query

XrResult xrThermalGetTemperatureTrendEXT(

 XrSession session,

 XrPerfSettingsDomainEXT domain,

 XrPerfSettingsNotificationLevelEXT* notificationLevel,

 float* tempHeadroom,

 float* tempSlope);

572 | Chapter 12. List of Current Extensions

// Provided by XR_EXT_performance_settings, XR_EXT_thermal_query

typedef enum XrPerfSettingsDomainEXT {

 XR_PERF_SETTINGS_DOMAIN_CPU_EXT = 1,

 XR_PERF_SETTINGS_DOMAIN_GPU_EXT = 2,

 XR_PERF_SETTINGS_DOMAIN_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsDomainEXT;

// Provided by XR_EXT_performance_settings, XR_EXT_thermal_query

typedef enum XrPerfSettingsNotificationLevelEXT {

 XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT = 0,

 XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT = 25,

 XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT = 75,

 XR_PERF_SETTINGS_NOTIFICATION_LEVEL_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsNotificationLevelEXT;

For the definition of the notification levels, see Notification level definition.

12.36.3. Thermal Query API Reference

xrThermalGetTemperatureTrendEXT

// Provided by XR_EXT_thermal_query

XrResult xrThermalGetTemperatureTrendEXT(

 XrSession session,

 XrPerfSettingsDomainEXT domain,

 XrPerfSettingsNotificationLevelEXT* notificationLevel,

 float* tempHeadroom,

 float* tempSlope);

Allows to query the current temperature warning level of a domain, the remaining headroom and the

trend.

Chapter 12. List of Current Extensions | 573

Parameter Descriptions

• session is a valid XrSession handle.

• domain : the processing domain

• notificationLevel : the current warning level

• tempHeadroom : temperature headroom in degrees Celsius, expressing how far the most-critical

temperature of the domain is from its thermal throttling threshold temperature.

• tempSlope : the current trend in degrees Celsius per second of the most critical temperature of

the domain.

Valid Usage (Implicit)

• The XR_EXT_thermal_query extension must be enabled prior to calling

xrThermalGetTemperatureTrendEXT

• session must be a valid XrSession handle

• domain must be a valid XrPerfSettingsDomainEXT value

• notificationLevel must be a pointer to an XrPerfSettingsNotificationLevelEXT value

• tempHeadroom must be a pointer to a float value

• tempSlope must be a pointer to a float value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

574 | Chapter 12. List of Current Extensions

// Provided by XR_EXT_performance_settings, XR_EXT_thermal_query

typedef enum XrPerfSettingsDomainEXT {

 XR_PERF_SETTINGS_DOMAIN_CPU_EXT = 1,

 XR_PERF_SETTINGS_DOMAIN_GPU_EXT = 2,

 XR_PERF_SETTINGS_DOMAIN_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsDomainEXT;

// Provided by XR_EXT_performance_settings, XR_EXT_thermal_query

typedef enum XrPerfSettingsNotificationLevelEXT {

 XR_PERF_SETTINGS_NOTIF_LEVEL_NORMAL_EXT = 0,

 XR_PERF_SETTINGS_NOTIF_LEVEL_WARNING_EXT = 25,

 XR_PERF_SETTINGS_NOTIF_LEVEL_IMPAIRED_EXT = 75,

 XR_PERF_SETTINGS_NOTIFICATION_LEVEL_MAX_ENUM_EXT = 0x7FFFFFFF

} XrPerfSettingsNotificationLevelEXT;

Version History

• Revision 1, 2017-11-30 (Armelle Laine)

• Revision 2, 2021-04-14 (Rylie Pavlik, Collabora, Ltd.)

◦ Fix missing error code

12.37. XR_EXT_user_presence

Name String

XR_EXT_user_presence

Extension Type

Instance extension

Registered Extension Number

471

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-04-22

Chapter 12. List of Current Extensions | 575

IP Status

No known IP claims.

Contributors

Yin Li, Microsoft

Bryce Hutchings, Microsoft

John Kearney, Meta Platforms

Andreas Loeve Selvik, Meta Platforms

Peter Kuhn, Unity Technologies

Jakob Bornecrantz, Collabora

12.37.1. Overview

This extension introduces a new event to notify when the system detected the change of user presence,

such as when the user has taken off or put on an XR headset.

This event is typically used by an XR applications with non-XR experiences outside of the XR headset.

For instance, some applications pause the game logic or video playback until the user puts on the

headset, displaying an instructional message to the user in the mirror window on the desktop PC

monitor. As another example, the application might use this event to disable a head-tracking driven

avatar in an online meeting when the user has taken off the headset.

The user presence is fundamentally decoupled from the session lifecycle. Although the core spec for

XrSessionState hinted potential correlation between the session state and user presence, in practice,

such a connection may not consistently hold across various runtimes. Application should avoid

relying on assumptions regarding these relationships between session state and user presence, instead,

they should utilize this extension to reliably obtain user presence information.

12.37.2. System Supports User Presence

The XrSystemUserPresencePropertiesEXT structure is defined as:

// Provided by XR_EXT_user_presence

typedef struct XrSystemUserPresencePropertiesEXT {

 XrStructureType type;

 void* next;

 XrBool32 supportsUserPresence;

} XrSystemUserPresencePropertiesEXT;

576 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsUserPresence is an XrBool32 value that indicates whether the system supports user

presence sensing.

The application can use the XrSystemUserPresencePropertiesEXT event in xrGetSystemProperties to

detect if the given system supports the sensing of user presence.

If the system does not support user presence sensing, the runtime must return XR_FALSE for

supportsUserPresence and must not queue the XrEventDataUserPresenceChangedEXT event for any

session on this system.

In this case, an application typically assumes that the user is always present, as the runtime is unable

to detect changes in user presence.

Valid Usage (Implicit)

• The XR_EXT_user_presence extension must be enabled prior to using

XrSystemUserPresencePropertiesEXT

• type must be XR_TYPE_SYSTEM_USER_PRESENCE_PROPERTIES_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

12.37.3. User Presence Changed Event

The XrEventDataUserPresenceChangedEXT structure is defined as:

// Provided by XR_EXT_user_presence

typedef struct XrEventDataUserPresenceChangedEXT {

 XrStructureType type;

 const void* next;

 XrSession session;

 XrBool32 isUserPresent;

} XrEventDataUserPresenceChangedEXT;

Chapter 12. List of Current Extensions | 577

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• session is the XrSession that is receiving the notification.

• isUserPresent is an XrBool32 value for new state of user presence after the change.

The XrEventDataUserPresenceChangedEXT event is queued for retrieval using xrPollEvent when the

user presence is changed, as well as when a session starts running.

Receiving XrEventDataUserPresenceChangedEXT with the isUserPresent is XR_TRUE indicates that the

system has detected the presence of a user in the XR experience. For example, this may indicate that

the user has put on the headset, or has entered the tracking area of a non-head-worn XR system.

Receiving XrEventDataUserPresenceChangedEXT with the isUserPresent is XR_FALSE indicates that the

system has detected the absence of a user in the XR experience. For example, this may indicate that the

user has removed the headset or has stepped away from the tracking area of a non-head-worn XR

system.

The runtime must queue this event upon a successful call to the xrBeginSession function, regardless of

the value of isUserPresent, so that the application can be in sync on the state when a session begins

running.

The runtime must return a valid XrSession handle for a running session.

After the application calls xrEndSession, a running session is ended and the runtime must not

enqueue any more user presence events. Therefore, the application will no longer observe any changes

of the isUserPresent until another running session. Note

This extension does not require any specific correlation between user presence state

and session state except that the XrEventDataUserPresenceChangedEXT event can not

be observed without a running session. A runtime may choose to correlate the two

states or keep them independent.

578 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_EXT_user_presence extension must be enabled prior to using

XrEventDataUserPresenceChangedEXT

• type must be XR_TYPE_EVENT_DATA_USER_PRESENCE_CHANGED_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

• session must be a valid XrSession handle

Chapter 12. List of Current Extensions | 579

#valid-usage-for-structure-pointer-chains

Example 2. Proper Method for Receiving OpenXR Event Data

XrInstance instance; // previously initialized

XrSystemId systemId; // previously initialized

XrSession session; // previously initialized

XrSystemProperties systemProperties{XR_TYPE_SYSTEM_PROPERTIES};

XrSystemUserPresencePropertiesEXT userPresenceProperties

{XR_TYPE_SYSTEM_USER_PRESENCE_PROPERTIES_EXT};

CHK_XR(xrGetSystemProperties(instance, systemId, &systemProperties));

bool supportsUserPresence = userPresenceProperties.supportsUserPresence;

// When either the extension is not supported or the system does not support the

sensor,

// the application typically assumes user always present, and initialize the

isUserPresent

// to true before xrBeginSession and reset it to false after xrEndSession.

bool isUserPresent = true;

// Initialize an event buffer to hold the output.

XrEventDataBuffer event = {XR_TYPE_EVENT_DATA_BUFFER};

XrResult result = xrPollEvent(instance, &event);

if (result == XR_SUCCESS) {

 switch (event.type) {

 case XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED: {

 const XrEventDataSessionStateChanged& eventdata =

 reinterpret_cast<XrEventDataSessionStateChanged>(&event);

 XrSessionState sessionState = eventdata.state;

 switch(sessionState)

 {

 case XR_SESSION_STATE_READY: {

 isUserPresent = true;

 XrSessionBeginInfo beginInfo{XR_TYPE_SESSION_BEGIN_INFO};

 CHK_XR(xrBeginSession(session, &beginInfo));

 break;

 }

 case XR_SESSION_STATE_STOPPING:{

 CHK_XR(xrEndSession(session));

 isUserPresent = false;

 break;

 }

 }

 break;

 }

 case XR_TYPE_EVENT_DATA_USER_PRESENCE_CHANGED_EXT: {

 const XrEventDataUserPresenceChangedEXT& eventdata =

 reinterpret_cast<XrEventDataUserPresenceChangedEXT>(&event);

580 | Chapter 12. List of Current Extensions

 isUserPresent = eventdata.isUserPresent;

 // do_something(isUserPresent);

 break;

 }

 }

}

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_EVENT_DATA_USER_PRESENCE_CHANGED_EXT

• XR_TYPE_SYSTEM_USER_PRESENCE_PROPERTIES_EXT

New Enums

New Structures

• XrSystemUserPresencePropertiesEXT

• XrEventDataUserPresenceChangedEXT

New Functions

Issues

Version History

• Revision 1, 2023-04-22 (Yin Li)

◦ Initial extension description

12.38. XR_EXT_view_configuration_depth_range

Name String

XR_EXT_view_configuration_depth_range

Extension Type

Instance extension

Registered Extension Number

47

Chapter 12. List of Current Extensions | 581

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-08-16

IP Status

No known IP claims.

Contributors

Blake Taylor, Magic Leap

Gilles Cadet, Magic Leap

Michael Liebenow, Magic Leap

Supreet Suresh, Magic Leap

Alex Turner, Microsoft

Bryce Hutchings, Microsoft

Yin Li, Microsoft

Overview

For XR systems there may exist a per view recommended min/max depth range at which content

should be rendered into the virtual world. The depth range may be driven by several factors, including

user comfort, or fundamental capabilities of the system.

Displaying rendered content outside the recommended min/max depth range would violate the system

requirements for a properly integrated application, and can result in a poor user experience due to

observed visual artifacts, visual discomfort, or fatigue. The near/far depth values will fall in the range

of (0..+infinity] where max(recommendedNearZ, minNearZ) < min(recommendedFarZ, maxFarZ). Infinity is

defined matching the standard library definition such that std::isinf will return true for a returned

infinite value.

In order to provide the application with the appropriate depth range at which to render content for

each XrViewConfigurationView, this extension provides additional view configuration information, as

defined by XrViewConfigurationDepthRangeEXT, to inform the application of the min/max

recommended and absolute distances at which content should be rendered for that view.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

582 | Chapter 12. List of Current Extensions

• XR_TYPE_VIEW_CONFIGURATION_DEPTH_RANGE_EXT

New Enums

New Structures

The XrViewConfigurationDepthRangeEXT structure is defined as:

// Provided by XR_EXT_view_configuration_depth_range

typedef struct XrViewConfigurationDepthRangeEXT {

 XrStructureType type;

 void* next;

 float recommendedNearZ;

 float minNearZ;

 float recommendedFarZ;

 float maxFarZ;

} XrViewConfigurationDepthRangeEXT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• recommendedNearZ is the recommended minimum positive distance in meters that content

should be rendered for the view to achieve the best user experience.

• minNearZ is the absolute minimum positive distance in meters that content should be

rendered for the view.

• recommendedFarZ is the recommended maximum positive distance in meters that content

should be rendered for the view to achieve the best user experience.

• maxFarZ is the absolute maximum positive distance in meters that content should be rendered

for the view.

When enumerating the view configurations with xrEnumerateViewConfigurationViews, the

application can provide a pointer to an XrViewConfigurationDepthRangeEXT in the next chain of

XrViewConfigurationView.

Chapter 12. List of Current Extensions | 583

Valid Usage (Implicit)

• The XR_EXT_view_configuration_depth_range extension must be enabled prior to using

XrViewConfigurationDepthRangeEXT

• type must be XR_TYPE_VIEW_CONFIGURATION_DEPTH_RANGE_EXT

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 1, 2019-10-01 (Blake Taylor)

◦ Initial proposal.

12.39. XR_EXT_win32_appcontainer_compatible

Name String

XR_EXT_win32_appcontainer_compatible

Extension Type

Instance extension

Registered Extension Number

58

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-12-16

IP Status

No known IP claims.

Contributors

Yin Li, Microsoft

Alex Turner, Microsoft

Lachlan Ford, Microsoft

584 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Overview

To minimize opportunities for malicious manipulation, a common practice on the Windows OS is to

isolate the application process in an AppContainer execution environment. In order for a runtime to

work properly in such an application process, the runtime must properly set ACL to device resources

and cross process resources.

An application running in an AppContainer process can request for a runtime to enable such

AppContainer compatibility by adding XR_EXT_WIN32_APPCONTAINER_COMPATIBLE_EXTENSION_NAME to

enabledExtensionNames of XrInstanceCreateInfo when calling xrCreateInstance. If the runtime is not

capable of running properly within the AppContainer execution environment, it must return

XR_ERROR_EXTENSION_NOT_PRESENT.

If the runtime supports this extension, it can further inspect the capability based on the connected

device. If the XR system cannot support an AppContainer execution environment, the runtime must

return XR_ERROR_FORM_FACTOR_UNAVAILABLE when the application calls xrGetSystem.

If the call to xrGetSystem successfully returned with a valid XrSystemId, the application can rely on the

runtime working properly in the AppContainer execution environment.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2019-12-16 (Yin Li)

◦ Initial proposal.

12.40. XR_ALMALENCE_digital_lens_control

Name String

XR_ALMALENCE_digital_lens_control

Extension Type

Instance extension

Chapter 12. List of Current Extensions | 585

https://docs.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation
https://docs.microsoft.com/en-us/windows/win32/secauthz/implementing-an-appcontainer
https://docs.microsoft.com/en-us/windows/win32/secauthz/implementing-an-appcontainer

Registered Extension Number

197

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-11-08

IP Status

No known IP claims.

Contributors

Ivan Chupakhin, Almalence Inc.

Dmitry Shmunk, Almalence Inc.

Overview

Digital Lens for VR (DLVR) is a computational lens aberration correction technology enabling high

resolution, visual clarity and fidelity in VR head mounted displays. The Digital Lens allows to overcome

two fundamental factors limiting VR picture quality, size constraints and presence of a moving optical

element — the eye pupil.

Features:

• Complete removal of lateral chromatic aberrations, across the entire FoV, at all gaze directions.

• Correction of longitudinal chromatic aberrations, lens blur and higher order aberrations.

• Increase of visible resolution.

• Enhancement of edge contrast (otherwise degraded due to lens smear).

• Enables high quality at wide FoV.

For OpenXR runtimes DLVR is implemented as implicit API Layer distributed by Almalence Inc. as

installable package. DLVR utilize eye tracking data (eye pupil coordinates and gaze direction) to

produce corrections of render frames. As long as current core OpenXR API does not expose an eye

tracking data, DLVR API Layer relies on 3rd-party eye tracking runtimes.

List of supported eye tracking devices:

• Tobii_VR4_CARBON_P1 (HP Reverb G2 Omnicept Edition)

• Tobii_VR4_U2_P2 (HTC Vive Pro Eye)

586 | Chapter 12. List of Current Extensions

This extension enables the handling of the Digital Lens for VR API Layer by calling

xrSetDigitalLensControlALMALENCE.

New Object Types

New Flag Types

typedef XrFlags64 XrDigitalLensControlFlagsALMALENCE;

// Flag bits for XrDigitalLensControlFlagsALMALENCE

static const XrDigitalLensControlFlagsALMALENCE

XR_DIGITAL_LENS_CONTROL_PROCESSING_DISABLE_BIT_ALMALENCE = 0x00000001;

Flag Descriptions

• XR_DIGITAL_LENS_CONTROL_PROCESSING_DISABLE_BIT_ALMALENCE  — disables Digital Lens

processing of render textures

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_DIGITAL_LENS_CONTROL_ALMALENCE

New Enums

New Structures

The XrDigitalLensControlALMALENCE structure is defined as:

typedef struct XrDigitalLensControlALMALENCE {

 XrStructureType type;

 const void* next;

 XrDigitalLensControlFlagsALMALENCE flags;

} XrDigitalLensControlALMALENCE;

Chapter 12. List of Current Extensions | 587

Member Descriptions

• type is the XrStructureType of this structure.

• next must be NULL. No such structures are defined in core OpenXR or this extension.

• flags is a bitmask of XrDigitalLensControlFlagBitsALMALENCE indicating various

characteristics desired for the Digital Lens.

Valid Usage (Implicit)

• The XR_ALMALENCE_digital_lens_control extension must be enabled prior to using

XrDigitalLensControlALMALENCE

• type must be XR_TYPE_DIGITAL_LENS_CONTROL_ALMALENCE

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be a valid combination of XrDigitalLensControlFlagBitsALMALENCE values

• flags must not be 0

New Functions

The xrSetDigitalLensControlALMALENCE function is defined as:

// Provided by XR_ALMALENCE_digital_lens_control

XrResult xrSetDigitalLensControlALMALENCE(

 XrSession session,

 const XrDigitalLensControlALMALENCE* digitalLensControl);

Parameter Descriptions

• session is a handle to a running XrSession.

• digitalLensControl is the XrDigitalLensControlALMALENCE that contains desired

characteristics for the Digital Lens

xrSetDigitalLensControlALMALENCE handles state of Digital Lens API Layer

588 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_ALMALENCE_digital_lens_control extension must be enabled prior to calling

xrSetDigitalLensControlALMALENCE

• session must be a valid XrSession handle

• digitalLensControl must be a pointer to a valid XrDigitalLensControlALMALENCE structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

Issues

Version History

• Revision 1, 2021-11-08 (Ivan Chupakhin)

◦ Initial draft

12.41. XR_EPIC_view_configuration_fov

Name String

XR_EPIC_view_configuration_fov

Extension Type

Instance extension

Registered Extension Number

60

Revision

2

Chapter 12. List of Current Extensions | 589

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-03-05

IP Status

No known IP claims.

Contributors

Jules Blok, Epic Games

Overview

This extension allows the application to retrieve the recommended and maximum field-of-view using

xrEnumerateViewConfigurationViews. These field-of-view parameters can be used during

initialization of the application before creating a session.

The field-of-view given here should not be used for rendering, see xrLocateViews to retrieve the field-

of-view for rendering.

For views with fovMutable set to XR_TRUE the maximum field-of-view should specify the upper limit that

runtime can support. If the view has fovMutable set to XR_FALSE the runtime must set maxMutableFov to

be the same as recommendedFov.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

The XrViewConfigurationViewFovEPIC structure is an output struct which can be added to the next

chain of XrViewConfigurationView to retrieve the field-of-view for that view.

590 | Chapter 12. List of Current Extensions

// Provided by XR_EPIC_view_configuration_fov

typedef struct XrViewConfigurationViewFovEPIC {

 XrStructureType type;

 const void* next;

 XrFovf recommendedFov;

 XrFovf maxMutableFov;

} XrViewConfigurationViewFovEPIC;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• recommendedFov is the recommended field-of-view based on the current user IPD.

• maxMutableFov is the maximum field-of-view that the runtime can display.

Valid Usage (Implicit)

• The XR_EPIC_view_configuration_fov extension must be enabled prior to using

XrViewConfigurationViewFovEPIC

• type must be XR_TYPE_VIEW_CONFIGURATION_VIEW_FOV_EPIC

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 2, 2020-06-04 (Jules Blok)

◦ Fixed incorrect member name.

• Revision 1, 2020-03-05 (Jules Blok)

◦ Initial version.

12.42. XR_FB_android_surface_swapchain_create

Name String

XR_FB_android_surface_swapchain_create

Chapter 12. List of Current Extensions | 591

#valid-usage-for-structure-pointer-chains

Extension Type

Instance extension

Registered Extension Number

71

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_KHR_android_surface_swapchain

Contributors

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Tomislav Novak, Facebook

Overview

This extension provides support for the specification of Android Surface specific swapchain create

flags.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as

indicated in the Extensions section.

These additional create flags are specified by attaching a XrAndroidSurfaceSwapchainCreateInfoFB

structure to the next chain of an XrSwapchainCreateInfo structure.

New Object Types

New Flag Types

typedef XrFlags64 XrAndroidSurfaceSwapchainFlagsFB;

592 | Chapter 12. List of Current Extensions

// Flag bits for XrAndroidSurfaceSwapchainFlagsFB

static const XrAndroidSurfaceSwapchainFlagsFB

XR_ANDROID_SURFACE_SWAPCHAIN_SYNCHRONOUS_BIT_FB = 0x00000001;

static const XrAndroidSurfaceSwapchainFlagsFB

XR_ANDROID_SURFACE_SWAPCHAIN_USE_TIMESTAMPS_BIT_FB = 0x00000002;

Flag Descriptions

• XR_ANDROID_SURFACE_SWAPCHAIN_SYNCHRONOUS_BIT_FB indicates the underlying BufferQueue

should be created in synchronous mode, allowing multiple buffers to be queued instead of

always replacing the last buffer. Buffers are retired in order, and the producer may block

until a new buffer is available.

• XR_ANDROID_SURFACE_SWAPCHAIN_USE_TIMESTAMPS_BIT_FB indicates the compositor should acquire

the most recent buffer whose presentation timestamp is not greater than the expected

display time of the final composited frame.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_ANDROID_SURFACE_SWAPCHAIN_CREATE_INFO_FB

New Enums

• XR_ANDROID_SURFACE_SWAPCHAIN_SYNCHRONOUS_BIT_FB

• XR_ANDROID_SURFACE_SWAPCHAIN_USE_TIMESTAMPS_BIT_FB

New Structures

The XrAndroidSurfaceSwapchainCreateInfoFB structure is defined as:

// Provided by XR_FB_android_surface_swapchain_create

typedef struct XrAndroidSurfaceSwapchainCreateInfoFB {

 XrStructureType type;

 const void* next;

 XrAndroidSurfaceSwapchainFlagsFB createFlags;

} XrAndroidSurfaceSwapchainCreateInfoFB;

Chapter 12. List of Current Extensions | 593

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• createFlags is 0 or one or more XrAndroidSurfaceSwapchainFlagBitsFB which indicate

various characteristics desired for the Android Surface Swapchain.

XrAndroidSurfaceSwapchainCreateInfoFB contains additional Android Surface specific create flags

when calling xrCreateSwapchainAndroidSurfaceKHR. The XrAndroidSurfaceSwapchainCreateInfoFB

structure must be provided in the next chain of the XrSwapchainCreateInfo structure when calling

xrCreateSwapchainAndroidSurfaceKHR.

Valid Usage (Implicit)

• The XR_FB_android_surface_swapchain_create extension must be enabled prior to using

XrAndroidSurfaceSwapchainCreateInfoFB

• type must be XR_TYPE_ANDROID_SURFACE_SWAPCHAIN_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• createFlags must be a valid combination of XrAndroidSurfaceSwapchainFlagBitsFB values

• createFlags must not be 0

New Functions

Issues

Version History

• Revision 1, 2020-12-10 (Gloria Kennickell)

◦ Initial draft

12.43. XR_FB_body_tracking

Name String

XR_FB_body_tracking

Extension Type

Instance extension

594 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Registered Extension Number

77

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-07-18

IP Status

No known IP claims.

Contributors

Giancarlo Di Biase, Meta

Dikpal Reddy, Meta

Igor Tceglevskii, Meta

12.43.1. Overview

This extension enables applications to locate the individual body joints that represent the estimated

position of the user of the device. It enables applications to render the upper body in XR experiences.

12.43.2. Inspect system capability

An application can inspect whether the system is capable of body tracking by extending the

XrSystemProperties with XrSystemBodyTrackingPropertiesFB structure when calling

xrGetSystemProperties.

// Provided by XR_FB_body_tracking

typedef struct XrSystemBodyTrackingPropertiesFB {

 XrStructureType type;

 void* next;

 XrBool32 supportsBodyTracking;

} XrSystemBodyTrackingPropertiesFB;

Chapter 12. List of Current Extensions | 595

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsBodyTracking is an XrBool32, indicating if current system is capable of receiving body

tracking input.

If a runtime returns XR_FALSE for supportsBodyTracking, the runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateBodyTrackerFB.

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to using

XrSystemBodyTrackingPropertiesFB

• type must be XR_TYPE_SYSTEM_BODY_TRACKING_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

12.43.3. Create a body tracker handle

The XrBodyTrackerFB handle represents the resources for body tracking.

// Provided by XR_FB_body_tracking

XR_DEFINE_HANDLE(XrBodyTrackerFB)

This handle can be used to locate body joints using xrLocateBodyJointsFB function.

A body tracker provides joint locations with an unobstructed range of human body motion.

It also provides the estimated scale of this body.

An application can create an XrBodyTrackerFB handle using xrCreateBodyTrackerFB function.

596 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_body_tracking

XrResult xrCreateBodyTrackerFB(

 XrSession session,

 const XrBodyTrackerCreateInfoFB* createInfo,

 XrBodyTrackerFB* bodyTracker);

Parameter Descriptions

• session is an XrSession in which the body tracker will be active.

• createInfo is the XrBodyTrackerCreateInfoFB used to specify the body tracker.

• bodyTracker is the returned XrBodyTrackerFB handle.

If the system does not support body tracking, the runtime must return XR_ERROR_FEATURE_UNSUPPORTED

from xrCreateBodyTrackerFB. In this case, the runtime must return XR_FALSE for

XrSystemBodyTrackingPropertiesFB::supportsBodyTracking when the function xrGetSystemProperties is

called, so that the application can avoid creating a body tracker.

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to calling xrCreateBodyTrackerFB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrBodyTrackerCreateInfoFB structure

• bodyTracker must be a pointer to an XrBodyTrackerFB handle

Chapter 12. List of Current Extensions | 597

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_FEATURE_UNSUPPORTED

The XrBodyTrackerCreateInfoFB structure describes the information to create an XrBodyTrackerFB

handle.

// Provided by XR_FB_body_tracking

typedef struct XrBodyTrackerCreateInfoFB {

 XrStructureType type;

 const void* next;

 XrBodyJointSetFB bodyJointSet;

} XrBodyTrackerCreateInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• bodyJointSet is an XrBodyJointSetFB that describes the set of body joints to retrieve.

598 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to using

XrBodyTrackerCreateInfoFB

• type must be XR_TYPE_BODY_TRACKER_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• bodyJointSet must be a valid XrBodyJointSetFB value

The XrBodyJointSetFB enum describes the set of body joints to track when creating an

XrBodyTrackerFB.

// Provided by XR_FB_body_tracking

typedef enum XrBodyJointSetFB {

 XR_BODY_JOINT_SET_DEFAULT_FB = 0,

 XR_BODY_JOINT_SET_MAX_ENUM_FB = 0x7FFFFFFF

} XrBodyJointSetFB;

Enumerant Descriptions

• XR_BODY_JOINT_SET_DEFAULT_FB  — Indicates that the created XrBodyTrackerFB tracks the set of

body joints described by XrBodyJointFB enum, i.e. the xrLocateBodyJointsFB function returns

an array of joint locations with the count of XR_BODY_JOINT_COUNT_FB and can be indexed using

XrBodyJointFB.

xrDestroyBodyTrackerFB function releases the bodyTracker and the underlying resources when the

body tracking experience is over.

// Provided by XR_FB_body_tracking

XrResult xrDestroyBodyTrackerFB(

 XrBodyTrackerFB bodyTracker);

Parameter Descriptions

• bodyTracker is an XrBodyTrackerFB previously created by xrCreateBodyTrackerFB.

Chapter 12. List of Current Extensions | 599

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to calling xrDestroyBodyTrackerFB

• bodyTracker must be a valid XrBodyTrackerFB handle

Thread Safety

• Access to bodyTracker, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

12.43.4. Locate body joints

The xrLocateBodyJointsFB function locates an array of body joints to a base space at a given time.

// Provided by XR_FB_body_tracking

XrResult xrLocateBodyJointsFB(

 XrBodyTrackerFB bodyTracker,

 const XrBodyJointsLocateInfoFB* locateInfo,

 XrBodyJointLocationsFB* locations);

Parameter Descriptions

• bodyTracker is an XrBodyTrackerFB previously created by xrCreateBodyTrackerFB.

• locateInfo is a pointer to XrBodyJointsLocateInfoFB describing information to locate body

joints.

• locations is a pointer to XrBodyJointLocationsFB receiving the returned body joint locations.

600 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to calling xrLocateBodyJointsFB

• bodyTracker must be a valid XrBodyTrackerFB handle

• locateInfo must be a pointer to a valid XrBodyJointsLocateInfoFB structure

• locations must be a pointer to an XrBodyJointLocationsFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

The XrBodyJointsLocateInfoFB structure describes the information to locate body joints.

// Provided by XR_FB_body_tracking

typedef struct XrBodyJointsLocateInfoFB {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

} XrBodyJointsLocateInfoFB;

Chapter 12. List of Current Extensions | 601

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace is an XrSpace within which the returned body joint locations will be represented.

• time is an XrTime at which to locate the body joints.

Callers should request a time equal to the predicted display time for the rendered frame. The system

will employ appropriate modeling to support body tracking at this time.

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to using XrBodyJointsLocateInfoFB

• type must be XR_TYPE_BODY_JOINTS_LOCATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

XrBodyJointLocationsFB structure returns the state of the body joint locations.

// Provided by XR_FB_body_tracking

typedef struct XrBodyJointLocationsFB {

 XrStructureType type;

 void* next;

 XrBool32 isActive;

 float confidence;

 uint32_t jointCount;

 XrBodyJointLocationFB* jointLocations;

 uint32_t skeletonChangedCount;

 XrTime time;

} XrBodyJointLocationsFB;

602 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• isActive is an XrBool32 indicating if the body tracker is actively tracking.

• confidence is a float between 0 and 1 which represents the confidence for the returned body

pose. A value of 0 means there is no confidence in the pose returned, and a value of 1 means

maximum confidence in the returned body pose.

• jointCount is a uint32_t describing the count of elements in jointLocations array.

• jointLocations is an application-allocated array of XrBodyJointLocationFB that will be filled

with joint locations.

• skeletonChangedCount is an output uint32_t incremental counter indicating that the skeleton

scale proportions have changed. xrGetBodySkeletonFB can be called when this counter

increases to get the latest body proportions/scale.

• time is an XrTime time at which the returned joints are tracked. Equals the time at which the

joints were requested if the interpolation at the time was successful.

The runtime must return XR_ERROR_VALIDATION_FAILURE if jointCount does not equal to the number of

joints defined by the XrBodyJointSetFB used to create the XrBodyTrackerFB.

The runtime must return jointLocations representing the range of human body motion, without any

obstructions. Input systems that either obstruct the movement of the user’s body (for example, a held

controller preventing the user from making a fist) or input systems that have only limited ability to

track finger positions must use the information available to them to emulate an unobstructed range of

motion.

The runtime must update the jointLocations array ordered so that it is indexed using the

corresponding body joint enum (e.g. XrBodyJointFB) as described by XrBodyJointSetFB when creating

the XrBodyTrackerFB. For example, when the XrBodyTrackerFB is created with

XR_BODY_JOINT_SET_DEFAULT_FB, the application must set the jointCount to XR_BODY_JOINT_COUNT_FB, and

the runtime must fill the jointLocations array ordered so that it is indexed by the XrBodyJointFB

enum.

If the returned isActive is true, the runtime must return all joint locations with both

XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT set. However, in

this case, some joint space locations may be untracked (i.e. XR_SPACE_LOCATION_POSITION_TRACKED_BIT or

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT is unset).

If the returned isActive is false, it indicates that the body tracker did not detect the body input, the

application lost input focus, or the consent for body tracking was denied by the user. In this case, the

runtime must return all jointLocations with neither XR_SPACE_LOCATION_POSITION_VALID_BIT nor

Chapter 12. List of Current Extensions | 603

XR_SPACE_LOCATION_ORIENTATION_VALID_BIT set.

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to using XrBodyJointLocationsFB

• type must be XR_TYPE_BODY_JOINT_LOCATIONS_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• jointLocations must be a pointer to an array of jointCount XrBodyJointLocationFB structures

• The jointCount parameter must be greater than 0

XrBodyJointLocationFB structure describes the position, orientation, and radius of a body joint.

// Provided by XR_FB_body_tracking

typedef struct XrBodyJointLocationFB {

 XrSpaceLocationFlags locationFlags;

 XrPosef pose;

} XrBodyJointLocationFB;

Member Descriptions

• locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits, to indicate

which members contain valid data. If none of the bits are set, no other fields in this structure

should be considered to be valid or meaningful.

• pose is an XrPosef defining the position and orientation of the origin of a body joint within

the reference frame of the corresponding XrBodyJointsLocateInfoFB::baseSpace.

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to using XrBodyJointLocationFB

• locationFlags must be a valid combination of XrSpaceLocationFlagBits values

• locationFlags must not be 0

12.43.5. Retrieve body skeleton

The xrGetBodySkeletonFB function returns the body skeleton in T-pose.

604 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_body_tracking

XrResult xrGetBodySkeletonFB(

 XrBodyTrackerFB bodyTracker,

 XrBodySkeletonFB* skeleton);

Parameter Descriptions

• bodyTracker is an XrBodyTrackerFB previously created by xrCreateBodyTrackerFB.

• skeleton is a pointer to XrBodySkeletonFB receiving the returned body skeleton hierarchy.

This function can be used to query the skeleton scale and proportions in conjunction with

XrBodyJointLocationsFB::skeletonChangedCount. XrBodyJointLocationsFB::skeletonChangedCount is

incremented whenever the tracking auto-calibrates the user skeleton scale and proportions.

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to calling xrGetBodySkeletonFB

• bodyTracker must be a valid XrBodyTrackerFB handle

• skeleton must be a pointer to an XrBodySkeletonFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The XrBodySkeletonFB structure is a container to represent the body skeleton in T-pose including the

joint hierarchy.

Chapter 12. List of Current Extensions | 605

// Provided by XR_FB_body_tracking

typedef struct XrBodySkeletonFB {

 XrStructureType type;

 void* next;

 uint32_t jointCount;

 XrBodySkeletonJointFB* joints;

} XrBodySkeletonFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• jointCount is an uint32_t describing the count of elements in joints array.

• joints is an application-allocated array of XrBodySkeletonJointFB that will be filled with

skeleton joint elements.

The runtime must return XR_ERROR_VALIDATION_FAILURE if jointCount does not equal to the number of

joints defined by the XrBodyJointSetFB used to create the XrBodyTrackerFB.

The runtime must return joints representing the default pose of the current estimation regarding the

user’s skeleton.

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to using XrBodySkeletonFB

• type must be XR_TYPE_BODY_SKELETON_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• joints must be a pointer to an array of jointCount XrBodySkeletonJointFB structures

• The jointCount parameter must be greater than 0

XrBodySkeletonJointFB structure describes the position, orientation of the joint in space, and position

of the joint in the skeleton hierarchy.

606 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_body_tracking

typedef struct XrBodySkeletonJointFB {

 int32_t joint;

 int32_t parentJoint;

 XrPosef pose;

} XrBodySkeletonJointFB;

Member Descriptions

• joint is an index of a joint using the corresponding body joint enum (e.g. XrBodyJointFB).

• parentJoint is an index of a parent joint of that joint, using the corresponding body joint

enum (e.g. XrBodyJointFB).

• pose is an XrPosef defining the position and orientation of the origin of a body joint within

the reference frame of the corresponding XrBodyJointsLocateInfoFB::baseSpace.

Valid Usage (Implicit)

• The XR_FB_body_tracking extension must be enabled prior to using XrBodySkeletonJointFB

12.43.6. Example code for locating body joints

The following example code demonstrates how to locate all body joints relatively to a base space.

XrInstance instance; // previously initialized

XrSystemId systemId; // previously initialized

XrSession session; // previously initialized

XrSpace baseSpace; // previously initialized, e.g. from

 // XR_REFERENCE_SPACE_TYPE_LOCAL

// Inspect body tracking system properties

XrSystemBodyTrackingPropertiesFB bodyTrackingSystemProperties{

 XR_TYPE_SYSTEM_BODY_TRACKING_PROPERTIES_FB};

XrSystemProperties systemProperties{XR_TYPE_SYSTEM_PROPERTIES,

 &bodyTrackingSystemProperties};

CHK_XR(xrGetSystemProperties(instance, systemId, &systemProperties));

if (!bodyTrackingSystemProperties.supportsBodyTracking) {

 // The system does not support body tracking

 return;

}

// Get function pointer for xrCreateBodyTrackerFB

Chapter 12. List of Current Extensions | 607

PFN_xrCreateBodyTrackerFB pfnCreateBodyTrackerFB;

CHK_XR(xrGetInstanceProcAddr(instance, "xrCreateBodyTrackerFB",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnCreateBodyTrackerFB)));

// Create a body tracker that tracks default set of body joints.

XrBodyTrackerFB bodyTracker = {};

{

 XrBodyTrackerCreateInfoFB createInfo{XR_TYPE_BODY_TRACKER_CREATE_INFO_FB};

 createInfo.bodyJointSet = XR_BODY_JOINT_SET_DEFAULT_FB;

 CHK_XR(pfnCreateBodyTrackerFB(session, &createInfo, &bodyTracker));

}

// Allocate buffers to receive joint location data before frame

// loop starts.

XrBodyJointLocationFB jointLocations[XR_BODY_JOINT_COUNT_FB];

XrBodyJointLocationsFB locations{XR_TYPE_BODY_JOINT_LOCATIONS_FB};

locations.jointCount = XR_BODY_JOINT_COUNT_FB;

locations.jointLocations = jointLocations;

// Get function pointer for xrLocateBodyJointsFB.

PFN_xrLocateBodyJointsFB pfnLocateBodyJointsFB;

CHK_XR(xrGetInstanceProcAddr(instance, "xrLocateBodyJointsFB",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnLocateBodyJointsFB)));

while (1) {

 // ...

 // For every frame in the frame loop

 // ...

 XrFrameState frameState; // previously returned from xrWaitFrame

 const XrTime time = frameState.predictedDisplayTime;

 XrBodyJointsLocateInfoFB locateInfo{XR_TYPE_BODY_JOINTS_LOCATE_INFO_FB};

 locateInfo.baseSpace = baseSpace;

 locateInfo.time = time;

 CHK_XR(pfnLocateBodyJointsFB(bodyTracker, &locateInfo, &locations));

 if (locations.isActive) {

 // The returned joint location array is directly indexed with

 // XrBodyJointFB enum.

 const XrPosef &indexTip =

 jointLocations[XR_BODY_JOINT_LEFT_HAND_INDEX_TIP_FB].pose;

 }

}

608 | Chapter 12. List of Current Extensions

12.43.7. Conventions of body joints

This extension defines 70 joints for body tracking: 18 core body joints + 52 hand joints.

// Provided by XR_FB_body_tracking

typedef enum XrBodyJointFB {

 XR_BODY_JOINT_ROOT_FB = 0,

 XR_BODY_JOINT_HIPS_FB = 1,

 XR_BODY_JOINT_SPINE_LOWER_FB = 2,

 XR_BODY_JOINT_SPINE_MIDDLE_FB = 3,

 XR_BODY_JOINT_SPINE_UPPER_FB = 4,

 XR_BODY_JOINT_CHEST_FB = 5,

 XR_BODY_JOINT_NECK_FB = 6,

 XR_BODY_JOINT_HEAD_FB = 7,

 XR_BODY_JOINT_LEFT_SHOULDER_FB = 8,

 XR_BODY_JOINT_LEFT_SCAPULA_FB = 9,

 XR_BODY_JOINT_LEFT_ARM_UPPER_FB = 10,

 XR_BODY_JOINT_LEFT_ARM_LOWER_FB = 11,

 XR_BODY_JOINT_LEFT_HAND_WRIST_TWIST_FB = 12,

 XR_BODY_JOINT_RIGHT_SHOULDER_FB = 13,

 XR_BODY_JOINT_RIGHT_SCAPULA_FB = 14,

 XR_BODY_JOINT_RIGHT_ARM_UPPER_FB = 15,

 XR_BODY_JOINT_RIGHT_ARM_LOWER_FB = 16,

 XR_BODY_JOINT_RIGHT_HAND_WRIST_TWIST_FB = 17,

 XR_BODY_JOINT_LEFT_HAND_PALM_FB = 18,

 XR_BODY_JOINT_LEFT_HAND_WRIST_FB = 19,

 XR_BODY_JOINT_LEFT_HAND_THUMB_METACARPAL_FB = 20,

 XR_BODY_JOINT_LEFT_HAND_THUMB_PROXIMAL_FB = 21,

 XR_BODY_JOINT_LEFT_HAND_THUMB_DISTAL_FB = 22,

 XR_BODY_JOINT_LEFT_HAND_THUMB_TIP_FB = 23,

 XR_BODY_JOINT_LEFT_HAND_INDEX_METACARPAL_FB = 24,

 XR_BODY_JOINT_LEFT_HAND_INDEX_PROXIMAL_FB = 25,

 XR_BODY_JOINT_LEFT_HAND_INDEX_INTERMEDIATE_FB = 26,

 XR_BODY_JOINT_LEFT_HAND_INDEX_DISTAL_FB = 27,

 XR_BODY_JOINT_LEFT_HAND_INDEX_TIP_FB = 28,

 XR_BODY_JOINT_LEFT_HAND_MIDDLE_METACARPAL_FB = 29,

 XR_BODY_JOINT_LEFT_HAND_MIDDLE_PROXIMAL_FB = 30,

 XR_BODY_JOINT_LEFT_HAND_MIDDLE_INTERMEDIATE_FB = 31,

 XR_BODY_JOINT_LEFT_HAND_MIDDLE_DISTAL_FB = 32,

 XR_BODY_JOINT_LEFT_HAND_MIDDLE_TIP_FB = 33,

 XR_BODY_JOINT_LEFT_HAND_RING_METACARPAL_FB = 34,

 XR_BODY_JOINT_LEFT_HAND_RING_PROXIMAL_FB = 35,

 XR_BODY_JOINT_LEFT_HAND_RING_INTERMEDIATE_FB = 36,

 XR_BODY_JOINT_LEFT_HAND_RING_DISTAL_FB = 37,

 XR_BODY_JOINT_LEFT_HAND_RING_TIP_FB = 38,

Chapter 12. List of Current Extensions | 609

 XR_BODY_JOINT_LEFT_HAND_LITTLE_METACARPAL_FB = 39,

 XR_BODY_JOINT_LEFT_HAND_LITTLE_PROXIMAL_FB = 40,

 XR_BODY_JOINT_LEFT_HAND_LITTLE_INTERMEDIATE_FB = 41,

 XR_BODY_JOINT_LEFT_HAND_LITTLE_DISTAL_FB = 42,

 XR_BODY_JOINT_LEFT_HAND_LITTLE_TIP_FB = 43,

 XR_BODY_JOINT_RIGHT_HAND_PALM_FB = 44,

 XR_BODY_JOINT_RIGHT_HAND_WRIST_FB = 45,

 XR_BODY_JOINT_RIGHT_HAND_THUMB_METACARPAL_FB = 46,

 XR_BODY_JOINT_RIGHT_HAND_THUMB_PROXIMAL_FB = 47,

 XR_BODY_JOINT_RIGHT_HAND_THUMB_DISTAL_FB = 48,

 XR_BODY_JOINT_RIGHT_HAND_THUMB_TIP_FB = 49,

 XR_BODY_JOINT_RIGHT_HAND_INDEX_METACARPAL_FB = 50,

 XR_BODY_JOINT_RIGHT_HAND_INDEX_PROXIMAL_FB = 51,

 XR_BODY_JOINT_RIGHT_HAND_INDEX_INTERMEDIATE_FB = 52,

 XR_BODY_JOINT_RIGHT_HAND_INDEX_DISTAL_FB = 53,

 XR_BODY_JOINT_RIGHT_HAND_INDEX_TIP_FB = 54,

 XR_BODY_JOINT_RIGHT_HAND_MIDDLE_METACARPAL_FB = 55,

 XR_BODY_JOINT_RIGHT_HAND_MIDDLE_PROXIMAL_FB = 56,

 XR_BODY_JOINT_RIGHT_HAND_MIDDLE_INTERMEDIATE_FB = 57,

 XR_BODY_JOINT_RIGHT_HAND_MIDDLE_DISTAL_FB = 58,

 XR_BODY_JOINT_RIGHT_HAND_MIDDLE_TIP_FB = 59,

 XR_BODY_JOINT_RIGHT_HAND_RING_METACARPAL_FB = 60,

 XR_BODY_JOINT_RIGHT_HAND_RING_PROXIMAL_FB = 61,

 XR_BODY_JOINT_RIGHT_HAND_RING_INTERMEDIATE_FB = 62,

 XR_BODY_JOINT_RIGHT_HAND_RING_DISTAL_FB = 63,

 XR_BODY_JOINT_RIGHT_HAND_RING_TIP_FB = 64,

 XR_BODY_JOINT_RIGHT_HAND_LITTLE_METACARPAL_FB = 65,

 XR_BODY_JOINT_RIGHT_HAND_LITTLE_PROXIMAL_FB = 66,

 XR_BODY_JOINT_RIGHT_HAND_LITTLE_INTERMEDIATE_FB = 67,

 XR_BODY_JOINT_RIGHT_HAND_LITTLE_DISTAL_FB = 68,

 XR_BODY_JOINT_RIGHT_HAND_LITTLE_TIP_FB = 69,

 XR_BODY_JOINT_COUNT_FB = 70,

 XR_BODY_JOINT_NONE_FB = -1,

 XR_BODY_JOINT_MAX_ENUM_FB = 0x7FFFFFFF

} XrBodyJointFB;

The backward (+Z) direction is parallel to the corresponding bone and points away from the finger tip.

The up (+Y) direction is pointing out of the back of and perpendicular to the corresponding finger nail

at the fully opened hand pose. The X direction is perpendicular to Y and Z and follows the right hand

rule.

The wrist joint is located at the pivot point of the wrist, which is location invariant when twisting the

hand without moving the forearm. The backward (+Z) direction is parallel to the line from wrist joint

to middle finger metacarpal joint, and points away from the finger tips. The up (+Y) direction points

out towards back of the hand and perpendicular to the skin at wrist. The X direction is perpendicular

to the Y and Z directions and follows the right hand rule.

610 | Chapter 12. List of Current Extensions

The palm joint is located at the center of the middle finger’s metacarpal bone. The backward (+Z)

direction is parallel to the middle finger’s metacarpal bone, and points away from the finger tips. The

up (+Y) direction is perpendicular to palm surface and pointing towards the back of the hand. The X

direction is perpendicular to the Y and Z directions and follows the right hand rule.

Body skeleton has the full set of body joints (e.g. defined by XrBodyJointFB), organized in a hierarchy

with a default T-shape body pose.

The purpose of the skeleton is to provide data about the body size. Coordinates are relative to each

other, so there is no any relation to any space.

The calculation of the body size may be updated during a session. Each time the calculation of the size

is changed, skeletonChangedCount of XrBodyJointLocationsFB is changed to indicate that a new skeleton

may be retrieved.

New Object Types

• XrBodyTrackerFB

New Flag Types

New Enum Constants

• XR_BODY_JOINT_COUNT_FB

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_BODY_TRACKER_FB

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_BODY_TRACKING_PROPERTIES_FB

• XR_TYPE_BODY_TRACKER_CREATE_INFO_FB

• XR_TYPE_BODY_JOINTS_LOCATE_INFO_FB

• XR_TYPE_BODY_JOINT_LOCATIONS_FB

• XR_TYPE_BODY_SKELETON_FB

New Enums

• XrBodyJointFB

• XrBodyJointSetFB

New Structures

• XrSystemBodyTrackingPropertiesFB

• XrBodyTrackerCreateInfoFB

Chapter 12. List of Current Extensions | 611

• XrBodyJointsLocateInfoFB

• XrBodyJointLocationFB

• XrBodyJointLocationsFB

• XrBodySkeletonJointFB

• XrBodySkeletonFB

New Functions

• xrCreateBodyTrackerFB

• xrDestroyBodyTrackerFB

• xrLocateBodyJointsFB

• xrGetBodySkeletonFB

Issues

Version History

• Revision 1, 2022-07-18 (Igor Tceglevskii)

◦ Initial extension description

12.44. XR_FB_color_space

Name String

XR_FB_color_space

Extension Type

Instance extension

Registered Extension Number

109

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Contributors

Volga Aksoy, Facebook

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

612 | Chapter 12. List of Current Extensions

XR devices may use a color space that is different from many monitors used in development.

Application developers may desire to specify the color space in which they have authored their

application so appropriate colors are shown when the application is running on the XR device.

This extension allows:

• An application to get the native color space of the XR device.

• An application to enumerate the supported color spaces for the session.

• An application to set the color space for the session.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as

indicated in the Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_COLOR_SPACE_PROPERTIES_FB

XrResult enumeration is extended with:

• XR_ERROR_COLOR_SPACE_UNSUPPORTED_FB

New Enums

The possible color spaces are specified by the XrColorSpaceFB enumeration.

// Provided by XR_FB_color_space

typedef enum XrColorSpaceFB {

 XR_COLOR_SPACE_UNMANAGED_FB = 0,

 XR_COLOR_SPACE_REC2020_FB = 1,

 XR_COLOR_SPACE_REC709_FB = 2,

 XR_COLOR_SPACE_RIFT_CV1_FB = 3,

 XR_COLOR_SPACE_RIFT_S_FB = 4,

 XR_COLOR_SPACE_QUEST_FB = 5,

 XR_COLOR_SPACE_P3_FB = 6,

 XR_COLOR_SPACE_ADOBE_RGB_FB = 7,

 XR_COLOR_SPACE_MAX_ENUM_FB = 0x7FFFFFFF

} XrColorSpaceFB;

Chapter 12. List of Current Extensions | 613

Enumerant Descriptions

• XR_COLOR_SPACE_UNMANAGED_FB. No color correction, not recommended for production use.

• XR_COLOR_SPACE_REC2020_FB. Standard Rec. 2020 chromacities with D65 white point.

• XR_COLOR_SPACE_REC709_FB. Standard Rec. 709 chromaticities, similar to sRGB.

• XR_COLOR_SPACE_RIFT_CV1_FB. Unique color space, between P3 and Adobe RGB using D75 white

point. This is the preferred color space for standardized color across all Oculus HMDs.

Color Space Details with Chromacity Primaries in CIE 1931 xy:

◦ Red: (0.666, 0.334)

◦ Green: (0.238, 0.714)

◦ Blue: (0.139, 0.053)

◦ White: (0.298, 0.318)

• XR_COLOR_SPACE_RIFT_S_FB. Unique color space. Similar to Rec 709 using D75.

Color Space Details with Chromacity Primaries in CIE 1931 xy:

◦ Red: (0.640, 0.330)

◦ Green: (0.292, 0.586)

◦ Blue: (0.156, 0.058)

◦ White: (0.298, 0.318)

• XR_COLOR_SPACE_QUEST_FB. Unique color space. Similar to Rift CV1 using D75 white point

Color Space Details with Chromacity Primaries in CIE 1931 xy:

◦ Red: (0.661, 0.338)

◦ Green: (0.228, 0.718)

◦ Blue: (0.142, 0.042)

◦ White: (0.298, 0.318)

• XR_COLOR_SPACE_P3_FB. Similar to DCI-P3, but uses D65 white point instead.

Color Space Details with Chromacity Primaries in CIE 1931 xy:

◦ Red: (0.680, 0.320)

◦ Green: (0.265, 0.690)

◦ Blue: (0.150, 0.060)

◦ White: (0.313, 0.329)

• XR_COLOR_SPACE_ADOBE_RGB_FB. Standard Adobe chromacities.

614 | Chapter 12. List of Current Extensions

New Structures

An application may inspect the native color space of the system by chaining an

XrSystemColorSpacePropertiesFB structure to the XrSystemProperties when calling

xrGetSystemProperties.

The XrSystemColorSpacePropertiesFB structure is defined as:

// Provided by XR_FB_color_space

typedef struct XrSystemColorSpacePropertiesFB {

 XrStructureType type;

 void* next;

 XrColorSpaceFB colorSpace;

} XrSystemColorSpacePropertiesFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• colorSpace is the native color space of the XR device.

Valid Usage (Implicit)

• The XR_FB_color_space extension must be enabled prior to using

XrSystemColorSpacePropertiesFB

• type must be XR_TYPE_SYSTEM_COLOR_SPACE_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrEnumerateColorSpacesFB function is defined as:

Chapter 12. List of Current Extensions | 615

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_color_space

XrResult xrEnumerateColorSpacesFB(

 XrSession session,

 uint32_t colorSpaceCapacityInput,

 uint32_t* colorSpaceCountOutput,

 XrColorSpaceFB* colorSpaces);

Parameter Descriptions

• session is the session that enumerates the supported color spaces.

• colorSpaceCapacityInput is the capacity of the colorSpaces array, or 0 to retrieve the required

capacity.

• colorSpaceCountOutput is a pointer to the count of XrColorSpaceFB colorSpaces written, or a

pointer to the required capacity in the case that colorSpaceCapacityInput is insufficient.

• colorSpaces is a pointer to an array of XrColorSpaceFB color spaces, but can be NULL if

colorSpaceCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

colorSpaces size.

xrEnumerateColorSpacesFB enumerates the color spaces supported by the current session. Runtimes

must always return identical buffer contents from this enumeration for the lifetime of the session.

Valid Usage (Implicit)

• The XR_FB_color_space extension must be enabled prior to calling

xrEnumerateColorSpacesFB

• session must be a valid XrSession handle

• colorSpaceCountOutput must be a pointer to a uint32_t value

• If colorSpaceCapacityInput is not 0, colorSpaces must be a pointer to an array of

colorSpaceCapacityInput XrColorSpaceFB values

616 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

The xrSetColorSpaceFB function is defined as:

// Provided by XR_FB_color_space

XrResult xrSetColorSpaceFB(

 XrSession session,

 const XrColorSpaceFB colorSpace);

Parameter Descriptions

• session is a valid XrSession handle.

• colorSpace is a supported color space. Supported color spaces are indicated by

xrEnumerateColorSpacesFB.

xrSetColorSpaceFB provides a mechanism for an application to specify the color space used in the final

rendered frame. If this function is not called, the session will use the color space deemed appropriate

by the runtime. Oculus HMDs for both PC and Mobile product lines default to

XR_COLOR_SPACE_RIFT_CV1_FB. The runtime must return XR_ERROR_COLOR_SPACE_UNSUPPORTED_FB if

colorSpace is not one of the values enumerated by xrEnumerateColorSpacesFB.

Formal definitions of color spaces contain a number of aspects such as gamma correction, max

luminance and more. However, xrSetColorSpaceFB will only affect the color gamut of the output by

transforming the color gamut from the source (defined by the colorSpace parameter) to the HMD

Chapter 12. List of Current Extensions | 617

display’s color gamut (defined by the hardware internally). This call will not affect gamma correction,

leaving that to follow the GPU texture format standards. Luminance, tonemapping, and other aspects

of the color space will also remain unaffected.

For more info on color management in Oculus HMDs, please refer to this guide: Color Management in

Oculus Headsets

Valid Usage (Implicit)

• The XR_FB_color_space extension must be enabled prior to calling xrSetColorSpaceFB

• session must be a valid XrSession handle

• colorSpace must be a valid XrColorSpaceFB value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

• XR_ERROR_COLOR_SPACE_UNSUPPORTED_FB

Issues

Version History

• Revision 1, 2020-11-09 (Gloria Kennickell)

◦ Initial extension description

• Revision 2, 2021-09-28 (Rylie Pavlik, Collabora, Ltd.)

◦ Fix XML markup to indicate that XrSystemColorSpacePropertiesFB is chained to

XrSystemProperties.

618 | Chapter 12. List of Current Extensions

https://developer.oculus.com/resources/color-management-guide/
https://developer.oculus.com/resources/color-management-guide/

• Revision 3, 2022-09-01 (Rylie Pavlik, Collabora, Ltd.)

◦ Fix XML markup to indicate that XrSystemColorSpacePropertiesFB is returned-only.

12.45. XR_FB_composition_layer_alpha_blend

Name String

XR_FB_composition_layer_alpha_blend

Extension Type

Instance extension

Registered Extension Number

42

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Contributors

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Johannes Schmid, Facebook

Overview

This extension provides explicit control over source and destination blend factors, with separate

controls for color and alpha. When specified, these blend controls supersede the behavior of

XR_COMPOSITION_LAYER_BLEND_TEXTURE_SOURCE_ALPHA_BIT.

When XR_COMPOSITION_LAYER_UNPREMULTIPLIED_ALPHA_BIT is specified, the source color is unpremultiplied

alpha.

Like color, destination alpha is initialized to 0 before composition begins.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as

indicated in the Extensions section.

These blend factors are specified by attaching a XrCompositionLayerAlphaBlendFB structure to the

next chain of a layer structure derived from XrCompositionLayerBaseHeader.

New Object Types

New Flag Types

Chapter 12. List of Current Extensions | 619

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_ALPHA_BLEND_FB

New Enums

The possible blend factors are specified by the XrBlendFactorFB enumeration.

// Provided by XR_FB_composition_layer_alpha_blend

typedef enum XrBlendFactorFB {

 XR_BLEND_FACTOR_ZERO_FB = 0,

 XR_BLEND_FACTOR_ONE_FB = 1,

 XR_BLEND_FACTOR_SRC_ALPHA_FB = 2,

 XR_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA_FB = 3,

 XR_BLEND_FACTOR_DST_ALPHA_FB = 4,

 XR_BLEND_FACTOR_ONE_MINUS_DST_ALPHA_FB = 5,

 XR_BLEND_FACTOR_MAX_ENUM_FB = 0x7FFFFFFF

} XrBlendFactorFB;

New Structures

The XrCompositionLayerAlphaBlendFB structure is defined as:

// Provided by XR_FB_composition_layer_alpha_blend

typedef struct XrCompositionLayerAlphaBlendFB {

 XrStructureType type;

 void* next;

 XrBlendFactorFB srcFactorColor;

 XrBlendFactorFB dstFactorColor;

 XrBlendFactorFB srcFactorAlpha;

 XrBlendFactorFB dstFactorAlpha;

} XrCompositionLayerAlphaBlendFB;

620 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• srcFactorColor specifies the source color blend factor.

• dstFactorColor specifies the destination color blend factor.

• srcFactorAlpha specifies the source alpha blend factor.

• dstFactorAlpha specifies the destination alpha blend factor.

XrCompositionLayerAlphaBlendFB provides applications with explicit control over source and

destination blend factors.

The XrCompositionLayerAlphaBlendFB structure must be provided in the next chain of the

XrCompositionLayerBaseHeader structure.

Valid Usage (Implicit)

• The XR_FB_composition_layer_alpha_blend extension must be enabled prior to using

XrCompositionLayerAlphaBlendFB

• type must be XR_TYPE_COMPOSITION_LAYER_ALPHA_BLEND_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• srcFactorColor must be a valid XrBlendFactorFB value

• dstFactorColor must be a valid XrBlendFactorFB value

• srcFactorAlpha must be a valid XrBlendFactorFB value

• dstFactorAlpha must be a valid XrBlendFactorFB value

New Functions

Issues

• Should we add separate blend controls for color and alpha?

◦ Yes. New use cases necessitated adding separate blend controls for color and alpha.

Version History

• Revision 1, 2020-06-22 (Gloria Kennickell)

◦ Initial draft

• Revision 2, 2020-06-22 (Gloria Kennickell)

Chapter 12. List of Current Extensions | 621

#valid-usage-for-structure-pointer-chains

◦ Provide separate controls for color and alpha blend factors.

12.46. XR_FB_composition_layer_depth_test

Name String

XR_FB_composition_layer_depth_test

Extension Type

Instance extension

Registered Extension Number

213

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

Guodong Rong, Meta

Cass Everitt, Meta

Jian Zhang, Meta

Overview

This extension enables depth-tested layer composition. The compositor will maintain a depth buffer in

addition to a color buffer. The depth buffer is cleared to a depth corresponding to the infinitely far

distance at the beginning of composition.

When composing each layer, if depth testing is requested, the incoming layer depths are transformed

into the compositor window space depth and compared to the depth stored in the frame buffer. After

the transformation, incoming depths that are outside of the range of the compositor window space

depth must be clamped. If the depth test fails, the fragment is discarded. If the depth test passes the

depth buffer is updated if depth writes are enabled, and color processing continues.

Depth testing requires depth values for the layer. For projection layers, this can be supplied via the

XR_KHR_composition_layer_depth extension. For geometric primitive layers, the runtime computes the

depth of the sample directly from the layer parameters. An XrCompositionLayerDepthTestFB chained

to layers without depth must be ignored.

New Object Types

New Flag Types

New Enum Constants

622 | Chapter 12. List of Current Extensions

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_DEPTH_TEST_FB

New Enums

The possible comparison operations are specified by the XrCompareOpFB enumeration.

// Provided by XR_FB_composition_layer_depth_test

typedef enum XrCompareOpFB {

 XR_COMPARE_OP_NEVER_FB = 0,

 XR_COMPARE_OP_LESS_FB = 1,

 XR_COMPARE_OP_EQUAL_FB = 2,

 XR_COMPARE_OP_LESS_OR_EQUAL_FB = 3,

 XR_COMPARE_OP_GREATER_FB = 4,

 XR_COMPARE_OP_NOT_EQUAL_FB = 5,

 XR_COMPARE_OP_GREATER_OR_EQUAL_FB = 6,

 XR_COMPARE_OP_ALWAYS_FB = 7,

 XR_COMPARE_OP_MAX_ENUM_FB = 0x7FFFFFFF

} XrCompareOpFB;

Enumerant Descriptions

• XR_COMPARE_OP_NEVER_FB  — Comparison is never true.

• XR_COMPARE_OP_LESS_FB  — Comparison is true if source less than is destination.

• XR_COMPARE_OP_EQUAL_FB  — Comparison is true if source is equal to destination.

• XR_COMPARE_OP_LESS_OR_EQUAL_FB  — Comparison is true if source is less than or equal to

destination.

• XR_COMPARE_OP_GREATER_FB  — Comparison is true if source is greater than destination.

• XR_COMPARE_OP_NOT_EQUAL_FB  — Comparison is true if source is not equal to destination.

• XR_COMPARE_OP_GREATER_OR_EQUAL_FB  — Comparison is true if source is greater than or equal to

destination.

• XR_COMPARE_OP_ALWAYS_FB  — Comparison is always true.

New Structures

The XrCompositionLayerDepthTestFB structure is defined as:

Chapter 12. List of Current Extensions | 623

// Provided by XR_FB_composition_layer_depth_test

typedef struct XrCompositionLayerDepthTestFB {

 XrStructureType type;

 const void* next;

 XrBool32 depthMask;

 XrCompareOpFB compareOp;

} XrCompositionLayerDepthTestFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• depthMask is a boolean indicating whether writes to the composition depth buffer are enabled.

• compareOp is an enum that indicates which compare operation is used in the depth test.

To specify that a layer should be depth tested, a XrCompositionLayerDepthTestFB structure must be

passed via the polymorphic XrCompositionLayerBaseHeader structure’s next parameter chain.

Valid Usage (Implicit)

• The XR_FB_composition_layer_depth_test extension must be enabled prior to using

XrCompositionLayerDepthTestFB

• type must be XR_TYPE_COMPOSITION_LAYER_DEPTH_TEST_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• compareOp must be a valid XrCompareOpFB value

New Functions

Issues

Version History

• Revision 1, 2022-02-17 (Cass Everitt)

◦ Initial draft

12.47. XR_FB_composition_layer_image_layout

Name String

XR_FB_composition_layer_image_layout

624 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Extension Type

Instance extension

Registered Extension Number

41

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

This extension does not define a new composition layer type, but rather it defines parameters that

change the interpretation of the image layout, where the default image layout is dictated by the

Graphics API.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

typedef XrFlags64 XrCompositionLayerImageLayoutFlagsFB;

// Flag bits for XrCompositionLayerImageLayoutFlagsFB

static const XrCompositionLayerImageLayoutFlagsFB

XR_COMPOSITION_LAYER_IMAGE_LAYOUT_VERTICAL_FLIP_BIT_FB = 0x00000001;

Chapter 12. List of Current Extensions | 625

Flag Descriptions

• XR_COMPOSITION_LAYER_IMAGE_LAYOUT_VERTICAL_FLIP_BIT_FB indicates the coordinate origin must

be considered flipped vertically.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_IMAGE_LAYOUT_FB

New Enums

• XR_COMPOSITION_LAYER_IMAGE_LAYOUT_VERTICAL_FLIP_BIT_FB

New Structures

The XrCompositionLayerImageLayoutFB structure is defined as:

// Provided by XR_FB_composition_layer_image_layout

typedef struct XrCompositionLayerImageLayoutFB {

 XrStructureType type;

 void* next;

 XrCompositionLayerImageLayoutFlagsFB flags;

} XrCompositionLayerImageLayoutFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrCompositionLayerImageLayoutFlagBitsFB.

XrCompositionLayerImageLayoutFB contains additional flags used to change the interpretation of the

image layout for a composition layer.

To specify the additional flags, you must create a XrCompositionLayerImageLayoutFB structure and

pass it via the XrCompositionLayerBaseHeader structure’s next parameter.

626 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_composition_layer_image_layout extension must be enabled prior to using

XrCompositionLayerImageLayoutFB

• type must be XR_TYPE_COMPOSITION_LAYER_IMAGE_LAYOUT_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be 0 or a valid combination of XrCompositionLayerImageLayoutFlagBitsFB values

New Functions

Issues

Version History

• Revision 1, 2020-07-06 (Gloria Kennickell)

◦ Initial draft

12.48. XR_FB_composition_layer_secure_content

Name String

XR_FB_composition_layer_secure_content

Extension Type

Instance extension

Registered Extension Number

73

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

This extension does not define a new composition layer type, but rather it provides support for the

application to specify an existing composition layer type has secure content and whether it must be

completely excluded from external outputs, like video or screen capture, or if proxy content must be

Chapter 12. List of Current Extensions | 627

#valid-usage-for-structure-pointer-chains

rendered in its place.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

typedef XrFlags64 XrCompositionLayerSecureContentFlagsFB;

// Flag bits for XrCompositionLayerSecureContentFlagsFB

static const XrCompositionLayerSecureContentFlagsFB

XR_COMPOSITION_LAYER_SECURE_CONTENT_EXCLUDE_LAYER_BIT_FB = 0x00000001;

static const XrCompositionLayerSecureContentFlagsFB

XR_COMPOSITION_LAYER_SECURE_CONTENT_REPLACE_LAYER_BIT_FB = 0x00000002;

Flag Descriptions

• XR_COMPOSITION_LAYER_SECURE_CONTENT_EXCLUDE_LAYER_BIT_FB  — Indicates the layer will only be

visible inside the HMD, and not visible to external sources

• XR_COMPOSITION_LAYER_SECURE_CONTENT_REPLACE_LAYER_BIT_FB  — Indicates the layer will be

displayed inside the HMD, but replaced by proxy content when written to external sources

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_SECURE_CONTENT_FB

New Enums

• XR_COMPOSITION_LAYER_SECURE_CONTENT_EXCLUDE_LAYER_BIT_FB

• XR_COMPOSITION_LAYER_SECURE_CONTENT_REPLACE_LAYER_BIT_FB

New Structures

The XrCompositionLayerSecureContentFB structure is defined as:

628 | Chapter 12. List of Current Extensions

// Provided by XR_FB_composition_layer_secure_content

typedef struct XrCompositionLayerSecureContentFB {

 XrStructureType type;

 const void* next;

 XrCompositionLayerSecureContentFlagsFB flags;

} XrCompositionLayerSecureContentFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrCompositionLayerSecureContentFlagBitsFB.

XrCompositionLayerSecureContentFB contains additional flags to indicate a composition layer

contains secure content and must not be written to external outputs.

If both XR_COMPOSITION_LAYER_SECURE_CONTENT_EXCLUDE_LAYER_BIT_FB and

XR_COMPOSITION_LAYER_SECURE_CONTENT_REPLACE_LAYER_BIT_FB are set,

XR_COMPOSITION_LAYER_SECURE_CONTENT_EXCLUDE_LAYER_BIT_FB will take precedence.

To specify the additional flags, you must create a XrCompositionLayerSecureContentFB structure and

pass it via the XrCompositionLayerBaseHeader structure’s next parameter.

Valid Usage (Implicit)

• The XR_FB_composition_layer_secure_content extension must be enabled prior to using

XrCompositionLayerSecureContentFB

• type must be XR_TYPE_COMPOSITION_LAYER_SECURE_CONTENT_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be a valid combination of XrCompositionLayerSecureContentFlagBitsFB values

• flags must not be 0

New Functions

Issues

Version History

Chapter 12. List of Current Extensions | 629

#valid-usage-for-structure-pointer-chains

• Revision 1, 2020-06-16 (Gloria Kennickell)

◦ Initial draft

12.49. XR_FB_composition_layer_settings

Name String

XR_FB_composition_layer_settings

Extension Type

Instance extension

Registered Extension Number

205

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

Grant Yang, Meta Platforms

Overview

This extension allows applications to request the use of processing options such as sharpening or

super-sampling on a composition layer.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

typedef XrFlags64 XrCompositionLayerSettingsFlagsFB;

630 | Chapter 12. List of Current Extensions

// Flag bits for XrCompositionLayerSettingsFlagsFB

static const XrCompositionLayerSettingsFlagsFB

XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SUPER_SAMPLING_BIT_FB = 0x00000001;

static const XrCompositionLayerSettingsFlagsFB

XR_COMPOSITION_LAYER_SETTINGS_QUALITY_SUPER_SAMPLING_BIT_FB = 0x00000002;

static const XrCompositionLayerSettingsFlagsFB

XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SHARPENING_BIT_FB = 0x00000004;

static const XrCompositionLayerSettingsFlagsFB

XR_COMPOSITION_LAYER_SETTINGS_QUALITY_SHARPENING_BIT_FB = 0x00000008;

static const XrCompositionLayerSettingsFlagsFB

XR_COMPOSITION_LAYER_SETTINGS_AUTO_LAYER_FILTER_BIT_META = 0x00000020;

Flag Descriptions

• XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SUPER_SAMPLING_BIT_FB  — Indicates compositor may

use layer texture supersampling.

• XR_COMPOSITION_LAYER_SETTINGS_QUALITY_SUPER_SAMPLING_BIT_FB  — Indicates compositor may

use high quality layer texture supersampling.

• XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SHARPENING_BIT_FB  — Indicates compositor may use

layer texture sharpening.

• XR_COMPOSITION_LAYER_SETTINGS_QUALITY_SHARPENING_BIT_FB  — Indicates compositor may use

high quality layer texture sharpening.

• XR_COMPOSITION_LAYER_SETTINGS_AUTO_LAYER_FILTER_BIT_META  — Indicates compositor may

automatically toggle a texture filtering mechanism to improve visual quality of layer. This

must not be the only bit set. (Added by XR_META_automatic_layer_filter) (Added by the

XR_META_automatic_layer_filter extension)

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_SETTINGS_FB

New Enums

• XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SUPER_SAMPLING_BIT_FB

• XR_COMPOSITION_LAYER_SETTINGS_QUALITY_SUPER_SAMPLING_BIT_FB

• XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SHARPENING_BIT_FB

• XR_COMPOSITION_LAYER_SETTINGS_QUALITY_SHARPENING_BIT_FB

New Structures

Chapter 12. List of Current Extensions | 631

The XrCompositionLayerSettingsFB structure is defined as:

// Provided by XR_FB_composition_layer_settings

typedef struct XrCompositionLayerSettingsFB {

 XrStructureType type;

 const void* next;

 XrCompositionLayerSettingsFlagsFB layerFlags;

} XrCompositionLayerSettingsFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layerFlags is a bitmask of XrCompositionLayerSettingsFlagBitsFB.

XrCompositionLayerSettingsFB contains additional flags to indicate which processing steps to perform

on a composition layer.

If both XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SUPER_SAMPLING_BIT_FB and

XR_COMPOSITION_LAYER_SETTINGS_QUALITY_SUPER_SAMPLING_BIT_FB are set,

XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SUPER_SAMPLING_BIT_FB will take precedence.

If both XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SHARPENING_BIT_FB and

XR_COMPOSITION_LAYER_SETTINGS_QUALITY_SHARPENING_BIT_FB are set,

XR_COMPOSITION_LAYER_SETTINGS_NORMAL_SHARPENING_BIT_FB will take precedence.

To specify the additional flags, create an XrCompositionLayerSettingsFB structure and pass it via the

XrCompositionLayerBaseHeader structure’s next parameter.

Valid Usage (Implicit)

• The XR_FB_composition_layer_settings extension must be enabled prior to using

XrCompositionLayerSettingsFB

• type must be XR_TYPE_COMPOSITION_LAYER_SETTINGS_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be a valid combination of XrCompositionLayerSettingsFlagBitsFB values

• layerFlags must not be 0

632 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

New Functions

Issues

Version History

• Revision 1, 2022-03-08 (Grant Yang)

◦ Initial draft

12.50. XR_FB_display_refresh_rate

Name String

XR_FB_display_refresh_rate

Extension Type

Instance extension

Registered Extension Number

102

Revision

1

Extension and Version Dependencies

OpenXR 1.0

IP Status

No known IP claims.

Contributors

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

On platforms which support dynamically adjusting the display refresh rate, application developers

may request a specific display refresh rate in order to improve the overall user experience, examples

include:

• A video application may choose a display refresh rate which better matches the video content

playback rate in order to achieve smoother video frames.

• An application which can support a higher frame rate may choose to render at the higher rate to

improve the overall perceptual quality, for example, lower latency and less flicker.

This extension allows:

Chapter 12. List of Current Extensions | 633

• An application to identify what display refresh rates the session supports and the current display

refresh rate.

• An application to request a display refresh rate to indicate its preference to the runtime.

• An application to receive notification of changes to the display refresh rate which are delivered via

events.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as

indicated in the Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_EVENT_DATA_DISPLAY_REFRESH_RATE_CHANGED_FB

XrResult enumeration is extended with:

• XR_ERROR_DISPLAY_REFRESH_RATE_UNSUPPORTED_FB

New Enums

New Structures

Receiving the XrEventDataDisplayRefreshRateChangedFB event structure indicates that the display

refresh rate has changed.

The XrEventDataDisplayRefreshRateChangedFB structure is defined as:

// Provided by XR_FB_display_refresh_rate

typedef struct XrEventDataDisplayRefreshRateChangedFB {

 XrStructureType type;

 const void* next;

 float fromDisplayRefreshRate;

 float toDisplayRefreshRate;

} XrEventDataDisplayRefreshRateChangedFB;

634 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• fromDisplayRefreshRate is the previous display refresh rate.

• toDisplayRefreshRate is the new display refresh rate.

Valid Usage (Implicit)

• The XR_FB_display_refresh_rate extension must be enabled prior to using

XrEventDataDisplayRefreshRateChangedFB

• type must be XR_TYPE_EVENT_DATA_DISPLAY_REFRESH_RATE_CHANGED_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrEnumerateDisplayRefreshRatesFB function is defined as:

// Provided by XR_FB_display_refresh_rate

XrResult xrEnumerateDisplayRefreshRatesFB(

 XrSession session,

 uint32_t displayRefreshRateCapacityInput,

 uint32_t* displayRefreshRateCountOutput,

 float* displayRefreshRates);

Chapter 12. List of Current Extensions | 635

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the session that enumerates the supported display refresh rates.

• displayRefreshRateCapacityInput is the capacity of the displayRefreshRates, or 0 to retrieve

the required capacity.

• displayRefreshRateCountOutput is a pointer to the count of float displayRefreshRates written,

or a pointer to the required capacity in the case that displayRefreshRateCapacityInput is

insufficient.

• displayRefreshRates is a pointer to an array of float display refresh rates, but can be NULL if

displayRefreshRateCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

displayRefreshRates size.

xrEnumerateDisplayRefreshRatesFB enumerates the display refresh rates supported by the current

session. Display refresh rates must be in order from lowest to highest supported display refresh rates.

Runtimes must always return identical buffer contents from this enumeration for the lifetime of the

session.

Valid Usage (Implicit)

• The XR_FB_display_refresh_rate extension must be enabled prior to calling

xrEnumerateDisplayRefreshRatesFB

• session must be a valid XrSession handle

• displayRefreshRateCountOutput must be a pointer to a uint32_t value

• If displayRefreshRateCapacityInput is not 0, displayRefreshRates must be a pointer to an array

of displayRefreshRateCapacityInput float values

636 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

The xrGetDisplayRefreshRateFB function is defined as:

// Provided by XR_FB_display_refresh_rate

XrResult xrGetDisplayRefreshRateFB(

 XrSession session,

 float* displayRefreshRate);

Parameter Descriptions

• session is the XrSession to query.

• displayRefreshRate is a pointer to a float into which the current display refresh rate will be

placed.

xrGetDisplayRefreshRateFB retrieves the current display refresh rate.

Chapter 12. List of Current Extensions | 637

Valid Usage (Implicit)

• The XR_FB_display_refresh_rate extension must be enabled prior to calling

xrGetDisplayRefreshRateFB

• session must be a valid XrSession handle

• displayRefreshRate must be a pointer to a float value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The xrRequestDisplayRefreshRateFB function is defined as:

// Provided by XR_FB_display_refresh_rate

XrResult xrRequestDisplayRefreshRateFB(

 XrSession session,

 float displayRefreshRate);

Parameter Descriptions

• session is a valid XrSession handle.

• displayRefreshRate is 0.0f or a supported display refresh rate. Supported display refresh

rates are indicated by xrEnumerateDisplayRefreshRatesFB.

xrRequestDisplayRefreshRateFB provides a mechanism for an application to request the system to

638 | Chapter 12. List of Current Extensions

dynamically change the display refresh rate to the application preferred value. The runtime must

return XR_ERROR_DISPLAY_REFRESH_RATE_UNSUPPORTED_FB if displayRefreshRate is not either 0.0f or one of

the values enumerated by xrEnumerateDisplayRefreshRatesFB. A display refresh rate of 0.0f indicates

the application has no preference.

Note that this is only a request and does not guarantee the system will switch to the requested display

refresh rate.

Valid Usage (Implicit)

• The XR_FB_display_refresh_rate extension must be enabled prior to calling

xrRequestDisplayRefreshRateFB

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

• XR_ERROR_DISPLAY_REFRESH_RATE_UNSUPPORTED_FB

Issues

Changing the display refresh rate from its system default does not come without trade-offs. Increasing

the display refresh rate puts more load on the entire system and can lead to thermal degradation.

Conversely, lowering the display refresh rate can provide better thermal sustainability but at the cost

of more perceptual issues, like higher latency and flickering.

Version History

• Revision 1, 2020-10-05 (Gloria Kennickell)

Chapter 12. List of Current Extensions | 639

◦ Initial extension description

12.51. XR_FB_eye_tracking_social

Name String

XR_FB_eye_tracking_social

Extension Type

Instance extension

Registered Extension Number

203

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-07-17

IP Status

No known IP claims.

Contributors

Scott Ramsby, Meta

Dikpal Reddy, Meta

Igor Tceglevskii, Meta

12.51.1. Overview

This extension enables applications to obtain position and orientation of the user’s eyes. It enables

applications to render eyes in XR experiences.

This extension is intended to drive animation of avatar eyes. So, for that purpose, the runtimes may

filter the poses in ways that are suitable for avatar eye interaction but detrimental to other use cases.

This extension should not be used for other eye tracking purposes. For interaction,

XR_EXT_eye_gaze_interaction should be used.

Eye tracking data is sensitive personal information and is closely linked to personal privacy and

integrity. It is strongly recommended that applications that store or transfer eye tracking data always

ask the user for active and specific acceptance to do so.

If a runtime supports a permission system to control application access to the eye tracker, then the

640 | Chapter 12. List of Current Extensions

runtime must set the isValid field to XR_FALSE on the supplied XrEyeGazeFB structure until the

application has been allowed access to the eye tracker. When the application access has been allowed,

the runtime may set isValid on the supplied XrEyeGazeFB structure to XR_TRUE.

12.51.2. Inspect system capability

The XrSystemEyeTrackingPropertiesFB structure is defined as:

// Provided by XR_FB_eye_tracking_social

typedef struct XrSystemEyeTrackingPropertiesFB {

 XrStructureType type;

 void* next;

 XrBool32 supportsEyeTracking;

} XrSystemEyeTrackingPropertiesFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsEyeTracking is an XrBool32, indicating if the current system is capable of receiving eye

tracking input.

An application can inspect whether the system is capable of eye tracking input by extending the

XrSystemProperties with XrSystemEyeTrackingPropertiesFB structure when calling

xrGetSystemProperties.

If a runtime returns XR_FALSE for supportsEyeTracking, the runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateEyeTrackerFB.

Valid Usage (Implicit)

• The XR_FB_eye_tracking_social extension must be enabled prior to using

XrSystemEyeTrackingPropertiesFB

• type must be XR_TYPE_SYSTEM_EYE_TRACKING_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

Chapter 12. List of Current Extensions | 641

#valid-usage-for-structure-pointer-chains

12.51.3. Create an eye tracker handle

The XrEyeTrackerFB handle represents the resources for eye tracking.

// Provided by XR_FB_eye_tracking_social

XR_DEFINE_HANDLE(XrEyeTrackerFB)

This handle is used for getting eye gaze using xrGetEyeGazesFB function.

An eye tracker provides eye gaze directions.

An application creates an XrEyeTrackerFB handle using xrCreateEyeTrackerFB function.

// Provided by XR_FB_eye_tracking_social

XrResult xrCreateEyeTrackerFB(

 XrSession session,

 const XrEyeTrackerCreateInfoFB* createInfo,

 XrEyeTrackerFB* eyeTracker);

Parameter Descriptions

• session is an XrSession in which the eye tracker will be active.

• createInfo is the XrEyeTrackerCreateInfoFB used to specify the eye tracker.

• eyeTracker is the returned XrEyeTrackerFB handle.

If the system does not support eye tracking, the runtime must return XR_ERROR_FEATURE_UNSUPPORTED

from xrCreateEyeTrackerFB. In this case, the runtime must return XR_FALSE for

XrSystemEyeTrackingPropertiesFB::supportsEyeTracking when the function xrGetSystemProperties is

called, so that the application can avoid creating an eye tracker.

642 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_eye_tracking_social extension must be enabled prior to calling

xrCreateEyeTrackerFB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrEyeTrackerCreateInfoFB structure

• eyeTracker must be a pointer to an XrEyeTrackerFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_FEATURE_UNSUPPORTED

The XrEyeTrackerCreateInfoFB structure is defined as:

// Provided by XR_FB_eye_tracking_social

typedef struct XrEyeTrackerCreateInfoFB {

 XrStructureType type;

 const void* next;

} XrEyeTrackerCreateInfoFB;

Chapter 12. List of Current Extensions | 643

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

The XrEyeTrackerCreateInfoFB structure describes the information to create an XrEyeTrackerFB

handle.

Valid Usage (Implicit)

• The XR_FB_eye_tracking_social extension must be enabled prior to using

XrEyeTrackerCreateInfoFB

• type must be XR_TYPE_EYE_TRACKER_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

12.51.4. Destroy an eye tracker handle

xrDestroyEyeTrackerFB function releases the eyeTracker and the underlying resources when the eye

tracking experience is over.

// Provided by XR_FB_eye_tracking_social

XrResult xrDestroyEyeTrackerFB(

 XrEyeTrackerFB eyeTracker);

Parameter Descriptions

• eyeTracker is an XrEyeTrackerFB previously created by xrCreateEyeTrackerFB.

Valid Usage (Implicit)

• The XR_FB_eye_tracking_social extension must be enabled prior to calling

xrDestroyEyeTrackerFB

• eyeTracker must be a valid XrEyeTrackerFB handle

644 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Thread Safety

• Access to eyeTracker, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

12.51.5. Get eye gaze

The xrGetEyeGazesFB function is defined as:

// Provided by XR_FB_eye_tracking_social

XrResult xrGetEyeGazesFB(

 XrEyeTrackerFB eyeTracker,

 const XrEyeGazesInfoFB* gazeInfo,

 XrEyeGazesFB* eyeGazes);

Parameter Descriptions

• eyeTracker is an XrEyeTrackerFB previously created by xrCreateEyeTrackerFB.

• gazeInfo is the information to get eye gaze.

• eyeGazes is a pointer to XrEyeGazesFB receiving the returned eye poses and confidence.

The xrGetEyeGazesFB function obtains pose for a user’s eyes at a specific time and within a specific

coordinate system.

Chapter 12. List of Current Extensions | 645

Valid Usage (Implicit)

• The XR_FB_eye_tracking_social extension must be enabled prior to calling xrGetEyeGazesFB

• eyeTracker must be a valid XrEyeTrackerFB handle

• gazeInfo must be a pointer to a valid XrEyeGazesInfoFB structure

• eyeGazes must be a pointer to an XrEyeGazesFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

The XrEyeGazesInfoFB structure describes the information to get eye gaze directions.

// Provided by XR_FB_eye_tracking_social

typedef struct XrEyeGazesInfoFB {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

} XrEyeGazesInfoFB;

646 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace is an XrSpace within which the returned eye poses will be represented.

• time is an XrTime at which the eye gaze information is requested.

The application should request a time equal to the predicted display time for the rendered frame. The

system will employ appropriate modeling to provide eye gaze at this time.

Valid Usage (Implicit)

• The XR_FB_eye_tracking_social extension must be enabled prior to using XrEyeGazesInfoFB

• type must be XR_TYPE_EYE_GAZES_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

XrEyeGazesFB structure returns the state of the eye gaze directions.

// Provided by XR_FB_eye_tracking_social

typedef struct XrEyeGazesFB {

 XrStructureType type;

 void* next;

 XrEyeGazeFB gaze[XR_EYE_POSITION_COUNT_FB];

 XrTime time;

} XrEyeGazesFB;

Chapter 12. List of Current Extensions | 647

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• gaze is an array of XrEyeGazeFB receiving the returned eye gaze directions.

• time is an XrTime time at which the returned eye gaze is tracked or extrapolated to. Equals the

time for which the eye gaze was requested if the interpolation at the time was successful.

Valid Usage (Implicit)

• The XR_FB_eye_tracking_social extension must be enabled prior to using XrEyeGazesFB

• type must be XR_TYPE_EYE_GAZES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• Any given element of gaze must be a valid XrEyeGazeFB structure

XrEyeGazeFB structure describes the validity, direction, and confidence of a social eye gaze

observation.

// Provided by XR_FB_eye_tracking_social

typedef struct XrEyeGazeFB {

 XrBool32 isValid;

 XrPosef gazePose;

 float gazeConfidence;

} XrEyeGazeFB;

Member Descriptions

• isValid is an XrBool32 indicating if the returned gazePose is valid. Callers should check the

validity of pose prior to use.

• gazePose is an XrPosef describing the position and orientation of the user’s eye. The pose is

represented in the coordinate system provided by XrEyeGazesInfoFB::baseSpace.

• gazeConfidence is a float value between 0 and 1 that represents the confidence for eye pose. A

value of 0 represents no confidence in the pose returned, and a value of 1 means maximum

confidence in the returned eye pose.

648 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

If the returned isValid is true, the runtime must return gazePose and gazeConfidence.

If the returned isValid is false, it indicates either the eye tracker did not detect the eye gaze or the

application lost input focus.

The eye gaze pose is natively oriented with +Y up, +X to the right, and -Z forward and not gravity-

aligned, similar to the XR_REFERENCE_SPACE_TYPE_VIEW.

Valid Usage (Implicit)

• The XR_FB_eye_tracking_social extension must be enabled prior to using XrEyeGazeFB

The XrEyePositionFB describes which eye in the specific position of the gaze is in the XrEyeGazesFB.

// Provided by XR_FB_eye_tracking_social

typedef enum XrEyePositionFB {

 XR_EYE_POSITION_LEFT_FB = 0,

 XR_EYE_POSITION_RIGHT_FB = 1,

 XR_EYE_POSITION_COUNT_FB = 2,

 XR_EYE_POSITION_MAX_ENUM_FB = 0x7FFFFFFF

} XrEyePositionFB;

Enumerant Descriptions

• XR_EYE_POSITION_LEFT_FB  — Specifies the position of the left eye.

• XR_EYE_POSITION_RIGHT_FB  — Specifies the position of the right eye.

12.51.6. Example code for locating eye gaze

The following example code demonstrates how to locate eye gaze relative to a world space.

XrInstance instance; // previously initialized

XrSystemId systemId; // previously initialized

XrSession session; // previously initialized

XrSpace worldSpace; // previously initialized, e.g. from

 // XR_REFERENCE_SPACE_TYPE_LOCAL

XrSystemEyeTrackingPropertiesFB eyeTrackingSystemProperties{

 XR_TYPE_SYSTEM_EYE_TRACKING_PROPERTIES_FB};

XrSystemProperties systemProperties{

 XR_TYPE_SYSTEM_PROPERTIES, &eyeTrackingSystemProperties};

Chapter 12. List of Current Extensions | 649

CHK_XR(xrGetSystemProperties(instance, systemId, &systemProperties));

if (!eyeTrackingSystemProperties.supportsEyeTracking) {

 // The system does not support eye tracking.

 return;

}

// Get function pointer for xrCreateEyeTrackerFB.

PFN_xrCreateEyeTrackerFB pfnCreateEyeTrackerFB;

CHK_XR(xrGetInstanceProcAddr(instance, "xrCreateEyeTrackerFB",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnCreateEyeTrackerFB)));

// Create an eye tracker.

XrEyeTrackerFB eyeTracker{};

{

 XrEyeTrackerCreateInfoFB createInfo{XR_TYPE_EYE_TRACKER_CREATE_INFO_FB};

 CHK_XR(pfnCreateEyeTrackerFB(session, &createInfo, &eyeTracker));

}

// Allocate buffers to receive eyes pose and confidence data before frame

// the loop starts.

XrEyeGazesFB eyeGazes{XR_TYPE_EYE_GAZES_FB};

eyeGazes.next = nullptr;

// Get function pointer for xrGetEyeGazesFB.

PFN_xrGetEyeGazesFB pfnGetEyeGazesFB;

CHK_XR(xrGetInstanceProcAddr(instance, "xrGetEyeGazesFB",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnGetEyeGazesFB)));

while (1) {

 // ...

 // For every frame in frame loop

 // ...

 XrFrameState frameState; // previously returned from xrWaitFrame

 const XrTime time = frameState.predictedDisplayTime;

 XrEyeGazesInfoFB gazesInfo{XR_TYPE_EYE_GAZES_INFO_FB};

 gazesInfo.baseSpace = worldSpace;

 gazesInfo.time = time;

 CHK_XR(pfnGetEyeGazesFB(eyeTracker, &gazesInfo, &eyeGazes));

 if (eyeGazes.gaze[XR_EYE_POSITION_LEFT_FB].isValid) {

 //

 }

}

650 | Chapter 12. List of Current Extensions

New Object Types

• XrEyeTrackerFB

New Flag Types

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_EYE_TRACKER_FB

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_EYE_TRACKING_PROPERTIES_FB

• XR_TYPE_EYE_TRACKER_CREATE_INFO_FB

• XR_TYPE_EYE_GAZES_INFO_FB

• XR_TYPE_EYE_GAZES_FB

New Enums

• XrEyePositionFB

New Structures

• XrSystemEyeTrackingPropertiesFB

• XrEyeTrackerCreateInfoFB

• XrEyeGazesInfoFB

• XrEyeGazeFB

• XrEyeGazesFB

New Functions

• xrCreateEyeTrackerFB

• xrDestroyEyeTrackerFB

• xrGetEyeGazesFB

Issues

Version History

• Revision 1, 2022-07-17 (Igor Tceglevskii)

◦ Initial extension description

Chapter 12. List of Current Extensions | 651

12.52. XR_FB_face_tracking

Name String

XR_FB_face_tracking

Extension Type

Instance extension

Registered Extension Number

202

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-07-15

IP Status

No known IP claims.

Contributors

Jaebong Lee, Meta

Dikpal Reddy, Meta

Igor Tceglevskii, Meta

12.52.1. Overview

This extension enables applications to get weights of blend shapes. It also enables applications to

render facial expressions in XR experiences.

Face tracking data is sensitive personal information and is closely linked to personal privacy and

integrity. It is strongly recommended that applications storing or transferring face tracking data

always ask the user for active and specific acceptance to do so.

If a runtime supports a permission system to control application access to the face tracker, then the

runtime must set the isValid field to XR_FALSE on the supplied XrFaceExpressionStatusFB structure

until the user allows the application to access the face tracker. When the application access has been

allowed, the runtime may set isValid on the supplied XrFaceExpressionStatusFB structure to XR_TRUE.

Some permission systems may control access to the eye tracking separately from access to the face

tracking, even though the eyes are part of the face. In case the user denied tracking of the eyes, yet,

allowed tracking of the face, then the runtime must set the isEyeFollowingBlendshapesValid field to

652 | Chapter 12. List of Current Extensions

XR_FALSE on the supplied XrFaceExpressionStatusFB for indicating that eye tracking data is not

available, but at the same time may set the isValid field to XR_TRUE on the supplied

XrFaceExpressionStatusFB for indicating that another part of the face is tracked properly.

12.52.2. Inspect system capability

// Provided by XR_FB_face_tracking

typedef struct XrSystemFaceTrackingPropertiesFB {

 XrStructureType type;

 void* next;

 XrBool32 supportsFaceTracking;

} XrSystemFaceTrackingPropertiesFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsFaceTracking is an XrBool32, indicating if current system is capable of receiving face

tracking input.

An application can inspect whether the system is capable of receiving face tracking input by extending

the XrSystemProperties with XrSystemFaceTrackingPropertiesFB structure when calling

xrGetSystemProperties.

If a runtime returns XR_FALSE for supportsFaceTracking, the runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateFaceTrackerFB.

Valid Usage (Implicit)

• The XR_FB_face_tracking extension must be enabled prior to using

XrSystemFaceTrackingPropertiesFB

• type must be XR_TYPE_SYSTEM_FACE_TRACKING_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

12.52.3. Create a face tracker handle

The XrFaceTrackerFB handle represents the resources for face tracking.

Chapter 12. List of Current Extensions | 653

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_face_tracking

XR_DEFINE_HANDLE(XrFaceTrackerFB)

This handle is used to obtain blend shapes using the xrGetFaceExpressionWeightsFB function.

The xrCreateFaceTrackerFB function is defined as:

// Provided by XR_FB_face_tracking

XrResult xrCreateFaceTrackerFB(

 XrSession session,

 const XrFaceTrackerCreateInfoFB* createInfo,

 XrFaceTrackerFB* faceTracker);

Parameter Descriptions

• session is an XrSession in which the face tracker will be active.

• createInfo is the XrFaceTrackerCreateInfoFB used to specify the face tracker.

• faceTracker is the returned XrFaceTrackerFB handle.

An application can create an XrFaceTrackerFB handle using xrCreateFaceTrackerFB function.

If the system does not support face tracking, the runtime must return XR_ERROR_FEATURE_UNSUPPORTED

from xrCreateFaceTrackerFB. In this case, the runtime must return XR_FALSE for

XrSystemFaceTrackingPropertiesFB::supportsFaceTracking when the function xrGetSystemProperties is

called, so that the application can avoid creating a face tracker.

Valid Usage (Implicit)

• The XR_FB_face_tracking extension must be enabled prior to calling xrCreateFaceTrackerFB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrFaceTrackerCreateInfoFB structure

• faceTracker must be a pointer to an XrFaceTrackerFB handle

654 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_FEATURE_UNSUPPORTED

The XrFaceTrackerCreateInfoFB structure is described as follows:

// Provided by XR_FB_face_tracking

typedef struct XrFaceTrackerCreateInfoFB {

 XrStructureType type;

 const void* next;

 XrFaceExpressionSetFB faceExpressionSet;

} XrFaceTrackerCreateInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• faceExpressionSet is an XrFaceExpressionSetFB that describe the set of blend shapes to

retrieve.

The XrFaceTrackerCreateInfoFB structure describes the information to create an XrFaceTrackerFB

handle.

Chapter 12. List of Current Extensions | 655

Valid Usage (Implicit)

• The XR_FB_face_tracking extension must be enabled prior to using

XrFaceTrackerCreateInfoFB

• type must be XR_TYPE_FACE_TRACKER_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• faceExpressionSet must be a valid XrFaceExpressionSetFB value

The XrFaceExpressionSetFB enum describes the set of blend shapes of a facial expression to track

when creating an XrFaceTrackerFB.

// Provided by XR_FB_face_tracking

typedef enum XrFaceExpressionSetFB {

 XR_FACE_EXPRESSION_SET_DEFAULT_FB = 0,

 XR_FACE_EXPRESSION_SET_MAX_ENUM_FB = 0x7FFFFFFF

} XrFaceExpressionSetFB;

Enumerant Descriptions

• XR_FACE_EXPRESSION_SET_DEFAULT_FB  — indicates that the created XrFaceTrackerFB tracks the

set of blend shapes described by XrFaceExpressionFB enum, i.e. the

xrGetFaceExpressionWeightsFB function returns an array of blend shapes with the count of

XR_FACE_EXPRESSION_COUNT_FB and can be indexed using XrFaceExpressionFB.

// Provided by XR_FB_face_tracking

#define XR_FACE_EXPRESSSION_SET_DEFAULT_FB XR_FACE_EXPRESSION_SET_DEFAULT_FB

The XR_FACE_EXPRESSSION_SET_DEFAULT_FB is an alias for XR_FACE_EXPRESSION_SET_DEFAULT_FB for

backward compatibility, deprecated and should not be used.

12.52.4. Delete a face tracker handle

The xrDestroyFaceTrackerFB function releases the faceTracker and the underlying resources when

face tracking experience is over.

656 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_face_tracking

XrResult xrDestroyFaceTrackerFB(

 XrFaceTrackerFB faceTracker);

Parameter Descriptions

• faceTracker is an XrFaceTrackerFB previously created by xrCreateFaceTrackerFB.

Valid Usage (Implicit)

• The XR_FB_face_tracking extension must be enabled prior to calling xrDestroyFaceTrackerFB

• faceTracker must be a valid XrFaceTrackerFB handle

Thread Safety

• Access to faceTracker, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

12.52.5. Obtain facial expressions

The xrGetFaceExpressionWeightsFB function return blend shapes of facial expression at a given time.

// Provided by XR_FB_face_tracking

XrResult xrGetFaceExpressionWeightsFB(

 XrFaceTrackerFB faceTracker,

 const XrFaceExpressionInfoFB* expressionInfo,

 XrFaceExpressionWeightsFB* expressionWeights);

Chapter 12. List of Current Extensions | 657

Parameter Descriptions

• faceTracker is an XrFaceTrackerFB previously created by xrCreateFaceTrackerFB.

• expressionInfo is a pointer to XrFaceExpressionInfoFB describing information to obtain face

expression.

• expressionWeights is a pointer to XrFaceExpressionWeightsFB receiving the returned facial

expression weights.

Valid Usage (Implicit)

• The XR_FB_face_tracking extension must be enabled prior to calling

xrGetFaceExpressionWeightsFB

• faceTracker must be a valid XrFaceTrackerFB handle

• expressionInfo must be a pointer to a valid XrFaceExpressionInfoFB structure

• expressionWeights must be a pointer to an XrFaceExpressionWeightsFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

The XrFaceExpressionInfoFB structure describes the information to obtain facial expression.

658 | Chapter 12. List of Current Extensions

// Provided by XR_FB_face_tracking

typedef struct XrFaceExpressionInfoFB {

 XrStructureType type;

 const void* next;

 XrTime time;

} XrFaceExpressionInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• time is an XrTime at which the facial expression weights are requested.

Callers should request a time equal to the predicted display time for the rendered frame. The system

will employ appropriate modeling to provide expressions for this time.

Valid Usage (Implicit)

• The XR_FB_face_tracking extension must be enabled prior to using XrFaceExpressionInfoFB

• type must be XR_TYPE_FACE_EXPRESSION_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

XrFaceExpressionWeightsFB structure returns the facial expression.

// Provided by XR_FB_face_tracking

typedef struct XrFaceExpressionWeightsFB {

 XrStructureType type;

 void* next;

 uint32_t weightCount;

 float* weights;

 uint32_t confidenceCount;

 float* confidences;

 XrFaceExpressionStatusFB status;

 XrTime time;

} XrFaceExpressionWeightsFB;

Chapter 12. List of Current Extensions | 659

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• weightCount is a uint32_t describing the count of elements in weights array.

• weights is a pointer to an application-allocated array of float that will be filled with weights

of facial expression blend shapes.

• confidenceCount is a uint32_t describing the count of elements in confidences array.

• confidences is a pointer to an application-allocated array of float that will be filled with

confidence of tracking specific parts of a face.

• status is the XrFaceExpressionStatusFB of validity status of the expression weights.

• time is an XrTime time at which the returned expression weights are tracked or extrapolated

to. Equals the time at which the expression weights were requested if the extrapolating at the

time was successful.

The runtime must return XR_ERROR_VALIDATION_FAILURE if weightCount is not equal to the number of

blend shapes defined by the XrFaceExpressionSetFB used to create the XrFaceTrackerFB.

The runtime must return XR_ERROR_VALIDATION_FAILURE if confidenceCount is not equal to the number of

confidence areas defined by the XrFaceExpressionSetFB used to create the XrFaceTrackerFB.

The runtime must return weights representing the weights of blend shapes of current facial

expression.

The runtime must update the weights array ordered so that the application can index elements using

the corresponding facial expression enum (e.g. XrFaceExpressionFB) as described by

XrFaceExpressionSetFB when creating the XrFaceTrackerFB. For example, when the XrFaceTrackerFB

is created with XR_FACE_EXPRESSION_SET_DEFAULT_FB, the application sets the weightCount to

XR_FACE_EXPRESSION_COUNT_FB, and the runtime must fill the weights array ordered so that it can be

indexed by the XrFaceExpressionFB enum.

The runtime must update the confidences array ordered so that the application can index elements

using the corresponding confidence area enum (e.g. XrFaceConfidenceFB) as described by

XrFaceExpressionSetFB when creating the XrFaceTrackerFB. For example, when the XrFaceTrackerFB

is created with XR_FACE_EXPRESSION_SET_DEFAULT_FB, the application sets the confidenceCount to

XR_FACE_CONFIDENCE_COUNT_FB, and the runtime must fill the confidences array ordered so that it can be

indexed by the XrFaceConfidenceFB enum.

660 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_face_tracking extension must be enabled prior to using

XrFaceExpressionWeightsFB

• type must be XR_TYPE_FACE_EXPRESSION_WEIGHTS_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• weights must be a pointer to an array of weightCount float values

• confidences must be a pointer to an array of confidenceCount float values

• status must be a valid XrFaceExpressionStatusFB structure

• The weightCount parameter must be greater than 0

• The confidenceCount parameter must be greater than 0

XrFaceExpressionStatusFB structure describes the validity of facial expression weights.

// Provided by XR_FB_face_tracking

typedef struct XrFaceExpressionStatusFB {

 XrBool32 isValid;

 XrBool32 isEyeFollowingBlendshapesValid;

} XrFaceExpressionStatusFB;

Member Descriptions

• isValid is an XrBool32 which indicates that the tracked expression weights are valid.

• isEyeFollowingBlendshapesValid is an XrBool32 which indicates if the 8 expression weights

with prefix XR_FACE_EXPRESSION_EYES_LOOK_* are valid.

If the returned isValid is XR_FALSE, then it indicates that the face tracker failed to track or lost track of

the face, or the application lost focus, or the consent for face tracking was denied.

If the returned isValid is XR_TRUE, the runtime must return all weights (or all weights except eyes

related weights, see isEyeFollowingBlendshapesValid).

If the returned isEyeFollowingBlendshapesValid is XR_FALSE, then it indicates that the eye tracking

driving blendshapes with prefix XR_FACE_EXPRESSION_EYES_LOOK_* lost track or the consent for eye

tracking was denied.

Chapter 12. List of Current Extensions | 661

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_face_tracking extension must be enabled prior to using XrFaceExpressionStatusFB

12.52.6. Example code for obtaining facial expression

The following example code demonstrates how to obtain all weights for facial expression blend shapes.

XrInstance instance; // previously initialized

XrSystemId systemId; // previously initialized

XrSession session; // previously initialized

// Confirm face tracking system support.

XrSystemFaceTrackingPropertiesFB faceTrackingSystemProperties{

 XR_TYPE_SYSTEM_FACE_TRACKING_PROPERTIES_FB};

XrSystemProperties systemProperties{XR_TYPE_SYSTEM_PROPERTIES,

 &faceTrackingSystemProperties};

CHK_XR(xrGetSystemProperties(instance, systemId, &systemProperties));

if (!faceTrackingSystemProperties.supportsFaceTracking) {

 // The system does not support face tracking

 return;

}

// Get function pointer for xrCreateFaceTrackerFB.

PFN_xrCreateFaceTrackerFB pfnCreateFaceTrackerFB;

CHK_XR(xrGetInstanceProcAddr(instance, "xrCreateFaceTrackerFB",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnCreateFaceTrackerFB)));

// Create a face tracker for default set of facial expressions.

XrFaceTrackerFB faceTracker = {};

{

 XrFaceTrackerCreateInfoFB createInfo{XR_TYPE_FACE_TRACKER_CREATE_INFO_FB};

 createInfo.faceExpressionSet = XR_FACE_EXPRESSION_SET_DEFAULT_FB;

 CHK_XR(pfnCreateFaceTrackerFB(session, &createInfo, &faceTracker));

}

// Allocate buffers to receive facial expression data before frame

// loop starts.

float weights[XR_FACE_EXPRESSION_COUNT_FB];

float confidences[XR_FACE_CONFIDENCE_COUNT_FB];

XrFaceExpressionWeightsFB expressionWeights{XR_TYPE_FACE_EXPRESSION_WEIGHTS_FB};

expressionWeights.weightCount = XR_FACE_EXPRESSION_COUNT_FB;

expressionWeights.weights = weights;

662 | Chapter 12. List of Current Extensions

expressionWeights.confidenceCount = XR_FACE_CONFIDENCE_COUNT_FB;

expressionWeights.confidences = confidences;

// Get function pointer for xrGetFaceExpressionWeightsFB.

PFN_xrGetFaceExpressionWeightsFB pfnGetFaceExpressionWeights;

CHK_XR(xrGetInstanceProcAddr(instance, "xrGetFaceExpressionWeightsFB",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnGetFaceExpressionWeights)));

while (1) {

 // ...

 // For every frame in the frame loop

 // ...

 XrFrameState frameState; // previously returned from xrWaitFrame

 const XrTime time = frameState.predictedDisplayTime;

 XrFaceExpressionInfoFB expressionInfo{XR_TYPE_FACE_EXPRESSION_INFO_FB};

 expressionInfo.time = time;

 CHK_XR(pfnGetFaceExpressionWeights(faceTracker, &expressionInfo,

&expressionWeights));

 if (expressionWeights.status.isValid) {

 for (uint32_t i = 0; i < XR_FACE_EXPRESSION_COUNT_FB; ++i) {

 // weights[i] contains a weight of specific blend shape

 }

 }

}

12.52.7. Conventions of blend shapes

This extension defines 63 blend shapes for tracking facial expressions.

// Provided by XR_FB_face_tracking

typedef enum XrFaceExpressionFB {

 XR_FACE_EXPRESSION_BROW_LOWERER_L_FB = 0,

 XR_FACE_EXPRESSION_BROW_LOWERER_R_FB = 1,

 XR_FACE_EXPRESSION_CHEEK_PUFF_L_FB = 2,

 XR_FACE_EXPRESSION_CHEEK_PUFF_R_FB = 3,

 XR_FACE_EXPRESSION_CHEEK_RAISER_L_FB = 4,

 XR_FACE_EXPRESSION_CHEEK_RAISER_R_FB = 5,

 XR_FACE_EXPRESSION_CHEEK_SUCK_L_FB = 6,

 XR_FACE_EXPRESSION_CHEEK_SUCK_R_FB = 7,

 XR_FACE_EXPRESSION_CHIN_RAISER_B_FB = 8,

 XR_FACE_EXPRESSION_CHIN_RAISER_T_FB = 9,

Chapter 12. List of Current Extensions | 663

 XR_FACE_EXPRESSION_DIMPLER_L_FB = 10,

 XR_FACE_EXPRESSION_DIMPLER_R_FB = 11,

 XR_FACE_EXPRESSION_EYES_CLOSED_L_FB = 12,

 XR_FACE_EXPRESSION_EYES_CLOSED_R_FB = 13,

 XR_FACE_EXPRESSION_EYES_LOOK_DOWN_L_FB = 14,

 XR_FACE_EXPRESSION_EYES_LOOK_DOWN_R_FB = 15,

 XR_FACE_EXPRESSION_EYES_LOOK_LEFT_L_FB = 16,

 XR_FACE_EXPRESSION_EYES_LOOK_LEFT_R_FB = 17,

 XR_FACE_EXPRESSION_EYES_LOOK_RIGHT_L_FB = 18,

 XR_FACE_EXPRESSION_EYES_LOOK_RIGHT_R_FB = 19,

 XR_FACE_EXPRESSION_EYES_LOOK_UP_L_FB = 20,

 XR_FACE_EXPRESSION_EYES_LOOK_UP_R_FB = 21,

 XR_FACE_EXPRESSION_INNER_BROW_RAISER_L_FB = 22,

 XR_FACE_EXPRESSION_INNER_BROW_RAISER_R_FB = 23,

 XR_FACE_EXPRESSION_JAW_DROP_FB = 24,

 XR_FACE_EXPRESSION_JAW_SIDEWAYS_LEFT_FB = 25,

 XR_FACE_EXPRESSION_JAW_SIDEWAYS_RIGHT_FB = 26,

 XR_FACE_EXPRESSION_JAW_THRUST_FB = 27,

 XR_FACE_EXPRESSION_LID_TIGHTENER_L_FB = 28,

 XR_FACE_EXPRESSION_LID_TIGHTENER_R_FB = 29,

 XR_FACE_EXPRESSION_LIP_CORNER_DEPRESSOR_L_FB = 30,

 XR_FACE_EXPRESSION_LIP_CORNER_DEPRESSOR_R_FB = 31,

 XR_FACE_EXPRESSION_LIP_CORNER_PULLER_L_FB = 32,

 XR_FACE_EXPRESSION_LIP_CORNER_PULLER_R_FB = 33,

 XR_FACE_EXPRESSION_LIP_FUNNELER_LB_FB = 34,

 XR_FACE_EXPRESSION_LIP_FUNNELER_LT_FB = 35,

 XR_FACE_EXPRESSION_LIP_FUNNELER_RB_FB = 36,

 XR_FACE_EXPRESSION_LIP_FUNNELER_RT_FB = 37,

 XR_FACE_EXPRESSION_LIP_PRESSOR_L_FB = 38,

 XR_FACE_EXPRESSION_LIP_PRESSOR_R_FB = 39,

 XR_FACE_EXPRESSION_LIP_PUCKER_L_FB = 40,

 XR_FACE_EXPRESSION_LIP_PUCKER_R_FB = 41,

 XR_FACE_EXPRESSION_LIP_STRETCHER_L_FB = 42,

 XR_FACE_EXPRESSION_LIP_STRETCHER_R_FB = 43,

 XR_FACE_EXPRESSION_LIP_SUCK_LB_FB = 44,

 XR_FACE_EXPRESSION_LIP_SUCK_LT_FB = 45,

 XR_FACE_EXPRESSION_LIP_SUCK_RB_FB = 46,

 XR_FACE_EXPRESSION_LIP_SUCK_RT_FB = 47,

 XR_FACE_EXPRESSION_LIP_TIGHTENER_L_FB = 48,

 XR_FACE_EXPRESSION_LIP_TIGHTENER_R_FB = 49,

 XR_FACE_EXPRESSION_LIPS_TOWARD_FB = 50,

 XR_FACE_EXPRESSION_LOWER_LIP_DEPRESSOR_L_FB = 51,

 XR_FACE_EXPRESSION_LOWER_LIP_DEPRESSOR_R_FB = 52,

 XR_FACE_EXPRESSION_MOUTH_LEFT_FB = 53,

 XR_FACE_EXPRESSION_MOUTH_RIGHT_FB = 54,

 XR_FACE_EXPRESSION_NOSE_WRINKLER_L_FB = 55,

 XR_FACE_EXPRESSION_NOSE_WRINKLER_R_FB = 56,

 XR_FACE_EXPRESSION_OUTER_BROW_RAISER_L_FB = 57,

664 | Chapter 12. List of Current Extensions

 XR_FACE_EXPRESSION_OUTER_BROW_RAISER_R_FB = 58,

 XR_FACE_EXPRESSION_UPPER_LID_RAISER_L_FB = 59,

 XR_FACE_EXPRESSION_UPPER_LID_RAISER_R_FB = 60,

 XR_FACE_EXPRESSION_UPPER_LIP_RAISER_L_FB = 61,

 XR_FACE_EXPRESSION_UPPER_LIP_RAISER_R_FB = 62,

 XR_FACE_EXPRESSION_COUNT_FB = 63,

 XR_FACE_EXPRESSION_MAX_ENUM_FB = 0x7FFFFFFF

} XrFaceExpressionFB;

12.52.8. Conventions of confidence areas

This extension defines two separate areas of confidence.

// Provided by XR_FB_face_tracking

typedef enum XrFaceConfidenceFB {

 XR_FACE_CONFIDENCE_LOWER_FACE_FB = 0,

 XR_FACE_CONFIDENCE_UPPER_FACE_FB = 1,

 XR_FACE_CONFIDENCE_COUNT_FB = 2,

 XR_FACE_CONFIDENCE_MAX_ENUM_FB = 0x7FFFFFFF

} XrFaceConfidenceFB;

The "upper face" area represents everything above the upper lip, including eye, eyebrows + cheek, and

nose. The "lower face" area represents everything under eyes, including mouth, chin + cheek, and

nose. Cheek and nose areas contribute to both "upper face" and "lower face" areas.

New Object Types

• XrFaceTrackerFB

New Flag Types

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_FACE_TRACKER_FB

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_FACE_TRACKING_PROPERTIES_FB

• XR_TYPE_FACE_TRACKER_CREATE_INFO_FB

• XR_TYPE_FACE_EXPRESSION_INFO_FB

• XR_TYPE_FACE_EXPRESSION_WEIGHTS_FB

Chapter 12. List of Current Extensions | 665

New Enums

• XrFaceExpressionFB

• XrFaceExpressionSetFB

• XrFaceConfidenceFB

New Structures

• XrSystemFaceTrackingPropertiesFB

• XrFaceTrackerCreateInfoFB

• XrFaceExpressionInfoFB

• XrFaceExpressionStatusFB

• XrFaceExpressionWeightsFB

New Functions

• xrCreateFaceTrackerFB

• xrDestroyFaceTrackerFB

• xrGetFaceExpressionWeightsFB

Issues

Version History

• Revision 1, 2022-07-15 (Igor Tceglevskii)

◦ Initial extension description

12.53. XR_FB_face_tracking2

Name String

XR_FB_face_tracking2

Extension Type

Instance extension

Registered Extension Number

288

Revision

1

Extension and Version Dependencies

OpenXR 1.0

666 | Chapter 12. List of Current Extensions

Last Modified Date

2023-10-06

IP Status

No known IP claims.

Contributors

Jaebong Lee, Meta

Dikpal Reddy, Meta

Igor Tceglevskii, Meta

Bill Orr, Meta

Scott Ramsby, Meta

12.53.1. Overview

This extension enables applications to get weights of blend shapes. It also enables applications to

render facial expressions in XR experiences.

It is recommended to choose this extension over the XR_FB_face_tracking extension, if it is supported by

the runtime, because this extension provides the following two additional capabilities to the

application:

• This extension provides additional seven blend shapes that estimate tongue movement.

• This extension allows an application and the runtime to communicate about the data sources that

are used to estimate facial expression in a cooperative manner.

Face tracking data is sensitive personal information and is closely linked to personal privacy and

integrity. Applications storing or transferring face tracking data should always ask the user for active

and specific acceptance to do so.

If the runtime supports a permission system to control application access to the face tracker, then the

runtime must set the isValid field to XR_FALSE on the supplied XrFaceExpressionWeights2FB structure

until the user allows the application to access the face tracker. When the application access has been

allowed, the runtime should set isValid on the supplied XrFaceExpressionWeights2FB structure to

XR_TRUE.

Some permission systems may control access to the eye tracking separately from access to the face

tracking, even though the eyes are part of the face. In case the user denied tracking of the eyes, yet,

allowed tracking of the face, then the runtime must set the isEyeFollowingBlendshapesValid field to

XR_FALSE on the supplied XrFaceExpressionWeights2FB for indicating that eye tracking data is not

available, but at the same time may set the isValid field to XR_TRUE on the supplied

XrFaceExpressionWeights2FB for indicating that another part of the face is tracked properly.

Chapter 12. List of Current Extensions | 667

12.53.2. Inspect system capability

// Provided by XR_FB_face_tracking2

typedef struct XrSystemFaceTrackingProperties2FB {

 XrStructureType type;

 void* next;

 XrBool32 supportsVisualFaceTracking;

 XrBool32 supportsAudioFaceTracking;

} XrSystemFaceTrackingProperties2FB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsVisualFaceTracking is an XrBool32, indicating if the current system is capable of

receiving face tracking input that is estimated based on visual data source.

• supportsAudioFaceTracking is an XrBool32, indicating if the current system is capable of

receiving face tracking input that is estimated based on audio data source.

An application can inspect whether the system is capable of receiving face tracking input by extending

the XrSystemProperties with XrSystemFaceTrackingProperties2FB structure when calling

xrGetSystemProperties.

If an application calls xrCreateFaceTracker2FB only with unsupported XrFaceTrackerCreateInfo2FB

::requestedDataSources, the runtime must return XR_ERROR_FEATURE_UNSUPPORTED from

xrCreateFaceTracker2FB. For example, if an application calls xrCreateFaceTracker2FB only with

XR_FACE_TRACKING_DATA_SOURCE2_AUDIO_FB in XrFaceTrackerCreateInfo2FB::requestedDataSources when

the runtime returns XR_FALSE for supportsAudioFaceTracking, the runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateFaceTracker2FB.

Valid Usage (Implicit)

• The XR_FB_face_tracking2 extension must be enabled prior to using

XrSystemFaceTrackingProperties2FB

• type must be XR_TYPE_SYSTEM_FACE_TRACKING_PROPERTIES2_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

668 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

12.53.3. Create a face tracker handle

The XrFaceTracker2FB handle represents the resources for face tracking.

// Provided by XR_FB_face_tracking2

XR_DEFINE_HANDLE(XrFaceTracker2FB)

This handle is used to obtain blend shapes using the xrGetFaceExpressionWeights2FB function.

The xrCreateFaceTracker2FB function is defined as:

// Provided by XR_FB_face_tracking2

XrResult xrCreateFaceTracker2FB(

 XrSession session,

 const XrFaceTrackerCreateInfo2FB* createInfo,

 XrFaceTracker2FB* faceTracker);

Parameter Descriptions

• session is an XrSession in which the face tracker will be active.

• createInfo is the XrFaceTrackerCreateInfo2FB used to specify the face tracker.

• faceTracker is the returned XrFaceTracker2FB handle.

An application can create an XrFaceTracker2FB handle using xrCreateFaceTracker2FB function.

If the system does not support face tracking, the runtime must return XR_ERROR_FEATURE_UNSUPPORTED

from xrCreateFaceTracker2FB. In this case, the runtime must return XR_FALSE for both

XrSystemFaceTrackingProperties2FB::supportsVisualFaceTracking and

XrSystemFaceTrackingProperties2FB::supportsAudioFaceTracking when the function

xrGetSystemProperties is called, so that the application can avoid creating a face tracker.

Chapter 12. List of Current Extensions | 669

Valid Usage (Implicit)

• The XR_FB_face_tracking2 extension must be enabled prior to calling

xrCreateFaceTracker2FB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrFaceTrackerCreateInfo2FB structure

• faceTracker must be a pointer to an XrFaceTracker2FB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_FEATURE_UNSUPPORTED

The XrFaceTrackerCreateInfo2FB structure is described as follows:

// Provided by XR_FB_face_tracking2

typedef struct XrFaceTrackerCreateInfo2FB {

 XrStructureType type;

 const void* next;

 XrFaceExpressionSet2FB faceExpressionSet;

 uint32_t requestedDataSourceCount;

 XrFaceTrackingDataSource2FB* requestedDataSources;

} XrFaceTrackerCreateInfo2FB;

670 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• faceExpressionSet is an XrFaceExpressionSet2FB that describes the set of blend shapes to

retrieve.

• requestedDataSourceCount is the number of elements in the requestedDataSources array.

• requestedDataSources is an array of XrFaceTrackingDataSource2FB that the application

accepts. The order of values in the array has no significance.

The XrFaceTrackerCreateInfo2FB structure describes the information to create an XrFaceTracker2FB

handle.

Runtimes may support a variety of data sources for estimations of facial expression, and some

runtimes and devices may use data from multiple data sources. The application tells the runtime all

data sources that the runtime may use to provide facial expressions for the application.

Because the device setting may change during a running session, the runtime may return a valid

XrFaceTracker2FB handle even if the device is unable to estimate facial expression using the data

sources requested by the application’s call to xrCreateFaceTracker2FB. The runtime must instead

return XR_ERROR_FEATURE_UNSUPPORTED from xrCreateFaceTracker2FB, if for example the runtime

believes it will never be able to satisfy the request.

If requestedDataSourceCount is 0, the runtime may choose any supported data source, preferably one

that is more expressive than the others.

If any value in requestedDataSources is duplicated the runtime must return

XR_ERROR_VALIDATION_FAILURE from the call to xrCreateFaceTracker2FB.

Valid Usage (Implicit)

• The XR_FB_face_tracking2 extension must be enabled prior to using

XrFaceTrackerCreateInfo2FB

• type must be XR_TYPE_FACE_TRACKER_CREATE_INFO2_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• faceExpressionSet must be a valid XrFaceExpressionSet2FB value

• If requestedDataSourceCount is not 0, requestedDataSources must be a pointer to an array of

requestedDataSourceCount XrFaceTrackingDataSource2FB values

Chapter 12. List of Current Extensions | 671

#valid-usage-for-structure-pointer-chains

The XrFaceExpressionSet2FB enum describes the set of blend shapes of a facial expression to track

when creating an XrFaceTracker2FB.

// Provided by XR_FB_face_tracking2

typedef enum XrFaceExpressionSet2FB {

 XR_FACE_EXPRESSION_SET2_DEFAULT_FB = 0,

 XR_FACE_EXPRESSION_SET_2FB_MAX_ENUM_FB = 0x7FFFFFFF

} XrFaceExpressionSet2FB;

Enumerant Descriptions

• XR_FACE_EXPRESSION_SET2_DEFAULT_FB  — indicates that the created XrFaceTracker2FB tracks

the set of blend shapes described by XrFaceExpression2FB enum, i.e. the

xrGetFaceExpressionWeights2FB function returns an array of blend shapes with the count of

XR_FACE_EXPRESSION2_COUNT_FB and can be indexed using XrFaceExpression2FB.

The XrFaceTrackingDataSource2FB enumeration is defined as:

// Provided by XR_FB_face_tracking2

typedef enum XrFaceTrackingDataSource2FB {

 XR_FACE_TRACKING_DATA_SOURCE2_VISUAL_FB = 0,

 XR_FACE_TRACKING_DATA_SOURCE2_AUDIO_FB = 1,

 XR_FACE_TRACKING_DATA_SOURCE_2FB_MAX_ENUM_FB = 0x7FFFFFFF

} XrFaceTrackingDataSource2FB;

Enumerant Descriptions

• XR_FACE_TRACKING_DATA_SOURCE2_VISUAL_FB - This value indicates that the face tracking data

source supports using visual data to estimate facial expression. The runtime may also use

audio to further improve the quality of the tracking.

• XR_FACE_TRACKING_DATA_SOURCE2_AUDIO_FB - This value indicates that the face tracking data

source supports using audio data to estimate facial expression. The runtime must not use

visual data for this data source.

12.53.4. Delete a face tracker handle

The xrDestroyFaceTracker2FB function is defined as:

672 | Chapter 12. List of Current Extensions

// Provided by XR_FB_face_tracking2

XrResult xrDestroyFaceTracker2FB(

 XrFaceTracker2FB faceTracker);

Parameter Descriptions

• faceTracker is an XrFaceTracker2FB previously created by xrCreateFaceTracker2FB.

The xrDestroyFaceTracker2FB function releases the faceTracker and the underlying resources when

face tracking experience is over.

Valid Usage (Implicit)

• The XR_FB_face_tracking2 extension must be enabled prior to calling

xrDestroyFaceTracker2FB

• faceTracker must be a valid XrFaceTracker2FB handle

Thread Safety

• Access to faceTracker, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

12.53.5. Obtain facial expressions

The xrGetFaceExpressionWeights2FB function is defined as:

Chapter 12. List of Current Extensions | 673

// Provided by XR_FB_face_tracking2

XrResult xrGetFaceExpressionWeights2FB(

 XrFaceTracker2FB faceTracker,

 const XrFaceExpressionInfo2FB* expressionInfo,

 XrFaceExpressionWeights2FB* expressionWeights);

Parameter Descriptions

• faceTracker is an XrFaceTracker2FB previously created by xrCreateFaceTracker2FB.

• expressionInfo is a pointer to XrFaceExpressionInfo2FB describing information to obtain face

expression.

• expressionWeights is a pointer to XrFaceExpressionWeights2FB receiving the returned facial

expression weights.

The xrGetFaceExpressionWeights2FB function return blend shapes of facial expression at a given time.

Valid Usage (Implicit)

• The XR_FB_face_tracking2 extension must be enabled prior to calling

xrGetFaceExpressionWeights2FB

• faceTracker must be a valid XrFaceTracker2FB handle

• expressionInfo must be a pointer to a valid XrFaceExpressionInfo2FB structure

• expressionWeights must be a pointer to an XrFaceExpressionWeights2FB structure

674 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

The XrFaceExpressionInfo2FB structure is defined as:

// Provided by XR_FB_face_tracking2

typedef struct XrFaceExpressionInfo2FB {

 XrStructureType type;

 const void* next;

 XrTime time;

} XrFaceExpressionInfo2FB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• time is an XrTime at which the facial expression weights are requested.

The XrFaceExpressionInfo2FB structure describes the information to obtain facial expression. The

application should pass a time equal to the predicted display time for the rendered frame. The system

must employ appropriate modeling to provide expressions for this time.

Chapter 12. List of Current Extensions | 675

Valid Usage (Implicit)

• The XR_FB_face_tracking2 extension must be enabled prior to using XrFaceExpressionInfo2FB

• type must be XR_TYPE_FACE_EXPRESSION_INFO2_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrFaceExpressionWeights2FB structure is defined as:

// Provided by XR_FB_face_tracking2

typedef struct XrFaceExpressionWeights2FB {

 XrStructureType type;

 void* next;

 uint32_t weightCount;

 float* weights;

 uint32_t confidenceCount;

 float* confidences;

 XrBool32 isValid;

 XrBool32 isEyeFollowingBlendshapesValid;

 XrFaceTrackingDataSource2FB dataSource;

 XrTime time;

} XrFaceExpressionWeights2FB;

676 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• weightCount is a uint32_t describing the count of elements in weights array.

• weights is a pointer to an application-allocated array of float that will be filled with weights

of facial expression blend shapes.

• confidenceCount is a uint32_t describing the count of elements in confidences array.

• confidences is a pointer to an application-allocated array of float that will be filled with

confidence of tracking specific parts of a face.

• isValid is an XrBool32 which indicates that the tracked expression weights are valid.

• isEyeFollowingBlendshapesValid is an XrBool32 which indicates if the 8 expression weights

with prefix XR_FACE_EXPRESSION2_EYES_LOOK_* are valid.

• dataSource is an XrFaceTrackingDataSource2FB which indicates the data source that was

used to estimate the facial expression.

• time is an XrTime time at which the returned expression weights are tracked or extrapolated

to. Equals the time at which the expression weights were requested if the extrapolating at the

time was successful.

XrFaceExpressionWeights2FB structure returns the facial expression.

The runtime must return XR_ERROR_VALIDATION_FAILURE if weightCount is not equal to the number of

blend shapes defined by the XrFaceExpressionSet2FB used to create the XrFaceTracker2FB.

The runtime must return XR_ERROR_VALIDATION_FAILURE if confidenceCount is not equal to the number of

confidence areas defined by the XrFaceExpressionSet2FB used to create the XrFaceTracker2FB.

The runtime must return weights representing the weights of blend shapes of current facial

expression.

The runtime must update the weights array ordered so that the application can index elements using

the corresponding facial expression enum (e.g. XrFaceExpression2FB) as described by

XrFaceExpressionSet2FB when creating the XrFaceTracker2FB. For example, when the

XrFaceTracker2FB is created with XR_FACE_EXPRESSION_SET2_DEFAULT_FB, the application sets the

weightCount to XR_FACE_EXPRESSION2_COUNT_FB, and the runtime must fill the weights array ordered so

that it can be indexed by the XrFaceExpression2FB enum.

The runtime must update the confidences array ordered so that the application can index elements

using the corresponding confidence area enum (e.g. XrFaceConfidence2FB) as described by

XrFaceExpressionSet2FB when creating the XrFaceTracker2FB. For example, when the

Chapter 12. List of Current Extensions | 677

XrFaceTracker2FB is created with XR_FACE_EXPRESSION_SET2_DEFAULT_FB, the application sets the

confidenceCount to XR_FACE_CONFIDENCE2_COUNT_FB, and the runtime must fill the confidences array

ordered so that it can be indexed by the XrFaceConfidence2FB enum.

The runtime must set isValid to XR_FALSE and it must also set all elements of weights to zero, if one of

the following is true:

• the face tracker failed to track or lost track of the face

• the application lost focus

• the consent for face tracking was denied

• the runtime is unable to estimate facial expression from the data sources specified when

xrCreateFaceTracker2FB function was called

If the returned isValid is XR_TRUE, the runtime must return all weights (or all weights except eyes

related weights, see isEyeFollowingBlendshapesValid).

The runtime must set isEyeFollowingBlendshapesValid to XR_FALSE and it must also set 8 expression

weights with prefix XR_FACE_EXPRESSION2_EYES_LOOK_* to zero, if one of the following is true:

• the eye tracking driving blendshapes with prefix XR_FACE_EXPRESSION2_EYES_LOOK_* lost track

• the consent for eye tracking was denied

Valid Usage (Implicit)

• The XR_FB_face_tracking2 extension must be enabled prior to using

XrFaceExpressionWeights2FB

• type must be XR_TYPE_FACE_EXPRESSION_WEIGHTS2_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• weights must be a pointer to an array of weightCount float values

• confidences must be a pointer to an array of confidenceCount float values

• dataSource must be a valid XrFaceTrackingDataSource2FB value

• The weightCount parameter must be greater than 0

• The confidenceCount parameter must be greater than 0

12.53.6. Example code for obtaining facial expression

The following example code demonstrates how to obtain all weights for facial expression blend shapes.

XrInstance instance; // previously initialized

XrSystemId systemId; // previously initialized

678 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

XrSession session; // previously initialized

// Confirm face tracking system support.

XrSystemFaceTrackingProperties2FB faceTrackingSystemProperties{

 XR_TYPE_SYSTEM_FACE_TRACKING_PROPERTIES2_FB};

XrSystemProperties systemProperties{XR_TYPE_SYSTEM_PROPERTIES,

 &faceTrackingSystemProperties};

CHK_XR(xrGetSystemProperties(instance, systemId, &systemProperties));

if (!faceTrackingSystemProperties.supportsVisualFaceTracking &&

 !faceTrackingSystemProperties.supportsAudioFaceTracking) {

 // The system does not support face tracking

 return;

}

// Get function pointer for xrCreateFaceTracker2FB.

PFN_xrCreateFaceTracker2FB pfnCreateFaceTracker2FB;

CHK_XR(xrGetInstanceProcAddr(instance, "xrCreateFaceTracker2FB",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnCreateFaceTracker2FB)));

// Create a face tracker for default set of facial expressions.

XrFaceTracker2FB faceTracker = {};

{

 XrFaceTrackerCreateInfo2FB createInfo{XR_TYPE_FACE_TRACKER_CREATE_INFO2_FB};

 createInfo.faceExpressionSet = XR_FACE_EXPRESSION_SET2_DEFAULT_FB;

 // This tells the runtime that the application can take

 // facial expression from any of two data sources.

 createInfo.requestedDataSourceCount = 2;

 XrFaceTrackingDataSource2FB dataSources[2] = {

 XR_FACE_TRACKING_DATA_SOURCE2_VISUAL_FB,

 XR_FACE_TRACKING_DATA_SOURCE2_AUDIO_FB};

 createInfo.requestedDataSources = dataSources;

 CHK_XR(pfnCreateFaceTracker2FB(session, &createInfo, &faceTracker));

}

// Allocate buffers to receive facial expression data before frame

// loop starts.

float weights[XR_FACE_EXPRESSION2_COUNT_FB];

float confidences[XR_FACE_CONFIDENCE2_COUNT_FB];

XrFaceExpressionWeights2FB expressionWeights{XR_TYPE_FACE_EXPRESSION_WEIGHTS2_FB};

expressionWeights.weightCount = XR_FACE_EXPRESSION2_COUNT_FB;

expressionWeights.weights = weights;

expressionWeights.confidenceCount = XR_FACE_CONFIDENCE2_COUNT_FB;

expressionWeights.confidences = confidences;

// Get function pointer for xrGetFaceExpressionWeights2FB.

PFN_xrGetFaceExpressionWeights2FB pfnGetFaceExpressionWeights;

Chapter 12. List of Current Extensions | 679

CHK_XR(xrGetInstanceProcAddr(instance, "xrGetFaceExpressionWeights2FB",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnGetFaceExpressionWeights)));

while (1) {

 // ...

 // For every frame in the frame loop

 // ...

 XrFrameState frameState; // previously returned from xrWaitFrame

 const XrTime time = frameState.predictedDisplayTime;

 XrFaceExpressionInfo2FB expressionInfo{XR_TYPE_FACE_EXPRESSION_INFO2_FB};

 expressionInfo.time = time;

 CHK_XR(pfnGetFaceExpressionWeights(faceTracker, &expressionInfo,

&expressionWeights));

 if (expressionWeights.isValid) {

 // If you want to do something depending on the data source.

 if (expressionWeights.dataSource == XR_FACE_TRACKING_DATA_SOURCE2_VISUAL_FB) {

 // do something when visual or audiovisual data source was used.

 } else if (expressionWeights.dataSource ==

XR_FACE_TRACKING_DATA_SOURCE2_AUDIO_FB) {

 // do something when audio data source was used.

 }

 for (uint32_t i = 0; i < XR_FACE_EXPRESSION2_COUNT_FB; ++i) {

 // weights[i] contains a weight of specific blend shape

 }

 }

}

12.53.7. Conventions of blend shapes

This extension defines 70 blend shapes for tracking facial expressions.

// Provided by XR_FB_face_tracking2

typedef enum XrFaceExpression2FB {

 XR_FACE_EXPRESSION2_BROW_LOWERER_L_FB = 0,

 XR_FACE_EXPRESSION2_BROW_LOWERER_R_FB = 1,

 XR_FACE_EXPRESSION2_CHEEK_PUFF_L_FB = 2,

 XR_FACE_EXPRESSION2_CHEEK_PUFF_R_FB = 3,

 XR_FACE_EXPRESSION2_CHEEK_RAISER_L_FB = 4,

 XR_FACE_EXPRESSION2_CHEEK_RAISER_R_FB = 5,

 XR_FACE_EXPRESSION2_CHEEK_SUCK_L_FB = 6,

680 | Chapter 12. List of Current Extensions

 XR_FACE_EXPRESSION2_CHEEK_SUCK_R_FB = 7,

 XR_FACE_EXPRESSION2_CHIN_RAISER_B_FB = 8,

 XR_FACE_EXPRESSION2_CHIN_RAISER_T_FB = 9,

 XR_FACE_EXPRESSION2_DIMPLER_L_FB = 10,

 XR_FACE_EXPRESSION2_DIMPLER_R_FB = 11,

 XR_FACE_EXPRESSION2_EYES_CLOSED_L_FB = 12,

 XR_FACE_EXPRESSION2_EYES_CLOSED_R_FB = 13,

 XR_FACE_EXPRESSION2_EYES_LOOK_DOWN_L_FB = 14,

 XR_FACE_EXPRESSION2_EYES_LOOK_DOWN_R_FB = 15,

 XR_FACE_EXPRESSION2_EYES_LOOK_LEFT_L_FB = 16,

 XR_FACE_EXPRESSION2_EYES_LOOK_LEFT_R_FB = 17,

 XR_FACE_EXPRESSION2_EYES_LOOK_RIGHT_L_FB = 18,

 XR_FACE_EXPRESSION2_EYES_LOOK_RIGHT_R_FB = 19,

 XR_FACE_EXPRESSION2_EYES_LOOK_UP_L_FB = 20,

 XR_FACE_EXPRESSION2_EYES_LOOK_UP_R_FB = 21,

 XR_FACE_EXPRESSION2_INNER_BROW_RAISER_L_FB = 22,

 XR_FACE_EXPRESSION2_INNER_BROW_RAISER_R_FB = 23,

 XR_FACE_EXPRESSION2_JAW_DROP_FB = 24,

 XR_FACE_EXPRESSION2_JAW_SIDEWAYS_LEFT_FB = 25,

 XR_FACE_EXPRESSION2_JAW_SIDEWAYS_RIGHT_FB = 26,

 XR_FACE_EXPRESSION2_JAW_THRUST_FB = 27,

 XR_FACE_EXPRESSION2_LID_TIGHTENER_L_FB = 28,

 XR_FACE_EXPRESSION2_LID_TIGHTENER_R_FB = 29,

 XR_FACE_EXPRESSION2_LIP_CORNER_DEPRESSOR_L_FB = 30,

 XR_FACE_EXPRESSION2_LIP_CORNER_DEPRESSOR_R_FB = 31,

 XR_FACE_EXPRESSION2_LIP_CORNER_PULLER_L_FB = 32,

 XR_FACE_EXPRESSION2_LIP_CORNER_PULLER_R_FB = 33,

 XR_FACE_EXPRESSION2_LIP_FUNNELER_LB_FB = 34,

 XR_FACE_EXPRESSION2_LIP_FUNNELER_LT_FB = 35,

 XR_FACE_EXPRESSION2_LIP_FUNNELER_RB_FB = 36,

 XR_FACE_EXPRESSION2_LIP_FUNNELER_RT_FB = 37,

 XR_FACE_EXPRESSION2_LIP_PRESSOR_L_FB = 38,

 XR_FACE_EXPRESSION2_LIP_PRESSOR_R_FB = 39,

 XR_FACE_EXPRESSION2_LIP_PUCKER_L_FB = 40,

 XR_FACE_EXPRESSION2_LIP_PUCKER_R_FB = 41,

 XR_FACE_EXPRESSION2_LIP_STRETCHER_L_FB = 42,

 XR_FACE_EXPRESSION2_LIP_STRETCHER_R_FB = 43,

 XR_FACE_EXPRESSION2_LIP_SUCK_LB_FB = 44,

 XR_FACE_EXPRESSION2_LIP_SUCK_LT_FB = 45,

 XR_FACE_EXPRESSION2_LIP_SUCK_RB_FB = 46,

 XR_FACE_EXPRESSION2_LIP_SUCK_RT_FB = 47,

 XR_FACE_EXPRESSION2_LIP_TIGHTENER_L_FB = 48,

 XR_FACE_EXPRESSION2_LIP_TIGHTENER_R_FB = 49,

 XR_FACE_EXPRESSION2_LIPS_TOWARD_FB = 50,

 XR_FACE_EXPRESSION2_LOWER_LIP_DEPRESSOR_L_FB = 51,

 XR_FACE_EXPRESSION2_LOWER_LIP_DEPRESSOR_R_FB = 52,

 XR_FACE_EXPRESSION2_MOUTH_LEFT_FB = 53,

 XR_FACE_EXPRESSION2_MOUTH_RIGHT_FB = 54,

Chapter 12. List of Current Extensions | 681

 XR_FACE_EXPRESSION2_NOSE_WRINKLER_L_FB = 55,

 XR_FACE_EXPRESSION2_NOSE_WRINKLER_R_FB = 56,

 XR_FACE_EXPRESSION2_OUTER_BROW_RAISER_L_FB = 57,

 XR_FACE_EXPRESSION2_OUTER_BROW_RAISER_R_FB = 58,

 XR_FACE_EXPRESSION2_UPPER_LID_RAISER_L_FB = 59,

 XR_FACE_EXPRESSION2_UPPER_LID_RAISER_R_FB = 60,

 XR_FACE_EXPRESSION2_UPPER_LIP_RAISER_L_FB = 61,

 XR_FACE_EXPRESSION2_UPPER_LIP_RAISER_R_FB = 62,

 XR_FACE_EXPRESSION2_TONGUE_TIP_INTERDENTAL_FB = 63,

 XR_FACE_EXPRESSION2_TONGUE_TIP_ALVEOLAR_FB = 64,

 XR_FACE_EXPRESSION2_TONGUE_FRONT_DORSAL_PALATE_FB = 65,

 XR_FACE_EXPRESSION2_TONGUE_MID_DORSAL_PALATE_FB = 66,

 XR_FACE_EXPRESSION2_TONGUE_BACK_DORSAL_VELAR_FB = 67,

 XR_FACE_EXPRESSION2_TONGUE_OUT_FB = 68,

 XR_FACE_EXPRESSION2_TONGUE_RETREAT_FB = 69,

 XR_FACE_EXPRESSION2_COUNT_FB = 70,

 XR_FACE_EXPRESSION_2FB_MAX_ENUM_FB = 0x7FFFFFFF

} XrFaceExpression2FB;

XR_FACE_EXPRESSION2_BROW_LOWERER_L_FB knits and

lowers the left brow area and lowers central

forehead.

XR_FACE_EXPRESSION2_BROW_LOWERER_R_FB knits and

lowers the right brow area and lowers central

forehead.

682 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_CHEEK_PUFF_L_FB fills the left

cheek with air causing them to round and extend

outward.

XR_FACE_EXPRESSION2_CHEEK_PUFF_R_FB fills the right

cheek with air causing them to round and extend

outward.

XR_FACE_EXPRESSION2_CHEEK_RAISER_L_FB tightens

the outer rings of the left eye orbit and squeezes

the lateral left eye corners.

Chapter 12. List of Current Extensions | 683

XR_FACE_EXPRESSION2_CHEEK_RAISER_R_FB tightens

the outer rings of the right eye orbit and squeezes

the lateral right eye corners.

XR_FACE_EXPRESSION2_CHEEK_SUCK_L_FB sucks the left

cheek inward and against the teeth to create a

hollow effect in the cheek.

XR_FACE_EXPRESSION2_CHEEK_SUCK_R_FB sucks the

right cheek inward and against the teeth to create

a hollow effect in the cheek.

684 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_CHIN_RAISER_B_FB pushes the

skin of the chin and the lower lip upward.

XR_FACE_EXPRESSION2_CHIN_RAISER_T_FB pushes up

the top lip. This is induced by the upward force

from XR_FACE_EXPRESSION2_CHIN_RAISER_B_FB.

XR_FACE_EXPRESSION2_DIMPLER_L_FB pinches the left

lip corner against the teeth, drawing them slightly

backward and often upward in the process.

Chapter 12. List of Current Extensions | 685

XR_FACE_EXPRESSION2_DIMPLER_R_FB pinches the

right lip corner against the teeth, drawing them

slightly backward and often upward in the

process.

XR_FACE_EXPRESSION2_EYES_CLOSED_L_FB lowers the

top eyelid to cover the left eye.

XR_FACE_EXPRESSION2_EYES_CLOSED_R_FB lowers the

top eyelid to cover the right eye.

686 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_EYES_LOOK_DOWN_L_FB moves

the left eyelid consistent with downward gaze.

XR_FACE_EXPRESSION2_EYES_LOOK_DOWN_R_FB moves

the right eyelid consistent with downward gaze.

XR_FACE_EXPRESSION2_EYES_LOOK_LEFT_L_FB moves

the left eyelid consistent with leftward gaze.

Chapter 12. List of Current Extensions | 687

XR_FACE_EXPRESSION2_EYES_LOOK_LEFT_R_FB moves

the right eyelid consistent with leftward gaze.

XR_FACE_EXPRESSION2_EYES_LOOK_RIGHT_L_FB moves

the left eyelid consistent with rightward gaze.

XR_FACE_EXPRESSION2_EYES_LOOK_RIGHT_R_FB moves

the right eyelid consistent with rightward gaze.

688 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_EYES_LOOK_UP_L_FB moves the

left eyelid consistent with upward gaze.

XR_FACE_EXPRESSION2_EYES_LOOK_UP_R_FB moves the

right eyelid consistent with upward gaze.

XR_FACE_EXPRESSION2_INNER_BROW_RAISER_L_FB lifts

the left medial brow and forehead area.

Chapter 12. List of Current Extensions | 689

XR_FACE_EXPRESSION2_INNER_BROW_RAISER_R_FB lifts

the right medial brow and forehead area.

XR_FACE_EXPRESSION2_JAW_DROP_FB moves the lower

mandible downward and toward the neck.

XR_FACE_EXPRESSION2_JAW_SIDEWAYS_LEFT_FB moves

the lower mandible leftward.

690 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_JAW_SIDEWAYS_RIGHT_FB moves

the lower mandible rightward.

XR_FACE_EXPRESSION2_JAW_THRUST_FB projects the

lower mandible forward.

XR_FACE_EXPRESSION2_LID_TIGHTENER_L_FB tightens

the rings around the left eyelid and pushes the

lower eyelid skin toward the inner eye corners.

Chapter 12. List of Current Extensions | 691

XR_FACE_EXPRESSION2_LID_TIGHTENER_R_FB tightens

the rings around the right eyelid and pushes the

lower eyelid skin toward the inner eye corners.

XR_FACE_EXPRESSION2_LIP_CORNER_DEPRESSOR_L_FB

draws the left lip corner downward.

XR_FACE_EXPRESSION2_LIP_CORNER_DEPRESSOR_R_FB

draws the right lip corner downward.

692 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_LIP_CORNER_PULLER_L_FB

draws the left lip corners up, back, and laterally.

XR_FACE_EXPRESSION2_LIP_CORNER_PULLER_R_FB

draws the right lip corners up, back, and laterally.

XR_FACE_EXPRESSION2_LIP_FUNNELER_LB_FB fans the

left bottom lip outward in a forward projection,

often rounding the mouth and separating the lips.

Chapter 12. List of Current Extensions | 693

XR_FACE_EXPRESSION2_LIP_FUNNELER_LT_FB fans the

left top lip outward in a forward projection, often

rounding the mouth and separating the lips.

XR_FACE_EXPRESSION2_LIP_FUNNELER_RB_FB fans the

right bottom lip outward in a forward projection,

often rounding the mouth and separating the lips.

XR_FACE_EXPRESSION2_LIP_FUNNELER_RT_FB fans the

right top lip outward in a forward projection,

often rounding the mouth and separating the lips.

694 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_LIP_PRESSOR_L_FB presses the

left upper and left lower lips against one another.

XR_FACE_EXPRESSION2_LIP_PRESSOR_R_FB presses the

right upper and right lower lips against one

another.

XR_FACE_EXPRESSION2_LIP_PUCKER_L_FB draws the

left lip corners medially causing the lips protrude

in the process.

Chapter 12. List of Current Extensions | 695

XR_FACE_EXPRESSION2_LIP_PUCKER_R_FB draws the

right lip corners medially causing the lips

protrude in the process.

XR_FACE_EXPRESSION2_LIP_STRETCHER_L_FB draws the

left lip corners laterally, stretching the lips and

widening the jawline.

XR_FACE_EXPRESSION2_LIP_STRETCHER_R_FB draws the

right lip corners laterally, stretching the lips and

widening the jawline.

696 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_LIP_SUCK_LB_FB sucks the left

bottom lip toward the inside of the mouth.

XR_FACE_EXPRESSION2_LIP_SUCK_LT_FB sucks the left

top lip toward the inside of the mouth.

XR_FACE_EXPRESSION2_LIP_SUCK_RB_FB sucks the

right bottom lip toward the inside of the mouth.

Chapter 12. List of Current Extensions | 697

XR_FACE_EXPRESSION2_LIP_SUCK_RT_FB sucks the

right top lip toward the inside of the mouth.

XR_FACE_EXPRESSION2_LIP_TIGHTENER_L_FB narrows

or constricts the left lips on a horizontal plane.

XR_FACE_EXPRESSION2_LIP_TIGHTENER_R_FB narrows

or constricts the right lips on a horizontal plane.

698 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_LIPS_TOWARD_FB forces contact

between top and bottom lips to keep the mouth

closed regardless of the position of the jaw.

XR_FACE_EXPRESSION2_LOWER_LIP_DEPRESSOR_L_FB

draws the left lower lip downward and slightly

laterally.

XR_FACE_EXPRESSION2_LOWER_LIP_DEPRESSOR_R_FB

draws the right lower lip downward and slightly

laterally.

Chapter 12. List of Current Extensions | 699

XR_FACE_EXPRESSION2_MOUTH_LEFT_FB pulls the left

lip corner leftward and pushes the right side of

the mouth toward the left lip corner.

XR_FACE_EXPRESSION2_MOUTH_RIGHT_FB pulls the right

lip corner rightward and pushes the left side of

the mouth toward the right lip corner.

XR_FACE_EXPRESSION2_NOSE_WRINKLER_L_FB lifts the

left sides of the nose, nostrils, and central upper

lip area. Often pairs with brow lowering muscles

to lower the medial brow tips.

700 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_NOSE_WRINKLER_R_FB lifts the

right sides of the nose, nostrils, and central upper

lip area. Often pairs with brow lowering muscles

to lower the medial brow tips.

XR_FACE_EXPRESSION2_OUTER_BROW_RAISER_L_FB lifts

the lateral left brow and forehead areas.

XR_FACE_EXPRESSION2_OUTER_BROW_RAISER_R_FB lifts

the lateral right brow and forehead areas.

Chapter 12. List of Current Extensions | 701

XR_FACE_EXPRESSION2_UPPER_LID_RAISER_L_FB pulls

the top left eyelid up and back to widen eyes.

XR_FACE_EXPRESSION2_UPPER_LID_RAISER_R_FB pulls

the top right eyelid up and back to widen eyes.

XR_FACE_EXPRESSION2_UPPER_LIP_RAISER_L_FB lifts

the top left lip (in a more lateral manner than

nose wrinkler).

702 | Chapter 12. List of Current Extensions

XR_FACE_EXPRESSION2_UPPER_LIP_RAISER_R_FB lifts

the top right lip (in a more lateral manner than

nose wrinkler).

XR_FACE_EXPRESSION2_TONGUE_TIP_INTERDENTAL_FB

raises the tip of the tongue to touch the top teeth

like with the viseme "TH". The tongue is visible

and slightly sticks out past the teeth line.

XR_FACE_EXPRESSION2_TONGUE_TIP_ALVEOLAR_FB raises

the tip of tongue to touch the back of the top teeth

like in the viseme "NN".

XR_FACE_EXPRESSION2_TONGUE_FRONT_DORSAL_PALATE_F

B makes the front part of the tongue to press

against the palate like in the viseme "CH".

Chapter 12. List of Current Extensions | 703

XR_FACE_EXPRESSION2_TONGUE_MID_DORSAL_PALATE_FB

presses the middle of the tongue against the palate

like in the viseme "DD".

XR_FACE_EXPRESSION2_TONGUE_BACK_DORSAL_VELAR_FB

presses the back of the tongue against the palate

like in the viseme "KK".

XR_FACE_EXPRESSION2_TONGUE_OUT_FB sticks the

tongue out.

XR_FACE_EXPRESSION2_TONGUE_RETREAT_FB pulls the

tongue back in the throat and makes the tongue to

stay down like in the viseme "AA".

12.53.8. Conventions of confidence areas

This extension defines two separate areas of confidence.

704 | Chapter 12. List of Current Extensions

// Provided by XR_FB_face_tracking2

typedef enum XrFaceConfidence2FB {

 XR_FACE_CONFIDENCE2_LOWER_FACE_FB = 0,

 XR_FACE_CONFIDENCE2_UPPER_FACE_FB = 1,

 XR_FACE_CONFIDENCE2_COUNT_FB = 2,

 XR_FACE_CONFIDENCE_2FB_MAX_ENUM_FB = 0x7FFFFFFF

} XrFaceConfidence2FB;

The "upper face" area represents everything above the upper lip, including the eyes and eyebrows. The

"lower face" area represents everything under the eyes, including the mouth and chin. Cheek and nose

areas contribute to both "upper face" and "lower face" areas.

New Object Types

• XrFaceTracker2FB

New Flag Types

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_FACE_TRACKER2_FB

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_FACE_TRACKING_PROPERTIES2_FB

• XR_TYPE_FACE_TRACKER_CREATE_INFO2_FB

• XR_TYPE_FACE_EXPRESSION_INFO2_FB

• XR_TYPE_FACE_EXPRESSION_WEIGHTS2_FB

New Enums

• XrFaceExpression2FB

• XrFaceExpressionSet2FB

• XrFaceConfidence2FB

• XrFaceTrackingDataSource2FB

New Structures

• XrSystemFaceTrackingProperties2FB

• XrFaceTrackerCreateInfo2FB

• XrFaceExpressionInfo2FB

Chapter 12. List of Current Extensions | 705

• XrFaceExpressionWeights2FB

New Functions

• xrCreateFaceTracker2FB

• xrDestroyFaceTracker2FB

• xrGetFaceExpressionWeights2FB

Issues

• Should we add the tongue shapes to XR_FB_face_tracking as a new enum value in

XrFaceExpressionSetFB?

◦ Resolved. We expect that all applications should use XR_FB_face_tracking2 in the future and

that XR_FB_face_tracking will ultimately be replaced by this extension.

Version History

• Revision 1, 2023-10-06 (Jaebong Lee)

◦ Initial extension description

12.54. XR_FB_foveation

Name String

XR_FB_foveation

Extension Type

Instance extension

Registered Extension Number

115

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_swapchain_update_state

Contributors

Kevin Xiao, Facebook

Ross Ning, Facebook

Remi Palandri, Facebook

Cass Everitt, Facebook

706 | Chapter 12. List of Current Extensions

Gloria Kennickell, Facebook

Overview

Foveation in the context of XR is a rendering technique that allows the area of an image near the focal

point or fovea of the eye to be displayed at higher resolution than areas in the periphery. This trades

some visual fidelity in the periphery, where it is less noticeable for the user, for improved rendering

performance, most notably regarding the fragment shader, as fewer pixels or subpixels in the

periphery need to be shaded and processed. On platforms which support foveation patterns and

features tailored towards the optical properties, performance profiles, and hardware support of

specific HMDs, application developers may request and use available foveation profiles from the

runtime. Foveation profiles refer to a set of properties describing how, when, and where foveation will

be applied.

This extension allows:

• An application to create swapchains that can support foveation for its graphics API.

• An application to request foveation profiles supported by the runtime and apply them to foveation-

supported swapchains.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

XR_DEFINE_HANDLE(XrFoveationProfileFB)

XrFoveationProfileFB represents a set of properties and resources that define a foveation pattern for

the runtime, which can be applied to individual swapchains.

New Flag Types

typedef XrFlags64 XrSwapchainCreateFoveationFlagsFB;

Chapter 12. List of Current Extensions | 707

// Flag bits for XrSwapchainCreateFoveationFlagsFB

static const XrSwapchainCreateFoveationFlagsFB

XR_SWAPCHAIN_CREATE_FOVEATION_SCALED_BIN_BIT_FB = 0x00000001;

static const XrSwapchainCreateFoveationFlagsFB

XR_SWAPCHAIN_CREATE_FOVEATION_FRAGMENT_DENSITY_MAP_BIT_FB = 0x00000002;

Flag Descriptions

• XR_SWAPCHAIN_CREATE_FOVEATION_SCALED_BIN_BIT_FB  — Explicitly create the swapchain with

scaled bin foveation support. The application must ensure that the swapchain is using the

OpenGL graphics API and that the QCOM_texture_foveated extension is supported and

enabled.

• XR_SWAPCHAIN_CREATE_FOVEATION_FRAGMENT_DENSITY_MAP_BIT_FB  — Explicitly create the

swapchain with fragment density map foveation support. The application must ensure that

the swapchain is using the Vulkan graphics API and that the VK_EXT_fragment_density_map

extension is supported and enabled.

typedef XrFlags64 XrSwapchainStateFoveationFlagsFB;

// Flag bits for XrSwapchainStateFoveationFlagsFB

There are currently no foveation swapchain state flags. This is reserved for future use.

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_FOVEATION_PROFILE_FB

XrStructureType enumeration is extended with:

• XR_TYPE_FOVEATION_PROFILE_CREATE_INFO_FB

• XR_TYPE_SWAPCHAIN_CREATE_INFO_FOVEATION_FB

• XR_TYPE_SWAPCHAIN_STATE_FOVEATION_FB

New Enums

708 | Chapter 12. List of Current Extensions

New Structures

XrFoveationProfileCreateInfoFB must be provided when calling xrCreateFoveationProfileFB. The

runtime must interpret XrFoveationProfileCreateInfoFB without any additional structs in its next

chain as a request to create a foveation profile that will apply no foveation to any area of the

swapchain.

The XrFoveationProfileCreateInfoFB structure is defined as:

// Provided by XR_FB_foveation

typedef struct XrFoveationProfileCreateInfoFB {

 XrStructureType type;

 void* next;

} XrFoveationProfileCreateInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

Valid Usage (Implicit)

• The XR_FB_foveation extension must be enabled prior to using

XrFoveationProfileCreateInfoFB

• type must be XR_TYPE_FOVEATION_PROFILE_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrFoveationLevelProfileCreateInfoFB

XrSwapchainCreateInfoFoveationFB can be provided in the next chain of XrSwapchainCreateInfo

when calling xrCreateSwapchain to indicate to the runtime that the swapchain must be created with

foveation support in the corresponding graphics API. XrSwapchainCreateInfoFoveationFB contains

additional foveation-specific flags for swapchain creation.

The XrSwapchainCreateInfoFoveationFB structure is defined as:

Chapter 12. List of Current Extensions | 709

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_foveation

typedef struct XrSwapchainCreateInfoFoveationFB {

 XrStructureType type;

 void* next;

 XrSwapchainCreateFoveationFlagsFB flags;

} XrSwapchainCreateInfoFoveationFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrSwapchainCreateFoveationFlagBitsFB which indicate various

characteristics for how foveation is enabled on the swapchain.

Valid Usage (Implicit)

• The XR_FB_foveation extension must be enabled prior to using

XrSwapchainCreateInfoFoveationFB

• type must be XR_TYPE_SWAPCHAIN_CREATE_INFO_FOVEATION_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be 0 or a valid combination of XrSwapchainCreateFoveationFlagBitsFB values

XrSwapchainStateFoveationFB can be provided in place of XrSwapchainStateBaseHeaderFB when

calling xrUpdateSwapchainFB to update the foveation properties of the swapchain.

XrSwapchainCreateInfoFoveationFB contains the desired foveation profile and additional foveation

specific flags for updating the swapchain.

The XrSwapchainStateFoveationFB structure is defined as:

// Provided by XR_FB_foveation

typedef struct XrSwapchainStateFoveationFB {

 XrStructureType type;

 void* next;

 XrSwapchainStateFoveationFlagsFB flags;

 XrFoveationProfileFB profile;

} XrSwapchainStateFoveationFB;

710 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrSwapchainStateFoveationFlagBitsFB which indicate various

characteristics of how and when the foveation properties of the swapchain must be updated.

• profile is an XrFoveationProfileFB defining the desired foveation properties to be applied to

the swapchain.

Valid Usage (Implicit)

• The XR_FB_foveation extension must be enabled prior to using XrSwapchainStateFoveationFB

• type must be XR_TYPE_SWAPCHAIN_STATE_FOVEATION_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be 0

• profile must be a valid XrFoveationProfileFB handle

New Functions

The xrCreateFoveationProfileFB function is defined as:

// Provided by XR_FB_foveation

XrResult xrCreateFoveationProfileFB(

 XrSession session,

 const XrFoveationProfileCreateInfoFB* createInfo,

 XrFoveationProfileFB* profile);

Parameter Descriptions

• session is the XrSession that created the swapchains to which this foveation profile will be

applied.

• createInfo is a pointer to an XrFoveationProfileCreateInfoFB structure containing

parameters to be used to create the foveation profile.

• profile is a pointer to a handle in which the created XrFoveationProfileFB is returned.

Chapter 12. List of Current Extensions | 711

#valid-usage-for-structure-pointer-chains

Creates an XrFoveationProfileFB handle. The returned foveation profile handle may be subsequently

used in API calls.

Valid Usage (Implicit)

• The XR_FB_foveation extension must be enabled prior to calling xrCreateFoveationProfileFB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrFoveationProfileCreateInfoFB structure

• profile must be a pointer to an XrFoveationProfileFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

The xrDestroyFoveationProfileFB function is defined as:

// Provided by XR_FB_foveation

XrResult xrDestroyFoveationProfileFB(

 XrFoveationProfileFB profile);

712 | Chapter 12. List of Current Extensions

Parameter Descriptions

• profile is the XrFoveationProfileFB to destroy.

XrFoveationProfileFB handles are destroyed using xrDestroyFoveationProfileFB. A

XrFoveationProfileFB may be safely destroyed after being applied to a swapchain state using

xrUpdateSwapchainFB without affecting the foveation parameters of the swapchain. The application is

responsible for ensuring that it has no calls using profile in progress when the foveation profile is

destroyed.

Valid Usage (Implicit)

• The XR_FB_foveation extension must be enabled prior to calling xrDestroyFoveationProfileFB

• profile must be a valid XrFoveationProfileFB handle

Thread Safety

• Access to profile, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

Issues

Version History

• Revision 1, 2021-05-13 (Kevin Xiao)

◦ Initial extension description

Chapter 12. List of Current Extensions | 713

12.55. XR_FB_foveation_configuration

Name String

XR_FB_foveation_configuration

Extension Type

Instance extension

Registered Extension Number

116

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_foveation

Contributors

Kevin Xiao, Facebook

Ross Ning, Facebook

Remi Palandri, Facebook

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

On Facebook HMDs, developers may create foveation profiles generated by the runtime for the optical

properties and performance profile of the specific HMD.

This extension allows:

• An application to request foveation profiles generated by the runtime for the current HMD.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

714 | Chapter 12. List of Current Extensions

• XR_TYPE_FOVEATION_LEVEL_PROFILE_CREATE_INFO_FB

New Enums

The possible foveation levels are specified by the XrFoveationLevelFB enumeration:

// Provided by XR_FB_foveation_configuration

typedef enum XrFoveationLevelFB {

 XR_FOVEATION_LEVEL_NONE_FB = 0,

 XR_FOVEATION_LEVEL_LOW_FB = 1,

 XR_FOVEATION_LEVEL_MEDIUM_FB = 2,

 XR_FOVEATION_LEVEL_HIGH_FB = 3,

 XR_FOVEATION_LEVEL_MAX_ENUM_FB = 0x7FFFFFFF

} XrFoveationLevelFB;

Enumerant Descriptions

• XR_FOVEATION_LEVEL_NONE_FB  — No foveation

• XR_FOVEATION_LEVEL_LOW_FB  — Less foveation (higher periphery visual fidelity, lower

performance)

• XR_FOVEATION_LEVEL_MEDIUM_FB  — Medium foveation (medium periphery visual fidelity,

medium performance)

• XR_FOVEATION_LEVEL_HIGH_FB  — High foveation (lower periphery visual fidelity, higher

performance)

The possible foveation levels are specified by the XrFoveationDynamicFB enumeration:

// Provided by XR_FB_foveation_configuration

typedef enum XrFoveationDynamicFB {

 XR_FOVEATION_DYNAMIC_DISABLED_FB = 0,

 XR_FOVEATION_DYNAMIC_LEVEL_ENABLED_FB = 1,

 XR_FOVEATION_DYNAMIC_MAX_ENUM_FB = 0x7FFFFFFF

} XrFoveationDynamicFB;

Chapter 12. List of Current Extensions | 715

Enumerant Descriptions

• XR_FOVEATION_DYNAMIC_DISABLED_FB  — Static foveation at the maximum desired level

• XR_FOVEATION_DYNAMIC_LEVEL_ENABLED_FB  — Dynamic changing foveation based on

performance headroom available up to the maximum desired level

New Structures

XrFoveationLevelProfileCreateInfoFB can be provided in the next chain of

XrFoveationProfileCreateInfoFB when calling xrCreateFoveationProfileFB. The runtime must interpret

XrSwapchainCreateInfoFoveationFB with XrFoveationLevelProfileCreateInfoFB in its next chain as a

request to create a foveation profile that will apply a fixed foveation pattern according to the

parameters defined in the XrFoveationLevelProfileCreateInfoFB.

The XrFoveationLevelProfileCreateInfoFB structure is defined as:

// Provided by XR_FB_foveation_configuration

typedef struct XrFoveationLevelProfileCreateInfoFB {

 XrStructureType type;

 void* next;

 XrFoveationLevelFB level;

 float verticalOffset;

 XrFoveationDynamicFB dynamic;

} XrFoveationLevelProfileCreateInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• level is the maximum desired foveation level.

• verticalOffset is the desired vertical offset in degrees for the center of the foveation pattern.

• dynamic is the desired dynamic foveation setting.

716 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_foveation_configuration extension must be enabled prior to using

XrFoveationLevelProfileCreateInfoFB

• type must be XR_TYPE_FOVEATION_LEVEL_PROFILE_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrFoveationEyeTrackedProfileCreateInfoMETA

• level must be a valid XrFoveationLevelFB value

• dynamic must be a valid XrFoveationDynamicFB value

New Functions

Issues

Version History

• Revision 1, 2021-05-13 (Kevin Xiao)

◦ Initial extension description

12.56. XR_FB_foveation_vulkan

Name String

XR_FB_foveation_vulkan

Extension Type

Instance extension

Registered Extension Number

161

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_foveation

Contributors

Kevin Xiao, Facebook

Ross Ning, Facebook

Remi Palandri, Facebook

Chapter 12. List of Current Extensions | 717

#valid-usage-for-structure-pointer-chains

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

The Vulkan graphics API requires an image to be applied to the swapchain to apply a foveation

pattern.

This extension allows:

• An application to obtain foveation textures or constructs needed for foveated rendering in Vulkan.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SWAPCHAIN_IMAGE_FOVEATION_VULKAN_FB

New Enums

New Structures

XrSwapchainImageFoveationVulkanFB can be provided in the next chain of

XrSwapchainImageVulkanKHR when calling xrEnumerateSwapchainImages on a swapchain created

with xrCreateSwapchain, if XrSwapchainCreateInfoFoveationFB was in the next chain of

XrSwapchainCreateInfo and XrSwapchainCreateInfoFoveationFB had the

XR_SWAPCHAIN_CREATE_FOVEATION_FRAGMENT_DENSITY_MAP_BIT_FB flag set. The image, width, and height will

be populated by xrEnumerateSwapchainImages to be compatible with the corresponding

XrSwapchainImageVulkanKHR.

The XrSwapchainImageFoveationVulkanFB structure is defined as:

718 | Chapter 12. List of Current Extensions

// Provided by XR_FB_foveation_vulkan

typedef struct XrSwapchainImageFoveationVulkanFB {

 XrStructureType type;

 void* next;

 VkImage image;

 uint32_t width;

 uint32_t height;

} XrSwapchainImageFoveationVulkanFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• image is a valid Vulkan VkImage to use.

• width is the horizontal width in pixels of the image.

• height is the vertical height in pixels of the image.

Valid Usage (Implicit)

• The XR_FB_foveation_vulkan extension must be enabled prior to using

XrSwapchainImageFoveationVulkanFB

• type must be XR_TYPE_SWAPCHAIN_IMAGE_FOVEATION_VULKAN_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 1, 2021-05-26 (Kevin Xiao)

◦ Initial extension description

12.57. XR_FB_hand_tracking_aim

Name String

XR_FB_hand_tracking_aim

Chapter 12. List of Current Extensions | 719

#valid-usage-for-structure-pointer-chains

Extension Type

Instance extension

Registered Extension Number

112

Revision

2

Extension and Version Dependencies

OpenXR 1.0

and

XR_EXT_hand_tracking

Contributors

Federico Schliemann, Facebook

James Hillery, Facebook

Gloria Kennickell, Facebook

Overview

The XR_EXT_hand_tracking extension provides a list of hand joint poses which represent the current

configuration of the tracked hands. This extension adds a layer of gesture recognition that is used by

the system.

This extension allows:

• An application to get a set of basic gesture states for the hand when using the XR_EXT_hand_tracking

extension.

New Object Types

New Flag Types

typedef XrFlags64 XrHandTrackingAimFlagsFB;

720 | Chapter 12. List of Current Extensions

// Flag bits for XrHandTrackingAimFlagsFB

static const XrHandTrackingAimFlagsFB XR_HAND_TRACKING_AIM_COMPUTED_BIT_FB = 0x00000001;

static const XrHandTrackingAimFlagsFB XR_HAND_TRACKING_AIM_VALID_BIT_FB = 0x00000002;

static const XrHandTrackingAimFlagsFB XR_HAND_TRACKING_AIM_INDEX_PINCHING_BIT_FB =

0x00000004;

static const XrHandTrackingAimFlagsFB XR_HAND_TRACKING_AIM_MIDDLE_PINCHING_BIT_FB =

0x00000008;

static const XrHandTrackingAimFlagsFB XR_HAND_TRACKING_AIM_RING_PINCHING_BIT_FB =

0x00000010;

static const XrHandTrackingAimFlagsFB XR_HAND_TRACKING_AIM_LITTLE_PINCHING_BIT_FB =

0x00000020;

static const XrHandTrackingAimFlagsFB XR_HAND_TRACKING_AIM_SYSTEM_GESTURE_BIT_FB =

0x00000040;

static const XrHandTrackingAimFlagsFB XR_HAND_TRACKING_AIM_DOMINANT_HAND_BIT_FB =

0x00000080;

static const XrHandTrackingAimFlagsFB XR_HAND_TRACKING_AIM_MENU_PRESSED_BIT_FB =

0x00000100;

Flag Descriptions

• XR_HAND_TRACKING_AIM_COMPUTED_BIT_FB  — Aiming data is computed from additional sources

beyond the hand data in the base structure

• XR_HAND_TRACKING_AIM_VALID_BIT_FB  — Aiming data is valid

• XR_HAND_TRACKING_AIM_INDEX_PINCHING_BIT_FB  — Index finger pinch discrete signal

• XR_HAND_TRACKING_AIM_MIDDLE_PINCHING_BIT_FB  — Middle finger pinch discrete signal

• XR_HAND_TRACKING_AIM_RING_PINCHING_BIT_FB  — Ring finger pinch discrete signal

• XR_HAND_TRACKING_AIM_LITTLE_PINCHING_BIT_FB  — Little finger pinch discrete signal

• XR_HAND_TRACKING_AIM_SYSTEM_GESTURE_BIT_FB  — System gesture is active

• XR_HAND_TRACKING_AIM_DOMINANT_HAND_BIT_FB  — Hand is currently marked as dominant for the

system

• XR_HAND_TRACKING_AIM_MENU_PRESSED_BIT_FB  — System menu gesture is active

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_HAND_TRACKING_AIM_STATE_FB

New Enums

New Structures

Chapter 12. List of Current Extensions | 721

XrHandTrackingAimStateFB can be provided in the next chain of XrHandJointLocationsEXT when

calling xrLocateHandJointsEXT to request aiming gesture information associated with this hand.

The XrHandTrackingAimStateFB structure is defined as:

// Provided by XR_FB_hand_tracking_aim

typedef struct XrHandTrackingAimStateFB {

 XrStructureType type;

 void* next;

 XrHandTrackingAimFlagsFB status;

 XrPosef aimPose;

 float pinchStrengthIndex;

 float pinchStrengthMiddle;

 float pinchStrengthRing;

 float pinchStrengthLittle;

} XrHandTrackingAimStateFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• status is a bitmask of XrHandTrackingAimFlagBitsFB describing the availability and state of

other signals.

• aimPose is a system-determined "aim" pose, similar in intent and convention to the aim poses

used with the action system, based on hand data.

• pinchStrengthIndex is the current pinching strength for the index finger of this hand. Range is

0.0 to 1.0, with 1.0 meaning index and thumb are fully touching.

• pinchStrengthMiddle is the current pinching strength for the middle finger of this hand. Range

is 0.0 to 1.0, with 1.0 meaning middle and thumb are fully touching.

• pinchStrengthRing is the current pinching strength for the ring finger of this hand. Range is

0.0 to 1.0, with 1.0 meaning ring and thumb are fully touching.

• pinchStrengthLittle is the current pinching strength for the little finger of this hand. Range is

0.0 to 1.0, with 1.0 meaning little and thumb are fully touching.

722 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_hand_tracking_aim extension must be enabled prior to using

XrHandTrackingAimStateFB

• type must be XR_TYPE_HAND_TRACKING_AIM_STATE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 1, 2021-07-07 (Federico Schliemann)

◦ Initial extension description

• Revision 2, 2022-04-20 (John Kearney)

◦ Correct next chain parent for XrHandTrackingAimStateFB to XrHandJointLocationsEXT

12.58. XR_FB_hand_tracking_capsules

Name String

XR_FB_hand_tracking_capsules

Extension Type

Instance extension

Registered Extension Number

113

Revision

3

Extension and Version Dependencies

OpenXR 1.0

and

XR_EXT_hand_tracking

Contributors

Federico Schliemann, Facebook

James Hillery, Facebook

Gloria Kennickell, Facebook

Chapter 12. List of Current Extensions | 723

#valid-usage-for-structure-pointer-chains

Overview

The XR_EXT_hand_tracking extension provides a list of hand joint poses which include a collision sphere

for each joint. However some physics systems prefer to use capsules as a collision stand in for the

hands.

This extension allows:

• An application to get a list of capsules that represent the volume of the hand when using the

XR_EXT_hand_tracking extension.

New Object Types

New Flag Types

New Enum Constants

• XR_HAND_TRACKING_CAPSULE_POINT_COUNT_FB

◦ XR_FB_HAND_TRACKING_CAPSULE_POINT_COUNT was the original name, and is still provided as an alias

for backward compatibility.

• XR_HAND_TRACKING_CAPSULE_COUNT_FB

◦ XR_FB_HAND_TRACKING_CAPSULE_COUNT was the original name, and is still provided as an alias for

backward compatibility.

XrStructureType enumeration is extended with:

• XR_TYPE_HAND_TRACKING_CAPSULES_STATE_FB

New Enums

New Structures

The XrHandCapsuleFB structure is defined as:

// Provided by XR_FB_hand_tracking_capsules

typedef struct XrHandCapsuleFB {

 XrVector3f points[XR_HAND_TRACKING_CAPSULE_POINT_COUNT_FB];

 float radius;

 XrHandJointEXT joint;

} XrHandCapsuleFB;

It describes a collision capsule associated with a hand joint.

724 | Chapter 12. List of Current Extensions

Member Descriptions

• points are the two points defining the capsule length.

• radius is the radius of the capsule.

• joint is the hand joint that drives this capsule’s transform. Multiple capsules may be attached

to the same joint.

Valid Usage (Implicit)

• The XR_FB_hand_tracking_capsules extension must be enabled prior to using

XrHandCapsuleFB

XrHandTrackingCapsulesStateFB can be provided in the next chain of XrHandJointLocationsEXT when

calling xrLocateHandJointsEXT to request collision capsule information associated with this hand.

The XrHandTrackingCapsulesStateFB structure is defined as:

// Provided by XR_FB_hand_tracking_capsules

typedef struct XrHandTrackingCapsulesStateFB {

 XrStructureType type;

 void* next;

 XrHandCapsuleFB capsules[XR_HAND_TRACKING_CAPSULE_COUNT_FB];

} XrHandTrackingCapsulesStateFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• capsules is an array of capsules.

Chapter 12. List of Current Extensions | 725

Valid Usage (Implicit)

• The XR_FB_hand_tracking_capsules extension must be enabled prior to using

XrHandTrackingCapsulesStateFB

• type must be XR_TYPE_HAND_TRACKING_CAPSULES_STATE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 1, 2021-07-07 (Federico Schliemann)

◦ Initial extension description

• Revision 2, 2021-11-18 (Rylie Pavlik, Collabora, Ltd.)

◦ Fix typos/naming convention errors: rename XR_FB_HAND_TRACKING_CAPSULE_POINT_COUNT to

XR_HAND_TRACKING_CAPSULE_POINT_COUNT_FB and XR_FB_HAND_TRACKING_CAPSULE_COUNT to

XR_HAND_TRACKING_CAPSULE_COUNT_FB, providing the old names as compatibility aliases.

• Revision 3, 2022-04-20 (John Kearney)

◦ Correct next chain parent for XrHandTrackingCapsulesStateFB to XrHandJointLocationsEXT

12.59. XR_FB_hand_tracking_mesh

Name String

XR_FB_hand_tracking_mesh

Extension Type

Instance extension

Registered Extension Number

111

Revision

3

Extension and Version Dependencies

OpenXR 1.0

and

XR_EXT_hand_tracking

726 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Contributors

Federico Schliemann, Facebook

James Hillery, Facebook

Gloria Kennickell, Facebook

Overview

The XR_EXT_hand_tracking extension provides a list of hand joint poses but no mechanism to render a

skinned hand mesh.

This extension allows:

• An application to get a skinned hand mesh and a bind pose skeleton that can be used to render a

hand object driven by the joints from the XR_EXT_hand_tracking extension.

• Control the scale of the hand joints returned by XR_EXT_hand_tracking.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_HAND_TRACKING_MESH_FB

• XR_TYPE_HAND_TRACKING_SCALE_FB

New Enums

New Structures

The XrVector4sFB structure is defined as:

// Provided by XR_FB_hand_tracking_mesh

typedef struct XrVector4sFB {

 int16_t x;

 int16_t y;

 int16_t z;

 int16_t w;

} XrVector4sFB;

This is a short integer, four component vector type, used for per-vertex joint indexing for mesh

skinning.

Chapter 12. List of Current Extensions | 727

Member Descriptions

• x is the x component of the vector.

• y is the y component of the vector.

• z is the z component of the vector.

• w is the w component of the vector.

Valid Usage (Implicit)

• The XR_FB_hand_tracking_mesh extension must be enabled prior to using XrVector4sFB

The XrHandTrackingMeshFB structure contains three sets of parallel, application-allocated arrays: one

with per-joint data, one with vertex data, and one with index data.

The XrHandTrackingMeshFB structure is defined as:

// Provided by XR_FB_hand_tracking_mesh

typedef struct XrHandTrackingMeshFB {

 XrStructureType type;

 void* next;

 uint32_t jointCapacityInput;

 uint32_t jointCountOutput;

 XrPosef* jointBindPoses;

 float* jointRadii;

 XrHandJointEXT* jointParents;

 uint32_t vertexCapacityInput;

 uint32_t vertexCountOutput;

 XrVector3f* vertexPositions;

 XrVector3f* vertexNormals;

 XrVector2f* vertexUVs;

 XrVector4sFB* vertexBlendIndices;

 XrVector4f* vertexBlendWeights;

 uint32_t indexCapacityInput;

 uint32_t indexCountOutput;

 int16_t* indices;

} XrHandTrackingMeshFB;

728 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• jointCapacityInput is the capacity of the joint data arrays in this structure, or 0 to indicate a

request to retrieve the required capacity.

• jointCountOutput is filled in by the runtime with the count of joint data elements written, or

the required capacity in the case that any of jointCapacityInput, vertexCapacityInput, or

indexCapacityInput is insufficient.

• jointBindPoses is an array of poses that matches what is returned by xrLocateHandJointsEXT

which describes the hand skeleton’s bind pose.

• jointRadii is an array of joint radii at bind pose.

• jointParents is an array of joint parents to define a bone hierarchy for the hand skeleton.

• vertexCapacityInput is the capacity of the vertex data arrays in this structure, or 0 to indicate

a request to retrieve the required capacity.

• vertexCountOutput is filled in by the runtime with the count of vertex data elements written,

or the required capacity in the case that any of jointCapacityInput, vertexCapacityInput, or

indexCapacityInput is insufficient.

• vertexPositions is an array of 3D vertex positions.

• vertexNormals is an array of 3D vertex normals.

• vertexUVs is an array of texture coordinates for this vertex.

• vertexBlendIndices is an array of bone blend indices.

• vertexBlendWeights is an array of bone blend weights.

• indexCapacityInput is the capacity of the index data arrays in this structure, or 0 to indicate a

request to retrieve the required capacity.

• indexCountOutput is filled in by the runtime with the count of index data elements written, or

the required capacity in the case that any of jointCapacityInput, vertexCapacityInput, or

indexCapacityInput is insufficient.

• indices is an array of triangle indices.

• See the Buffer Size Parameters section for a detailed description of retrieving the array sizes

in the "struct form" as used here.

All arrays are application-allocated, and all may be NULL if any of jointCapacityInput,

vertexCapacityInput, or indexCapacityInput is 0.

The data in a fully-populated XrHandTrackingMeshFB is immutable during the lifetime of the

Chapter 12. List of Current Extensions | 729

corresponding XrInstance, and is intended to be retrieved once then used in combination with data

changing per-frame retrieved from xrLocateHandJointsEXT.

Valid Usage (Implicit)

• The XR_FB_hand_tracking_mesh extension must be enabled prior to using

XrHandTrackingMeshFB

• type must be XR_TYPE_HAND_TRACKING_MESH_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• If jointCapacityInput is not 0, jointBindPoses must be a pointer to an array of

jointCapacityInput XrPosef structures

• If jointCapacityInput is not 0, jointRadii must be a pointer to an array of jointCapacityInput

float values

• If jointCapacityInput is not 0, jointParents must be a pointer to an array of

jointCapacityInput XrHandJointEXT values

• If vertexCapacityInput is not 0, vertexPositions must be a pointer to an array of

vertexCapacityInput XrVector3f structures

• If vertexCapacityInput is not 0, vertexNormals must be a pointer to an array of

vertexCapacityInput XrVector3f structures

• If vertexCapacityInput is not 0, vertexUVs must be a pointer to an array of vertexCapacityInput

XrVector2f structures

• If vertexCapacityInput is not 0, vertexBlendIndices must be a pointer to an array of

vertexCapacityInput XrVector4sFB structures

• If vertexCapacityInput is not 0, vertexBlendWeights must be a pointer to an array of

vertexCapacityInput XrVector4f structures

• If indexCapacityInput is not 0, indices must be a pointer to an array of indexCapacityInput

int16_t values

XrHandTrackingScaleFB can be provided in the next chain of XrHandJointLocationsEXT when calling

xrLocateHandJointsEXT to indicate to the runtime that the requested joints need to be scaled to a

different size and to query the existing scale value. This is useful in breaking up the overall scale out of

the skinning transforms.

The XrHandTrackingScaleFB structure is defined as:

730 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_hand_tracking_mesh

typedef struct XrHandTrackingScaleFB {

 XrStructureType type;

 void* next;

 float sensorOutput;

 float currentOutput;

 XrBool32 overrideHandScale;

 float overrideValueInput;

} XrHandTrackingScaleFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• sensorOutput is an output value: the currently measured scale as otherwise applied without

passing this structure.

• currentOutput is an output value: the effective output that the bind skeleton is getting on the

current call, which may be subject to filtering, scaling, or validation.

• overrideHandScale indicates whether the runtime must scale the output of this

xrLocateHandJointsEXT call according to overrideValueInput

• overrideValueInput is an optional input value, enabled only when the overrideHandScale

parameter is set. Setting this to 1.0 and setting overrideHandScale to true will give the joints in

mesh binding scale.

Valid Usage (Implicit)

• The XR_FB_hand_tracking_mesh extension must be enabled prior to using

XrHandTrackingScaleFB

• type must be XR_TYPE_HAND_TRACKING_SCALE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrGetHandMeshFB function is defined as:

Chapter 12. List of Current Extensions | 731

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_hand_tracking_mesh

XrResult xrGetHandMeshFB(

 XrHandTrackerEXT handTracker,

 XrHandTrackingMeshFB* mesh);

Parameter Descriptions

• handTracker is the XrHandTrackerEXT that is associated with a particular hand.

• mesh is the XrHandTrackingMeshFB output structure.

The xrGetHandMeshFB function populates an XrHandTrackingMeshFB structure with enough

information to render a skinned mesh driven by the hand joints. As discussed in the specification for

that structure, the data enumerated by this call is constant during the lifetime of an XrInstance.

Valid Usage (Implicit)

• The XR_FB_hand_tracking_mesh extension must be enabled prior to calling xrGetHandMeshFB

• handTracker must be a valid XrHandTrackerEXT handle

• mesh must be a pointer to an XrHandTrackingMeshFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_FEATURE_UNSUPPORTED

732 | Chapter 12. List of Current Extensions

Issues

Version History

• Revision 1, 2021-07-07 (Federico Schliemann)

◦ Initial extension description

• Revision 2, 2022-04-20 (John Kearney)

◦ Correct next chain parent for XrHandTrackingScaleFB to XrHandJointLocationsEXT

• Revision 3, 2022-07-07 (Rylie Pavlik, Collabora, Ltd.)

◦ Correct markup and thus generated valid usage for two-call idiom.

12.60. XR_FB_haptic_amplitude_envelope

Name String

XR_FB_haptic_amplitude_envelope

Extension Type

Instance extension

Registered Extension Number

174

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-06-27

IP Status

No known IP claims.

Contributors

Aanchal Dalmia, Meta

Federico Schliemann, Meta

12.60.1. Overview

This extension enables applications to trigger haptic effect using an Amplitude Envelope buffer.

Trigger haptics

Chapter 12. List of Current Extensions | 733

An application can trigger an amplitude envelope haptic effect by creating a

XrHapticAmplitudeEnvelopeVibrationFB structure and calling xrApplyHapticFeedback.

The XrHapticAmplitudeEnvelopeVibrationFB structure is defined as:

// Provided by XR_FB_haptic_amplitude_envelope

typedef struct XrHapticAmplitudeEnvelopeVibrationFB {

 XrStructureType type;

 const void* next;

 XrDuration duration;

 uint32_t amplitudeCount;

 const float* amplitudes;

} XrHapticAmplitudeEnvelopeVibrationFB;

This structure describes an amplitude envelope haptic effect.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• duration is the duration of the haptic effect in nanoseconds. See Duration for more details.

• amplitudeCount is the number of samples in the buffer.

• amplitudes is the pointer to a float array that contains the samples.

The runtime should resample the provided samples in the amplitudes, and maintain an internal buffer

which should be of XR_MAX_HAPTIC_AMPLITUDE_ENVELOPE_SAMPLES_FB length. The resampling

should happen based on the duration, amplitudeCount, and the device’s sample rate.

Valid Usage (Implicit)

• The XR_FB_haptic_amplitude_envelope extension must be enabled prior to using

XrHapticAmplitudeEnvelopeVibrationFB

• type must be XR_TYPE_HAPTIC_AMPLITUDE_ENVELOPE_VIBRATION_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• amplitudes must be a pointer to an array of amplitudeCount float values

• The amplitudeCount parameter must be greater than 0

New Object Types

734 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

New Flag Types

New Enum Constants

• XR_TYPE_HAPTIC_AMPLITUDE_ENVELOPE_VIBRATION_FB

New Defines

// Provided by XR_FB_haptic_amplitude_envelope

#define XR_MAX_HAPTIC_AMPLITUDE_ENVELOPE_SAMPLES_FB 4000u

XR_MAX_HAPTIC_AMPLITUDE_ENVELOPE_SAMPLES_FB defines the maximum number of sample the

runtime should store in memory.

New Enums

New Structures

• XrHapticAmplitudeEnvelopeVibrationFB

New Functions

Issues

Version History

• Revision 1, 2022-06-27 (Aanchal Dalmia)

◦ Initial extension description

12.61. XR_FB_haptic_pcm

Name String

XR_FB_haptic_pcm

Extension Type

Instance extension

Registered Extension Number

210

Revision

1

Chapter 12. List of Current Extensions | 735

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-06-27

IP Status

No known IP claims.

Contributors

Aanchal Dalmia, Meta

Adam Bengis, Meta

12.61.1. Overview

This extension enables applications to trigger haptic effects using Pulse Code Modulation (PCM)

buffers.

Trigger haptics

An application can trigger PCM haptic effect by creating a XrHapticPcmVibrationFB structure and

calling xrApplyHapticFeedback.

The XrHapticPcmVibrationFB structure is defined as:

// Provided by XR_FB_haptic_pcm

typedef struct XrHapticPcmVibrationFB {

 XrStructureType type;

 const void* next;

 uint32_t bufferSize;

 const float* buffer;

 float sampleRate;

 XrBool32 append;

 uint32_t* samplesConsumed;

} XrHapticPcmVibrationFB;

736 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• bufferSize is the number of samples in the buffer.

• buffer is a pointer to a float array representing the PCM samples. If you consider the haptic

effect as a sampled analog audio, then this buffer will contain the samples representing that

effect. The values in this buffer are expected to be in the range [-1.0, 1.0].

• sampleRate is the number of samples to be played per second, this is used to determine the

duration of the haptic effect.

• append if set to XR_FALSE, any existing samples will be cleared and a new haptic effect will

begin, if XR_TRUE, samples will be appended to the currently playing effect

• samplesConsumed is a pointer to an unsigned integer; it is populated by runtime, to tell the

application about how many samples were consumed from the input buffer

This structure describes a PCM haptic effect.

The runtime may resample the provided samples in the buffer, and maintain an internal buffer which

should be of XR_MAX_HAPTIC_PCM_BUFFER_SIZE_FB length. The resampling should happen based on

the sampleRate and the device’s sample rate.

If append is XR_TRUE and a preceding XrHapticPcmVibrationFB haptic effect on this action has not yet

completed, then the runtime must finish playing the preceding samples and then play the new haptic

effect. If a preceding haptic event on this action has not yet completed, and either the preceding effect

is not an XrHapticPcmVibrationFB haptic effect or append is XR_FALSE, the runtime must cancel the

preceding incomplete effects on that action and start playing the new haptic effect, as usual for the

core specification.

When append is true and a preceding XrHapticPcmVibrationFB haptic effect on this action has not yet

completed, then the application can provide a different sampleRate in the new haptic effect.

The runtime must populate the samplesConsumed with the count of the samples from buffer which were

consumed. The samplesConsumed is populated before the xrApplyHapticFeedback returns.

Chapter 12. List of Current Extensions | 737

Valid Usage (Implicit)

• The XR_FB_haptic_pcm extension must be enabled prior to using XrHapticPcmVibrationFB

• type must be XR_TYPE_HAPTIC_PCM_VIBRATION_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• buffer must be a pointer to an array of bufferSize float values

• samplesConsumed must be a pointer to a uint32_t value

• The bufferSize parameter must be greater than 0

Get the device sample rate

An application can use the xrGetDeviceSampleRateFB function to get the sample rate of the currently

bound device on which the haptic action is triggered. If the application does not want any resampling

to occur, then it can use this function to know the currently bound device sample rate, and pass that

value in sampleRate of XrHapticPcmVibrationFB.

// Provided by XR_FB_haptic_pcm

XrResult xrGetDeviceSampleRateFB(

 XrSession session,

 const XrHapticActionInfo* hapticActionInfo,

 XrDevicePcmSampleRateGetInfoFB* deviceSampleRate);

Parameter Descriptions

• session is the specified XrSession.

• hapticActionInfo is the XrHapticActionInfo used to provide action and subaction paths

• deviceSampleRate is a pointer to XrDevicePcmSampleRateStateFB which is populated by the

runtime.

The runtime must use the hapticActionInfo to get the sample rate of the currently bound device on

which haptics is triggered and populate the deviceSampleRate structure. The device is determined by

the XrHapticActionInfo::action and XrHapticActionInfo::subactionPath. If the hapticActionInfo is bound

to more than one device, then runtime should assume that the all these bound devices have the same

deviceSampleRate and the runtime should return the sampleRate for any of those bound devices. If the

device is invalid, the runtime must populate the deviceSampleRate of XrDevicePcmSampleRateStateFB

as 0. A device can be invalid if the runtime does not find any device (which can play haptics) connected

to the headset, or if the device does not support PCM haptic effect.

738 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_haptic_pcm extension must be enabled prior to calling xrGetDeviceSampleRateFB

• session must be a valid XrSession handle

• hapticActionInfo must be a pointer to a valid XrHapticActionInfo structure

• deviceSampleRate must be a pointer to an XrDevicePcmSampleRateGetInfoFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_ACTION_TYPE_MISMATCH

• XR_ERROR_ACTIONSET_NOT_ATTACHED

The XrDevicePcmSampleRateStateFB structure is defined as:

// Provided by XR_FB_haptic_pcm

typedef struct XrDevicePcmSampleRateStateFB {

 XrStructureType type;

 void* next;

 float sampleRate;

} XrDevicePcmSampleRateStateFB;

Chapter 12. List of Current Extensions | 739

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• sampleRate is the sample rate of the currently bound device which can play a haptic effect

Valid Usage (Implicit)

• The XR_FB_haptic_pcm extension must be enabled prior to using

XrDevicePcmSampleRateStateFB

• type must be XR_TYPE_DEVICE_PCM_SAMPLE_RATE_STATE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_HAPTIC_PCM_VIBRATION_FB

• XR_TYPE_DEVICE_PCM_SAMPLE_RATE_STATE_FB

New Defines

// Provided by XR_FB_haptic_pcm

#define XR_MAX_HAPTIC_PCM_BUFFER_SIZE_FB 4000

XR_MAX_HAPTIC_PCM_BUFFER_SIZE_FB defines the maximum number of samples the runtime can

store.

New Enums

New Structures

• XrHapticPcmVibrationFB

• XrDevicePcmSampleRateStateFB

New Functions

740 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

• xrGetDeviceSampleRateFB

Issues

Version History

• Revision 1, 2022-06-27 (Aanchal Dalmia)

◦ Initial extension description

12.62. XR_FB_keyboard_tracking

Name String

XR_FB_keyboard_tracking

Extension Type

Instance extension

Registered Extension Number

117

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

Federico Schliemann, Facebook

Robert Memmott, Facebook

Cass Everitt, Facebook

Overview

This extension allows the application to query the system for a supported trackable keyboard type and

obtain an XrSpace handle to track it. It also provides relevant metadata about the keyboard itself,

including bounds and a human readable identifier.

New Object Types

New Flag Types

typedef XrFlags64 XrKeyboardTrackingFlagsFB;

Chapter 12. List of Current Extensions | 741

// Flag bits for XrKeyboardTrackingFlagsFB

static const XrKeyboardTrackingFlagsFB XR_KEYBOARD_TRACKING_EXISTS_BIT_FB = 0x00000001;

static const XrKeyboardTrackingFlagsFB XR_KEYBOARD_TRACKING_LOCAL_BIT_FB = 0x00000002;

static const XrKeyboardTrackingFlagsFB XR_KEYBOARD_TRACKING_REMOTE_BIT_FB = 0x00000004;

static const XrKeyboardTrackingFlagsFB XR_KEYBOARD_TRACKING_CONNECTED_BIT_FB =

0x00000008;

Flag Descriptions

• XR_KEYBOARD_TRACKING_EXISTS_BIT_FB  — indicates that the system has a physically tracked

keyboard to report. If not set then no other bits should be considered to be valid or

meaningful. If set either XR_KEYBOARD_TRACKING_LOCAL_BIT_FB or

XR_KEYBOARD_TRACKING_REMOTE_BIT_FB must also be set.

• XR_KEYBOARD_TRACKING_LOCAL_BIT_FB  — indicates that the physically tracked keyboard is

intended to be used in a local pairing with the system. Mutally exclusive with

XR_KEYBOARD_TRACKING_REMOTE_BIT_FB.

• XR_KEYBOARD_TRACKING_REMOTE_BIT_FB  — indicates that the physically tracked keyboard is

intended to be used while paired to a separate remote computing device. Mutally exclusive

with XR_KEYBOARD_TRACKING_LOCAL_BIT_FB.

• XR_KEYBOARD_TRACKING_CONNECTED_BIT_FB  — indicates that the physically tracked keyboard is

actively connected to the headset and capable of sending key data

typedef XrFlags64 XrKeyboardTrackingQueryFlagsFB;

// Flag bits for XrKeyboardTrackingQueryFlagsFB

static const XrKeyboardTrackingQueryFlagsFB XR_KEYBOARD_TRACKING_QUERY_LOCAL_BIT_FB =

0x00000002;

static const XrKeyboardTrackingQueryFlagsFB XR_KEYBOARD_TRACKING_QUERY_REMOTE_BIT_FB =

0x00000004;

742 | Chapter 12. List of Current Extensions

Flag Descriptions

• XR_KEYBOARD_TRACKING_QUERY_LOCAL_BIT_FB  — indicates the query is for the physically tracked

keyboard that is intended to be used in a local pairing with the System. Mutally exclusive

with XR_KEYBOARD_TRACKING_QUERY_REMOTE_BIT_FB.

• XR_KEYBOARD_TRACKING_QUERY_REMOTE_BIT_FB  — indicates the query is for the physically tracked

keyboard that may be connected to a separate remote computing device. Mutally exclusive

with XR_KEYBOARD_TRACKING_QUERY_LOCAL_BIT_FB.

New Enum Constants

• XR_MAX_KEYBOARD_TRACKING_NAME_SIZE_FB

XrStructureType enumeration is extended with:

• XR_TYPE_KEYBOARD_SPACE_CREATE_INFO_FB

• XR_TYPE_KEYBOARD_TRACKING_QUERY_FB

• XR_TYPE_SYSTEM_KEYBOARD_TRACKING_PROPERTIES_FB

New Enums

New Structures

The XrSystemKeyboardTrackingPropertiesFB structure is defined as:

// Provided by XR_FB_keyboard_tracking

typedef struct XrSystemKeyboardTrackingPropertiesFB {

 XrStructureType type;

 void* next;

 XrBool32 supportsKeyboardTracking;

} XrSystemKeyboardTrackingPropertiesFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• supportsKeyboardTracking defines whether the system supports the tracked keyboard feature.

XrSystemKeyboardTrackingPropertiesFB is populated with information from the system about tracked

Chapter 12. List of Current Extensions | 743

keyboard support.

Valid Usage (Implicit)

• The XR_FB_keyboard_tracking extension must be enabled prior to using

XrSystemKeyboardTrackingPropertiesFB

• type must be XR_TYPE_SYSTEM_KEYBOARD_TRACKING_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrKeyboardTrackingQueryFB structure is defined as:

// Provided by XR_FB_keyboard_tracking

typedef struct XrKeyboardTrackingQueryFB {

 XrStructureType type;

 void* next;

 XrKeyboardTrackingQueryFlagsFB flags;

} XrKeyboardTrackingQueryFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• flags is a bitmask of XrKeyboardTrackingQueryFlagsFB.

XrKeyboardTrackingQueryFB specifies input data needed to determine which type of tracked keyboard

to query for.

Valid Usage (Implicit)

• The XR_FB_keyboard_tracking extension must be enabled prior to using

XrKeyboardTrackingQueryFB

• type must be XR_TYPE_KEYBOARD_TRACKING_QUERY_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be a valid combination of XrKeyboardTrackingQueryFlagBitsFB values

• flags must not be 0

744 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

The XrKeyboardTrackingDescriptionFB structure is defined as:

// Provided by XR_FB_keyboard_tracking

typedef struct XrKeyboardTrackingDescriptionFB {

 uint64_t trackedKeyboardId;

 XrVector3f size;

 XrKeyboardTrackingFlagsFB flags;

 char name[XR_MAX_KEYBOARD_TRACKING_NAME_SIZE_FB];

} XrKeyboardTrackingDescriptionFB;

Member Descriptions

• trackedKeyboardId abstract identifier describing the type of keyboard.

• size bounding box.

• flags additional information on the type of keyboard available. If

XR_KEYBOARD_TRACKING_EXISTS_BIT_FB is not set there is no keyboard.

• name human readable keyboard identifier.

XrKeyboardTrackingDescriptionFB describes a trackable keyboard and its associated metadata.

Valid Usage (Implicit)

• The XR_FB_keyboard_tracking extension must be enabled prior to using

XrKeyboardTrackingDescriptionFB

The XrKeyboardSpaceCreateInfoFB structure is defined as:

// Provided by XR_FB_keyboard_tracking

typedef struct XrKeyboardSpaceCreateInfoFB {

 XrStructureType type;

 void* next;

 uint64_t trackedKeyboardId;

} XrKeyboardSpaceCreateInfoFB;

Chapter 12. List of Current Extensions | 745

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• trackedKeyboardId abstract identifier describing the type of keyboard to track.

XrKeyboardSpaceCreateInfoFB describes a request for the system needed to create a trackable XrSpace

associated with the keyboard.

Valid Usage (Implicit)

• The XR_FB_keyboard_tracking extension must be enabled prior to using

XrKeyboardSpaceCreateInfoFB

• type must be XR_TYPE_KEYBOARD_SPACE_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrQuerySystemTrackedKeyboardFB function is defined as:

// Provided by XR_FB_keyboard_tracking

XrResult xrQuerySystemTrackedKeyboardFB(

 XrSession session,

 const XrKeyboardTrackingQueryFB* queryInfo,

 XrKeyboardTrackingDescriptionFB* keyboard);

Parameter Descriptions

• session is the session that will be associated with a keyboard space.

• queryInfo is the XrKeyboardTrackingQueryFB that describes the type of keyboard to return.

queryInfo must have either XR_KEYBOARD_TRACKING_QUERY_LOCAL_BIT_FB or

XR_KEYBOARD_TRACKING_QUERY_REMOTE_BIT_FB set.

• keyboard is the XrKeyboardTrackingDescriptionFB output structure.

The xrQuerySystemTrackedKeyboardFB function populates an XrKeyboardTrackingDescriptionFB

structure with enough information to describe a keyboard that the system can locate.

746 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_keyboard_tracking extension must be enabled prior to calling

xrQuerySystemTrackedKeyboardFB

• session must be a valid XrSession handle

• queryInfo must be a pointer to a valid XrKeyboardTrackingQueryFB structure

• keyboard must be a pointer to an XrKeyboardTrackingDescriptionFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The xrCreateKeyboardSpaceFB function is defined as:

// Provided by XR_FB_keyboard_tracking

XrResult xrCreateKeyboardSpaceFB(

 XrSession session,

 const XrKeyboardSpaceCreateInfoFB* createInfo,

 XrSpace* keyboardSpace);

Chapter 12. List of Current Extensions | 747

Parameter Descriptions

• session is the session that will be associated with the returned keyboard space.

• createInfo is the XrKeyboardSpaceCreateInfoFB that describes the type of keyboard to track.

• keyboardSpace is the XrSpace output structure.

The xrCreateKeyboardSpaceFB function returns an XrSpace that can be used to locate a physical

keyboard in space. The origin of the created XrSpace is located in the center of the bounding box in the

x and z axes, and at the top of the y axis (meaning the keyboard is located entirely in negative y).

Valid Usage (Implicit)

• The XR_FB_keyboard_tracking extension must be enabled prior to calling

xrCreateKeyboardSpaceFB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrKeyboardSpaceCreateInfoFB structure

• keyboardSpace must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

748 | Chapter 12. List of Current Extensions

Version History

• Revision 1, 2021-08-27 (Federico Schliemann)

◦ Initial extension description

12.63. XR_FB_passthrough

Name String

XR_FB_passthrough

Extension Type

Instance extension

Registered Extension Number

119

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Contributors

Anton Vaneev, Facebook

Cass Everitt, Facebook

Federico Schliemann, Facebook

Johannes Schmid, Facebook

Overview

Passthrough is a way to show a user their physical environment in a light-blocking VR headset.

Applications may use passthrough in a multitude of ways, including:

• Creating AR-like experiences, where virtual objects augment the user’s environment.

• Bringing real objects into a VR experience.

• Mapping the playspace such that a VR experience is customized to it.

This extension allows:

• An application to request passthrough to be composited with the application content.

• An application to specify the compositing and blending rules between passthrough and VR content.

• An application to apply styles, such as color mapping and edge rendering, to passthrough.

• An application to provide a geometry to be used in place of the user’s physical environment.

Chapter 12. List of Current Extensions | 749

Camera images will be projected onto the surface provided by the application. In some cases where

a part of the environment, such as a desk, can be approximated well, this provides better visual

experience.

New Object Types

XR_DEFINE_HANDLE(XrPassthroughFB)

XrPassthroughFB represents a passthrough feature.

XR_DEFINE_HANDLE(XrPassthroughLayerFB)

XrPassthroughLayerFB represents a layer of passthrough content.

XR_DEFINE_HANDLE(XrGeometryInstanceFB)

XrGeometryInstanceFB represents a geometry instance used in a passthrough layer.

New Flag Types

typedef XrFlags64 XrPassthroughFlagsFB;

Specify additional creation behavior.

// Flag bits for XrPassthroughFlagsFB

static const XrPassthroughFlagsFB XR_PASSTHROUGH_IS_RUNNING_AT_CREATION_BIT_FB =

0x00000001;

static const XrPassthroughFlagsFB XR_PASSTHROUGH_LAYER_DEPTH_BIT_FB = 0x00000002;

750 | Chapter 12. List of Current Extensions

Flag Descriptions

• XR_PASSTHROUGH_IS_RUNNING_AT_CREATION_BIT_FB  — The object (passthrough, layer) is running

at creation.

• XR_PASSTHROUGH_LAYER_DEPTH_BIT_FB  — The passthrough system sends depth information to

the compositor. Only applicable to layer objects.

typedef XrFlags64 XrPassthroughStateChangedFlagsFB;

Specify additional state change behavior.

// Flag bits for XrPassthroughStateChangedFlagsFB

static const XrPassthroughStateChangedFlagsFB

XR_PASSTHROUGH_STATE_CHANGED_REINIT_REQUIRED_BIT_FB = 0x00000001;

static const XrPassthroughStateChangedFlagsFB

XR_PASSTHROUGH_STATE_CHANGED_NON_RECOVERABLE_ERROR_BIT_FB = 0x00000002;

static const XrPassthroughStateChangedFlagsFB

XR_PASSTHROUGH_STATE_CHANGED_RECOVERABLE_ERROR_BIT_FB = 0x00000004;

static const XrPassthroughStateChangedFlagsFB

XR_PASSTHROUGH_STATE_CHANGED_RESTORED_ERROR_BIT_FB = 0x00000008;

Flag Descriptions

• XR_PASSTHROUGH_STATE_CHANGED_REINIT_REQUIRED_BIT_FB  — Passthrough system requires

reinitialization.

• XR_PASSTHROUGH_STATE_CHANGED_NON_RECOVERABLE_ERROR_BIT_FB  — Non-recoverable error has

occurred. A device reboot or a firmware update may be required.

• XR_PASSTHROUGH_STATE_CHANGED_RECOVERABLE_ERROR_BIT_FB  — A recoverable error has occurred.

The runtime will attempt to recover, but some functionality may be temporarily unavailable.

• XR_PASSTHROUGH_STATE_CHANGED_RESTORED_ERROR_BIT_FB  — The runtime has recovered from a

previous error and is functioning normally.

typedef XrFlags64 XrPassthroughCapabilityFlagsFB;

Chapter 12. List of Current Extensions | 751

Specify passthrough system capabilities.

// Flag bits for XrPassthroughCapabilityFlagsFB

static const XrPassthroughCapabilityFlagsFB XR_PASSTHROUGH_CAPABILITY_BIT_FB =

0x00000001;

static const XrPassthroughCapabilityFlagsFB XR_PASSTHROUGH_CAPABILITY_COLOR_BIT_FB =

0x00000002;

static const XrPassthroughCapabilityFlagsFB XR_PASSTHROUGH_CAPABILITY_LAYER_DEPTH_BIT_FB

= 0x00000004;

Flag Descriptions

• XR_PASSTHROUGH_CAPABILITY_BIT_FB  — The system supports passthrough.

• XR_PASSTHROUGH_CAPABILITY_COLOR_BIT_FB  — The system can show passthrough with realistic

colors. XR_PASSTHROUGH_CAPABILITY_BIT_FB must be set if

XR_PASSTHROUGH_CAPABILITY_COLOR_BIT_FB is set.

• XR_PASSTHROUGH_CAPABILITY_LAYER_DEPTH_BIT_FB  — The system supports passthrough layers

composited using depth testing. XR_PASSTHROUGH_CAPABILITY_BIT_FB must be set if

XR_PASSTHROUGH_CAPABILITY_LAYER_DEPTH_BIT_FB is set.

New Enum Constants

• XR_PASSTHROUGH_COLOR_MAP_MONO_SIZE_FB

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_PASSTHROUGH_PROPERTIES_FB

• XR_TYPE_PASSTHROUGH_CREATE_INFO_FB

• XR_TYPE_PASSTHROUGH_LAYER_CREATE_INFO_FB

• XR_TYPE_COMPOSITION_LAYER_PASSTHROUGH_FB

• XR_TYPE_GEOMETRY_INSTANCE_CREATE_INFO_FB

• XR_TYPE_GEOMETRY_INSTANCE_TRANSFORM_FB

• XR_TYPE_PASSTHROUGH_STYLE_FB

• XR_TYPE_PASSTHROUGH_COLOR_MAP_MONO_TO_RGBA_FB

• XR_TYPE_PASSTHROUGH_COLOR_MAP_MONO_TO_MONO_FB

• XR_TYPE_PASSTHROUGH_BRIGHTNESS_CONTRAST_SATURATION_FB

• XR_TYPE_EVENT_DATA_PASSTHROUGH_STATE_CHANGED_FB

752 | Chapter 12. List of Current Extensions

XrResult enumeration is extended with:

• XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB The state of an object for which a function is called is not

one of the expected states for that function.

• XR_ERROR_FEATURE_ALREADY_CREATED_PASSTHROUGH_FB An application attempted to create a feature

when one has already been created and only one can exist.

• XR_ERROR_FEATURE_REQUIRED_PASSTHROUGH_FB A feature is required before the function can be called.

• XR_ERROR_NOT_PERMITTED_PASSTHROUGH_FB Operation is not permitted.

• XR_ERROR_INSUFFICIENT_RESOURCES_PASSTHROUGH_FB The runtime does not have sufficient resources to

perform the operation. Either the object being created is too large, or too many objects of a specific

kind have been created.

New Enums

Specify the kind of passthrough behavior the layer provides.

typedef enum XrPassthroughLayerPurposeFB {

 XR_PASSTHROUGH_LAYER_PURPOSE_RECONSTRUCTION_FB = 0,

 XR_PASSTHROUGH_LAYER_PURPOSE_PROJECTED_FB = 1,

 // Provided by XR_FB_passthrough_keyboard_hands

 XR_PASSTHROUGH_LAYER_PURPOSE_TRACKED_KEYBOARD_HANDS_FB = 1000203001,

 // Provided by XR_FB_passthrough_keyboard_hands

 XR_PASSTHROUGH_LAYER_PURPOSE_TRACKED_KEYBOARD_MASKED_HANDS_FB = 1000203002,

 XR_PASSTHROUGH_LAYER_PURPOSE_MAX_ENUM_FB = 0x7FFFFFFF

} XrPassthroughLayerPurposeFB;

Enumerant Descriptions

• XR_PASSTHROUGH_LAYER_PURPOSE_RECONSTRUCTION_FB  — Reconstruction passthrough (full screen

environment)

• XR_PASSTHROUGH_LAYER_PURPOSE_PROJECTED_FB  — Projected passthrough (using a custom

surface)

• XR_PASSTHROUGH_LAYER_PURPOSE_TRACKED_KEYBOARD_HANDS_FB  — Passthrough layer purpose for

keyboard hands presence. (Added by the XR_FB_passthrough_keyboard_hands extension)

• XR_PASSTHROUGH_LAYER_PURPOSE_TRACKED_KEYBOARD_MASKED_HANDS_FB  — Passthrough layer

purpose for keyboard hands presence with keyboard masked hand transitions (i.e

passthrough hands rendered only when they are over the keyboard). (Added by the

XR_FB_passthrough_keyboard_hands extension)

Chapter 12. List of Current Extensions | 753

New Structures

The XrSystemPassthroughPropertiesFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrSystemPassthroughPropertiesFB {

 XrStructureType type;

 const void* next;

 XrBool32 supportsPassthrough;

} XrSystemPassthroughPropertiesFB;

It describes a passthrough system property.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsPassthrough defines whether the system supports the passthrough feature.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrSystemPassthroughPropertiesFB

• type must be XR_TYPE_SYSTEM_PASSTHROUGH_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Structures

The XrSystemPassthroughProperties2FB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrSystemPassthroughProperties2FB {

 XrStructureType type;

 const void* next;

 XrPassthroughCapabilityFlagsFB capabilities;

} XrSystemPassthroughProperties2FB;

754 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Applications can pass this structure in a call to xrGetSystemProperties to query passthrough system

properties. Applications should verify that the runtime implements XR_FB_passthrough spec version 3

or newer before doing so. In older versions, this structure is not supported and will be left

unpopulated. Applications should use XrSystemPassthroughPropertiesFB in that case.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• capabilities defines a set of features supported by the passthrough system.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrSystemPassthroughProperties2FB

• type must be XR_TYPE_SYSTEM_PASSTHROUGH_PROPERTIES2_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrPassthroughCreateInfoFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrPassthroughCreateInfoFB {

 XrStructureType type;

 const void* next;

 XrPassthroughFlagsFB flags;

} XrPassthroughCreateInfoFB;

It contains parameters used to specify a new passthrough feature.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrPassthroughFlagBitsFB that specify additional behavior.

Chapter 12. List of Current Extensions | 755

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using XrPassthroughCreateInfoFB

• type must be XR_TYPE_PASSTHROUGH_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be a valid combination of XrPassthroughFlagBitsFB values

• flags must not be 0

The XrPassthroughLayerCreateInfoFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrPassthroughLayerCreateInfoFB {

 XrStructureType type;

 const void* next;

 XrPassthroughFB passthrough;

 XrPassthroughFlagsFB flags;

 XrPassthroughLayerPurposeFB purpose;

} XrPassthroughLayerCreateInfoFB;

It contains parameters used to specify a new passthrough layer.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• passthrough an XrPassthroughFB handle.

• flags XrPassthroughFlagsFB that specify additional behavior.

• purpose XrPassthroughLayerPurposeFB that specifies the layer’s purpose.

756 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrPassthroughLayerCreateInfoFB

• type must be XR_TYPE_PASSTHROUGH_LAYER_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• passthrough must be a valid XrPassthroughFB handle

• flags must be a valid combination of XrPassthroughFlagBitsFB values

• flags must not be 0

• purpose must be a valid XrPassthroughLayerPurposeFB value

The XrCompositionLayerPassthroughFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrCompositionLayerPassthroughFB {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags flags;

 XrSpace space;

 XrPassthroughLayerFB layerHandle;

} XrCompositionLayerPassthroughFB;

It is a composition layer type that may be submitted in xrEndFrame where an

XrCompositionLayerBaseHeader is specified, as a stand-in for the actual passthrough contents.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrCompositionLayerFlagBits that specify additional behavior.

• space is the XrSpace that specifies the layer’s space - must be XR_NULL_HANDLE.

• layerHandle is the XrPassthroughLayerFB that defines this layer’s behavior.

Chapter 12. List of Current Extensions | 757

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrCompositionLayerPassthroughFB

• type must be XR_TYPE_COMPOSITION_LAYER_PASSTHROUGH_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be a valid combination of XrCompositionLayerFlagBits values

• flags must not be 0

• space must be a valid XrSpace handle

• layerHandle must be a valid XrPassthroughLayerFB handle

• Both of layerHandle and space must have been created, allocated, or retrieved from the same

XrSession

The XrGeometryInstanceCreateInfoFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrGeometryInstanceCreateInfoFB {

 XrStructureType type;

 const void* next;

 XrPassthroughLayerFB layer;

 XrTriangleMeshFB mesh;

 XrSpace baseSpace;

 XrPosef pose;

 XrVector3f scale;

} XrGeometryInstanceCreateInfoFB;

It contains parameters to specify a new geometry instance.

758 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layer is the XrPassthroughLayerFB.

• mesh is the XrTriangleMeshFB.

• baseSpace is the XrSpace that defines the geometry instance’s base space for transformations.

• pose is the XrPosef that defines the geometry instance’s pose.

• scale is the XrVector3f that defines the geometry instance’s scale.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrGeometryInstanceCreateInfoFB

• type must be XR_TYPE_GEOMETRY_INSTANCE_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• layer must be a valid XrPassthroughLayerFB handle

• mesh must be a valid XrTriangleMeshFB handle

• baseSpace must be a valid XrSpace handle

• Each of baseSpace, layer, and mesh must have been created, allocated, or retrieved from the

same XrSession

The XrGeometryInstanceTransformFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrGeometryInstanceTransformFB {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

 XrPosef pose;

 XrVector3f scale;

} XrGeometryInstanceTransformFB;

It describes a transformation for a geometry instance.

Chapter 12. List of Current Extensions | 759

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace is the XrSpace that defines the geometry instance’s base space for transformations.

• time is the XrTime that define the time at which the transform is applied.

• pose is the XrPosef that defines the geometry instance’s pose.

• scale is the XrVector3f that defines the geometry instance’s scale.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrGeometryInstanceTransformFB

• type must be XR_TYPE_GEOMETRY_INSTANCE_TRANSFORM_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

The XrPassthroughStyleFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrPassthroughStyleFB {

 XrStructureType type;

 const void* next;

 float textureOpacityFactor;

 XrColor4f edgeColor;

} XrPassthroughStyleFB;

760 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• textureOpacityFactor is the opacity of the passthrough imagery in the range [0, 1].

• edgeColor is the XrColor4f that defines the edge rendering color. Edges are detected in the

original passthrough imagery and rendered on top of it. Edge rendering is disabled when the

alpha value of edgeColor is zero.

XrPassthroughStyleFB lets applications customize the appearance of passthrough layers. In addition to

the parameters specified here, applications may add one of the following structures to the structure

chain: XrPassthroughColorMapMonoToRgbaFB, XrPassthroughColorMapMonoToMonoFB,

XrPassthroughBrightnessContrastSaturationFB. These structures are mutually exclusive. The runtime

must return XR_ERROR_VALIDATION_FAILURE if more than one of them are present in the structure chain.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using XrPassthroughStyleFB

• type must be XR_TYPE_PASSTHROUGH_STYLE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrPassthroughBrightnessContrastSaturationFB,

XrPassthroughColorMapInterpolatedLutMETA, XrPassthroughColorMapLutMETA,

XrPassthroughColorMapMonoToMonoFB, XrPassthroughColorMapMonoToRgbaFB

The XrPassthroughColorMapMonoToRgbaFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrPassthroughColorMapMonoToRgbaFB {

 XrStructureType type;

 const void* next;

 XrColor4f textureColorMap[XR_PASSTHROUGH_COLOR_MAP_MONO_SIZE_FB];

} XrPassthroughColorMapMonoToRgbaFB;

Chapter 12. List of Current Extensions | 761

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• textureColorMap is an array of XrColor4f colors to which the passthrough imagery luminance

values are mapped.

XrPassthroughColorMapMonoToRgbaFB lets applications define a map which replaces each input

luminance value in the passthrough imagery with an RGBA color value. The map is applied before any

additional effects (such as edges) are rendered on top.

XrPassthroughColorMapMonoToRgbaFB is provided in the next chain of XrPassthroughStyleFB.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrPassthroughColorMapMonoToRgbaFB

• type must be XR_TYPE_PASSTHROUGH_COLOR_MAP_MONO_TO_RGBA_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrPassthroughColorMapMonoToMonoFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrPassthroughColorMapMonoToMonoFB {

 XrStructureType type;

 const void* next;

 uint8_t textureColorMap[XR_PASSTHROUGH_COLOR_MAP_MONO_SIZE_FB];

} XrPassthroughColorMapMonoToMonoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• textureColorMap is an array of uint8_t grayscale color values to which the passthrough

luminance values are mapped.

XrPassthroughColorMapMonoToMonoFB lets applications define a map which replaces each input

762 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

luminance value in the passthrough imagery with a grayscale color value defined in textureColorMap.

The map is applied before any additional effects (such as edges) are rendered on top.

XrPassthroughColorMapMonoToMonoFB is provided in the next chain of XrPassthroughStyleFB.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrPassthroughColorMapMonoToMonoFB

• type must be XR_TYPE_PASSTHROUGH_COLOR_MAP_MONO_TO_MONO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrPassthroughBrightnessContrastSaturationFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrPassthroughBrightnessContrastSaturationFB {

 XrStructureType type;

 const void* next;

 float brightness;

 float contrast;

 float saturation;

} XrPassthroughBrightnessContrastSaturationFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• brightness is the brightness adjustment value in the range [-100, 100]. The neutral element is

0.

• contrast is the contrast adjustment value in the range [0, Infinity]. The neutral element is 1.

• saturation is the saturation adjustment value in the range [0, Infinity]. The neutral element is

1.

XrPassthroughBrightnessContrastSaturationFB lets applications adjust the brightness, contrast, and

saturation of passthrough layers. The adjustments only are applied before any additional effects (such

as edges) are rendered on top.

The adjustments are applied in CIELAB color space (white point D65) using the following formulas:

Chapter 12. List of Current Extensions | 763

#valid-usage-for-structure-pointer-chains

• L*' = clamp((L* - 50) × contrast + 50, 0, 100)

• L*'' = clamp(L*' + brightness, 0, 100)

• (a*', b*') = (a*, b*) × saturation

• Resulting color: (L*'', a*', b*')

XrPassthroughBrightnessContrastSaturationFB is provided in the next chain of XrPassthroughStyleFB.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrPassthroughBrightnessContrastSaturationFB

• type must be XR_TYPE_PASSTHROUGH_BRIGHTNESS_CONTRAST_SATURATION_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataPassthroughStateChangedFB structure is defined as:

// Provided by XR_FB_passthrough

typedef struct XrEventDataPassthroughStateChangedFB {

 XrStructureType type;

 const void* next;

 XrPassthroughStateChangedFlagsFB flags;

} XrEventDataPassthroughStateChangedFB;

It describes an event data for state changes return by xrPollEvent.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags XrPassthroughStateChangedFlagsFB that specify additional behavior.

764 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to using

XrEventDataPassthroughStateChangedFB

• type must be XR_TYPE_EVENT_DATA_PASSTHROUGH_STATE_CHANGED_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be a valid combination of XrPassthroughStateChangedFlagBitsFB values

• flags must not be 0

New Functions

The xrCreatePassthroughFB function is defined as:

// Provided by XR_FB_passthrough

XrResult xrCreatePassthroughFB(

 XrSession session,

 const XrPassthroughCreateInfoFB* createInfo,

 XrPassthroughFB* outPassthrough);

Parameter Descriptions

• session is the XrSession.

• createInfo is the XrPassthroughCreateInfoFB.

• outPassthrough is the XrPassthroughFB.

Creates an XrPassthroughFB handle. The returned passthrough handle may be subsequently used in

API calls.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling xrCreatePassthroughFB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrPassthroughCreateInfoFB structure

• outPassthrough must be a pointer to an XrPassthroughFB handle

Chapter 12. List of Current Extensions | 765

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_UNKNOWN_PASSTHROUGH_FB

• XR_ERROR_NOT_PERMITTED_PASSTHROUGH_FB

• XR_ERROR_FEATURE_UNSUPPORTED

• XR_ERROR_FEATURE_ALREADY_CREATED_PASSTHROUGH_FB

The xrDestroyPassthroughFB function is defined as:

// Provided by XR_FB_passthrough

XrResult xrDestroyPassthroughFB(

 XrPassthroughFB passthrough);

Parameter Descriptions

• passthrough is the XrPassthroughFB to be destroyed.

Destroys an XrPassthroughFB handle.

766 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling xrDestroyPassthroughFB

• passthrough must be a valid XrPassthroughFB handle

Thread Safety

• Access to passthrough, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

The xrPassthroughStartFB function is defined as:

// Provided by XR_FB_passthrough

XrResult xrPassthroughStartFB(

 XrPassthroughFB passthrough);

Parameter Descriptions

• passthrough is the XrPassthroughFB to be started.

Starts an XrPassthroughFB feature. If the feature is not started, either explicitly with a call to

xrPassthroughStartFB, or implicitly at creation using the behavior flags, it is considered paused. When

the feature is paused, runtime will stop rendering and compositing all passthrough layers produced on

behalf of the application, and may free up some or all the resources used to produce passthrough until

xrPassthroughStartFB is called.

Chapter 12. List of Current Extensions | 767

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling xrPassthroughStartFB

• passthrough must be a valid XrPassthroughFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrPassthroughPauseFB function is defined as:

// Provided by XR_FB_passthrough

XrResult xrPassthroughPauseFB(

 XrPassthroughFB passthrough);

Parameter Descriptions

• passthrough is the XrPassthroughFB to be paused.

Pauses an XrPassthroughFB feature. When the feature is paused, runtime will stop rendering and

compositing all passthrough layers produced on behalf of the application, and may free up some or all

the resources used to produce passthrough until xrPassthroughStartFB is called.

768 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling xrPassthroughPauseFB

• passthrough must be a valid XrPassthroughFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrCreatePassthroughLayerFB function is defined as:

// Provided by XR_FB_passthrough

XrResult xrCreatePassthroughLayerFB(

 XrSession session,

 const XrPassthroughLayerCreateInfoFB* createInfo,

 XrPassthroughLayerFB* outLayer);

Parameter Descriptions

• session is the XrSession.

• createInfo is the XrPassthroughLayerCreateInfoFB.

• outLayer is the XrPassthroughLayerFB.

Chapter 12. List of Current Extensions | 769

Creates an XrPassthroughLayerFB handle. The returned layer handle may be subsequently used in API

calls. Layer objects may be used to specify rendering properties of the layer, such as styles, and

compositing rules.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling

xrCreatePassthroughLayerFB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrPassthroughLayerCreateInfoFB structure

• outLayer must be a pointer to an XrPassthroughLayerFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_UNKNOWN_PASSTHROUGH_FB

• XR_ERROR_INSUFFICIENT_RESOURCES_PASSTHROUGH_FB

• XR_ERROR_FEATURE_UNSUPPORTED

• XR_ERROR_FEATURE_REQUIRED_PASSTHROUGH_FB

The xrDestroyPassthroughLayerFB function is defined as:

770 | Chapter 12. List of Current Extensions

// Provided by XR_FB_passthrough

XrResult xrDestroyPassthroughLayerFB(

 XrPassthroughLayerFB layer);

Parameter Descriptions

• layer is the XrPassthroughLayerFB to be destroyed.

Destroys an XrPassthroughLayerFB handle.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling

xrDestroyPassthroughLayerFB

• layer must be a valid XrPassthroughLayerFB handle

Thread Safety

• Access to layer, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

The xrPassthroughLayerPauseFB function is defined as:

Chapter 12. List of Current Extensions | 771

// Provided by XR_FB_passthrough

XrResult xrPassthroughLayerPauseFB(

 XrPassthroughLayerFB layer);

Parameter Descriptions

• layer is the XrPassthroughLayerFB to be paused.

Pauses an XrPassthroughLayerFB layer. Runtime will not render or composite paused layers.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling

xrPassthroughLayerPauseFB

• layer must be a valid XrPassthroughLayerFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrPassthroughLayerResumeFB function is defined as:

772 | Chapter 12. List of Current Extensions

// Provided by XR_FB_passthrough

XrResult xrPassthroughLayerResumeFB(

 XrPassthroughLayerFB layer);

Parameter Descriptions

• layer is the XrPassthroughLayerFB to be resumed.

Resumes an XrPassthroughLayerFB layer.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling

xrPassthroughLayerResumeFB

• layer must be a valid XrPassthroughLayerFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrPassthroughLayerSetStyleFB function is defined as:

Chapter 12. List of Current Extensions | 773

// Provided by XR_FB_passthrough

XrResult xrPassthroughLayerSetStyleFB(

 XrPassthroughLayerFB layer,

 const XrPassthroughStyleFB* style);

Parameter Descriptions

• layer is the XrPassthroughLayerFB to get the style.

• style is the XrPassthroughStyleFB to be set.

Sets an XrPassthroughStyleFB style on an XrPassthroughLayerFB layer.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling

xrPassthroughLayerSetStyleFB

• layer must be a valid XrPassthroughLayerFB handle

• style must be a pointer to a valid XrPassthroughStyleFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The xrCreateGeometryInstanceFB function is defined as:

774 | Chapter 12. List of Current Extensions

// Provided by XR_FB_passthrough

XrResult xrCreateGeometryInstanceFB(

 XrSession session,

 const XrGeometryInstanceCreateInfoFB* createInfo,

 XrGeometryInstanceFB* outGeometryInstance);

Parameter Descriptions

• session is the XrSession.

• createInfo is the XrGeometryInstanceCreateInfoFB.

• outGeometryInstance is the XrGeometryInstanceFB.

Creates an XrGeometryInstanceFB handle. Geometry instance functionality requires

XR_FB_triangle_mesh extension to be enabled. An XrGeometryInstanceFB connects a layer, a mesh, and

a transformation, with the semantics that a specific mesh will be instantiated in a specific layer with a

specific transformation. A mesh can be instantiated multiple times, in the same or in different layers.

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling

xrCreateGeometryInstanceFB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrGeometryInstanceCreateInfoFB structure

• outGeometryInstance must be a pointer to an XrGeometryInstanceFB handle

Chapter 12. List of Current Extensions | 775

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

• XR_ERROR_INSUFFICIENT_RESOURCES_PASSTHROUGH_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrDestroyGeometryInstanceFB function is defined as:

// Provided by XR_FB_passthrough

XrResult xrDestroyGeometryInstanceFB(

 XrGeometryInstanceFB instance);

Parameter Descriptions

• instance is the XrGeometryInstanceFB to be destroyed.

Destroys an XrGeometryInstanceFB handle. Destroying an XrGeometryInstanceFB does not destroy a

mesh and does not free mesh resources. Destroying a layer invalidates all geometry instances attached

to it. Destroying a mesh invalidates all its instances.

776 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling

xrDestroyGeometryInstanceFB

• instance must be a valid XrGeometryInstanceFB handle

Thread Safety

• Access to instance, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

The xrGeometryInstanceSetTransformFB function is defined as:

// Provided by XR_FB_passthrough

XrResult xrGeometryInstanceSetTransformFB(

 XrGeometryInstanceFB instance,

 const XrGeometryInstanceTransformFB* transformation);

Parameter Descriptions

• instance is the XrGeometryInstanceFB to get the transform.

• transformation is the XrGeometryInstanceTransformFB to be set.

Sets an XrGeometryInstanceTransformFB transform on an XrGeometryInstanceFB geometry instance.

Chapter 12. List of Current Extensions | 777

Valid Usage (Implicit)

• The XR_FB_passthrough extension must be enabled prior to calling

xrGeometryInstanceSetTransformFB

• instance must be a valid XrGeometryInstanceFB handle

• transformation must be a pointer to a valid XrGeometryInstanceTransformFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

• XR_ERROR_POSE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2021-09-01 (Anton Vaneev)

◦ Initial extension description

• Revision 2, 2022-03-16 (Johannes Schmid)

◦ Introduce XrPassthroughBrightnessContrastSaturationFB.

◦ Revise the documentation of XrPassthroughStyleFB and its descendants.

• Revision 3, 2022-07-14 (Johannes Schmid)

◦ Introduce a new struct for querying passthrough system capabilities:

XrSystemPassthroughProperties2FB.

778 | Chapter 12. List of Current Extensions

◦ Introduce a new flag bit that enables submission of depth maps for compositing:

XR_PASSTHROUGH_LAYER_DEPTH_BIT_FB.

12.64. XR_FB_passthrough_keyboard_hands

Name String

XR_FB_passthrough_keyboard_hands

Extension Type

Instance extension

Registered Extension Number

204

Revision

2

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_passthrough

Contributors

Ante Trbojevic, Facebook

Cass Everitt, Facebook

Federico Schliemann, Facebook

Anton Vaneev, Facebook

Johannes Schmid, Facebook

Overview

This extension enables applications to show passthrough hands when hands are placed over the

tracked keyboard. It enables users to see their hands over the keyboard in a mixed reality application.

This extension is dependent on XR_FB_passthrough extension which can be used to create a passthrough

layer for hand presence use-case.

The extension supports a single pair of hands (one left and one right hand), multiple pair of hands are

not supported.

This extension allows:

• Creation of keyboard hands passthrough layer using xrCreatePassthroughLayerFB

• Setting the level of intensity for the hand mask in a passthrough layer with purpose

XrPassthroughLayerPurposeFB as XR_PASSTHROUGH_LAYER_PURPOSE_TRACKED_KEYBOARD_HANDS_FB or
XR_PASSTHROUGH_LAYER_PURPOSE_TRACKED_KEYBOARD_MASKED_HANDS_FB

Chapter 12. List of Current Extensions | 779

New Enum Constants

XrPassthroughLayerPurposeFB enumeration is extended with a new constant:

• XR_PASSTHROUGH_LAYER_PURPOSE_TRACKED_KEYBOARD_HANDS_FB - It defines a keyboard hands presence

purpose of passthrough layer (i.e. basic mode, without hand transitions).

• XR_PASSTHROUGH_LAYER_PURPOSE_TRACKED_KEYBOARD_MASKED_HANDS_FB - It defines a keyboard hands

presence purpose of passthrough layer with keyboard masked hand transitions. A hand mask will

be visible only when hands are inside the region of VR keyboard (i.e. hands over the keyboard).

XrStructureType enumeration is extended with:

• XR_TYPE_PASSTHROUGH_KEYBOARD_HANDS_INTENSITY_FB

New Structures

The XrPassthroughKeyboardHandsIntensityFB structure is defined as:

// Provided by XR_FB_passthrough_keyboard_hands

typedef struct XrPassthroughKeyboardHandsIntensityFB {

 XrStructureType type;

 const void* next;

 float leftHandIntensity;

 float rightHandIntensity;

} XrPassthroughKeyboardHandsIntensityFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• leftHandIntensity defines an intensity for the left tracked hand.

• rightHandIntensity defines an intensity for the right tracked hand.

XrPassthroughKeyboardHandsIntensityFB describes intensities of passthrough hands, and is used as a

parameter to xrPassthroughLayerSetKeyboardHandsIntensityFB.

Each of the intensity values leftHandIntensity and rightHandIntensity must be in the range [0.0, 1.0].

The hand intensity value represents the level of visibility of rendered hand, the minimal value of the

intensity 0.0 represents the fully transparent hand (not visible), the maximal value of 1.0 represented

fully opaque hands (maximal visibility).

780 | Chapter 12. List of Current Extensions

If either leftHandIntensity or rightHandIntensity is outside the range [0.0, 1.0], the runtime must

return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• The XR_FB_passthrough_keyboard_hands extension must be enabled prior to using

XrPassthroughKeyboardHandsIntensityFB

• type must be XR_TYPE_PASSTHROUGH_KEYBOARD_HANDS_INTENSITY_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrPassthroughLayerSetKeyboardHandsIntensityFB function is defined as:

// Provided by XR_FB_passthrough_keyboard_hands

XrResult xrPassthroughLayerSetKeyboardHandsIntensityFB(

 XrPassthroughLayerFB layer,

 const XrPassthroughKeyboardHandsIntensityFB* intensity);

Parameter Descriptions

• layer is the XrPassthroughLayerFB to apply the intensity.

• intensity is the XrPassthroughKeyboardHandsIntensityFB to be set.

Sets an XrPassthroughKeyboardHandsIntensityFB intensity on an XrPassthroughLayerFB layer.

Valid Usage (Implicit)

• The XR_FB_passthrough_keyboard_hands extension must be enabled prior to calling

xrPassthroughLayerSetKeyboardHandsIntensityFB

• layer must be a valid XrPassthroughLayerFB handle

• intensity must be a pointer to a valid XrPassthroughKeyboardHandsIntensityFB structure

Chapter 12. List of Current Extensions | 781

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2021-11-23 (Ante Trbojevic)

◦ Initial extension description

• Revision 2, 2022-03-16 (Ante Trbojevic)

◦ Introduce XR_PASSTHROUGH_LAYER_PURPOSE_TRACKED_KEYBOARD_MASKED_HANDS_FB

12.65. XR_FB_render_model

Name String

XR_FB_render_model

Extension Type

Instance extension

Registered Extension Number

120

Revision

4

Extension and Version Dependencies

OpenXR 1.0

782 | Chapter 12. List of Current Extensions

Contributors

Leonard Tsai, Meta

Xiang Wei, Meta

Robert Memmott, Meta

Overview

This extension allows applications to request GLTF models for certain connected devices supported by

the runtime. Paths that correspond to these devices will be provided through the extension and can be

used to get information about the models as well as loading them.

New Flag Types

typedef XrFlags64 XrRenderModelFlagsFB;

// Flag bits for XrRenderModelFlagsFB

static const XrRenderModelFlagsFB XR_RENDER_MODEL_SUPPORTS_GLTF_2_0_SUBSET_1_BIT_FB =

0x00000001;

static const XrRenderModelFlagsFB XR_RENDER_MODEL_SUPPORTS_GLTF_2_0_SUBSET_2_BIT_FB =

0x00000002;

Flag Descriptions

• XR_RENDER_MODEL_SUPPORTS_GLTF_2_0_SUBSET_1_BIT_FB  — Minimal level of support. Can only

contain a single mesh. Can only contain a single texture. Can not contain transparency.

Assumes unlit rendering. Requires Extension KHR_texturebasisu.

• XR_RENDER_MODEL_SUPPORTS_GLTF_2_0_SUBSET_2_BIT_FB  — All of

XR_RENDER_MODEL_SUPPORTS_GLTF_2_0_SUBSET_1_BIT_FB support plus: Multiple meshes.

Multiple Textures. Texture Transparency.

Render Model Support Levels: An application should request a model of a certain complexity via the

XrRenderModelCapabilitiesRequestFB on the structure chain of XrRenderModelPropertiesFB passed

into xrGetRenderModelPropertiesFB. The flags on the XrRenderModelCapabilitiesRequestFB are an

acknowledgement of the application’s ability to render such a model. Multiple values of

XrRenderModelFlagBitsFB can be set on this variable to indicate acceptance of different support levels.

The flags parameter on the XrRenderModelPropertiesFB will indicate what capabilities the model in

the runtime actually requires. It will be set to a single value of XrRenderModelFlagBitsFB.

New Enum Constants

Chapter 12. List of Current Extensions | 783

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_RENDER_MODEL_PROPERTIES_FB

• XR_TYPE_RENDER_MODEL_PATH_INFO_FB

• XR_TYPE_RENDER_MODEL_PROPERTIES_FB

• XR_TYPE_RENDER_MODEL_BUFFER_FB

• XR_TYPE_RENDER_MODEL_LOAD_INFO_FB

• XR_MAX_RENDER_MODEL_NAME_SIZE_FB

New Defines

// Provided by XR_FB_render_model

#define XR_NULL_RENDER_MODEL_KEY_FB 0

XR_NULL_RENDER_MODEL_KEY_FB defines an invalid model key atom.

New Base Types

// Provided by XR_FB_render_model

XR_DEFINE_ATOM(XrRenderModelKeyFB)

The unique model key used to retrieve the data for the render model that is valid across multiple

instances and installs. The application can use this key along with the model version to update its

cached or saved version of the model.

New Structures

The XrSystemRenderModelPropertiesFB structure is defined as:

// Provided by XR_FB_render_model

typedef struct XrSystemRenderModelPropertiesFB {

 XrStructureType type;

 void* next;

 XrBool32 supportsRenderModelLoading;

} XrSystemRenderModelPropertiesFB;

784 | Chapter 12. List of Current Extensions

It describes a render model system property.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsRenderModelLoading defines whether the system supports loading render models.

Valid Usage (Implicit)

• The XR_FB_render_model extension must be enabled prior to using

XrSystemRenderModelPropertiesFB

• type must be XR_TYPE_SYSTEM_RENDER_MODEL_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrRenderModelPathInfoFB structure is defined as:

// Provided by XR_FB_render_model

typedef struct XrRenderModelPathInfoFB {

 XrStructureType type;

 void* next;

 XrPath path;

} XrRenderModelPathInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• path is a valid XrPath used for retrieving model properties from

xrGetRenderModelPropertiesFB.

XrRenderModelPathInfoFB contains a model path supported by the device when returned from

xrEnumerateRenderModelPathsFB. This path can be used to request information about the render

model for the connected device that the path represents using xrGetRenderModelPropertiesFB.

Chapter 12. List of Current Extensions | 785

#valid-usage-for-structure-pointer-chains

Possible Render Model Paths

• Controller models with origin at the grip pose.

◦ /model_fb/controller/left

◦ /model_fb/controller/right

• Keyboard models with origin at the center of its bounding box.

◦ /model_fb/keyboard/local

◦ /model_fb/keyboard/remote

◦ /model_meta/keyboard/virtual

(if the XR_META_virtual_keyboard extension is enabled)

Valid Usage (Implicit)

• The XR_FB_render_model extension must be enabled prior to using XrRenderModelPathInfoFB

• type must be XR_TYPE_RENDER_MODEL_PATH_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrRenderModelPropertiesFB structure is defined as:

// Provided by XR_FB_render_model

typedef struct XrRenderModelPropertiesFB {

 XrStructureType type;

 void* next;

 uint32_t vendorId;

 char modelName[XR_MAX_RENDER_MODEL_NAME_SIZE_FB];

 XrRenderModelKeyFB modelKey;

 uint32_t modelVersion;

 XrRenderModelFlagsFB flags;

} XrRenderModelPropertiesFB;

786 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

XrRenderModelCapabilitiesRequestFB is a structure in this structure chain and should be

linked when this structure is passed to xrGetRenderModelPropertiesFB.

• vendorId is the vendor id of the model.

• modelName is the name of the model.

• modelKey is the unique model key used to load the model in xrLoadRenderModelFB.

• modelVersion is the version number of the model.

• flags is a bitmask of XrRenderModelFlagsFB. After a successful call to

xrGetRenderModelPropertiesFB, flags must contain the support level of the model and no

other support levels.

XrRenderModelPropertiesFB contains information about the render model for a device.

XrRenderModelPropertiesFB must be provided when calling xrGetRenderModelPropertiesFB. The

XrRenderModelKeyFB included in the properties is a unique key for each render model that is valid across

multiple instances and installs.

If the application decides to cache or save the render model in any way, modelVersion can be used to

determine if the render model has changed. The application should then update its cached or saved

version.

Valid Usage (Implicit)

• The XR_FB_render_model extension must be enabled prior to using

XrRenderModelPropertiesFB

• type must be XR_TYPE_RENDER_MODEL_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrRenderModelCapabilitiesRequestFB

• modelName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_RENDER_MODEL_NAME_SIZE_FB

• flags must be a valid combination of XrRenderModelFlagBitsFB values

• flags must not be 0

The XrRenderModelCapabilitiesRequestFB structure is defined as:

Chapter 12. List of Current Extensions | 787

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_render_model

typedef struct XrRenderModelCapabilitiesRequestFB {

 XrStructureType type;

 void* next;

 XrRenderModelFlagsFB flags;

} XrRenderModelCapabilitiesRequestFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bit mask of the model complexities that the application is able to support.

XrRenderModelCapabilitiesRequestFB contains information about the render capabilities requested

for a model. XrRenderModelCapabilitiesRequestFB must be set in the structure chain of the next

pointer on the XrRenderModelPropertiesFB passed into the xrGetRenderModelPropertiesFB call. The

flags on XrRenderModelCapabilitiesRequestFB represent an acknowledgement of being able to handle

the individual model capability levels. If no XrRenderModelCapabilitiesRequestFB is on the structure

chain then the runtime should treat it as if a value of

XR_RENDER_MODEL_SUPPORTS_GLTF_2_0_SUBSET_1_BIT_FB was set. If the runtime does not have a model

available that matches any of the supports flags set, then it must return a

XR_RENDER_MODEL_UNAVAILABLE_FB result.

Valid Usage (Implicit)

• The XR_FB_render_model extension must be enabled prior to using

XrRenderModelCapabilitiesRequestFB

• type must be XR_TYPE_RENDER_MODEL_CAPABILITIES_REQUEST_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be a valid combination of XrRenderModelFlagBitsFB values

• flags must not be 0

The XrRenderModelLoadInfoFB structure is defined as:

788 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_render_model

typedef struct XrRenderModelLoadInfoFB {

 XrStructureType type;

 void* next;

 XrRenderModelKeyFB modelKey;

} XrRenderModelLoadInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• modelKey is the unique model key for a connected device.

XrRenderModelLoadInfoFB is used to provide information about which render model to load.

XrRenderModelLoadInfoFB must be provided when calling xrLoadRenderModelFB.

Valid Usage (Implicit)

• The XR_FB_render_model extension must be enabled prior to using XrRenderModelLoadInfoFB

• type must be XR_TYPE_RENDER_MODEL_LOAD_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrRenderModelBufferFB structure is defined as:

// Provided by XR_FB_render_model

typedef struct XrRenderModelBufferFB {

 XrStructureType type;

 void* next;

 uint32_t bufferCapacityInput;

 uint32_t bufferCountOutput;

 uint8_t* buffer;

} XrRenderModelBufferFB;

Chapter 12. List of Current Extensions | 789

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• bufferCapacityInput is the capacity of the buffer, or 0 to retrieve the required capacity.

• bufferCountOutput is the count of uint8_t buffer written, or the required capacity in the case

that bufferCapacityInput is insufficient.

• buffer is a pointer to an application-allocated array that will be filled with the render model

binary data.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

XrRenderModelBufferFB is used when loading the binary data for a render model.

XrRenderModelBufferFB must be provided when calling xrLoadRenderModelFB.

Valid Usage (Implicit)

• The XR_FB_render_model extension must be enabled prior to using XrRenderModelBufferFB

• type must be XR_TYPE_RENDER_MODEL_BUFFER_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

uint8_t values

New Functions

The xrEnumerateRenderModelPathsFB function is defined as:

// Provided by XR_FB_render_model

XrResult xrEnumerateRenderModelPathsFB(

 XrSession session,

 uint32_t pathCapacityInput,

 uint32_t* pathCountOutput,

 XrRenderModelPathInfoFB* paths);

790 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the specified XrSession.

• pathCapacityInput is the capacity of the paths, or 0 to retrieve the required capacity.

• pathCountOutput is a pointer to the count of float paths written, or a pointer to the required

capacity in the case that pathCapacityInput is insufficient.

• paths is a pointer to an application-allocated array that will be filled with

XrRenderModelPathInfoFB values that are supported by the runtime, but can be NULL if

pathCapacityInput is 0

• See the Buffer Size Parameters section for a detailed description of retrieving the required

paths size.

The application must call xrEnumerateRenderModelPathsFB to enumerate the valid render model

paths that are supported by the runtime before calling xrGetRenderModelPropertiesFB. The paths

returned may be used later in xrGetRenderModelPropertiesFB.

Valid Usage (Implicit)

• The XR_FB_render_model extension must be enabled prior to calling

xrEnumerateRenderModelPathsFB

• session must be a valid XrSession handle

• pathCountOutput must be a pointer to a uint32_t value

• If pathCapacityInput is not 0, paths must be a pointer to an array of pathCapacityInput

XrRenderModelPathInfoFB structures

Chapter 12. List of Current Extensions | 791

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

The xrGetRenderModelPropertiesFB function is defined as:

// Provided by XR_FB_render_model

XrResult xrGetRenderModelPropertiesFB(

 XrSession session,

 XrPath path,

 XrRenderModelPropertiesFB* properties);

Parameter Descriptions

• session is the specified XrSession.

• path is the path of the render model to get the properties for.

• properties is a pointer to the XrRenderModelPropertiesFB to write the render model

information to.

xrGetRenderModelPropertiesFB is used for getting information for a render model using a path

retrieved from xrEnumerateRenderModelPathsFB. The information returned will be for the connected

device that corresponds to the path given. For example, using /model_fb/controller/left will return

information for the left controller that is currently connected and will change if a different device that

also represents a left controller is connected.

The runtime must return XR_ERROR_CALL_ORDER_INVALID if xrGetRenderModelPropertiesFB is called with

render model paths before calling xrEnumerateRenderModelPathsFB. The runtime must return

792 | Chapter 12. List of Current Extensions

XR_ERROR_PATH_INVALID if a path not given by xrEnumerateRenderModelPathsFB is used.

If xrGetRenderModelPropertiesFB returns a success code of XR_RENDER_MODEL_UNAVAILABLE_FB and has a

XrRenderModelPropertiesFB::modelKey of XR_NULL_RENDER_MODEL_KEY_FB, this indicates that the

model for the device is unavailable. The application may keep calling xrGetRenderModelPropertiesFB

because the model may become available later when a device is connected.

Valid Usage (Implicit)

• The XR_FB_render_model extension must be enabled prior to calling

xrGetRenderModelPropertiesFB

• session must be a valid XrSession handle

• properties must be a pointer to an XrRenderModelPropertiesFB structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_RENDER_MODEL_UNAVAILABLE_FB

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_CALL_ORDER_INVALID

The xrLoadRenderModelFB function is defined as:

Chapter 12. List of Current Extensions | 793

// Provided by XR_FB_render_model

XrResult xrLoadRenderModelFB(

 XrSession session,

 const XrRenderModelLoadInfoFB* info,

 XrRenderModelBufferFB* buffer);

Parameter Descriptions

• session is the specified XrSession.

• info is a pointer to the XrRenderModelLoadInfoFB structure.

• buffer is a pointer to the XrRenderModelBufferFB structure to write the binary data into.

xrLoadRenderModelFB is used to load the GLTF model data using a valid XrRenderModelLoadInfoFB

::modelKey. xrLoadRenderModelFB loads the model as a byte buffer containing the GLTF in the binary

format (GLB). The GLB data must conform to the glTF 2.0 format defined at

https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html. The GLB may contain texture data in a format

that requires the use of the KHR_texture_basisu GLTF extension defined at https://github.com/

KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_texture_basisu. Therefore, the application

should ensure it can handle this extension.

If the device for the requested model is disconnected or does not match the

XrRenderModelLoadInfoFB::modelKey provided, xrLoadRenderModelFB must return

XR_RENDER_MODEL_UNAVAILABLE_FB as well as an XrRenderModelBufferFB::bufferCountOutput value of 0

indicating that the model was not available.

The xrLoadRenderModelFB function may be slow, therefore applications should call it from a non-

time sensitive thread.

Valid Usage (Implicit)

• The XR_FB_render_model extension must be enabled prior to calling xrLoadRenderModelFB

• session must be a valid XrSession handle

• info must be a pointer to a valid XrRenderModelLoadInfoFB structure

• buffer must be a pointer to an XrRenderModelBufferFB structure

794 | Chapter 12. List of Current Extensions

https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_texture_basisu
https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_texture_basisu

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_RENDER_MODEL_UNAVAILABLE_FB

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_RENDER_MODEL_KEY_INVALID_FB

Issues

Version History

• Revision 1, 2021-08-17 (Leonard Tsai)

◦ Initial extension description

• Revision 2, 2022-05-03 (Robert Memmott)

◦ Render Model Support Subsets

• Revision 3, 2022-07-07 (Rylie Pavlik, Collabora, Ltd.)

◦ Fix implicit valid usage for XrRenderModelCapabilitiesRequestFB

• Revision 4, 2023-04-14 (Peter Chan)

◦ Add possible render model path for XR_META_virtual_keyboard

12.66. XR_FB_scene

Name String

XR_FB_scene

Extension Type

Instance extension

Chapter 12. List of Current Extensions | 795

Registered Extension Number

176

Revision

4

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_spatial_entity

Contributors

John Schofield, Facebook

Andrew Kim, Facebook

Yuichi Taguchi, Facebook

Cass Everitt, Facebook

Overview

This extension expands on the concept of spatial entities to include a way for a spatial entity to

represent rooms, objects, or other boundaries in a scene.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

// Provided by XR_FB_scene

typedef XrFlags64 XrSemanticLabelsSupportFlagsFB;

796 | Chapter 12. List of Current Extensions

// Provided by XR_FB_scene

// Flag bits for XrSemanticLabelsSupportFlagsFB

static const XrSemanticLabelsSupportFlagsFB

XR_SEMANTIC_LABELS_SUPPORT_MULTIPLE_SEMANTIC_LABELS_BIT_FB = 0x00000001;

static const XrSemanticLabelsSupportFlagsFB

XR_SEMANTIC_LABELS_SUPPORT_ACCEPT_DESK_TO_TABLE_MIGRATION_BIT_FB = 0x00000002;

static const XrSemanticLabelsSupportFlagsFB

XR_SEMANTIC_LABELS_SUPPORT_ACCEPT_INVISIBLE_WALL_FACE_BIT_FB = 0x00000004;

Flag Descriptions

• XR_SEMANTIC_LABELS_SUPPORT_MULTIPLE_SEMANTIC_LABELS_BIT_FB  — If set, and the runtime

reports the extensionVersion as 2 or greater, the runtime may return multiple semantic labels

separated by a comma without spaces. Otherwise, the runtime must return a single semantic

label.

• XR_SEMANTIC_LABELS_SUPPORT_ACCEPT_DESK_TO_TABLE_MIGRATION_BIT_FB  — If set, and the runtime

reports the extensionVersion as 3 or greater, the runtime must return "TABLE" instead of

"DESK" as a semantic label to the application. Otherwise, the runtime must return "DESK"

instead of "TABLE" as a semantic label to the application, when applicable.

• XR_SEMANTIC_LABELS_SUPPORT_ACCEPT_INVISIBLE_WALL_FACE_BIT_FB  — If set, and the runtime

reports the extensionVersion as 4 or greater, the runtime may return

"INVISIBLE_WALL_FACE" instead of "WALL_FACE" as a semantic label to the application in

order to represent an invisible wall used to conceptually separate a space (e.g., separate a

living space from a kitchen space in an open floor plan house even though there is no real

wall between the two spaces) instead of a real wall. Otherwise, the runtime must return

"WALL_FACE" as a semantic label to the application in order to represent both an invisible

and real wall, when applicable.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SEMANTIC_LABELS_FB

• XR_TYPE_ROOM_LAYOUT_FB

• XR_TYPE_BOUNDARY_2D_FB

• XR_TYPE_SEMANTIC_LABELS_SUPPORT_INFO_FB

New Enums

New Structures

The XrExtent3DfFB structure is defined as:

Chapter 12. List of Current Extensions | 797

// Provided by XR_FB_scene

// XrExtent3DfFB is an alias for XrExtent3Df

typedef struct XrExtent3Df {

 float width;

 float height;

 float depth;

} XrExtent3Df;

typedef XrExtent3Df XrExtent3DfFB;

Member Descriptions

• width is the floating-point width of the extent.

• height is the floating-point height of the extent.

• depth is the floating-point depth of the extent.

This structure is used for component values that may be fractional (floating-point). If used to represent

physical distances, values must be in meters. The width, height, and depth values must be non-

negative.

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to using XrExtent3DfFB

The XrOffset3DfFB structure is defined as:

// Provided by XR_FB_scene

typedef struct XrOffset3DfFB {

 float x;

 float y;

 float z;

} XrOffset3DfFB;

798 | Chapter 12. List of Current Extensions

Member Descriptions

• x is the floating-point offset in the x direction.

• y is the floating-point offset in the y direction.

• z is the floating-point offset in the z direction.

This structure is used for component values that may be fractional (floating-point). If used to represent

physical distances, values must be in meters.

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to using XrOffset3DfFB

The XrRect3DfFB structure is defined as:

// Provided by XR_FB_scene

typedef struct XrRect3DfFB {

 XrOffset3DfFB offset;

 XrExtent3DfFB extent;

} XrRect3DfFB;

Member Descriptions

• offset is the XrOffset3DfFB specifying the rectangle offset.

• extent is the XrExtent3DfFB specifying the rectangle extent.

This structure is used for component values that may be fractional (floating-point).

The bounding box is defined by an offset and extent. The offset refers to the coordinate of the

minimum corner of the box in the local space of the XrSpace; that is, the corner whose coordinate has

the minimum value on each axis. The extent refers to the dimensions of the box along each axis. The

maximum corner can therefore be computed as offset

extent.

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to using XrRect3DfFB

Chapter 12. List of Current Extensions | 799

The XrSemanticLabelsFB structure is defined as:

// Provided by XR_FB_scene

typedef struct XrSemanticLabelsFB {

 XrStructureType type;

 const void* next;

 uint32_t bufferCapacityInput;

 uint32_t bufferCountOutput;

 char* buffer;

} XrSemanticLabelsFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain, such as

XrSemanticLabelsSupportInfoFB.

• bufferCapacityInput is the capacity of the buffer array, in bytes, or 0 to indicate a request to

retrieve the required capacity.

• bufferCountOutput is the count of bytes written, or the required capacity in the case that

bufferCapacityInput is insufficient.

• buffer is a pointer to an array of bytes, but can be NULL if bufferCapacityInput is 0. Multiple

labels represented by raw string, separated by a comma without spaces.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

This structure is used by the xrGetSpaceSemanticLabelsFB function to provide the application with the

intended usage of the spatial entity.

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to using XrSemanticLabelsFB

• type must be XR_TYPE_SEMANTIC_LABELS_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

The XrRoomLayoutFB structure is defined as:

800 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_scene

typedef struct XrRoomLayoutFB {

 XrStructureType type;

 const void* next;

 XrUuidEXT floorUuid;

 XrUuidEXT ceilingUuid;

 uint32_t wallUuidCapacityInput;

 uint32_t wallUuidCountOutput;

 XrUuidEXT* wallUuids;

} XrRoomLayoutFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• floorUuid is the UUID of the spatial entity representing the room floor

• ceilingUuid is the UUID of the spatial entity representing the room ceiling

• wallUuidCapacityInput is the capacity of the wallUuids array, in number of UUIDs, or 0 to

indicate a request to retrieve the required capacity.

• wallUuidCountOutput is the count of XrUuidEXT handles written, or the required capacity in

the case that wallUuidCapacityInput is insufficient.

• wallUuids is a pointer to an array of XrUuidEXT handles, but can be NULL if

wallUuidCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

wallUuids array size.

This structure is used by the xrGetSpaceRoomLayoutFB function to provide the application with the

XrUuidEXT handles representing the various surfaces of a room.

Chapter 12. List of Current Extensions | 801

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to using XrRoomLayoutFB

• type must be XR_TYPE_ROOM_LAYOUT_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• If wallUuidCapacityInput is not 0, wallUuids must be a pointer to an array of

wallUuidCapacityInput XrUuidEXT structures

The XrBoundary2DFB structure is defined as:

// Provided by XR_FB_scene

typedef struct XrBoundary2DFB {

 XrStructureType type;

 const void* next;

 uint32_t vertexCapacityInput;

 uint32_t vertexCountOutput;

 XrVector2f* vertices;

} XrBoundary2DFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• vertexCapacityInput is the capacity of the vertices array, in number of vertices, or 0 to

indicate a request to retrieve the required capacity.

• vertexCountOutput is the count of XrVector2f written, or the required capacity in the case that

vertexCapacityInput is insufficient.

• vertices is a pointer to an array of XrVector2f, but can be NULL if vertexCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

vertices array size.

This structure is used by the xrGetSpaceBoundary2DFB function to provide the application with the

XrVector2f vertices representing the a spatial entity with a boundary.

802 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to using XrBoundary2DFB

• type must be XR_TYPE_BOUNDARY_2D_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• If vertexCapacityInput is not 0, vertices must be a pointer to an array of vertexCapacityInput

XrVector2f structures

The XrSemanticLabelsSupportInfoFB structure is defined as:

// Provided by XR_FB_scene

typedef struct XrSemanticLabelsSupportInfoFB {

 XrStructureType type;

 const void* next;

 XrSemanticLabelsSupportFlagsFB flags;

 const char* recognizedLabels;

} XrSemanticLabelsSupportInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrSemanticLabelsSupportFlagBitsFB that specifies additional behaviors.

• recognizedLabels is a NULL terminated string that indicates a set of semantic labels recognized

by the application. Each semantic label must be represented as a string and be separated by

a comma without spaces. This field must include at least "OTHER" and must not be NULL.

The XrSemanticLabelsSupportInfoFB structure may be specified in the next chain of

XrSemanticLabelsFB to specify additional behaviors of the xrGetSpaceSemanticLabelsFB function. The

runtime must follow the behaviors specified in flags according to the descriptions of

XrSemanticLabelsSupportFlagBitsFB. The runtime must return any semantic label that is not included

in recognizedLabels as "OTHER" to the application. The runtime must follow this direction only if the

runtime reports the XrExtensionProperties::extensionVersion as 2 or greater, otherwise the runtime

must ignore this as an unknown chained structure.

If the XrSemanticLabelsSupportInfoFB structure is not present in the next chain of

XrSemanticLabelsFB, the runtime may return any semantic labels to the application.

Chapter 12. List of Current Extensions | 803

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to using XrSemanticLabelsSupportInfoFB

• type must be XR_TYPE_SEMANTIC_LABELS_SUPPORT_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be 0 or a valid combination of XrSemanticLabelsSupportFlagBitsFB values

• recognizedLabels must be a null-terminated UTF-8 string

New Functions

The xrGetSpaceBoundingBox2DFB function is defined as:

// Provided by XR_FB_scene

XrResult xrGetSpaceBoundingBox2DFB(

 XrSession session,

 XrSpace space,

 XrRect2Df* boundingBox2DOutput);

Parameter Descriptions

• session is a handle to an XrSession.

• space is the XrSpace handle to the spatial entity.

• boundingBox2DOutput is an output parameter pointing to the structure containing the 2D

bounding box for space.

Gets the 2D bounding box for a spatial entity with the XR_SPACE_COMPONENT_TYPE_BOUNDED_2D_FB

component type enabled.

The bounding box is defined by an XrRect2Df::offset and XrRect2Df::extent. The XrRect2Df::offset

refers to the coordinate of the minimum corner of the box in the x-y plane of the given XrSpace’s

coordinate system; that is, the corner whose coordinate has the minimum value on each axis. The

XrRect2Df::extent refers to the dimensions of the box along each axis. The maximum corner can

therefore be computed as XrRect2Df::offset

XrRect2Df::extent.

804 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to calling xrGetSpaceBoundingBox2DFB

• session must be a valid XrSession handle

• space must be a valid XrSpace handle

• boundingBox2DOutput must be a pointer to an XrRect2Df structure

• space must have been created, allocated, or retrieved from session

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrGetSpaceBoundingBox3DFB function is defined as:

// Provided by XR_FB_scene

XrResult xrGetSpaceBoundingBox3DFB(

 XrSession session,

 XrSpace space,

 XrRect3DfFB* boundingBox3DOutput);

Chapter 12. List of Current Extensions | 805

Parameter Descriptions

• session is a handle to an XrSession.

• space is the XrSpace handle to the spatial entity.

• boundingBox3DOutput is an output parameter pointing to the structure containing the 3D

bounding box for space.

Gets the 3D bounding box for a spatial entity with the XR_SPACE_COMPONENT_TYPE_BOUNDED_3D_FB

component type enabled.

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to calling xrGetSpaceBoundingBox3DFB

• session must be a valid XrSession handle

• space must be a valid XrSpace handle

• boundingBox3DOutput must be a pointer to an XrRect3DfFB structure

• space must have been created, allocated, or retrieved from session

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrGetSpaceSemanticLabelsFB function is defined as:

806 | Chapter 12. List of Current Extensions

// Provided by XR_FB_scene

XrResult xrGetSpaceSemanticLabelsFB(

 XrSession session,

 XrSpace space,

 XrSemanticLabelsFB* semanticLabelsOutput);

Parameter Descriptions

• session is a handle to an XrSession.

• space is the XrSpace handle to the spatial entity.

• semanticLabelsOutput is an output parameter pointing to the structure containing the

XrSemanticLabelsFB for space.

Gets the semantic labels for a spatial entity with the XR_SPACE_COMPONENT_TYPE_SEMANTIC_LABELS_FB

component type enabled.

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to calling xrGetSpaceSemanticLabelsFB

• session must be a valid XrSession handle

• space must be a valid XrSpace handle

• semanticLabelsOutput must be a pointer to an XrSemanticLabelsFB structure

• space must have been created, allocated, or retrieved from session

Chapter 12. List of Current Extensions | 807

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrGetSpaceBoundary2DFB function is defined as:

// Provided by XR_FB_scene

XrResult xrGetSpaceBoundary2DFB(

 XrSession session,

 XrSpace space,

 XrBoundary2DFB* boundary2DOutput);

Parameter Descriptions

• session is a handle to an XrSession.

• space is the XrSpace handle to the spatial entity.

• boundary2DOutput is an output parameter pointing to the structure containing the

XrBoundary2DFB for space.

Gets the 2D boundary, specified by vertices, for a spatial entity with the

XR_SPACE_COMPONENT_TYPE_BOUNDED_2D_FB component type enabled.

808 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to calling xrGetSpaceBoundary2DFB

• session must be a valid XrSession handle

• space must be a valid XrSpace handle

• boundary2DOutput must be a pointer to an XrBoundary2DFB structure

• space must have been created, allocated, or retrieved from session

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrGetSpaceRoomLayoutFB function is defined as:

// Provided by XR_FB_scene

XrResult xrGetSpaceRoomLayoutFB(

 XrSession session,

 XrSpace space,

 XrRoomLayoutFB* roomLayoutOutput);

Chapter 12. List of Current Extensions | 809

Parameter Descriptions

• session is a handle to an XrSession.

• space is the XrSpace handle to the spatial entity.

• roomLayoutOutput is an output parameter pointing to the structure containing the

XrRoomLayoutFB for space.

Gets the room layout, specified by UUIDs for each surface, for a spatial entity with the

XR_SPACE_COMPONENT_TYPE_ROOM_LAYOUT_FB component type enabled.

If the XrRoomLayoutFB::wallUuidCapacityInput field is zero (indicating a request to retrieve the

required capacity for the XrRoomLayoutFB::wallUuids array), or if xrGetSpaceRoomLayoutFB returns

failure, then the values of floorUuid and ceilingUuid are unspecified and should not be used.

Valid Usage (Implicit)

• The XR_FB_scene extension must be enabled prior to calling xrGetSpaceRoomLayoutFB

• session must be a valid XrSession handle

• space must be a valid XrSpace handle

• roomLayoutOutput must be a pointer to an XrRoomLayoutFB structure

• space must have been created, allocated, or retrieved from session

810 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2022-03-09 (John Schofield)

◦ Initial draft

• Revision 2, 2023-04-03 (Yuichi Taguchi)

◦ Introduce XrSemanticLabelsSupportInfoFB.

• Revision 3, 2023-04-03 (Yuichi Taguchi)

◦ Introduce XR_SEMANTIC_LABELS_SUPPORT_ACCEPT_DESK_TO_TABLE_MIGRATION_BIT_FB.

• Revision 4, 2023-06-12 (Yuichi Taguchi)

◦ Introduce XR_SEMANTIC_LABELS_SUPPORT_ACCEPT_INVISIBLE_WALL_FACE_BIT_FB.

12.67. XR_FB_scene_capture

Name String

XR_FB_scene_capture

Extension Type

Instance extension

Chapter 12. List of Current Extensions | 811

Registered Extension Number

199

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

John Schofield, Facebook

Andrew Kim, Facebook

Yuichi Taguchi, Facebook

Cass Everitt, Facebook

Overview

This extension allows an application to request that the system begin capturing information about

what is in the environment around the user.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SCENE_CAPTURE_REQUEST_INFO_FB

• XR_TYPE_EVENT_DATA_SCENE_CAPTURE_COMPLETE_FB

New Enums

New Structures

The XrSceneCaptureRequestInfoFB structure is defined as:

812 | Chapter 12. List of Current Extensions

// Provided by XR_FB_scene_capture

typedef struct XrSceneCaptureRequestInfoFB {

 XrStructureType type;

 const void* next;

 uint32_t requestByteCount;

 const char* request;

} XrSceneCaptureRequestInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestByteCount is byte length of the request parameter.

• request is a string which the application can use to specify which type of scene capture

should be initiated by the runtime. The contents of buffer pointed to by the request

parameter is runtime-specific.

The XrSceneCaptureRequestInfoFB structure is used by an application to instruct the system what to

look for during a scene capture. If the request parameter is NULL, then the runtime must conduct a

default scene capture.

Valid Usage (Implicit)

• The XR_FB_scene_capture extension must be enabled prior to using

XrSceneCaptureRequestInfoFB

• type must be XR_TYPE_SCENE_CAPTURE_REQUEST_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• If requestByteCount is not 0, request must be a pointer to an array of requestByteCount char

values

The XrEventDataSceneCaptureCompleteFB structure is defined as:

Chapter 12. List of Current Extensions | 813

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_scene_capture

typedef struct XrEventDataSceneCaptureCompleteFB {

 XrStructureType type;

 const void* next;

 XrAsyncRequestIdFB requestId;

 XrResult result;

} XrEventDataSceneCaptureCompleteFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestId is the ID of the asynchronous query request.

• result is an XrResult that indicates if the request succeeded or if an error occurred.

The XrEventDataSceneCaptureCompleteFB structure is used by an application to instruct the system

what to look for during a scene capture.

Valid Usage (Implicit)

• The XR_FB_scene_capture extension must be enabled prior to using

XrEventDataSceneCaptureCompleteFB

• type must be XR_TYPE_EVENT_DATA_SCENE_CAPTURE_COMPLETE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• result must be a valid XrResult value

New Functions

The xrRequestSceneCaptureFB function is defined as:

// Provided by XR_FB_scene_capture

XrResult xrRequestSceneCaptureFB(

 XrSession session,

 const XrSceneCaptureRequestInfoFB* info,

 XrAsyncRequestIdFB* requestId);

814 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is a handle to an XrSession.

• info is an XrSceneCaptureRequestInfoFB which specifies how the scene capture should

occur.

• requestId is the output parameter that points to the ID of this asynchronous request.

The xrRequestSceneCaptureFB function is used by an application to begin capturing the scene around

the user. This is an asynchronous operation.

Valid Usage (Implicit)

• The XR_FB_scene_capture extension must be enabled prior to calling

xrRequestSceneCaptureFB

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSceneCaptureRequestInfoFB structure

• requestId must be a pointer to an XrAsyncRequestIdFB value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

Chapter 12. List of Current Extensions | 815

• Revision 1, 2022-03-09 (John Schofield)

◦ Initial draft

12.68. XR_FB_space_warp

Name String

XR_FB_space_warp

Extension Type

Instance extension

Registered Extension Number

172

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Contributors

Jian Zhang, Facebook

Neel Bedekar, Facebook

Xiang Wei, Facebook

Overview

This extension provides support to enable space warp technology on application. By feeding

application generated motion vector and depth buffer images, the runtime can do high quality frame

extrapolation and reprojection, allow applications to run at half fps but still providing smooth

experience to users.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as

indicated in the Extensions section. Note

This extension is independent of XR_KHR_composition_layer_depth, and both may be

enabled and used at the same time, for different purposes. The

XrCompositionLayerSpaceWarpInfoFB::depthSubImage depth data is dedicated for

space warp, and its resolution is usually lower than

XrCompositionLayerDepthInfoKHR::subImage. See XrSystemSpaceWarpPropertiesFB

for suggested resolution of depthSubImage.

816 | Chapter 12. List of Current Extensions

New Flag Types

typedef XrFlags64 XrCompositionLayerSpaceWarpInfoFlagsFB;

// Flag bits for XrCompositionLayerSpaceWarpInfoFlagsFB

static const XrCompositionLayerSpaceWarpInfoFlagsFB

XR_COMPOSITION_LAYER_SPACE_WARP_INFO_FRAME_SKIP_BIT_FB = 0x00000001;

Flag Descriptions

• XR_COMPOSITION_LAYER_SPACE_WARP_INFO_FRAME_SKIP_BIT_FB requests that the runtime skips

space warp frame extrapolation for a particular frame. This can be used when the

application has better knowledge the particular frame will be not a good fit for space warp

frame extrapolation.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_SPACE_WARP_INFO_FB

• XR_TYPE_SYSTEM_SPACE_WARP_PROPERTIES_FB

New Enums

• XR_COMPOSITION_LAYER_SPACE_WARP_INFO_FRAME_SKIP_BIT_FB

New Structures

When submitting motion vector buffer and depth buffers along with projection layers, add an

XrCompositionLayerSpaceWarpInfoFB structure to the XrCompositionLayerProjectionView::next

chain, for each XrCompositionLayerProjectionView structure in the given layer.

The XrCompositionLayerSpaceWarpInfoFB structure is defined as:

Chapter 12. List of Current Extensions | 817

// Provided by XR_FB_space_warp

typedef struct XrCompositionLayerSpaceWarpInfoFB {

 XrStructureType type;

 const void* next;

 XrCompositionLayerSpaceWarpInfoFlagsFB layerFlags;

 XrSwapchainSubImage motionVectorSubImage;

 XrPosef appSpaceDeltaPose;

 XrSwapchainSubImage depthSubImage;

 float minDepth;

 float maxDepth;

 float nearZ;

 float farZ;

} XrCompositionLayerSpaceWarpInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• layerFlags is a bitmask of XrCompositionLayerSpaceWarpInfoFlagsFB.

• motionVectorSubImage identifies the motion vector image XrSwapchainSubImage to be

associated with the submitted layer XrCompositionLayerProjection.

• appSpaceDeltaPose is the incremental application-applied transform, if any, since the previous

frame that affects the view. When artificial locomotion (scripted movement, teleportation,

etc.) happens, the application might transform the whole

XrCompositionLayerProjection::space from one application space pose to another pose

between frames. The pose should be identity when there is no

XrCompositionLayerProjection::space transformation in application.

• depthSubImage identifies the depth image XrSwapchainSubImage to be associated with

motionVectorSubImage. The swapchain should be created with

XR_SWAPCHAIN_USAGE_SAMPLED_BIT | XR_SWAPCHAIN_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT.

• minDepth and maxDepth are the range of depth values the depth swapchain could have, in the

range of [0.0,1.0]. This is akin to min and max values of OpenGL’s glDepthRange, but with the

requirement here that maxDepth ≥ minDepth.

• nearZ is the positive distance in meters of the minDepth value in the depth swapchain.

Applications may use a nearZ that is greater than farZ to indicate depth values are reversed.

nearZ can be infinite.

• farZ is the positive distance in meters of the maxDepth value in the depth swapchain. farZ can

be infinite.

The motion vector data is stored in the motionVectorSubImage’s RGB channels, defined in NDC

818 | Chapter 12. List of Current Extensions

(normalized device coordinates) space, for example, the same surface point’s NDC is PrevNDC in

previous frame, CurrNDC in current frame, then the motion vector value is "highp vec3 motionVector =

(CurrNDC - PrevNDC).xyz;". Signed 16 bit float pixel format is recommended for this image.

The runtime must return error XR_ERROR_VALIDATION_FAILURE if nearZ == farZ.

Valid Usage (Implicit)

• The XR_FB_space_warp extension must be enabled prior to using

XrCompositionLayerSpaceWarpInfoFB

• type must be XR_TYPE_COMPOSITION_LAYER_SPACE_WARP_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• layerFlags must be 0 or a valid combination of

XrCompositionLayerSpaceWarpInfoFlagBitsFB values

• motionVectorSubImage must be a valid XrSwapchainSubImage structure

• depthSubImage must be a valid XrSwapchainSubImage structure

When this extension is enabled, an application can pass in an XrSystemSpaceWarpPropertiesFB

structure in the XrSystemProperties::next chain when calling xrGetSystemProperties to acquire

information about recommended motion vector buffer resolution. The

XrSystemSpaceWarpPropertiesFB structure is defined as:

// Provided by XR_FB_space_warp

typedef struct XrSystemSpaceWarpPropertiesFB {

 XrStructureType type;

 void* next;

 uint32_t recommendedMotionVectorImageRectWidth;

 uint32_t recommendedMotionVectorImageRectHeight;

} XrSystemSpaceWarpPropertiesFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• recommendedMotionVectorImageRectWidth: recommended motion vector and depth image width

• recommendedMotionVectorImageRectHeight: recommended motion vector and depth image

height

Chapter 12. List of Current Extensions | 819

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_space_warp extension must be enabled prior to using

XrSystemSpaceWarpPropertiesFB

• type must be XR_TYPE_SYSTEM_SPACE_WARP_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

Issues

Version History

• Revision 1, 2021-08-04 (Jian Zhang)

◦ Initial extension description

• Revision 2, 2022-02-07 (Jian Zhang)

◦ Add XR_COMPOSITION_LAYER_SPACE_WARP_INFO_FRAME_SKIP_BIT_FB

12.69. XR_FB_spatial_entity

Name String

XR_FB_spatial_entity

Extension Type

Instance extension

Registered Extension Number

114

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Contributors

John Schofield, Facebook

Andrew Kim, Facebook

Yuichi Taguchi, Facebook

Cass Everitt, Facebook

Curtis Arink, Facebook

Overview

820 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

This extension enables applications to use spatial entities to specify world-locked frames of reference.

It enables applications to persist the real world location of content over time and contains definitions

for the Entity-Component System. All Facebook spatial entity and scene extensions are dependent on

this one.

We use OpenXR XrSpace handles to give applications access to spatial entities such as Spatial Anchors.

In other words, any operation which involves spatial entities uses XrSpace handles to identify the

affected spatial entities.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

This extension allows:

• An application to create a Spatial Anchor (a type of spatial entity).

• An application to enumerate supported components for a given spatial entity.

• An application to enable or disable a component for a given spatial entity.

• An application to get the status of a component for a given spatial entity.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_SPATIAL_ENTITY_PROPERTIES_FB

• XR_TYPE_SPATIAL_ANCHOR_CREATE_INFO_FB

• XR_TYPE_SPACE_COMPONENT_STATUS_SET_INFO_FB

• XR_TYPE_SPACE_COMPONENT_STATUS_FB

• XR_TYPE_EVENT_DATA_SPATIAL_ANCHOR_CREATE_COMPLETE_FB

• XR_TYPE_EVENT_DATA_SPACE_SET_STATUS_COMPLETE_FB

XrResult enumeration is extended with:

• XR_ERROR_SPACE_COMPONENT_NOT_SUPPORTED_FB

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_SPACE_COMPONENT_STATUS_PENDING_FB

• XR_ERROR_SPACE_COMPONENT_STATUS_ALREADY_SET_FB

New Enums

Chapter 12. List of Current Extensions | 821

// Provided by XR_FB_spatial_entity

typedef enum XrSpaceComponentTypeFB {

 XR_SPACE_COMPONENT_TYPE_LOCATABLE_FB = 0,

 XR_SPACE_COMPONENT_TYPE_STORABLE_FB = 1,

 XR_SPACE_COMPONENT_TYPE_SHARABLE_FB = 2,

 XR_SPACE_COMPONENT_TYPE_BOUNDED_2D_FB = 3,

 XR_SPACE_COMPONENT_TYPE_BOUNDED_3D_FB = 4,

 XR_SPACE_COMPONENT_TYPE_SEMANTIC_LABELS_FB = 5,

 XR_SPACE_COMPONENT_TYPE_ROOM_LAYOUT_FB = 6,

 XR_SPACE_COMPONENT_TYPE_SPACE_CONTAINER_FB = 7,

 // Provided by XR_META_spatial_entity_mesh

 XR_SPACE_COMPONENT_TYPE_TRIANGLE_MESH_META = 1000269000,

 XR_SPACE_COMPONENT_TYPE_MAX_ENUM_FB = 0x7FFFFFFF

} XrSpaceComponentTypeFB;

Specify the component interfaces attached to the spatial entity.

Enumerant Descriptions

• XR_SPACE_COMPONENT_TYPE_LOCATABLE_FB  — Enables tracking the 6 DOF pose of the XrSpace with

xrLocateSpace.

• XR_SPACE_COMPONENT_TYPE_STORABLE_FB  — Enables persistence operations: save and erase.

• XR_SPACE_COMPONENT_TYPE_SHARABLE_FB  — Enables sharing of spatial entities.

• XR_SPACE_COMPONENT_TYPE_BOUNDED_2D_FB  — Bounded 2D component.

• XR_SPACE_COMPONENT_TYPE_BOUNDED_3D_FB  — Bounded 3D component.

• XR_SPACE_COMPONENT_TYPE_SEMANTIC_LABELS_FB  — Semantic labels component.

• XR_SPACE_COMPONENT_TYPE_ROOM_LAYOUT_FB  — Room layout component.

• XR_SPACE_COMPONENT_TYPE_SPACE_CONTAINER_FB  — Space container component.

New Base Types

The XrAsyncRequestIdFB base type is defined as:

// Provided by XR_FB_spatial_entity

XR_DEFINE_ATOM(XrAsyncRequestIdFB)

Represents a request to the spatial entity system. Several functions in this and other extensions will

822 | Chapter 12. List of Current Extensions

populate an output variable of this type so that an application can use it when referring to a specific

request.

New Structures

The XrSystemSpatialEntityPropertiesFB structure is defined as:

// Provided by XR_FB_spatial_entity

typedef struct XrSystemSpatialEntityPropertiesFB {

 XrStructureType type;

 const void* next;

 XrBool32 supportsSpatialEntity;

} XrSystemSpatialEntityPropertiesFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• supportsSpatialEntity is a boolean value that determines if spatial entities are supported by

the system.

An application can inspect whether the system is capable of spatial entity operations by extending the

XrSystemProperties with XrSystemSpatialEntityPropertiesFB structure when calling

xrGetSystemProperties.

If a runtime returns XR_FALSE for supportsSpatialEntity, the runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrGetSpaceUuidFB.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to using

XrSystemSpatialEntityPropertiesFB

• type must be XR_TYPE_SYSTEM_SPATIAL_ENTITY_PROPERTIES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrSpatialAnchorCreateInfoFB structure is defined as:

Chapter 12. List of Current Extensions | 823

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity

typedef struct XrSpatialAnchorCreateInfoFB {

 XrStructureType type;

 const void* next;

 XrSpace space;

 XrPosef poseInSpace;

 XrTime time;

} XrSpatialAnchorCreateInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• space is the XrSpace handle to the reference space that defines the poseInSpace of the anchor

to be defined.

• poseInSpace is the XrPosef location and orientation of the Spatial Anchor in the specified

reference space.

• time is the XrTime timestamp associated with the specified pose.

Parameters to create a new spatial anchor.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to using

XrSpatialAnchorCreateInfoFB

• type must be XR_TYPE_SPATIAL_ANCHOR_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• space must be a valid XrSpace handle

The XrSpaceComponentStatusSetInfoFB structure is defined as:

824 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity

typedef struct XrSpaceComponentStatusSetInfoFB {

 XrStructureType type;

 const void* next;

 XrSpaceComponentTypeFB componentType;

 XrBool32 enabled;

 XrDuration timeout;

} XrSpaceComponentStatusSetInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• componentType is the component whose status is to be set.

• enabled is the value to set the component to.

• timeout is the number of nanoseconds before the operation should be cancelled. A value of

XR_INFINITE_DURATION indicates to never time out. See Duration for more details.

Enables or disables the specified component for the specified spatial entity.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to using

XrSpaceComponentStatusSetInfoFB

• type must be XR_TYPE_SPACE_COMPONENT_STATUS_SET_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• componentType must be a valid XrSpaceComponentTypeFB value

The XrSpaceComponentStatusFB structure is defined as:

Chapter 12. List of Current Extensions | 825

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity

typedef struct XrSpaceComponentStatusFB {

 XrStructureType type;

 void* next;

 XrBool32 enabled;

 XrBool32 changePending;

} XrSpaceComponentStatusFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• enabled is a boolean value that determines if a component is currently enabled or disabled.

• changePending is a boolean value that determines if the component’s enabled state is about to

change.

It holds information on the current state of a component.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to using

XrSpaceComponentStatusFB

• type must be XR_TYPE_SPACE_COMPONENT_STATUS_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataSpatialAnchorCreateCompleteFB structure is defined as:

// Provided by XR_FB_spatial_entity

typedef struct XrEventDataSpatialAnchorCreateCompleteFB {

 XrStructureType type;

 const void* next;

 XrAsyncRequestIdFB requestId;

 XrResult result;

 XrSpace space;

 XrUuidEXT uuid;

} XrEventDataSpatialAnchorCreateCompleteFB;

826 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestId is the ID of the asynchronous request used to create a new spatial anchor.

• result is an XrResult that determines if the request succeeded or if an error occurred.

• space is the XrSpace handle to the newly created spatial anchor.

• uuid is the UUID of the newly created spatial anchor.

It describes the result of a request to create a new spatial anchor. Once this event is posted, it is the

applications responsibility to take ownership of the XrSpace. The XrSession passed into

xrCreateSpatialAnchorFB is the parent handle of the newly created XrSpace.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to using

XrEventDataSpatialAnchorCreateCompleteFB

• type must be XR_TYPE_EVENT_DATA_SPATIAL_ANCHOR_CREATE_COMPLETE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataSpaceSetStatusCompleteFB structure is defined as:

// Provided by XR_FB_spatial_entity

typedef struct XrEventDataSpaceSetStatusCompleteFB {

 XrStructureType type;

 const void* next;

 XrAsyncRequestIdFB requestId;

 XrResult result;

 XrSpace space;

 XrUuidEXT uuid;

 XrSpaceComponentTypeFB componentType;

 XrBool32 enabled;

} XrEventDataSpaceSetStatusCompleteFB;

Chapter 12. List of Current Extensions | 827

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestId is the ID of the asynchronous request used to enable or disable a component.

• result is an XrResult that describes whether the request succeeded or if an error occurred.

• space is the XrSpace handle to the spatial entity.

• uuid is the UUID of the spatial entity.

• componentType is the type of component being enabled or disabled.

• enabled is a boolean value indicating whether the component is now enabled or disabled.

It describes the result of a request to enable or disable a component of a spatial entity.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to using

XrEventDataSpaceSetStatusCompleteFB

• type must be XR_TYPE_EVENT_DATA_SPACE_SET_STATUS_COMPLETE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrCreateSpatialAnchorFB function is defined as:

// Provided by XR_FB_spatial_entity

XrResult xrCreateSpatialAnchorFB(

 XrSession session,

 const XrSpatialAnchorCreateInfoFB* info,

 XrAsyncRequestIdFB* requestId);

828 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is a handle to an XrSession.

• info is a pointer to an XrSpatialAnchorCreateInfoFB structure containing information about

how to create the anchor.

• requestId is the output parameter that points to the ID of this asynchronous request.

Creates a Spatial Anchor using the specified tracking origin and pose relative to the specified tracking

origin. The anchor will be locatable at the time of creation, and the 6 DOF pose relative to the tracking

origin can be queried using the xrLocateSpace method. This operation is asynchronous and the

runtime must post an XrEventDataSpatialAnchorCreateCompleteFB event when the operation

completes successfully or encounters an error. If this function returns a failure code, no event is

posted. The requestId can be used to later refer to the request, such as identifying which request has

completed when an XrEventDataSpatialAnchorCreateCompleteFB is posted to the event queue.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to calling

xrCreateSpatialAnchorFB

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSpatialAnchorCreateInfoFB structure

• requestId must be a pointer to an XrAsyncRequestIdFB value

Chapter 12. List of Current Extensions | 829

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_TIME_INVALID

• XR_ERROR_POSE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

The xrGetSpaceUuidFB function is defined as:

// Provided by XR_FB_spatial_entity

XrResult xrGetSpaceUuidFB(

 XrSpace space,

 XrUuidEXT* uuid);

Parameter Descriptions

• space is the XrSpace handle of a spatial entity.

• uuid is an output parameter pointing to the entity’s UUID.

Gets the UUID for a spatial entity. If this space was previously created as a spatial anchor, uuid must be

equal to the XrEventDataSpatialAnchorCreateCompleteFB::uuid in the event corresponding to the

creation of that space. Subsequent calls to xrGetSpaceUuidFB using the same XrSpace must return the

same XrUuidEXT.

830 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to calling xrGetSpaceUuidFB

• space must be a valid XrSpace handle

• uuid must be a pointer to an XrUuidEXT structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The xrEnumerateSpaceSupportedComponentsFB function is defined as:

// Provided by XR_FB_spatial_entity

XrResult xrEnumerateSpaceSupportedComponentsFB(

 XrSpace space,

 uint32_t componentTypeCapacityInput,

 uint32_t* componentTypeCountOutput,

 XrSpaceComponentTypeFB* componentTypes);

Chapter 12. List of Current Extensions | 831

Parameter Descriptions

• space is the XrSpace handle to the spatial entity.

• componentTypeCapacityInput is the capacity of the componentTypes array, or 0 to indicate a

request to retrieve the required capacity.

• componentTypeCountOutput is a pointer to the count of componentTypes written, or a pointer to

the required capacity in the case that componentTypeCapacityInput is insufficient.

• componentTypes is a pointer to an array of XrSpaceComponentTypeFB values, but can be NULL

if componentTypeCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

componentTypes size.

Lists any component types that an entity supports. The list of component types available for an entity

depends on which extensions are enabled. Component types must not be enumerated unless the

corresponding extension that defines them is also enabled.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to calling

xrEnumerateSpaceSupportedComponentsFB

• space must be a valid XrSpace handle

• componentTypeCountOutput must be a pointer to a uint32_t value

• If componentTypeCapacityInput is not 0, componentTypes must be a pointer to an array of

componentTypeCapacityInput XrSpaceComponentTypeFB values

832 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_FEATURE_UNSUPPORTED

The xrSetSpaceComponentStatusFB function is defined as:

// Provided by XR_FB_spatial_entity

XrResult xrSetSpaceComponentStatusFB(

 XrSpace space,

 const XrSpaceComponentStatusSetInfoFB* info,

 XrAsyncRequestIdFB* requestId);

Parameter Descriptions

• space is the XrSpace handle to the spatial entity.

• info is a pointer to an XrSpaceComponentStatusSetInfoFB structure containing information

about the component to be enabled or disabled.

• requestId is the output parameter that points to the ID of this asynchronous request.

Enables or disables the specified component for the specified entity. This operation is asynchronous

and always returns immediately, regardless of the value of XrSpaceComponentStatusSetInfoFB

::timeout. The requestId can be used to later refer to the request, such as identifying which request has

completed when an XrEventDataSpaceSetStatusCompleteFB is posted to the event queue. If this

function returns a failure code, no event is posted. This function must return

Chapter 12. List of Current Extensions | 833

XR_ERROR_SPACE_COMPONENT_NOT_SUPPORTED_FB if the XrSpace does not support the specified component

type.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to calling

xrSetSpaceComponentStatusFB

• space must be a valid XrSpace handle

• info must be a pointer to a valid XrSpaceComponentStatusSetInfoFB structure

• requestId must be a pointer to an XrAsyncRequestIdFB value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SPACE_COMPONENT_STATUS_PENDING_FB

• XR_ERROR_SPACE_COMPONENT_STATUS_ALREADY_SET_FB

• XR_ERROR_SPACE_COMPONENT_NOT_SUPPORTED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrGetSpaceComponentStatusFB function is defined as:

834 | Chapter 12. List of Current Extensions

// Provided by XR_FB_spatial_entity

XrResult xrGetSpaceComponentStatusFB(

 XrSpace space,

 XrSpaceComponentTypeFB componentType,

 XrSpaceComponentStatusFB* status);

Parameter Descriptions

• space is the XrSpace handle of a spatial entity.

• componentType is the component type to query.

• status is an output parameter pointing to the structure containing the status of the

component that was queried.

Gets the current status of the specified component for the specified entity. This function must return

XR_ERROR_SPACE_COMPONENT_NOT_SUPPORTED_FB if the XrSpace does not support the specified component

type.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to calling

xrGetSpaceComponentStatusFB

• space must be a valid XrSpace handle

• componentType must be a valid XrSpaceComponentTypeFB value

• status must be a pointer to an XrSpaceComponentStatusFB structure

Chapter 12. List of Current Extensions | 835

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SPACE_COMPONENT_NOT_SUPPORTED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2022-01-22 (John Schofield)

◦ Initial draft

• Revision 2, 2023-01-18 (Andrew Kim)

◦ Added a new component enum value

• Revision 3, 2023-01-30 (Wenlin Mao)

◦ Drop requirement for XR_EXT_uuid must be enabled

12.70. XR_FB_spatial_entity_container

Name String

XR_FB_spatial_entity_container

Extension Type

Instance extension

Registered Extension Number

200

836 | Chapter 12. List of Current Extensions

Revision

2

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_spatial_entity

Contributors

John Schofield, Facebook

Andrew Kim, Facebook

Yuichi Taguchi, Facebook

Overview

This extension expands on the concept of spatial entities to include a way for one spatial entity to

contain multiple child spatial entities, forming a hierarchy.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SPACE_CONTAINER_FB

New Enums

New Structures

The XrSpaceContainerFB structure is defined as:

Chapter 12. List of Current Extensions | 837

// Provided by XR_FB_spatial_entity_container

typedef struct XrSpaceContainerFB {

 XrStructureType type;

 const void* next;

 uint32_t uuidCapacityInput;

 uint32_t uuidCountOutput;

 XrUuidEXT* uuids;

} XrSpaceContainerFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• uuidCapacityInput is the capacity of the uuids array, or 0 to indicate a request to retrieve the

required capacity.

• uuidCountOutput is an output parameter which will hold the number of UUIDs included in the

output list, or the required capacity in the case that uuidCapacityInput is insufficient

• uuids is an output parameter which will hold a list of space UUIDs contained by the space to

which the component is attached.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

uuids size.

The XrSpaceContainerFB structure can be used by an application to perform the two calls required to

obtain information about which spatial entities are contained by a specified spatial entity.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_container extension must be enabled prior to using

XrSpaceContainerFB

• type must be XR_TYPE_SPACE_CONTAINER_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• If uuidCapacityInput is not 0, uuids must be a pointer to an array of uuidCapacityInput

XrUuidEXT structures

New Functions

The xrGetSpaceContainerFB function is defined as:

838 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity_container

XrResult xrGetSpaceContainerFB(

 XrSession session,

 XrSpace space,

 XrSpaceContainerFB* spaceContainerOutput);

Parameter Descriptions

• session is a handle to an XrSession.

• space is a handle to an XrSpace.

• spaceContainerOutput is the output parameter that points to an XrSpaceContainerFB

containing information about which spaces are contained by space.

The xrGetSpaceContainerFB function is used by an application to perform the two calls required to

obtain information about which spatial entities are contained by a specified spatial entity.

The XR_SPACE_COMPONENT_TYPE_SPACE_CONTAINER_FB component type must be enabled, otherwise this

function will return XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_container extension must be enabled prior to calling

xrGetSpaceContainerFB

• session must be a valid XrSession handle

• space must be a valid XrSpace handle

• spaceContainerOutput must be a pointer to an XrSpaceContainerFB structure

• space must have been created, allocated, or retrieved from session

Chapter 12. List of Current Extensions | 839

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2022-03-09 (John Schofield)

◦ Initial draft

• Revision 2, 2022-05-31 (John Schofield)

◦ Fix types of XrSpaceContainerFB fields.

12.71. XR_FB_spatial_entity_query

Name String

XR_FB_spatial_entity_query

Extension Type

Instance extension

Registered Extension Number

157

Revision

1

840 | Chapter 12. List of Current Extensions

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_spatial_entity_storage

Contributors

John Schofield, Facebook

Andrew Kim, Facebook

Yuichi Taguchi, Facebook

Cass Everitt, Facebook

Curtis Arink, Facebook

Overview

This extension enables an application to discover persistent spatial entities in the area and restore

them. Using the query system, the application can load persistent spatial entities from storage. The

query system consists of a set of filters to define the spatial entity search query and an operation that

needs to be performed on the search results.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SPACE_QUERY_INFO_FB

• XR_TYPE_SPACE_QUERY_RESULTS_FB

• XR_TYPE_SPACE_STORAGE_LOCATION_FILTER_INFO_FB

• XR_TYPE_SPACE_UUID_FILTER_INFO_FB

• XR_TYPE_SPACE_COMPONENT_FILTER_INFO_FB

• XR_TYPE_EVENT_DATA_SPACE_QUERY_RESULTS_AVAILABLE_FB

• XR_TYPE_EVENT_DATA_SPACE_QUERY_COMPLETE_FB

New Enums

Chapter 12. List of Current Extensions | 841

// Provided by XR_FB_spatial_entity_query

typedef enum XrSpaceQueryActionFB {

 XR_SPACE_QUERY_ACTION_LOAD_FB = 0,

 XR_SPACE_QUERY_ACTION_MAX_ENUM_FB = 0x7FFFFFFF

} XrSpaceQueryActionFB;

Specify the type of query being performed.

Enumerant Descriptions

• XR_SPACE_QUERY_ACTION_LOAD_FB  — Tells the query to perform a load operation on any XrSpace

returned by the query.

New Structures

The XrSpaceQueryInfoBaseHeaderFB structure is defined as:

// Provided by XR_FB_spatial_entity_query

typedef struct XrSpaceQueryInfoBaseHeaderFB {

 XrStructureType type;

 const void* next;

} XrSpaceQueryInfoBaseHeaderFB;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. This base structure itself

has no associated XrStructureType value.

The XrSpaceQueryInfoBaseHeaderFB is a base structure that is not intended to be directly used, but

forms a basis for specific query info types. All query info structures begin with the elements described

in the XrSpaceQueryInfoBaseHeaderFB, and a query info pointer must be cast to a pointer to

XrSpaceQueryInfoBaseHeaderFB when passing it to the xrQuerySpacesFB function.

842 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrSpaceQueryInfoBaseHeaderFB

• type must be XR_TYPE_SPACE_QUERY_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrSpaceFilterInfoBaseHeaderFB structure is defined as:

// Provided by XR_FB_spatial_entity_query

typedef struct XrSpaceFilterInfoBaseHeaderFB {

 XrStructureType type;

 const void* next;

} XrSpaceFilterInfoBaseHeaderFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. This base structure itself

has no associated XrStructureType value.

The XrSpaceFilterInfoBaseHeaderFB is a base structure that is not intended to be directly used, but

forms a basis for specific filter info types. All filter info structures begin with the elements described in

the XrSpaceFilterInfoBaseHeaderFB, and a filter info pointer must be cast to a pointer to

XrSpaceFilterInfoBaseHeaderFB when populating XrSpaceQueryInfoFB::filter and

XrSpaceQueryInfoFB::excludeFilter to pass to the xrQuerySpacesFB function.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrSpaceFilterInfoBaseHeaderFB

• type must be one of the following XrStructureType values:

XR_TYPE_SPACE_COMPONENT_FILTER_INFO_FB, XR_TYPE_SPACE_UUID_FILTER_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSpaceStorageLocationFilterInfoFB

The XrSpaceQueryInfoFB structure is defined as:

Chapter 12. List of Current Extensions | 843

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity_query

typedef struct XrSpaceQueryInfoFB {

 XrStructureType type;

 const void* next;

 XrSpaceQueryActionFB queryAction;

 uint32_t maxResultCount;

 XrDuration timeout;

 const XrSpaceFilterInfoBaseHeaderFB* filter;

 const XrSpaceFilterInfoBaseHeaderFB* excludeFilter;

} XrSpaceQueryInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• queryAction is the type of query to perform.

• maxResultCount is the maximum number of entities to be found.

• timeout is the number of nanoseconds before the operation should time out. A value of

XR_INFINITE_DURATION indicates no timeout.

• filter is NULL or a pointer to a valid structure based on XrSpaceFilterInfoBaseHeaderFB.

• excludeFilter is NULL or a pointer to a valid structure based on

XrSpaceFilterInfoBaseHeaderFB.

May be used to query for spaces and perform a specific action on the spaces returned. The available

actions are enumerated in XrSpaceQueryActionFB. The filter info provided to the filter member of the

struct is used as an inclusive filter. The filter info provided to the excludeFilter member of the

structure is used to exclude spaces from the results returned from the filter. All spaces that match the

criteria in filter, and that do not match the criteria in excludeFilter, must be included in the results

returned. This is to allow for a more selective style query.

844 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrSpaceQueryInfoFB

• type must be XR_TYPE_SPACE_QUERY_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• queryAction must be a valid XrSpaceQueryActionFB value

• If filter is not NULL, filter must be a pointer to a valid XrSpaceFilterInfoBaseHeaderFB

-based structure. See also: XrSpaceComponentFilterInfoFB, XrSpaceUuidFilterInfoFB

• If excludeFilter is not NULL, excludeFilter must be a pointer to a valid

XrSpaceFilterInfoBaseHeaderFB-based structure. See also: XrSpaceComponentFilterInfoFB,

XrSpaceUuidFilterInfoFB

The XrSpaceStorageLocationFilterInfoFB structure is defined as:

// Provided by XR_FB_spatial_entity_query

typedef struct XrSpaceStorageLocationFilterInfoFB {

 XrStructureType type;

 const void* next;

 XrSpaceStorageLocationFB location;

} XrSpaceStorageLocationFilterInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• location is the location to limit the query to.

Extends a query filter to limit a query to a specific storage location. Set the next pointer of an

XrSpaceFilterInfoBaseHeaderFB to chain this extra filtering functionality.

Chapter 12. List of Current Extensions | 845

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrSpaceStorageLocationFilterInfoFB

• type must be XR_TYPE_SPACE_STORAGE_LOCATION_FILTER_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• location must be a valid XrSpaceStorageLocationFB value

The XrSpaceUuidFilterInfoFB structure is defined as:

// Provided by XR_FB_spatial_entity_query

typedef struct XrSpaceUuidFilterInfoFB {

 XrStructureType type;

 const void* next;

 uint32_t uuidCount;

 XrUuidEXT* uuids;

} XrSpaceUuidFilterInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• uuidCount is the number of UUIDs to be matched.

• uuids is an array of XrUuidEXT that contains the UUIDs to be matched.

The XrSpaceUuidFilterInfoFB structure is a filter an application can use to find XrSpace entities that

match specified UUIDs, to include or exclude them from a query.

846 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrSpaceUuidFilterInfoFB

• type must be XR_TYPE_SPACE_UUID_FILTER_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• uuids must be a pointer to an array of uuidCount XrUuidEXT structures

• The uuidCount parameter must be greater than 0

The XrSpaceComponentFilterInfoFB structure is defined as:

// Provided by XR_FB_spatial_entity_query

typedef struct XrSpaceComponentFilterInfoFB {

 XrStructureType type;

 const void* next;

 XrSpaceComponentTypeFB componentType;

} XrSpaceComponentFilterInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• componentType is the XrSpaceComponentTypeFB to query for.

The XrSpaceComponentFilterInfoFB structure is a filter an application can use to find XrSpace entities

which have the componentType enabled, to include or exclude them from a query.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrSpaceComponentFilterInfoFB

• type must be XR_TYPE_SPACE_COMPONENT_FILTER_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• componentType must be a valid XrSpaceComponentTypeFB value

Chapter 12. List of Current Extensions | 847

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

The XrSpaceQueryResultFB structure is defined as:

// Provided by XR_FB_spatial_entity_query

typedef struct XrSpaceQueryResultFB {

 XrSpace space;

 XrUuidEXT uuid;

} XrSpaceQueryResultFB;

Member Descriptions

• space is the XrSpace handle to the spatial entity found by the query.

• uuid is the UUID that identifies the entity.

The XrSpaceQueryResultFB structure is a query result returned in the

xrRetrieveSpaceQueryResultsFB::results output parameter of the xrRetrieveSpaceQueryResultsFB

function.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrSpaceQueryResultFB

The XrSpaceQueryResultsFB structure is defined as:

// Provided by XR_FB_spatial_entity_query

typedef struct XrSpaceQueryResultsFB {

 XrStructureType type;

 void* next;

 uint32_t resultCapacityInput;

 uint32_t resultCountOutput;

 XrSpaceQueryResultFB* results;

} XrSpaceQueryResultsFB;

848 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• resultCapacityInput is the capacity of the results array, or 0 to indicate a request to retrieve

the required capacity.

• resultCountOutput is an output parameter containing the count of results retrieved, or returns

the required capacity in the case that resultCapacityInput is insufficient.

• results is a pointer to an array of results, but can be NULL if resultCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

results size.

The XrSpaceQueryResultsFB structure is used by the xrRetrieveSpaceQueryResultsFB function to

retrieve query results.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrSpaceQueryResultsFB

• type must be XR_TYPE_SPACE_QUERY_RESULTS_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• If resultCapacityInput is not 0, results must be a pointer to an array of resultCapacityInput

XrSpaceQueryResultFB structures

The XrEventDataSpaceQueryResultsAvailableFB structure is defined as:

// Provided by XR_FB_spatial_entity_query

typedef struct XrEventDataSpaceQueryResultsAvailableFB {

 XrStructureType type;

 const void* next;

 XrAsyncRequestIdFB requestId;

} XrEventDataSpaceQueryResultsAvailableFB;

Chapter 12. List of Current Extensions | 849

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestId is the ID of the asynchronous query request.

It indicates a query request has produced some number of results. If a query yields results this event

must be delivered before the XrEventDataSpaceQueryCompleteFB event is delivered. Call

xrRetrieveSpaceQueryResultsFB to retrieve those results.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrEventDataSpaceQueryResultsAvailableFB

• type must be XR_TYPE_EVENT_DATA_SPACE_QUERY_RESULTS_AVAILABLE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataSpaceQueryCompleteFB structure is defined as:

// Provided by XR_FB_spatial_entity_query

typedef struct XrEventDataSpaceQueryCompleteFB {

 XrStructureType type;

 const void* next;

 XrAsyncRequestIdFB requestId;

 XrResult result;

} XrEventDataSpaceQueryCompleteFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestId is the ID of the asynchronous query request.

• result is an XrResult that determines if the request succeeded or if an error occurred.

It indicates a query request has completed and specifies the request result. This event must be

850 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

delivered when a query has completed, regardless of the number of results found. If any results have

been found, then this event must be delivered after any XrEventDataSpaceQueryResultsAvailableFB

events have been delivered.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to using

XrEventDataSpaceQueryCompleteFB

• type must be XR_TYPE_EVENT_DATA_SPACE_QUERY_COMPLETE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrQuerySpacesFB function is defined as:

// Provided by XR_FB_spatial_entity_query

XrResult xrQuerySpacesFB(

 XrSession session,

 const XrSpaceQueryInfoBaseHeaderFB* info,

 XrAsyncRequestIdFB* requestId);

Parameter Descriptions

• session is a handle to an XrSession.

• info is a pointer to the XrSpaceQueryInfoBaseHeaderFB structure.

• requestId is an output parameter, and the variable it points to will be populated with the ID

of this asynchronous request.

The xrQuerySpacesFB function enables an application to find and retrieve spatial entities from storage.

Cast an XrSpaceQueryInfoFB pointer to a XrSpaceQueryInfoBaseHeaderFB pointer to pass as info. The

application should keep the returned requestId for the duration of the request as it is used to refer to

the request when calling xrRetrieveSpaceQueryResultsFB and is used to map completion events to the

request. This operation is asynchronous and the runtime must post an

XrEventDataSpaceQueryCompleteFB event when the operation completes successfully or encounters

an error. If this function returns a failure code, no event is posted. The runtime must post an

XrEventDataSpaceQueryResultsAvailableFB before XrEventDataSpaceQueryCompleteFB if any results

are found. Once an XrEventDataSpaceQueryResultsAvailableFB event has been posted, the application

may call xrRetrieveSpaceQueryResultsFB to retrieve the available results.

Chapter 12. List of Current Extensions | 851

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to calling xrQuerySpacesFB

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSpaceQueryInfoBaseHeaderFB-based structure. See also:

XrSpaceQueryInfoFB

• requestId must be a pointer to an XrAsyncRequestIdFB value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The xrRetrieveSpaceQueryResultsFB function is defined as:

// Provided by XR_FB_spatial_entity_query

XrResult xrRetrieveSpaceQueryResultsFB(

 XrSession session,

 XrAsyncRequestIdFB requestId,

 XrSpaceQueryResultsFB* results);

852 | Chapter 12. List of Current Extensions

Parameter Descriptions

• session is the XrSession for which the in-progress query is valid.

• requestId is the XrAsyncRequestIdFB to enumerate results for.

• results is a pointer to an XrSpaceQueryResultsFB to populate with results.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

size of the results in this parameter.

Allows an application to retrieve all available results for a specified query. Call this function once to get

the number of results found and then once more to copy the results into a buffer provided by the

application. The number of results will not change between the two calls used to retrieve results. This

function must only retrieve each query result once. After the application has used this function to

retrieve a query result, the runtime frees its copy. The runtime must return

XR_ERROR_VALIDATION_FAILURE if requestId refers to a request that is not yet complete, a request for

which results have already been retrieved, or if requestId does not refer to a known request.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_query extension must be enabled prior to calling

xrRetrieveSpaceQueryResultsFB

• session must be a valid XrSession handle

• results must be a pointer to an XrSpaceQueryResultsFB structure

Chapter 12. List of Current Extensions | 853

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2022-01-22 (John Schofield)

◦ Initial draft

12.72. XR_FB_spatial_entity_sharing

Name String

XR_FB_spatial_entity_sharing

Extension Type

Instance extension

Registered Extension Number

170

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

854 | Chapter 12. List of Current Extensions

XR_FB_spatial_entity

Contributors

John Schofield, Facebook

Andrew Kim, Facebook

Overview

This extension enables spatial entities to be shared between users. If the

XR_SPACE_COMPONENT_TYPE_SHARABLE_FB component has been enabled on the spatial entity, application

developers may share XrSpace entities between users.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SPACE_SHARE_INFO_FB

• XR_TYPE_EVENT_DATA_SPACE_SHARE_COMPLETE_FB

XrResult enumeration is extended with:

• XR_ERROR_SPACE_MAPPING_INSUFFICIENT_FB

• XR_ERROR_SPACE_LOCALIZATION_FAILED_FB

• XR_ERROR_SPACE_NETWORK_TIMEOUT_FB

• XR_ERROR_SPACE_NETWORK_REQUEST_FAILED_FB

• XR_ERROR_SPACE_CLOUD_STORAGE_DISABLED_FB

New Enums

New Base Types

New Structures

The XrSpaceShareInfoFB structure is defined as:

Chapter 12. List of Current Extensions | 855

// Provided by XR_FB_spatial_entity_sharing

typedef struct XrSpaceShareInfoFB {

 XrStructureType type;

 const void* next;

 uint32_t spaceCount;

 XrSpace* spaces;

 uint32_t userCount;

 XrSpaceUserFB* users;

} XrSpaceShareInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension. spaceCount is the number of elements in the spaces

list. spaces is a list containing all spatial entities to be shared. userCount is the number of

elements in the users list. users is a list of the users with which the spaces will: be shared.

The XrSpaceShareInfoFB structure describes a request to share one or more spatial entities with one or

more users.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_sharing extension must be enabled prior to using

XrSpaceShareInfoFB

• type must be XR_TYPE_SPACE_SHARE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• spaces must be a pointer to an array of spaceCount XrSpace handles

• users must be a pointer to an array of userCount XrSpaceUserFB handles

• The spaceCount parameter must be greater than 0

• The userCount parameter must be greater than 0

The XrEventDataSpaceShareCompleteFB structure is defined as:

856 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity_sharing

typedef struct XrEventDataSpaceShareCompleteFB {

 XrStructureType type;

 const void* next;

 XrAsyncRequestIdFB requestId;

 XrResult result;

} XrEventDataSpaceShareCompleteFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestId is the ID of the asynchronous request used to share the spatial entities.

• result is an XrResult that describes whether the request succeeded or if an error occurred.

It indicates that the request to share one or more spatial entities has completed. The application can

use result to check if the request was successful or if an error occurred.

Result Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_SPACE_MAPPING_INSUFFICIENT_FB

• XR_ERROR_SPACE_LOCALIZATION_FAILED_FB

• XR_ERROR_SPACE_NETWORK_TIMEOUT_FB

• XR_ERROR_SPACE_NETWORK_REQUEST_FAILED_FB

• XR_ERROR_SPACE_CLOUD_STORAGE_DISABLED_FB

Chapter 12. List of Current Extensions | 857

Valid Usage (Implicit)

• The XR_FB_spatial_entity_sharing extension must be enabled prior to using

XrEventDataSpaceShareCompleteFB

• type must be XR_TYPE_EVENT_DATA_SPACE_SHARE_COMPLETE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrShareSpacesFB function is defined as:

// Provided by XR_FB_spatial_entity_sharing

XrResult xrShareSpacesFB(

 XrSession session,

 const XrSpaceShareInfoFB* info,

 XrAsyncRequestIdFB* requestId);

Parameter Descriptions

• session is a handle to an XrSession.

• info is a pointer to an XrSpaceShareInfoFB structure containing information about which

spatial entities to share with which users.

• requestId is the output parameter that points to the ID of this asynchronous request.

This operation is asynchronous and the runtime must post an XrEventDataSpaceShareCompleteFB

event when the operation completes successfully or encounters an error. If this function returns a

failure code, no event is posted. The requestId can be used to later refer to the request, such as

identifying which request has completed when an XrEventDataSpaceShareCompleteFB is posted to the

event queue.

858 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_spatial_entity_sharing extension must be enabled prior to calling

xrShareSpacesFB

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSpaceShareInfoFB structure

• requestId must be a pointer to an XrAsyncRequestIdFB value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SPACE_NETWORK_TIMEOUT_FB

• XR_ERROR_SPACE_NETWORK_REQUEST_FAILED_FB

• XR_ERROR_SPACE_MAPPING_INSUFFICIENT_FB

• XR_ERROR_SPACE_LOCALIZATION_FAILED_FB

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_SPACE_CLOUD_STORAGE_DISABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2022-06-08 (John Schofield)

◦ Initial draft

Chapter 12. List of Current Extensions | 859

12.73. XR_FB_spatial_entity_storage

Name String

XR_FB_spatial_entity_storage

Extension Type

Instance extension

Registered Extension Number

159

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_spatial_entity

Contributors

John Schofield, Facebook

Andrew Kim, Facebook

Yuichi Taguchi, Facebook

Cass Everitt, Facebook

Curtis Arink, Facebook

Overview

This extension enables spatial entities to be stored and persisted across sessions. If the

XR_SPACE_COMPONENT_TYPE_STORABLE_FB component has been enabled on the spatial entity, application

developers may save, load, and erase persisted XrSpace entities.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SPACE_SAVE_INFO_FB

• XR_TYPE_SPACE_ERASE_INFO_FB

860 | Chapter 12. List of Current Extensions

• XR_TYPE_EVENT_DATA_SPACE_SAVE_COMPLETE_FB

• XR_TYPE_EVENT_DATA_SPACE_ERASE_COMPLETE_FB

New Enums

// Provided by XR_FB_spatial_entity_storage

typedef enum XrSpaceStorageLocationFB {

 XR_SPACE_STORAGE_LOCATION_INVALID_FB = 0,

 XR_SPACE_STORAGE_LOCATION_LOCAL_FB = 1,

 XR_SPACE_STORAGE_LOCATION_CLOUD_FB = 2,

 XR_SPACE_STORAGE_LOCATION_MAX_ENUM_FB = 0x7FFFFFFF

} XrSpaceStorageLocationFB;

The XrSpaceStorageLocationFB enumeration contains the storage locations used to store, erase, and

query spatial entities.

Enumerant Descriptions

• XR_SPACE_STORAGE_LOCATION_INVALID_FB  — Invalid storage location

• XR_SPACE_STORAGE_LOCATION_LOCAL_FB  — Local device storage

• XR_SPACE_STORAGE_LOCATION_CLOUD_FB  — Cloud storage

// Provided by XR_FB_spatial_entity_storage

typedef enum XrSpacePersistenceModeFB {

 XR_SPACE_PERSISTENCE_MODE_INVALID_FB = 0,

 XR_SPACE_PERSISTENCE_MODE_INDEFINITE_FB = 1,

 XR_SPACE_PERSISTENCE_MODE_MAX_ENUM_FB = 0x7FFFFFFF

} XrSpacePersistenceModeFB;

The XrSpacePersistenceModeFB enumeration specifies the persistence mode for the save operation.

Enumerant Descriptions

• XR_SPACE_PERSISTENCE_MODE_INVALID_FB  — Invalid storage persistence

• XR_SPACE_PERSISTENCE_MODE_INDEFINITE_FB  — Store XrSpace indefinitely, or until erased

New Structures

Chapter 12. List of Current Extensions | 861

The XrSpaceSaveInfoFB structure is defined as:

// Provided by XR_FB_spatial_entity_storage

typedef struct XrSpaceSaveInfoFB {

 XrStructureType type;

 const void* next;

 XrSpace space;

 XrSpaceStorageLocationFB location;

 XrSpacePersistenceModeFB persistenceMode;

} XrSpaceSaveInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• space is the XrSpace handle to the space of the entity to be saved.

• location is the storage location.

• persistenceMode is the persistence mode.

The XrSpaceSaveInfoFB structure contains information used to save the spatial entity.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_storage extension must be enabled prior to using

XrSpaceSaveInfoFB

• type must be XR_TYPE_SPACE_SAVE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• space must be a valid XrSpace handle

• location must be a valid XrSpaceStorageLocationFB value

• persistenceMode must be a valid XrSpacePersistenceModeFB value

The XrSpaceEraseInfoFB structure is defined as:

862 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity_storage

typedef struct XrSpaceEraseInfoFB {

 XrStructureType type;

 const void* next;

 XrSpace space;

 XrSpaceStorageLocationFB location;

} XrSpaceEraseInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• space is the XrSpace handle to the reference space that defines the entity to be erased.

• location is the storage location.

The XrSpaceEraseInfoFB structure contains information used to erase the spatial entity.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_storage extension must be enabled prior to using

XrSpaceEraseInfoFB

• type must be XR_TYPE_SPACE_ERASE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• space must be a valid XrSpace handle

• location must be a valid XrSpaceStorageLocationFB value

The XrEventDataSpaceSaveCompleteFB structure is defined as:

Chapter 12. List of Current Extensions | 863

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity_storage

typedef struct XrEventDataSpaceSaveCompleteFB {

 XrStructureType type;

 const void* next;

 XrAsyncRequestIdFB requestId;

 XrResult result;

 XrSpace space;

 XrUuidEXT uuid;

 XrSpaceStorageLocationFB location;

} XrEventDataSpaceSaveCompleteFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestId is the ID of the asynchronous request to save an entity.

• result is an XrResult that describes whether the request succeeded or if an error occurred.

• space is the spatial entity being saved.

• uuid is the UUID for the spatial entity being saved.

• location is the location of the spatial entity being saved.

The save result event contains the success of the save/write operation to the specified location, as well

as the XrSpace handle on which the save operation was attempted on, the unique UUID, and the

triggered async request ID from the initial calling function.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_storage extension must be enabled prior to using

XrEventDataSpaceSaveCompleteFB

• type must be XR_TYPE_EVENT_DATA_SPACE_SAVE_COMPLETE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataSpaceEraseCompleteFB structure is defined as:

864 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity_storage

typedef struct XrEventDataSpaceEraseCompleteFB {

 XrStructureType type;

 const void* next;

 XrAsyncRequestIdFB requestId;

 XrResult result;

 XrSpace space;

 XrUuidEXT uuid;

 XrSpaceStorageLocationFB location;

} XrEventDataSpaceEraseCompleteFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestId is the ID of the asynchronous request to erase an entity.

• result is an XrResult that describes whether the request succeeded or if an error occurred.

• space is the spatial entity being erased.

• uuid is the UUID for the spatial entity being erased.

• location is the location of the spatial entity being erased.

The erase result event contains the success of the erase operation from the specified storage location. It

also provides the UUID of the entity and the async request ID from the initial calling function.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_storage extension must be enabled prior to using

XrEventDataSpaceEraseCompleteFB

• type must be XR_TYPE_EVENT_DATA_SPACE_ERASE_COMPLETE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrSaveSpaceFB function is defined as:

Chapter 12. List of Current Extensions | 865

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity_storage

XrResult xrSaveSpaceFB(

 XrSession session,

 const XrSpaceSaveInfoFB* info,

 XrAsyncRequestIdFB* requestId);

Parameter Descriptions

• session is a handle to an XrSession.

• info contains the parameters for the save operation.

• requestId is an output parameter, and the variable it points to will be populated with the ID

of this asynchronous request.

The xrSaveSpaceFB function persists the spatial entity at the specified location with the specified

mode. The runtime must return XR_ERROR_VALIDATION_FAILURE if XrSpaceSaveInfoFB::space is

XR_NULL_HANDLE or otherwise invalid. The runtime must return XR_ERROR_VALIDATION_FAILURE if

XrSpaceSaveInfoFB::location or XrSpaceSaveInfoFB::persistenceMode is invalid. This operation is

asynchronous and the runtime must post an XrEventDataSpaceSaveCompleteFB event when the

operation completes successfully or encounters an error. If this function returns a failure code, no

event is posted.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_storage extension must be enabled prior to calling xrSaveSpaceFB

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSpaceSaveInfoFB structure

• requestId must be a pointer to an XrAsyncRequestIdFB value

866 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrEraseSpaceFB function is defined as:

// Provided by XR_FB_spatial_entity_storage

XrResult xrEraseSpaceFB(

 XrSession session,

 const XrSpaceEraseInfoFB* info,

 XrAsyncRequestIdFB* requestId);

Parameter Descriptions

• session is a handle to an XrSession.

• info contains the parameters for the erase operation.

• requestId is an output parameter, and the variable it points to will be populated with the ID

of this asynchronous request.

The xrEraseSpaceFB function erases a spatial entity from storage at the specified location. The XrSpace

remains valid in the current session until the application destroys it or the session ends. The runtime

must return XR_ERROR_VALIDATION_FAILURE if XrSpaceEraseInfoFB::space is XR_NULL_HANDLE or

otherwise invalid. The runtime must return XR_ERROR_VALIDATION_FAILURE if XrSpaceEraseInfoFB

::location is invalid. This operation is asynchronous and the runtime must post an

Chapter 12. List of Current Extensions | 867

XrEventDataSpaceEraseCompleteFB event when the operation completes successfully or encounters an

error. If this function returns a failure code, no event is posted.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_storage extension must be enabled prior to calling xrEraseSpaceFB

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSpaceEraseInfoFB structure

• requestId must be a pointer to an XrAsyncRequestIdFB value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2022-01-22 (John Schofield)

◦ Initial draft

12.74. XR_FB_spatial_entity_storage_batch

Name String

XR_FB_spatial_entity_storage_batch

868 | Chapter 12. List of Current Extensions

Extension Type

Instance extension

Registered Extension Number

239

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_spatial_entity_storage

Contributors

John Schofield, Facebook

Andrew Kim, Facebook

Overview

This extension enables multiple spatial entities at a time to be persisted across sessions. If the

XR_SPACE_COMPONENT_TYPE_STORABLE_FB component has been enabled on the spatial entity, application

developers may save and erase XrSpace entities.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SPACE_LIST_SAVE_INFO_FB

• XR_TYPE_EVENT_DATA_SPACE_LIST_SAVE_COMPLETE_FB

New Enums

New Structures

The XrSpaceListSaveInfoFB structure is defined as:

Chapter 12. List of Current Extensions | 869

// Provided by XR_FB_spatial_entity_storage_batch

typedef struct XrSpaceListSaveInfoFB {

 XrStructureType type;

 const void* next;

 uint32_t spaceCount;

 XrSpace* spaces;

 XrSpaceStorageLocationFB location;

} XrSpaceListSaveInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• spaceCount is the number of spatial entities to save.

• spaces is a list of XrSpace handles for the entities to be saved.

• location is the storage location.

The XrSpaceListSaveInfoFB structure contains information used to save multiple spatial entities.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_storage_batch extension must be enabled prior to using

XrSpaceListSaveInfoFB

• type must be XR_TYPE_SPACE_LIST_SAVE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• spaces must be a pointer to an array of spaceCount XrSpace handles

• location must be a valid XrSpaceStorageLocationFB value

• The spaceCount parameter must be greater than 0

The XrEventDataSpaceListSaveCompleteFB structure is defined as:

870 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_FB_spatial_entity_storage_batch

typedef struct XrEventDataSpaceListSaveCompleteFB {

 XrStructureType type;

 const void* next;

 XrAsyncRequestIdFB requestId;

 XrResult result;

} XrEventDataSpaceListSaveCompleteFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• requestId is the ID of the asynchronous request to save an entity.

• result is an XrResult that describes whether the request succeeded or if an error occurred.

This completion event indicates that a request to save a list of XrSpace objects has completed. The

application can use result to check if the request was successful or if an error occurred.

Result Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_SPACE_MAPPING_INSUFFICIENT_FB

• XR_ERROR_SPACE_LOCALIZATION_FAILED_FB

• XR_ERROR_SPACE_NETWORK_TIMEOUT_FB

• XR_ERROR_SPACE_NETWORK_REQUEST_FAILED_FB

• XR_ERROR_SPACE_CLOUD_STORAGE_DISABLED_FB

Chapter 12. List of Current Extensions | 871

Valid Usage (Implicit)

• The XR_FB_spatial_entity_storage_batch extension must be enabled prior to using

XrEventDataSpaceListSaveCompleteFB

• type must be XR_TYPE_EVENT_DATA_SPACE_LIST_SAVE_COMPLETE_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrSaveSpaceListFB function is defined as:

// Provided by XR_FB_spatial_entity_storage_batch

XrResult xrSaveSpaceListFB(

 XrSession session,

 const XrSpaceListSaveInfoFB* info,

 XrAsyncRequestIdFB* requestId);

Parameter Descriptions

• session is a handle to an XrSession.

• info contains the parameters for the save operation.

• requestId is an output parameter, and the variable it points to will be populated with the ID

of this asynchronous request.

The xrSaveSpaceListFB function persists the specified spatial entities at the specified storage location.

The runtime must return XR_ERROR_VALIDATION_FAILURE if XrSpaceSaveInfoFB::location is invalid. This

operation is asynchronous and the runtime must post an XrEventDataSpaceListSaveCompleteFB event

when the operation completes successfully or encounters an error. If this function returns a failure

code, no event is posted.

872 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_FB_spatial_entity_storage_batch extension must be enabled prior to calling

xrSaveSpaceListFB

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSpaceListSaveInfoFB structure

• requestId must be a pointer to an XrAsyncRequestIdFB value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SPACE_NETWORK_TIMEOUT_FB

• XR_ERROR_SPACE_NETWORK_REQUEST_FAILED_FB

• XR_ERROR_SPACE_MAPPING_INSUFFICIENT_FB

• XR_ERROR_SPACE_LOCALIZATION_FAILED_FB

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_SPACE_CLOUD_STORAGE_DISABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2022-06-08 (John Schofield)

◦ Initial draft

Chapter 12. List of Current Extensions | 873

12.75. XR_FB_spatial_entity_user

Name String

XR_FB_spatial_entity_user

Extension Type

Instance extension

Registered Extension Number

242

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

John Schofield, Facebook

Andrew Kim, Facebook

Andreas Selvik, Facebook

Overview

This extension enables creation and management of user objects which can be used by the application

to reference a user other than the current user.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

New Object Types

XR_DEFINE_HANDLE(XrSpaceUserFB)

Represents a user with which the application can interact using various extensions including

XR_FB_spatial_entity_sharing. See xrCreateSpaceUserFB for how to declare a user.

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

874 | Chapter 12. List of Current Extensions

• XR_TYPE_SPACE_USER_CREATE_INFO_FB

New Enums

New Base Types

The XrSpaceUserIdFB type is defined as:

typedef uint64_t XrSpaceUserIdFB;

An implementation-defined ID of the underlying user.

New Structures

The XrSpaceUserCreateInfoFB structure is defined as:

// Provided by XR_FB_spatial_entity_user

typedef struct XrSpaceUserCreateInfoFB {

 XrStructureType type;

 const void* next;

 XrSpaceUserIdFB userId;

} XrSpaceUserCreateInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• userId is the user ID with which the application can reference.

The XrSpaceUserCreateInfoFB structure describes a user with which the application can interact.

Chapter 12. List of Current Extensions | 875

Valid Usage (Implicit)

• The XR_FB_spatial_entity_user extension must be enabled prior to using

XrSpaceUserCreateInfoFB

• type must be XR_TYPE_SPACE_USER_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrCreateSpaceUserFB function is defined as:

// Provided by XR_FB_spatial_entity_user

XrResult xrCreateSpaceUserFB(

 XrSession session,

 const XrSpaceUserCreateInfoFB* info,

 XrSpaceUserFB* user);

Parameter Descriptions

• session is a handle to an XrSession.

• info is a pointer to an XrSpaceUserCreateInfoFB structure containing information to create

the user handle.

• user is the output parameter that points to the handle of the user being created.

The application can use this function to create a user handle with which it can then interact, such as

sharing XrSpace objects.

Valid Usage (Implicit)

• The XR_FB_spatial_entity_user extension must be enabled prior to calling

xrCreateSpaceUserFB

• session must be a valid XrSession handle

• info must be a pointer to a valid XrSpaceUserCreateInfoFB structure

• user must be a pointer to an XrSpaceUserFB handle

876 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

The xrGetSpaceUserIdFB function is defined as:

// Provided by XR_FB_spatial_entity_user

XrResult xrGetSpaceUserIdFB(

 XrSpaceUserFB user,

 XrSpaceUserIdFB* userId);

Parameter Descriptions

• user is a handle to an XrSpaceUserFB.

• userId is the output parameter that points to the user ID of the user.

The application can use this function to retrieve the user ID of a given user handle.

Chapter 12. List of Current Extensions | 877

Valid Usage (Implicit)

• The XR_FB_spatial_entity_user extension must be enabled prior to calling

xrGetSpaceUserIdFB

• user must be a valid XrSpaceUserFB handle

• userId must be a pointer to an XrSpaceUserIdFB value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The xrDestroySpaceUserFB function is defined as:

// Provided by XR_FB_spatial_entity_user

XrResult xrDestroySpaceUserFB(

 XrSpaceUserFB user);

Parameter Descriptions

• user is a handle to the user object to be destroyed.

The application should use this function to release resources tied to a given XrSpaceUserFB once the

application no longer needs to reference the user.

878 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_spatial_entity_user extension must be enabled prior to calling

xrDestroySpaceUserFB

• user must be a valid XrSpaceUserFB handle

Thread Safety

• Access to user, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

Issues

Version History

• Revision 1, 2022-07-28 (John Schofield)

◦ Initial draft

12.76. XR_FB_swapchain_update_state

Name String

XR_FB_swapchain_update_state

Extension Type

Instance extension

Registered Extension Number

72

Revision

3

Chapter 12. List of Current Extensions | 879

Extension and Version Dependencies

OpenXR 1.0

Contributors

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

This extension enables the application to modify and query specific mutable state associated with a

swapchain.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as

indicated in the Extensions section.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

The XrSwapchainStateBaseHeaderFB structure is defined as:

// Provided by XR_FB_swapchain_update_state

typedef struct XrSwapchainStateBaseHeaderFB {

 XrStructureType type;

 void* next;

} XrSwapchainStateBaseHeaderFB;

Member Descriptions

• type is the XrStructureType of this structure. This base structure itself has no associated

XrStructureType value.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

The XrSwapchainStateBaseHeaderFB is a base structure that can be overridden by a specific

XrSwapchainState* child structure.

880 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_swapchain_update_state extension must be enabled prior to using

XrSwapchainStateBaseHeaderFB

• type must be one of the following XrStructureType values:

XR_TYPE_SWAPCHAIN_STATE_ANDROID_SURFACE_DIMENSIONS_FB,

XR_TYPE_SWAPCHAIN_STATE_FOVEATION_FB, XR_TYPE_SWAPCHAIN_STATE_SAMPLER_OPENGL_ES_FB,
XR_TYPE_SWAPCHAIN_STATE_SAMPLER_VULKAN_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrUpdateSwapchainFB function is defined as:

// Provided by XR_FB_swapchain_update_state

XrResult xrUpdateSwapchainFB(

 XrSwapchain swapchain,

 const XrSwapchainStateBaseHeaderFB* state);

Parameter Descriptions

• swapchain is the XrSwapchain to update state for.

• state is a pointer to a XrSwapchainState structure based off of

XrSwapchainStateBaseHeaderFB.

xrUpdateSwapchainFB provides support for an application to update specific mutable state associated

with an XrSwapchain.

Valid Usage (Implicit)

• The XR_FB_swapchain_update_state extension must be enabled prior to calling

xrUpdateSwapchainFB

• swapchain must be a valid XrSwapchain handle

• state must be a pointer to a valid XrSwapchainStateBaseHeaderFB-based structure. See also:

XrSwapchainStateAndroidSurfaceDimensionsFB, XrSwapchainStateFoveationFB,

XrSwapchainStateSamplerOpenGLESFB, XrSwapchainStateSamplerVulkanFB

Chapter 12. List of Current Extensions | 881

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The xrGetSwapchainStateFB function is defined as:

// Provided by XR_FB_swapchain_update_state

XrResult xrGetSwapchainStateFB(

 XrSwapchain swapchain,

 XrSwapchainStateBaseHeaderFB* state);

Parameter Descriptions

• swapchain is the XrSwapchain to update state for.

• state is a pointer to a XrSwapchainState structure based off of

XrSwapchainStateBaseHeaderFB.

xrGetSwapchainStateFB provides support for an application to query specific mutable state associated

with an XrSwapchain.

882 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_swapchain_update_state extension must be enabled prior to calling

xrGetSwapchainStateFB

• swapchain must be a valid XrSwapchain handle

• state must be a pointer to an XrSwapchainStateBaseHeaderFB-based structure. See also:

XrSwapchainStateAndroidSurfaceDimensionsFB, XrSwapchainStateFoveationFB,

XrSwapchainStateSamplerOpenGLESFB, XrSwapchainStateSamplerVulkanFB

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

Issues

• Should we add a method to query the current state?

◦ Yes. Given that we allow mutable state to be updated by the application, it is useful to have a

query mechanism to get the current state for all state structures.

Version History

• Revision 1, 2021-04-16 (Gloria Kennickell)

◦ Initial extension description

• Revision 2, 2021-05-13 (Gloria Kennickell)

◦ Add mechanism to query current state for all state structures.

• Revision 3, 2021-05-27 (Gloria Kennickell)

◦ Move platform and graphics API specific structs into separate extensions.

Chapter 12. List of Current Extensions | 883

12.77. XR_FB_swapchain_update_state_android_surface

Name String

XR_FB_swapchain_update_state_android_surface

Extension Type

Instance extension

Registered Extension Number

162

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_KHR_android_surface_swapchain

and

XR_FB_swapchain_update_state

Contributors

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

This extension enables the application to modify and query specific mutable state associated with an

Android surface swapchain, examples include:

• A video application may need to update the default size of the image buffers associated with an

Android Surface Swapchain.

• A video application may need to communicate a new width and height for an Android Surface

Swapchain, as the surface dimensions may be implicitly updated by the producer during the life of

the Swapchain. This is important for correct application of the non-normalized imageRect specified

via XrSwapchainSubImage.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo enabledExtensionNames parameter as

indicated in the Extensions section.

New Object Types

New Flag Types

New Enum Constants

884 | Chapter 12. List of Current Extensions

XrStructureType enumeration is extended with:

• XR_TYPE_SWAPCHAIN_STATE_ANDROID_SURFACE_DIMENSIONS_FB

New Enums

New Structures

The XrSwapchainStateAndroidSurfaceDimensionsFB structure is defined as:

// Provided by XR_FB_swapchain_update_state_android_surface

typedef struct XrSwapchainStateAndroidSurfaceDimensionsFB {

 XrStructureType type;

 void* next;

 uint32_t width;

 uint32_t height;

} XrSwapchainStateAndroidSurfaceDimensionsFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• width is the width of the image buffer, must not be greater than the graphics API’s maximum

limit.

• height is the height of the image buffer, must not be greater than the graphics API’s

maximum limit.

When XrSwapchainStateAndroidSurfaceDimensionsFB is specified in the call to

xrUpdateSwapchainFB, the dimensions provided will be used to update the default size of the image

buffers associated with the Android Surface swapchain.

Additionally, the dimensions provided will become the new source of truth for the swapchain width

and height, affecting operations such as computing the normalized imageRect for the swapchain.

When XrSwapchainStateAndroidSurfaceDimensionsFB is specified in the call to

xrGetSwapchainStateFB, the dimensions will be populated with the current swapchain width and

height.

To use XrSwapchainStateAndroidSurfaceDimensionsFB, XR_USE_PLATFORM_ANDROID must be

defined before including openxr_platform.h.

Chapter 12. List of Current Extensions | 885

Valid Usage (Implicit)

• The XR_FB_swapchain_update_state_android_surface extension must be enabled prior to using

XrSwapchainStateAndroidSurfaceDimensionsFB

• type must be XR_TYPE_SWAPCHAIN_STATE_ANDROID_SURFACE_DIMENSIONS_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

Issues

Version History

• Revision 1, 2021-05-27 (Gloria Kennickell)

◦ Initial draft

12.78. XR_FB_swapchain_update_state_opengl_es

Name String

XR_FB_swapchain_update_state_opengl_es

Extension Type

Instance extension

Registered Extension Number

163

Revision

1

Extension and Version Dependencies

XR_KHR_opengl_es_enable

and

XR_FB_swapchain_update_state

Contributors

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

This extension enables the application to modify and query OpenGL ES-specific mutable state

associated with a swapchain, examples include:

886 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

• On platforms where composition runs in a separate process from the application, swapchains must

be created in a cross-process friendly way. In such cases, the texture image memory may be shared

between processes, but the texture state may not; and, an explicit mechanism to synchronize this

texture state between the application and the compositor is required.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo enabledExtensionNames parameter as

indicated in the Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SWAPCHAIN_STATE_SAMPLER_OPENGL_ES_FB

New Enums

New Structures

The XrSwapchainStateSamplerOpenGLESFB structure is defined as:

// Provided by XR_FB_swapchain_update_state_opengl_es

typedef struct XrSwapchainStateSamplerOpenGLESFB {

 XrStructureType type;

 void* next;

 EGLenum minFilter;

 EGLenum magFilter;

 EGLenum wrapModeS;

 EGLenum wrapModeT;

 EGLenum swizzleRed;

 EGLenum swizzleGreen;

 EGLenum swizzleBlue;

 EGLenum swizzleAlpha;

 float maxAnisotropy;

 XrColor4f borderColor;

} XrSwapchainStateSamplerOpenGLESFB;

Chapter 12. List of Current Extensions | 887

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minFilter is a valid Android OpenGL ES EGLenum.

• magFilter is a valid Android OpenGL ES EGLenum.

• wrapModeS is a valid Android OpenGL ES EGLenum.

• wrapModeT is a valid Android OpenGL ES EGLenum.

• swizzleRed is a valid Android OpenGL ES EGLenum.

• swizzleGreen is a valid Android OpenGL ES EGLenum.

• swizzleBlue is a valid Android OpenGL ES EGLenum.

• swizzleAlpha is a valid Android OpenGL ES EGLenum.

• maxAnisotropy is a valid float used to represent max anisotropy.

• borderColor is an RGBA color to be used as border texels.

When XrSwapchainStateSamplerOpenGLESFB is specified in the call to xrUpdateSwapchainFB, texture

sampler state for all images in the XrSwapchain will be updated for both the application and

compositor processes.

For most cases, the sampler state update is only required compositor-side, as that is where the

swapchain images are sampled. For completeness, the application-side sampler state is additionally

updated to support cases where the application may choose to directly sample the swapchain images.

Applications are expected to handle synchronization of the sampler state update with application-side

rendering. Similarly, the compositor will synchronize the sampler state update with rendering of the

next compositor frame.

An EGLContext, either the EGLContext bound during XrSwapchain creation or an EGLContext in the same

share group, is required to be bound on the application calling thread. Current texture bindings may

be altered by the call, including the active texture.

When XrSwapchainStateSamplerOpenGLESFB is specified in the call to xrGetSwapchainStateFB, the

sampler state will be populated with the current swapchain sampler state.

To use XrSwapchainStateSamplerOpenGLESFB, XR_USE_GRAPHICS_API_OPENGL_ES must be defined

before including openxr_platform.h.

888 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_swapchain_update_state_opengl_es extension must be enabled prior to using

XrSwapchainStateSamplerOpenGLESFB

• type must be XR_TYPE_SWAPCHAIN_STATE_SAMPLER_OPENGL_ES_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• minFilter must be a valid EGLenum value

• magFilter must be a valid EGLenum value

• wrapModeS must be a valid EGLenum value

• wrapModeT must be a valid EGLenum value

• swizzleRed must be a valid EGLenum value

• swizzleGreen must be a valid EGLenum value

• swizzleBlue must be a valid EGLenum value

• swizzleAlpha must be a valid EGLenum value

New Functions

Issues

Version History

• Revision 1, 2021-05-27 (Gloria Kennickell)

◦ Initial draft

12.79. XR_FB_swapchain_update_state_vulkan

Name String

XR_FB_swapchain_update_state_vulkan

Extension Type

Instance extension

Registered Extension Number

164

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Chapter 12. List of Current Extensions | 889

#valid-usage-for-structure-pointer-chains

and

XR_KHR_vulkan_enable

and

XR_FB_swapchain_update_state

Contributors

Cass Everitt, Facebook

Gloria Kennickell, Facebook

Overview

This extension enables the application to modify and query Vulkan-specific mutable state associated

with a swapchain, examples include:

• On platforms where composition runs in a separate process from the application, swapchains must

be created in a cross-process friendly way. In such cases, the texture image memory may be shared

between processes, but the texture state may not; and, an explicit mechanism to synchronize this

texture state between the application and the compositor is required.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo enabledExtensionNames parameter as

indicated in the Extensions section.

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SWAPCHAIN_STATE_SAMPLER_VULKAN_FB

New Enums

New Structures

The XrSwapchainStateSamplerVulkanFB structure is defined as:

890 | Chapter 12. List of Current Extensions

// Provided by XR_FB_swapchain_update_state_vulkan

typedef struct XrSwapchainStateSamplerVulkanFB {

 XrStructureType type;

 void* next;

 VkFilter minFilter;

 VkFilter magFilter;

 VkSamplerMipmapMode mipmapMode;

 VkSamplerAddressMode wrapModeS;

 VkSamplerAddressMode wrapModeT;

 VkComponentSwizzle swizzleRed;

 VkComponentSwizzle swizzleGreen;

 VkComponentSwizzle swizzleBlue;

 VkComponentSwizzle swizzleAlpha;

 float maxAnisotropy;

 XrColor4f borderColor;

} XrSwapchainStateSamplerVulkanFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• minFilter is a valid Vulkan VkFilter.

• magFilter is a valid Vulkan VkFilter.

• mipmapMode is a valid Vulkan VkSamplerMipmapMode.

• wrapModeS is a valid Vulkan VkSamplerAddressMode.

• wrapModeT is a valid Vulkan VkSamplerAddressMode.

• swizzleRed is a valid Vulkan VkComponentSwizzle.

• swizzleGreen is a valid Vulkan VkComponentSwizzle.

• swizzleBlue is a valid Vulkan VkComponentSwizzle.

• swizzleAlpha is a valid Vulkan VkComponentSwizzle.

• maxAnisotropy is a valid float used to represent max anisotropy.

• borderColor is an RGBA color to be used as border texels.

When XrSwapchainStateSamplerVulkanFB is specified in the call to xrUpdateSwapchainFB, texture

sampler state for all images in the XrSwapchain will be updated for the compositor process. For most

cases, the sampler state update is only required compositor-side, as that is where the swapchain

images are sampled. If the application requires sampling of the swapchain images, the application will

be responsible for updating the texture state using normal Vulkan mechanisms and synchronizing

Chapter 12. List of Current Extensions | 891

appropriately with application-side rendering.

When XrSwapchainStateSamplerVulkanFB is specified in the call to xrGetSwapchainStateFB, the

sampler state will be populated with the current swapchain sampler state.

To use XrSwapchainStateSamplerVulkanFB, XR_USE_GRAPHICS_API_VULKAN must be defined before

including openxr_platform.h.

Valid Usage (Implicit)

• The XR_FB_swapchain_update_state_vulkan extension must be enabled prior to using

XrSwapchainStateSamplerVulkanFB

• type must be XR_TYPE_SWAPCHAIN_STATE_SAMPLER_VULKAN_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• minFilter must be a valid VkFilter value

• magFilter must be a valid VkFilter value

• mipmapMode must be a valid VkSamplerMipmapMode value

• wrapModeS must be a valid VkSamplerAddressMode value

• wrapModeT must be a valid VkSamplerAddressMode value

• swizzleRed must be a valid VkComponentSwizzle value

• swizzleGreen must be a valid VkComponentSwizzle value

• swizzleBlue must be a valid VkComponentSwizzle value

• swizzleAlpha must be a valid VkComponentSwizzle value

New Functions

Issues

Version History

• Revision 1, 2021-05-27 (Gloria Kennickell)

◦ Initial draft

12.80. XR_FB_touch_controller_pro

Name String

XR_FB_touch_controller_pro

Extension Type

Instance extension

892 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Registered Extension Number

168

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-06-29

IP Status

No known IP claims.

Contributors

Aanchal Dalmia, Meta

Adam Bengis, Meta

Tony Targonski, Meta

Federico Schliemann, Meta

Overview

This extension defines a new interaction profile for the Meta Quest Touch Pro Controller.

Meta Quest Touch Pro Controller Profile Path:

• /interaction_profiles/facebook/touch_controller_pro

Note

The interaction profile path /interaction_profiles/facebook/touch_controller_pro defined here does

not follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/facebook/touch_controller_pro_fb, to allow for modifications

when promoted to a KHR extension or the core specification.

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile provides inputs and outputs that are a superset of those available in the

existing "Oculus Touch Controller" interaction profile:

• /interaction_profiles/oculus/touch_controller

Chapter 12. List of Current Extensions | 893

Supported component paths (Note that the paths which are marked as 'new' are enabled by Meta Quest

Touch Pro Controller profile exclusively):

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• On both:

◦ …/input/squeeze/value

◦ …/input/trigger/value

◦ …/input/trigger/touch

◦ …/input/thumbstick

◦ …/input/thumbstick/x

◦ …/input/thumbstick/y

◦ …/input/thumbstick/click

◦ …/input/thumbstick/touch

◦ …/input/thumbrest/touch

◦ …/input/grip/pose

◦ …/input/aim/pose

◦ …/output/haptic

◦ …/input/thumbrest/force (new)

◦ …/input/stylus_fb/force (new)

◦ …/input/trigger/curl_fb (new)

◦ …/input/trigger/slide_fb (new)

◦ …/input/trigger/proximity_fb (new)

894 | Chapter 12. List of Current Extensions

◦ …/input/thumb_fb/proximity_fb (new)

◦ …/output/haptic_trigger_fb (new)

◦ …/output/haptic_thumb_fb (new)

New Identifiers

• stylus_fb: Meta Quest Touch Pro Controller adds an optional stylus tip that can be

interchanged with the lanyard. This tip can detect various pressure levels and could be used

for writing or drawing.

• thumb_fb: Meta Quest Touch Pro Controller adds a 1-dimensional analog input value for the

thumb. This is similar to other triggers on the controller like the fore trigger for the index

finger and grip trigger for the middle finger.

Input Path Descriptions

• /input/thumbrest/force : Allow developers to access the normalized 1D force value

associated with the thumb ranging from 0-6 Newtons: 0 = not pressed, 1 = fully pressed

• /input/stylus_fb/force : Allow developers to access the normalized 1D force value associated

with the stylus ranging from ~0-2 Newtons: 0 = not pressed, 1 = fully pressed

• /input/trigger/curl_fb : This represents how pointed or curled the user’s finger is on the

trigger: 0 = fully pointed, 1 = finger flat on surface

• /input/trigger/slide_fb: This represents how far the user is sliding their index finger along

the surface of the trigger: 0 = finger flat on the surface, 1 = finger fully drawn back

• /input/trigger/proximity_fb : Bit indicating whether the user’s index finger is near the

trigger

• /input/thumb_fb/proximity_fb : Bit indicating the user’s thumb is near the touchpad

Output Path Descriptions

In addition to the VCM motor, Meta Quest Touch Pro Controller has two localized LRA haptics

elements located in the fore trigger and under the touchpad.

• /output/haptic_trigger_fb represents the path to the haptic element in the trigger

• /output/haptic_thumb_fb represents the path to the haptic element under the touchpad

Version History

• Revision 1, 2022-06-29 (Aanchal Dalmia)

Chapter 12. List of Current Extensions | 895

◦ Initial extension proposal

12.81. XR_FB_touch_controller_proximity

Name String

XR_FB_touch_controller_proximity

Extension Type

Instance extension

Registered Extension Number

207

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-09-12

IP Status

No known IP claims.

Contributors

Tony Targonski, Meta Platforms

Aanchal Dalmia, Meta Platforms

Andreas Loeve Selvik, Meta Platforms

John Kearney, Meta Platforms

James Hillery, Meta Platforms

12.81.1. Overview

This extension introduces a new component path, proximity_fb, and adds support for it for the

/interaction_profiles/oculus/touch_controller interaction profile.

12.81.2. New Interaction Profile Component Paths

• proximity_fb - The user is in physical proximity of input source. This may be present for any kind

of input source representing a physical component, such as a button, if the device includes the

necessary sensor. The state of a "proximity_fb" component must be XR_TRUE if the same input

source is returning XR_TRUE for either a "touch" or any other component that implies physical

contact. The runtime may return XR_TRUE for "proximity_fb" when "touch" returns XR_FALSE. This

indicate that the user is hovering just above, but not touching the input source in question.

896 | Chapter 12. List of Current Extensions

"proximity_fb" components are always boolean.

12.81.3. Interaction Profile Changes

Interaction profile: /interaction_profiles/oculus/touch_controller

Additional supported component paths for the above profile enabled by this extension:

Valid for user paths:

• /user/hand/left

• /user/hand/right

On both:

• …/input/trigger/proximity_fb This represents whether the user is in proximity of the trigger button,

usually with their index finger.

• …/input/thumb_fb/proximity_fb This represents whether the user is in proximity of the input sources

at the top of the controller, usually with their thumb.

12.81.4. Example code

The following example code demonstrates detecting when a user lifts their finger off the trigger

button.

XrInstance instance; // previously initialized

XrSession session; // previously initialized

XrActionSet inGameActionSet; // previously initialized

XrAction indexProximityAction; // previously initialized

XrAction indexTouchAction; // previously initialized

// ----------

// Bind actions to trigger/proximity_fb and trigger/touch

// ----------

XrPath indexProximityPath, indexTouchPath;

// New component exposed by this extension:

CHK_XR(xrStringToPath(instance, "/user/hand/right/input/trigger/proximity_fb",

&indexProximityPath));

// Existing component that is useful together with proximity_fb

CHK_XR(xrStringToPath(instance, "/user/hand/right/input/trigger/touch", &indexTouchPath))

XrPath interactionProfilePath;

CHK_XR(xrStringToPath(instance, "/interaction_profiles/oculus/touch_controller",

&interactionProfilePath));

Chapter 12. List of Current Extensions | 897

XrActionSuggestedBinding bindings[2];

bindings[0].action = indexProximityAction;

bindings[0].binding = indexProximityPath;

bindings[1].action = indexTouchAction;

bindings[1].binding = indexTouchPath;

XrInteractionProfileSuggestedBinding

suggestedBindings{XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING};

suggestedBindings.interactionProfile = interactionProfilePath;

suggestedBindings.suggestedBindings = bindings;

suggestedBindings.countSuggestedBindings = 2;

CHK_XR(xrSuggestInteractionProfileBindings(instance, &suggestedBindings));

// ----------

// Application main loop

// ----------

while (1)

{

 // ...

 // ----------

 // Query input state

 // ----------

 XrActionStateBoolean indexTouchState{XR_TYPE_ACTION_STATE_BOOLEAN};

 XrActionStateBoolean indexProximityState{XR_TYPE_ACTION_STATE_BOOLEAN};

 XrActionStateGetInfo getInfo{XR_TYPE_ACTION_STATE_GET_INFO};

 getInfo.action = indexTouchAction;

 CHK_XR(xrGetActionStateBoolean(session, &getInfo, &indexTouchState));

 getInfo.action = indexProximityAction;

 CHK_XR(xrGetActionStateBoolean(session, &getInfo, &indexProximityState));

 // ----------

 // Proximity and touch logic

 // ----------

 // There are only three valid combinations of the proximity and touch values

 if (!indexProximityState.currentState)

 {

 // Index is not in proximity of the trigger button (they might be pointing!)

 // Implies that TouchState.currentState == XR_FALSE

 }

 if (indexProximityState.currentState && !indexTouchState.currentState)

 {

 // Index finger of user is in proximity of, but not touching, the trigger button

898 | Chapter 12. List of Current Extensions

 // i.e. they are hovering above the button

 }

 if (indexTouchState.currentState)

 {

 // Index finger of user is touching the trigger button

 // Implies that ProximityState.currentState == XR_TRUE

 }

}

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

Version History

• Revision 1, 2022-09-12 (Andreas Loeve Selvik)

◦ Initial extension proposal

12.82. XR_FB_triangle_mesh

Name String

XR_FB_triangle_mesh

Extension Type

Instance extension

Registered Extension Number

118

Chapter 12. List of Current Extensions | 899

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Contributors

Anton Vaneev, Facebook

Cass Everitt, Facebook

Federico Schliemann, Facebook

Johannes Schmid, Facebook

Overview

Meshes may be useful in XR applications when representing parts of the environment. In particular,

application may provide the surfaces of real-world objects tagged manually to the runtime, or obtain

automatically detected environment contents.

This extension allows:

• An application to create a triangle mesh and specify the mesh data.

• An application to update mesh contents if a mesh is mutable.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as

indicated in the Extensions section.

New Object Types

XR_DEFINE_HANDLE(XrTriangleMeshFB)

XrTriangleMeshFB represents a triangle mesh with its corresponding mesh data: a vertex buffer and

an index buffer.

New Flag Types

// Provided by XR_FB_triangle_mesh

typedef XrFlags64 XrTriangleMeshFlagsFB;

900 | Chapter 12. List of Current Extensions

// Flag bits for XrTriangleMeshFlagsFB

static const XrTriangleMeshFlagsFB XR_TRIANGLE_MESH_MUTABLE_BIT_FB = 0x00000001;

Flag Descriptions

• XR_TRIANGLE_MESH_MUTABLE_BIT_FB  — The triangle mesh is mutable (can be modified after it is

created).

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_TRIANGLE_MESH_CREATE_INFO_FB

New Enums

Applications may specify the triangle winding order of a mesh - whether the vertices of an outward-

facing side of a triangle appear in clockwise or counter-clockwise order - using XrWindingOrderFB

enumeration.

// Provided by XR_FB_triangle_mesh

typedef enum XrWindingOrderFB {

 XR_WINDING_ORDER_UNKNOWN_FB = 0,

 XR_WINDING_ORDER_CW_FB = 1,

 XR_WINDING_ORDER_CCW_FB = 2,

 XR_WINDING_ORDER_MAX_ENUM_FB = 0x7FFFFFFF

} XrWindingOrderFB;

Enumerant Descriptions

• XR_WINDING_ORDER_UNKNOWN_FB  — Winding order is unknown and the runtime cannot make any

assumptions on the triangle orientation

• XR_WINDING_ORDER_CW_FB  — Clockwise winding order

• XR_WINDING_ORDER_CCW_FB  — Counter-clockwise winding order

New Structures

XrTriangleMeshCreateInfoFB must be provided when calling xrCreateTriangleMeshFB.

The XrTriangleMeshCreateInfoFB structure is defined as:

Chapter 12. List of Current Extensions | 901

// Provided by XR_FB_triangle_mesh

typedef struct XrTriangleMeshCreateInfoFB {

 XrStructureType type;

 const void* next;

 XrTriangleMeshFlagsFB flags;

 XrWindingOrderFB windingOrder;

 uint32_t vertexCount;

 const XrVector3f* vertexBuffer;

 uint32_t triangleCount;

 const uint32_t* indexBuffer;

} XrTriangleMeshCreateInfoFB;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrTriangleMeshFlagBitsFB that specify behavior.

• windingOrder is the XrWindingOrderFB value defining the winding order of the mesh

triangles.

• vertexCount is the number of vertices in the mesh. In the case of the mutable mesh, the value

is treated as the maximum number of vertices the mesh will be able to represent at any time

in its lifecycle. The actual number of vertices can vary and is defined when

xrTriangleMeshEndUpdateFB is called.

• vertexBuffer is a pointer to the vertex data. The size of the array must be vertexCount

elements. When the mesh is mutable ((flags & XR_TRIANGLE_MESH_MUTABLE_BIT_FB) != 0), the

vertexBuffer parameter must be NULL and mesh data must be populated separately.

• triangleCount is the number of triangles in the mesh. In the case of the mutable mesh, the

value is treated as the maximum number of triangles the mesh will be able to represent at

any time in its lifecycle. The actual number of triangles can vary and is defined when

xrTriangleMeshEndUpdateFB is called.

• indexBuffer the triangle indices. The size of the array must be triangleCount elements. When

the mesh is mutable ((flags & XR_TRIANGLE_MESH_MUTABLE_BIT_FB) != 0), the indexBuffer

parameter must be NULL and mesh data must be populated separately.

Mesh buffers can be updated between xrTriangleMeshBeginUpdateFB and

xrTriangleMeshEndUpdateFB calls.

If the mesh is non-mutable, vertexBuffer must be a pointer to an array of vertexCount XrVector3f

902 | Chapter 12. List of Current Extensions

structures. If the mesh is non-mutable, indexBuffer must be a pointer to an array of 3 * triangleCount

uint32_t vertex indices.

Valid Usage (Implicit)

• The XR_FB_triangle_mesh extension must be enabled prior to using

XrTriangleMeshCreateInfoFB

• type must be XR_TYPE_TRIANGLE_MESH_CREATE_INFO_FB

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be 0 or a valid combination of XrTriangleMeshFlagBitsFB values

• windingOrder must be a valid XrWindingOrderFB value

Mutable Mesh Update States

Mutable meshes have a state machine controlling how they may be updated.

xrTriangleMeshBeginUpdateFB

Topology Undefined

xrTriangleMeshEndUpdateFB

Updating Mesh

xrTriangleMeshEndVertexBufferUpdateFB

Updating Vertices

xrTriangleMeshBeginVertexBufferUpdateFB xrTriangleMeshBeginUpdateFBReady

May change vertex buffer size and/or cont...May change vertex buffer contents, but no...

xrTriangleMeshEndUpdateFB after setting both the index and vertex buffers

Defining Topology

xrCreateTr...

Viewer does not support full SVG 1.1

Figure 15. Mutable Triangle Mesh States

The states are as follows:

Chapter 12. List of Current Extensions | 903

#valid-usage-for-structure-pointer-chains

Undefined Topology

The default state immediately after creation of a mutable mesh. Move to Defining Topology by

calling xrTriangleMeshBeginUpdateFB.

Defining Topology

The application must set the initial vertex buffer and index buffer before moving to Ready by

calling xrTriangleMeshEndUpdateFB.

Ready

In this state, the buffer contents/size must not be modified. To move to Updating Mesh call

xrTriangleMeshBeginUpdateFB. To move to Updating Vertices call

xrTriangleMeshBeginVertexBufferUpdateFB.

Updating Mesh

The application may modify the vertex buffer contents and/or the vertex count. The application

may modify the index buffer contents and/or the index buffer element count. Move to Ready and

commit changes by calling xrTriangleMeshEndUpdateFB.

Updating Vertices

The application may modify the vertex buffer contents, but not the vertex count. Move to Ready

and commit changes by calling xrTriangleMeshEndVertexBufferUpdateFB.

New Functions

The xrCreateTriangleMeshFB function is defined as:

// Provided by XR_FB_triangle_mesh

XrResult xrCreateTriangleMeshFB(

 XrSession session,

 const XrTriangleMeshCreateInfoFB* createInfo,

 XrTriangleMeshFB* outTriangleMesh);

Parameter Descriptions

• session is the XrSession to which the mesh will belong.

• createInfo is a pointer to an XrTriangleMeshCreateInfoFB structure containing parameters to

be used to create the mesh.

• outTriangleMesh is a pointer to a handle in which the created XrTriangleMeshFB is returned.

This creates an XrTriangleMeshFB handle. The returned triangle mesh handle may be subsequently

used in API calls.

904 | Chapter 12. List of Current Extensions

When the mesh is mutable (the XR_TRIANGLE_MESH_MUTABLE_BIT_FB bit is set in

XrTriangleMeshCreateInfoFB::flags), the created triangle mesh starts in the Undefined Topology state.

Immutable meshes have no state machine; they may be considered to be in state Ready with no valid

edges leaving that state.

Valid Usage (Implicit)

• The XR_FB_triangle_mesh extension must be enabled prior to calling xrCreateTriangleMeshFB

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrTriangleMeshCreateInfoFB structure

• outTriangleMesh must be a pointer to an XrTriangleMeshFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_INSUFFICIENT_RESOURCES_PASSTHROUGH_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The xrDestroyTriangleMeshFB function is defined as:

Chapter 12. List of Current Extensions | 905

// Provided by XR_FB_triangle_mesh

XrResult xrDestroyTriangleMeshFB(

 XrTriangleMeshFB mesh);

Parameter Descriptions

• mesh is the XrTriangleMeshFB to destroy.

XrTriangleMeshFB handles and their associated data are destroyed by xrDestroyTriangleMeshFB. The

mesh buffers retrieved by xrTriangleMeshGetVertexBufferFB and xrTriangleMeshGetIndexBufferFB

must not be accessed anymore after their parent mesh object has been destroyed.

Valid Usage (Implicit)

• The XR_FB_triangle_mesh extension must be enabled prior to calling

xrDestroyTriangleMeshFB

• mesh must be a valid XrTriangleMeshFB handle

Thread Safety

• Access to mesh, and any child handles, must be externally synchronized

• Access to the buffers returned from calls to xrTriangleMeshGetVertexBufferFB and

xrTriangleMeshGetIndexBufferFB on mesh must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

The xrTriangleMeshGetVertexBufferFB function is defined as:

906 | Chapter 12. List of Current Extensions

// Provided by XR_FB_triangle_mesh

XrResult xrTriangleMeshGetVertexBufferFB(

 XrTriangleMeshFB mesh,

 XrVector3f** outVertexBuffer);

Parameter Descriptions

• mesh is the XrTriangleMeshFB to get the vertex buffer for.

• outVertexBuffer is a pointer to return the vertex buffer into.

Retrieves a pointer to the vertex buffer. The vertex buffer is structured as an array of XrVector3f. The

size of the buffer is XrTriangleMeshCreateInfoFB::vertexCount elements. The buffer location is

guaranteed to remain constant over the lifecycle of the mesh object.

A mesh must be mutable and in a specific state for the application to modify it through the retrieved

vertex buffer.

• A mutable triangle mesh must be in state Defining Topology, Updating Mesh, or Updating Vertices

to modify the contents of the vertex buffer retrieved by this function.

• A mutable triangle mesh must be in state Defining Topology or Updating Mesh to modify the count

of elements in the vertex buffer retrieved by this function. The new count is passed as a parameter

to xrTriangleMeshEndUpdateFB.

Valid Usage (Implicit)

• The XR_FB_triangle_mesh extension must be enabled prior to calling

xrTriangleMeshGetVertexBufferFB

• mesh must be a valid XrTriangleMeshFB handle

• outVertexBuffer must be a pointer to a pointer to an XrVector3f structure

Chapter 12. List of Current Extensions | 907

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The xrTriangleMeshGetIndexBufferFB function is defined as:

// Provided by XR_FB_triangle_mesh

XrResult xrTriangleMeshGetIndexBufferFB(

 XrTriangleMeshFB mesh,

 uint32_t** outIndexBuffer);

Parameter Descriptions

• mesh is the XrTriangleMeshFB to get the index buffer for.

• outIndexBuffer is a pointer to return the index buffer into.

Retrieves a pointer to the index buffer that defines the topology of the triangle mesh. Each triplet of

consecutive elements points to three vertices in the vertex buffer and thus form a triangle. The size of

the index buffer is 3 * XrTriangleMeshCreateInfoFB::triangleCount elements. The buffer location is

guaranteed to remain constant over the lifecycle of the mesh object.

A triangle mesh must be mutable and in state Defining Topology or Updating Mesh for the application

to modify the contents and/or triangle count in the index buffer retrieved by this function.

908 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_FB_triangle_mesh extension must be enabled prior to calling

xrTriangleMeshGetIndexBufferFB

• mesh must be a valid XrTriangleMeshFB handle

• outIndexBuffer must be a pointer to a pointer to a uint32_t value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The xrTriangleMeshBeginUpdateFB function is defined as:

// Provided by XR_FB_triangle_mesh

XrResult xrTriangleMeshBeginUpdateFB(

 XrTriangleMeshFB mesh);

Parameter Descriptions

• mesh is the XrTriangleMeshFB to update.

Begins updating the mesh buffer data. The application must call this function before it makes any

modifications to the buffers retrieved by xrTriangleMeshGetVertexBufferFB and

xrTriangleMeshGetIndexBufferFB. If only the vertex buffer contents need to be updated, and the mesh

Chapter 12. List of Current Extensions | 909

is in state Ready, xrTriangleMeshBeginVertexBufferUpdateFB may be used instead. To commit the

modifications, the application must call xrTriangleMeshEndUpdateFB.

The triangle mesh mesh must be mutable. The runtime must return XR_ERROR_VALIDATION_FAILURE if the

mesh is immutable.

The triangle mesh mesh must be in state Undefined Topology or Ready.

• If the triangle mesh is in state Undefined Topology before this call, a successful call moves it to state

Defining Topology.

• If the triangle mesh is in state Ready before this call, a successful call moves it to state Updating

Mesh.

Valid Usage (Implicit)

• The XR_FB_triangle_mesh extension must be enabled prior to calling

xrTriangleMeshBeginUpdateFB

• mesh must be a valid XrTriangleMeshFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

• XR_ERROR_CALL_ORDER_INVALID

The xrTriangleMeshEndUpdateFB function is defined as:

910 | Chapter 12. List of Current Extensions

// Provided by XR_FB_triangle_mesh

XrResult xrTriangleMeshEndUpdateFB(

 XrTriangleMeshFB mesh,

 uint32_t vertexCount,

 uint32_t triangleCount);

Parameter Descriptions

• mesh is the XrTriangleMeshFB to update.

• vertexCount is the vertex count after the update.

• triangleCount is the triangle count after the update.

Signals to the runtime that the application has finished initially populating or updating the mesh

buffers. vertexCount and triangleCount specify the actual number of primitives that make up the mesh

after the update. They must be larger than zero but smaller or equal to the maximum counts defined

at create time. The runtime must return XR_ERROR_VALIDATION_FAILURE if an invalid count is passed.

The triangle mesh mesh must be mutable. The runtime must return XR_ERROR_VALIDATION_FAILURE if the

mesh is immutable.

The triangle mesh mesh must be in state Defining Topology or Updating Mesh.

A successful call moves mesh to state Ready.

Valid Usage (Implicit)

• The XR_FB_triangle_mesh extension must be enabled prior to calling

xrTriangleMeshEndUpdateFB

• mesh must be a valid XrTriangleMeshFB handle

Chapter 12. List of Current Extensions | 911

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

• XR_ERROR_CALL_ORDER_INVALID

The xrTriangleMeshBeginVertexBufferUpdateFB function is defined as:

// Provided by XR_FB_triangle_mesh

XrResult xrTriangleMeshBeginVertexBufferUpdateFB(

 XrTriangleMeshFB mesh,

 uint32_t* outVertexCount);

Parameter Descriptions

• mesh is the XrTriangleMeshFB to update.

• outVertexCount is a pointer to a value to populate with the current vertex count. The updated

data must have the exact same number of vertices.

Begins an update of the vertex positions of a mutable triangle mesh. The vertex count returned

through outVertexCount is defined by the last call to xrTriangleMeshEndUpdateFB. Once the

modification is done, call xrTriangleMeshEndVertexBufferUpdateFB to commit the changes and move

to state Ready.

The triangle mesh mesh must be mutable. The runtime must return XR_ERROR_VALIDATION_FAILURE if the

mesh is immutable.

912 | Chapter 12. List of Current Extensions

The triangle mesh mesh must be in state Ready.

A successful call moves mesh to state Updating Vertices.

Valid Usage (Implicit)

• The XR_FB_triangle_mesh extension must be enabled prior to calling

xrTriangleMeshBeginVertexBufferUpdateFB

• mesh must be a valid XrTriangleMeshFB handle

• outVertexCount must be a pointer to a uint32_t value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

• XR_ERROR_CALL_ORDER_INVALID

The xrTriangleMeshEndVertexBufferUpdateFB function is defined as:

// Provided by XR_FB_triangle_mesh

XrResult xrTriangleMeshEndVertexBufferUpdateFB(

 XrTriangleMeshFB mesh);

Chapter 12. List of Current Extensions | 913

Parameter Descriptions

• mesh is the XrTriangleMeshFB to update.

Signals to the runtime that the application has finished updating the vertex buffer data following a call

to xrTriangleMeshBeginVertexBufferUpdateFB.

The triangle mesh mesh must be mutable. The runtime must return XR_ERROR_VALIDATION_FAILURE if the

mesh is immutable.

The triangle mesh mesh must be in state Updating Vertices.

A successful call moves mesh to state Ready.

Valid Usage (Implicit)

• The XR_FB_triangle_mesh extension must be enabled prior to calling

xrTriangleMeshEndVertexBufferUpdateFB

• mesh must be a valid XrTriangleMeshFB handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

• XR_ERROR_CALL_ORDER_INVALID

Issues

Version History

914 | Chapter 12. List of Current Extensions

• Revision 1, 2021-09-01 (Anton Vaneev)

◦ Initial extension description

• Revision 2, 2022-01-07 (Rylie Pavlik, Collabora, Ltd.)

◦ Add a state diagram to clarify valid usage, and allow XR_ERROR_CALL_ORDER_INVALID.

12.83. XR_HTC_anchor

Name String

XR_HTC_anchor

Extension Type

Instance extension

Registered Extension Number

320

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-09-14

IP Status

No known IP claims.

Contributors

CheHsuan Shu, HTC

Bill Chang, HTC

Overview

This extension allows an application to create a spatial anchor to track a point in the physical

environment. The runtime adjusts the pose of the anchor over time to align it with the real world.

Inspect system capability

The XrSystemAnchorPropertiesHTC structure is defined as:

Chapter 12. List of Current Extensions | 915

// Provided by XR_HTC_anchor

typedef struct XrSystemAnchorPropertiesHTC {

 XrStructureType type;

 void* next;

 XrBool32 supportsAnchor;

} XrSystemAnchorPropertiesHTC;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsAnchor indicates if current system is capable of anchor functionality.

An application can inspect whether the system is capable of anchor functionality by chaining an

XrSystemAnchorPropertiesHTC structure to the XrSystemProperties when calling

xrGetSystemProperties. The runtime must return XR_ERROR_FEATURE_UNSUPPORTED if

XrSystemAnchorPropertiesHTC::supportsAnchor was XR_FALSE.

Valid Usage (Implicit)

• The XR_HTC_anchor extension must be enabled prior to using XrSystemAnchorPropertiesHTC

• type must be XR_TYPE_SYSTEM_ANCHOR_PROPERTIES_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

The xrCreateSpatialAnchorHTC function is defined as:

// Provided by XR_HTC_anchor

XrResult xrCreateSpatialAnchorHTC(

 XrSession session,

 const XrSpatialAnchorCreateInfoHTC* createInfo,

 XrSpace* anchor);

916 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession to create the anchor in.

• createInfo is the XrSpatialAnchorCreateInfoHTC used to specify the anchor.

• anchor is the returned XrSpace handle.

The xrCreateSpatialAnchorHTC function creates a spatial anchor with specified base space and pose in

the space. The anchor is represented by an XrSpace and its pose can be tracked via xrLocateSpace.

Once the anchor is no longer needed, call xrDestroySpace to erase the anchor.

Valid Usage (Implicit)

• The XR_HTC_anchor extension must be enabled prior to calling xrCreateSpatialAnchorHTC

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrSpatialAnchorCreateInfoHTC structure

• anchor must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

• XR_ERROR_NAME_INVALID

The XrSpatialAnchorCreateInfoHTC structure is defined as:

Chapter 12. List of Current Extensions | 917

// Provided by XR_HTC_anchor

typedef struct XrSpatialAnchorCreateInfoHTC {

 XrStructureType type;

 const void* next;

 XrSpace space;

 XrPosef poseInSpace;

 XrSpatialAnchorNameHTC name;

} XrSpatialAnchorCreateInfoHTC;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• space is the XrSpace in which poseInSpace is specified.

• poseInSpace is the XrPosef specifying the point in the real world within space.

• name is the XrSpatialAnchorNameHTC containing the name of the anchor.

The poseInSpace is transformed into world space to specify the point in the real world. The anchor

tracks changes of the reality and may not be affected by the changes of space.

Valid Usage (Implicit)

• The XR_HTC_anchor extension must be enabled prior to using XrSpatialAnchorCreateInfoHTC

• type must be XR_TYPE_SPATIAL_ANCHOR_CREATE_INFO_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

• space must be a valid XrSpace handle

• name must be a valid XrSpatialAnchorNameHTC structure

The XrSpatialAnchorNameHTC structure is defined as:

918 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_HTC_anchor

typedef struct XrSpatialAnchorNameHTC {

 char name[XR_MAX_SPATIAL_ANCHOR_NAME_SIZE_HTC];

} XrSpatialAnchorNameHTC;

Member Descriptions

• name is a null-terminated UTF-8 string whose length is less than or equal to

XR_MAX_SPATIAL_ANCHOR_NAME_SIZE_HTC.

Valid Usage (Implicit)

• The XR_HTC_anchor extension must be enabled prior to using XrSpatialAnchorNameHTC

• name must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_SPATIAL_ANCHOR_NAME_SIZE_HTC

The xrGetSpatialAnchorNameHTC function is defined as:

// Provided by XR_HTC_anchor

XrResult xrGetSpatialAnchorNameHTC(

 XrSpace anchor,

 XrSpatialAnchorNameHTC* name);

Parameter Descriptions

• anchor is the XrSpace created by xrCreateSpatialAnchorHTC.

• name is a pointer to output XrSpatialAnchorNameHTC.

The xrGetSpatialAnchorNameHTC function gets the name of an anchor. If the provided anchor is a valid

space handle but was not created with xrCreateSpatialAnchorHTC, the runtime must return

XR_ERROR_NOT_AN_ANCHOR_HTC.

Chapter 12. List of Current Extensions | 919

Valid Usage (Implicit)

• The XR_HTC_anchor extension must be enabled prior to calling xrGetSpatialAnchorNameHTC

• anchor must be a valid XrSpace handle

• name must be a pointer to an XrSpatialAnchorNameHTC structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_NOT_AN_ANCHOR_HTC

New Object Types

New Flag Types

New Enum Constants

• XR_MAX_SPATIAL_ANCHOR_NAME_SIZE_HTC

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_ANCHOR_PROPERTIES_HTC

• XR_TYPE_SPATIAL_ANCHOR_CREATE_INFO_HTC

XrResult enumeration is extended with:

• XR_ERROR_NOT_AN_ANCHOR_HTC

New Enums

920 | Chapter 12. List of Current Extensions

New Structures

• XrSystemAnchorPropertiesHTC

• XrSpatialAnchorCreateInfoHTC

• XrSpatialAnchorNameHTC

New Functions

• xrCreateSpatialAnchorHTC

• xrGetSpatialAnchorNameHTC

Issues

Version History

• Revision 1, 2023-09-14 (CheHsuan Shu)

◦ Initial extension description

12.84. XR_HTC_facial_tracking

Name String

XR_HTC_facial_tracking

Extension Type

Instance extension

Registered Extension Number

105

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-12-16

IP Status

No known IP claims.

Contributors

Kyle Chen, HTC

Chris Kuo

Chapter 12. List of Current Extensions | 921

Overview

This extension allows an application to track and integrate users' eye and lip movements, empowering

developers to read intention and model facial expressions.

Inspect system capability

XrSystemFacialTrackingPropertiesHTC is defined as:

// Provided by XR_HTC_facial_tracking

typedef struct XrSystemFacialTrackingPropertiesHTC {

 XrStructureType type;

 void* next;

 XrBool32 supportEyeFacialTracking;

 XrBool32 supportLipFacialTracking;

} XrSystemFacialTrackingPropertiesHTC;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportEyeFacialTracking indicates if the current system is capable of generating eye

expressions.

• supportLipFacialTracking indicates if the current system is capable of generating lip

expressions.

An application can inspect whether the system is capable of two of the facial tracking by extending the

XrSystemProperties with XrSystemFacialTrackingPropertiesHTC structure when calling

xrGetSystemProperties.

Valid Usage (Implicit)

• The XR_HTC_facial_tracking extension must be enabled prior to using

XrSystemFacialTrackingPropertiesHTC

• type must be XR_TYPE_SYSTEM_FACIAL_TRACKING_PROPERTIES_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

If a runtime returns XR_FALSE for supportEyeFacialTracking, the runtime must return

922 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateFacialTrackerHTC with

XR_FACIAL_TRACKING_TYPE_EYE_DEFAULT_HTC set for XrFacialTrackingTypeHTC in

XrFacialTrackerCreateInfoHTC. Similarly, if a runtime returns XR_FALSE for supportLipFacialTracking

the runtime must return XR_ERROR_FEATURE_UNSUPPORTED from xrCreateFacialTrackerHTC with

XR_FACIAL_TRACKING_TYPE_LIP_DEFAULT_HTC set for XrFacialTrackingTypeHTC in

XrFacialTrackerCreateInfoHTC.

Create a facial tracker handle

The XrFacialTrackerHTC handle represents the resources for an facial tracker of the specific facial

tracking type.

XR_DEFINE_HANDLE(XrFacialTrackerHTC)

An application creates separate XrFacialTrackerHTC handles for eye tracker or lip tracker. This handle

can be used to retrieve corresponding facial expressions using xrGetFacialExpressionsHTC function.

The xrCreateFacialTrackerHTC function is defined as

// Provided by XR_HTC_facial_tracking

XrResult xrCreateFacialTrackerHTC(

 XrSession session,

 const XrFacialTrackerCreateInfoHTC* createInfo,

 XrFacialTrackerHTC* facialTracker);

Parameter Descriptions

• session is an XrSession in which the facial expression will be active.

• createInfo is the XrFacialTrackerCreateInfoHTC used to specify the facial tracking type.

• facialTracker is the returned XrFacialTrackerHTC handle.

An application can create an XrFacialTrackerHTC handle using xrCreateFacialTrackerHTC.

If the system does not support eye tracking or lip tracking, runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateFacialTrackerHTC according to the corresponding case. In

this case, the runtime must return XR_FALSE for XrSystemFacialTrackingPropertiesHTC

::supportEyeFacialTracking or XrSystemFacialTrackingPropertiesHTC::supportLipFacialTracking when

the function xrGetSystemProperties is called, so that the application may avoid creating a facial

tracker.

Chapter 12. List of Current Extensions | 923

Valid Usage (Implicit)

• The XR_HTC_facial_tracking extension must be enabled prior to calling

xrCreateFacialTrackerHTC

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrFacialTrackerCreateInfoHTC structure

• facialTracker must be a pointer to an XrFacialTrackerHTC handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_FEATURE_UNSUPPORTED

The XrFacialTrackerCreateInfoHTC structure is defined as:

// Provided by XR_HTC_facial_tracking

typedef struct XrFacialTrackerCreateInfoHTC {

 XrStructureType type;

 const void* next;

 XrFacialTrackingTypeHTC facialTrackingType;

} XrFacialTrackerCreateInfoHTC;

924 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• facialTrackingType is an XrFacialTrackingTypeHTC which describes which type of facial

tracking should be used for this handle.

The XrFacialTrackerCreateInfoHTC structure describes the information to create an

XrFacialTrackerHTC handle.

Valid Usage (Implicit)

• The XR_HTC_facial_tracking extension must be enabled prior to using

XrFacialTrackerCreateInfoHTC

• type must be XR_TYPE_FACIAL_TRACKER_CREATE_INFO_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

• facialTrackingType must be a valid XrFacialTrackingTypeHTC value

The XrFacialTrackingTypeHTC describes which type of tracking the XrFacialTrackerHTC is using.

// Provided by XR_HTC_facial_tracking

typedef enum XrFacialTrackingTypeHTC {

 XR_FACIAL_TRACKING_TYPE_EYE_DEFAULT_HTC = 1,

 XR_FACIAL_TRACKING_TYPE_LIP_DEFAULT_HTC = 2,

 XR_FACIAL_TRACKING_TYPE_MAX_ENUM_HTC = 0x7FFFFFFF

} XrFacialTrackingTypeHTC;

Enumerant Descriptions

• XR_FACIAL_TRACKING_TYPE_EYE_DEFAULT_HTC  — Specifies this handle will observe eye

expressions, with values indexed by XrEyeExpressionHTC whose count is

XR_FACIAL_EXPRESSION_EYE_COUNT_HTC.

• XR_FACIAL_TRACKING_TYPE_LIP_DEFAULT_HTC  — Specifies this handle will observe lip

expressions, with values indexed by XrLipExpressionHTC whose count is

XR_FACIAL_EXPRESSION_LIP_COUNT_HTC.

Chapter 12. List of Current Extensions | 925

#valid-usage-for-structure-pointer-chains

The xrDestroyFacialTrackerHTC function is defined as:

// Provided by XR_HTC_facial_tracking

XrResult xrDestroyFacialTrackerHTC(

 XrFacialTrackerHTC facialTracker);

Parameter Descriptions

• facialTracker is an XrFacialTrackerHTC previously created by xrCreateFacialTrackerHTC.

xrDestroyFacialTrackerHTC releases the facialTracker and the underlying resources when finished

with facial tracking experiences.

Valid Usage (Implicit)

• The XR_HTC_facial_tracking extension must be enabled prior to calling

xrDestroyFacialTrackerHTC

• facialTracker must be a valid XrFacialTrackerHTC handle

Thread Safety

• Access to facialTracker, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

Retrieve facial expressions

The xrGetFacialExpressionsHTC function is defined as:

926 | Chapter 12. List of Current Extensions

// Provided by XR_HTC_facial_tracking

XrResult xrGetFacialExpressionsHTC(

 XrFacialTrackerHTC facialTracker,

 XrFacialExpressionsHTC* facialExpressions);

Parameter Descriptions

• facialTracker is an XrFacialTrackerHTC previously created by xrCreateFacialTrackerHTC.

• facialExpressions is a pointer to XrFacialExpressionsHTC receiving the returned facial

expressions.

xrGetFacialExpressionsHTC retrieves an array of values of blend shapes for a facial expression on a

given time.

Valid Usage (Implicit)

• The XR_HTC_facial_tracking extension must be enabled prior to calling

xrGetFacialExpressionsHTC

• facialTracker must be a valid XrFacialTrackerHTC handle

• facialExpressions must be a pointer to an XrFacialExpressionsHTC structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_TIME_INVALID

The XrFacialExpressionsHTC structure is defined as:

Chapter 12. List of Current Extensions | 927

// Provided by XR_HTC_facial_tracking

typedef struct XrFacialExpressionsHTC {

 XrStructureType type;

 const void* next;

 XrBool32 isActive;

 XrTime sampleTime;

 uint32_t expressionCount;

 float* expressionWeightings;

} XrFacialExpressionsHTC;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• isActive is an XrBool32 indicating if the facial tracker is active.

• sampleTime is when in time the expression is expressed.

• expressionCount is a uint32_t describing the count of elements in expressionWeightings array.

• expressionWeightings is a float array filled in by the runtime, specifying the weightings for

each blend shape.

XrFacialExpressionsHTC structure returns data of a lip facial expression or an eye facial expression.

An application must preallocate the output expressionWeightings array that can contain at least

expressionCount of float. expressionCount must be at least XR_FACIAL_EXPRESSION_LIP_COUNT_HTC

for XR_FACIAL_TRACKING_TYPE_LIP_DEFAULT_HTC, and at least XR_FACIAL_EXPRESSION_EYE_COUNT_HTC

for XR_FACIAL_TRACKING_TYPE_EYE_DEFAULT_HTC.

The application must set expressionCount as described by the XrFacialTrackingTypeHTC when creating

the XrFacialTrackerHTC otherwise the runtime must return XR_ERROR_VALIDATION_FAILURE.

The runtime must update the expressionWeightings array ordered so that the application can index

elements using the corresponding facial tracker enum (e.g. XrEyeExpressionHTC or

XrLipExpressionHTC) as described by XrFacialTrackingTypeHTC when creating the

XrFacialTrackerHTC. For example, when the XrFacialTrackerHTC is created with XrFacialTrackerHTC

::facialTrackingType set to XR_FACIAL_TRACKING_TYPE_EYE_DEFAULT_HTC, the application must set the

expressionCount to XR_FACIAL_EXPRESSION_EYE_COUNT_HTC, and the runtime must fill the

expressionWeightings array ordered with eye expression data so that it can be indexed by the

XrEyeExpressionHTC enum.

If the returned isActive is true, the runtime must fill the expressionWeightings array ordered.

928 | Chapter 12. List of Current Extensions

If the returned isActive is false, it indicates the facial tracker did not detect the corresponding facial

input or the application lost input focus.

If the input expressionCount is not sufficient to contain all output indices, the runtime must return

XR_ERROR_SIZE_INSUFFICIENT on calls to xrGetFacialExpressionsHTC and not change the content in

expressionWeightings.

Valid Usage (Implicit)

• The XR_HTC_facial_tracking extension must be enabled prior to using

XrFacialExpressionsHTC

• type must be XR_TYPE_FACIAL_EXPRESSIONS_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

• expressionWeightings must be a pointer to a float value

// Provided by XR_HTC_facial_tracking

#define XR_FACIAL_EXPRESSION_EYE_COUNT_HTC 14

The number of blend shapes in an expression of type XR_FACIAL_TRACKING_TYPE_EYE_DEFAULT_HTC.

// Provided by XR_HTC_facial_tracking

#define XR_FACIAL_EXPRESSION_LIP_COUNT_HTC 37

The number of blend shapes in an expression of type XR_FACIAL_TRACKING_TYPE_LIP_DEFAULT_HTC.

Facial Expression List

• Eye Blend Shapes

Through feeding the blend shape values of eye expression to an avatar, its facial expression can be

animated with the player’s eye movement. The following pictures show how the facial expression acts

on the avatar according to each set of eye blend shape values.

Chapter 12. List of Current Extensions | 929

#valid-usage-for-structure-pointer-chains

// Provided by XR_HTC_facial_tracking

typedef enum XrEyeExpressionHTC {

 XR_EYE_EXPRESSION_LEFT_BLINK_HTC = 0,

 XR_EYE_EXPRESSION_LEFT_WIDE_HTC = 1,

 XR_EYE_EXPRESSION_RIGHT_BLINK_HTC = 2,

 XR_EYE_EXPRESSION_RIGHT_WIDE_HTC = 3,

 XR_EYE_EXPRESSION_LEFT_SQUEEZE_HTC = 4,

 XR_EYE_EXPRESSION_RIGHT_SQUEEZE_HTC = 5,

 XR_EYE_EXPRESSION_LEFT_DOWN_HTC = 6,

 XR_EYE_EXPRESSION_RIGHT_DOWN_HTC = 7,

 XR_EYE_EXPRESSION_LEFT_OUT_HTC = 8,

 XR_EYE_EXPRESSION_RIGHT_IN_HTC = 9,

 XR_EYE_EXPRESSION_LEFT_IN_HTC = 10,

 XR_EYE_EXPRESSION_RIGHT_OUT_HTC = 11,

 XR_EYE_EXPRESSION_LEFT_UP_HTC = 12,

 XR_EYE_EXPRESSION_RIGHT_UP_HTC = 13,

 XR_EYE_EXPRESSION_MAX_ENUM_HTC = 0x7FFFFFFF

} XrEyeExpressionHTC;

XR_EYE_EXPRESSION_LEFT_WIDE_HTC

Description

This blend shape keeps left eye wide

and at that time

XR_EYE_EXPRESSION_LEFT_BLINK_HTC value

is 0.

XR_EYE_EXPRESSION_RIGHT_WIDE_HTC

Description

This blend shape keeps right eye wide

and at that time

XR_EYE_EXPRESSION_RIGHT_BLINK_HTC

value is 0.

930 | Chapter 12. List of Current Extensions

XR_EYE_EXPRESSION_LEFT_BLINK_HTC

Description

This blend shape influences blinking of

the right eye. When this value goes

higher, left eye approaches close.

XR_EYE_EXPRESSION_RIGHT_BLINK_HTC

Description

This blend shape influences blinking of

the right eye. When this value goes

higher, right eye approaches close.

XR_EYE_EXPRESSION_LEFT_SQUEEZE_HTC

Description

The blend shape closes eye tightly and

at that time

XR_EYE_EXPRESSION_LEFT_BLINK_HTC value

is 1.

XR_EYE_EXPRESSION_RIGHT_SQUEEZE_HTC

Description

The blend shape closes eye tightly and

at that time

XR_EYE_EXPRESSION_RIGHT_BLINK_HTC

value is 1.

Chapter 12. List of Current Extensions | 931

XR_EYE_EXPRESSION_LEFT_DOWN_HTC

Description

This blendShape influences the muscles

around the left eye, moving these

muscles further downward with a

higher value.

XR_EYE_EXPRESSION_RIGHT_DOWN_HTC

Description

This blendShape influences the muscles

around the right eye, moving these

muscles further downward with a

higher value.

XR_EYE_EXPRESSION_LEFT_OUT_HTC

Description

This blendShape influences the muscles

around the left eye, moving these

muscles further leftward with a higher

value.

XR_EYE_EXPRESSION_RIGHT_IN_HTC

Description

This blendShape influences the muscles

around the right eye, moving these

muscles further leftward with a higher

value.

932 | Chapter 12. List of Current Extensions

XR_EYE_EXPRESSION_LEFT_IN_HTC

Description

This blendShape influences the muscles

around the left eye, moving these

muscles further rightward with a

higher value.

XR_EYE_EXPRESSION_RIGHT_OUT_HTC

Description

This blendShape influences the muscles

around the right eye, moving these

muscles further rightward with a

higher value.

XR_EYE_EXPRESSION_LEFT_UP_HTC

Description

This blendShape influences the muscles

around the left eye, moving these

muscles further upward with a higher

value.

XR_EYE_EXPRESSION_RIGHT_UP_HTC

Description

This blendShape influences the muscles

around the right eye, moving these

muscles further upward with a higher

value.

• Lip Blend Shapes

Through feeding the blend shape values of lip expression to an avatar, its facial expression can be

Chapter 12. List of Current Extensions | 933

animated with the player’s lip movement. The following pictures show how the facial expression acts

on the avatar according to each set of lip blend shape values.

// Provided by XR_HTC_facial_tracking

typedef enum XrLipExpressionHTC {

 XR_LIP_EXPRESSION_JAW_RIGHT_HTC = 0,

 XR_LIP_EXPRESSION_JAW_LEFT_HTC = 1,

 XR_LIP_EXPRESSION_JAW_FORWARD_HTC = 2,

 XR_LIP_EXPRESSION_JAW_OPEN_HTC = 3,

 XR_LIP_EXPRESSION_MOUTH_APE_SHAPE_HTC = 4,

 XR_LIP_EXPRESSION_MOUTH_UPPER_RIGHT_HTC = 5,

 XR_LIP_EXPRESSION_MOUTH_UPPER_LEFT_HTC = 6,

 XR_LIP_EXPRESSION_MOUTH_LOWER_RIGHT_HTC = 7,

 XR_LIP_EXPRESSION_MOUTH_LOWER_LEFT_HTC = 8,

 XR_LIP_EXPRESSION_MOUTH_UPPER_OVERTURN_HTC = 9,

 XR_LIP_EXPRESSION_MOUTH_LOWER_OVERTURN_HTC = 10,

 XR_LIP_EXPRESSION_MOUTH_POUT_HTC = 11,

 XR_LIP_EXPRESSION_MOUTH_SMILE_RIGHT_HTC = 12,

 XR_LIP_EXPRESSION_MOUTH_SMILE_LEFT_HTC = 13,

 XR_LIP_EXPRESSION_MOUTH_SAD_RIGHT_HTC = 14,

 XR_LIP_EXPRESSION_MOUTH_SAD_LEFT_HTC = 15,

 XR_LIP_EXPRESSION_CHEEK_PUFF_RIGHT_HTC = 16,

 XR_LIP_EXPRESSION_CHEEK_PUFF_LEFT_HTC = 17,

 XR_LIP_EXPRESSION_CHEEK_SUCK_HTC = 18,

 XR_LIP_EXPRESSION_MOUTH_UPPER_UPRIGHT_HTC = 19,

 XR_LIP_EXPRESSION_MOUTH_UPPER_UPLEFT_HTC = 20,

 XR_LIP_EXPRESSION_MOUTH_LOWER_DOWNRIGHT_HTC = 21,

 XR_LIP_EXPRESSION_MOUTH_LOWER_DOWNLEFT_HTC = 22,

 XR_LIP_EXPRESSION_MOUTH_UPPER_INSIDE_HTC = 23,

 XR_LIP_EXPRESSION_MOUTH_LOWER_INSIDE_HTC = 24,

 XR_LIP_EXPRESSION_MOUTH_LOWER_OVERLAY_HTC = 25,

 XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC = 26,

 XR_LIP_EXPRESSION_TONGUE_LEFT_HTC = 27,

 XR_LIP_EXPRESSION_TONGUE_RIGHT_HTC = 28,

 XR_LIP_EXPRESSION_TONGUE_UP_HTC = 29,

 XR_LIP_EXPRESSION_TONGUE_DOWN_HTC = 30,

 XR_LIP_EXPRESSION_TONGUE_ROLL_HTC = 31,

 XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC = 32,

 XR_LIP_EXPRESSION_TONGUE_UPRIGHT_MORPH_HTC = 33,

 XR_LIP_EXPRESSION_TONGUE_UPLEFT_MORPH_HTC = 34,

 XR_LIP_EXPRESSION_TONGUE_DOWNRIGHT_MORPH_HTC = 35,

 XR_LIP_EXPRESSION_TONGUE_DOWNLEFT_MORPH_HTC = 36,

 XR_LIP_EXPRESSION_MAX_ENUM_HTC = 0x7FFFFFFF

} XrLipExpressionHTC;

934 | Chapter 12. List of Current Extensions

XR_LIP_EXPRESSION_JAW_LEFT_HTC

Description

This blend shape moves the jaw further

leftward with a higher value.

XR_LIP_EXPRESSION_JAW_RIGHT_HTC

Description

This blend shape moves the jaw further

rightward with a higher value.

XR_LIP_EXPRESSION_JAW_FORWARD_HTC

Description

This blend shape moves the jaw

forward with a higher value.

XR_LIP_EXPRESSION_JAW_OPEN_HTC

Description

This blend shape opens the mouth

further with a higher value.

Chapter 12. List of Current Extensions | 935

XR_LIP_EXPRESSION_MOUTH_APE_SHAPE_HTC

Description

This blend shape stretches the jaw

further with a higher value.

XR_LIP_EXPRESSION_MOUTH_UPPER_LEFT_HTC

Description

This blend shape moves your upper lip

leftward.

XR_LIP_EXPRESSION_MOUTH_UPPER_RIGHT_HTC

Description

This blend shape moves your upper lip

rightward.

XR_LIP_EXPRESSION_MOUTH_LOWER_LEFT_HTC

Description

This blend shape moves your lower lip

leftward.

936 | Chapter 12. List of Current Extensions

XR_LIP_EXPRESSION_MOUTH_LOWER_RIGHT_HTC

Description

This blend shape moves your lower lip

rightward.

XR_LIP_EXPRESSION_MOUTH_UPPER_OVERTURN_HTC

Description

This blend shape pouts your upper lip.

Can be used with
XR_LIP_EXPRESSION_MOUTH_UPPER_UPRIGHT_

HTC and
XR_LIP_EXPRESSION_MOUTH_UPPER_UPLEFT_H

TC to complete upper O mouth shape.

XR_LIP_EXPRESSION_MOUTH_LOWER_OVERTURN_HTC

Description

This blend shape pouts your lower lip.

Can be used with
XR_LIP_EXPRESSION_MOUTH_UPPER_UPRIGHT_

HTC and
XR_LIP_EXPRESSION_MOUTH_LOWER_DOWNRIGH

T_HTC to complete upper O mouth shape.

XR_LIP_EXPRESSION_MOUTH_POUT_HTC

Description

This blend shape allows the lips to pout

more with a higher value.

Chapter 12. List of Current Extensions | 937

XR_LIP_EXPRESSION_MOUTH_SMILE_LEFT_HTC

Description

This blend shape raises the left side of

the mouth further with a higher value.

XR_LIP_EXPRESSION_MOUTH_SMILE_RIGHT_HTC

Description

This blend shape raises the right side of

the mouth further with a higher value.

XR_LIP_EXPRESSION_MOUTH_SAD_LEFT_HTC

Description

This blend shape lowers the left side of

the mouth further with a higher value.

XR_LIP_EXPRESSION_MOUTH_SAD_RIGHT_HTC

Description

This blend shape lowers the right side

of the mouth further with a higher

value.

938 | Chapter 12. List of Current Extensions

XR_LIP_EXPRESSION_CHEEK_PUFF_RIGHT_HTC

Description

This blend shape puffs up the right side

of the cheek further with a higher

value.

XR_LIP_EXPRESSION_CHEEK_PUFF_LEFT_HTC

Description

This blend shape puffs up the left side

of the cheek further with a higher

value.

XR_LIP_EXPRESSION_CHEEK_SUCK_HTC

Description

This blend shape sucks in the cheeks on

both sides further with a higher value.

XR_LIP_EXPRESSION_MOUTH_UPPER_UPLEFT_HTC

Description

This blend shape raises the left upper

lip further with a higher value.

Chapter 12. List of Current Extensions | 939

XR_LIP_EXPRESSION_MOUTH_UPPER_UPRIGHT_HTC

Description

This blend shape raises the right upper

lip further with a higher value.

XR_LIP_EXPRESSION_MOUTH_LOWER_DOWNLEFT_HTC

Description

This blend shape lowers the left lower

lip further with a higher value.

XR_LIP_EXPRESSION_MOUTH_LOWER_DOWNRIGHT_HTC

Description

This blend shape lowers the right lower

lip further with a higher value.

XR_LIP_EXPRESSION_MOUTH_LOWER_INSIDE_HTC

Description

This blend shape rolls in the lower lip

further with a higher value.

940 | Chapter 12. List of Current Extensions

XR_LIP_EXPRESSION_MOUTH_UPPER_INSIDE_HTC

Description

This blend shape rolls in the upper lip

further with a higher value.

XR_LIP_EXPRESSION_MOUTH_LOWER_OVERLAY_HTC

Description

This blend shape stretches the lower lip

further and lays it on the upper lip

further with a higher value.

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

Description

This blend shape sticks the tongue out

slightly.

In step 1 of extending the tongue, the

main action of the tongue is to lift up,

and the elongated length only extends

to a little bit beyond the teeth.

XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

Description

This blend shape sticks the tongue out

extremely.

Continuing the step 1, it extends the

tongue to the longest.

Chapter 12. List of Current Extensions | 941

XR_LIP_EXPRESSION_TONGUE_DOWN_HTC

Description

This blend shape sticks the tongue out

and down extremely.

This example contains

(XR_LIP_EXPRESSION_TONGUE_DOWN_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

+
XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

).

XR_LIP_EXPRESSION_TONGUE_UP_HTC

Description

This blend shape sticks the tongue out

and up extremely.

This example contains

(XR_LIP_EXPRESSION_TONGUE_UP_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

+
XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

).

XR_LIP_EXPRESSION_TONGUE_RIGHT_HTC

Description

This blend shape sticks the tongue out

and right extremely.

This example contains

(XR_LIP_EXPRESSION_TONGUE_RIGHT_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

+
XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

).

XR_LIP_EXPRESSION_TONGUE_LEFT_HTC

Description

This blend shape sticks the tongue out

and left extremely.

This example contains

(XR_LIP_EXPRESSION_TONGUE_LEFT_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

+
XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

).

942 | Chapter 12. List of Current Extensions

XR_LIP_EXPRESSION_TONGUE_ROLL_HTC

Description

This blend shape sticks the tongue out

with roll type.

This example contains

(XR_LIP_EXPRESSION_TONGUE_ROLL_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

+
XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

).

XR_LIP_EXPRESSION_TONGUE_UPRIGHT_MORPH_HTC

Description

This blend shape does not make sense.

When both the right and up blend

shapes appear at the same time, the

tongue will be deformed.

(XR_LIP_EXPRESSION_TONGUE_RIGHT_HTC

XR_LIP_EXPRESSION_TONGUE_UP_HTC +

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

)

Description

This blend shape fixes the deformation

illustrated above.

(XR_LIP_EXPRESSION_TONGUE_RIGHT_HTC

XR_LIP_EXPRESSION_TONGUE_UP_HTC +

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

+
XR_LIP_EXPRESSION_TONGUE_UPRIGHT_MORPH

_HTC)

Chapter 12. List of Current Extensions | 943

XR_LIP_EXPRESSION_TONGUE_UPLEFT_MORPH_HTC

Description

This blend shape does not make sense.

When both the left and up blend shapes

appear at the same time, the tongue will

be deformed.

(XR_LIP_EXPRESSION_TONGUE_LEFT_HTC

XR_LIP_EXPRESSION_TONGUE_UP_HTC +

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

)

Description

This blend shape fixes the deformation

illustrated above.

(XR_LIP_EXPRESSION_TONGUE_LEFT_HTC

XR_LIP_EXPRESSION_TONGUE_UP_HTC +

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

+
XR_LIP_EXPRESSION_TONGUE_UPLEFT_MORPH_

HTC)

XR_LIP_EXPRESSION_TONGUE_DOWNRIGHT_MORPH_HTC

Description

This blend shape does not make sense.

When both the right and down blend

shapes appear at the same time, the

tongue will be deformed.

(XR_LIP_EXPRESSION_TONGUE_RIGHT_HTC

XR_LIP_EXPRESSION_TONGUE_DOWN_HTC +

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

)

944 | Chapter 12. List of Current Extensions

XR_LIP_EXPRESSION_TONGUE_DOWNRIGHT_MORPH_HTC

Description

This blend shape fixes the deformation

illustrated above.

(XR_LIP_EXPRESSION_TONGUE_RIGHT_HTC

XR_LIP_EXPRESSION_TONGUE_DOWN_HTC +

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

+
XR_LIP_EXPRESSION_TONGUE_DOWNRIGHT_MOR

PH_HTC)

XR_LIP_EXPRESSION_TONGUE_DOWNLEFT_MORPH_HTC

Description

This blend shape does not make sense.

When both the left and down blend

shapes appear at the same time, the

tongue will be deformed.

(XR_LIP_EXPRESSION_TONGUE_LEFT_HTC

XR_LIP_EXPRESSION_TONGUE_DOWN_HTC +

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

)

Description

This blend shape fixes the deformation

illustrated above.

(XR_LIP_EXPRESSION_TONGUE_LEFT_HTC

XR_LIP_EXPRESSION_TONGUE_DOWN_HTC +

XR_LIP_EXPRESSION_TONGUE_LONGSTEP1_HTC

XR_LIP_EXPRESSION_TONGUE_LONGSTEP2_HTC

+
XR_LIP_EXPRESSION_TONGUE_DOWNLEFT_MORP

H_HTC)

Chapter 12. List of Current Extensions | 945

O shape

Description

The entire O-shaped mouth is formed

by the combination of 6 blend shapes:

(XR_LIP_EXPRESSION_MOUTH_UPPER_OVERTUR

N_HTC

XR_LIP_EXPRESSION_MOUTH_LOWER_OVERTURN

_HTC

XR_LIP_EXPRESSION_MOUTH_UPPER_UPLEFT_H

TC

XR_LIP_EXPRESSION_MOUTH_UPPER_UPRIGHT_

HTC

XR_LIP_EXPRESSION_MOUTH_LOWER_DOWNLEFT

_HTC

XR_LIP_EXPRESSION_MOUTH_LOWER_DOWNRIGH

T_HTC)

New Object Types

• XrFacialTrackerHTC

New Flag Types

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_FACIAL_TRACKER_HTC

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_FACIAL_TRACKING_PROPERTIES_HTC

• XR_TYPE_FACIAL_TRACKER_CREATE_INFO_HTC

• XR_TYPE_FACIAL_EXPRESSIONS_HTC

New Enums

• XrFacialTrackingTypeHTC

• XrEyeExpressionHTC

• XrLipExpressionHTC

New Structures

• XrSystemFacialTrackingPropertiesHTC

• XrFacialTrackerCreateInfoHTC

946 | Chapter 12. List of Current Extensions

• XrFacialExpressionsHTC

New Functions

• xrCreateFacialTrackerHTC

• xrDestroyFacialTrackerHTC

• xrGetFacialExpressionsHTC

Issues

Version History

• Revision 1, 2021-12-16 (Kyle Chen)

◦ Initial extension description

• Revision 2, 2022-09-22 (Andy Chen)

◦ Correct the range of the blink blend shapes.

12.85. XR_HTC_foveation

Name String

XR_HTC_foveation

Extension Type

Instance extension

Registered Extension Number

319

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-09-14

IP Status

No known IP claims.

Contributors

Billy Chang, HTC

Bill Chang, HTC

Chapter 12. List of Current Extensions | 947

Overview

This extension enables an application to gain rendering performance improvement by reducing the

pixel density of areas in the peripheral vision. The areas near the focal point still sustains the original

pixel density than periphery.

The application can use this extension in the following steps:

1. Create an XrFoveationApplyInfoHTC structure with the desired foveation configurations.

2. Apply the foveation configuration by calling xrApplyFoveationHTC with desired

XrFoveationApplyInfoHTC. Note

This extension is recommended for XrSession whose XrViewConfigurationType is

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO.

Operate foveated rendering

The application can operate foveated rendering by calling xrApplyFoveationHTC with the

corresponding foveation configuration and the specified XrSwapchainSubImage.

The xrApplyFoveationHTC function is defined as:

// Provided by XR_HTC_foveation

XrResult xrApplyFoveationHTC(

 XrSession session,

 const XrFoveationApplyInfoHTC* applyInfo);

Parameter Descriptions

• session is a handle to an XrSession in which the foveation will apply to.

• applyInfo is a pointer to an XrFoveationApplyInfoHTC structure containing information

about the foveation configuration and applied XrSwapchainSubImage.

The foveation configuration will be applied after this call, and the state will persist until the next call to

xrApplyFoveationHTC or the end of this XrSession, whichever comes first. You should not call

xrApplyFoveationHTC during rendering to target image layer XrSwapchainSubImage in render loop.

948 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_HTC_foveation extension must be enabled prior to calling xrApplyFoveationHTC

• session must be a valid XrSession handle

• applyInfo must be a pointer to a valid XrFoveationApplyInfoHTC structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_LIMIT_REACHED

The XrFoveationApplyInfoHTC structure is defined as:

// Provided by XR_HTC_foveation

typedef struct XrFoveationApplyInfoHTC {

 XrStructureType type;

 const void* next;

 XrFoveationModeHTC mode;

 uint32_t subImageCount;

 XrSwapchainSubImage* subImages;

} XrFoveationApplyInfoHTC;

Chapter 12. List of Current Extensions | 949

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• mode is an XrFoveationModeHTC enum describing the foveation mode.

• subImageCount is the count of subImages in the subImages array. This must be equal to the

number of view poses returned by xrLocateViews.

• subImages is an array of XrSwapchainSubImage to apply foveated rendering.

The application should set the following configurations in XrFoveationApplyInfoHTC:

• The foveation mode to be applied.

• The specified XrSwapchainSubImage to the corresponding view.

The XrSwapchain::faceCount of the swapchain in XrSwapchainSubImage must be 1 since this extension

does not support cubemaps.

If mode is XR_FOVEATION_MODE_DYNAMIC_HTC, the next chain for this structure must include

XrFoveationDynamicModeInfoHTC structure.

If mode is XR_FOVEATION_MODE_CUSTOM_HTC, the next chain for this structure must include

XrFoveationCustomModeInfoHTC structure.

The order of subImages must be the same order as in XrCompositionLayerProjectionView when

submitted in xrEndFrame.

Valid Usage (Implicit)

• The XR_HTC_foveation extension must be enabled prior to using XrFoveationApplyInfoHTC

• type must be XR_TYPE_FOVEATION_APPLY_INFO_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrFoveationCustomModeInfoHTC, XrFoveationDynamicModeInfoHTC

• mode must be a valid XrFoveationModeHTC value

• subImages must be a pointer to an array of subImageCount XrSwapchainSubImage structures

• The subImageCount parameter must be greater than 0

XrFoveationModeHTC identifies the different foveation modes.

950 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_HTC_foveation

typedef enum XrFoveationModeHTC {

 XR_FOVEATION_MODE_DISABLE_HTC = 0,

 XR_FOVEATION_MODE_FIXED_HTC = 1,

 XR_FOVEATION_MODE_DYNAMIC_HTC = 2,

 XR_FOVEATION_MODE_CUSTOM_HTC = 3,

 XR_FOVEATION_MODE_MAX_ENUM_HTC = 0x7FFFFFFF

} XrFoveationModeHTC;

Enumerant Descriptions

• XR_FOVEATION_MODE_DISABLE_HTC  — No foveation

• XR_FOVEATION_MODE_FIXED_HTC  — Apply system default setting with fixed clear FOV and

periphery quality.

• XR_FOVEATION_MODE_DYNAMIC_HTC  — Allow system to set foveation dynamically according

realtime system metric or other extensions.

• XR_FOVEATION_MODE_CUSTOM_HTC  — Allow application to set foveation with desired clear FOV,

periphery quality, and focal center offset.

Dynamic foveation mode

The application allows runtime to configure the foveation settings dynamically according to the system

metrics or other extensions.

The XrFoveationDynamicModeInfoHTC structure is defined as:

// Provided by XR_HTC_foveation

typedef struct XrFoveationDynamicModeInfoHTC {

 XrStructureType type;

 const void* next;

 XrFoveationDynamicFlagsHTC dynamicFlags;

} XrFoveationDynamicModeInfoHTC;

Chapter 12. List of Current Extensions | 951

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• dynamicFlags is a bitmask of XrFoveationDynamicFlagBitsHTC indicated which item may be

changed during dynamic mode.

The application must chain an XrFoveationDynamicModeInfoHTC structure to

XrFoveationApplyInfoHTC if dynamic mode is set.

Valid Usage (Implicit)

• The XR_HTC_foveation extension must be enabled prior to using

XrFoveationDynamicModeInfoHTC

• type must be XR_TYPE_FOVEATION_DYNAMIC_MODE_INFO_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

• dynamicFlags must be 0 or a valid combination of XrFoveationDynamicFlagBitsHTC values

typedef XrFlags64 XrFoveationDynamicFlagsHTC;

// Flag bits for XrFoveationDynamicFlagsHTC

static const XrFoveationDynamicFlagsHTC XR_FOVEATION_DYNAMIC_LEVEL_ENABLED_BIT_HTC =

0x00000001;

static const XrFoveationDynamicFlagsHTC XR_FOVEATION_DYNAMIC_CLEAR_FOV_ENABLED_BIT_HTC =

0x00000002;

static const XrFoveationDynamicFlagsHTC

XR_FOVEATION_DYNAMIC_FOCAL_CENTER_OFFSET_ENABLED_BIT_HTC = 0x00000004;

952 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Flag Descriptions

• XR_FOVEATION_DYNAMIC_LEVEL_ENABLED_BIT_HTC  — Allow system to set periphery pixel density

dynamically.

• XR_FOVEATION_DYNAMIC_CLEAR_FOV_ENABLED_BIT_HTC  — Allow system to set clear FOV degree

dynamically.

• XR_FOVEATION_DYNAMIC_FOCAL_CENTER_OFFSET_ENABLED_BIT_HTC  — Allow system to set focal

center offset dynamically.

Custom foveation mode

The application can configure the foveation settings according to the preference of content.

The XrFoveationCustomModeInfoHTC structure is defined as:

// Provided by XR_HTC_foveation

typedef struct XrFoveationCustomModeInfoHTC {

 XrStructureType type;

 const void* next;

 uint32_t configCount;

 const XrFoveationConfigurationHTC* configs;

} XrFoveationCustomModeInfoHTC;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• configCount is a uint32_t describing the count of elements in the configs array, which must

be the number of views.

• configs is an array of XrFoveationConfigurationHTC structure contains the custom foveation

settings for the corresponding views.

The application must chain an XrFoveationCustomModeInfoHTC structure to

XrFoveationApplyInfoHTC to customize foveation if custom mode is set.

Chapter 12. List of Current Extensions | 953

Valid Usage (Implicit)

• The XR_HTC_foveation extension must be enabled prior to using

XrFoveationCustomModeInfoHTC

• type must be XR_TYPE_FOVEATION_CUSTOM_MODE_INFO_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

• configs must be a pointer to an array of configCount valid XrFoveationConfigurationHTC

structures

• The configCount parameter must be greater than 0

The XrFoveationConfigurationHTC structure is defined as:

// Provided by XR_HTC_foveation

typedef struct XrFoveationConfigurationHTC {

 XrFoveationLevelHTC level;

 float clearFovDegree;

 XrVector2f focalCenterOffset;

} XrFoveationConfigurationHTC;

Member Descriptions

• level is the pixel density drop level of periphery area specified by XrFoveationLevelHTC .

• clearFovDegree is the value indicating the total horizontal and vertical field angle with the

original pixel density level. clearFovDegree must be specified in degree, and must be in the

range [0, 180].

• focalCenterOffset is the desired center offset of the field of view in NDC(normalized device

coordinates) space. The x and y of focalCenterOffset must be in the range [-1, 1].

Valid Usage (Implicit)

• The XR_HTC_foveation extension must be enabled prior to using

XrFoveationConfigurationHTC

• level must be a valid XrFoveationLevelHTC value

954 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_HTC_foveation

typedef enum XrFoveationLevelHTC {

 XR_FOVEATION_LEVEL_NONE_HTC = 0,

 XR_FOVEATION_LEVEL_LOW_HTC = 1,

 XR_FOVEATION_LEVEL_MEDIUM_HTC = 2,

 XR_FOVEATION_LEVEL_HIGH_HTC = 3,

 XR_FOVEATION_LEVEL_MAX_ENUM_HTC = 0x7FFFFFFF

} XrFoveationLevelHTC;

Enumerant Descriptions

• XR_FOVEATION_LEVEL_NONE_HTC  — No foveation

• XR_FOVEATION_LEVEL_LOW_HTC  — Light periphery pixel density drop and lower performance

gain.

• XR_FOVEATION_LEVEL_MEDIUM_HTC  — Medium periphery pixel density drop and medium

performance gain

• XR_FOVEATION_LEVEL_HIGH_HTC  — Heavy periphery pixel density drop and higher performance

gain

New Object Types

New Flag Types

XrFoveationDynamicFlagsHTC

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_FOVEATION_APPLY_INFO_HTC

• XR_TYPE_FOVEATION_DYNAMIC_MODE_INFO_HTC

• XR_TYPE_FOVEATION_CUSTOM_MODE_INFO_HTC

New Enum Constants

New Enums

XrFoveationModeHTC

XrFoveationDynamicFlagBitsHTC

XrFoveationLevelHTC

Chapter 12. List of Current Extensions | 955

New Structures

XrFoveationApplyInfoHTC

XrFoveationDynamicModeInfoHTC

XrFoveationCustomModeInfoHTC

New Functions

xrApplyFoveationHTC

Issues

Version History

• Revision 1, 2022-09-14 (Billy Chang)

◦ Initial extension description

12.86. XR_HTC_hand_interaction

Name String

XR_HTC_hand_interaction

Extension Type

Instance extension

Registered Extension Number

107

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Last Modified Date

2022-05-27

IP Status

No known IP claims.

956 | Chapter 12. List of Current Extensions

Contributors

Ria Hsu, HTC

Bill Chang, HTC

Overview

This extension defines a new interaction profile for tracked hands.

Hand interaction profile

Interaction profile path:

• /interaction_profiles/htc/hand_interaction

Note

The interaction profile path /interaction_profiles/htc/hand_interaction defined here does not

follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/htc/hand_interaction_htc, to allow for modifications when

promoted to a KHR extension or the core specification.

Valid for user paths:

• /user/hand_htc/left

• /user/hand_htc/right

This interaction profile represents basic pose and actions for interaction of tracked hands.

Supported component paths for far interaction:

• …/input/select/value

• …/input/aim/pose

The application should use …/input/aim/pose path to aim at objects in the world and use

…/input/select/value path to decide user selection from pinch shape strength which the range of value is

0.0f to 1.0f, with 1.0f meaning pinch fingers touched.

Supported component paths for near interaction:

• …/input/squeeze/value

• …/input/grip/pose

The application should use …/input/grip/pose path to interact with the nearby objects and locate the

position of handheld objects, and use …/input/squeeze/value path to decide the hand picking up or

holding the nearby objects from grip shape strength which the range of value is 0.0f to 1.0f, with 1.0f

Chapter 12. List of Current Extensions | 957

meaning hand grip shape is closed. Note

Far and near interaction depends on the support capabilities of hand tracking engine.

The application can check isActive of XrActionStatePose of aim and grip to know far

and near interaction supported or not then decide the interaction behavior in content.

Version History

• Revision 1, 2022-05-27 (Ria Hsu)

◦ Initial extension description

12.87. XR_HTC_passthrough

Name String

XR_HTC_passthrough

Extension Type

Instance extension

Registered Extension Number

318

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-09-14

IP Status

No known IP claims.

Contributors

Livi Lin, HTC

Sacdar Hsu, HTC

Bill Chang, HTC

Overview

This extension enables an application to show the passthrough image to see the surrounding

environment from the VR headset. The application is allowed to configure the passthrough image with

958 | Chapter 12. List of Current Extensions

the different appearances according to the demand of the application.

The passthrough configurations that runtime provides to applications contain:

• Decide the passthrough layer shown over or under the frame submitted by the application.

• Specify the passthrough form with full of the entire screen or projection onto the mesh specified by

the application.

• Set the alpha blending level for the composition of the passthrough layer.

Create a passthrough handle

An application can create an XrPassthroughHTC handle by calling xrCreatePassthroughHTC. The

returned passthrough handle can be subsequently used in API calls.

// Provided by XR_HTC_passthrough

XR_DEFINE_HANDLE(XrPassthroughHTC)

The xrCreatePassthroughHTC function is defined as:

// Provided by XR_HTC_passthrough

XrResult xrCreatePassthroughHTC(

 XrSession session,

 const XrPassthroughCreateInfoHTC* createInfo,

 XrPassthroughHTC* passthrough);

Parameter Descriptions

• session is an XrSession in which the passthrough will be active.

• createInfo is a pointer to an XrPassthroughCreateInfoHTC structure containing information

about how to create the passthrough.

• passthrough is a pointer to a handle in which the created XrPassthroughHTC is returned.

Creates an XrPassthroughHTC handle.

If the function successfully returned, the output passthrough must be a valid handle.

Chapter 12. List of Current Extensions | 959

Valid Usage (Implicit)

• The XR_HTC_passthrough extension must be enabled prior to calling xrCreatePassthroughHTC

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrPassthroughCreateInfoHTC structure

• passthrough must be a pointer to an XrPassthroughHTC handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_FEATURE_UNSUPPORTED

The XrPassthroughCreateInfoHTC structure is defined as:

// Provided by XR_HTC_passthrough

typedef struct XrPassthroughCreateInfoHTC {

 XrStructureType type;

 const void* next;

 XrPassthroughFormHTC form;

} XrPassthroughCreateInfoHTC;

960 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• form XrPassthroughFormHTC that specifies the form of passthrough.

Valid Usage (Implicit)

• The XR_HTC_passthrough extension must be enabled prior to using

XrPassthroughCreateInfoHTC

• type must be XR_TYPE_PASSTHROUGH_CREATE_INFO_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

• form must be a valid XrPassthroughFormHTC value

The XrPassthroughFormHTC enumeration identifies the form of the passthrough, presenting the

passthrough fill the full screen or project onto a specified mesh.

// Provided by XR_HTC_passthrough

typedef enum XrPassthroughFormHTC {

 XR_PASSTHROUGH_FORM_PLANAR_HTC = 0,

 XR_PASSTHROUGH_FORM_PROJECTED_HTC = 1,

 XR_PASSTHROUGH_FORM_MAX_ENUM_HTC = 0x7FFFFFFF

} XrPassthroughFormHTC;

Enumerant Descriptions

• XR_PASSTHROUGH_FORM_PLANAR_HTC  — Presents the passthrough with full of the entire screen.

• XR_PASSTHROUGH_FORM_PROJECTED_HTC  — Presents the passthrough projecting onto a custom

mesh.

The xrDestroyPassthroughHTC function is defined as:

Chapter 12. List of Current Extensions | 961

#valid-usage-for-structure-pointer-chains

// Provided by XR_HTC_passthrough

XrResult xrDestroyPassthroughHTC(

 XrPassthroughHTC passthrough);

Parameter Descriptions

• passthrough is the XrPassthroughHTC to be destroyed.

The xrDestroyPassthroughHTC function releases the passthrough and the underlying resources.

Valid Usage (Implicit)

• The XR_HTC_passthrough extension must be enabled prior to calling xrDestroyPassthroughHTC

• passthrough must be a valid XrPassthroughHTC handle

Thread Safety

• Access to passthrough, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

Composite the passthrough layer

The XrCompositionLayerPassthroughHTC structure is defined as:

962 | Chapter 12. List of Current Extensions

// Provided by XR_HTC_passthrough

typedef struct XrCompositionLayerPassthroughHTC {

 XrStructureType type;

 const void* next;

 XrCompositionLayerFlags layerFlags;

 XrSpace space;

 XrPassthroughHTC passthrough;

 XrPassthroughColorHTC color;

} XrCompositionLayerPassthroughHTC;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain, such as

XrPassthroughMeshTransformInfoHTC.

• layerFlags is a bitmask of XrCompositionLayerFlagBits describing flags to apply to the layer.

• space is the XrSpace that specifies the layer’s space - must be XR_NULL_HANDLE.

• passthrough is the XrPassthroughHTC previously created by xrCreatePassthroughHTC.

• color is the XrPassthroughColorHTC describing the color information with the alpha value of

the passthrough layer.

The application can create an XrCompositionLayerPassthroughHTC structure with the created

passthrough and the corresponding information. A pointer to XrCompositionLayerPassthroughHTC

may be submitted in xrEndFrame as a pointer to the base structure XrCompositionLayerBaseHeader,

in the desired layer order, to request the runtime to composite a passthrough layer into the final frame

output.

If the passthrough form specified to xrCreatePassthroughHTC is XR_PASSTHROUGH_FORM_PROJECTED_HTC,

XrPassthroughMeshTransformInfoHTC must appear in the next chain. If they are absent, the runtime

must return error XR_ERROR_VALIDATION_FAILURE.

Chapter 12. List of Current Extensions | 963

Valid Usage (Implicit)

• The XR_HTC_passthrough extension must be enabled prior to using

XrCompositionLayerPassthroughHTC

• type must be XR_TYPE_COMPOSITION_LAYER_PASSTHROUGH_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrPassthroughMeshTransformInfoHTC

• layerFlags must be a valid combination of XrCompositionLayerFlagBits values

• layerFlags must not be 0

• space must be a valid XrSpace handle

• passthrough must be a valid XrPassthroughHTC handle

• color must be a valid XrPassthroughColorHTC structure

• Both of passthrough and space must have been created, allocated, or retrieved from the same

XrSession

The XrPassthroughColorHTC structure is defined as:

// Provided by XR_HTC_passthrough

typedef struct XrPassthroughColorHTC {

 XrStructureType type;

 const void* next;

 float alpha;

} XrPassthroughColorHTC;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• alpha is the alpha value of the passthrough in the range [0, 1].

The application can specify the XrPassthroughColorHTC to adjust the alpha value of the passthrough.

The range is between 0.0f and 1.0f, 1.0f means opaque.

964 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_HTC_passthrough extension must be enabled prior to using XrPassthroughColorHTC

• type must be XR_TYPE_PASSTHROUGH_COLOR_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrPassthroughMeshTransformInfoHTC structure is defined as:

// Provided by XR_HTC_passthrough

typedef struct XrPassthroughMeshTransformInfoHTC {

 XrStructureType type;

 const void* next;

 uint32_t vertexCount;

 const XrVector3f* vertices;

 uint32_t indexCount;

 const uint32_t* indices;

 XrSpace baseSpace;

 XrTime time;

 XrPosef pose;

 XrVector3f scale;

} XrPassthroughMeshTransformInfoHTC;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• vertexCount is the count of vertices array in the mesh.

• vertices is an array of XrVector3f. The size of the array must be equal to vertexCount.

• indexCount is the count of indices array in the mesh.

• indices is an array of triangle indices. The size of the array must be equal to indexCount.

• baseSpace is the XrSpace that defines the projected passthrough’s base space for

transformations.

• time is the XrTime that defines the time at which the transform is applied.

• pose is the XrPosef that defines the pose of the mesh

• scale is the XrVector3f that defines the scale of the mesh

Chapter 12. List of Current Extensions | 965

#valid-usage-for-structure-pointer-chains

The XrPassthroughMeshTransformInfoHTC structure describes the mesh and transformation.

The application must specify the XrPassthroughMeshTransformInfoHTC in the next chain of

XrCompositionLayerPassthroughHTC if the specified form of passthrough layer previously created by

xrCreatePassthroughHTC is XR_PASSTHROUGH_FORM_PROJECTED_HTC.

Passing XrPassthroughMeshTransformInfoHTC updates the projected mesh information in the runtime

for passthrough layer composition.

If XrPassthroughMeshTransformInfoHTC is not set correctly, runtime must return error

XR_ERROR_VALIDATION_FAILURE when xrEndFrame is called with composition layer

XrCompositionLayerPassthroughHTC.

Valid Usage (Implicit)

• The XR_HTC_passthrough extension must be enabled prior to using

XrPassthroughMeshTransformInfoHTC

• type must be XR_TYPE_PASSTHROUGH_MESH_TRANSFORM_INFO_HTC

• next must be NULL or a valid pointer to the next structure in a structure chain

• vertices must be a pointer to an array of vertexCount XrVector3f structures

• indices must be a pointer to an array of indexCount uint32_t values

• baseSpace must be a valid XrSpace handle

• The vertexCount parameter must be greater than 0

• The indexCount parameter must be greater than 0

New Object Types

• XrPassthroughHTC

New Flag Types

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_PASSTHROUGH_HTC

XrStructureType enumeration is extended with:

• XR_TYPE_PASSTHROUGH_CREATE_INFO_HTC

• XR_TYPE_PASSTHROUGH_COLOR_HTC

• XR_TYPE_PASSTHROUGH_MESH_TRANSFORM_INFO_HTC

966 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

• XR_TYPE_COMPOSITION_LAYER_PASSTHROUGH_HTC

New Enums

• XrPassthroughFormHTC

New Structures

• XrPassthroughCreateInfoHTC

• XrPassthroughColorHTC

• XrPassthroughMeshTransformInfoHTC

• XrCompositionLayerPassthroughHTC

New Functions

• xrCreatePassthroughHTC

• xrDestroyPassthroughHTC

Issues

Version History

• Revision 1, 2022-09-14 (Sacdar Hsu)

◦ Initial extension description

12.88. XR_HTC_vive_wrist_tracker_interaction

Name String

XR_HTC_vive_wrist_tracker_interaction

Extension Type

Instance extension

Registered Extension Number

108

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-05-27

Chapter 12. List of Current Extensions | 967

IP Status

No known IP claims.

Contributors

Ria Hsu, HTC

Bill Chang, HTC

Overview

This extension provides an XrPath for getting device input from a VIVE wrist tracker to enable its

interactions. VIVE wrist tracker is a tracked device mainly worn on user’s wrist for pose tracking.

Besides this use case, user also can tie it to a physical object to track its object pose, e.g. tie on a gun.

VIVE Wrist Tracker input

This extension exposes a new interaction profile path /interaction_profiles/htc/vive_wrist_tracker that is

valid for the user path

• /user/wrist_htc/left

• /user/wrist_htc/right

for supported input source

• On /user/wrist_htc/left only:

◦ …/input/menu/click

◦ …/input/x/click

• On /user/wrist_htc/right only:

◦ …/input/system/click (may not be available for application use)

◦ …/input/a/click

• …/input/entity_htc/pose

Note

The interaction profile path /interaction_profiles/htc/vive_wrist_tracker defined here does not

follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/htc/vive_wrist_tracker_htc, to allow for modifications when

promoted to a KHR extension or the core specification.

The entity_htc pose allows the applications to recognize the origin of a tracked input device, especially

for the wearable devices which are not held in the user’s hand. The entity_htc pose is defined as

follows:

• The entity position: The center position of the tracked device.

968 | Chapter 12. List of Current Extensions

• The entity orientation: Oriented with +Y up, +X to the right, and -Z forward.

Version History

• Revision 1, 2022-05-27 (Ria Hsu)

◦ Initial extension description

12.89. XR_HUAWEI_controller_interaction

Name String

XR_HUAWEI_controller_interaction

Extension Type

Instance extension

Registered Extension Number

70

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_dpad_binding

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Last Modified Date

2020-05-26

IP Status

No known IP claims.

Contributors

Guodong Chen, Huawei

Kai Shao, Huawei

Yang Tao, Huawei

Gang Shen, Huawei

Yihong Huang, Huawei

Overview

Chapter 12. List of Current Extensions | 969

This extension defines a new interaction profile for the Huawei Controller, including but not limited to

Huawei VR Glasses Controller.

Huawei Controller interaction profile

Interaction profile path:

• /interaction_profiles/huawei/controller

Note

The interaction profile path /interaction_profiles/huawei/controller defined here does not follow

current rules for interaction profile names. If this extension were introduced today, it would be

called /interaction_profiles/huawei/controller_huawei, to allow for modifications when promoted

to a KHR extension or the core specification.

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the Huawei Controller.

Supported component paths:

• …/input/home/click

• …/input/back/click

• …/input/volume_up/click

• …/input/volume_down/click

• …/input/trigger/value

• …/input/trigger/click

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/aim/pose

• …/input/grip/pose

• …/output/haptic

970 | Chapter 12. List of Current Extensions

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2020-04-28 (Yihong Huang)

◦ Initial extension description

Chapter 12. List of Current Extensions | 971

12.90. XR_META_automatic_layer_filter

Name String

XR_META_automatic_layer_filter

Extension Type

Instance extension

Registered Extension Number

272

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_composition_layer_settings

Contributors

Rohit Rao Padebettu, Meta

Grant Yang, Meta

Overview

This extension defines a new flag in XrCompositionLayerSettingsFlagBitsFB that allows applications to

provide a hint to the runtime to automatically toggle a layer filtering mechanism. The layer filtering

helps alleviate visual quality artifacts such as blur and flicker.

Note: The runtime may use any factors it wishes to apply a filter to the layer. These may include not

only fixed factors such as screen resolution, HMD type, and swapchain resolution, but also dynamic

ones such as layer pose and system-wide GPU utilization.

Automatic Layer Filtering

XrCompositionLayerSettingsFlagBitsFB is extended with
XR_COMPOSITION_LAYER_SETTINGS_AUTO_LAYER_FILTER_BIT_META

To enable automatic selection of layer filtering method,

XR_COMPOSITION_LAYER_SETTINGS_AUTO_LAYER_FILTER_BIT_META is passed to the runtime in

XrCompositionLayerSettingsFB::layerFlags.

A candidate pool of preferred layer filtering methods from XrCompositionLayerSettingsFlagBitsFB

must be passed along with XR_COMPOSITION_LAYER_SETTINGS_AUTO_LAYER_FILTER_BIT_META. The runtime

may apply the appropriate filter when rendering the layer. The runtime must return

XR_ERROR_VALIDATION_FAILURE from xrEndFrame when an XrCompositionLayerSettingsFB structure is

972 | Chapter 12. List of Current Extensions

submitted with one or more of the layers if no other flag bits are supplied with

XR_COMPOSITION_LAYER_SETTINGS_AUTO_LAYER_FILTER_BIT_META.

Version History

• Revision 1, 2023-04-21 (Rohit Rao Padebettu)

◦ Initial extension description

12.91. XR_META_environment_depth

Name String

XR_META_environment_depth

Extension Type

Instance extension

Registered Extension Number

292

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-10-09

IP Status

No known IP claims.

Contributors

Andreas Selvik, Meta Platforms

Cass Everitt, Meta Platforms

Daniel Henell, Meta Platforms

John Kearney, Meta Platforms

Urs Niesen, Meta Platforms

12.91.1. Overview

This extension allows the application to request depth maps of the real-world environment around the

headset. The depth maps are generated by the runtime and shared with the application using an

XrEnvironmentDepthSwapchainMETA.

Chapter 12. List of Current Extensions | 973

12.91.2. Inspect System Capability

The XrSystemEnvironmentDepthPropertiesMETA structure is defined as:

// Provided by XR_META_environment_depth

typedef struct XrSystemEnvironmentDepthPropertiesMETA {

 XrStructureType type;

 void* next;

 XrBool32 supportsEnvironmentDepth;

 XrBool32 supportsHandRemoval;

} XrSystemEnvironmentDepthPropertiesMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsEnvironmentDepth is an XrBool32 indicating if current system supports environment

depth.

• supportsHandRemoval is an XrBool32 indicating if current system supports hand removal.

An application can inspect whether the system is capable of supporting environment depth by

extending the XrSystemProperties with XrSystemEnvironmentDepthPropertiesMETA structure when

calling xrGetSystemProperties.

If and only if a runtime returns XR_FALSE for supportsEnvironmentDepth, the runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrCreateEnvironmentDepthProviderMETA.

If and only if a runtime returns XR_FALSE for supportsHandRemoval, the runtime must return

XR_ERROR_FEATURE_UNSUPPORTED from xrSetEnvironmentDepthHandRemovalMETA.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to using

XrSystemEnvironmentDepthPropertiesMETA

• type must be XR_TYPE_SYSTEM_ENVIRONMENT_DEPTH_PROPERTIES_META

• next must be NULL or a valid pointer to the next structure in a structure chain

974 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

12.91.3. Creating and Destroying a Depth Provider

// Provided by XR_META_environment_depth

XR_DEFINE_HANDLE(XrEnvironmentDepthProviderMETA)

An XrEnvironmentDepthProviderMETA is a handle to a depth provider.

The xrCreateEnvironmentDepthProviderMETA function is defined as:

// Provided by XR_META_environment_depth

XrResult xrCreateEnvironmentDepthProviderMETA(

 XrSession session,

 const XrEnvironmentDepthProviderCreateInfoMETA* createInfo,

 XrEnvironmentDepthProviderMETA* environmentDepthProvider);

Parameter Descriptions

• session is the XrSession.

• createInfo is a pointer to an XrEnvironmentDepthProviderCreateInfoMETA containing

creation options for the depth provider.

• environmentDepthProvider is the returned XrEnvironmentDepthProviderMETA handle for the

created depth provider.

The xrCreateEnvironmentDepthProviderMETA function creates a depth provider instance.

Creating the depth provider may allocate resources, but should not incur any per-frame compute costs

until the provider has been started.

• Runtimes must create the provider in a stopped state.

• Runtimes may limit the number of depth providers per XrInstance. If

xrCreateEnvironmentDepthProviderMETA fails due to reaching this limit, the runtime must return

XR_ERROR_LIMIT_REACHED.

• Runtimes must support at least 1 provider per XrInstance.

• Runtimes may return XR_ERROR_NOT_PERMITTED_PASSTHROUGH_FB if the app permissions have not been

granted to the calling app.

• Applications can call xrStartEnvironmentDepthProviderMETA to start the generation of depth

maps.

Chapter 12. List of Current Extensions | 975

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrCreateEnvironmentDepthProviderMETA

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrEnvironmentDepthProviderCreateInfoMETA

structure

• environmentDepthProvider must be a pointer to an XrEnvironmentDepthProviderMETA

handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_NOT_PERMITTED_PASSTHROUGH_FB

The XrEnvironmentDepthProviderCreateInfoMETA structure is defined as:

// Provided by XR_META_environment_depth

typedef struct XrEnvironmentDepthProviderCreateInfoMETA {

 XrStructureType type;

 const void* next;

 XrEnvironmentDepthProviderCreateFlagsMETA createFlags;

} XrEnvironmentDepthProviderCreateInfoMETA;

976 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• createFlags is 0 or one or more XrEnvironmentDepthProviderCreateFlagBitsMETA.

The XrEnvironmentDepthProviderCreateInfoMETA structure provides creation options for the

XrEnvironmentDepthProviderMETA when passed to xrCreateEnvironmentDepthProviderMETA.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to using

XrEnvironmentDepthProviderCreateInfoMETA

• type must be XR_TYPE_ENVIRONMENT_DEPTH_PROVIDER_CREATE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• createFlags must be 0

The XrEnvironmentDepthProviderCreateFlagsMETA specifies creation options for

XrEnvironmentDepthProviderMETA.

// Provided by XR_META_environment_depth

typedef XrFlags64 XrEnvironmentDepthProviderCreateFlagsMETA;

Valid bits for XrEnvironmentDepthProviderCreateFlagsMETA are defined by

XrEnvironmentDepthProviderCreateFlagBitsMETA, which is specified as:

// Provided by XR_META_environment_depth

// Flag bits for XrEnvironmentDepthProviderCreateFlagsMETA

There are currently no flag bits defined. This is reserved for future use.

The xrDestroyEnvironmentDepthProviderMETA function is defined as:

Chapter 12. List of Current Extensions | 977

#valid-usage-for-structure-pointer-chains

// Provided by XR_META_environment_depth

XrResult xrDestroyEnvironmentDepthProviderMETA(

 XrEnvironmentDepthProviderMETA environmentDepthProvider);

Parameter Descriptions

• environmentDepthProvider is an XrEnvironmentDepthProviderMETA handle for the depth

provider.

The xrDestroyEnvironmentDepthProviderMETA function destroys the depth provider. After this call

the runtime may free all related memory and resources.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrDestroyEnvironmentDepthProviderMETA

• environmentDepthProvider must be a valid XrEnvironmentDepthProviderMETA handle

Thread Safety

• Access to environmentDepthProvider, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

12.91.4. Starting and Stopping a Depth Provider

The xrStartEnvironmentDepthProviderMETA function is defined as:

978 | Chapter 12. List of Current Extensions

// Provided by XR_META_environment_depth

XrResult xrStartEnvironmentDepthProviderMETA(

 XrEnvironmentDepthProviderMETA environmentDepthProvider);

Parameter Descriptions

• environmentDepthProvider is an XrEnvironmentDepthProviderMETA handle for the depth

provider.

The xrStartEnvironmentDepthProviderMETA function starts the asynchronous generation of depth

maps.

Starting the depth provider may use CPU and GPU resources.

Runtimes must return XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB if

xrStartEnvironmentDepthProviderMETA is called on an already started

XrEnvironmentDepthProviderMETA.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrStartEnvironmentDepthProviderMETA

• environmentDepthProvider must be a valid XrEnvironmentDepthProviderMETA handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB

Chapter 12. List of Current Extensions | 979

The xrStopEnvironmentDepthProviderMETA function is defined as:

// Provided by XR_META_environment_depth

XrResult xrStopEnvironmentDepthProviderMETA(

 XrEnvironmentDepthProviderMETA environmentDepthProvider);

Parameter Descriptions

• environmentDepthProvider is an XrEnvironmentDepthProviderMETA handle for the depth

provider.

The xrStopEnvironmentDepthProviderMETA function stops the generation of depth maps. This stops

all per frame computation of environment depth for the application.

Runtimes must return XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB if

xrStopEnvironmentDepthProviderMETA is called on an already stopped

XrEnvironmentDepthProviderMETA.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrStopEnvironmentDepthProviderMETA

• environmentDepthProvider must be a valid XrEnvironmentDepthProviderMETA handle

980 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_UNEXPECTED_STATE_PASSTHROUGH_FB

12.91.5. Hand Removal

Runtimes may provide functionality to remove hands from the depth map and filling in estimated

background depth values. This is useful to support other occlusion methods specialized for hands to

coexist with the Environment Depth extension.

The xrSetEnvironmentDepthHandRemovalMETA function is defined as:

// Provided by XR_META_environment_depth

XrResult xrSetEnvironmentDepthHandRemovalMETA(

 XrEnvironmentDepthProviderMETA environmentDepthProvider,

 const XrEnvironmentDepthHandRemovalSetInfoMETA* setInfo);

Parameter Descriptions

• environmentDepthProvider is an XrEnvironmentDepthProviderMETA handle for the depth

provider.

• setInfo is a pointer to an XrEnvironmentDepthHandRemovalSetInfoMETA containing options

for the hand removal.

The xrSetEnvironmentDepthHandRemovalMETA function sets hand removal options.

Runtimes should enable or disable the removal of the hand depths from the depth map. If enabled, the

Chapter 12. List of Current Extensions | 981

corresponding depth pixels should be replaced with the estimated background depth behind the

hands. Runtimes must return XR_ERROR_FEATURE_UNSUPPORTED if and only if

XrSystemEnvironmentDepthPropertiesMETA::supportsHandRemoval is XR_FALSE.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrSetEnvironmentDepthHandRemovalMETA

• environmentDepthProvider must be a valid XrEnvironmentDepthProviderMETA handle

• setInfo must be a pointer to a valid XrEnvironmentDepthHandRemovalSetInfoMETA

structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The XrEnvironmentDepthHandRemovalSetInfoMETA structure is defined as:

// Provided by XR_META_environment_depth

typedef struct XrEnvironmentDepthHandRemovalSetInfoMETA {

 XrStructureType type;

 const void* next;

 XrBool32 enabled;

} XrEnvironmentDepthHandRemovalSetInfoMETA;

982 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• enabled is XR_TRUE or XR_FALSE to enable/disable hand removal from the depth map,

respectively.

This structure contains options passed to xrSetEnvironmentDepthHandRemovalMETA.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to using

XrEnvironmentDepthHandRemovalSetInfoMETA

• type must be XR_TYPE_ENVIRONMENT_DEPTH_HAND_REMOVAL_SET_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

12.91.6. Creating a Readable Depth Swapchain

The depth data is generated in the runtime and shared to the application though an

XrEnvironmentDepthSwapchainMETA. This swapchain is different from regular swapchains in that it

provides a data channel from the runtime to the application instead of the other way around.

// Provided by XR_META_environment_depth

XR_DEFINE_HANDLE(XrEnvironmentDepthSwapchainMETA)

XrEnvironmentDepthSwapchainMETA is a handle to a readable depth swapchain.

The xrCreateEnvironmentDepthSwapchainMETA function is defined as:

// Provided by XR_META_environment_depth

XrResult xrCreateEnvironmentDepthSwapchainMETA(

 XrEnvironmentDepthProviderMETA environmentDepthProvider,

 const XrEnvironmentDepthSwapchainCreateInfoMETA* createInfo,

 XrEnvironmentDepthSwapchainMETA* swapchain);

Chapter 12. List of Current Extensions | 983

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• environmentDepthProvider is an XrEnvironmentDepthProviderMETA handle for the depth

provider.

• createInfo is a pointer to an XrEnvironmentDepthSwapchainCreateInfoMETA containing

creation options for the swapchain.

• swapchain is the returned XrEnvironmentDepthSwapchainMETA handle for the created

swapchain.

The xrCreateEnvironmentDepthSwapchainMETA function creates a readable swapchain, which is used

for accessing the depth data.

The runtime decides on the resolution and length of the swapchain. Additional information about the

swapchain can be accessed by calling xrGetEnvironmentDepthSwapchainStateMETA.

Runtimes must create a swapchain with array textures of length 2, which map to a left-eye and right-

eye view. View index 0 must represent the left eye and view index 1 must represent the right eye. This

is the same convention as for XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO in XrViewConfigurationType.

Runtimes must create the swapchain with the following image formats depending on the graphics API

associated with the session:

• OpenGL: GL_DEPTH_COMPONENT16

• Vulkan: VK_FORMAT_D16_UNORM

• Direct3D: DXGI_FORMAT_D16_UNORM

Runtimes must only allow maximum one swapchain to exist per depth provider at any given time, and

must return XR_ERROR_LIMIT_REACHED if xrCreateEnvironmentDepthSwapchainMETA is called to create

more. Applications should destroy the swapchain when no longer needed. Applications must be able

to handle different swapchain lengths and resolutions.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrCreateEnvironmentDepthSwapchainMETA

• environmentDepthProvider must be a valid XrEnvironmentDepthProviderMETA handle

• createInfo must be a pointer to a valid XrEnvironmentDepthSwapchainCreateInfoMETA

structure

• swapchain must be a pointer to an XrEnvironmentDepthSwapchainMETA handle

984 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

The XrEnvironmentDepthSwapchainCreateInfoMETA structure is defined as:

// Provided by XR_META_environment_depth

typedef struct XrEnvironmentDepthSwapchainCreateInfoMETA {

 XrStructureType type;

 const void* next;

 XrEnvironmentDepthSwapchainCreateFlagsMETA createFlags;

} XrEnvironmentDepthSwapchainCreateInfoMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• createFlags is a bitmask of XrEnvironmentDepthSwapchainCreateFlagBitsMETA.

XrEnvironmentDepthSwapchainCreateInfoMETA contains creation options for the readable depth

swapchain, and is passed to xrCreateEnvironmentDepthSwapchainMETA.

Chapter 12. List of Current Extensions | 985

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to using

XrEnvironmentDepthSwapchainCreateInfoMETA

• type must be XR_TYPE_ENVIRONMENT_DEPTH_SWAPCHAIN_CREATE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• createFlags must be 0

The XrEnvironmentDepthSwapchainCreateFlagsMETA specifies creation options for

XrEnvironmentDepthSwapchainCreateInfoMETA.

// Provided by XR_META_environment_depth

typedef XrFlags64 XrEnvironmentDepthSwapchainCreateFlagsMETA;

Valid bits for XrEnvironmentDepthProviderCreateFlagsMETA are defined by

XrEnvironmentDepthSwapchainCreateFlagBitsMETA, which is specified as:

// Provided by XR_META_environment_depth

// Flag bits for XrEnvironmentDepthSwapchainCreateFlagsMETA

There are currently no flag bits defined. This is reserved for future use.

The xrGetEnvironmentDepthSwapchainStateMETA function is defined as:

// Provided by XR_META_environment_depth

XrResult xrGetEnvironmentDepthSwapchainStateMETA(

 XrEnvironmentDepthSwapchainMETA swapchain,

 XrEnvironmentDepthSwapchainStateMETA* state);

Parameter Descriptions

• swapchain is an XrEnvironmentDepthSwapchainMETA handle.

• state is a pointer to an XrEnvironmentDepthSwapchainStateMETA.

986 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

xrGetEnvironmentDepthSwapchainStateMETA retrieves information about the

XrEnvironmentDepthSwapchainMETA. This information is constant throughout the lifetime of the

XrEnvironmentDepthSwapchainMETA.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrGetEnvironmentDepthSwapchainStateMETA

• swapchain must be a valid XrEnvironmentDepthSwapchainMETA handle

• state must be a pointer to an XrEnvironmentDepthSwapchainStateMETA structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The XrEnvironmentDepthSwapchainStateMETA structure is defined as:

// Provided by XR_META_environment_depth

typedef struct XrEnvironmentDepthSwapchainStateMETA {

 XrStructureType type;

 void* next;

 uint32_t width;

 uint32_t height;

} XrEnvironmentDepthSwapchainStateMETA;

Chapter 12. List of Current Extensions | 987

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• width is the width of the image.

• height is the height of the image.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to using

XrEnvironmentDepthSwapchainStateMETA

• type must be XR_TYPE_ENVIRONMENT_DEPTH_SWAPCHAIN_STATE_META

• next must be NULL or a valid pointer to the next structure in a structure chain

The xrDestroyEnvironmentDepthSwapchainMETA function is defined as:

// Provided by XR_META_environment_depth

XrResult xrDestroyEnvironmentDepthSwapchainMETA(

 XrEnvironmentDepthSwapchainMETA swapchain);

Parameter Descriptions

• swapchain is the XrEnvironmentDepthSwapchainMETA to be destroyed.

The xrDestroyEnvironmentDepthSwapchainMETA function destroys a readable environment depth

swapchain.

All submitted graphics API commands that refer to swapchain must have completed execution.

Runtimes may continue to utilize swapchain images after

xrDestroyEnvironmentDepthSwapchainMETA is called.

988 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrDestroyEnvironmentDepthSwapchainMETA

• swapchain must be a valid XrEnvironmentDepthSwapchainMETA handle

Thread Safety

• Access to swapchain, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

12.91.7. Accessing the Readable Depth Swapchain During Rendering

The xrEnumerateEnvironmentDepthSwapchainImagesMETA function is defined as:

// Provided by XR_META_environment_depth

XrResult xrEnumerateEnvironmentDepthSwapchainImagesMETA(

 XrEnvironmentDepthSwapchainMETA swapchain,

 uint32_t imageCapacityInput,

 uint32_t* imageCountOutput,

 XrSwapchainImageBaseHeader* images);

Chapter 12. List of Current Extensions | 989

Parameter Descriptions

• swapchain is the XrEnvironmentDepthSwapchainMETA to get images from.

• imageCapacityInput is the capacity of the images array, or 0 to indicate a request to retrieve

the required capacity.

• imageCountOutput is a pointer to the count of images written, or a pointer to the required

capacity in the case that imageCapacityInput is insufficient.

• images is a pointer to an array of graphics API-specific XrSwapchainImage structures, all of

the same type, based on XrSwapchainImageBaseHeader. It can be NULL if imageCapacityInput

is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

images size.

xrEnumerateEnvironmentDepthSwapchainImagesMETA fills an array of graphics API-specific

XrSwapchainImage* structures derived from XrSwapchainImageBaseHeader. The resources must be

constant and valid for the lifetime of the XrEnvironmentDepthSwapchainMETA. This function behaves

analogously to xrEnumerateSwapchainImages.

Runtimes must always return identical buffer contents from this enumeration for the lifetime of the

swapchain.

Note: images is a pointer to an array of structures of graphics API-specific type, not an array of

structure pointers.

The pointer submitted as images will be treated as an array of the expected graphics API-specific type

based on the graphics API used at session creation time. If the type member of any array element

accessed in this way does not match the expected value, the runtime must return

XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrEnumerateEnvironmentDepthSwapchainImagesMETA

• swapchain must be a valid XrEnvironmentDepthSwapchainMETA handle

• imageCountOutput must be a pointer to a uint32_t value

• If imageCapacityInput is not 0, images must be a pointer to an array of imageCapacityInput

XrSwapchainImageBaseHeader-based structures. See also: XrSwapchainImageD3D11KHR,

XrSwapchainImageD3D12KHR, XrSwapchainImageOpenGLESKHR,

XrSwapchainImageOpenGLKHR, XrSwapchainImageVulkanKHR

990 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

The xrAcquireEnvironmentDepthImageMETA function is defined as:

// Provided by XR_META_environment_depth

XrResult xrAcquireEnvironmentDepthImageMETA(

 XrEnvironmentDepthProviderMETA environmentDepthProvider,

 const XrEnvironmentDepthImageAcquireInfoMETA* acquireInfo,

 XrEnvironmentDepthImageMETA* environmentDepthImage);

Parameter Descriptions

• environmentDepthProvider is an XrEnvironmentDepthProviderMETA handle for the depth

provider.

• acquireInfo is an XrEnvironmentDepthImageAcquireInfoMETA containing parameters for

populating a depth swapchain image.

• environmentDepthImage is the returned XrEnvironmentDepthImageMETA containing

information about the acquired depth image.

Acquires the latest available swapchain image that has been generated by the depth provider and

ensures it is ready to be accessed by the application. The application may access and queue GPU

operations using the acquired image until the next xrEndFrame call, when the image is released and

the depth provider may write new depth data into it after completion of all work queued before the

Chapter 12. List of Current Extensions | 991

xrEndFrame call.

The returned XrEnvironmentDepthImageMETA contains the swapchain index into the array

enumerated by xrEnumerateEnvironmentDepthSwapchainImagesMETA. It also contains other

information such as the field of view and pose that are necessary to interpret the depth data.

There must be no more than one call to xrAcquireEnvironmentDepthImageMETA between any pair of

corresponding xrBeginFrame and xrEndFrame calls in a session.

• The runtime may block if previously acquired swapchain images are still being used by the

graphics API.

• The runtime must return XR_ERROR_CALL_ORDER_INVALID if xrAcquireEnvironmentDepthImageMETA

is called before xrBeginFrame or after xrEndFrame.

• The runtime must return XR_ERROR_CALL_ORDER_INVALID if xrAcquireEnvironmentDepthImageMETA

is called on a stopped XrEnvironmentDepthProviderMETA.

• The runtime must return XR_ERROR_LIMIT_REACHED if xrAcquireEnvironmentDepthImageMETA is

called more than once per frame - i.e. in a running session, after a call to xrBeginFrame that has not

had an associated xrEndFrame.

• Runtimes must return XR_ENVIRONMENT_DEPTH_NOT_AVAILABLE_META if no depth frame is available yet

(i.e. the provider was recently started and did not yet have time to compute depth). Note that this is

a success code. In this case the output parameters must be unchanged.

• The application must not utilize the swapchain image in calls to the graphics API after xrEndFrame

has been called.

• A runtime may use the graphics API specific contexts provided to OpenXR. In particular:

◦ For OpenGL, a runtime may use the OpenGL context specified in the call to xrCreateSession,

which needs external synchronization.

◦ For Vulkan, a runtime may use the VkQueue specified in the XrGraphicsBindingVulkan2KHR,

which needs external synchronization.

◦ For Direct3D12, a runtime may use the ID3D12CommandQueue specified in the

XrGraphicsBindingD3D12KHR, which needs external synchronization.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to calling

xrAcquireEnvironmentDepthImageMETA

• environmentDepthProvider must be a valid XrEnvironmentDepthProviderMETA handle

• acquireInfo must be a pointer to a valid XrEnvironmentDepthImageAcquireInfoMETA

structure

• environmentDepthImage must be a pointer to an XrEnvironmentDepthImageMETA structure

992 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_ENVIRONMENT_DEPTH_NOT_AVAILABLE_META

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_TIME_INVALID

• XR_ERROR_CALL_ORDER_INVALID

The XrEnvironmentDepthImageAcquireInfoMETA structure is defined as:

// Provided by XR_META_environment_depth

typedef struct XrEnvironmentDepthImageAcquireInfoMETA {

 XrStructureType type;

 const void* next;

 XrSpace space;

 XrTime displayTime;

} XrEnvironmentDepthImageAcquireInfoMETA;

Chapter 12. List of Current Extensions | 993

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• space is an XrSpace defining the reference frame of the returned pose in

XrEnvironmentDepthImageMETA.

• displayTime is an XrTime specifying the time used to compute the pose for the returned pose in

XrEnvironmentDepthImageMETA. Clients should pass their predicted display time for the

current frame.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to using

XrEnvironmentDepthImageAcquireInfoMETA

• type must be XR_TYPE_ENVIRONMENT_DEPTH_IMAGE_ACQUIRE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• space must be a valid XrSpace handle

The XrEnvironmentDepthImageViewMETA structure is defined as:

// Provided by XR_META_environment_depth

typedef struct XrEnvironmentDepthImageViewMETA {

 XrStructureType type;

 const void* next;

 XrFovf fov;

 XrPosef pose;

} XrEnvironmentDepthImageViewMETA;

994 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• fov is an XrFovf specifying the field of view used to generate this view. The view is never

flipped horizontally nor vertically.

• pose is an XrPosef specifying the pose from which the depth map was rendered. The

reference frame is specified in XrEnvironmentDepthImageAcquireInfoMETA.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to using

XrEnvironmentDepthImageViewMETA

• type must be XR_TYPE_ENVIRONMENT_DEPTH_IMAGE_VIEW_META

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEnvironmentDepthImageMETA structure is defined as:

// Provided by XR_META_environment_depth

typedef struct XrEnvironmentDepthImageMETA {

 XrStructureType type;

 const void* next;

 uint32_t swapchainIndex;

 float nearZ;

 float farZ;

 XrEnvironmentDepthImageViewMETA views[2];

} XrEnvironmentDepthImageMETA;

Chapter 12. List of Current Extensions | 995

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• swapchainIndex is the index of the acquired texture in the depth swapchain.

• nearZ is the distance to the near Z plane in meters.

• farZ is the distance to the far Z plane in meters.

• views is an array of two XrEnvironmentDepthImageViewMETA, one for each eye, where

index 0 is left eye and index 1 is the right eye.

Depth is provided as textures in the same format as described in the XR_KHR_composition_layer_depth

extension.

The frustum’s Z-planes are placed at nearZ and farZ meters. When farZ is less than nearZ, an infinite

projection matrix is used.

Valid Usage (Implicit)

• The XR_META_environment_depth extension must be enabled prior to using

XrEnvironmentDepthImageMETA

• type must be XR_TYPE_ENVIRONMENT_DEPTH_IMAGE_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• Any given element of views must be a valid XrEnvironmentDepthImageViewMETA structure

12.91.8. Vulkan Swapchain Image Layout

For an application using Vulkan, after a successful call to xrAcquireEnvironmentDepthImageMETA

that does not return XR_ENVIRONMENT_DEPTH_NOT_AVAILABLE_META, the following conditions apply to the

runtime:

• The runtime must ensure the acquired readable depth swapchain image has a memory layout

compatible with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL. Note that this is different from

xrAcquireSwapchainImage which guarantees VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL.

• The runtime must ensure the VkQueue specified in XrGraphicsBindingVulkanKHR /

XrGraphicsBindingVulkan2KHR has ownership of the acquired readable depth swapchain image.

Upon next calling xrEndFrame after such an acquire call, the following conditions apply to the

application:

996 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

• The application must ensure that the readable depth swapchain image has a memory layout

compatible with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL.

• The application must ensure that the readable depth swapchain image is owned by the VkQueue

specified in XrGraphicsBindingVulkanKHR / XrGraphicsBindingVulkan2KHR.

The application is responsible for transitioning the swapchain image back to the image layout and

queue ownership that the OpenXR runtime requires. If the image is not in a layout compatible with the

above specifications, the runtime may exhibit undefined behavior.

12.91.9. Direct3D 12 Swapchain Image Resource State

For an application using D3D12, after a successful call to xrAcquireEnvironmentDepthImageMETA that

does not return XR_ENVIRONMENT_DEPTH_NOT_AVAILABLE_META, the following conditions apply to the

runtime:

• The runtime must ensure the acquired readable depth swapchain image has a resource state

match with D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE. Note that this is different from

xrAcquireSwapchainImage which guarantees D3D12_RESOURCE_STATE_DEPTH_WRITE for swapchain

images with depth formats.

• The runtime must ensure that the ID3D12CommandQueue specified in XrGraphicsBindingD3D12KHR

may read from the acquired readable depth swapchain image.

Upon next calling xrEndFrame after such an acquire call, the following conditions apply to the

application:

• The application must ensure that the readable depth swapchain image has a resource state match

with D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE.

• The application must ensure that the readable depth swapchain image is available for read/write

on the ID3D12CommandQueue specified in XrGraphicsBindingD3D12KHR.

The application is responsible for transitioning the swapchain image back to the resource state and

queue availability that the OpenXR runtime requires. If the image is not in a resource state match with

the above specifications the runtime may exhibit undefined behavior.

Version History

• Revision 1, 2023-08-24 (Daniel Henell)

◦ Initial extension description

12.92. XR_META_foveation_eye_tracked

Name String

XR_META_foveation_eye_tracked

Chapter 12. List of Current Extensions | 997

Extension Type

Instance extension

Registered Extension Number

201

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_foveation

and

XR_FB_foveation_configuration

Contributors

Ross Ning, Facebook

Kevin Xiao, Facebook

Remi Palandri, Facebook

Jian Zhang, Facebook

Neel Bedekar, Facebook

Overview

Eye tracked foveated rendering renders lower pixel density in the periphery of the user’s gaze, taking

advantage of low peripheral acuity.

This extension allows:

• An application to query eye tracked foveation availability.

• An application to request eye tracked foveation profile supported by the runtime and apply them to

foveation-supported swapchains.

• An application to query foveation center position every frame.

• An application to request a foveation pattern update from the runtime. As a consequence, runtime

knows how to adjust the eye tracking camera exposure start time in order to optimize the total

pipeline latency.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as

indicated in the Extensions section.

New Object Types

New Flag Types

998 | Chapter 12. List of Current Extensions

// Provided by XR_META_foveation_eye_tracked

typedef XrFlags64 XrFoveationEyeTrackedProfileCreateFlagsMETA;

// Provided by XR_META_foveation_eye_tracked

// Flag bits for XrFoveationEyeTrackedProfileCreateFlagsMETA

There are currently no eye tracked profile create flags. This is reserved for future use.

// Provided by XR_META_foveation_eye_tracked

typedef XrFlags64 XrFoveationEyeTrackedStateFlagsMETA;

// Provided by XR_META_foveation_eye_tracked

// Flag bits for XrFoveationEyeTrackedStateFlagsMETA

static const XrFoveationEyeTrackedStateFlagsMETA

XR_FOVEATION_EYE_TRACKED_STATE_VALID_BIT_META = 0x00000001;

Flag Descriptions

• XR_FOVEATION_EYE_TRACKED_STATE_VALID_BIT_META  — Indicates whether or not foveation data is

valid. This can happen if the eye tracker is obscured, the camera has dirt, or eye lid is closed,

etc.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_FOVEATION_EYE_TRACKED_PROFILE_CREATE_INFO_META

• XR_TYPE_FOVEATION_EYE_TRACKED_STATE_META

• XR_TYPE_SYSTEM_FOVEATION_EYE_TRACKED_PROPERTIES_META

New Enums

New Structures

Chapter 12. List of Current Extensions | 999

The XrFoveationEyeTrackedProfileCreateInfoMETA structure is defined as:

// Provided by XR_META_foveation_eye_tracked

typedef struct XrFoveationEyeTrackedProfileCreateInfoMETA {

 XrStructureType type;

 const void* next;

 XrFoveationEyeTrackedProfileCreateFlagsMETA flags;

} XrFoveationEyeTrackedProfileCreateInfoMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrFoveationEyeTrackedProfileCreateFlagBitsMETA which indicate

various characteristics for how eye tracked foveation is enabled on the swapchain.

XrFoveationEyeTrackedProfileCreateInfoMETA can be added to the next chain of

XrFoveationLevelProfileCreateInfoFB in order to enable eye tracked foveation. The runtime must

apply an eye tracked foveation pattern according to the parameters defined in the

XrFoveationLevelProfileCreateInfoFB.

Valid Usage (Implicit)

• The XR_META_foveation_eye_tracked extension must be enabled prior to using

XrFoveationEyeTrackedProfileCreateInfoMETA

• type must be XR_TYPE_FOVEATION_EYE_TRACKED_PROFILE_CREATE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be 0

The XrFoveationEyeTrackedStateMETA structure is defined as:

1000 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_META_foveation_eye_tracked

typedef struct XrFoveationEyeTrackedStateMETA {

 XrStructureType type;

 void* next;

 XrVector2f foveationCenter[

XR_FOVEATION_CENTER_SIZE_META];

 XrFoveationEyeTrackedStateFlagsMETA flags;

} XrFoveationEyeTrackedStateMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• foveationCenter is the center of the foveal region defined in NDC space in the range of -1 to 1

for both eyes.

• flags is a bitmask of XrFoveationEyeTrackedStateFlagBitsMETA which indicates various

characteristics for current foveation state.

XrFoveationEyeTrackedStateMETA must be provided when calling

xrGetFoveationEyeTrackedStateMETA. The runtime must interpret XrFoveationEyeTrackedStateMETA

without any additional structs in its next chain in order to query eye tracked foveation state, e.g. the

center of the foveal region.

Valid Usage (Implicit)

• The XR_META_foveation_eye_tracked extension must be enabled prior to using

XrFoveationEyeTrackedStateMETA

• type must be XR_TYPE_FOVEATION_EYE_TRACKED_STATE_META

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrSystemFoveationEyeTrackedPropertiesMETA structure is defined as:

Chapter 12. List of Current Extensions | 1001

#valid-usage-for-structure-pointer-chains

// Provided by XR_META_foveation_eye_tracked

typedef struct XrSystemFoveationEyeTrackedPropertiesMETA {

 XrStructureType type;

 void* next;

 XrBool32 supportsFoveationEyeTracked;

} XrSystemFoveationEyeTrackedPropertiesMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsFoveationEyeTracked indicates if the current system is capable of eye tracked

foveation.

An application can inspect whether the system is capable of eye tracked foveation by extending the

XrSystemProperties with XrSystemFoveationEyeTrackedPropertiesMETA structure when calling

xrGetSystemProperties.

Valid Usage (Implicit)

• The XR_META_foveation_eye_tracked extension must be enabled prior to using

XrSystemFoveationEyeTrackedPropertiesMETA

• type must be XR_TYPE_SYSTEM_FOVEATION_EYE_TRACKED_PROPERTIES_META

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrGetFoveationEyeTrackedStateMETA function is defined as:

// Provided by XR_META_foveation_eye_tracked

XrResult xrGetFoveationEyeTrackedStateMETA(

 XrSession session,

 XrFoveationEyeTrackedStateMETA* foveationState);

1002 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession in which the eye tracked foveation profile is applied.

• foveationState is a pointer to an XrFoveationEyeTrackedStateMETA structure returning the

current eye tracked foveation state.

The xrGetFoveationEyeTrackedStateMETA function returns the current eye tracked foveation state

including the center of the foveal region, validity of the foveation data, etc.

Note that xrUpdateSwapchainFB should be called right before the

xrGetFoveationEyeTrackedStateMETA function in order to (1) request a foveation pattern update by

the runtime (2) optionally instruct the runtime to adjust the eye tracking camera capture start time in

order to optimize for pipeline latency.

Valid Usage (Implicit)

• The XR_META_foveation_eye_tracked extension must be enabled prior to calling

xrGetFoveationEyeTrackedStateMETA

• session must be a valid XrSession handle

• foveationState must be a pointer to an XrFoveationEyeTrackedStateMETA structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Chapter 12. List of Current Extensions | 1003

Version History

• Revision 1, 2022-04-08 (Ross Ning)

◦ Initial extension description

12.93. XR_META_headset_id

Name String

XR_META_headset_id

Extension Type

Instance extension

Registered Extension Number

246

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-08-11

IP Status

No known IP claims.

Contributors

Wenlin Mao, Meta Platforms

Andreas Loeve Selvik, Meta Platforms

Rémi Palandri, Meta Platforms

John Kearney, Meta Platforms

Jonathan Wright, Meta Platforms

Contacts

Wenlin Mao, Meta Platforms

1004 | Chapter 12. List of Current Extensions

 Note

Using the headset ID to alter application behavior is discouraged, as it interferes with

compatibility with current and future headsets. The OpenXR specification is designed

with the goal of avoiding the need for explicit per-device logic. If the use of this

extension is required, it is encouraged to let the OpenXR working group know about

the use case, through a communication channel like email or GitHub. While this usage

is discouraged, applications that need this functionality are encouraged to use this

extension instead of the systemName field in XrSystemProperties. Game engines and

similar middleware should not enable this extension by default. This extension will

be deprecated and no longer exposed once the remaining use cases are resolved in a

more portable way.

The XrSystemHeadsetIdPropertiesMETA structure is defined as:

// Provided by XR_META_headset_id

typedef struct XrSystemHeadsetIdPropertiesMETA {

 XrStructureType type;

 void* next;

 XrUuidEXT id;

} XrSystemHeadsetIdPropertiesMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• id is the XrUuidEXT corresponding to the headset model.

An application can get a corresponding headset UUID of the headset model by chaining an

XrSystemHeadsetIdPropertiesMETA structure to the XrSystemProperties when calling

xrGetSystemProperties.

The UUID returned in the XrSystemHeadsetIdPropertiesMETA structure is an opaque UUID that

identifies a runtime / headset model combo.

The runtime should always return the same UUID for a given headset model for the entire lifetime of

that product.

The runtime may report a different UUID to some applications for compatibility purposes.

This is in contrast to the XrSystemProperties::systemName field which is not required to be consistent

Chapter 12. List of Current Extensions | 1005

across product renames.

This is intended to be a temporary feature that will be deprecated along with its extension as soon as

motivating use cases are resolved in a better way. See the disclaimer at the start of the

XR_META_headset_id extension documentation for more details.

Valid Usage (Implicit)

• The XR_META_headset_id extension must be enabled prior to using

XrSystemHeadsetIdPropertiesMETA

• type must be XR_TYPE_SYSTEM_HEADSET_ID_PROPERTIES_META

• next must be NULL or a valid pointer to the next structure in a structure chain

New Object Types

New Atom

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_HEADSET_ID_PROPERTIES_META

New Enums

New Structures

• XrSystemHeadsetIdPropertiesMETA

New Functions

Issues

Version History

• Revision 1, 2022-08-11 (Wenlin Mao)

◦ Initial extension description

• Revision 2, 2023-01-30 (Wenlin Mao)

◦ Drop requirement for XR_EXT_uuid must be enabled

1006 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

12.94. XR_META_local_dimming

Name String

XR_META_local_dimming

Extension Type

Instance extension

Registered Extension Number

217

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-05-05

IP Status

No known IP claims.

Contributors

Ross Ning, Meta Platforms

Haomiao Jiang, Meta Platforms

Remi Palandri, Meta Platforms

Xiang Wei, Meta Platforms

Overview

Local dimming allows to adjust backlight intensity of dark areas on the screen in order to increase

content dynamic range. Local dimming feature is not intended for optical see-through HMDs.

An application can request the local dimming mode on a frame basis by chaining an

XrLocalDimmingFrameEndInfoMETA structure to the XrFrameEndInfo.

• Using XrFrameEndInfoLocalDimmingFB is considered as a hint and will not trigger xrEndFrame

errors whether or not the requested dimming mode is fulfilled by the runtime.

• The runtime will have full control of the local dimming mode and may disregard app requests. For

example, the runtime may allow only one primary client to control the local dimming mode.

New Object Types

New Flag Types

Chapter 12. List of Current Extensions | 1007

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_LOCAL_DIMMING_FRAME_END_INFO_META

New Enums

The local dimming mode is specified by the XrLocalDimmingModeMETA enumeration:

// Provided by XR_META_local_dimming

typedef enum XrLocalDimmingModeMETA {

 XR_LOCAL_DIMMING_MODE_OFF_META = 0,

 XR_LOCAL_DIMMING_MODE_ON_META = 1,

 XR_LOCAL_DIMMING_MODE_MAX_ENUM_META = 0x7FFFFFFF

} XrLocalDimmingModeMETA;

Enumerant Descriptions

• XR_LOCAL_DIMMING_MODE_OFF_META  — Local dimming is turned off by default for the current

submitted frame. This is the same as not chaining XrLocalDimmingModeMETA.

• XR_LOCAL_DIMMING_MODE_ON_META  — Local dimming is turned on for the current submitted

frame.

New Structures

The XrLocalDimmingFrameEndInfoMETA structure is defined as:

// Provided by XR_META_local_dimming

typedef struct XrLocalDimmingFrameEndInfoMETA {

 XrStructureType type;

 const void* next;

 XrLocalDimmingModeMETA localDimmingMode;

} XrLocalDimmingFrameEndInfoMETA;

1008 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• localDimmingMode is the local dimming mode for current submitted frame.

The XrLocalDimmingFrameEndInfoMETA is a structure that an application can chain in

XrFrameEndInfo in order to request a local dimming mode.

Valid Usage (Implicit)

• The XR_META_local_dimming extension must be enabled prior to using

XrLocalDimmingFrameEndInfoMETA

• type must be XR_TYPE_LOCAL_DIMMING_FRAME_END_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• localDimmingMode must be a valid XrLocalDimmingModeMETA value

New Functions

Issues

Version History

• Revision 1, 2022-05-05 (Ross Ning)

◦ Initial draft

12.95. XR_META_passthrough_color_lut

Name String

XR_META_passthrough_color_lut

Extension Type

Instance extension

Registered Extension Number

267

Revision

1

Chapter 12. List of Current Extensions | 1009

#valid-usage-for-structure-pointer-chains

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_passthrough

Last Modified Date

2022-11-28

IP Status

No known IP claims.

Contributors

Andreas Loeve Selvik, Meta Platforms

Johannes Schmid, Meta Platforms

John Kearney, Meta Platforms

Overview

This extension adds the capability to define and apply RGB to RGB(A) color look-up tables (LUTs) to

passthrough layers created using XR_FB_passthrough.

Color LUTs are 3-dimensional arrays which map each input color to a different output color. When

applied to a Passthrough layer, the runtime must transform Passthrough camera images according to

this map before display. Color LUTs may be used to achieve effects such as color grading, level control,

color filtering, or chroma keying.

Color LUTs must be created using xrCreatePassthroughColorLutMETA before they can be applied to a

Passthrough layer in a call to xrPassthroughLayerSetStyleFB (as a part of

XrPassthroughColorMapLutMETA or XrPassthroughColorMapInterpolatedLutMETA). A color LUT may

be applied to multiple Passthrough layers simultaneously.

New Object Types

XR_DEFINE_HANDLE(XrPassthroughColorLutMETA)

XrPassthroughColorLutMETA represents the definition and data for a color LUT which may be applied

to a passthrough layer using xrPassthroughLayerSetStyleFB.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_PASSTHROUGH_COLOR_LUT_PROPERTIES_META

1010 | Chapter 12. List of Current Extensions

• XR_TYPE_PASSTHROUGH_COLOR_LUT_CREATE_INFO_META

• XR_TYPE_PASSTHROUGH_COLOR_LUT_UPDATE_INFO_META

• XR_TYPE_PASSTHROUGH_COLOR_MAP_LUT_META

• XR_TYPE_PASSTHROUGH_COLOR_MAP_INTERPOLATED_LUT_META

New Enums

Specify the color channels contained in the color LUT.

typedef enum XrPassthroughColorLutChannelsMETA {

 XR_PASSTHROUGH_COLOR_LUT_CHANNELS_RGB_META = 1,

 XR_PASSTHROUGH_COLOR_LUT_CHANNELS_RGBA_META = 2,

 XR_PASSTHROUGH_COLOR_LUT_CHANNELS_MAX_ENUM_META = 0x7FFFFFFF

} XrPassthroughColorLutChannelsMETA;

New Structures

The XrSystemPassthroughColorLutPropertiesMETA structure is defined as:

// Provided by XR_META_passthrough_color_lut

typedef struct XrSystemPassthroughColorLutPropertiesMETA {

 XrStructureType type;

 const void* next;

 uint32_t maxColorLutResolution;

} XrSystemPassthroughColorLutPropertiesMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• maxColorLutResolution Maximum value for XrPassthroughColorLutCreateInfoMETA

::resolution supported by the system. Runtimes implementing this extension must support a

value of at least 32 for this property.

When the XR_META_passthrough_color_lut extension is enabled, an application may pass in an

XrSystemPassthroughColorLutPropertiesMETA structure in next chain structure when calling

xrGetSystemProperties to acquire information about the connected system.

Chapter 12. List of Current Extensions | 1011

The runtime must populate the XrSystemPassthroughColorLutPropertiesMETA structure with the

relevant information to the XrSystemProperties returned by the xrGetSystemProperties call.

Valid Usage (Implicit)

• The XR_META_passthrough_color_lut extension must be enabled prior to using

XrSystemPassthroughColorLutPropertiesMETA

• type must be XR_TYPE_SYSTEM_PASSTHROUGH_COLOR_LUT_PROPERTIES_META

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrPassthroughColorLutDataMETA structure is defined as:

// Provided by XR_META_passthrough_color_lut

typedef struct XrPassthroughColorLutDataMETA {

 uint32_t bufferSize;

 const uint8_t* buffer;

} XrPassthroughColorLutDataMETA;

Member Descriptions

• bufferSize is the number of bytes contained in the buffer data.

• buffer is a pointer to a memory block of bufferSize bytes that contains the LUT data.

XrPassthroughColorLutDataMETA defines the LUT data for a color LUT. This structure is used when

creating and updating color LUTs.

Valid Usage (Implicit)

• The XR_META_passthrough_color_lut extension must be enabled prior to using

XrPassthroughColorLutDataMETA

• buffer must be a pointer to an array of bufferSize uint8_t values

• The bufferSize parameter must be greater than 0

The XrPassthroughColorLutCreateInfoMETA structure is defined as:

1012 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_META_passthrough_color_lut

typedef struct XrPassthroughColorLutCreateInfoMETA {

 XrStructureType type;

 const void* next;

 XrPassthroughColorLutChannelsMETA channels;

 uint32_t resolution;

 XrPassthroughColorLutDataMETA data;

} XrPassthroughColorLutCreateInfoMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• channels defines the color channels expected in one LUT element. The number of bytes

expected per LUT element is 3 for XR_PASSTHROUGH_COLOR_LUT_CHANNELS_RGB_META and 4 for

XR_PASSTHROUGH_COLOR_LUT_CHANNELS_RGBA_META.

• resolution is the number of LUT elements per input channel. The total number of elements in

the LUT is resolution
3
.

• data contains the data the LUT is initialized with.

resolution must be a power of 2, otherwise the runtime must return XR_ERROR_VALIDATION_FAILURE. The

runtime may impose a limit on the maximum supported resolution, which is indicated in

XrSystemPassthroughColorLutPropertiesMETA. If resolution exceeds that limit, the runtime must

return XR_ERROR_VALIDATION_FAILURE.

data contains a 3-dimensional array which defines an output color for each RGB input color. The input

color is scaled to be in the range [0, resolution]. For an RGBA LUT, the RGBA tuple of output colors for

an input color (Rin, Gin, Bin) is found in the four bytes starting at the offset 4 * (Rin + Gin * resolution + Bin

* resolution
2
). For an RGB LUT, the RGB tuple of output colors for an input color (Rin, Gin, Bin) is found in

the three bytes starting at the offset 3 * (Rin + Gin * resolution + Bin * resolution
2
).

Color LUT data must be specified and interpreted in sRGB color space.

Runtimes must employ trilinear interpolation of neighboring color values if the resolution of the color

LUT is smaller than the bit depth of the input colors.

The value of XrPassthroughColorLutDataMETA::bufferSize in data must be equal to resolution
3
 *

bytesPerElement, where bytesPerElement is either 3 or 4 depending on channels. Otherwise, the

runtime must return XR_ERROR_PASSTHROUGH_COLOR_LUT_BUFFER_SIZE_MISMATCH_META.

Chapter 12. List of Current Extensions | 1013

Valid Usage (Implicit)

• The XR_META_passthrough_color_lut extension must be enabled prior to using

XrPassthroughColorLutCreateInfoMETA

• type must be XR_TYPE_PASSTHROUGH_COLOR_LUT_CREATE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• channels must be a valid XrPassthroughColorLutChannelsMETA value

• data must be a valid XrPassthroughColorLutDataMETA structure

The XrPassthroughColorLutUpdateInfoMETA structure is defined as:

// Provided by XR_META_passthrough_color_lut

typedef struct XrPassthroughColorLutUpdateInfoMETA {

 XrStructureType type;

 const void* next;

 XrPassthroughColorLutDataMETA data;

} XrPassthroughColorLutUpdateInfoMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• data contains the updated LUT data.

The LUT data may be updated for an existing color LUT, while channels and resolution remain

constant after creation. Hence, the value of XrPassthroughColorLutDataMETA::bufferSize in data must

be equal to the buffer size specified at creation. Otherwise, the runtime must return

XR_ERROR_PASSTHROUGH_COLOR_LUT_BUFFER_SIZE_MISMATCH_META.

1014 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_META_passthrough_color_lut extension must be enabled prior to using

XrPassthroughColorLutUpdateInfoMETA

• type must be XR_TYPE_PASSTHROUGH_COLOR_LUT_UPDATE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• data must be a valid XrPassthroughColorLutDataMETA structure

The XrPassthroughColorMapLutMETA structure is defined as:

// Provided by XR_META_passthrough_color_lut

typedef struct XrPassthroughColorMapLutMETA {

 XrStructureType type;

 const void* next;

 XrPassthroughColorLutMETA colorLut;

 float weight;

} XrPassthroughColorMapLutMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• colorLut is an XrPassthroughColorLutMETA.

• weight is a factor in the range [0, 1] which defines the linear blend between the original and

the mapped colors for the output color.

XrPassthroughColorMapLutMETA lets applications apply a color LUT to a passthrough layer. Other

Passthrough style elements (such as edges) must not be affected by color LUTs.

Applications may use weight to efficiently blend between the original colors and the mapped colors.

The blend is computed as (1 - weight) * Cin + weight * colorLut [Cin].

XrPassthroughColorMapLutMETA is provided in the next chain of XrPassthroughStyleFB when calling

xrPassthroughLayerSetStyleFB. Subsequent calls to xrPassthroughLayerSetStyleFB with

XrPassthroughColorMapLutMETA in the next chain update the color LUT for that layer. Subsequent

calls to xrPassthroughLayerSetStyleFB without this XrPassthroughColorMapLutMETA (or

XrPassthroughColorMapInterpolatedLutMETA) in the next chain disable color LUTs for that layer.

Chapter 12. List of Current Extensions | 1015

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_META_passthrough_color_lut extension must be enabled prior to using

XrPassthroughColorMapLutMETA

• type must be XR_TYPE_PASSTHROUGH_COLOR_MAP_LUT_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• colorLut must be a valid XrPassthroughColorLutMETA handle

The XrPassthroughColorMapInterpolatedLutMETA structure is defined as:

// Provided by XR_META_passthrough_color_lut

typedef struct XrPassthroughColorMapInterpolatedLutMETA {

 XrStructureType type;

 const void* next;

 XrPassthroughColorLutMETA sourceColorLut;

 XrPassthroughColorLutMETA targetColorLut;

 float weight;

} XrPassthroughColorMapInterpolatedLutMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• sourceColorLut is the initial XrPassthroughColorLutMETA.

• targetColorLut is the final XrPassthroughColorLutMETA.

• weight is a factor in the range [0, 1] which defines the linear blend between the initial and the

final color LUT.

XrPassthroughColorMapInterpolatedLutMETA lets applications apply the interpolation between two

color LUTs to a passthrough layer. Applications may use this feature to smoothly transition between

two color LUTs. Other Passthrough style elements (such as edges) must not be affected by color LUTs.

The blend between sourceColorLut and targetColorLut is computed as (1 - weight) * sourceColorLut [Cin]

+ weight * targetColorLut [Cin].

XrPassthroughColorMapInterpolatedLutMETA is provided in the next chain of XrPassthroughStyleFB

when calling xrPassthroughLayerSetStyleFB. Subsequent calls to xrPassthroughLayerSetStyleFB with

1016 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

XrPassthroughColorMapInterpolatedLutMETA in the next chain update the color LUT for that layer.

Subsequent calls to xrPassthroughLayerSetStyleFB without this

XrPassthroughColorMapInterpolatedLutMETA (or XrPassthroughColorMapLutMETA) in the next chain

disable color LUTs for that layer.

Valid Usage (Implicit)

• The XR_META_passthrough_color_lut extension must be enabled prior to using

XrPassthroughColorMapInterpolatedLutMETA

• type must be XR_TYPE_PASSTHROUGH_COLOR_MAP_INTERPOLATED_LUT_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• sourceColorLut must be a valid XrPassthroughColorLutMETA handle

• targetColorLut must be a valid XrPassthroughColorLutMETA handle

• Both of sourceColorLut and targetColorLut must have been created, allocated, or retrieved

from the same XrPassthroughFB

New Functions

The xrCreatePassthroughColorLutMETA function is defined as:

// Provided by XR_META_passthrough_color_lut

XrResult xrCreatePassthroughColorLutMETA(

 XrPassthroughFB passthrough,

 const XrPassthroughColorLutCreateInfoMETA* createInfo,

 XrPassthroughColorLutMETA* colorLut);

Parameter Descriptions

• passthrough is the XrPassthroughFB this color LUT is created for.

• createInfo is the XrPassthroughColorLutCreateInfoMETA.

• colorLut is the resulting XrPassthroughColorLutMETA.

Creates a passthrough color LUT. The resulting XrPassthroughColorLutMETA may be referenced in

XrPassthroughColorMapLutMETA and XrPassthroughColorMapInterpolatedLutMETA in subsequent

calls to xrPassthroughLayerSetStyleFB.

Chapter 12. List of Current Extensions | 1017

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_META_passthrough_color_lut extension must be enabled prior to calling

xrCreatePassthroughColorLutMETA

• passthrough must be a valid XrPassthroughFB handle

• createInfo must be a pointer to a valid XrPassthroughColorLutCreateInfoMETA structure

• colorLut must be a pointer to an XrPassthroughColorLutMETA handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_PASSTHROUGH_COLOR_LUT_BUFFER_SIZE_MISMATCH_META

• XR_ERROR_FEATURE_UNSUPPORTED

The xrDestroyPassthroughColorLutMETA function is defined as:

// Provided by XR_META_passthrough_color_lut

XrResult xrDestroyPassthroughColorLutMETA(

 XrPassthroughColorLutMETA colorLut);

1018 | Chapter 12. List of Current Extensions

Parameter Descriptions

• colorLut is the XrPassthroughColorLutMETA to be destroyed.

Destroys a passthrough color LUT. If the color LUT is still in use (i.e. if for at least one passthrough

layer, xrPassthroughLayerSetStyleFB has last been called with an instance of

XrPassthroughColorMapLutMETA or XrPassthroughColorMapInterpolatedLutMETA in the next chain

that references this color LUT), the runtime must retain the color LUT data and continue applying it to

the affected passthrough layer until a different style is applied.

Valid Usage (Implicit)

• The XR_META_passthrough_color_lut extension must be enabled prior to calling

xrDestroyPassthroughColorLutMETA

• colorLut must be a valid XrPassthroughColorLutMETA handle

Thread Safety

• Access to colorLut, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

The xrUpdatePassthroughColorLutMETA function is defined as:

Chapter 12. List of Current Extensions | 1019

// Provided by XR_META_passthrough_color_lut

XrResult xrUpdatePassthroughColorLutMETA(

 XrPassthroughColorLutMETA colorLut,

 const XrPassthroughColorLutUpdateInfoMETA* updateInfo);

Parameter Descriptions

• colorLut is the XrPassthroughColorLutMETA to be updated.

• updateInfo is the XrPassthroughColorLutUpdateInfoMETA.

Updates the LUT data of a passthrough color LUT. The data type of the color LUT (resolution and

channels) is immutable. The provided data in this call must therefore match the data type specified at

creation time. Specifically, XrPassthroughColorLutDataMETA::bufferSize of the new data must be

equal to the XrPassthroughColorLutDataMETA::bufferSize specified during creation. Otherwise, the

runtime must return XR_ERROR_VALIDATION_FAILURE.

The runtime must reflect changes to color LUT data on all Passthrough layers the color LUT is

currently applied to.

Valid Usage (Implicit)

• The XR_META_passthrough_color_lut extension must be enabled prior to calling

xrUpdatePassthroughColorLutMETA

• colorLut must be a valid XrPassthroughColorLutMETA handle

• updateInfo must be a pointer to a valid XrPassthroughColorLutUpdateInfoMETA structure

1020 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PASSTHROUGH_COLOR_LUT_BUFFER_SIZE_MISMATCH_META

• XR_ERROR_FEATURE_UNSUPPORTED

Version History

• Revision 1, 2022-12-08 (Johannes Schmid)

◦ Initial extension description

12.96. XR_META_passthrough_preferences

Name String

XR_META_passthrough_preferences

Extension Type

Instance extension

Registered Extension Number

218

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-04-25

Chapter 12. List of Current Extensions | 1021

IP Status

No known IP claims.

Contributors

Johannes Schmid, Meta Platforms

Overview

This extension provides applications with access to system preferences concerning passthrough. For

more information on how applications can control the display of passthrough, see XR_FB_passthrough.

New Flag Types

// Provided by XR_META_passthrough_preferences

typedef XrFlags64 XrPassthroughPreferenceFlagsMETA;

// Provided by XR_META_passthrough_preferences

// Flag bits for XrPassthroughPreferenceFlagsMETA

static const XrPassthroughPreferenceFlagsMETA

XR_PASSTHROUGH_PREFERENCE_DEFAULT_TO_ACTIVE_BIT_META = 0x00000001;

Flag Descriptions

• XR_PASSTHROUGH_PREFERENCE_DEFAULT_TO_ACTIVE_BIT_META  — Indicates that the runtime

recommends apps to default to a mixed reality experience with passthrough (if supported).

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_PASSTHROUGH_PREFERENCES_META

New Structures

The XrPassthroughPreferencesMETA structure is defined as:

1022 | Chapter 12. List of Current Extensions

// Provided by XR_META_passthrough_preferences

typedef struct XrPassthroughPreferencesMETA {

 XrStructureType type;

 const void* next;

 XrPassthroughPreferenceFlagsMETA flags;

} XrPassthroughPreferencesMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• flags is a bitmask of XrPassthroughPreferenceFlagBitsMETA describing boolean passthrough

preferences.

The runtime must populate the XrPassthroughPreferencesMETA structure with the relevant

information when the app calls xrGetPassthroughPreferencesMETA.

Presence of the bit flag XR_PASSTHROUGH_PREFERENCE_DEFAULT_TO_ACTIVE_BIT_META does not indicate a

guarantee that applications can enable and use passthrough in practice. The runtime may impose

restrictions on passthrough usage (e.g. based on hardware availability or permission models)

independently of the state of this flag bit. Apps should test for this flag explicitly, as more flag bits may

be introduced in the future.

Valid Usage (Implicit)

• The XR_META_passthrough_preferences extension must be enabled prior to using

XrPassthroughPreferencesMETA

• type must be XR_TYPE_PASSTHROUGH_PREFERENCES_META

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrGetPassthroughPreferencesMETA function is defined as:

Chapter 12. List of Current Extensions | 1023

#valid-usage-for-structure-pointer-chains

// Provided by XR_META_passthrough_preferences

XrResult xrGetPassthroughPreferencesMETA(

 XrSession session,

 XrPassthroughPreferencesMETA* preferences);

Parameter Descriptions

• session is the XrSession.

• preferences points to an instance of XrPassthroughPreferencesMETA structure, that will be

filled with returned information

An application can call xrGetPassthroughPreferencesMETA to retrieve passthrough-related

preferences from the system.

Valid Usage (Implicit)

• The XR_META_passthrough_preferences extension must be enabled prior to calling

xrGetPassthroughPreferencesMETA

• session must be a valid XrSession handle

• preferences must be a pointer to an XrPassthroughPreferencesMETA structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

Version History

1024 | Chapter 12. List of Current Extensions

• Revision 1, 2023-04-25 (Johannes Schmid)

◦ Initial extension description

12.97. XR_META_performance_metrics

Name String

XR_META_performance_metrics

Extension Type

Instance extension

Registered Extension Number

233

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Contributors

Xiang Wei, Meta Platforms

Overview

This extension provides APIs to enumerate and query performance metrics counters of the current XR

device and XR application. Developers can perform performance analysis and do targeted

optimization to the XR application using the performance metrics counters being collected. The

application should not change its behavior based on the counter reads.

The performance metrics counters are organized into predefined XrPath values, under the root path

/perfmetrics_meta. An application can query the available counters through

xrEnumeratePerformanceMetricsCounterPathsMETA. Here is a list of the performance metrics counter

paths that may be provided on Meta devices:

• /perfmetrics_meta/app/cpu_frametime

• /perfmetrics_meta/app/gpu_frametime

• /perfmetrics_meta/app/motion_to_photon_latency

• /perfmetrics_meta/compositor/cpu_frametime

• /perfmetrics_meta/compositor/gpu_frametime

• /perfmetrics_meta/compositor/dropped_frame_count

• /perfmetrics_meta/compositor/spacewarp_mode

Chapter 12. List of Current Extensions | 1025

• /perfmetrics_meta/device/cpu_utilization_average

• /perfmetrics_meta/device/cpu_utilization_worst

• /perfmetrics_meta/device/gpu_utilization

• /perfmetrics_meta/device/cpu0_utilization through /perfmetrics_meta/device/cpuX_utilization

After a session is created, an application can use xrSetPerformanceMetricsStateMETA to enable the

performance metrics system for that session. An application can use

xrQueryPerformanceMetricsCounterMETA to query a performance metrics counter on a session that

has the performance metrics system enabled, or use xrGetPerformanceMetricsStateMETA to query if

the performance metrics system is enabled.

Note: the measurement intervals of individual performance metrics counters are defined by the

OpenXR runtime. The application must not make assumptions or change its behavior at runtime by

measuring them.

In order to enable the functionality of this extension, the application must pass the name of the

extension into xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as

indicated in the Extensions section.

New Flag Types

typedef XrFlags64 XrPerformanceMetricsCounterFlagsMETA;

// Flag bits for XrPerformanceMetricsCounterFlagsMETA

static const XrPerformanceMetricsCounterFlagsMETA

XR_PERFORMANCE_METRICS_COUNTER_ANY_VALUE_VALID_BIT_META = 0x00000001;

static const XrPerformanceMetricsCounterFlagsMETA

XR_PERFORMANCE_METRICS_COUNTER_UINT_VALUE_VALID_BIT_META = 0x00000002;

static const XrPerformanceMetricsCounterFlagsMETA

XR_PERFORMANCE_METRICS_COUNTER_FLOAT_VALUE_VALID_BIT_META = 0x00000004;

1026 | Chapter 12. List of Current Extensions

Flag Descriptions

• XR_PERFORMANCE_METRICS_COUNTER_ANY_VALUE_VALID_BIT_META  — Indicates any of the values in

XrPerformanceMetricsCounterMETA is valid.

• XR_PERFORMANCE_METRICS_COUNTER_UINT_VALUE_VALID_BIT_META  — Indicates the uintValue in

XrPerformanceMetricsCounterMETA is valid.

• XR_PERFORMANCE_METRICS_COUNTER_FLOAT_VALUE_VALID_BIT_META  — Indicates the floatValue in

XrPerformanceMetricsCounterMETA is valid.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_PERFORMANCE_METRICS_STATE_META

• XR_TYPE_PERFORMANCE_METRICS_COUNTER_META

New Enums

// Provided by XR_META_performance_metrics

typedef enum XrPerformanceMetricsCounterUnitMETA {

 XR_PERFORMANCE_METRICS_COUNTER_UNIT_GENERIC_META = 0,

 XR_PERFORMANCE_METRICS_COUNTER_UNIT_PERCENTAGE_META = 1,

 XR_PERFORMANCE_METRICS_COUNTER_UNIT_MILLISECONDS_META = 2,

 XR_PERFORMANCE_METRICS_COUNTER_UNIT_BYTES_META = 3,

 XR_PERFORMANCE_METRICS_COUNTER_UNIT_HERTZ_META = 4,

 XR_PERFORMANCE_METRICS_COUNTER_UNIT_MAX_ENUM_META = 0x7FFFFFFF

} XrPerformanceMetricsCounterUnitMETA;

Enum Description

XR_PERFORMANCE_METRICS_COUNTER_UNIT_GENERIC_META the performance counter unit is generic

(unspecified).

XR_PERFORMANCE_METRICS_COUNTER_UNIT_PERCENTAGE_M
ETA

the performance counter unit is percentage (%).

XR_PERFORMANCE_METRICS_COUNTER_UNIT_MILLISECONDS
_META

the performance counter unit is millisecond.

XR_PERFORMANCE_METRICS_COUNTER_UNIT_BYTES_META the performance counter unit is byte.

XR_PERFORMANCE_METRICS_COUNTER_UNIT_HERTZ_META the performance counter unit is hertz (Hz).

New Structures

Chapter 12. List of Current Extensions | 1027

The XrPerformanceMetricsStateMETA structure is defined as:

// Provided by XR_META_performance_metrics

typedef struct XrPerformanceMetricsStateMETA {

 XrStructureType type;

 const void* next;

 XrBool32 enabled;

} XrPerformanceMetricsStateMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• enabled is set to XR_TRUE to indicate the performance metrics system is enabled, XR_FALSE

otherwise, when getting state. When setting state, set to XR_TRUE to enable the performance

metrics system and XR_FALSE to disable it.

XrPerformanceMetricsStateMETA is provided as input when calling

xrSetPerformanceMetricsStateMETA to enable or disable the performance metrics system.

XrPerformanceMetricsStateMETA is populated as an output parameter when calling

xrGetPerformanceMetricsStateMETA to query if the performance metrics system is enabled.

Valid Usage (Implicit)

• The XR_META_performance_metrics extension must be enabled prior to using

XrPerformanceMetricsStateMETA

• type must be XR_TYPE_PERFORMANCE_METRICS_STATE_META

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrPerformanceMetricsCounterMETA structure is defined as:

1028 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_META_performance_metrics

typedef struct XrPerformanceMetricsCounterMETA {

 XrStructureType type;

 const void* next;

 XrPerformanceMetricsCounterFlagsMETA counterFlags;

 XrPerformanceMetricsCounterUnitMETA counterUnit;

 uint32_t uintValue;

 float floatValue;

} XrPerformanceMetricsCounterMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• counterFlags is a bitmask of XrPerformanceMetricsCounterFlagBitsMETA describing the

validity of value members.

• counterUnit is a enum of XrPerformanceMetricsCounterUnitMETA describing the

measurement unit.

• uintValue is the counter value in uint32_t format. It is valid if counterFlags contains

XR_PERFORMANCE_METRICS_COUNTER_UINT_VALUE_VALID_BIT_META.

• floatValue is the counter value in float format. It is valid if counterFlags contains

XR_PERFORMANCE_METRICS_COUNTER_FLOAT_VALUE_VALID_BIT_META.

XrPerformanceMetricsCounterMETA is populated by calling

xrQueryPerformanceMetricsCounterMETA to query real-time performance metrics counter

information.

Valid Usage (Implicit)

• The XR_META_performance_metrics extension must be enabled prior to using

XrPerformanceMetricsCounterMETA

• type must be XR_TYPE_PERFORMANCE_METRICS_COUNTER_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• counterFlags must be 0 or a valid combination of

XrPerformanceMetricsCounterFlagBitsMETA values

• counterUnit must be a valid XrPerformanceMetricsCounterUnitMETA value

Chapter 12. List of Current Extensions | 1029

#valid-usage-for-structure-pointer-chains

New Functions

The xrEnumeratePerformanceMetricsCounterPathsMETA function enumerates all performance

metrics counter paths that supported by the runtime, it is defined as:

// Provided by XR_META_performance_metrics

XrResult xrEnumeratePerformanceMetricsCounterPathsMETA(

 XrInstance instance,

 uint32_t counterPathCapacityInput,

 uint32_t* counterPathCountOutput,

 XrPath* counterPaths);

Parameter Descriptions

• instance is an XrInstance handle previously created with xrCreateInstance.

• counterPathCapacityInput is the capacity of the counterPaths array, or 0 to indicate a request

to retrieve the required capacity.

• counterPathCountOutput is filled in by the runtime with the count of counterPaths written or

the required capacity in the case that counterPathCapacityInput is insufficient.

• counterPaths is an array of XrPath filled in by the runtime which contains all the available

performance metrics counters, but can be NULL if counterPathCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

counterPaths size.

Valid Usage (Implicit)

• The XR_META_performance_metrics extension must be enabled prior to calling

xrEnumeratePerformanceMetricsCounterPathsMETA

• instance must be a valid XrInstance handle

• counterPathCountOutput must be a pointer to a uint32_t value

• If counterPathCapacityInput is not 0, counterPaths must be a pointer to an array of

counterPathCapacityInput XrPath values

1030 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

The xrSetPerformanceMetricsStateMETA function is defined as:

// Provided by XR_META_performance_metrics

XrResult xrSetPerformanceMetricsStateMETA(

 XrSession session,

 const XrPerformanceMetricsStateMETA* state);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• state is a pointer to an XrPerformanceMetricsStateMETA structure.

The xrSetPerformanceMetricsStateMETA function enables or disables the performance metrics system.

Valid Usage (Implicit)

• The XR_META_performance_metrics extension must be enabled prior to calling

xrSetPerformanceMetricsStateMETA

• session must be a valid XrSession handle

• state must be a pointer to a valid XrPerformanceMetricsStateMETA structure

Chapter 12. List of Current Extensions | 1031

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The xrGetPerformanceMetricsStateMETA function is defined as:

// Provided by XR_META_performance_metrics

XrResult xrGetPerformanceMetricsStateMETA(

 XrSession session,

 XrPerformanceMetricsStateMETA* state);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• state is a pointer to an XrPerformanceMetricsStateMETA structure.

The xrGetPerformanceMetricsStateMETA function gets the current state of the performance metrics

system.

Valid Usage (Implicit)

• The XR_META_performance_metrics extension must be enabled prior to calling

xrGetPerformanceMetricsStateMETA

• session must be a valid XrSession handle

• state must be a pointer to an XrPerformanceMetricsStateMETA structure

1032 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The xrQueryPerformanceMetricsCounterMETA function is defined as:

// Provided by XR_META_performance_metrics

XrResult xrQueryPerformanceMetricsCounterMETA(

 XrSession session,

 XrPath counterPath,

 XrPerformanceMetricsCounterMETA* counter);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• counterPath is a valid performance metrics counter path.

• counter is a pointer to an XrPerformanceMetricsCounterMETA structure.

The xrQueryPerformanceMetricsCounterMETA function queries a performance metrics counter.

The application should enable the performance metrics system (by calling

xrSetPerformanceMetricsStateMETA) before querying metrics using

xrQueryPerformanceMetricsCounterMETA. If the performance metrics system has not been enabled

before calling xrQueryPerformanceMetricsCounterMETA, the runtime must return

XR_ERROR_VALIDATION_FAILURE.

If counterPath is not in the list returned by xrEnumeratePerformanceMetricsCounterPathsMETA, the

runtime must return XR_ERROR_PATH_UNSUPPORTED.

Chapter 12. List of Current Extensions | 1033

Valid Usage (Implicit)

• The XR_META_performance_metrics extension must be enabled prior to calling

xrQueryPerformanceMetricsCounterMETA

• session must be a valid XrSession handle

• counter must be a pointer to an XrPerformanceMetricsCounterMETA structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

Issues

Version History

• Revision 1, 2022-04-28 (Xiang Wei)

◦ Initial extension description

• Revision 2, 2022-09-16 (John Kearney)

◦ Clarification of error codes

12.98. XR_META_recommended_layer_resolution

Name String

XR_META_recommended_layer_resolution

1034 | Chapter 12. List of Current Extensions

Extension Type

Instance extension

Registered Extension Number

255

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

Rohit Rao Padebettu, Meta

Remi Palandri, Meta

Ben Cumings, Meta

Overview

The extension allows an application to request a recommended swapchain resolution from the

runtime, in order to either allocate a swapchain of a more appropriate size, or to render into a smaller

image rect according to the recommendation. For layers with multiple views such as

XrCompositionLayerProjection, the application may scale the individual views to match the scaled

swapchain resolution.

The runtime may use any factors to drive the recommendation it wishes to return to the application.

Those include static properties such as screen resolution and HMD type, but also dynamic ones such as

layer positioning and system-wide GPU utilization.

Application may also use this extension to allocate the swapchain by passing in a layer with a

swapchain handle XR_NULL_HANDLE.

New Structures

The XrRecommendedLayerResolutionMETA structure is defined as:

// Provided by XR_META_recommended_layer_resolution

typedef struct XrRecommendedLayerResolutionMETA {

 XrStructureType type;

 void* next;

 XrExtent2Di recommendedImageDimensions;

 XrBool32 isValid;

} XrRecommendedLayerResolutionMETA;

Chapter 12. List of Current Extensions | 1035

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• recommendedImageDimensions is the XrExtent2Di recommended image dimensions of the layer.

• isValid is the XrBool32 boolean returned by the runtime which indicates whether the runtime

returned a valid recommendation or does not have any recommendations to make.

If the runtime does not wish to make a recommendation, isValid must be XR_FALSE and

recommendedImageDimensions must be {0,0}.

Valid Usage (Implicit)

• The XR_META_recommended_layer_resolution extension must be enabled prior to using

XrRecommendedLayerResolutionMETA

• type must be XR_TYPE_RECOMMENDED_LAYER_RESOLUTION_META

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrRecommendedLayerResolutionGetInfoMETA structure is defined as:

// Provided by XR_META_recommended_layer_resolution

typedef struct XrRecommendedLayerResolutionGetInfoMETA {

 XrStructureType type;

 const void* next;

 const XrCompositionLayerBaseHeader* layer;

 XrTime predictedDisplayTime;

} XrRecommendedLayerResolutionGetInfoMETA;

1036 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• layer is a pointer to a structure based on XrCompositionLayerBaseHeader, describing the

layer for which the application wants a runtime-recommended swapchain resolution. Layers

with multiple views may scale the views to match the scaled swapchain resolution.

• predictedDisplayTime is the XrTime that the application intends to submit the layer for.

If predictedDisplayTime is older than the predicted display time returned from most recent

xrWaitFrame then, the runtime must return XR_ERROR_TIME_INVALID.

Valid Usage (Implicit)

• The XR_META_recommended_layer_resolution extension must be enabled prior to using

XrRecommendedLayerResolutionGetInfoMETA

• type must be XR_TYPE_RECOMMENDED_LAYER_RESOLUTION_GET_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• layer must be a pointer to a valid XrCompositionLayerBaseHeader-based structure. See also:

XrCompositionLayerCubeKHR, XrCompositionLayerCylinderKHR,

XrCompositionLayerEquirect2KHR, XrCompositionLayerEquirectKHR,

XrCompositionLayerPassthroughHTC, XrCompositionLayerProjection,

XrCompositionLayerQuad

New Functions

The xrGetRecommendedLayerResolutionMETA function is defined as:

// Provided by XR_META_recommended_layer_resolution

XrResult xrGetRecommendedLayerResolutionMETA(

 XrSession session,

 const XrRecommendedLayerResolutionGetInfoMETA* info,

 XrRecommendedLayerResolutionMETA* resolution);

Chapter 12. List of Current Extensions | 1037

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession in which the recommendation is made.

• info is a pointer to an XrRecommendedLayerResolutionGetInfoMETA structure containing

the details of the layer for which the application is requesting a recommendation.

• resolution is a pointer to an XrRecommendedLayerResolutionMETA that the runtime will

populate.

The xrGetRecommendedLayerResolutionMETA function returns the recommendation that the runtime

wishes to make to the application for the layer provided in the

XrRecommendedLayerResolutionGetInfoMETA structure. Application may choose to reallocate their

swapchain or scale view resolution accordingly. Applications rendering multiple views into the

swapchain may scale individual views to match the recommended swapchain resolution.

The runtime may not wish to make any recommendation, in which case it must return an

XrRecommendedLayerResolutionMETA::isValid value of XR_FALSE.

If the XrRecommendedLayerResolutionGetInfoMETA::layer attribute of the info argument of the

function contains valid swapchain handles in all fields where required, the runtime must return a

resolution recommendation which is less than or equal to the size of that swapchain, so that the

application may render into an existing swapchain or swapchains without reallocation. As an

exception to valid usage, an otherwise-valid structure passed as

XrRecommendedLayerResolutionGetInfoMETA::layer may contain XR_NULL_HANDLE in place of valid

XrSwapchain handle(s) for this function only, to obtain a recommended resolution resolution for the

purpose of allocating a swapchain. If at least one otherwise-required XrSwapchain handle within

XrRecommendedLayerResolutionGetInfoMETA::layer is XR_NULL_HANDLE, the runtime must

interpret this as a request for recommended resolution without limitation to the allocated size of any

existing swapchain.

If the runtime makes a recommendation, it should make a recommendation that is directly usable by

the application to render its frames without creating adverse visual effects for the user.

Issues

1. Should this extension be leveraging events instead of being queried potentially every frame?

RESOLVED: Yes.

We want to provide the runtime the flexibility to smoothly transition the application from one

resolution to another in a dynamic resolution usecase without any reallocation. To do so with an

event system would send an event every frame which we preferred to avoid.

Version History

1038 | Chapter 12. List of Current Extensions

• Revision 1, 2023-12-10 (Remi Palandri)

◦ Initial extension description

12.99. XR_META_spatial_entity_mesh

Name String

XR_META_spatial_entity_mesh

Extension Type

Instance extension

Registered Extension Number

270

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_FB_spatial_entity

Last Modified Date

2023-06-12

IP Status

No known IP claims.

Contributors

Yuichi Taguchi, Meta Platforms

Anton Vaneev, Meta Platforms

Andreas Loeve Selvik, Meta Platforms

John Kearney, Meta Platforms

12.99.1. Overview

This extension expands on the concept of spatial entities to include a way for a spatial entity to

represent a triangle mesh that describes 3D geometry of the spatial entity in a scene. Spatial entities

are defined in XR_FB_spatial_entity extension using the Entity-Component System. The triangle mesh

is a component type that may be associated to a spatial entity.

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

Chapter 12. List of Current Extensions | 1039

12.99.2. Retrieving a triangle mesh

The xrGetSpaceTriangleMeshMETA function is defined as:

// Provided by XR_META_spatial_entity_mesh

XrResult xrGetSpaceTriangleMeshMETA(

 XrSpace space,

 const XrSpaceTriangleMeshGetInfoMETA* getInfo,

 XrSpaceTriangleMeshMETA* triangleMeshOutput);

Parameter Descriptions

• space is a handle to an XrSpace.

• getInfo exists for extensibility purposes. It is NULL or a pointer to a valid

XrSpaceTriangleMeshGetInfoMETA.

• triangleMeshOutput is the output parameter that points to an XrSpaceTriangleMeshMETA.

The xrGetSpaceTriangleMeshMETA function is used by the application to perform the two calls

required to obtain a triangle mesh associated to a spatial entity specified by space.

The spatial entity space must have the XR_SPACE_COMPONENT_TYPE_TRIANGLE_MESH_META component type

enabled, otherwise this function will return XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB.

Valid Usage (Implicit)

• The XR_META_spatial_entity_mesh extension must be enabled prior to calling

xrGetSpaceTriangleMeshMETA

• space must be a valid XrSpace handle

• getInfo must be a pointer to a valid XrSpaceTriangleMeshGetInfoMETA structure

• triangleMeshOutput must be a pointer to an XrSpaceTriangleMeshMETA structure

1040 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SPACE_COMPONENT_NOT_ENABLED_FB

• XR_ERROR_FEATURE_UNSUPPORTED

The XrSpaceTriangleMeshGetInfoMETA structure is defined as:

// Provided by XR_META_spatial_entity_mesh

typedef struct XrSpaceTriangleMeshGetInfoMETA {

 XrStructureType type;

 const void* next;

} XrSpaceTriangleMeshGetInfoMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

Chapter 12. List of Current Extensions | 1041

Valid Usage (Implicit)

• The XR_META_spatial_entity_mesh extension must be enabled prior to using

XrSpaceTriangleMeshGetInfoMETA

• type must be XR_TYPE_SPACE_TRIANGLE_MESH_GET_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrSpaceTriangleMeshMETA structure is defined as:

// Provided by XR_META_spatial_entity_mesh

typedef struct XrSpaceTriangleMeshMETA {

 XrStructureType type;

 void* next;

 uint32_t vertexCapacityInput;

 uint32_t vertexCountOutput;

 XrVector3f* vertices;

 uint32_t indexCapacityInput;

 uint32_t indexCountOutput;

 uint32_t* indices;

} XrSpaceTriangleMeshMETA;

1042 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• vertexCapacityInput is an input parameter for the application to specify the capacity of the

vertices array, or 0 to indicate a request to retrieve the required capacity.

• vertexCountOutput is an output parameter that will hold the number of vertices written in the

output array, or the required capacity in the case that vertexCapacityInput is insufficient. The

returned value must be equal to or larger than 3.

• vertices is a pointer to an array of XrVector3f, but can be NULL if vertexCapacityInput is 0. The

vertices are defined in the coordinate frame of XrSpace to which this struct is associated.

• indexCapacityInput is an input parameter for the application to specify the capacity of the

indices array, or 0 to indicate a request to retrieve the required capacity.

• indexCountOutput is an output parameter that will hold the number of indices written in the

output array, or the required capacity in the case that indexCapacityInput is insufficient. The

returned value must be a multiple of 3.

• indices is a pointer to an array of uint32_t, but can be NULL if indexCapacityInput is 0. Each

element refers to a vertex in vertices.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

vertices and indices array sizes.

The XrSpaceTriangleMeshMETA structure can be used by the application to perform the two calls

required to obtain a triangle mesh associated to a specified spatial entity.

The output values written in the indices array represent indices of vertices: Three consecutive

elements represent a triangle with a counter-clockwise winding order.

Valid Usage (Implicit)

• The XR_META_spatial_entity_mesh extension must be enabled prior to using

XrSpaceTriangleMeshMETA

• type must be XR_TYPE_SPACE_TRIANGLE_MESH_META

• next must be NULL or a valid pointer to the next structure in a structure chain

New Object Types

New Atom

Chapter 12. List of Current Extensions | 1043

#valid-usage-for-structure-pointer-chains

New Flag Types

New Enum Constants

XrSpaceComponentTypeFB enumeration is extended with:

• XR_SPACE_COMPONENT_TYPE_TRIANGLE_MESH_META

XrStructureType enumeration is extended with:

• XR_TYPE_SPACE_TRIANGLE_MESH_GET_INFO_META

• XR_TYPE_SPACE_TRIANGLE_MESH_META

New Enums

New Structures

• XrSpaceTriangleMeshGetInfoMETA

• XrSpaceTriangleMeshMETA

New Functions

• xrGetSpaceTriangleMeshMETA

Issues

Version History

• Revision 1, 2023-06-12 (Yuichi Taguchi)

◦ Initial extension description.

12.100. XR_META_touch_controller_plus

Name String

XR_META_touch_controller_plus

Extension Type

Instance extension

Registered Extension Number

280

Revision

1

1044 | Chapter 12. List of Current Extensions

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-04-10

IP Status

No known IP claims.

Contributors

Aanchal Dalmia, Meta Platforms

Adam Bengis, Meta Platforms

Overview

This extension defines a new interaction profile for the Meta Quest Touch Plus Controller.

Meta Quest Touch Plus Controller interaction profile path:

• /interaction_profiles/meta/touch_controller_plus

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile provides inputs and outputs that are a superset of those available in the

existing "Oculus Touch Controller" interaction profile, /interaction_profiles/oculus/touch_controller

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

Chapter 12. List of Current Extensions | 1045

◦ …/input/system/click (may not be available for application use)

• On both:

◦ …/input/squeeze/value

◦ …/input/trigger/value

◦ …/input/trigger/touch

◦ …/input/thumbstick

◦ …/input/thumbstick/x

◦ …/input/thumbstick/y

◦ …/input/thumbstick/click

◦ …/input/thumbstick/touch

◦ …/input/thumbrest/touch

◦ …/input/grip/pose

◦ …/input/aim/pose

◦ …/output/haptic

◦ …/input/thumb_meta/proximity_meta

◦ …/input/trigger/proximity_meta

◦ …/input/trigger/curl_meta

◦ …/input/trigger/slide_meta

◦ …/input/trigger/force

New Identifiers

• thumb_meta: Meta Quest Touch Plus Controller adds an input identifier for the user’s thumb

on the same hand currently holding the controller. Thumb input is not explicitly bound to

any location on the controller.

Input Path Descriptions

1046 | Chapter 12. List of Current Extensions

• /input/thumb_meta/proximity_meta : Boolean indicating the user’s thumb is near the

inputs on the top face of the controller.

• /input/trigger/proximity_meta : Boolean indicating whether the user’s index finger is near

the trigger.

• /input/trigger/curl_meta : Float representing how pointed or curled the user’s index finger

is on the trigger: 0.0 = fully pointed, 1.0 = finger flat on the surface

• /input/trigger/slide_meta : Float representing how far the user is sliding the tip of their

index finger along the surface of the trigger: 0.0 = finger flat on the surface, 1.0 = finger fully

drawn back.

• /input/trigger/force : Float representing the amount of force being applied by the user to the

trigger after it reaches the end of the range of travel: 0.0 = no additional pressure applied, 1.0

= maximum detectable pressure applied.

Version History

• Revision 1, 2023-04-10 (Adam Bengis)

◦ Initial extension proposal

12.101. XR_META_virtual_keyboard

Name String

XR_META_virtual_keyboard

Extension Type

Instance extension

Registered Extension Number

220

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-04-14

IP Status

No known IP claims.

Chapter 12. List of Current Extensions | 1047

Contributors

Brent Housen, Meta Platforms

Chiara Coetzee, Meta Platforms

Juan Pablo León, Meta Platforms

Peter Chan, Meta Platforms

Contacts

Brent Housen, Meta Platforms

Peter Chan, Meta Platforms

12.101.1. Overview

The virtual keyboard extension provides a system-driven localized keyboard that the application has

full control over in terms of positioning and rendering.

This is achieved by giving the application the data required to drive rendering and animation of the

keyboard in response to interaction data passed from the application to the runtime.

This approach is an alternative to a potential system keyboard overlay solution and provides a

keyboard that can seamlessly blend into the application environment, since it is rendered by the same

system, and avoids input focus issues that might come with a system overlay.

The API is also designed to work with custom hand and/or controller models in various games and

applications.

Virtual Keyboard Integration Summary

Before explaining the individual API functions, types, and events, here is an overview on how to

integrate the virtual keyboard in an application.

Note that this is purely informational and does not serve as binding requirements for the runtime or

the application.

App Startup

• Check if your device supports the virtual keyboard with xrGetSystemProperties.

• Create a new keyboard with xrCreateVirtualKeyboardMETA.

• Give it a location with xrCreateVirtualKeyboardSpaceMETA, and keep a reference to the returned

XrSpace.

• Load the virtual keyboard glTF model using XR_FB_render_model:

◦ Query the render model key for path /model_meta/keyboard/virtual.

▪ Using xrEnumerateRenderModelPathsFB and xrGetRenderModelPropertiesFB.

▪ Make sure to set the support level to XR_RENDER_MODEL_SUPPORTS_GLTF_2_0_SUBSET_2_BIT_FB.

◦ Load the render model glTF data with the given key with xrLoadRenderModelFB.

1048 | Chapter 12. List of Current Extensions

◦ Load the glTF data into an extendable glTF renderer (see Extend glTF render model support).

Note that this render model is hidden by default.

Update Tick

• When the application wants to show the keyboard, call xrSetVirtualKeyboardModelVisibilityMETA

to request the runtime to update the model visibility.

◦ The application should wait for the XrEventDataVirtualKeyboardShownMETA event as

confirmation that the runtime is ready to show the keyboard.

• The application can move the keyboard by calling xrSuggestVirtualKeyboardLocationMETA to

update the saved XrSpace.

• Then for every active input type feed the keyboard input with xrSendVirtualKeyboardInputMETA:

◦ For each hand/controller, use:

▪ XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_*_RAY_* for far input

▪ XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_*_DIRECT_* for direct/near input

▪ If both near and far input types are sent, the runtime may decide which one is the most

appropriate to use.

◦ Passing in a value for the input devices interactorRoot as well, i.e. the wrist root for hands.

◦ The runtime will modify the interactorRootPose to poke limit direct interaction.

▪ If poke limiting is desired, the application should reposition input render models with the

modified root pose.

• Then get the runtime keyboard pose and scale:

◦ Using xrLocateSpace on the saved keyboardSpace.

◦ Using xrGetVirtualKeyboardScaleMETA to get the scale.

• Then check if the virtual keyboard glTF model has any textures that need to be updated with

xrGetVirtualKeyboardDirtyTexturesMETA.

◦ For every dirty texture, call xrGetVirtualKeyboardTextureDataMETA to get the RGBA texture

data.

◦ And then updating the texture in the glTF model that matches the given texture id.

• Then apply any glTF model animations using xrGetVirtualKeyboardModelAnimationStatesMETA to

get updated animation indices and fraction values for each animation.

On Events

• XrEventDataVirtualKeyboardCommitTextMETA / XrEventDataVirtualKeyboardBackspaceMETA /

XrEventDataVirtualKeyboardEnterMETA

◦ Applications can pipe these events to a focused input field, or whatever they are expecting to

handle the virtual keyboard’s input.

• XrEventDataVirtualKeyboardShownMETA & XrEventDataVirtualKeyboardHiddenMETA

Chapter 12. List of Current Extensions | 1049

◦ Signaled when the virtual keyboard render model animation system is hiding or showing the

keyboard.

App Shutdown

• Destroy the keyboard with xrDestroyVirtualKeyboardMETA.

12.101.2. Extend glTF render model support

The virtual keyboard glTF model uses a custom texture URI for textures that the application needs to

update dynamically. The application should implement a custom URI handler when loading the glTF

model to check for these URIs and create writable textures identified by the corresponding texture ids.

The runtime must refer to these textures in the returned glTF model by URIs in the following format:

metaVirtualKeyboard://texture/{textureID}?w={width}&h={height}&fmt=RGBA32

The application should retrieve new pixel data from the runtime with

xrGetVirtualKeyboardDirtyTexturesMETA and xrGetVirtualKeyboardTextureDataMETA and apply

them to the corresponding textures that are used to render the glTF model.

Furthermore, the runtime may use additive morph target animations to control vertex coordinates

and modify UVs. The application should check the "extras" property when loading a glTF animation

channel for an integer field named "additiveWeightIndex". If present, this value indicates the morph

target index that the animation weight should be applied to, or apply all weights if the value is -1.

The application should check for any glTF animations to apply to the model each frame with

xrGetVirtualKeyboardModelAnimationStatesMETA.

12.101.3. Collision Handling

Even though the runtime will handle any user interaction with the keyboard based on the input sent

by the application, the application is responsible for managing how the keyboard should collide with

other objects in the scene. To do this, the application can look for a node named "collision" in the

loaded glTF model and use its mesh geometry and bound to define colliders that can be used by the

application’s choice of physics system.

12.101.4. Check device compatibility

When the XR_META_virtual_keyboard extension is enabled, an application can pass in an

XrSystemVirtualKeyboardPropertiesMETA structure in the XrSystemProperties::next chain when

calling xrGetSystemProperties to acquire information about the virtual keyboard’s availability.

The XrSystemVirtualKeyboardPropertiesMETA structure is defined as:

1050 | Chapter 12. List of Current Extensions

// Provided by XR_META_virtual_keyboard

typedef struct XrSystemVirtualKeyboardPropertiesMETA {

 XrStructureType type;

 void* next;

 XrBool32 supportsVirtualKeyboard;

} XrSystemVirtualKeyboardPropertiesMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsVirtualKeyboard is an XrBool32 indicating if virtual keyboard is supported.

The struct is used for checking virtual keyboard support.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrSystemVirtualKeyboardPropertiesMETA

• type must be XR_TYPE_SYSTEM_VIRTUAL_KEYBOARD_PROPERTIES_META

• next must be NULL or a valid pointer to the next structure in a structure chain

12.101.5. Create a virtual keyboard

An application can create a virtual keyboard by calling xrCreateVirtualKeyboardMETA.

The xrCreateVirtualKeyboardMETA function is defined as:

// Provided by XR_META_virtual_keyboard

XrResult xrCreateVirtualKeyboardMETA(

 XrSession session,

 const XrVirtualKeyboardCreateInfoMETA* createInfo,

 XrVirtualKeyboardMETA* keyboard);

Chapter 12. List of Current Extensions | 1051

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the XrSession.

• createInfo is the XrVirtualKeyboardCreateInfoMETA.

• keyboard is the returned XrVirtualKeyboardMETA.

xrCreateVirtualKeyboardMETA creates an XrVirtualKeyboardMETA handle and establishes a keyboard

within the runtime XrSession. The returned virtual keyboard handle may be subsequently used in API

calls.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrCreateVirtualKeyboardMETA

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrVirtualKeyboardCreateInfoMETA structure

• keyboard must be a pointer to an XrVirtualKeyboardMETA handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_FEATURE_UNSUPPORTED

The XrVirtualKeyboardCreateInfoMETA structure is defined as:

1052 | Chapter 12. List of Current Extensions

// Provided by XR_META_virtual_keyboard

typedef struct XrVirtualKeyboardCreateInfoMETA {

 XrStructureType type;

 const void* next;

} XrVirtualKeyboardCreateInfoMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

The struct is used for keyboard creation. Empty with the intention of future extension.

The runtime must return XR_ERROR_FEATURE_UNSUPPORTED if XrSystemVirtualKeyboardPropertiesMETA

::supportsVirtualKeyboard is XR_FALSE when checking the device compatibility.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrVirtualKeyboardCreateInfoMETA

• type must be XR_TYPE_VIRTUAL_KEYBOARD_CREATE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

12.101.6. Destroy the virtual keyboard

An application can destroy a virtual keyboard by calling xrDestroyVirtualKeyboardMETA.

The xrDestroyVirtualKeyboardMETA function is defined as:

// Provided by XR_META_virtual_keyboard

XrResult xrDestroyVirtualKeyboardMETA(

 XrVirtualKeyboardMETA keyboard);

Chapter 12. List of Current Extensions | 1053

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• keyboard is the XrVirtualKeyboardMETA handle to the keyboard to destroy.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrDestroyVirtualKeyboardMETA

• keyboard must be a valid XrVirtualKeyboardMETA handle

Thread Safety

• Access to keyboard, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

12.101.7. Place the virtual keyboard

To place the keyboard, an application can create a virtual keyboard space by calling

xrCreateVirtualKeyboardSpaceMETA.

The xrCreateVirtualKeyboardSpaceMETA function is defined as:

1054 | Chapter 12. List of Current Extensions

// Provided by XR_META_virtual_keyboard

XrResult xrCreateVirtualKeyboardSpaceMETA(

 XrSession session,

 XrVirtualKeyboardMETA keyboard,

 const XrVirtualKeyboardSpaceCreateInfoMETA* createInfo,

 XrSpace* keyboardSpace);

Parameter Descriptions

• session is the XrSession.

• keyboard is the XrVirtualKeyboardMETA handle.

• createInfo is the XrVirtualKeyboardSpaceCreateInfoMETA.

• keyboardSpace is the returned space handle.

Creates an XrSpace handle and places the keyboard in this space. The returned space handle may be

subsequently used in API calls.

Once placed, the application should query the keyboard’s location each frame using xrLocateSpace. It

is important to do this every frame as the runtime is in control of the keyboard’s movement.

The runtime must return XR_ERROR_HANDLE_INVALID if session is different than what is used to create

keyboard.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrCreateVirtualKeyboardSpaceMETA

• session must be a valid XrSession handle

• keyboard must be a valid XrVirtualKeyboardMETA handle

• createInfo must be a pointer to a valid XrVirtualKeyboardSpaceCreateInfoMETA structure

• keyboardSpace must be a pointer to an XrSpace handle

• keyboard must have been created, allocated, or retrieved from session

Chapter 12. List of Current Extensions | 1055

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

The XrVirtualKeyboardSpaceCreateInfoMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrVirtualKeyboardSpaceCreateInfoMETA {

 XrStructureType type;

 const void* next;

 XrVirtualKeyboardLocationTypeMETA locationType;

 XrSpace space;

 XrPosef poseInSpace;

} XrVirtualKeyboardSpaceCreateInfoMETA;

1056 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• locationType is an XrVirtualKeyboardLocationTypeMETA enum providing the location type.

• space is an XrSpace previously created by a function such as xrCreateReferenceSpace.

• poseInSpace is the desired pose if locationType is

XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_CUSTOM_META.

If locationType is set to XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_CUSTOM_META, the runtime must use the value

poseInSpace set by the application. Otherwise, the runtime must provide a default pose and ignore

poseInSpace. In all cases, the runtime must default the scale to 1.0.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrVirtualKeyboardSpaceCreateInfoMETA

• type must be XR_TYPE_VIRTUAL_KEYBOARD_SPACE_CREATE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• locationType must be a valid XrVirtualKeyboardLocationTypeMETA value

• space must be a valid XrSpace handle

12.101.8. Move and scale the virtual keyboard

After creating a keyboard and a space, an application can request to move its location or change its

scale. The application can suggest a new location or scale by calling

xrSuggestVirtualKeyboardLocationMETA.

The xrSuggestVirtualKeyboardLocationMETA function is defined as:

// Provided by XR_META_virtual_keyboard

XrResult xrSuggestVirtualKeyboardLocationMETA(

 XrVirtualKeyboardMETA keyboard,

 const XrVirtualKeyboardLocationInfoMETA* locationInfo);

Chapter 12. List of Current Extensions | 1057

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• keyboard is the XrVirtualKeyboardMETA handle.

• locationInfo is the desired XrVirtualKeyboardLocationInfoMETA.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrSuggestVirtualKeyboardLocationMETA

• keyboard must be a valid XrVirtualKeyboardMETA handle

• locationInfo must be a pointer to a valid XrVirtualKeyboardLocationInfoMETA structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_POSE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

The XrVirtualKeyboardLocationInfoMETA structure is defined as:

1058 | Chapter 12. List of Current Extensions

// Provided by XR_META_virtual_keyboard

typedef struct XrVirtualKeyboardLocationInfoMETA {

 XrStructureType type;

 const void* next;

 XrVirtualKeyboardLocationTypeMETA locationType;

 XrSpace space;

 XrPosef poseInSpace;

 float scale;

} XrVirtualKeyboardLocationInfoMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• locationType is an XrVirtualKeyboardLocationTypeMETA enum providing the location type.

• space is an XrSpace previously created by a function such as xrCreateReferenceSpace.

• poseInSpace is the desired pose if locationType is

XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_CUSTOM_META.

• scale is a float value of the desired multiplicative scale between 0.0 and 1.0 if locationType is

XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_CUSTOM_META.

If locationType is set to XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_CUSTOM_META, the runtime must use the

values poseInSpace and scale set by the application. Otherwise, the runtime must provide a default

pose and scale and ignore poseInSpace and scale.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrVirtualKeyboardLocationInfoMETA

• type must be XR_TYPE_VIRTUAL_KEYBOARD_LOCATION_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• locationType must be a valid XrVirtualKeyboardLocationTypeMETA value

• space must be a valid XrSpace handle

12.101.9. Get the virtual keyboard scale

Since xrLocateSpace only handles the pose, the application should also get the scale every frame by

Chapter 12. List of Current Extensions | 1059

#valid-usage-for-structure-pointer-chains

calling xrGetVirtualKeyboardScaleMETA.

The xrGetVirtualKeyboardScaleMETA function is defined as:

// Provided by XR_META_virtual_keyboard

XrResult xrGetVirtualKeyboardScaleMETA(

 XrVirtualKeyboardMETA keyboard,

 float* scale);

Parameter Descriptions

• keyboard is the XrVirtualKeyboardMETA handle.

• scale is a float value of the current scale of the keyboard.

With both the pose and scale, the application has all the information to draw the virtual keyboard

render model.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrGetVirtualKeyboardScaleMETA

• keyboard must be a valid XrVirtualKeyboardMETA handle

• scale must be a pointer to a float value

1060 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

12.101.10. Show and hide the virtual keyboard

The runtime is in control of the keyboard’s visibility to decide when to process input and reset the

keyboard states. By default the keyboard render model is hidden. An application can update the

render model visibility by calling xrSetVirtualKeyboardModelVisibilityMETA.

The xrSetVirtualKeyboardModelVisibilityMETA function is defined as:

// Provided by XR_META_virtual_keyboard

XrResult xrSetVirtualKeyboardModelVisibilityMETA(

 XrVirtualKeyboardMETA keyboard,

 const XrVirtualKeyboardModelVisibilitySetInfoMETA* modelVisibility);

Parameter Descriptions

• keyboard is the XrVirtualKeyboardMETA handle.

• modelVisibility is the XrVirtualKeyboardModelVisibilitySetInfoMETA.

Note that the runtime has final control of the model visibility. The runtime may also change the visible

state in certain situations. To get the actual visibility state of the render model, the application should

wait for the XrEventDataVirtualKeyboardShownMETA and XrEventDataVirtualKeyboardHiddenMETA

events.

Chapter 12. List of Current Extensions | 1061

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrSetVirtualKeyboardModelVisibilityMETA

• keyboard must be a valid XrVirtualKeyboardMETA handle

• modelVisibility must be a pointer to a valid XrVirtualKeyboardModelVisibilitySetInfoMETA

structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The XrVirtualKeyboardModelVisibilitySetInfoMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrVirtualKeyboardModelVisibilitySetInfoMETA {

 XrStructureType type;

 const void* next;

 XrBool32 visible;

} XrVirtualKeyboardModelVisibilitySetInfoMETA;

1062 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• visible an XrBool32 that controls whether to show or hide the keyboard.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrVirtualKeyboardModelVisibilitySetInfoMETA

• type must be XR_TYPE_VIRTUAL_KEYBOARD_MODEL_VISIBILITY_SET_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

12.101.11. Update render model textures

Each frame update the application should check for any textures that are updated by the runtime (e.g.

when new swipe suggestion words are available). The application should first get the texture IDs that

have updated contents (are "dirty") by calling xrGetVirtualKeyboardDirtyTexturesMETA. Then for each

texture ID received, the application should create a XrVirtualKeyboardTextureDataMETA structure

and call xrGetVirtualKeyboardTextureDataMETA to get the pixel data to update the corresponding

texture created by the render system using the id reference.

The xrGetVirtualKeyboardDirtyTexturesMETA function is defined as:

// Provided by XR_META_virtual_keyboard

XrResult xrGetVirtualKeyboardDirtyTexturesMETA(

 XrVirtualKeyboardMETA keyboard,

 uint32_t textureIdCapacityInput,

 uint32_t* textureIdCountOutput,

 uint64_t* textureIds);

Chapter 12. List of Current Extensions | 1063

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• keyboard is the XrVirtualKeyboardMETA handle.

• textureIdCapacityInput is the capacity of the textureIds array, or 0 to indicate a request to

retrieve the required capacity.

• textureIdCountOutput is filled in by the runtime with the count of texture IDs written or the

required capacity in the case that textureIdCapacityInput is insufficient.

• textureIds is the array of texture IDs that need to be updated.

This function follows the two-call idiom for filling the textureIds array. Note that new texture data may

be added after the runtime processes inputs from xrSendVirtualKeyboardInputMETA. Therefore, after

sending new keyboard inputs the application should query the buffer size again before getting any

texture data.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrGetVirtualKeyboardDirtyTexturesMETA

• keyboard must be a valid XrVirtualKeyboardMETA handle

• textureIdCountOutput must be a pointer to a uint32_t value

• If textureIdCapacityInput is not 0, textureIds must be a pointer to an array of

textureIdCapacityInput uint64_t values

1064 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_FEATURE_UNSUPPORTED

The xrGetVirtualKeyboardTextureDataMETA function is defined as:

// Provided by XR_META_virtual_keyboard

XrResult xrGetVirtualKeyboardTextureDataMETA(

 XrVirtualKeyboardMETA keyboard,

 uint64_t textureId,

 XrVirtualKeyboardTextureDataMETA* textureData);

Parameter Descriptions

• keyboard is the XrVirtualKeyboardMETA handle.

• textureId is the ID of the texture that the application is querying data for.

• textureData is the returned XrVirtualKeyboardTextureDataMETA.

This function follows the two-call idiom for filling the textureData array in the

XrVirtualKeyboardTextureDataMETA structure. Note that new texture data may be added after the

runtime processes inputs from xrSendVirtualKeyboardInputMETA. Therefore, after sending new

keyboard inputs the application should query the buffer size again before getting any texture data.

Chapter 12. List of Current Extensions | 1065

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrGetVirtualKeyboardTextureDataMETA

• keyboard must be a valid XrVirtualKeyboardMETA handle

• textureData must be a pointer to an XrVirtualKeyboardTextureDataMETA structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_FEATURE_UNSUPPORTED

The XrVirtualKeyboardTextureDataMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrVirtualKeyboardTextureDataMETA {

 XrStructureType type;

 void* next;

 uint32_t textureWidth;

 uint32_t textureHeight;

 uint32_t bufferCapacityInput;

 uint32_t bufferCountOutput;

 uint8_t* buffer;

} XrVirtualKeyboardTextureDataMETA;

1066 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• textureWidth is the pixel width of the texture to be updated.

• textureHeight is the pixel height of the texture to be updated.

• bufferCapacityInput is the capacity of buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is filled in by the runtime with the byte count written or the required

capacity in the case that bufferCapacityInput is insufficient.

• buffer is the pixel data in linear color space, RGBA 8-bit unsigned normalized integer format

(i.e. GL_RGBA8 in OpenGL, VK_FORMAT_R8G8B8A8_UNORM in Vulkan).

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrVirtualKeyboardTextureDataMETA

• type must be XR_TYPE_VIRTUAL_KEYBOARD_TEXTURE_DATA_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

uint8_t values

12.101.12. Update render model animations

Besides checking for texture updates, each frame the application should also check for any animations

to be applied to the render model. The runtime may use these animations to control the visibility of

different keys, layout changes, and even modify key sizes and texture coordinates via morph targets.

The application can get the animation states to be applied by calling

xrGetVirtualKeyboardModelAnimationStatesMETA. This will return an array of

XrVirtualKeyboardAnimationStateMETA which the application should apply to the render model,

indexed by the GLTF animation array index order.

The xrGetVirtualKeyboardModelAnimationStatesMETA function is defined as:

Chapter 12. List of Current Extensions | 1067

#valid-usage-for-structure-pointer-chains

// Provided by XR_META_virtual_keyboard

XrResult xrGetVirtualKeyboardModelAnimationStatesMETA(

 XrVirtualKeyboardMETA keyboard,

 XrVirtualKeyboardModelAnimationStatesMETA* animationStates);

Parameter Descriptions

• keyboard is the XrVirtualKeyboardMETA handle.

• animationStates is the XrVirtualKeyboardModelAnimationStatesMETA.

This function follows the two-call idiom for filling the animationStates array in the

XrVirtualKeyboardModelAnimationStatesMETA structure. Note that new animations may be added

after the runtime processes inputs from xrSendVirtualKeyboardInputMETA. Therefore, after sending

new keyboard inputs the application should query the buffer size again before getting any animation

data.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrGetVirtualKeyboardModelAnimationStatesMETA

• keyboard must be a valid XrVirtualKeyboardMETA handle

• animationStates must be a pointer to an XrVirtualKeyboardModelAnimationStatesMETA

structure

1068 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_FEATURE_UNSUPPORTED

The XrVirtualKeyboardAnimationStateMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrVirtualKeyboardAnimationStateMETA {

 XrStructureType type;

 void* next;

 int32_t animationIndex;

 float fraction;

} XrVirtualKeyboardAnimationStateMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• animationIndex is the index of the animation to use for the render model.

• fraction is the normalized value between the start and end time of the animation.

Chapter 12. List of Current Extensions | 1069

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrVirtualKeyboardAnimationStateMETA

• type must be XR_TYPE_VIRTUAL_KEYBOARD_ANIMATION_STATE_META

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrVirtualKeyboardModelAnimationStatesMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrVirtualKeyboardModelAnimationStatesMETA {

 XrStructureType type;

 void* next;

 uint32_t stateCapacityInput;

 uint32_t stateCountOutput;

 XrVirtualKeyboardAnimationStateMETA* states;

} XrVirtualKeyboardModelAnimationStatesMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• stateCapacityInput is the capacity of the states array, or 0 to indicate a request to retrieve the

required capacity.

• stateCountOutput is filled in by the runtime with the count of

XrVirtualKeyboardAnimationStateMETA written or the required capacity in the case that

stateCapacityInput is insufficient.

• states is the array of XrVirtualKeyboardAnimationStateMETA to apply to the model.

1070 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrVirtualKeyboardModelAnimationStatesMETA

• type must be XR_TYPE_VIRTUAL_KEYBOARD_MODEL_ANIMATION_STATES_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• If stateCapacityInput is not 0, states must be a pointer to an array of stateCapacityInput

XrVirtualKeyboardAnimationStateMETA structures

12.101.13. Send user input and text context

Since the application has control over how collision should be handled between the keyboard and

other objects in the scene, it is up to the application to decide when to send input to the virtual

keyboard. Per frame, for every input source the application wants to be applied to the keyboard, the

application should create a XrVirtualKeyboardInputInfoMETA and call

xrSendVirtualKeyboardInputMETA while also supplying the root pose of the interaction source.

The runtime may modify with an offset the given interactorRootPose if the given input is puncturing

the keyboard. This is to give the effect that the virtual object cannot push through the keyboard and

improves keyboard input perception. This is sometimes referred to as poke limiting.

To aid features like auto complete or whole word deletion, before sending input applications should

populate a XrVirtualKeyboardTextContextChangeInfoMETA structure and call

xrChangeVirtualKeyboardTextContextMETA to supply the runtime with the application’s text context

prior to the input cursor.

The xrSendVirtualKeyboardInputMETA function is defined as:

// Provided by XR_META_virtual_keyboard

XrResult xrSendVirtualKeyboardInputMETA(

 XrVirtualKeyboardMETA keyboard,

 const XrVirtualKeyboardInputInfoMETA* info,

 XrPosef* interactorRootPose);

Chapter 12. List of Current Extensions | 1071

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• keyboard is the XrVirtualKeyboardMETA handle.

• info is the XrVirtualKeyboardInputInfoMETA detailing the input being sent to the runtime.

• interactorRootPose is an XrPosef defining the root pose of the input source. The runtime may

modify this value to aid keyboard input perception.

The application can use values like a pointer pose as the interactorRootPose for

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_RAY_* or XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_RAY_*

input sources, a point on a controller model for XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_DIRECT_*

input sources and the hand index tip pose for

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_DIRECT_INDEX_TIP_*. Different input poses can be used to

accommodate application specific controller or hand models.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrSendVirtualKeyboardInputMETA

• keyboard must be a valid XrVirtualKeyboardMETA handle

• info must be a pointer to a valid XrVirtualKeyboardInputInfoMETA structure

• interactorRootPose must be a pointer to an XrPosef structure

1072 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_POSE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

The XrVirtualKeyboardInputInfoMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrVirtualKeyboardInputInfoMETA {

 XrStructureType type;

 const void* next;

 XrVirtualKeyboardInputSourceMETA inputSource;

 XrSpace inputSpace;

 XrPosef inputPoseInSpace;

 XrVirtualKeyboardInputStateFlagsMETA inputState;

} XrVirtualKeyboardInputInfoMETA;

Chapter 12. List of Current Extensions | 1073

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• inputSource is an enum of XrVirtualKeyboardInputSourceMETA describing the source device

and input mode type.

• inputSpace is an XrSpace previously created by a function such as xrCreateReferenceSpace.

• inputPoseInSpace is an XrPosef defining the position and orientation of the input’s source

pose within the natural reference frame of the input space.

• inputState is a bitmask of XrVirtualKeyboardInputStateFlagsMETA describing the button or

pinch state of the inputSource.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrVirtualKeyboardInputInfoMETA

• type must be XR_TYPE_VIRTUAL_KEYBOARD_INPUT_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• inputSource must be a valid XrVirtualKeyboardInputSourceMETA value

• If inputSpace is not XR_NULL_HANDLE, inputSpace must be a valid XrSpace handle

• inputState must be 0 or a valid combination of XrVirtualKeyboardInputStateFlagBitsMETA

values

The xrChangeVirtualKeyboardTextContextMETA function is defined as:

// Provided by XR_META_virtual_keyboard

XrResult xrChangeVirtualKeyboardTextContextMETA(

 XrVirtualKeyboardMETA keyboard,

 const XrVirtualKeyboardTextContextChangeInfoMETA* changeInfo);

1074 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• keyboard is the XrVirtualKeyboardMETA handle.

• changeInfo is the XrVirtualKeyboardTextContextChangeInfoMETA detailing prior input text

context to the runtime.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to calling

xrChangeVirtualKeyboardTextContextMETA

• keyboard must be a valid XrVirtualKeyboardMETA handle

• changeInfo must be a pointer to a valid XrVirtualKeyboardTextContextChangeInfoMETA

structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The XrVirtualKeyboardTextContextChangeInfoMETA structure is defined as:

Chapter 12. List of Current Extensions | 1075

// Provided by XR_META_virtual_keyboard

typedef struct XrVirtualKeyboardTextContextChangeInfoMETA {

 XrStructureType type;

 const void* next;

 const char* textContext;

} XrVirtualKeyboardTextContextChangeInfoMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• textContext is a pointer to a char buffer, should contain prior input text context terminated

with a null character.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrVirtualKeyboardTextContextChangeInfoMETA

• type must be XR_TYPE_VIRTUAL_KEYBOARD_TEXT_CONTEXT_CHANGE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• textContext must be a null-terminated UTF-8 string

12.101.14. Handling events

Each frame the application should listen for the following events sent by the runtime that reflects the

state of the keyboard.

The XrEventDataVirtualKeyboardCommitTextMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrEventDataVirtualKeyboardCommitTextMETA {

 XrStructureType type;

 const void* next;

 XrVirtualKeyboardMETA keyboard;

 char text[XR_MAX_VIRTUAL_KEYBOARD_COMMIT_TEXT_SIZE_META];

} XrEventDataVirtualKeyboardCommitTextMETA;

1076 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• keyboard is the XrVirtualKeyboardMETA this event belongs to.

• text is the text string input by the keyboard.

The XrEventDataVirtualKeyboardCommitTextMETA event must be sent by the runtime when a

character or string is input by the keyboard. The application should append to the text field that the

keyboard is editing.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrEventDataVirtualKeyboardCommitTextMETA

• type must be XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_COMMIT_TEXT_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• keyboard must be a valid XrVirtualKeyboardMETA handle

• text must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_VIRTUAL_KEYBOARD_COMMIT_TEXT_SIZE_META

The XrEventDataVirtualKeyboardBackspaceMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrEventDataVirtualKeyboardBackspaceMETA {

 XrStructureType type;

 const void* next;

 XrVirtualKeyboardMETA keyboard;

} XrEventDataVirtualKeyboardBackspaceMETA;

Chapter 12. List of Current Extensions | 1077

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• keyboard is the XrVirtualKeyboardMETA this event belongs to.

The XrEventDataVirtualKeyboardBackspaceMETA event must be sent by the runtime when the

[Backspace] key is pressed. The application should update the text field that the keyboard is editing.

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrEventDataVirtualKeyboardBackspaceMETA

• type must be XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_BACKSPACE_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• keyboard must be a valid XrVirtualKeyboardMETA handle

The XrEventDataVirtualKeyboardEnterMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrEventDataVirtualKeyboardEnterMETA {

 XrStructureType type;

 const void* next;

 XrVirtualKeyboardMETA keyboard;

} XrEventDataVirtualKeyboardEnterMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• keyboard is the XrVirtualKeyboardMETA this event belongs to.

The XrEventDataVirtualKeyboardEnterMETA event must be sent by the runtime when the [Enter] key

is pressed. The application should respond accordingly (e.g. newline, accept, etc).

1078 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrEventDataVirtualKeyboardEnterMETA

• type must be XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_ENTER_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• keyboard must be a valid XrVirtualKeyboardMETA handle

The XrEventDataVirtualKeyboardShownMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrEventDataVirtualKeyboardShownMETA {

 XrStructureType type;

 const void* next;

 XrVirtualKeyboardMETA keyboard;

} XrEventDataVirtualKeyboardShownMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• keyboard is the XrVirtualKeyboardMETA this event belongs to.

The XrEventDataVirtualKeyboardShownMETA event must be sent when the runtime has shown the

keyboard render model (via animation). The application should update its state accordingly (e.g.

update UI, pause simulation, etc).

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrEventDataVirtualKeyboardShownMETA

• type must be XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_SHOWN_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• keyboard must be a valid XrVirtualKeyboardMETA handle

Chapter 12. List of Current Extensions | 1079

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

The XrEventDataVirtualKeyboardHiddenMETA structure is defined as:

// Provided by XR_META_virtual_keyboard

typedef struct XrEventDataVirtualKeyboardHiddenMETA {

 XrStructureType type;

 const void* next;

 XrVirtualKeyboardMETA keyboard;

} XrEventDataVirtualKeyboardHiddenMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• keyboard is the XrVirtualKeyboardMETA this event belongs to.

The XrEventDataVirtualKeyboardHiddenMETA event must be sent when the keyboard render model is

hidden by the runtime (via animation). The application should update its state accordingly (e.g. update

UI, resume simulation, etc).

Valid Usage (Implicit)

• The XR_META_virtual_keyboard extension must be enabled prior to using

XrEventDataVirtualKeyboardHiddenMETA

• type must be XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_HIDDEN_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• keyboard must be a valid XrVirtualKeyboardMETA handle

12.101.15. Example code for using virtual keyboard

The following example code demonstrates how to create and use the virtual keyboard.

XrInstance instance; // previously initialized

XrSystemId system; // previously initialized

XrSession session; // previously initialized

XrSpace localSpace; // previously initialized

XrPosef poseIdentity; // previously initialized

1080 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// XR_FB_render_model API previously initialized with xrGetInstanceProcAddr

PFN_xrEnumerateRenderModelPathsFB xrEnumerateRenderModelPathsFB;

PFN_xrGetRenderModelPropertiesFB xrGetRenderModelPropertiesFB;

PFN_xrLoadRenderModelFB xrLoadRenderModelFB;

// XR_META_virtual_keyboard API previously initialized with xrGetInstanceProcAddr

PFN_xrCreateVirtualKeyboardMETA xrCreateVirtualKeyboardMETA;

PFN_xrDestroyVirtualKeyboardMETA xrDestroyVirtualKeyboardMETA;

PFN_xrCreateVirtualKeyboardSpaceMETA xrCreateVirtualKeyboardSpaceMETA;

PFN_xrSuggestVirtualKeyboardLocationMETA xrSuggestVirtualKeyboardLocationMETA;

PFN_xrGetVirtualKeyboardScaleMETA xrGetVirtualKeyboardScaleMETA;

PFN_xrSetVirtualKeyboardModelVisibilityMETA xrSetVirtualKeyboardModelVisibilityMETA;

PFN_xrGetVirtualKeyboardModelAnimationStatesMETA

xrGetVirtualKeyboardModelAnimationStatesMETA;

PFN_xrGetVirtualKeyboardDirtyTexturesMETA xrGetVirtualKeyboardDirtyTexturesMETA;

PFN_xrGetVirtualKeyboardTextureDataMETA xrGetVirtualKeyboardTextureDataMETA;

PFN_xrSendVirtualKeyboardInputMETA xrSendVirtualKeyboardInputMETA;

XrVirtualKeyboardMETA keyboardHandle{XR_NULL_HANDLE};

XrSpace keyboardSpace{XR_NULL_HANDLE};

XrRenderModelKeyFB keyboardModelKey{XR_NULL_RENDER_MODEL_KEY_FB};

/// Check virtual keyboard support

XrSystemVirtualKeyboardPropertiesMETA

virtualKeyboardProps{XR_TYPE_SYSTEM_VIRTUAL_KEYBOARD_PROPERTIES_META};

XrSystemProperties systemProperties{XR_TYPE_SYSTEM_PROPERTIES, &virtualKeyboardProps};

CHK_XR(xrGetSystemProperties(instance, system, &systemProperties));

if (virtualKeyboardProps.supportsVirtualKeyboard == XR_FALSE) {

 return; // Virtual keyboard not supported

}

/// Create virtual keyboard and space

XrVirtualKeyboardCreateInfoMETA createInfo{XR_TYPE_VIRTUAL_KEYBOARD_CREATE_INFO_META};

CHK_XR(xrCreateVirtualKeyboardMETA(session, &createInfo, &keyboardHandle));

XrVirtualKeyboardSpaceCreateInfoMETA

spaceCreateInfo{XR_TYPE_VIRTUAL_KEYBOARD_SPACE_CREATE_INFO_META};

spaceCreateInfo.locationType = XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_CUSTOM_META;

spaceCreateInfo.space = localSpace;

spaceCreateInfo.poseInSpace = poseIdentity;

CHK_XR(xrCreateVirtualKeyboardSpaceMETA(session, keyboardHandle, &spaceCreateInfo,

&keyboardSpace));

/// Get render model key

uint32_t pathCount = 0;

CHK_XR(xrEnumerateRenderModelPathsFB(session, pathCount, &pathCount, nullptr));

std::vector<XrRenderModelPathInfoFB> pathInfos(pathCount,

{XR_TYPE_RENDER_MODEL_PATH_INFO_FB});

Chapter 12. List of Current Extensions | 1081

CHK_XR(xrEnumerateRenderModelPathsFB(session, pathCount, &pathCount, pathInfos.data()));

for (const auto& info : pathInfos) {

 char pathString[XR_MAX_PATH_LENGTH];

 uint32_t countOutput = 0;

 CHK_XR(xrPathToString(instance, info.path, XR_MAX_PATH_LENGTH, &countOutput,

pathString));

 if (strcmp(pathString, "/model_meta/keyboard/virtual") == 0) {

 XrRenderModelPropertiesFB prop{XR_TYPE_RENDER_MODEL_PROPERTIES_FB};

 XrRenderModelCapabilitiesRequestFB

capReq{XR_TYPE_RENDER_MODEL_CAPABILITIES_REQUEST_FB};

 capReq.flags = XR_RENDER_MODEL_SUPPORTS_GLTF_2_0_SUBSET_2_BIT_FB;

 prop.next = &capReq;

 CHK_XR(xrGetRenderModelPropertiesFB(session, info.path, &prop));

 keyboardModelKey = prop.modelKey;

 break;

 }

}

if (keyboardModelKey == XR_NULL_RENDER_MODEL_KEY_FB) {

 return; // Model not available

}

/// Load render model

XrRenderModelLoadInfoFB loadInfo{XR_TYPE_RENDER_MODEL_LOAD_INFO_FB};

loadInfo.modelKey = keyboardModelKey;

XrRenderModelBufferFB renderModelbuffer{XR_TYPE_RENDER_MODEL_BUFFER_FB};

CHK_XR((xrLoadRenderModelFB(session, &loadInfo, &renderModelbuffer)));

std::vector<uint8_t> modelBuffer(renderModelbuffer.bufferCountOutput);

renderModelbuffer.buffer = modelBuffer.data();

renderModelbuffer.bufferCapacityInput = renderModelbuffer.bufferCountOutput;

CHK_XR((xrLoadRenderModelFB(session, &loadInfo, &renderModelbuffer)));

// >>> Application loads the glTF model in `modelBuffer`, keeping a reference to the

model animations and any textures with a URI texture id. See `Extend glTF render model

support`.

/// Show render model

XrVirtualKeyboardModelVisibilitySetInfoMETA

modelVisibility{XR_TYPE_VIRTUAL_KEYBOARD_MODEL_VISIBILITY_SET_INFO_META};

modelVisibility.visible = XR_TRUE;

CHK_XR(xrSetVirtualKeyboardModelVisibilityMETA(keyboardHandle, &modelVisibility));

while (!quit) {

 // ...

 // For every frame in frame loop

 // ...

 XrFrameState frameState; // previously returned from xrWaitFrame

1082 | Chapter 12. List of Current Extensions

 const XrTime time = frameState.predictedDisplayTime;

 XrVirtualKeyboardLocationInfoMETA

locationInfo{XR_TYPE_VIRTUAL_KEYBOARD_LOCATION_INFO_META};

 // >>> Application sets desired location and scale in `locationInfo`

 CHK_XR(xrSuggestVirtualKeyboardLocationMETA(keyboardHandle, &locationInfo));

 // For each input source:

 {

 XrVirtualKeyboardInputInfoMETA inputInfo{XR_TYPE_VIRTUAL_KEYBOARD_INPUT_INFO_META};

 // >>> Application sets input source data in `inputInfo`

 XrPosef interactorRootPose;

 CHK_XR(xrSendVirtualKeyboardInputMETA(keyboardHandle, &inputInfo,

&interactorRootPose));

 // >>> Application uses `interactorRootPose` as feedback for poke limiting

 }

 uint32_t textureIdCountOutput = 0;

 CHK_XR(xrGetVirtualKeyboardDirtyTexturesMETA(keyboardHandle, 0, &textureIdCountOutput,

nullptr));

 std::vector<uint64_t> dirtyTextureIds(textureIdCountOutput);

 CHK_XR(xrGetVirtualKeyboardDirtyTexturesMETA(keyboardHandle, textureIdCountOutput,

&textureIdCountOutput, dirtyTextureIds.data()));

 for (const uint64_t textureId : dirtyTextureIds) {

 XrVirtualKeyboardTextureDataMETA

textureData{XR_TYPE_VIRTUAL_KEYBOARD_TEXTURE_DATA_META};

 CHK_XR(xrGetVirtualKeyboardTextureDataMETA(keyboardHandle, textureId, &textureData));

 std::vector<uint8_t> textureDataBuffer(textureData.bufferCountOutput);

 textureData.bufferCapacityInput = textureData.bufferCountOutput;

 textureData.buffer = textureDataBuffer.data();

 CHK_XR(xrGetVirtualKeyboardTextureDataMETA(keyboardHandle, textureId, &textureData));

 // >>> Application applies `textureData` to the glTF texture referenced by

`textureId`

 }

 XrVirtualKeyboardModelAnimationStatesMETA

animationStates{XR_TYPE_VIRTUAL_KEYBOARD_MODEL_ANIMATION_STATES_META};

 CHK_XR(xrGetVirtualKeyboardModelAnimationStatesMETA(keyboardHandle, &animationStates));

 std::vector<XrVirtualKeyboardAnimationStateMETA>

animationStatesBuffer(animationStates.stateCountOutput,

{XR_TYPE_VIRTUAL_KEYBOARD_ANIMATION_STATE_META});

 animationStates.stateCapacityInput = animationStates.stateCountOutput;

 animationStates.states = animationStatesBuffer.data();

 CHK_XR(xrGetVirtualKeyboardModelAnimationStatesMETA(keyboardHandle, &animationStates));

 for (uint32_t i = 0; i < animationStates.stateCountOutput; ++i) {

 const auto& animationState = animationStates.states[i];

 // >>> Application applies `animationState` to the corresponding glTF model animation

 }

Chapter 12. List of Current Extensions | 1083

 XrSpaceLocation keyboardLocation{XR_TYPE_SPACE_LOCATION};

 CHK_XR(xrLocateSpace(keyboardSpace, localSpace, time, &keyboardLocation));

 float keyboardScale;

 CHK_XR(xrGetVirtualKeyboardScaleMETA(keyboardHandle, &keyboardScale));

 // >>> Application renders model with `keyboardLocation` and `keyboardScale`

}

CHK_XR(xrDestroyVirtualKeyboardMETA(keyboardHandle));

New Object Types

XR_DEFINE_HANDLE(XrVirtualKeyboardMETA)

XrVirtualKeyboardMETA represents a virtual keyboard instance.

New Flag Types

typedef XrFlags64 XrVirtualKeyboardInputStateFlagsMETA;

// Flag bits for XrVirtualKeyboardInputStateFlagsMETA

static const XrVirtualKeyboardInputStateFlagsMETA

XR_VIRTUAL_KEYBOARD_INPUT_STATE_PRESSED_BIT_META = 0x00000001;

Flag Descriptions

• XR_VIRTUAL_KEYBOARD_INPUT_STATE_PRESSED_BIT_META  — If the input source is considered

'pressed' at all. Pinch for hands, Primary button for controllers.

New Enum Constants

• XR_MAX_VIRTUAL_KEYBOARD_COMMIT_TEXT_SIZE_META

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_VIRTUAL_KEYBOARD_PROPERTIES_META

1084 | Chapter 12. List of Current Extensions

• XR_TYPE_VIRTUAL_KEYBOARD_CREATE_INFO_META

• XR_TYPE_VIRTUAL_KEYBOARD_SPACE_CREATE_INFO_META

• XR_TYPE_VIRTUAL_KEYBOARD_LOCATION_INFO_META

• XR_TYPE_VIRTUAL_KEYBOARD_MODEL_VISIBILITY_SET_INFO_META

• XR_TYPE_VIRTUAL_KEYBOARD_ANIMATION_STATE_META

• XR_TYPE_VIRTUAL_KEYBOARD_MODEL_ANIMATION_STATES_META

• XR_TYPE_VIRTUAL_KEYBOARD_TEXTURE_DATA_META

• XR_TYPE_VIRTUAL_KEYBOARD_INPUT_INFO_META

• XR_TYPE_VIRTUAL_KEYBOARD_TEXT_CONTEXT_CHANGE_INFO_META

• XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_COMMIT_TEXT_META

• XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_BACKSPACE_META

• XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_ENTER_META

• XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_SHOWN_META

• XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_HIDDEN_META

New Defines

New Enums

The possible location types are specified by the XrVirtualKeyboardLocationTypeMETA enumeration:

// Provided by XR_META_virtual_keyboard

typedef enum XrVirtualKeyboardLocationTypeMETA {

 XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_CUSTOM_META = 0,

 XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_FAR_META = 1,

 XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_DIRECT_META = 2,

 XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_MAX_ENUM_META = 0x7FFFFFFF

} XrVirtualKeyboardLocationTypeMETA;

Chapter 12. List of Current Extensions | 1085

Enumerant Descriptions

• XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_CUSTOM_META

Indicates that the application will provide the position and scale of the keyboard.

• XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_FAR_META

Indicates that the runtime will set the position and scale for far field keyboard.

• XR_VIRTUAL_KEYBOARD_LOCATION_TYPE_DIRECT_META

Indicates that the runtime will set the position and scale for direct interaction keyboard.

The possible input sources are specified by the XrVirtualKeyboardInputSourceMETA enumeration:

// Provided by XR_META_virtual_keyboard

typedef enum XrVirtualKeyboardInputSourceMETA {

 XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_RAY_LEFT_META = 1,

 XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_RAY_RIGHT_META = 2,

 XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_RAY_LEFT_META = 3,

 XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_RAY_RIGHT_META = 4,

 XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_DIRECT_LEFT_META = 5,

 XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_DIRECT_RIGHT_META = 6,

 XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_DIRECT_INDEX_TIP_LEFT_META = 7,

 XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_DIRECT_INDEX_TIP_RIGHT_META = 8,

 XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_MAX_ENUM_META = 0x7FFFFFFF

} XrVirtualKeyboardInputSourceMETA;

Enum Description

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_RAY_
LEFT_META

Left controller ray.

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_RAY_
RIGHT_META

Right controller ray.

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_RAY_LEFT_M
ETA

Left hand ray.

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_RAY_RIGHT_
META

Right hand ray.

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_DIRE
CT_LEFT_META

Left controller direct touch.

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_CONTROLLER_DIRE
CT_RIGHT_META

Right controller direct touch.

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_DIRECT_IND
EX_TIP_LEFT_META

Left hand direct touch.

1086 | Chapter 12. List of Current Extensions

Enum Description

XR_VIRTUAL_KEYBOARD_INPUT_SOURCE_HAND_DIRECT_IND
EX_TIP_RIGHT_META

Right hand direct touch.

New Structures

• XrSystemVirtualKeyboardPropertiesMETA

• XrVirtualKeyboardCreateInfoMETA

• XrVirtualKeyboardSpaceCreateInfoMETA

• XrVirtualKeyboardLocationInfoMETA

• XrVirtualKeyboardModelVisibilitySetInfoMETA

• XrVirtualKeyboardAnimationStateMETA

• XrVirtualKeyboardModelAnimationStatesMETA

• XrVirtualKeyboardTextureDataMETA

• XrVirtualKeyboardInputInfoMETA

• XrVirtualKeyboardTextContextChangeInfoMETA

• XrEventDataVirtualKeyboardCommitTextMETA

• XrEventDataVirtualKeyboardBackspaceMETA

• XrEventDataVirtualKeyboardEnterMETA

• XrEventDataVirtualKeyboardShownMETA

• XrEventDataVirtualKeyboardHiddenMETA

New Functions

• xrCreateVirtualKeyboardMETA

• xrDestroyVirtualKeyboardMETA

• xrCreateVirtualKeyboardSpaceMETA

• xrSuggestVirtualKeyboardLocationMETA

• xrGetVirtualKeyboardScaleMETA

• xrSetVirtualKeyboardModelVisibilityMETA

• xrGetVirtualKeyboardModelAnimationStatesMETA

• xrGetVirtualKeyboardDirtyTexturesMETA

• xrGetVirtualKeyboardTextureDataMETA

• xrSendVirtualKeyboardInputMETA

• xrChangeVirtualKeyboardTextContextMETA

Chapter 12. List of Current Extensions | 1087

Issues

Version History

• Revision 1, 2023-04-14 (Peter Chan, Brent Housen)

◦ Initial extension description

12.102. XR_META_vulkan_swapchain_create_info

Name String

XR_META_vulkan_swapchain_create_info

Extension Type

Instance extension

Registered Extension Number

228

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-05-19

IP Status

No known IP claims.

Contributors

John Kearney, Meta Platforms

Andreas L. Selvik, Meta Platforms

Jakob Bornecrantz, Collabora

Ross Ning, Meta Platforms

Overview

Using this extension, a Vulkan-based application can pass through additional VkImageCreateFlags or

VkImageUsageFlags by chaining an XrVulkanSwapchainCreateInfoMETA structure to the

XrSwapchainCreateInfo when calling xrCreateSwapchain.

The application is still encouraged to use the common bits like XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT

defined in XrSwapchainUsageFlags. However, the application may present both

XR_SWAPCHAIN_USAGE_TRANSFER_SRC_BIT in XrSwapchainUsageFlags and VK_IMAGE_USAGE_TRANSFER_SRC_BIT

1088 | Chapter 12. List of Current Extensions

in VkImageUsageFlags at the same time.

The application must enable the corresponding Vulkan extensions before requesting additional

Vulkan flags. For example, VK_EXT_fragment_density_map device extension must be enabled if an

application requests VK_IMAGE_CREATE_SUBSAMPLED_BIT_EXT bit. Otherwise, it may cause undefined

behavior, including an application crash.

Runtimes that implement this extension must support the XR_KHR_vulkan_enable or the

XR_KHR_vulkan_enable2 extension.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

// Provided by XR_META_vulkan_swapchain_create_info

typedef struct XrVulkanSwapchainCreateInfoMETA {

 XrStructureType type;

 const void* next;

 VkImageCreateFlags additionalCreateFlags;

 VkImageUsageFlags additionalUsageFlags;

} XrVulkanSwapchainCreateInfoMETA;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• additionalCreateFlags is a bitmask of VkImageCreateFlags describing additional parameters of

an image.

• additionalUsageFlags is a bitmask of VkImageUsageFlags describing additional parameters of

an image.

The runtime must return XR_ERROR_FEATURE_UNSUPPORTED if any bit of either additionalCreateFlags or

additionalUsageFlags is not supported.

Chapter 12. List of Current Extensions | 1089

Valid Usage (Implicit)

• The XR_META_vulkan_swapchain_create_info extension must be enabled prior to using

XrVulkanSwapchainCreateInfoMETA

• type must be XR_TYPE_VULKAN_SWAPCHAIN_CREATE_INFO_META

• next must be NULL or a valid pointer to the next structure in a structure chain

• additionalCreateFlags must be a valid VkImageCreateFlags value

• additionalUsageFlags must be a valid VkImageUsageFlags value

New Functions

Issues

Version History

• Revision 1, 2022-05-05 (Ross Ning)

◦ Initial draft

12.103. XR_ML_compat

Name String

XR_ML_compat

Extension Type

Instance extension

Registered Extension Number

138

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-11-08

Contributors

Ron Bessems, Magic Leap

Overview

1090 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

This extension provides functionality to facilitate transitioning from Magic Leap SDK to OpenXR SDK,

most notably interoperability between Coordinate Frame UUIDs and XrSpace.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COORDINATE_SPACE_CREATE_INFO_ML

New Structures

The XrCoordinateSpaceCreateInfoML structure is defined as:

typedef struct XrCoordinateSpaceCreateInfoML {

 XrStructureType type;

 const void* next;

 MLCoordinateFrameUID cfuid;

 XrPosef poseInCoordinateSpace;

} XrCoordinateSpaceCreateInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• cfuid is the MLCoordinateFrameUID as generated by the non-OpenXR API in the Magic Leap SDK.

• poseInCoordinateSpace is an XrPosef defining the position and orientation of the new space’s

origin within the natural reference frame of the cfuid.

XrCoordinateSpaceCreateInfoML is provided as input when calling

xrCreateSpaceFromCoordinateFrameUIDML to convert a Magic Leap SDK generated

MLCoordinateFrameUID to an XrSpace. The conversion only needs to be done once even if the underlying

MLCoordinateFrameUID changes its pose.

Chapter 12. List of Current Extensions | 1091

Valid Usage (Implicit)

• The XR_ML_compat extension must be enabled prior to using XrCoordinateSpaceCreateInfoML

• type must be XR_TYPE_COORDINATE_SPACE_CREATE_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

• cfuid must be a valid MLCoordinateFrameUID value

New Functions

The xrCreateSpaceFromCoordinateFrameUIDML function is defined as:

// Provided by XR_ML_compat

XrResult xrCreateSpaceFromCoordinateFrameUIDML(

 XrSession session,

 const XrCoordinateSpaceCreateInfoML * createInfo,

 XrSpace* space);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• createInfo is the XrCoordinateSpaceCreateInfoML used to specify the space.

• space is the returned space handle.

The service that created the underlying XrCoordinateSpaceCreateInfoML::cfuid must remain active for

the lifetime of the XrSpace. If xrLocateSpace is called on a space created from an

XrCoordinateSpaceCreateInfoML::cfuid from a no-longer-active service, the runtime may set

XrSpaceLocation::locationFlags to 0.

XrSpace handles are destroyed using xrDestroySpace.

1092 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_ML_compat extension must be enabled prior to calling

xrCreateSpaceFromCoordinateFrameUIDML

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrCoordinateSpaceCreateInfoML structure

• space must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

Issues

Version History

• Revision 1, 2022-11-08 (Ron Bessems)

◦ Initial extension description

12.104. XR_ML_frame_end_info

Name String

XR_ML_frame_end_info

Chapter 12. List of Current Extensions | 1093

Extension Type

Instance extension

Registered Extension Number

136

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-10-26

Contributors

Ron Bessems, Magic Leap

Overview

This extension provides access to Magic Leap specific extensions to frame settings like focus distance,

vignette, and protection.

New Flag Types

The XrFrameEndInfoML::flags member is of the following type, and contains a bitwise-OR of zero or

more of the bits defined in XrFrameEndInfoFlagBitsML.

typedef XrFlags64 XrFrameEndInfoFlagsML;

Valid bits for XrFrameEndInfoFlagsML are defined by XrFrameEndInfoFlagBitsML, which is specified

as:

// Flag bits for XrFrameEndInfoFlagsML

static const XrFrameEndInfoFlagsML XR_FRAME_END_INFO_PROTECTED_BIT_ML = 0x00000001;

static const XrFrameEndInfoFlagsML XR_FRAME_END_INFO_VIGNETTE_BIT_ML = 0x00000002;

The flag bits have the following meanings:

1094 | Chapter 12. List of Current Extensions

Flag Descriptions

• XR_FRAME_END_INFO_PROTECTED_BIT_ML  — Indicates that the content for this frame is protected

and should not be recorded or captured outside the graphics system.

• XR_FRAME_END_INFO_VIGNETTE_BIT_ML  — Indicates that a soft fade to transparent should be

added to the frame in the compositor to blend any hard edges at the FOV limits.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_FRAME_END_INFO_ML

New Structures

The XrFrameEndInfoML structure is defined as:

// Provided by XR_ML_frame_end_info

typedef struct XrFrameEndInfoML {

 XrStructureType type;

 const void* next;

 float focusDistance;

 XrFrameEndInfoFlagsML flags;

} XrFrameEndInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• focusDistance is the distance, in meters, to defined focus point for the client content. The

focus distance is interpreted as the positive distance to the client-determined object of

interest (relative to the forward vector of the Lightwear).

• flags is a bitmask of XrFrameEndInfoFlagsML

Chapter 12. List of Current Extensions | 1095

Valid Usage (Implicit)

• The XR_ML_frame_end_info extension must be enabled prior to using XrFrameEndInfoML

• type must be XR_TYPE_FRAME_END_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be 0 or a valid combination of XrFrameEndInfoFlagBitsML values

Version History

• Revision 1, 2022-10-26 (Ron Bessems)

◦ Initial extension description

12.105. XR_ML_global_dimmer

Name String

XR_ML_global_dimmer

Extension Type

Instance extension

Registered Extension Number

137

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-10-25

Contributors

Ron Bessems, Magic Leap

Michał Kulągowski, Magic Leap

Overview

This extension provides control over the global dimmer panel of the Magic Leap 2. The Global

Dimming™ feature dims the entire display without dimming digital content to make text and images

more solid and precise.

Note that when using the XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND mode the alpha channel of the color

1096 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

swapchain image is combined with the global dimmer value. The global dimmer however is able to

address the whole panel whereas the alpha channel covers the video addressable portion.

New Flag Types

The XrGlobalDimmerFrameEndInfoML::flags member is of the following type, and contains a bitwise-

OR of zero or more of the bits defined in XrFrameEndInfoFlagBitsML.

typedef XrFlags64 XrGlobalDimmerFrameEndInfoFlagsML;

Valid bits for XrGlobalDimmerFrameEndInfoFlagsML are defined by

XrGlobalDimmerFrameEndInfoFlagBitsML, which is specified as:

// Flag bits for XrGlobalDimmerFrameEndInfoFlagsML

static const XrGlobalDimmerFrameEndInfoFlagsML

XR_GLOBAL_DIMMER_FRAME_END_INFO_ENABLED_BIT_ML = 0x00000001;

The flag bits have the following meanings:

Flag Descriptions

• XR_GLOBAL_DIMMER_FRAME_END_INFO_ENABLED_BIT_ML  — Indicates that the global dimmer should

be enabled and controlled by XrGlobalDimmerFrameEndInfoML::dimmerValue.

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GLOBAL_DIMMER_FRAME_END_INFO_ML

New Structures

The XrGlobalDimmerFrameEndInfoML structure is defined as:

Chapter 12. List of Current Extensions | 1097

// Provided by XR_ML_global_dimmer

typedef struct XrGlobalDimmerFrameEndInfoML {

 XrStructureType type;

 const void* next;

 float dimmerValue;

 XrGlobalDimmerFrameEndInfoFlagsML flags;

} XrGlobalDimmerFrameEndInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• dimmerValue is a value between 0.0 (transparent) and 1.0 (opaque). The runtime may adjust

the dimmerValue used during composition at the runtime’s discretion. This may be done for

user safety, display performance, or other reasons. Values outside of the range are silently

clamped.

• flags is a bitmask of XrGlobalDimmerFrameEndInfoFlagsML

Valid Usage (Implicit)

• The XR_ML_global_dimmer extension must be enabled prior to using

XrGlobalDimmerFrameEndInfoML

• type must be XR_TYPE_GLOBAL_DIMMER_FRAME_END_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

• flags must be 0 or a valid combination of XrGlobalDimmerFrameEndInfoFlagBitsML values

Version History

• Revision 1, 2022-10-25 (Ron Bessems)

◦ Initial extension description

12.106. XR_ML_localization_map

Name String

XR_ML_localization_map

Extension Type

Instance extension

1098 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Registered Extension Number

140

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_EXT_uuid

Last Modified Date

2023-09-14

Contributors

Ron Bessems, Magic Leap

Karthik Kadappan, Magic Leap

12.106.1. Overview

A Magic Leap localization map is a container that holds metadata about the scanned environment. It is

a digital copy of a physical place. A localization map holds spatial anchors, dense mesh, planes, feature

points, and positional data.

• Spatial anchors - Used for persistent placement of content.

• Dense mesh - 3D triangulated geometry representing Magic Leap device understanding of the real-

world geometry of an area.

• Planes - Large, flat surfaces derived from dense mesh data.

Localization maps can be created on device or in the Magic Leap AR Cloud. There are two types - "On

Device" and "Cloud".

• "On Device" for OpenXR (local space for MagicLeap) - are for a single device and can be shared via

the export/import mechanism.

• "Cloud" for OpenXR (shared space for MagicLeap) - can be shared across multiple MagicLeap

devices in the AR Cloud. Note

Localization Maps are called Spaces in the Magic Leap C-API.

Chapter 12. List of Current Extensions | 1099

 Permissions

Android applications must have the com.magicleap.permission.SPACE_MANAGER

permission listed in their manifest to use these functions:

• xrQueryLocalizationMapsML

• xrRequestMapLocalizationML

(protection level: normal)

Android applications must have the

com.magicleap.permission.SPACE_IMPORT_EXPORT permission listed in their

manifest and granted to use these functions:

• xrImportLocalizationMapML

• xrCreateExportedLocalizationMapML

(protection level: dangerous)

12.106.2. Current Localization Map Information

Applications can receive notifications when the current localization map changes by calling

xrPollEvent and handling the XrEventDataLocalizationChangedML type. To enable these events call

xrEnableLocalizationEventsML.

The XrEventDataLocalizationChangedML structure is defined as:

// Provided by XR_ML_localization_map

typedef struct XrEventDataLocalizationChangedML {

 XrStructureType type;

 const void* next;

 XrSession session;

 XrLocalizationMapStateML state;

 XrLocalizationMapML map;

 XrLocalizationMapConfidenceML confidence;

 XrLocalizationMapErrorFlagsML errorFlags;

} XrEventDataLocalizationChangedML;

1100 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• session is the session to which this change event applies.

• state is the current XrLocalizationMapStateML of the map.

• map is the XrLocalizationMapML of the current map.

• confidence is the XrLocalizationMapConfidenceML of the current map.

• errorFlags is a a bitwise-OR of zero or more of the bits defined in

XrLocalizationMapErrorFlagBitsML in the case that the localization map has low confidence.

By default the runtime does not send these events but calling xrEnableLocalizationEventsML function

enables the events. When this function is called the XrEventDataLocalizationChangedML event will

always be posted to the event queue, regardless of whether the map localization state has changed.

This allows the application to synchronize with the current state. Note

The arrival of the event is asynchronous to this call.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to using

XrEventDataLocalizationChangedML

• type must be XR_TYPE_EVENT_DATA_LOCALIZATION_CHANGED_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

The bitmask type XrLocalizationMapErrorFlagsML is defined as:

// Provided by XR_ML_localization_map

typedef XrFlags64 XrLocalizationMapErrorFlagsML;

As used in XrEventDataLocalizationChangedML::errorFlags field, XrLocalizationMapErrorFlagsML

contains a bitwise-OR of zero or more of the bits defined in XrLocalizationMapErrorFlagBitsML.

Chapter 12. List of Current Extensions | 1101

#valid-usage-for-structure-pointer-chains

// Provided by XR_ML_localization_map

// Flag bits for XrLocalizationMapErrorFlagsML

static const XrLocalizationMapErrorFlagsML XR_LOCALIZATION_MAP_ERROR_UNKNOWN_BIT_ML =

0x00000001;

static const XrLocalizationMapErrorFlagsML

XR_LOCALIZATION_MAP_ERROR_OUT_OF_MAPPED_AREA_BIT_ML = 0x00000002;

static const XrLocalizationMapErrorFlagsML

XR_LOCALIZATION_MAP_ERROR_LOW_FEATURE_COUNT_BIT_ML = 0x00000004;

static const XrLocalizationMapErrorFlagsML

XR_LOCALIZATION_MAP_ERROR_EXCESSIVE_MOTION_BIT_ML = 0x00000008;

static const XrLocalizationMapErrorFlagsML XR_LOCALIZATION_MAP_ERROR_LOW_LIGHT_BIT_ML =

0x00000010;

static const XrLocalizationMapErrorFlagsML XR_LOCALIZATION_MAP_ERROR_HEADPOSE_BIT_ML =

0x00000020;

The flag bits have the following meanings:

Flag Descriptions

• XR_LOCALIZATION_MAP_ERROR_UNKNOWN_BIT_ML  — Localization failed for an unknown reason.

• XR_LOCALIZATION_MAP_ERROR_OUT_OF_MAPPED_AREA_BIT_ML  — Localization failed because the user

is outside of the mapped area.

• XR_LOCALIZATION_MAP_ERROR_LOW_FEATURE_COUNT_BIT_ML  — There are not enough features in the

environment to successfully localize.

• XR_LOCALIZATION_MAP_ERROR_EXCESSIVE_MOTION_BIT_ML  — Localization failed due to excessive

motion.

• XR_LOCALIZATION_MAP_ERROR_LOW_LIGHT_BIT_ML  — Localization failed because the lighting levels

are too low in the environment.

• XR_LOCALIZATION_MAP_ERROR_HEADPOSE_BIT_ML  — A headpose failure caused localization to be

unsuccessful.

The xrEnableLocalizationEventsML function is defined as:

// Provided by XR_ML_localization_map

XrResult xrEnableLocalizationEventsML(

 XrSession session,

 const XrLocalizationEnableEventsInfoML * info);

1102 | Chapter 12. List of Current Extensions

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• info is a pointer to an XrLocalizationEnableEventsInfoML structure.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to calling

xrEnableLocalizationEventsML

• session must be a valid XrSession handle

• info must be a pointer to a valid XrLocalizationEnableEventsInfoML structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_LOCALIZATION_MAP_PERMISSION_DENIED_ML

The XrLocalizationEnableEventsInfoML structure is defined as:

// Provided by XR_ML_localization_map

typedef struct XrLocalizationEnableEventsInfoML {

 XrStructureType type;

 const void* next;

 XrBool32 enabled;

} XrLocalizationEnableEventsInfoML;

Chapter 12. List of Current Extensions | 1103

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• enabled is the flag to enable/disable localization status events.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to using

XrLocalizationEnableEventsInfoML

• type must be XR_TYPE_LOCALIZATION_ENABLE_EVENTS_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrLocalizationMapML structure is defined as:

// Provided by XR_ML_localization_map

typedef struct XrLocalizationMapML {

 XrStructureType type;

 void* next;

 char name[XR_MAX_LOCALIZATION_MAP_NAME_LENGTH_ML];

 XrUuidEXT mapUuid;

 XrLocalizationMapTypeML mapType;

} XrLocalizationMapML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• name is a human readable name of the localization map, as a null terminated UTF-8 string.

This name is set outside of this extension.

• mapUuid is the XrUuidEXT of the localization map.

• mapType is the XrLocalizationMapTypeML of the map.

1104 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to using XrLocalizationMapML

• type must be XR_TYPE_LOCALIZATION_MAP_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

• name must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_LOCALIZATION_MAP_NAME_LENGTH_ML

• If mapType is not 0, mapType must be a valid XrLocalizationMapTypeML value

12.106.3. Listing Localization Maps

Localization maps available to the application can be queried using xrQueryLocalizationMapsML.

The xrQueryLocalizationMapsML function is defined as:

// Provided by XR_ML_localization_map

XrResult xrQueryLocalizationMapsML(

 XrSession session,

 const XrLocalizationMapQueryInfoBaseHeaderML* queryInfo,

 uint32_t mapCapacityInput,

 uint32_t * mapCountOutput,

 XrLocalizationMapML* maps);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• queryInfo is an optional enumeration filter based on

XrLocalizationMapQueryInfoBaseHeaderML to use.

• mapCapacityInput is the capacity of the maps array, or 0 to indicate a request to retrieve the

required capacity.

• mapCountOutput is filled in by the runtime with the count of maps written or the required

capacity in the case that mapCapacityInput is insufficient.

• maps is an array of XrLocalizationMapML filled in by the runtime, but can be NULL if

mapCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

maps size.

Chapter 12. List of Current Extensions | 1105

#valid-usage-for-structure-pointer-chains

The list of localization maps returned will depend on the current device mapping mode. Only the

localization maps associated with the current mapping mode will be returned by this call. Device

mapping mode (e.g. XR_LOCALIZATION_MAP_TYPE_ON_DEVICE_ML or XR_LOCALIZATION_MAP_TYPE_CLOUD_ML) can

only be changed via the system application(s).

The list of maps known to the runtime may change between the two calls to

xrQueryLocalizationMapsML. This is however a rare occurrence and the application may retry the call

again if it receives XR_ERROR_SIZE_INSUFFICIENT.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to calling

xrQueryLocalizationMapsML

• session must be a valid XrSession handle

• If queryInfo is not NULL, queryInfo must be a pointer to a valid

XrLocalizationMapQueryInfoBaseHeaderML-based structure

• mapCountOutput must be a pointer to a uint32_t value

• If mapCapacityInput is not 0, maps must be a pointer to an array of mapCapacityInput

XrLocalizationMapML structures

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_LOCALIZATION_MAP_PERMISSION_DENIED_ML

The XrLocalizationMapQueryInfoBaseHeaderML structure is defined as:

1106 | Chapter 12. List of Current Extensions

// Provided by XR_ML_localization_map

typedef struct XrLocalizationMapQueryInfoBaseHeaderML {

 XrStructureType type;

 const void* next;

} XrLocalizationMapQueryInfoBaseHeaderML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

Currently no filters are available.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to using

XrLocalizationMapQueryInfoBaseHeaderML

• next must be NULL or a valid pointer to the next structure in a structure chain

12.106.4. Request Localization Map

Applications can change the current map by calling xrRequestMapLocalizationML.

The xrRequestMapLocalizationML function is defined as:

// Provided by XR_ML_localization_map

XrResult xrRequestMapLocalizationML(

 XrSession session,

 const XrMapLocalizationRequestInfoML* requestInfo);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• requestInfo contains XrMapLocalizationRequestInfoML on the localization map to request.

This is an asynchronous request. Listen for XrEventDataLocalizationChangedML events to get the

results of the localization. A new request for localization will override all the past requests for

Chapter 12. List of Current Extensions | 1107

#valid-usage-for-structure-pointer-chains

localization that are yet to be completed.

The runtime must return XR_ERROR_LOCALIZATION_MAP_UNAVAILABLE_ML if the requested is not a map

known to the runtime.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to calling

xrRequestMapLocalizationML

• session must be a valid XrSession handle

• requestInfo must be a pointer to a valid XrMapLocalizationRequestInfoML structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_LOCALIZATION_MAP_UNAVAILABLE_ML

• XR_ERROR_LOCALIZATION_MAP_PERMISSION_DENIED_ML

• XR_ERROR_LOCALIZATION_MAP_FAIL_ML

The XrMapLocalizationRequestInfoML structure is defined as:

1108 | Chapter 12. List of Current Extensions

// Provided by XR_ML_localization_map

typedef struct XrMapLocalizationRequestInfoML {

 XrStructureType type;

 const void* next;

 XrUuidEXT mapUuid;

} XrMapLocalizationRequestInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• mapUuid is the XrUuidEXT of the localization map to request. This mapUuid can be obtained

via xrQueryLocalizationMapsML.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to using

XrMapLocalizationRequestInfoML

• type must be XR_TYPE_MAP_LOCALIZATION_REQUEST_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

12.106.5. Import and Exporting

This API supports exporting and importing of device localization maps. The runtime must not export

AR Cloud maps and must return XR_ERROR_LOCALIZATION_MAP_CANNOT_EXPORT_CLOUD_MAP_ML if the

application attempts to do so.

The format of the exported localization map data can change with OS version updates.

• Backwards compatibility: exports using OS version n should work on OS versions up to and

including OS version n-4.

• Forwards compatibility: exports using OS version n is not guaranteed to work on OS versions > n.

Developers are strongly encouraged to encrypt the exported localization maps.

The xrImportLocalizationMapML function is defined as:

Chapter 12. List of Current Extensions | 1109

#valid-usage-for-structure-pointer-chains

// Provided by XR_ML_localization_map

XrResult xrImportLocalizationMapML(

 XrSession session,

 const XrLocalizationMapImportInfoML* importInfo,

 XrUuidEXT* mapUuid);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• importInfo contains XrLocalizationMapImportInfoML on the localization map to import.

• mapUuid is the XrUuidEXT of the newly imported localization map filled in by the runtime.

The runtime must return XR_ERROR_LOCALIZATION_MAP_ALREADY_EXISTS_ML if the map that is being

imported already exists. The runtime must return XR_ERROR_LOCALIZATION_MAP_INCOMPATIBLE_ML if the

map being imported is not compatible.

xrImportLocalizationMapML may take a long time to complete; as such applications should not call

this from the frame loop.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to calling

xrImportLocalizationMapML

• session must be a valid XrSession handle

• importInfo must be a pointer to a valid XrLocalizationMapImportInfoML structure

• If mapUuid is not NULL, mapUuid must be a pointer to an XrUuidEXT structure

1110 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_LOCALIZATION_MAP_INCOMPATIBLE_ML

• XR_ERROR_LOCALIZATION_MAP_IMPORT_EXPORT_PERMISSION_DENIED_ML

• XR_ERROR_LOCALIZATION_MAP_ALREADY_EXISTS_ML

The XrLocalizationMapImportInfoML structure is defined as:

// Provided by XR_ML_localization_map

typedef struct XrLocalizationMapImportInfoML {

 XrStructureType type;

 const void* next;

 uint32_t size;

 char* data;

} XrLocalizationMapImportInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• size is the size in bytes of the data member.

• data is the byte data of the previously exported localization map.

Chapter 12. List of Current Extensions | 1111

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to using

XrLocalizationMapImportInfoML

• type must be XR_TYPE_LOCALIZATION_MAP_IMPORT_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

• data must be a pointer to an array of size char values

• The size parameter must be greater than 0

Exporting

The xrCreateExportedLocalizationMapML function is defined as:

// Provided by XR_ML_localization_map

XrResult xrCreateExportedLocalizationMapML(

 XrSession session,

 const XrUuidEXT* mapUuid,

 XrExportedLocalizationMapML* map);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• mapUuid is a pointer to the uuid of the map to export.

• map is a pointer to a map handle filled in by the runtime.

xrCreateExportedLocalizationMapML creates a frozen copy of the mapUuid localization map that can be

exported using xrGetExportedLocalizationMapDataML. Applications should call

xrDestroyExportedLocalizationMapML once they are done with the data.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to calling

xrCreateExportedLocalizationMapML

• session must be a valid XrSession handle

• mapUuid must be a pointer to a valid XrUuidEXT structure

• map must be a pointer to an XrExportedLocalizationMapML handle

1112 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_LOCALIZATION_MAP_UNAVAILABLE_ML

• XR_ERROR_LOCALIZATION_MAP_IMPORT_EXPORT_PERMISSION_DENIED_ML

• XR_ERROR_LOCALIZATION_MAP_CANNOT_EXPORT_CLOUD_MAP_ML

The xrDestroyExportedLocalizationMapML function is defined as:

// Provided by XR_ML_localization_map

XrResult xrDestroyExportedLocalizationMapML(

 XrExportedLocalizationMapML map);

Parameter Descriptions

• map is the map to destroy.

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to calling

xrDestroyExportedLocalizationMapML

• map must be a valid XrExportedLocalizationMapML handle

Chapter 12. List of Current Extensions | 1113

Thread Safety

• Access to map, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

The xrGetExportedLocalizationMapDataML function is defined as:

// Provided by XR_ML_localization_map

XrResult xrGetExportedLocalizationMapDataML(

 XrExportedLocalizationMapML map,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

Parameter Descriptions

• map is the map to export.

• bufferCapacityInput is the capacity of the buffer array, or 0 to indicate a request to retrieve

the required capacity.

• bufferCountOutput is filled in by the runtime with the count of bytes written or the required

capacity in the case that bufferCapacityInput is insufficient.

• buffer is an array of bytes filled in by the runtime.

xrGetExportedLocalizationMapDataML may take a long time to complete; as such applications should

not call this from the frame loop.

1114 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_ML_localization_map extension must be enabled prior to calling

xrGetExportedLocalizationMapDataML

• map must be a valid XrExportedLocalizationMapML handle

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

12.106.6. Reference Space

Applications localized into the same localization map can use this reference space to place virtual

content in the same physical location.

XR_REFERENCE_SPACE_TYPE_LOCALIZATION_MAP_ML is the reference space of the current localization map.

Creating a space is done via xrCreateReferenceSpace.

The runtime must emit the XrEventDataReferenceSpaceChangePending event if the reference space is

changing due to a localization map change.

The runtime may move the physical location of the origin of this space as it updates its understanding

of the physical space to maintain consistency without sending the

XrEventDataReferenceSpaceChangePending event.

For a given XrUuidEXT the runtime must keep the position and orientation of this space identical

across more than one XrInstance, including for different users and different hardware.

Chapter 12. List of Current Extensions | 1115

The runtime must create this reference space as gravity-aligned to exclude pitch and roll, with +Y up.

12.106.7. Example code

The following code shows how to list the currently available localization maps.

uint32_t mapCount = 0;

CHK_XR(xrQueryLocalizationMapsML(session, nullptr, 0, &mapCount, nullptr));

std::vector<XrLocalizationMapML> maps(mapCount, {XR_TYPE_LOCALIZATION_MAP_ML});

CHK_XR(xrQueryLocalizationMapsML(session, nullptr, static_cast<uint32_t>(maps.size()),

&mapCount, maps.data()));

This code shows how to poll for localization events.

XrEventDataBuffer event{XR_TYPE_EVENT_DATA_BUFFER};

XrResult result = xrPollEvent(instance, &event);

if (result == XR_SUCCESS) {

 switch (event.type) {

 case XR_TYPE_EVENT_DATA_LOCALIZATION_CHANGED_ML: {

 const auto& localization_event =

 reinterpret_cast<XrEventDataLocalizationChangedML>(&event);

 // Use the data in localization_event.

 break;

 }

 // Handle other events as well as usual.

 }

}

12.106.8. Constants

New Object Types

XR_DEFINE_HANDLE(XrExportedLocalizationMapML)

XrExportedLocalizationMapML represents a frozen exported localization map.

New Enum Constants

XrStructureType enumeration is extended with:

1116 | Chapter 12. List of Current Extensions

• XR_TYPE_LOCALIZATION_MAP_ML

• XR_TYPE_EVENT_DATA_LOCALIZATION_CHANGED_ML

• XR_TYPE_MAP_LOCALIZATION_REQUEST_INFO_ML

• XR_TYPE_LOCALIZATION_MAP_IMPORT_INFO_ML

• XR_TYPE_LOCALIZATION_ENABLE_EVENTS_INFO_ML

XrResult enumeration is extended with:

• XR_ERROR_LOCALIZATION_MAP_INCOMPATIBLE_ML

• XR_ERROR_LOCALIZATION_MAP_UNAVAILABLE_ML

• XR_ERROR_LOCALIZATION_MAP_IMPORT_EXPORT_PERMISSION_DENIED_ML

• XR_ERROR_LOCALIZATION_MAP_PERMISSION_DENIED_ML

• XR_ERROR_LOCALIZATION_MAP_ALREADY_EXISTS_ML

• XR_ERROR_LOCALIZATION_MAP_CANNOT_EXPORT_CLOUD_MAP_ML

• XR_ERROR_LOCALIZATION_MAP_FAIL_ML

New Enums

// Provided by XR_ML_localization_map

typedef enum XrLocalizationMapStateML {

 XR_LOCALIZATION_MAP_STATE_NOT_LOCALIZED_ML = 0,

 XR_LOCALIZATION_MAP_STATE_LOCALIZED_ML = 1,

 XR_LOCALIZATION_MAP_STATE_LOCALIZATION_PENDING_ML = 2,

 XR_LOCALIZATION_MAP_STATE_LOCALIZATION_SLEEPING_BEFORE_RETRY_ML = 3,

 XR_LOCALIZATION_MAP_STATE_MAX_ENUM_ML = 0x7FFFFFFF

} XrLocalizationMapStateML;

Enum Description

XR_LOCALIZATION_MAP_STATE_NOT_LOCALIZED_ML The system is not localized into a map. Features

like Spatial Anchors relying on localization will

not work.

XR_LOCALIZATION_MAP_STATE_LOCALIZED_ML The system is localized into a map.

XR_LOCALIZATION_MAP_STATE_LOCALIZATION_PENDING_M
L

The system is localizing into a map.

XR_LOCALIZATION_MAP_STATE_LOCALIZATION_SLEEPING_
BEFORE_RETRY_ML

Initial localization failed, the system will retry

localization.

Chapter 12. List of Current Extensions | 1117

// Provided by XR_ML_localization_map

typedef enum XrLocalizationMapConfidenceML {

 XR_LOCALIZATION_MAP_CONFIDENCE_POOR_ML = 0,

 XR_LOCALIZATION_MAP_CONFIDENCE_FAIR_ML = 1,

 XR_LOCALIZATION_MAP_CONFIDENCE_GOOD_ML = 2,

 XR_LOCALIZATION_MAP_CONFIDENCE_EXCELLENT_ML = 3,

 XR_LOCALIZATION_MAP_CONFIDENCE_MAX_ENUM_ML = 0x7FFFFFFF

} XrLocalizationMapConfidenceML;

Enum Description

XR_LOCALIZATION_MAP_CONFIDENCE_POOR_ML The localization map has poor confidence,

systems relying on the localization map are likely

to have poor performance.

XR_LOCALIZATION_MAP_CONFIDENCE_FAIR_ML The confidence is fair, current environmental

conditions may adversely affect localization.

XR_LOCALIZATION_MAP_CONFIDENCE_GOOD_ML The confidence is high, persistent content should

be stable.

XR_LOCALIZATION_MAP_CONFIDENCE_EXCELLENT_ML This is a very high-confidence localization,

persistent content will be very stable.

// Provided by XR_ML_localization_map

typedef enum XrLocalizationMapTypeML {

 XR_LOCALIZATION_MAP_TYPE_ON_DEVICE_ML = 0,

 XR_LOCALIZATION_MAP_TYPE_CLOUD_ML = 1,

 XR_LOCALIZATION_MAP_TYPE_MAX_ENUM_ML = 0x7FFFFFFF

} XrLocalizationMapTypeML;

Enum Description

XR_LOCALIZATION_MAP_TYPE_ON_DEVICE_ML The system is localized into an On-Device map,

published anchors are not shared between

different devices.

XR_LOCALIZATION_MAP_TYPE_CLOUD_ML The system is localized into a Cloud Map, anchors

are shared per cloud account settings.

New Enum Constants

XrReferenceSpaceType enumeration is extended with:

• XR_REFERENCE_SPACE_TYPE_LOCALIZATION_MAP_ML

1118 | Chapter 12. List of Current Extensions

New Defines

Version History

• Revision 1, 2023-06-23 (Ron Bessems)

◦ Initial extension description

12.107. XR_ML_marker_understanding

Name String

XR_ML_marker_understanding

Extension Type

Instance extension

Registered Extension Number

139

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-05-18

Contributors

Robbie Bridgewater, Magic Leap

Ron Bessems, Magic Leap

Karthik Kadappan, Magic Leap

12.107.1. Overview

This extension can be used to track and query fiducial markers like QR codes, AprilTag markers, and

ArUco markers, and detect, but not locate, 1D barcodes like Code 128, UPC-A. Permissions

Android applications must have the com.magicleap.permission.MARKER_TRACKING

permission listed in their manifest to use this extension. (protection level: normal)

12.107.2. Creating a Marker Detector

Chapter 12. List of Current Extensions | 1119

// Provided by XR_ML_marker_understanding

XR_DEFINE_HANDLE(XrMarkerDetectorML)

The XrMarkerDetectorML handle represents the resources for detecting one or more markers.

A marker detector handle detects a single type of marker, specified by a value of XrMarkerTypeML. To

detect more than one marker type, a runtime may support creating multiple marker detector handles.

This handle can be used to detect markers using other functions in this extension.

The xrCreateMarkerDetectorML function is defined as:

// Provided by XR_ML_marker_understanding

XrResult xrCreateMarkerDetectorML(

 XrSession session,

 const XrMarkerDetectorCreateInfoML* createInfo,

 XrMarkerDetectorML* markerDetector);

Parameter Descriptions

• session is an XrSession in which the marker detection will be active.

• createInfo is the XrMarkerDetectorCreateInfoML used to specify the marker detection.

• markerDetector is the returned XrMarkerDetectorML handle.

An application creates an XrMarkerDetectorML handle using the xrCreateMarkerDetectorML function.

If createInfo contains mutually exclusive contents, the runtime must return

XR_ERROR_MARKER_DETECTOR_INVALID_CREATE_INFO_ML.

If a runtime is unable to create a marker detector due to some internal limit, the runtime must return

XR_ERROR_LIMIT_REACHED.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling

xrCreateMarkerDetectorML

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrMarkerDetectorCreateInfoML structure

• markerDetector must be a pointer to an XrMarkerDetectorML handle

1120 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_MARKER_DETECTOR_PERMISSION_DENIED_ML

• XR_ERROR_MARKER_DETECTOR_INVALID_CREATE_INFO_ML

The XrMarkerDetectorCreateInfoML structure is defined as:

// Provided by XR_ML_marker_understanding

typedef struct XrMarkerDetectorCreateInfoML {

 XrStructureType type;

 const void* next;

 XrMarkerDetectorProfileML profile;

 XrMarkerTypeML markerType;

} XrMarkerDetectorCreateInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• profile is the marker tracker profile to be used.

• markerType is the detector type that this tracker enables.

Chapter 12. List of Current Extensions | 1121

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to using

XrMarkerDetectorCreateInfoML

• type must be XR_TYPE_MARKER_DETECTOR_CREATE_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrMarkerDetectorAprilTagInfoML, XrMarkerDetectorArucoInfoML,

XrMarkerDetectorCustomProfileInfoML, XrMarkerDetectorSizeInfoML

• profile must be a valid XrMarkerDetectorProfileML value

• markerType must be a valid XrMarkerTypeML value

The possible premade profiles for an XrMarkerDetectorML are specified by the

XrMarkerDetectorProfileML enumeration:

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerDetectorProfileML {

 XR_MARKER_DETECTOR_PROFILE_DEFAULT_ML = 0,

 XR_MARKER_DETECTOR_PROFILE_SPEED_ML = 1,

 XR_MARKER_DETECTOR_PROFILE_ACCURACY_ML = 2,

 XR_MARKER_DETECTOR_PROFILE_SMALL_TARGETS_ML = 3,

 XR_MARKER_DETECTOR_PROFILE_LARGE_FOV_ML = 4,

 XR_MARKER_DETECTOR_PROFILE_CUSTOM_ML = 5,

 XR_MARKER_DETECTOR_PROFILE_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerDetectorProfileML;

1122 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Enumerant Descriptions

• XR_MARKER_DETECTOR_PROFILE_DEFAULT_ML  — Tracker profile that covers standard use cases. If

this does not suite the needs of the application try the other profiles listed below.

• XR_MARKER_DETECTOR_PROFILE_SPEED_ML  — Optimized for speed. Use this profile to reduce the

compute load and increase detection/tracker speed. This can result in low accuracy poses.

• XR_MARKER_DETECTOR_PROFILE_ACCURACY_ML  — Optimized for accuracy. Use this profile to

optimize for accurate marker poses. This can cause increased load on the compute.

• XR_MARKER_DETECTOR_PROFILE_SMALL_TARGETS_ML  — Optimized for small targets. Use this profile

to optimize for markers that are small or for larger markers that need to be detected from

afar.

• XR_MARKER_DETECTOR_PROFILE_LARGE_FOV_ML  — Optimized for FoV. Use this profile to be able to

detect markers across a larger FoV. The marker tracker system will attempt to use multiple

cameras to detect the markers.

• XR_MARKER_DETECTOR_PROFILE_CUSTOM_ML  — Custom Tracker Profile. The application can define

a custom tracker profile. See XrMarkerDetectorCustomProfileInfoML for more details.

The type of marker to be tracked is specified via XrMarkerDetectorML:

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerTypeML {

 XR_MARKER_TYPE_ARUCO_ML = 0,

 XR_MARKER_TYPE_APRIL_TAG_ML = 1,

 XR_MARKER_TYPE_QR_ML = 2,

 XR_MARKER_TYPE_EAN_13_ML = 3,

 XR_MARKER_TYPE_UPC_A_ML = 4,

 XR_MARKER_TYPE_CODE_128_ML = 5,

 XR_MARKER_TYPE_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerTypeML;

Chapter 12. List of Current Extensions | 1123

Enumerant Descriptions

• XR_MARKER_TYPE_ARUCO_ML  — Aruco Marker detection and localization. The marker id of the

Aruco marker is available via xrGetMarkerNumberML.

• XR_MARKER_TYPE_APRIL_TAG_ML  — AprilTag detection and localization. The marker id of the

AprilTags is available via xrGetMarkerNumberML.

• XR_MARKER_TYPE_QR_ML  — QR code detection and localization. The contents of the QR code is

available via xrGetMarkerStringML.

• XR_MARKER_TYPE_EAN_13_ML  — EAN-13, detection only, not locatable. The contents of the

barcode is available via xrGetMarkerStringML.

• XR_MARKER_TYPE_UPC_A_ML  — UPC-A, detection only, not locatable. The contents of the barcode

is available via xrGetMarkerStringML.

• XR_MARKER_TYPE_CODE_128_ML  — Code 128, detection only, not locatable. The contents of the

barcode is available via xrGetMarkerStringML.

An application specifies details of the type of marker to be tracked by chaining an

XrMarkerDetector*InfoML structure to XrMarkerDetectorCreateInfoML. Some of these structure types

must be included to enable detection or locating, depending on the marker type.

The following structures are used by the ArUco, AprilTag, and QR code detectors:

Marker Type Structures

ArUco XrMarkerDetectorArucoInfoML

XrMarkerDetectorSizeInfoML

AprilTag XrMarkerDetectorAprilTagInfoML

XrMarkerDetectorSizeInfoML

QR Code XrMarkerDetectorSizeInfoML

The XrMarkerDetectorSizeInfoML may be optional depending on runtime support for estimating

marker size. A higher localization accuracy may be obtained by specifying the marker size. If the

runtime does not support estimating marker size it must return XR_ERROR_VALIDATION_FAILURE if

XrMarkerDetectorSizeInfoML is omitted.

The XrMarkerDetectorArucoInfoML structure extends XrMarkerDetectorCreateInfoML and is defined

as:

1124 | Chapter 12. List of Current Extensions

https://www.researchgate.net/publication/260251570_Automatic_generation_and_detection_of_highly_reliable_fiducial_markers_under_occlusion
https://april.eecs.umich.edu/media/pdfs/olson2011tags.pdf
https://www.iso.org/standard/62021.html

// Provided by XR_ML_marker_understanding

typedef struct XrMarkerDetectorArucoInfoML {

 XrStructureType type;

 const void* next;

 XrMarkerArucoDictML arucoDict;

} XrMarkerDetectorArucoInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• arucoDict is the ArUco dictionary name from which markers will be detected.

This structure is required by the XR_MARKER_TYPE_ARUCO_ML detector.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to using

XrMarkerDetectorArucoInfoML

• type must be XR_TYPE_MARKER_DETECTOR_ARUCO_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

• arucoDict must be a valid XrMarkerArucoDictML value

The XrMarkerArucoDictML enumeration is defined as:

Chapter 12. List of Current Extensions | 1125

#valid-usage-for-structure-pointer-chains

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerArucoDictML {

 XR_MARKER_ARUCO_DICT_4X4_50_ML = 0,

 XR_MARKER_ARUCO_DICT_4X4_100_ML = 1,

 XR_MARKER_ARUCO_DICT_4X4_250_ML = 2,

 XR_MARKER_ARUCO_DICT_4X4_1000_ML = 3,

 XR_MARKER_ARUCO_DICT_5X5_50_ML = 4,

 XR_MARKER_ARUCO_DICT_5X5_100_ML = 5,

 XR_MARKER_ARUCO_DICT_5X5_250_ML = 6,

 XR_MARKER_ARUCO_DICT_5X5_1000_ML = 7,

 XR_MARKER_ARUCO_DICT_6X6_50_ML = 8,

 XR_MARKER_ARUCO_DICT_6X6_100_ML = 9,

 XR_MARKER_ARUCO_DICT_6X6_250_ML = 10,

 XR_MARKER_ARUCO_DICT_6X6_1000_ML = 11,

 XR_MARKER_ARUCO_DICT_7X7_50_ML = 12,

 XR_MARKER_ARUCO_DICT_7X7_100_ML = 13,

 XR_MARKER_ARUCO_DICT_7X7_250_ML = 14,

 XR_MARKER_ARUCO_DICT_7X7_1000_ML = 15,

 XR_MARKER_ARUCO_DICT_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerArucoDictML;

Supported predefined ArUco dictionary:

1126 | Chapter 12. List of Current Extensions

Enumerant Descriptions

• XR_MARKER_ARUCO_DICT_4X4_50_ML  — 4 by 4 pixel Aruco marker dictionary with 50 IDs.

• XR_MARKER_ARUCO_DICT_4X4_100_ML  — 4 by 4 pixel Aruco marker dictionary with 100 IDs.

• XR_MARKER_ARUCO_DICT_4X4_250_ML  — 4 by 4 pixel Aruco marker dictionary with 250 IDs.

• XR_MARKER_ARUCO_DICT_4X4_1000_ML  — 4 by 4 pixel Aruco marker dictionary with 1000 IDs.

• XR_MARKER_ARUCO_DICT_5X5_50_ML  — 5 by 5 pixel Aruco marker dictionary with 50 IDs.

• XR_MARKER_ARUCO_DICT_5X5_100_ML  — 5 by 5 pixel Aruco marker dictionary with 100 IDs.

• XR_MARKER_ARUCO_DICT_5X5_250_ML  — 5 by 5 pixel Aruco marker dictionary with 250 IDs.

• XR_MARKER_ARUCO_DICT_5X5_1000_ML  — 5 by 5 pixel Aruco marker dictionary with 1000 IDs.

• XR_MARKER_ARUCO_DICT_6X6_50_ML  — 6 by 6 pixel Aruco marker dictionary with 50 IDs.

• XR_MARKER_ARUCO_DICT_6X6_100_ML  — 6 by 6 pixel Aruco marker dictionary with 100 IDs.

• XR_MARKER_ARUCO_DICT_6X6_250_ML  — 6 by 6 pixel Aruco marker dictionary with 250 IDs.

• XR_MARKER_ARUCO_DICT_6X6_1000_ML  — 6 by 6 pixel Aruco marker dictionary with 1000 IDs.

• XR_MARKER_ARUCO_DICT_7X7_50_ML  — 7 by 7 pixel Aruco marker dictionary with 50 IDs.

• XR_MARKER_ARUCO_DICT_7X7_100_ML  — 7 by 7 pixel Aruco marker dictionary with 100 IDs.

• XR_MARKER_ARUCO_DICT_7X7_250_ML  — 7 by 7 pixel Aruco marker dictionary with 250 IDs.

• XR_MARKER_ARUCO_DICT_7X7_1000_ML  — 7 by 7 pixel Aruco marker dictionary with 1000 IDs.

The XrMarkerDetectorAprilTagInfoML structure extends XrMarkerDetectorCreateInfoML and is

defined as:

// Provided by XR_ML_marker_understanding

typedef struct XrMarkerDetectorAprilTagInfoML {

 XrStructureType type;

 const void* next;

 XrMarkerAprilTagDictML aprilTagDict;

} XrMarkerDetectorAprilTagInfoML;

Chapter 12. List of Current Extensions | 1127

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• aprilTagDict AprilTag Dictionary name from which markers will be detected.

This structure is required by the XR_MARKER_TYPE_APRIL_TAG_ML detector.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to using

XrMarkerDetectorAprilTagInfoML

• type must be XR_TYPE_MARKER_DETECTOR_APRIL_TAG_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

• aprilTagDict must be a valid XrMarkerAprilTagDictML value

The XrMarkerAprilTagDictML enumeration is defined as:

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerAprilTagDictML {

 XR_MARKER_APRIL_TAG_DICT_16H5_ML = 0,

 XR_MARKER_APRIL_TAG_DICT_25H9_ML = 1,

 XR_MARKER_APRIL_TAG_DICT_36H10_ML = 2,

 XR_MARKER_APRIL_TAG_DICT_36H11_ML = 3,

 XR_MARKER_APRIL_TAG_DICT_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerAprilTagDictML;

Supported predefined AprilTag dictionary:

1128 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Enumerant Descriptions

• XR_MARKER_APRIL_TAG_DICT_16H5_ML  — 4 by 4 bits, minimum Hamming distance between any

two codes = 5, 30 codes.

• XR_MARKER_APRIL_TAG_DICT_25H9_ML  — 5 by 5 bits, minimum Hamming distance between any

two codes = 9, 35 codes.

• XR_MARKER_APRIL_TAG_DICT_36H10_ML  — 6 by 6 bits, minimum Hamming distance between any

two codes = 10, 2320 codes.

• XR_MARKER_APRIL_TAG_DICT_36H11_ML  — 6 by 6 bits, minimum Hamming distance between any

two codes = 11, 587 codes.

The XrMarkerDetectorSizeInfoML structure extends XrMarkerDetectorCreateInfoML and is defined as:

// Provided by XR_ML_marker_understanding

typedef struct XrMarkerDetectorSizeInfoML {

 XrStructureType type;

 const void* next;

 float markerLength;

} XrMarkerDetectorSizeInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• markerLength is the physical length of one side of a marker.

Pose estimation accuracy depends on the accuracy of the specified markerLength.

This structure is used by XR_MARKER_TYPE_ARUCO_ML, XR_MARKER_TYPE_APRIL_TAG_ML, and

XR_MARKER_TYPE_QR_ML detectors.

Chapter 12. List of Current Extensions | 1129

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to using

XrMarkerDetectorSizeInfoML

• type must be XR_TYPE_MARKER_DETECTOR_SIZE_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

The xrDestroyMarkerDetectorML function is defined as:

// Provided by XR_ML_marker_understanding

XrResult xrDestroyMarkerDetectorML(

 XrMarkerDetectorML markerDetector);

Parameter Descriptions

• markerDetector object to destroy.

Destroy a marker detection handle.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling

xrDestroyMarkerDetectorML

• markerDetector must be a valid XrMarkerDetectorML handle

Thread Safety

• Access to markerDetector, and any child handles, must be externally synchronized

1130 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

Using a custom profile

The XrMarkerDetectorCustomProfileInfoML structure extends XrMarkerDetectorCreateInfoML and is

defined as:

// Provided by XR_ML_marker_understanding

typedef struct XrMarkerDetectorCustomProfileInfoML {

 XrStructureType type;

 const void* next;

 XrMarkerDetectorFpsML fpsHint;

 XrMarkerDetectorResolutionML resolutionHint;

 XrMarkerDetectorCameraML cameraHint;

 XrMarkerDetectorCornerRefineMethodML cornerRefineMethod;

 XrBool32 useEdgeRefinement;

 XrMarkerDetectorFullAnalysisIntervalML fullAnalysisIntervalHint;

} XrMarkerDetectorCustomProfileInfoML;

Chapter 12. List of Current Extensions | 1131

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• fpsHint is a suggestion of the category of frame rate for the detector to use.

• resolutionHint is a suggestion of the category of camera resolution for the detector to use.

• cameraHint is a suggestion of the camera set for the detector to use

• cornerRefineMethod selects a method for corner refinement for ArUco/AprilTag detectors. This

member is ignored for detectors of other marker types.

• useEdgeRefinement specifies whether to run a refinement step that uses marker edges to

generate even more accurate corners, but slow down tracking rate overall by consuming

more compute. It affects ArUco/AprilTag markers only: this member is ignored for detectors

of other marker types.

• fullAnalysisIntervalHint is the suggested interval between fully analyzed frames that

introduce new detected markers, in addition to updating the state of already detected

markers.

All marker detectors share some underlying hardware and resources, and thus not all combinations of

profiles between multiple detectors are possible. If a profile (preset or custom) specified during marker

detector creation is different from those used by existing marker detectors the runtime will attempt to

honor the highest frame rate and fps requested.

CPU load due to marker tracking is a function of the chosen XrMarkerTypeML,

XrMarkerDetectorFpsML, and XrMarkerDetectorResolutionML.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to using

XrMarkerDetectorCustomProfileInfoML

• type must be XR_TYPE_MARKER_DETECTOR_CUSTOM_PROFILE_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

• fpsHint must be a valid XrMarkerDetectorFpsML value

• resolutionHint must be a valid XrMarkerDetectorResolutionML value

• cameraHint must be a valid XrMarkerDetectorCameraML value

• cornerRefineMethod must be a valid XrMarkerDetectorCornerRefineMethodML value

• fullAnalysisIntervalHint must be a valid XrMarkerDetectorFullAnalysisIntervalML value

1132 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

The XrMarkerDetectorFpsML enumeration is defined as:

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerDetectorFpsML {

 XR_MARKER_DETECTOR_FPS_LOW_ML = 0,

 XR_MARKER_DETECTOR_FPS_MEDIUM_ML = 1,

 XR_MARKER_DETECTOR_FPS_HIGH_ML = 2,

 XR_MARKER_DETECTOR_FPS_MAX_ML = 3,

 XR_MARKER_DETECTOR_FPS_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerDetectorFpsML;

Used to hint to the back-end the max frames per second that should be analyzed.

Enumerant Descriptions

• XR_MARKER_DETECTOR_FPS_LOW_ML  — Low FPS.

• XR_MARKER_DETECTOR_FPS_MEDIUM_ML  — Medium FPS.

• XR_MARKER_DETECTOR_FPS_HIGH_ML  — High FPS.

• XR_MARKER_DETECTOR_FPS_MAX_ML  — Max possible FPS.

The XrMarkerDetectorResolutionML enumeration is defined as:

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerDetectorResolutionML {

 XR_MARKER_DETECTOR_RESOLUTION_LOW_ML = 0,

 XR_MARKER_DETECTOR_RESOLUTION_MEDIUM_ML = 1,

 XR_MARKER_DETECTOR_RESOLUTION_HIGH_ML = 2,

 XR_MARKER_DETECTOR_RESOLUTION_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerDetectorResolutionML;

Used to hint to the back-end the resolution that should be used. CPU load is a combination of chosen

XrMarkerTypeML, XrMarkerDetectorFpsML, and XrMarkerDetectorResolutionML.

Chapter 12. List of Current Extensions | 1133

Enumerant Descriptions

• XR_MARKER_DETECTOR_RESOLUTION_LOW_ML  — Low Resolution.

• XR_MARKER_DETECTOR_RESOLUTION_MEDIUM_ML  — Medium Resolution.

• XR_MARKER_DETECTOR_RESOLUTION_HIGH_ML  — High Resolution.

The XrMarkerDetectorCameraML enumeration is defined as:

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerDetectorCameraML {

 XR_MARKER_DETECTOR_CAMERA_RGB_CAMERA_ML = 0,

 XR_MARKER_DETECTOR_CAMERA_WORLD_CAMERAS_ML = 1,

 XR_MARKER_DETECTOR_CAMERA_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerDetectorCameraML;

The XrMarkerDetectorCameraML enum values are used to hint to the camera that should be used. This

is set in the XrMarkerDetectorCustomProfileInfoML.

The RGB camera has a higher resolution than world cameras and is better suited for use cases where

the target to be tracked is small or needs to be detected from far away.

XR_MARKER_DETECTOR_CAMERA_WORLD_CAMERAS_ML make use of multiple cameras to improve accuracy and

increase the FoV for detection.

Enumerant Descriptions

• XR_MARKER_DETECTOR_CAMERA_RGB_CAMERA_ML  — Single RGB camera.

• XR_MARKER_DETECTOR_CAMERA_WORLD_CAMERAS_ML  — One or more world cameras.

The XrMarkerDetectorCornerRefineMethodML enumeration is defined as:

1134 | Chapter 12. List of Current Extensions

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerDetectorCornerRefineMethodML {

 XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_NONE_ML = 0,

 XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_SUBPIX_ML = 1,

 XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_CONTOUR_ML = 2,

 XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_APRIL_TAG_ML = 3,

 XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerDetectorCornerRefineMethodML;

The ArUco/AprilTag detector comes with several corner refinement methods. Choosing the right corner

refinement method has an impact on the accuracy and speed trade-off that comes with each detection

pipeline.

Enumerant Descriptions

• XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_NONE_ML  — No refinement. Inaccurate corners.

• XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_SUBPIX_ML  — Subpixel refinement. Corners have

subpixel coordinates. High detection rate, very fast, reasonable accuracy.

• XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_CONTOUR_ML  — Contour refinement. High detection

rate, fast, reasonable accuracy.

• XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_APRIL_TAG_ML  — AprilTag refinement. Reasonable

detection rate, slowest, but very accurate. Only valid with AprilTags.

The XrMarkerDetectorFullAnalysisIntervalML enumeration is defined as:

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerDetectorFullAnalysisIntervalML {

 XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_MAX_ML = 0,

 XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_FAST_ML = 1,

 XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_MEDIUM_ML = 2,

 XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_SLOW_ML = 3,

 XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerDetectorFullAnalysisIntervalML;

In order to improve performance, the detectors do not always run on the full frame. Full frame

analysis is however necessary to detect new markers that were not detected before. Use this option to

control how often the detector should detect new markers and its impact on tracking performance.

Chapter 12. List of Current Extensions | 1135

Enumerant Descriptions

• XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_MAX_ML  — Detector analyzes every frame fully.

• XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_FAST_ML  — Detector analyzes frame fully very

often.

• XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_MEDIUM_ML  — Detector analyzes frame fully a few

times per second.

• XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_SLOW_ML  — Detector analyzes frame fully about

every second.

12.107.3. Scanning for markers

The xrSnapshotMarkerDetectorML function is defined as:

// Provided by XR_ML_marker_understanding

XrResult xrSnapshotMarkerDetectorML(

 XrMarkerDetectorML markerDetector,

 XrMarkerDetectorSnapshotInfoML* snapshotInfo);

Parameter Descriptions

• markerDetector object to issue a snapshot request to.

• snapshotInfo is a pointer to XrMarkerDetectorSnapshotInfoML containing marker snapshot

parameters.

Collects the latest marker detector state and makes it ready for inspection. This function only

snapshots the non-pose state of markers. Once called, and if a new snapshot is not yet available a

runtime must set the state of the marker detector to XR_MARKER_DETECTOR_STATUS_PENDING_ML. If a new

state is available the runtime must set the state to XR_MARKER_DETECTOR_STATUS_READY_ML. If an error

occurred the runtime must set the state to XR_MARKER_DETECTOR_STATUS_ERROR_ML. The application may

attempt the snapshot again.

Once the application has inspected the state it is interested in it can call this function again and the

state is set to XR_MARKER_DETECTOR_STATUS_PENDING_ML until a new state has been snapshotted. After each

snapshot, only the currently detected markers are available for inspection, though the same marker

may repeatedly be detected across snapshots.

1136 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling

xrSnapshotMarkerDetectorML

• markerDetector must be a valid XrMarkerDetectorML handle

• snapshotInfo must be a pointer to an XrMarkerDetectorSnapshotInfoML structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

The XrMarkerDetectorSnapshotInfoML structure is defined as:

// Provided by XR_ML_marker_understanding

typedef struct XrMarkerDetectorSnapshotInfoML {

 XrStructureType type;

 const void* next;

} XrMarkerDetectorSnapshotInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

Chapter 12. List of Current Extensions | 1137

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to using

XrMarkerDetectorSnapshotInfoML

• type must be XR_TYPE_MARKER_DETECTOR_SNAPSHOT_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

The xrGetMarkerDetectorStateML function is defined as:

// Provided by XR_ML_marker_understanding

XrResult xrGetMarkerDetectorStateML(

 XrMarkerDetectorML markerDetector,

 XrMarkerDetectorStateML* state);

Parameter Descriptions

• markerDetector object to retrieve state information from.

• state points to an XrMarkerDetectorStateML in which the current state of the marker

detector is returned.

xrGetMarkerDetectorStateML is used after calling xrSnapshotMarkerDetectorML to check the current

status of the snapshot in progress. When XrMarkerDetectorStateML::state ==

XR_MARKER_DETECTOR_STATUS_READY_ML, the detector is ready to be queried, while

XR_MARKER_DETECTOR_STATUS_PENDING_ML indicates the snapshot is still in progress.

XR_MARKER_DETECTOR_STATUS_ERROR_ML indicates that the runtime has encountered an error getting a

snapshot for the requested detector, which may require user intervention to solve.

If xrSnapshotMarkerDetectorML has not yet been called for the markerDetector, the runtime must

return XR_ERROR_CALL_ORDER_INVALID.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling

xrGetMarkerDetectorStateML

• markerDetector must be a valid XrMarkerDetectorML handle

• state must be a pointer to an XrMarkerDetectorStateML structure

1138 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_CALL_ORDER_INVALID

The XrMarkerDetectorStateML structure is defined as:

// Provided by XR_ML_marker_understanding

typedef struct XrMarkerDetectorStateML {

 XrStructureType type;

 void* next;

 XrMarkerDetectorStatusML state;

} XrMarkerDetectorStateML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• state is the current state of the marker detector.

Chapter 12. List of Current Extensions | 1139

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to using

XrMarkerDetectorStateML

• type must be XR_TYPE_MARKER_DETECTOR_STATE_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrMarkerDetectorStatusML enumeration is defined as:

// Provided by XR_ML_marker_understanding

typedef enum XrMarkerDetectorStatusML {

 XR_MARKER_DETECTOR_STATUS_PENDING_ML = 0,

 XR_MARKER_DETECTOR_STATUS_READY_ML = 1,

 XR_MARKER_DETECTOR_STATUS_ERROR_ML = 2,

 XR_MARKER_DETECTOR_STATUS_MAX_ENUM_ML = 0x7FFFFFFF

} XrMarkerDetectorStatusML;

The XrMarkerDetectorStatusML enumeration describes the current state of the marker detector. It is

queried via xrGetMarkerDetectorStateML to determine if the marker tracker is currently available for

inspection.

Enumerant Descriptions

• XR_MARKER_DETECTOR_STATUS_PENDING_ML  — The marker detector is working on a new snapshot.

• XR_MARKER_DETECTOR_STATUS_READY_ML  — The marker detector is ready to be inspected.

• XR_MARKER_DETECTOR_STATUS_ERROR_ML  — The marker detector has encountered a fatal error.

12.107.4. Getting Marker Results

The xrGetMarkersML function is defined as:

1140 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_ML_marker_understanding

XrResult xrGetMarkersML(

 XrMarkerDetectorML markerDetector,

 uint32_t markerCapacityInput,

 uint32_t* markerCountOutput,

 XrMarkerML* markers);

Parameter Descriptions

• markerDetector is the detector object to retrieve marker information from.

• markerCapacityInput is the capacity of the markers array or 0 to indicate a request to retrieve

the required capacity.

• markerCountOutput is filled in by the runtime with the count of marker atoms written or the

required capacity in the case that markerCapacityInput is insufficient.

• markers is a pointer to an array of XrMarkerML atoms, but can be NULL if propertyCapacityInput

is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

markers size.

Get the list of current snapshotted marker atoms, must only be called when the state of the detector is

XR_MARKER_DETECTOR_STATUS_READY_ML.

If xrGetMarkerDetectorStateML has not been called and returned XR_MARKER_DETECTOR_STATUS_READY_ML

since the last invocation of xrSnapshotMarkerDetectorML, the runtime must return

XR_ERROR_CALL_ORDER_INVALID.

The returned atoms are only valid while in the XR_MARKER_DETECTOR_STATUS_READY_ML state. The runtime

must return the same atom value for the same uniquely identifiable marker across successive

snapshots. It is unspecified what happens if the detector is observing two markers with the same

identification patterns.

Assuming the same set of markers are in view across several snapshots, the runtime should return the

same set of atoms. An application can use the list of atoms as a simple test for if a particular marker

has gone in or out of view.

Note that XrMarkerML atoms are only usable with the XrMarkerDetectorML that returned them.

This function follows the two-call idiom for filling the markers.

Chapter 12. List of Current Extensions | 1141

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling xrGetMarkersML

• markerDetector must be a valid XrMarkerDetectorML handle

• markerCountOutput must be a pointer to a uint32_t value

• If markerCapacityInput is not 0, markers must be a pointer to an array of markerCapacityInput

XrMarkerML values

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_CALL_ORDER_INVALID

// Provided by XR_ML_marker_understanding

XR_DEFINE_ATOM(XrMarkerML)

The unique marker key used to retrieve the data about detected markers. For an XrMarkerDetectorML

a runtime must use the same value of XrMarkerML each time a marker is detected in a snapshot, but an

application cannot use a cached atom if it was not present in the most recent snapshot.

The xrGetMarkerNumberML function is defined as:

1142 | Chapter 12. List of Current Extensions

// Provided by XR_ML_marker_understanding

XrResult xrGetMarkerNumberML(

 XrMarkerDetectorML markerDetector,

 XrMarkerML marker,

 uint64_t* number);

Parameter Descriptions

• markerDetector is the detector object to retrieve marker information from.

• marker is the marker atom to be examined.

• number points to a float in which the numerical value associated with the marker is returned.

Get the numerical value of a marker, such as the ArUco ID. xrGetMarkerNumberML must only be

called when the state of the detector is XR_MARKER_DETECTOR_STATUS_READY_ML. If the marker does not

have an associated numerical value, the runtime must return

XR_ERROR_MARKER_DETECTOR_INVALID_DATA_QUERY_ML.

If xrGetMarkerDetectorStateML has not been called and returned XR_MARKER_DETECTOR_STATUS_READY_ML

since the last invocation of xrSnapshotMarkerDetectorML, the runtime must return

XR_ERROR_CALL_ORDER_INVALID.

The runtime must return XR_ERROR_MARKER_INVALID_ML if the marker atom is invalid.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling

xrGetMarkerNumberML

• markerDetector must be a valid XrMarkerDetectorML handle

• number must be a pointer to a uint64_t value

Chapter 12. List of Current Extensions | 1143

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_MARKER_INVALID_ML

• XR_ERROR_MARKER_DETECTOR_INVALID_DATA_QUERY_ML

The xrGetMarkerStringML function is defined as:

// Provided by XR_ML_marker_understanding

XrResult xrGetMarkerStringML(

 XrMarkerDetectorML markerDetector,

 XrMarkerML marker,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

1144 | Chapter 12. List of Current Extensions

Parameter Descriptions

• markerDetector is the detector object to retrieve marker information from.

• marker is the marker atom to be examined.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of characters written to buffer (including the

terminating '\0'), or a pointer to the required capacity in the case that bufferCapacityInput is

insufficient.

• buffer is a pointer to an application-allocated buffer that should be filled with the QR code’s

contents. It can be NULL if bufferCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

Get the string value of a marker, such as the QR encoded string. xrCreateMarkerSpaceML must only be

called when the state of the detector is XR_MARKER_DETECTOR_STATUS_READY_ML.

If the marker does not have an associated string value, the runtime must return

XR_ERROR_MARKER_DETECTOR_INVALID_DATA_QUERY_ML.

If xrGetMarkerDetectorStateML has not been called and returned XR_MARKER_DETECTOR_STATUS_READY_ML

since the last invocation of xrSnapshotMarkerDetectorML, the runtime must return

XR_ERROR_CALL_ORDER_INVALID.

This function follows the two-call idiom for filling the buffer.

The runtime must return XR_ERROR_MARKER_INVALID_ML if the marker atom is invalid.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling

xrGetMarkerStringML

• markerDetector must be a valid XrMarkerDetectorML handle

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

Chapter 12. List of Current Extensions | 1145

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_MARKER_INVALID_ML

• XR_ERROR_MARKER_DETECTOR_INVALID_DATA_QUERY_ML

The xrGetMarkerReprojectionErrorML function is defined as:

// Provided by XR_ML_marker_understanding

XrResult xrGetMarkerReprojectionErrorML(

 XrMarkerDetectorML markerDetector,

 XrMarkerML marker,

 float* reprojectionErrorMeters);

Parameter Descriptions

• markerDetector is the detector object to retrieve marker information from.

• marker is the marker atom to be examined.

• reprojectionErrorMeters points to a float in which the estimated reprojection error in meters

is returned.

Get the reprojection error of a marker, only available for certain types of markers. must only be called

when the state of the detector is XR_MARKER_DETECTOR_STATUS_READY_ML.

If xrGetMarkerDetectorStateML has not been called and returned XR_MARKER_DETECTOR_STATUS_READY_ML

since the last invocation of xrSnapshotMarkerDetectorML, the runtime must return

1146 | Chapter 12. List of Current Extensions

XR_ERROR_CALL_ORDER_INVALID.

A high reprojection error means that the estimated pose of the marker does not match well with the 2D

detection on the processed video frame and thus the pose may be inaccurate. The error is given in

meters, representing the displacement between real marker and its estimated pose. This means this is

a normalized number, independent of marker distance or length.

The runtime must return XR_ERROR_MARKER_INVALID_ML if the marker atom is invalid.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling

xrGetMarkerReprojectionErrorML

• markerDetector must be a valid XrMarkerDetectorML handle

• reprojectionErrorMeters must be a pointer to a float value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_MARKER_INVALID_ML

• XR_ERROR_CALL_ORDER_INVALID

The xrGetMarkerLengthML function is defined as:

Chapter 12. List of Current Extensions | 1147

// Provided by XR_ML_marker_understanding

XrResult xrGetMarkerLengthML(

 XrMarkerDetectorML markerDetector,

 XrMarkerML marker,

 float* meters);

Parameter Descriptions

• markerDetector is the detector object to retrieve marker information from.

• marker is the marker atom to be examined.

• meters points to a float in which the size per side of the queried marker is returned.

Get the size of the marker, defined as the length in meters per side. If the application created the

detector while passing in a XrMarkerDetectorSizeInfoML, this query may be redundant.

xrGetMarkerLengthML is primarily intended to query for a runtime estimated size when an

application did not indicate the expected size via XrMarkerDetectorSizeInfoML.

xrGetMarkerLengthML must only be called when the state of the detector is

XR_MARKER_DETECTOR_STATUS_READY_ML. If xrGetMarkerDetectorStateML has not been called and returned

XR_MARKER_DETECTOR_STATUS_READY_ML since the last invocation of xrSnapshotMarkerDetectorML, the

runtime must return XR_ERROR_CALL_ORDER_INVALID.

The runtime must return XR_ERROR_MARKER_INVALID_ML if the marker atom is invalid.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling

xrGetMarkerLengthML

• markerDetector must be a valid XrMarkerDetectorML handle

• meters must be a pointer to a float value

1148 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_MARKER_INVALID_ML

• XR_ERROR_CALL_ORDER_INVALID

12.107.5. Getting an XrSpace from Marker Results

The xrCreateMarkerSpaceML function is defined as:

// Provided by XR_ML_marker_understanding

XrResult xrCreateMarkerSpaceML(

 XrSession session,

 const XrMarkerSpaceCreateInfoML* createInfo,

 XrSpace* space);

Parameter Descriptions

• session is the session that will own the created space.

• createInfo is a pointer to the XrMarkerSpaceCreateInfoML used to specify the space creation

parameters.

• space points to an XrSpace handle in which the resulting space is returned.

Creates an XrSpace from a currently snapshotted marker. The space may still be used even if the

marker is later not in the FOV, or even if the marker detector has been destroyed. In such a scenario,

the XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT and XR_SPACE_LOCATION_POSITION_TRACKED_BIT must be

Chapter 12. List of Current Extensions | 1149

false, but XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT may be

set as appropriate to the last known location.

Once an application has created a space, it may stop calling xrSnapshotMarkerDetectorML, and the

position of the marker must still be updated by the runtime whenever it is aware of a more up to date

location.

If a runtime is unable to spatially locate a snapshotted marker, it may return

XR_ERROR_MARKER_DETECTOR_LOCATE_FAILED_ML. This is most likely to happen if significant time has passed

since the snapshot of markers was acquired, and the marker in question is no longer in the user’s FOV.

Thus, an application should call xrCreateMarkerSpaceML immediately after examining a snapshot,

but should also be prepared to try again if needed.

must only be called when the state of the detector is XR_MARKER_DETECTOR_STATUS_READY_ML.

If xrGetMarkerDetectorStateML has not been called and returned XR_MARKER_DETECTOR_STATUS_READY_ML

since the last invocation of xrSnapshotMarkerDetectorML, the runtime must return

XR_ERROR_CALL_ORDER_INVALID.

session must be the same session that created the XrMarkerSpaceCreateInfoML::markerDetector, else

the runtime must return XR_ERROR_HANDLE_INVALID.

The runtime must return XR_ERROR_MARKER_INVALID_ML if the marker atom is invalid.

The XrSpace origin must be located at the marker’s center. The X-Y plane of the XrSpace must be

aligned with the plane of the marker with the positive Z axis coming out of the marker face.

Figure 16. QR code marker with axis

1150 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to calling

xrCreateMarkerSpaceML

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrMarkerSpaceCreateInfoML structure

• space must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

• XR_ERROR_MARKER_INVALID_ML

• XR_ERROR_MARKER_DETECTOR_LOCATE_FAILED_ML

• XR_ERROR_CALL_ORDER_INVALID

The XrMarkerSpaceCreateInfoML structure is defined as:

Chapter 12. List of Current Extensions | 1151

// Provided by XR_ML_marker_understanding

typedef struct XrMarkerSpaceCreateInfoML {

 XrStructureType type;

 const void* next;

 XrMarkerDetectorML markerDetector;

 XrMarkerML marker;

 XrPosef poseInMarkerSpace;

} XrMarkerSpaceCreateInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• markerDetector is the detector object to retrieve marker information from.

• marker is the marker atom to be examined.

• poseInMarkerSpace is the offset from the marker’s origin of the new XrSpace. The origin of

each marker is located at its center.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to using

XrMarkerSpaceCreateInfoML

• type must be XR_TYPE_MARKER_SPACE_CREATE_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

• markerDetector must be a valid XrMarkerDetectorML handle

12.107.6. Example code for locating a marker

The following example code demonstrates how to detect a marker relative to a local space, and query

the contents.

XrInstance instance; // previously initialized

XrSystemId systemId; // previously initialized

XrSession session; // previously initialized

XrSpace localSpace; // previously initialized, e.g. from

 // XR_REFERENCE_SPACE_TYPE_LOCAL

XrSpace viewSpace; // previously initialized, e.g. from

 // XR_REFERENCE_SPACE_TYPE_VIEW

1152 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// The function pointers are previously initialized using

// xrGetInstanceProcAddr.

PFN_xrCreateMarkerDetectorML xrCreateMarkerDetectorML; // previously initialized

PFN_xrDestroyMarkerDetectorML xrDestroyMarkerDetectorML; // previously initialized

PFN_xrSnapshotMarkerDetectorML xrSnapshotMarkerDetectorML; // previously initialized

PFN_xrGetMarkerDetectorStateML xrGetMarkerDetectorStateML; // previously initialized

PFN_xrGetMarkersML xrGetMarkersML; // previously initialized

PFN_xrGetMarkerReprojectionErrorML xrGetMarkerReprojectionErrorML; // previously

initialized

PFN_xrGetMarkerLengthML xrGetMarkerLengthML; // previously initialized

PFN_xrGetMarkerNumberML xrGetMarkerNumberML; // previously initialized

PFN_xrGetMarkerStringML xrGetMarkerStringML; // previously initialized

PFN_xrCreateMarkerSpaceML xrCreateMarkerSpaceML; // previously initialized

// Initialize marker detector handle

XrMarkerDetectorML markerDetector = XR_NULL_HANDLE;

XrMarkerDetectorCreateInfoML createInfo{ XR_TYPE_MARKER_DETECTOR_CREATE_INFO_ML };

createInfo.profile = XR_MARKER_DETECTOR_PROFILE_CUSTOM_ML;

createInfo.markerType = XR_MARKER_TYPE_ARUCO_ML;

// Passing a non-custom profile allows you to leave next == nullptr

XrMarkerDetectorCustomProfileInfoML customProfile{

XR_TYPE_MARKER_DETECTOR_CUSTOM_PROFILE_INFO_ML };

customProfile.fpsHint = XR_MARKER_DETECTOR_FPS_LOW_ML;

customProfile.resolutionHint = XR_MARKER_DETECTOR_RESOLUTION_HIGH_ML;

customProfile.cameraHint = XR_MARKER_DETECTOR_CAMERA_RGB_CAMERA_ML;

customProfile.cornerRefineMethod = XR_MARKER_DETECTOR_CORNER_REFINE_METHOD_CONTOUR_ML;

customProfile.useEdgeRefinement = true;

customProfile.fullAnalysisIntervalHint =

XR_MARKER_DETECTOR_FULL_ANALYSIS_INTERVAL_SLOW_ML;

createInfo.next = &customProfile;

// Elect to use ArUco marker tracking, providing required dictionary

XrMarkerDetectorArucoInfoML arucoCreateInfo{ XR_TYPE_MARKER_DETECTOR_ARUCO_INFO_ML };

arucoCreateInfo.arucoDict = XR_MARKER_ARUCO_DICT_6X6_100_ML;

customProfile.next = &arucoCreateInfo;

// Specify the size of the marker to improve tracking quality

XrMarkerDetectorSizeInfoML sizeCreateInfo{ XR_TYPE_MARKER_DETECTOR_SIZE_INFO_ML };

sizeCreateInfo.markerLength = 0.2f;

arucoCreateInfo.next = &sizeCreateInfo;

Chapter 12. List of Current Extensions | 1153

CHK_XR(xrCreateMarkerDetectorML(session, &createInfo, &markerDetector));

bool queryRunning = false;

std::unordered_map <uint64_t, XrSpace> markerSpaceMap;

auto processMarkers = [&]() {

 // 2 call idiom to get the markers from runtime

 uint32_t markerCount;

 CHK_XR(xrGetMarkersML(markerDetector, 0, &markerCount, nullptr));

 std::vector<XrMarkerML> markers(markerCount);

 CHK_XR(xrGetMarkersML(markerDetector, markerCount, &markerCount, markers.data()));

 for(uint32_t i = 0; i < markerCount; ++i)

 {

 uint64_t number;

 CHK_XR(xrGetMarkerNumberML(markerDetector, markers[i], &number));

 // Track every marker we find.

 if(markerSpaceMap.find(number) == markerSpaceMap.end())

 {

 // New entry

 XrSpace space;

 XrMarkerSpaceCreateInfoML spaceCreateInfo{

XR_TYPE_MARKER_SPACE_CREATE_INFO_ML };

 spaceCreateInfo.markerDetector = markerDetector;

 spaceCreateInfo.marker = markers[i];

 spaceCreateInfo.poseInMarkerSpace = { {0, 0, 0, 1}, {0, 0, 0} };

 CHK_XR(xrCreateMarkerSpaceML(session, &spaceCreateInfo, &space));

 markerSpaceMap[number] = space;

 }

 // This will not work in this example with ArUco markers, but had we configured

 // a marker with string content such as QR or Code 128, this is how to use it.

 // uint32_t stringSize;

 // CHK_XR(xrGetMarkerStringML(markerDetector, markers[i], 0, &stringSize,

nullptr));

 // std::string markerString(stringSize, ' ');

 // CHK_XR(xrGetMarkerStringML(markerDetector, markers[i], stringSize,

&stringSize, markerString.data()));

 }

};

// Must be initialized to true, otherwise in the loop below, there will

// be an XR_ERROR_CALL_ORDER_INVALID due to xrSnapshotMarkerDetectorML

// not being called first

bool isReadyForSnapshot = true;

1154 | Chapter 12. List of Current Extensions

while (1) {

 // ...

 // For every frame in frame loop

 // ...

 // We have this if/else block set up so that xrSnapshotMarkerDetectorML

 // is not captured per frame since the marker detector snapshot

 // might still be in the midst of being processed by the runtime

 if (isReadyForSnapshot) {

 // Call the first snapshot

 XrMarkerDetectorSnapshotInfoML detectorInfo{

XR_TYPE_MARKER_DETECTOR_SNAPSHOT_INFO_ML };

 CHK_XR(xrSnapshotMarkerDetectorML(markerDetector, &detectorInfo));

 isReadyForSnapshot = false;

 } else {

 XrMarkerDetectorStateML state{ XR_TYPE_MARKER_DETECTOR_STATE_ML };

 CHK_XR(xrGetMarkerDetectorStateML(markerDetector, &state));

 // For simplicity, this example will assume that the marker detector will not

 // be in an erroneous state

 if (state.state == XR_MARKER_DETECTOR_STATUS_READY_ML) {

 processMarkers();

 isReadyForSnapshot = true;

 }

 }

 // Draw the markers as needed from markerSpaceMap.

 // drawMarkers(markerSpaceMap);

 // ...

 // ...

}

// Cleanup

CHK_XR(xrDestroyMarkerDetectorML(markerDetector));

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_MARKER_UNDERSTANDING_PROPERTIES_ML

• XR_TYPE_MARKER_DETECTOR_CREATE_INFO_ML

• XR_TYPE_MARKER_DETECTOR_ARUCO_INFO_ML

• XR_TYPE_MARKER_DETECTOR_APRIL_TAG_INFO_ML

• XR_TYPE_MARKER_DETECTOR_CUSTOM_PROFILE_INFO_ML

• XR_TYPE_MARKER_DETECTOR_SNAPSHOT_INFO_ML

Chapter 12. List of Current Extensions | 1155

• XR_TYPE_MARKER_DETECTOR_STATE_ML

• XR_TYPE_MARKER_SPACE_CREATE_INFO_ML

the XrResult enumeration is extended with:

• XR_ERROR_MARKER_DETECTOR_PERMISSION_DENIED_ML

• XR_ERROR_MARKER_DETECTOR_LOCATE_FAILED_ML

• XR_ERROR_MARKER_DETECTOR_INVALID_DATA_QUERY_ML

• XR_ERROR_MARKER_DETECTOR_INVALID_CREATE_INFO_ML

• XR_ERROR_MARKER_INVALID_ML

New Structures

The XrSystemMarkerUnderstandingPropertiesML structure is defined as:

// Provided by XR_ML_marker_understanding

typedef struct XrSystemMarkerUnderstandingPropertiesML {

 XrStructureType type;

 void* next;

 XrBool32 supportsMarkerUnderstanding;

} XrSystemMarkerUnderstandingPropertiesML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• supportsMarkerUnderstanding indicates whether marker detection and tracking is supported

by this system.

Valid Usage (Implicit)

• The XR_ML_marker_understanding extension must be enabled prior to using

XrSystemMarkerUnderstandingPropertiesML

• type must be XR_TYPE_SYSTEM_MARKER_UNDERSTANDING_PROPERTIES_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

Version History

1156 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

• Revision 1, 2023-05-18 (Robbie Bridgewater)

◦ Initial extension skeleton

12.108. XR_ML_user_calibration

Name String

XR_ML_user_calibration

Extension Type

Instance extension

Registered Extension Number

473

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-08-21

Contributors

Karthik Kadappan, Magic Leap

Ron Bessems, Magic Leap

12.108.1. Overview

This extension can be used to determine how well the device is calibrated for the current user of the

device. The extension provides two events for this purpose:

1. Headset Fit: Provides the quality of the fit of the headset on the user.

2. Eye Calibration: Provides the quality of the user’s eye calibration.

12.108.2. Enabling user calibration events

User calibration events are requested by calling xrEnableUserCalibrationEventsML. When this

function is called, each of the user calibration events must be posted to the event queue once,

regardless of whether there were any changes to the event data. This allows the application to

synchronize with the current state.

The xrEnableUserCalibrationEventsML function is defined as:

Chapter 12. List of Current Extensions | 1157

// Provided by XR_ML_user_calibration

XrResult xrEnableUserCalibrationEventsML(

 XrInstance instance,

 const XrUserCalibrationEnableEventsInfoML* enableInfo);

Parameter Descriptions

• instance is a handle to an XrInstance previously created with xrCreateInstance.

• enableInfo is the XrUserCalibrationEnableEventsInfoML that enables or disables user

calibration events.

Valid Usage (Implicit)

• The XR_ML_user_calibration extension must be enabled prior to calling

xrEnableUserCalibrationEventsML

• instance must be a valid XrInstance handle

• enableInfo must be a pointer to a valid XrUserCalibrationEnableEventsInfoML structure

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

The XrUserCalibrationEnableEventsInfoML structure is defined as:

1158 | Chapter 12. List of Current Extensions

// Provided by XR_ML_user_calibration

typedef struct XrUserCalibrationEnableEventsInfoML {

 XrStructureType type;

 const void* next;

 XrBool32 enabled;

} XrUserCalibrationEnableEventsInfoML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• enabled is the flag to enable/disable user calibration events.

Valid Usage (Implicit)

• The XR_ML_user_calibration extension must be enabled prior to using

XrUserCalibrationEnableEventsInfoML

• type must be XR_TYPE_USER_CALIBRATION_ENABLE_EVENTS_INFO_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

12.108.3. Headset Fit Events

Receiving an XrEventDataHeadsetFitChangedML event from xrPollEvent notifies the application of

headset fit changes. To enable these events call xrEnableUserCalibrationEventsML and set

XrUserCalibrationEnableEventsInfoML::enabled to true. Headset fit is evaluated continuously and the

runtime must post events anytime it detects a change in the headset fit state.

The XrEventDataHeadsetFitChangedML structure is defined as:

// Provided by XR_ML_user_calibration

typedef struct XrEventDataHeadsetFitChangedML {

 XrStructureType type;

 const void* next;

 XrHeadsetFitStatusML status;

 XrTime time;

} XrEventDataHeadsetFitChangedML;

Chapter 12. List of Current Extensions | 1159

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• status is the XrHeadsetFitStatusML headset fit status.

• time is the XrTime at which the status was captured.

Valid Usage (Implicit)

• The XR_ML_user_calibration extension must be enabled prior to using

XrEventDataHeadsetFitChangedML

• type must be XR_TYPE_EVENT_DATA_HEADSET_FIT_CHANGED_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

// Provided by XR_ML_user_calibration

typedef enum XrHeadsetFitStatusML {

 XR_HEADSET_FIT_STATUS_UNKNOWN_ML = 0,

 XR_HEADSET_FIT_STATUS_NOT_WORN_ML = 1,

 XR_HEADSET_FIT_STATUS_GOOD_FIT_ML = 2,

 XR_HEADSET_FIT_STATUS_BAD_FIT_ML = 3,

 XR_HEADSET_FIT_STATUS_MAX_ENUM_ML = 0x7FFFFFFF

} XrHeadsetFitStatusML;

Enum Description

XR_HEADSET_FIT_STATUS_UNKNOWN_ML Headset fit status not available for unknown

reason.

XR_HEADSET_FIT_STATUS_NOT_WORN_ML Headset not worn.

XR_HEADSET_FIT_STATUS_GOOD_FIT_ML Good fit.

XR_HEADSET_FIT_STATUS_BAD_FIT_ML Bad fit.

12.108.4. Eye Calibration Events

Receiving an XrEventDataEyeCalibrationChangedML event from xrPollEvent notifies the application of

eye calibration changes. To enable these events call xrEnableUserCalibrationEventsML and set

XrUserCalibrationEnableEventsInfoML::enabled to true. Runtime must post events anytime it detects a

change in the eye calibration. The user needs to calibrate the eyes using the system app provided for

1160 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

this. There is no support for in-app eye calibration in this extension.

The XrEventDataEyeCalibrationChangedML structure is defined as:

// Provided by XR_ML_user_calibration

typedef struct XrEventDataEyeCalibrationChangedML {

 XrStructureType type;

 const void* next;

 XrEyeCalibrationStatusML status;

} XrEventDataEyeCalibrationChangedML;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• status is the XrEyeCalibrationStatusML eye calibration status.

Valid Usage (Implicit)

• The XR_ML_user_calibration extension must be enabled prior to using

XrEventDataEyeCalibrationChangedML

• type must be XR_TYPE_EVENT_DATA_EYE_CALIBRATION_CHANGED_ML

• next must be NULL or a valid pointer to the next structure in a structure chain

// Provided by XR_ML_user_calibration

typedef enum XrEyeCalibrationStatusML {

 XR_EYE_CALIBRATION_STATUS_UNKNOWN_ML = 0,

 XR_EYE_CALIBRATION_STATUS_NONE_ML = 1,

 XR_EYE_CALIBRATION_STATUS_COARSE_ML = 2,

 XR_EYE_CALIBRATION_STATUS_FINE_ML = 3,

 XR_EYE_CALIBRATION_STATUS_MAX_ENUM_ML = 0x7FFFFFFF

} XrEyeCalibrationStatusML;

Enum Description

XR_EYE_CALIBRATION_STATUS_UNKNOWN_ML Eye calibration status not available for unknown

reason.

Chapter 12. List of Current Extensions | 1161

#valid-usage-for-structure-pointer-chains

Enum Description

XR_EYE_CALIBRATION_STATUS_NONE_ML User has not performed the eye calibration step.

Use system provided app to perform eye

calibration.

XR_EYE_CALIBRATION_STATUS_COARSE_ML Eye calibration is of lower accuracy.

XR_EYE_CALIBRATION_STATUS_FINE_ML Eye calibration is of higher accuracy.

12.108.5. New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_EVENT_DATA_HEADSET_FIT_CHANGED_ML

• XR_TYPE_EVENT_DATA_EYE_CALIBRATION_CHANGED_ML

• XR_TYPE_USER_CALIBRATION_ENABLE_EVENTS_INFO_ML

Version History

• Revision 1, 2023-06-20 (Karthik Kadappan)

◦ Initial extension description

12.109. XR_MND_headless

Name String

XR_MND_headless

Extension Type

Instance extension

Registered Extension Number

43

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2019-10-22

IP Status

No known IP claims.

1162 | Chapter 12. List of Current Extensions

Contributors

Rylie Pavlik, Collabora

Overview

Some applications may wish to access XR interaction devices without presenting any image content on

the display(s). This extension provides a mechanism for writing such an application using the OpenXR

API. It modifies the specification in the following ways, without adding any new named entities.

• When this extension is enabled, an application may call xrCreateSession without an

XrGraphicsBinding* structure in its next chain. In this case, the runtime must create a "headless"

session that does not interact with the display.

• In a headless session, the session state should proceed to XR_SESSION_STATE_READY directly from

XR_SESSION_STATE_IDLE.

• In a headless session, the XrSessionBeginInfo::primaryViewConfigurationType must be ignored and

may be 0.

• In a headless session, the session state proceeds to XR_SESSION_STATE_SYNCHRONIZED, then

XR_SESSION_STATE_VISIBLE and XR_SESSION_STATE_FOCUSED, after the call to xrBeginSession. The

application does not need to call xrWaitFrame, xrBeginFrame, or xrEndFrame, unlike with non-

headless sessions.

• In a headless session, xrEnumerateSwapchainFormats must return XR_SUCCESS but enumerate 0

formats.

• xrWaitFrame must set XrFrameState::shouldRender to XR_FALSE in a headless session. The VISIBLE

and FOCUSED states are only used for their input-related semantics, not their rendering-related

semantics, and these functions are permitted to allow minimal change between headless and non-

headless code if desired.

Because xrWaitFrame is not required, an application using a headless session should sleep

periodically to avoid consuming all available system resources in a busy-wait loop.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

• Not all devices with which this would be useful fit into one of the existing XrFormFactor values.

Chapter 12. List of Current Extensions | 1163

Version History

• Revision 1, 2019-07-25 (Rylie Pavlik, Collabora, Ltd.)

◦ Initial version reflecting Monado prototype.

• Revision 2, 2019-10-22 (Rylie Pavlik, Collabora, Ltd.)

◦ Clarify that xrWaitFrame is permitted and should set shouldRender to false.

12.110. XR_MSFT_composition_layer_reprojection

Name String

XR_MSFT_composition_layer_reprojection

Extension Type

Instance extension

Registered Extension Number

67

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-06-20

IP Status

No known IP claims.

Contributors

Zonglin Wu, Microsoft

Bryce Hutchings, Microsoft

Alex Turner, Microsoft

Yin Li, Microsoft

Overview

This extension enables an application to provide additional reprojection information for a projection

composition layer to help the runtime produce better hologram stability and visual quality.

First, the application uses xrEnumerateReprojectionModesMSFT to inspect what reprojection mode the

view configuration supports.

1164 | Chapter 12. List of Current Extensions

The xrEnumerateReprojectionModesMSFT function returns the supported reprojection modes of the

view configuration.

// Provided by XR_MSFT_composition_layer_reprojection

XrResult xrEnumerateReprojectionModesMSFT(

 XrInstance instance,

 XrSystemId systemId,

 XrViewConfigurationType viewConfigurationType,

 uint32_t modeCapacityInput,

 uint32_t* modeCountOutput,

 XrReprojectionModeMSFT* modes);

Parameter Descriptions

• instance is the instance from which systemId was retrieved.

• systemId is the XrSystemId whose reprojection modes will be enumerated.

• viewConfigurationType is the XrViewConfigurationType to enumerate.

• modeCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve the

required capacity.

• modeCountOutput is a pointer to the count of the array, or a pointer to the required capacity in

the case that modeCapacityInput is insufficient.

• modes is a pointer to an application-allocated array that will be filled with the

XrReprojectionModeMSFT values that are supported by the runtime. It can be NULL if

modeCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

modes size.

Valid Usage (Implicit)

• The XR_MSFT_composition_layer_reprojection extension must be enabled prior to calling

xrEnumerateReprojectionModesMSFT

• instance must be a valid XrInstance handle

• viewConfigurationType must be a valid XrViewConfigurationType value

• modeCountOutput must be a pointer to a uint32_t value

• If modeCapacityInput is not 0, modes must be a pointer to an array of modeCapacityInput

XrReprojectionModeMSFT values

Chapter 12. List of Current Extensions | 1165

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED

• XR_ERROR_SYSTEM_INVALID

A system may support different sets of reprojection modes for different view configuration types.

Then, the application can provide reprojection mode for the projection composition layer to inform

the runtime that the XR experience may benefit from the provided reprojection mode.

An XrCompositionLayerReprojectionInfoMSFT structure can be added to the next chain of

XrCompositionLayerProjection structure when calling xrEndFrame.

// Provided by XR_MSFT_composition_layer_reprojection

typedef struct XrCompositionLayerReprojectionInfoMSFT {

 XrStructureType type;

 const void* next;

 XrReprojectionModeMSFT reprojectionMode;

} XrCompositionLayerReprojectionInfoMSFT;

Parameter Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• reprojectionMode is an XrReprojectionModeMSFT enum providing a hint to the reprojection

mode to the corresponding projection layer.

1166 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_MSFT_composition_layer_reprojection extension must be enabled prior to using

XrCompositionLayerReprojectionInfoMSFT

• type must be XR_TYPE_COMPOSITION_LAYER_REPROJECTION_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• reprojectionMode must be a valid XrReprojectionModeMSFT value

When the application chained this structure when calling xrEndFrame, the reprojectionMode must be

one of the supported XrReprojectionModeMSFT returned by xrEnumerateReprojectionModesMSFT

function for the corresponding XrViewConfigurationType. Otherwise, the runtime must return error

XR_ERROR_REPROJECTION_MODE_UNSUPPORTED_MSFT on the xrEndFrame function.

The runtime must only use the given information for the corresponding frame in xrEndFrame

function, and it must not affect other frames.

The XrReprojectionModeMSFT describes the reprojection mode of a projection composition layer.

// Provided by XR_MSFT_composition_layer_reprojection

typedef enum XrReprojectionModeMSFT {

 XR_REPROJECTION_MODE_DEPTH_MSFT = 1,

 XR_REPROJECTION_MODE_PLANAR_FROM_DEPTH_MSFT = 2,

 XR_REPROJECTION_MODE_PLANAR_MANUAL_MSFT = 3,

 XR_REPROJECTION_MODE_ORIENTATION_ONLY_MSFT = 4,

 XR_REPROJECTION_MODE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrReprojectionModeMSFT;

Chapter 12. List of Current Extensions | 1167

#valid-usage-for-structure-pointer-chains

• XR_REPROJECTION_MODE_DEPTH_MSFT indicates the corresponding layer may benefit from per-

pixel depth reprojection provided by XrCompositionLayerDepthInfoKHR to the projection

layer. This mode is typically used for world-locked content that should remain physically

stationary as the user walks around.

• XR_REPROJECTION_MODE_PLANAR_FROM_DEPTH_MSFT indicates the corresponding layer may benefit

from planar reprojection and the plane can be calculated from the corresponding depth

information provided by XrCompositionLayerDepthInfoKHR to the projection layer. This

mode works better when the application knows the content is mostly placed on a plane.

• XR_REPROJECTION_MODE_PLANAR_MANUAL_MSFT indicates that the corresponding layer may benefit

from planar reprojection. The application can customize the plane by chaining an

XrCompositionLayerReprojectionPlaneOverrideMSFT structure to the same layer. The app

can also omit the plane override, indicating the runtime should use the default reprojection

plane settings. This mode works better when the application knows the content is mostly

placed on a plane, or when it cannot afford to submit depth information.

• XR_REPROJECTION_MODE_ORIENTATION_ONLY_MSFT indicates the layer should be stabilized only for

changes to orientation, ignoring positional changes. This mode works better for body-locked

content that should follow the user as they walk around, such as 360-degree video.

When the application passes XR_REPROJECTION_MODE_DEPTH_MSFT or

XR_REPROJECTION_MODE_PLANAR_FROM_DEPTH_MSFT mode, it should also provide the depth buffer for the

corresponding layer using XrCompositionLayerDepthInfoKHR in XR_KHR_composition_layer_depth

extension. However, if the application does not submit this depth buffer, the runtime must apply a

runtime defined fallback reprojection mode, and must not fail the xrEndFrame function because of

this missing depth.

When the application passes XR_REPROJECTION_MODE_PLANAR_MANUAL_MSFT or

XR_REPROJECTION_MODE_ORIENTATION_ONLY_MSFT mode, it should avoid providing a depth buffer for the

corresponding layer using XrCompositionLayerDepthInfoKHR in XR_KHR_composition_layer_depth

extension. However, if the application does submit this depth buffer, the runtime must not fail the

xrEndFrame function because of this unused depth data.

When the application is confident that overriding the reprojection plane can benefit hologram

stability, it can provide XrCompositionLayerReprojectionPlaneOverrideMSFT structure to further help

the runtime to fine tune the reprojection details.

An application can add an XrCompositionLayerReprojectionPlaneOverrideMSFT structure to the next

chain of XrCompositionLayerProjection structure.

The runtime must only use the given plane override for the corresponding frame in xrEndFrame

function, and it must not affect other frames.

1168 | Chapter 12. List of Current Extensions

// Provided by XR_MSFT_composition_layer_reprojection

typedef struct XrCompositionLayerReprojectionPlaneOverrideMSFT {

 XrStructureType type;

 const void* next;

 XrVector3f position;

 XrVector3f normal;

 XrVector3f velocity;

} XrCompositionLayerReprojectionPlaneOverrideMSFT;

Parameter Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• position describes the position of the focus plane represented in the corresponding

XrCompositionLayerProjection::space.

• normal is a unit vector describes the focus plane normal represented in the corresponding

XrCompositionLayerProjection::space.

• velocity is a velocity of the position in the corresponding XrCompositionLayerProjection

::space measured in meters per second.

A runtime must return XR_ERROR_VALIDATION_FAILURE if the normal vector deviates by more than 1%

from unit length.

Adding a reprojection plane override may benefit various reprojection modes including

XR_REPROJECTION_MODE_DEPTH_MSFT, XR_REPROJECTION_MODE_PLANAR_FROM_DEPTH_MSFT and

XR_REPROJECTION_MODE_PLANAR_MANUAL_MSFT.

When application choose XR_REPROJECTION_MODE_ORIENTATION_ONLY_MSFT mode, the reprojection plane

override may be ignored by the runtime.

Valid Usage (Implicit)

• The XR_MSFT_composition_layer_reprojection extension must be enabled prior to using

XrCompositionLayerReprojectionPlaneOverrideMSFT

• type must be XR_TYPE_COMPOSITION_LAYER_REPROJECTION_PLANE_OVERRIDE_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

New Object Types

New Flag Types

Chapter 12. List of Current Extensions | 1169

#valid-usage-for-structure-pointer-chains

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_REPROJECTION_INFO_MSFT

• XR_TYPE_COMPOSITION_LAYER_REPROJECTION_PLANE_OVERRIDE_MSFT

XrResult enumeration is extended with:

• XR_ERROR_REPROJECTION_MODE_UNSUPPORTED_MSFT

New Enums

• XrReprojectionModeMSFT

New Structures

• XrCompositionLayerReprojectionInfoMSFT

• XrCompositionLayerReprojectionPlaneOverrideMSFT

New Functions

• xrEnumerateReprojectionModesMSFT

Issues

Version History

• Revision 1, 2020-06-20 (Yin Li)

◦ Initial extension proposal

12.111. XR_MSFT_controller_model

Name String

XR_MSFT_controller_model

Extension Type

Instance extension

Registered Extension Number

56

Revision

2

1170 | Chapter 12. List of Current Extensions

Extension and Version Dependencies

OpenXR 1.0

Contributors

Bryce Hutchings, Microsoft

Darryl Gough, Microsoft

Yin Li, Microsoft

Lachlan Ford, Microsoft

Overview

This extension provides a mechanism to load a GLTF model for controllers. An application can render

the controller model using the real time pose input from controller’s grip action pose and animate

controller parts representing the user’s interactions, such as pressing a button, or pulling a trigger.

This extension supports any controller interaction profile that supports …/grip/pose. The returned

controller model represents the physical controller held in the user’s hands, and it may be different

from the current interaction profile.

Query controller model key

xrGetControllerModelKeyMSFT retrieves the XrControllerModelKeyMSFT for a controller. This model key

may later be used to retrieve the model data.

The xrGetControllerModelKeyMSFT function is defined as:

// Provided by XR_MSFT_controller_model

XrResult xrGetControllerModelKeyMSFT(

 XrSession session,

 XrPath topLevelUserPath,

 XrControllerModelKeyStateMSFT* controllerModelKeyState);

Parameter Descriptions

• session is the specified XrSession.

• topLevelUserPath is the top level user path corresponding to the controller render model

being queried (e.g. /user/hand/left or /user/hand/right).

• controllerModelKeyState is a pointer to the XrControllerModelKeyStateMSFT to write the

model key state to.

Chapter 12. List of Current Extensions | 1171

Valid Usage (Implicit)

• The XR_MSFT_controller_model extension must be enabled prior to calling

xrGetControllerModelKeyMSFT

• session must be a valid XrSession handle

• controllerModelKeyState must be a pointer to an XrControllerModelKeyStateMSFT structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_PATH_UNSUPPORTED

• XR_ERROR_PATH_INVALID

• XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT

The XrControllerModelKeyStateMSFT structure is defined as:

// Provided by XR_MSFT_controller_model

typedef struct XrControllerModelKeyStateMSFT {

 XrStructureType type;

 void* next;

 XrControllerModelKeyMSFT modelKey;

} XrControllerModelKeyStateMSFT;

1172 | Chapter 12. List of Current Extensions

Parameter Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• modelKey is the model key corresponding to the controller render model being queried.

The modelKey value for the session represents a unique controller model that can be retrieved from

xrLoadControllerModelMSFT function. Therefore, the application can use modelKey to cache the

returned data from xrLoadControllerModelMSFT for the session.

A modelKey value of XR_NULL_CONTROLLER_MODEL_KEY_MSFT, represents an invalid model key and

indicates there is no controller model yet available. The application should keep calling

xrGetControllerModelKeyMSFT because the model may become available at a later point.

The returned modelKey value depends on an active action binding to the corresponding …/grip/pose of

the controller. Therefore, the application must have provided a valid action set containing an action

for …/grip/pose, and have successfully completed an xrSyncActions call, in order to obtain a valid

modelKey.

Valid Usage (Implicit)

• The XR_MSFT_controller_model extension must be enabled prior to using

XrControllerModelKeyStateMSFT

• type must be XR_TYPE_CONTROLLER_MODEL_KEY_STATE_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

// Provided by XR_MSFT_controller_model

#define XR_NULL_CONTROLLER_MODEL_KEY_MSFT 0

XR_NULL_CONTROLLER_MODEL_KEY_MSFT defines an invalid model key value.

// Provided by XR_MSFT_controller_model

XR_DEFINE_ATOM(XrControllerModelKeyMSFT)

The controller model key used to retrieve the data for the renderable controller model and associated

properties and state.

Chapter 12. List of Current Extensions | 1173

#valid-usage-for-structure-pointer-chains

Load controller model as glTF 2.0 data

Once the application obtained a valid modelKey, it can use the xrLoadControllerModelMSFT function to

load the GLB data for the controller model.

The xrLoadControllerModelMSFT function loads the controller model as a byte buffer containing a

binary form of glTF (a.k.a GLB file format) for the controller. The binary glTF data must conform to

glTF 2.0 format defined at https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html.

// Provided by XR_MSFT_controller_model

XrResult xrLoadControllerModelMSFT(

 XrSession session,

 XrControllerModelKeyMSFT modelKey,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 uint8_t* buffer);

Parameter Descriptions

• session is the specified XrSession.

• modelKey is the model key corresponding to the controller render model being queried.

• bufferCapacityInput is the capacity of the buffer array, or 0 to indicate a request to retrieve

the required capacity.

• bufferCountOutput filled in by the runtime with the count of elements in buffer array, or

returns the required capacity in the case that bufferCapacityInput is insufficient.

• buffer is a pointer to an application-allocated array of the model for the device that will be

filled with the uint8_t values by the runtime. It can be NULL if bufferCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

The xrLoadControllerModelMSFT function may be a slow operation and therefore should be invoked

from a non-timing critical thread.

If the input modelKey is invalid, i.e. it is XR_NULL_CONTROLLER_MODEL_KEY_MSFT or not a key

returned from XrControllerModelKeyStateMSFT, the runtime must return

XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT.

1174 | Chapter 12. List of Current Extensions

https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html

Valid Usage (Implicit)

• The XR_MSFT_controller_model extension must be enabled prior to calling

xrLoadControllerModelMSFT

• session must be a valid XrSession handle

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

uint8_t values

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT

Animate controller parts

The application can animate parts of the glTF model to represent the user’s interaction on the

controller, such as pressing a button or pulling a trigger.

Once the application loads the glTF model of the controller, it should first get

XrControllerModelPropertiesMSFT containing an array of node names in the glTF model that can be

animated. These properties, including the order of these node names in the array, must be immutable

for a valid modelKey in the session, and therefore can be cached. In the frame loop, the application

should get XrControllerModelStateMSFT to retrieve the pose of each node representing user’s

interaction on the controller and apply the transform to the corresponding node in the glTF model

using application’s glTF renderer.

The xrGetControllerModelPropertiesMSFT function returns the controller model properties for a given

Chapter 12. List of Current Extensions | 1175

modelKey.

// Provided by XR_MSFT_controller_model

XrResult xrGetControllerModelPropertiesMSFT(

 XrSession session,

 XrControllerModelKeyMSFT modelKey,

 XrControllerModelPropertiesMSFT* properties);

Parameter Descriptions

• session is the specified XrSession.

• modelKey is a valid model key obtained from XrControllerModelKeyStateMSFT

• properties is an XrControllerModelPropertiesMSFT returning the properties of the controller

model

The runtime must return the same data in XrControllerModelPropertiesMSFT for a valid modelKey.

Therefore, the application can cache the returned XrControllerModelPropertiesMSFT using modelKey

and reuse the data for each frame.

If the input modelKey is invalid, i.e. it is XR_NULL_CONTROLLER_MODEL_KEY_MSFT or not a key

returned from XrControllerModelKeyStateMSFT, the runtime must return

XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT.

Valid Usage (Implicit)

• The XR_MSFT_controller_model extension must be enabled prior to calling

xrGetControllerModelPropertiesMSFT

• session must be a valid XrSession handle

• properties must be a pointer to an XrControllerModelPropertiesMSFT structure

1176 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT

The XrControllerModelPropertiesMSFT structure describes the properties of a controller model

including an array of XrControllerModelNodePropertiesMSFT.

// Provided by XR_MSFT_controller_model

typedef struct XrControllerModelPropertiesMSFT {

 XrStructureType type;

 void* next;

 uint32_t nodeCapacityInput;

 uint32_t nodeCountOutput;

 XrControllerModelNodePropertiesMSFT* nodeProperties;

} XrControllerModelPropertiesMSFT;

Chapter 12. List of Current Extensions | 1177

Parameter Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• nodeCapacityInput is the capacity of the nodeProperties array, or 0 to indicate a request to

retrieve the required capacity.

• nodeCountOutput filled in by the runtime with the count of elements in nodeProperties array,

or returns the required capacity in the case that nodeCapacityInput is insufficient.

• nodeProperties is a pointer to an application-allocated array that will be filled with the

XrControllerModelNodePropertiesMSFT values. It can be NULL if nodeCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

nodeProperties size.

Valid Usage (Implicit)

• The XR_MSFT_controller_model extension must be enabled prior to using

XrControllerModelPropertiesMSFT

• type must be XR_TYPE_CONTROLLER_MODEL_PROPERTIES_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If nodeCapacityInput is not 0, nodeProperties must be a pointer to an array of

nodeCapacityInput XrControllerModelNodePropertiesMSFT structures

The XrControllerModelNodePropertiesMSFT structure describes properties of animatable nodes,

including the node name and parent node name to locate a glTF node in the controller model that can

be animated based on user’s interactions on the controller.

// Provided by XR_MSFT_controller_model

typedef struct XrControllerModelNodePropertiesMSFT {

 XrStructureType type;

 void* next;

 char parentNodeName[XR_MAX_CONTROLLER_MODEL_NODE_NAME_SIZE_MSFT];

 char nodeName[XR_MAX_CONTROLLER_MODEL_NODE_NAME_SIZE_MSFT];

} XrControllerModelNodePropertiesMSFT;

1178 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• parentNodeName is the name of the parent node in the provided glTF file. The parent name

may be empty if it should not be used to locate this node.

• nodeName is the name of this node in the provided glTF file.

The node can be located in the glTF node hierarchy by finding the node(s) with the matching node

name and parent node name. If the parentNodeName is empty, the matching will be solely based on the

nodeName.

If there are multiple nodes in the glTF file matches the condition above, the first matching node using

depth-first traversal in the glTF scene should be animated and the rest should be ignored.

The runtime must not return any nodeName or parentNodeName that does not match any glTF nodes in the

corresponding controller model.

Valid Usage (Implicit)

• The XR_MSFT_controller_model extension must be enabled prior to using

XrControllerModelNodePropertiesMSFT

• type must be XR_TYPE_CONTROLLER_MODEL_NODE_PROPERTIES_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• parentNodeName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_CONTROLLER_MODEL_NODE_NAME_SIZE_MSFT

• nodeName must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_CONTROLLER_MODEL_NODE_NAME_SIZE_MSFT

The xrGetControllerModelStateMSFT function returns the current state of the controller model

representing user’s interaction to the controller, such as pressing a button or pulling a trigger.

// Provided by XR_MSFT_controller_model

XrResult xrGetControllerModelStateMSFT(

 XrSession session,

 XrControllerModelKeyMSFT modelKey,

 XrControllerModelStateMSFT* state);

Chapter 12. List of Current Extensions | 1179

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• session is the specified XrSession.

• modelKey is the model key corresponding to the controller model being queried.

• state is a pointer to XrControllerModelNodeStateMSFT returns the current controller model

state.

The runtime may return different state for a model key after each call to xrSyncActions, which

represents the latest state of the user interactions.

If the input modelKey is invalid, i.e. it is XR_NULL_CONTROLLER_MODEL_KEY_MSFT or not a key

returned from XrControllerModelKeyStateMSFT, the runtime must return

XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT.

Valid Usage (Implicit)

• The XR_MSFT_controller_model extension must be enabled prior to calling

xrGetControllerModelStateMSFT

• session must be a valid XrSession handle

• state must be a pointer to an XrControllerModelStateMSFT structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT

The XrControllerModelStateMSFT structure describes the state of a controller model, including an

1180 | Chapter 12. List of Current Extensions

array of XrControllerModelNodeStateMSFT.

// Provided by XR_MSFT_controller_model

typedef struct XrControllerModelStateMSFT {

 XrStructureType type;

 void* next;

 uint32_t nodeCapacityInput;

 uint32_t nodeCountOutput;

 XrControllerModelNodeStateMSFT* nodeStates;

} XrControllerModelStateMSFT;

Parameter Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• nodeCapacityInput is the capacity of the nodeStates array, or 0 to indicate a request to retrieve

the required capacity.

• nodeCountOutput filled in by the runtime with the count of elements in nodeStates array, or

returns the required capacity in the case that nodeCapacityInput is insufficient.

• nodeStates is a pointer to an application-allocated array that will be filled with the

XrControllerModelNodeStateMSFT values. It can be NULL if nodeCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

nodeStates size.

Valid Usage (Implicit)

• The XR_MSFT_controller_model extension must be enabled prior to using

XrControllerModelStateMSFT

• type must be XR_TYPE_CONTROLLER_MODEL_STATE_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If nodeCapacityInput is not 0, nodeStates must be a pointer to an array of nodeCapacityInput

XrControllerModelNodeStateMSFT structures

The XrControllerModelNodeStateMSFT structure describes the state of a node in a controller model.

Chapter 12. List of Current Extensions | 1181

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_controller_model

typedef struct XrControllerModelNodeStateMSFT {

 XrStructureType type;

 void* next;

 XrPosef nodePose;

} XrControllerModelNodeStateMSFT;

Parameter Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• nodePose is an XrPosef of the node in its parent node space.

The state is corresponding to the glTF node identified by the XrControllerModelNodePropertiesMSFT

::nodeName and XrControllerModelNodePropertiesMSFT::parentNodeName of the node property at the

same array index in the XrControllerModelPropertiesMSFT::nodeProperties in

XrControllerModelPropertiesMSFT.

The nodePose is based on the user’s interaction on the controller at the latest xrSyncActions,

represented as the XrPosef of the node in it’s parent node space.

Valid Usage (Implicit)

• The XR_MSFT_controller_model extension must be enabled prior to using

XrControllerModelNodeStateMSFT

• type must be XR_TYPE_CONTROLLER_MODEL_NODE_STATE_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

New Object Types

New Flag Types

New Enum Constants

• XR_MAX_CONTROLLER_MODEL_NODE_NAME_SIZE_MSFT

• XR_TYPE_CONTROLLER_MODEL_NODE_PROPERTIES_MSFT

• XR_TYPE_CONTROLLER_MODEL_PROPERTIES_MSFT

• XR_TYPE_CONTROLLER_MODEL_NODE_STATE_MSFT

• XR_TYPE_CONTROLLER_MODEL_STATE_MSFT

1182 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

• XR_ERROR_CONTROLLER_MODEL_KEY_INVALID_MSFT

New Enums

New Structures

• XrControllerModelKeyStateMSFT

• XrControllerModelNodePropertiesMSFT

• XrControllerModelPropertiesMSFT

• XrControllerModelNodeStateMSFT

• XrControllerModelStateMSFT

New Functions

• xrGetControllerModelKeyMSFT

• xrLoadControllerModelMSFT

• xrGetControllerModelPropertiesMSFT

• xrGetControllerModelStateMSFT

Issues

Version History

• Revision 1, 2020-03-12 (Yin Li)

◦ Initial extension description

• Revision 2, 2020-08-12 (Bryce Hutchings)

◦ Remove a possible error condition

12.112. XR_MSFT_first_person_observer

Name String

XR_MSFT_first_person_observer

Extension Type

Instance extension

Registered Extension Number

55

Revision

1

Chapter 12. List of Current Extensions | 1183

Extension and Version Dependencies

OpenXR 1.0

and

XR_MSFT_secondary_view_configuration

Last Modified Date

2020-05-02

IP Status

No known IP claims.

Contributors

Yin Li, Microsoft

Zonglin Wu, Microsoft

Alex Turner, Microsoft

12.112.1. Overview

This first-person observer view configuration enables the runtime to request the application to render

an additional first-person view of the scene to be composed onto video frames being captured from a

camera attached to and moved with the primary display on the form factor, which is generally for

viewing on a 2D screen by an external observer. This first-person camera will be facing forward with

roughly the same perspective as the primary views, and so the application should render its view to

show objects that surround the user and avoid rendering the user’s body avatar. The runtime is

responsible for composing the application’s rendered observer view onto the camera frame based on

the chosen environment blend mode for this view configuration, as this extension does not provide the

associated camera frame to the application.

This extension requires the XR_MSFT_secondary_view_configuration extension to also be enabled.

XR_VIEW_CONFIGURATION_TYPE_SECONDARY_MONO_FIRST_PERSON_OBSERVER_MSFT requires one element in

XrViewConfigurationProperties and one projection in each XrCompositionLayerProjection layer.

Runtimes should only make this view configuration active when the user or the application activates a

runtime feature that will make use of the resulting composed camera frames, for example taking a

mixed reality photo. Otherwise, the runtime should leave this view configuration inactive to avoid the

application wasting CPU and GPU resources rendering unnecessarily for this extra view.

Because this is a first-person view of the scene, applications can share a common culling and instanced

rendering pass with their primary view renders. However, the view state (pose and FOV) of the first-

person observer view will not match the view state of any of the primary views. Applications enabling

this view configuration must call xrLocateViews a second time each frame to explicitly query the view

state for the XR_VIEW_CONFIGURATION_TYPE_SECONDARY_MONO_FIRST_PERSON_OBSERVER_MSFT configuration.

This secondary view configuration may support a different set of environment blend modes than the

primary view configuration. For example, a device that only supports additive blending for its primary

1184 | Chapter 12. List of Current Extensions

display may support alpha-blending when composing the first-person observer view with camera

frames. The application should render with assets and shaders that produce output acceptable to both

the primary and observer view configuration’s environment blend modes when sharing render passes

across both view configurations.

New Object Types

New Flag Types

New Enum Constants

XrViewConfigurationType enumeration is extended with:

• XR_VIEW_CONFIGURATION_TYPE_SECONDARY_MONO_FIRST_PERSON_OBSERVER_MSFT

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2019-07-30 (Yin LI)

◦ Initial extension description

12.113. XR_MSFT_hand_interaction

Name String

XR_MSFT_hand_interaction

Extension Type

Instance extension

Registered Extension Number

51

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Chapter 12. List of Current Extensions | 1185

API Interactions

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Contributors

Yin Li, Microsoft

Lachlan Ford, Microsoft

Alex Turner, Microsoft

Overview

This extension defines a new interaction profile for near interactions and far interactions driven by

directly-tracked hands.

Hand interaction profile

Interaction profile path:

• /interaction_profiles/microsoft/hand_interaction

Note

The interaction profile path /interaction_profiles/microsoft/hand_interaction defined here does

not follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/microsoft/hand_interaction_msft, to allow for modifications

when promoted to a KHR extension or the core specification.

Valid for top level user path:

• /user/hand/left

• /user/hand/right

This interaction profile provides basic pose and actions for near and far interactions using hand

tracking input.

Supported component paths:

• …/input/select/value

• …/input/squeeze/value

• …/input/aim/pose

• …/input/grip/pose

1186 | Chapter 12. List of Current Extensions

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

The application should use the …/select/value and …/aim/pose paths for far hand interactions, such as

using a virtual laser pointer to target and click a button on the wall. Here, …/select/value can be used as

either a boolean or float action type, where the value XR_TRUE or 1.0f represents a closed hand shape.

The application should use the …/squeeze/value and …/grip/pose for near hand interactions, such as

picking up a virtual object within the user’s reach from a table. Here, …/squeeze/value can be used as

either a boolean or float action type, where the value XR_TRUE or 1.0f represents a closed hand shape.

The runtime may trigger both "select" and "squeeze" actions for the same hand gesture if the user’s

hand gesture is able to trigger both near and far interactions. The application should not assume they

are as independent as two buttons on a controller.

New Object Types

New Flag Types

New Enum Constants

New Enums

Chapter 12. List of Current Extensions | 1187

New Structures

New Functions

Issues

Version History

• Revision 1, 2019-09-16 (Yin Li)

◦ Initial extension description

12.114. XR_MSFT_hand_tracking_mesh

Name String

XR_MSFT_hand_tracking_mesh

Extension Type

Instance extension

Registered Extension Number

53

Revision

4

Extension and Version Dependencies

OpenXR 1.0

and

XR_EXT_hand_tracking

Last Modified Date

2021-10-20

IP Status

No known IP claims.

Contributors

Yin Li, Microsoft

Lachlan Ford, Microsoft

Alex Turner, Microsoft

Bryce Hutchings, Microsoft

12.114.1. Overview

This extension enables hand tracking inputs represented as a dynamic hand mesh. It enables

1188 | Chapter 12. List of Current Extensions

applications to render hands in XR experiences and interact with virtual objects using hand meshes.

The application must also enable the XR_EXT_hand_tracking extension in order to use this extension.

Inspect system capability

An application can inspect whether the system is capable of hand tracking meshes by chaining an

XrSystemHandTrackingMeshPropertiesMSFT structure to the XrSystemProperties when calling

xrGetSystemProperties.

// Provided by XR_MSFT_hand_tracking_mesh

typedef struct XrSystemHandTrackingMeshPropertiesMSFT {

 XrStructureType type;

 void* next;

 XrBool32 supportsHandTrackingMesh;

 uint32_t maxHandMeshIndexCount;

 uint32_t maxHandMeshVertexCount;

} XrSystemHandTrackingMeshPropertiesMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsHandTrackingMesh is an XrBool32, indicating if current system is capable of hand

tracking mesh input.

• maxHandMeshIndexCount is a uint32_t returns the maximum count of indices that will be

returned from the hand tracker.

• maxHandMeshVertexCount is a uint32_t returns the maximum count of vertices that will be

returned from the hand tracker.

If a runtime returns XR_FALSE for supportsHandTrackingMesh, the system does not support hand tracking

mesh input, and therefore must return XR_ERROR_FEATURE_UNSUPPORTED from

xrCreateHandMeshSpaceMSFT and xrUpdateHandMeshMSFT. The application should avoid using

hand mesh functionality when supportsHandTrackingMesh is XR_FALSE.

If a runtime returns XR_TRUE for supportsHandTrackingMesh, the system supports hand tracking mesh

input. In this case, the runtime must return a positive number for maxHandMeshIndexCount and

maxHandMeshVertexCount. An application should use maxHandMeshIndexCount and maxHandMeshVertexCount

to preallocate hand mesh buffers and reuse them in their render loop when calling

xrUpdateHandMeshMSFT every frame.

Chapter 12. List of Current Extensions | 1189

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to using

XrSystemHandTrackingMeshPropertiesMSFT

• type must be XR_TYPE_SYSTEM_HAND_TRACKING_MESH_PROPERTIES_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

12.114.2. Obtain a hand tracker handle

An application first creates an XrHandTrackerEXT handle using the xrCreateHandTrackerEXT function

for each hand. The application can also reuse the same XrHandTrackerEXT handle previously created

for the hand joint tracking. When doing so, the hand mesh input is always in sync with hand joints

input with the same XrHandTrackerEXT handle.

12.114.3. Create a hand mesh space

The application creates a hand mesh space using function xrCreateHandMeshSpaceMSFT. The position

and normal of hand mesh vertices will be represented in this space.

// Provided by XR_MSFT_hand_tracking_mesh

XrResult xrCreateHandMeshSpaceMSFT(

 XrHandTrackerEXT handTracker,

 const XrHandMeshSpaceCreateInfoMSFT* createInfo,

 XrSpace* space);

Parameter Descriptions

• handTracker is an XrHandTrackerEXT handle previously created with the

xrCreateHandTrackerEXT function.

• createInfo is the XrHandMeshSpaceCreateInfoMSFT used to specify the hand mesh space.

• space is the returned XrSpace handle of the new hand mesh space.

A hand mesh space location is specified by runtime preference to effectively represent hand mesh

vertices without unnecessary transformations. For example, an optical hand tracking system can

define the hand mesh space origin at the depth camera’s optical center.

An application should create separate hand mesh space handles for each hand to retrieve the

corresponding hand mesh data. The runtime may use the lifetime of this hand mesh space handle to

manage the underlying device resources. Therefore, the application should destroy the hand mesh

1190 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

handle after it is finished using the hand mesh.

The hand mesh space can be related to other spaces in the session, such as view reference space, or

grip action space from the /interaction_profiles/khr/simple_controller interaction profile. The hand

mesh space may be not locatable when the hand is outside of the tracking range, or if focus is removed

from the application. In these cases, the runtime must not set the

XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT bits on calls to

xrLocateSpace with the hand mesh space, and the application should avoid using the returned poses

or query for hand mesh data.

If the underlying XrHandTrackerEXT is destroyed, the runtime must continue to support

xrLocateSpace using the hand mesh space, and it must return space location with

XR_SPACE_LOCATION_POSITION_VALID_BIT and XR_SPACE_LOCATION_ORIENTATION_VALID_BIT unset.

The application may create a mesh space for the reference hand by setting

XrHandPoseTypeInfoMSFT::handPoseType to XR_HAND_POSE_TYPE_REFERENCE_OPEN_PALM_MSFT. Hand mesh

spaces for the reference hand must only be locatable in reference to mesh spaces or joint spaces of the

reference hand.

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to calling

xrCreateHandMeshSpaceMSFT

• handTracker must be a valid XrHandTrackerEXT handle

• createInfo must be a pointer to a valid XrHandMeshSpaceCreateInfoMSFT structure

• space must be a pointer to an XrSpace handle

Chapter 12. List of Current Extensions | 1191

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

// Provided by XR_MSFT_hand_tracking_mesh

typedef struct XrHandMeshSpaceCreateInfoMSFT {

 XrStructureType type;

 const void* next;

 XrHandPoseTypeMSFT handPoseType;

 XrPosef poseInHandMeshSpace;

} XrHandMeshSpaceCreateInfoMSFT;

1192 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• handPoseType is an XrHandPoseTypeMSFT used to specify the type of hand this mesh is

tracking. Indices and vertices returned from xrUpdateHandMeshMSFT for a hand type will

be relative to the corresponding space create with the same hand type.

• poseInHandMeshSpace is an XrPosef defining the position and orientation of the new space’s

origin within the natural reference frame of the hand mesh space.

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to using

XrHandMeshSpaceCreateInfoMSFT

• type must be XR_TYPE_HAND_MESH_SPACE_CREATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• handPoseType must be a valid XrHandPoseTypeMSFT value

12.114.4. Locate the hand mesh

The application can use the xrUpdateHandMeshMSFT function to retrieve the hand mesh at a given

timestamp. The hand mesh’s vertices position and normal are represented in the hand mesh space

created by xrCreateHandMeshSpaceMSFT with a same XrHandTrackerEXT.

// Provided by XR_MSFT_hand_tracking_mesh

XrResult xrUpdateHandMeshMSFT(

 XrHandTrackerEXT handTracker,

 const XrHandMeshUpdateInfoMSFT* updateInfo,

 XrHandMeshMSFT* handMesh);

Chapter 12. List of Current Extensions | 1193

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• handTracker is an XrHandTrackerEXT handle previously created with

xrCreateHandTrackerEXT.

• updateInfo is an XrHandMeshUpdateInfoMSFT which contains information to query the hand

mesh.

• handMesh is an XrHandMeshMSFT structure to receive the updates of hand mesh data.

The application should preallocate the index buffer and vertex buffer in XrHandMeshMSFT using the

XrSystemHandTrackingMeshPropertiesMSFT::maxHandMeshIndexCount and

XrSystemHandTrackingMeshPropertiesMSFT::maxHandMeshVertexCount from the

XrSystemHandTrackingMeshPropertiesMSFT returned from the xrGetSystemProperties function.

The application should preallocate the XrHandMeshMSFT structure and reuse it for each frame so as

to reduce the copies of data when underlying tracking data is not changed. The application should use

XrHandMeshMSFT::indexBufferChanged and XrHandMeshMSFT::vertexBufferChanged in

XrHandMeshMSFT to detect changes and avoid unnecessary data processing when there is no changes.

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to calling

xrUpdateHandMeshMSFT

• handTracker must be a valid XrHandTrackerEXT handle

• updateInfo must be a pointer to a valid XrHandMeshUpdateInfoMSFT structure

• handMesh must be a pointer to an XrHandMeshMSFT structure

1194 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_TIME_INVALID

• XR_ERROR_FEATURE_UNSUPPORTED

A XrHandMeshUpdateInfoMSFT describes the information to update a hand mesh.

// Provided by XR_MSFT_hand_tracking_mesh

typedef struct XrHandMeshUpdateInfoMSFT {

 XrStructureType type;

 const void* next;

 XrTime time;

 XrHandPoseTypeMSFT handPoseType;

} XrHandMeshUpdateInfoMSFT;

Chapter 12. List of Current Extensions | 1195

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• time is the XrTime that describes the time for which the application wishes to query the hand

mesh state.

• handPoseType is an XrHandPoseTypeMSFT which describes the type of hand pose of the hand

mesh to update.

A runtime may not maintain a full history of hand mesh data, therefore the returned

XrHandMeshMSFT might return data that’s not exactly corresponding to the time input. If the runtime

cannot return any tracking data for the given time at all, it must set XrHandMeshMSFT::isActive to

XR_FALSE for the call to xrUpdateHandMeshMSFT. Otherwise, if the runtime returns

XrHandMeshMSFT::isActive as XR_TRUE, the data in XrHandMeshMSFT must be valid to use.

An application can choose different handPoseType values to query the hand mesh data. The returned

hand mesh must be consistent to the hand joint space location on the same XrHandTrackerEXT when

using the same XrHandPoseTypeMSFT.

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to using

XrHandMeshUpdateInfoMSFT

• type must be XR_TYPE_HAND_MESH_UPDATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• handPoseType must be a valid XrHandPoseTypeMSFT value

A XrHandMeshMSFT structure contains data and buffers to receive updates of hand mesh tracking

data from xrUpdateHandMeshMSFT function.

1196 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_hand_tracking_mesh

typedef struct XrHandMeshMSFT {

 XrStructureType type;

 void* next;

 XrBool32 isActive;

 XrBool32 indexBufferChanged;

 XrBool32 vertexBufferChanged;

 XrHandMeshIndexBufferMSFT indexBuffer;

 XrHandMeshVertexBufferMSFT vertexBuffer;

} XrHandMeshMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• isActive is an XrBool32 indicating if the current hand tracker is active.

• indexBufferChanged is an XrBool32 indicating if the indexBuffer content was changed during

the update.

• vertexBufferChanged is an XrBool32 indicating if the vertexBuffer content was changed during

the update.

• indexBuffer is an XrHandMeshIndexBufferMSFT returns the index buffer of the tracked hand

mesh.

• vertexBuffer is an XrHandMeshVertexBufferMSFT returns the vertex buffer of the tracked

hand mesh.

When the returned isActive value is XR_FALSE, the runtime indicates the hand is not actively tracked,

for example, the hand is outside of sensor’s range, or the input focus is taken away from the

application. When the runtime returns XR_FALSE to isActive, it must set indexBufferChanged and

vertexBufferChanged to XR_FALSE, and must not change the content in indexBuffer or vertexBuffer,

When the returned isActive value is XR_TRUE, the hand tracking mesh represented in indexBuffer and

vertexBuffer are updated to the latest data of the XrHandMeshUpdateInfoMSFT::time given to the

xrUpdateHandMeshMSFT function. The runtime must set indexBufferChanged and vertexBufferChanged

to reflect whether the index or vertex buffer’s content are changed during the update. In this way, the

application can easily avoid unnecessary processing of buffers when there’s no new data.

The hand mesh is represented in triangle lists and each triangle’s vertices are in clockwise order when

looking from outside of the hand. When hand tracking is active, i.e. when isActive is returned as

XR_TRUE, the returned indexBuffer.indexCountOutput value must be positive and multiple of 3, and

vertexBuffer.vertexCountOutput value must be equal to or larger than 3.

Chapter 12. List of Current Extensions | 1197

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to using XrHandMeshMSFT

• type must be XR_TYPE_HAND_MESH_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• indexBuffer must be a valid XrHandMeshIndexBufferMSFT structure

• vertexBuffer must be a valid XrHandMeshVertexBufferMSFT structure

A XrHandMeshIndexBufferMSFT structure includes an array of indices describing the triangle list of a

hand mesh.

// Provided by XR_MSFT_hand_tracking_mesh

typedef struct XrHandMeshIndexBufferMSFT {

 uint32_t indexBufferKey;

 uint32_t indexCapacityInput;

 uint32_t indexCountOutput;

 uint32_t* indices;

} XrHandMeshIndexBufferMSFT;

Member Descriptions

• indexBufferKey is a uint32_t serving as the key of the returned index buffer content or 0 to

indicate a request to retrieve the latest indices regardless of existing content in indices.

• indexCapacityInput is a positive uint32_t describes the capacity of the indices array.

• indexCountOutput is a uint32_t returned by the runtime with the count of indices written in

indices.

• indices is an array of indices filled in by the runtime, specifying the indices of the triangles

list in the vertex buffer.

An application should preallocate the indices array using the

XrSystemHandTrackingMeshPropertiesMSFT::maxHandMeshIndexCount returned from

xrGetSystemProperties. In this way, the application can avoid possible insufficient buffer sizees for

each query, and therefore avoid reallocating memory each frame.

The input indexCapacityInput must not be 0, and indices must not be NULL, or else the runtime must

return XR_ERROR_VALIDATION_FAILURE on calls to the xrUpdateHandMeshMSFT function.

If the input indexCapacityInput is not sufficient to contain all output indices, the runtime must return

1198 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

XR_ERROR_SIZE_INSUFFICIENT on calls to xrUpdateHandMeshMSFT, not change the content in

indexBufferKey and indices, and return 0 for indexCountOutput.

If the input indexCapacityInput is equal to or larger than the

XrSystemHandTrackingMeshPropertiesMSFT::maxHandMeshIndexCount returned from

xrGetSystemProperties, the runtime must not return XR_ERROR_SIZE_INSUFFICIENT error on

xrUpdateHandMeshMSFT because of insufficient index buffer size.

If the input indexBufferKey is 0, the capacity of indices array is sufficient, and hand mesh tracking is

active, the runtime must return the latest non-zero indexBufferKey, and fill in indexCountOutput and

indices.

If the input indexBufferKey is not 0, the runtime can either return without changing indexCountOutput

or content in indices, and return XR_FALSE for XrHandMeshMSFT::indexBufferChanged indicating the

indices are not changed; or return a new non-zero indexBufferKey and fill in latest data in

indexCountOutput and indices, and return XR_TRUE for XrHandMeshMSFT::indexBufferChanged indicating

the indices are updated to a newer version.

An application can keep the XrHandMeshIndexBufferMSFT structure for each frame in a frame loop

and use the returned indexBufferKey to identify different triangle list topology described in indices.

The application can therefore avoid unnecessary processing of indices, such as coping them to GPU

memory.

The runtime must return the same indexBufferKey for the same XrHandTrackerEXT at a given time,

regardless of the input XrHandPoseTypeMSFT in XrHandMeshUpdateInfoMSFT. This ensures the index

buffer has the same mesh topology and allows the application to reason about vertices across different

hand pose types. For example, the application can build a procedure to perform UV mapping on

vertices of a hand mesh using XR_HAND_POSE_TYPE_REFERENCE_OPEN_PALM_MSFT, and apply the resultant UV

data on vertices to the mesh returned from the same hand tracker using

XR_HAND_POSE_TYPE_TRACKED_MSFT.

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to using

XrHandMeshIndexBufferMSFT

• If indexCapacityInput is not 0, indices must be a pointer to an array of indexCapacityInput

uint32_t values

A XrHandMeshVertexBufferMSFT structure includes an array of vertices of the hand mesh represented

in the hand mesh space.

Chapter 12. List of Current Extensions | 1199

// Provided by XR_MSFT_hand_tracking_mesh

typedef struct XrHandMeshVertexBufferMSFT {

 XrTime vertexUpdateTime;

 uint32_t vertexCapacityInput;

 uint32_t vertexCountOutput;

 XrHandMeshVertexMSFT* vertices;

} XrHandMeshVertexBufferMSFT;

Member Descriptions

• vertexUpdateTime is an XrTime representing the time when the runtime receives the vertex

buffer content or 0 to indicate a request to retrieve latest vertices regardless of existing

content in vertices.

• vertexCapacityInput is a positive uint32_t describes the capacity of the vertices array.

• vertexCountOutput is a uint32_t filled in by the runtime with the count of vertices written in

vertices.

• vertices is an array of XrHandMeshVertexMSFT filled in by the runtime, specifying the

vertices of the hand mesh including the position and normal vector in the hand mesh space.

An application should preallocate the vertices array using the

XrSystemHandTrackingMeshPropertiesMSFT::maxHandMeshVertexCount returned from

xrGetSystemProperties. In this way, the application can avoid possible insufficient buffer sizes for each

query, and therefore avoid reallocating memory each frame.

The input vertexCapacityInput must not be 0, and vertices must not be NULL, or else the runtime must

return XR_ERROR_VALIDATION_FAILURE on calls to the xrUpdateHandMeshMSFT function.

If the input vertexCapacityInput is not sufficient to contain all output vertices, the runtime must return

XR_ERROR_SIZE_INSUFFICIENT on calls to the xrUpdateHandMeshMSFT, do not change content in

vertexUpdateTime and vertices, and return 0 for vertexCountOutput.

If the input vertexCapacityInput is equal to or larger than the

XrSystemHandTrackingMeshPropertiesMSFT::maxHandMeshVertexCount returned from

xrGetSystemProperties, the runtime must not return XR_ERROR_SIZE_INSUFFICIENT on calls to the

xrUpdateHandMeshMSFT because of insufficient vertex buffer size.

If the input vertexUpdateTime is 0, and the capacity of the vertices array is sufficient, and hand mesh

tracking is active, the runtime must return the latest non-zero vertexUpdateTime, and fill in the

vertexCountOutput and vertices fields.

If the input vertexUpdateTime is not 0, the runtime can either return without changing

vertexCountOutput or the content in vertices, and return XR_FALSE for XrHandMeshMSFT

::vertexBufferChanged indicating the vertices are not changed; or return a new non-zero

1200 | Chapter 12. List of Current Extensions

vertexUpdateTime and fill in latest data in vertexCountOutput and vertices and return XR_TRUE for

XrHandMeshMSFT::vertexBufferChanged indicating the vertices are updated to a newer version.

An application can keep the XrHandMeshVertexBufferMSFT structure for each frame in frame loop

and use the returned vertexUpdateTime to detect the changes of the content in vertices. The application

can therefore avoid unnecessary processing of vertices, such as coping them to GPU memory.

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to using

XrHandMeshVertexBufferMSFT

• If vertexCapacityInput is not 0, vertices must be a pointer to an array of vertexCapacityInput

XrHandMeshVertexMSFT structures

Each XrHandMeshVertexMSFT includes the position and normal of a vertex of a hand mesh.

// Provided by XR_MSFT_hand_tracking_mesh

typedef struct XrHandMeshVertexMSFT {

 XrVector3f position;

 XrVector3f normal;

} XrHandMeshVertexMSFT;

Member Descriptions

• position is an XrVector3f structure representing the position of the vertex in the hand mesh

space, measured in meters.

• normal is an XrVector3f structure representing the unweighted normal of the triangle surface

at the vertex as a unit vector in hand mesh space.

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to using

XrHandMeshVertexMSFT

12.114.5. Example code for hand mesh tracking

Following example code demos preallocating hand mesh buffers and updating the hand mesh in

rendering loop

Chapter 12. List of Current Extensions | 1201

XrInstance instance; // previously initialized

XrSystemId systemId; // previously initialized

XrSession session; // previously initialized

// Inspect hand tracking mesh system properties

XrSystemHandTrackingMeshPropertiesMSFT

handMeshSystemProperties{XR_TYPE_SYSTEM_HAND_TRACKING_MESH_PROPERTIES_MSFT};

XrSystemProperties systemProperties{XR_TYPE_SYSTEM_PROPERTIES,

&handMeshSystemProperties};

CHK_XR(xrGetSystemProperties(instance, systemId, &systemProperties));

if (!handMeshSystemProperties.supportsHandTrackingMesh) {

 // the system does not support hand mesh tracking

 return;

}

// Get function pointer for xrCreateHandTrackerEXT

PFN_xrCreateHandTrackerEXT pfnCreateHandTrackerEXT;

CHK_XR(xrGetInstanceProcAddr(instance, "xrCreateHandTrackerEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnCreateHandTrackerEXT)));

// Create a tracker for left hand.

XrHandTrackerEXT leftHandTracker{};

{

 XrHandTrackerCreateInfoEXT createInfo{XR_TYPE_HAND_TRACKER_CREATE_INFO_EXT};

 createInfo.hand = XR_HAND_LEFT_EXT;

 createInfo.handJointSet = XR_HAND_JOINT_SET_DEFAULT_EXT;

 CHK_XR(pfnCreateHandTrackerEXT(session, &createInfo, &leftHandTracker));

}

// Get function pointer for xrCreateHandMeshSpaceMSFT

PFN_xrCreateHandMeshSpaceMSFT pfnCreateHandMeshSpaceMSFT;

CHK_XR(xrGetInstanceProcAddr(instance, "xrCreateHandMeshSpaceMSFT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnCreateHandMeshSpaceMSFT)));

// Create the hand mesh spaces

XrSpace leftHandMeshSpace{};

{

 XrHandMeshSpaceCreateInfoMSFT createInfo{XR_TYPE_HAND_MESH_SPACE_CREATE_INFO_MSFT};

 createInfo.poseInHandMeshSpace = {{0, 0, 0, 1}, {0, 0, 0}};

 CHK_XR(pfnCreateHandMeshSpaceMSFT(leftHandTracker, &createInfo, &leftHandMeshSpace));

}

// Preallocate buffers for hand mesh indices and vertices

std::vector<uint32_t> handMeshIndices(handMeshSystemProperties.maxHandMeshIndexCount);

std::vector<XrHandMeshVertexMSFT>

handMeshVertices(handMeshSystemProperties.maxHandMeshVertexCount);

1202 | Chapter 12. List of Current Extensions

XrHandMeshMSFT leftHandMesh{XR_TYPE_HAND_MESH_MSFT};

leftHandMesh.indexBuffer.indexCapacityInput = (uint32_t)handMeshIndices.size();

leftHandMesh.indexBuffer.indices = handMeshIndices.data();

leftHandMesh.vertexBuffer.vertexCapacityInput = (uint32_t)handMeshVertices.size();

leftHandMesh.vertexBuffer.vertices = handMeshVertices.data();

// Get function pointer for xrUpdateHandMeshMSFT

PFN_xrUpdateHandMeshMSFT pfnUpdateHandMeshMSFT;

CHK_XR(xrGetInstanceProcAddr(instance, "xrUpdateHandMeshMSFT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnUpdateHandMeshMSFT)));

while(1){

 // ...

 // For every frame in frame loop

 // ...

 XrFrameState frameState; // previously returned from xrWaitFrame

 const XrTime time = frameState.predictedDisplayTime;

 XrHandMeshUpdateInfoMSFT updateInfo{XR_TYPE_HAND_MESH_UPDATE_INFO_MSFT};

 updateInfo.time = time;

 CHK_XR(pfnUpdateHandMeshMSFT(leftHandTracker, &updateInfo, &leftHandMesh));

 if (!leftHandMesh.isActive) {

 // Hand input is not focused or user's hand is out of tracking range.

 // Do not process or render hand mesh.

 } else {

 if (leftHandMesh.indexBufferChanged) {

 // Process indices in indexBuffer.indices

 }

 if (leftHandMesh.vertexBufferChanged) {

 // Process vertices in vertexBuffer.vertices and leftHandMeshSpace

 }

 }

}

12.114.6. Get hand reference poses

By default, an XrHandTrackerEXT tracks a default hand pose type, that is to provide best fidelity to the

user’s actual hand motion. This is the same with XR_HAND_POSE_TYPE_TRACKED_MSFT (i.e. value 0) in a

chained XrHandPoseTypeInfoMSFT structure to the next pointer of XrHandTrackerCreateInfoEXT

when calling xrCreateHandTrackerEXT.

Some hand mesh visualizations may require an initial analysis or processing of the hand mesh relative

to the joints of the hand. For example, a hand visualization may generate a UV mapping for the hand

mesh vertices by raycasting outward from key joints against the mesh to find key vertices.

Chapter 12. List of Current Extensions | 1203

To avoid biasing such static analysis with the arbitrary tracked hand pose, an application can instead

create a different XrHandTrackerEXT handle with a reference hand pose type when calling

xrCreateHandTrackerEXT. This will instruct the runtime to provide a reference hand pose that is better

suited for such static analysis.

An application can chain an XrHandPoseTypeInfoMSFT structure to the

XrHandTrackerCreateInfoEXT::next pointer when calling xrCreateHandTrackerEXT to indicate the

hand tracker to return the hand pose of specific XrHandPoseTypeMSFT.

// Provided by XR_MSFT_hand_tracking_mesh

typedef struct XrHandPoseTypeInfoMSFT {

 XrStructureType type;

 const void* next;

 XrHandPoseTypeMSFT handPoseType;

} XrHandPoseTypeInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• handPoseType is an XrHandPoseTypeMSFT that describes the type of hand pose of the hand

tracking.

Valid Usage (Implicit)

• The XR_MSFT_hand_tracking_mesh extension must be enabled prior to using

XrHandPoseTypeInfoMSFT

• type must be XR_TYPE_HAND_POSE_TYPE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• handPoseType must be a valid XrHandPoseTypeMSFT value

The XrHandPoseTypeMSFT describes the type of input hand pose from XrHandTrackerEXT.

1204 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_hand_tracking_mesh

typedef enum XrHandPoseTypeMSFT {

 XR_HAND_POSE_TYPE_TRACKED_MSFT = 0,

 XR_HAND_POSE_TYPE_REFERENCE_OPEN_PALM_MSFT = 1,

 XR_HAND_POSE_TYPE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrHandPoseTypeMSFT;

Enumerant Descriptions

• XR_HAND_POSE_TYPE_TRACKED_MSFT represents a hand pose provided by actual tracking of the

user’s hand.

• XR_HAND_POSE_TYPE_REFERENCE_OPEN_PALM_MSFT represents a stable reference hand pose in a

relaxed open hand shape.

The XR_HAND_POSE_TYPE_TRACKED_MSFT input provides best fidelity to the user’s actual hand motion.

When the hand tracking input requires the user to be holding a controller in their hand, the hand

tracking input will appear as the user virtually holding the controller. This input can be used to render

the hand shape together with the controller in hand.

The XR_HAND_POSE_TYPE_REFERENCE_OPEN_PALM_MSFT input does not move with the user’s actual hand.

Through this reference hand pose, an application can get a stable hand joint and mesh that has the

same mesh topology as the tracked hand mesh using the same XrHandTrackerEXT, so that the

application can apply the data computed from a reference hand pose to the corresponding tracked

hand.

Although a reference hand pose does not move with user’s hand motion, the bone length and hand

thickness may be updated, for example when tracking result refines, or a different user’s hand is

detected. The application should update reference hand joints and meshes when the tracked mesh’s

indexBufferKey is changed or when the isActive value returned from xrUpdateHandMeshMSFT

changes from XR_FALSE to XR_TRUE. It can use the returned indexBufferKey and vertexUpdateTime from

xrUpdateHandMeshMSFT to avoid unnecessary CPU or GPU work to process the neutral hand inputs.

12.114.7. Example code for reference hand mesh update

The following example code demonstrates detecting reference hand mesh changes and retrieving data

for processing.

XrInstance instance; // previously initialized

XrSession session; // previously initialized

XrHandTrackerEXT handTracker; // previously initialized with handJointSet set to

XR_HAND_JOINT_SET_DEFAULT_MSFT

XrSpace handMeshReferenceSpace; // previously initialized with handPoseType set to

XR_HAND_POSE_TYPE_REFERENCE_OPEN_PALM_MSFT

Chapter 12. List of Current Extensions | 1205

XrHandMeshMSFT referenceHandMesh; // previously initialized with preallocated buffers

// Get function pointer for xrUpdateHandMeshMSFT

PFN_xrUpdateHandMeshMSFT pfnUpdateHandMeshMSFT;

CHK_XR(xrGetInstanceProcAddr(instance, "xrUpdateHandMeshMSFT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnUpdateHandMeshMSFT)));

// Get function pointer for xrCreateHandTrackerEXT

PFN_xrCreateHandTrackerEXT pfnCreateHandTrackerEXT;

CHK_XR(xrGetInstanceProcAddr(instance, "xrCreateHandTrackerEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnCreateHandTrackerEXT)));

// Get function pointer for xrLocateHandJointsEXT

PFN_xrLocateHandJointsEXT pfnLocateHandJointsEXT;

CHK_XR(xrGetInstanceProcAddr(instance, "xrLocateHandJointsEXT",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &pfnLocateHandJointsEXT)));

while(1){

 // ...

 // For every frame in frame loop

 // ...

 XrFrameState frameState; // previously returned from xrWaitFrame

 const XrTime time = frameState.predictedDisplayTime;

 XrHandMeshUpdateInfoMSFT updateInfo{XR_TYPE_HAND_MESH_UPDATE_INFO_MSFT};

 updateInfo.time = time;

 updateInfo.handPoseType = XR_HAND_POSE_TYPE_REFERENCE_OPEN_PALM_MSFT;

 CHK_XR(pfnUpdateHandMeshMSFT(handTracker, &updateInfo, &referenceHandMesh));

 // Detect if reference hand mesh is changed.

 if (referenceHandMesh.indexBufferChanged || referenceHandMesh.vertexBufferChanged) {

 // Query the joint location using "open palm" reference hand pose.

 XrHandPoseTypeInfoMSFT handPoseTypeInfo{XR_TYPE_HAND_POSE_TYPE_INFO_MSFT};

 handPoseTypeInfo.handPoseType = XR_HAND_POSE_TYPE_REFERENCE_OPEN_PALM_MSFT;

 XrHandTrackerCreateInfoEXT createInfo{XR_TYPE_HAND_TRACKER_CREATE_INFO_EXT};

 createInfo.hand = XR_HAND_LEFT_EXT;

 createInfo.handJointSet = XR_HAND_JOINT_SET_DEFAULT_EXT;

 createInfo.next = &handPoseTypeInfo;

 XrHandTrackerEXT referenceHandTracker;

 CHK_XR(pfnCreateHandTrackerEXT(session, &createInfo, &referenceHandTracker));

 XrHandJointsLocateInfoEXT locateInfo{XR_TYPE_HAND_JOINTS_LOCATE_INFO_EXT};

 locateInfo.next = &handPoseTypeInfo;

1206 | Chapter 12. List of Current Extensions

 locateInfo.baseSpace = handMeshReferenceSpace; // Query joint location relative

to hand mesh reference space

 locateInfo.time = time;

 std::array<XrHandJointLocationEXT, XR_HAND_JOINT_COUNT_EXT> jointLocations;

 XrHandJointLocationsEXT locations{XR_TYPE_HAND_JOINT_LOCATIONS_EXT};

 locations.jointCount = jointLocations.size();

 locations.jointLocations = jointLocations.data();

 CHK_XR(pfnLocateHandJointsEXT(referenceHandTracker, &locateInfo, &locations));

 // Generate UV map using tip/wrist location and referenceHandMesh.vertexBuffer

 // For example, gradually changes color from the tip of the hand to wrist.

 }

}

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_HAND_MESH_SPACE_CREATE_INFO_MSFT

• XR_TYPE_HAND_MESH_UPDATE_INFO_MSFT

• XR_TYPE_HAND_MESH_MSFT

• XR_TYPE_SYSTEM_HAND_TRACKING_MESH_PROPERTIES_MSFT

• XR_TYPE_HAND_POSE_TYPE_INFO_MSFT

New Enums

• XrHandPoseTypeMSFT

New Structures

• XrHandMeshSpaceCreateInfoMSFT

• XrHandMeshUpdateInfoMSFT

• XrHandMeshMSFT

• XrHandMeshIndexBufferMSFT

• XrHandMeshVertexBufferMSFT

• XrHandMeshVertexMSFT

• XrSystemHandTrackingMeshPropertiesMSFT

Chapter 12. List of Current Extensions | 1207

• XrHandPoseTypeInfoMSFT

New Functions

• xrCreateHandMeshSpaceMSFT

• xrUpdateHandMeshMSFT

Issues

Version History

• Revision 1, 2019-09-20 (Yin LI)

◦ Initial extension description

• Revision 2, 2020-04-20 (Yin LI)

◦ Change joint spaces to locate joints function.

• Revision 3, 2021-04-13 (Rylie Pavlik, Collabora, Ltd.)

◦ Correctly show function pointer retrieval in sample code

• Revision 4, 2021-10-20 (Darryl Gough)

◦ Winding order for hand mesh is corrected to clockwise to match runtime behavior.

12.115. XR_MSFT_holographic_window_attachment

Name String

XR_MSFT_holographic_window_attachment

Extension Type

Instance extension

Registered Extension Number

64

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Contributors

Bryce Hutchings, Microsoft

Yin Li, Microsoft

Alex Turner, Microsoft

Overview

1208 | Chapter 12. List of Current Extensions

This extension enables the runtime to attach to app-provided HolographicSpace and CoreWindow

WinRT objects when an XrSession is created. Applications may use this extension to create and control

the CoreWindow/App View objects, allowing the app to subscribe to keyboard input events and react to

activation event arguments. These events and data would otherwise be inaccessible if the application

simply managed the app state and lifetime exclusively through the OpenXR API. This extension is only

valid to use where an application can create a CoreWindow, such as UWP applications on the

HoloLens.

The XrHolographicWindowAttachmentMSFT structure is defined as:

// Provided by XR_MSFT_holographic_window_attachment

typedef struct XrHolographicWindowAttachmentMSFT {

 XrStructureType type;

 const void* next;

 IUnknown* holographicSpace;

 IUnknown* coreWindow;

} XrHolographicWindowAttachmentMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• holographicSpace is a pointer to a valid Windows.Graphics.Holographic.HolographicSpace.

• coreWindow is a pointer to a valid Windows.UI.Core.CoreWindow.

When creating a holographic window-backed XrSession, the application provides a pointer to an

XrHolographicWindowAttachmentMSFT in the next chain of the XrSessionCreateInfo.

The session state of a holographic window-backed XrSession will only reach XR_SESSION_STATE_VISIBLE

when the provided CoreWindow is made visible. If the CoreWindow is for a secondary app view, the

application must programmatically request to make the CoreWindow visible (e.g. with

ApplicationViewSwitcher.TryShowAsStandaloneAsync or ApplicationViewSwitcher.SwitchAsync).

The app must not call xrCreateSession while the specified CoreWindow thread is blocked, otherwise

the call may deadlock.

Chapter 12. List of Current Extensions | 1209

Valid Usage (Implicit)

• The XR_MSFT_holographic_window_attachment extension must be enabled prior to using

XrHolographicWindowAttachmentMSFT

• type must be XR_TYPE_HOLOGRAPHIC_WINDOW_ATTACHMENT_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• holographicSpace must be a pointer to an IUnknown value

• coreWindow must be a pointer to an IUnknown value

12.115.1. Sample code

Following example demos the usage of holographic window attachment and use the attached

CoreWindow to receive keyboard input, use CoreTextEditContext to handle text typing experience, and

use IActivatedEventArgs to handle protocol launching arguments.

 1 struct AppView : implements<AppView, IFrameworkView> {

 2 void Initialize(CoreApplicationView const& applicationView) {

 3 applicationView.Activated({this, &AppView::OnActivated});

 4 }

 5

 6 void Load(winrt::hstring const& entryPoint) {

 7 }

 8

 9 void Uninitialize() {

10 }

11

12 void Run() {

13 // Creating a HolographicSpace before activating the CoreWindow to make it a

 holographic window

14 CoreWindow window = CoreWindow::GetForCurrentThread();

15 HolographicSpace holographicSpace = Windows::Graphics::Holographic

 ::HolographicSpace::CreateForCoreWindow(window);

16 window.Activate();

17

18 // [xrCreateInstance, xrGetSystem, and create a graphics binding]

19

20 XrHolographicWindowAttachmentMSFT holographicWindowAttachment

 {XR_TYPE_ATTACHED_CORE_WINDOW_MSFT};

21 holographicWindowAttachment.next = &graphicsBinding;

22 holographicWindowAttachment.coreWindow = window.as<IUnknown>().get();

23 holographicWindowAttachment.holographicSpace = holographicSpace.as<IUnknown

 >().get();

24

1210 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

25 XrSessionCreateInfo sessionCreateInfo{XR_TYPE_SESSION_CREATE_INFO};

26 sessionCreateInfo.next = &holographicWindowAttachment;

27 sessionCreateInfo.systemId = systemId;

28

29 XrSession session;

30 CHECK_XRCMD(xrCreateSession(instance, &sessionCreateInfo, &session));

31

32 while (!m_windowClosed) {

33 window.Dispatcher().ProcessEvents(CoreProcessEventsOption

 ::ProcessAllIfPresent);

34

35 // [OpenXR calls: Poll events, sync actions, render, and submit frames].

36 }

37 }

38

39 void SetWindow(CoreWindow const& window) {

40 window.Closed({this, &AppView::OnWindowClosed});

41 window.KeyDown({this, &AppView::OnKeyDown});

42

43 // This sample customizes the text input pane with manual display policy and

 email address scope.

44 windows::CoreTextServicesManager manager = windows::CoreTextServicesManager

 ::GetForCurrentView();

45 windows::CoreTextEditContext editingContext = manager.CreateEditContext();

46 editingContext.InputPaneDisplayPolicy(windows::

 CoreTextInputPaneDisplayPolicy::Manual);

47 editingContext.InputScope(windows::CoreTextInputScope::EmailAddress);

48 }

49

50 void OnWindowClosed(CoreWindow const& sender, CoreWindowEventArgs const& args) {

51 m_windowClosed = true;

52 }

53

54 void OnKeyDown(CoreWindow const& sender, KeyEventArgs const& args) {

55 // [Process key down]

56 }

57

58 void OnActivated(CoreApplicationView const&, IActivatedEventArgs const& args) {

59 if (args.Kind() == windows::ActivationKind::Protocol) {

60 auto eventArgs{args.as<windows::ProtocolActivatedEventArgs>()};

61 // Use the protocol activation parameters in eventArgs.Uri();

62 }

63

64 // Inspecting whether the application is launched from within holographic

 shell or from desktop.

65 if (windows::HolographicApplicationPreview::IsHolographicActivation(args)) {

66 // App activation is targeted at the holographic shell.

67 } else {

Chapter 12. List of Current Extensions | 1211

68 // App activation is targeted at the desktop.

69 }

70

71 // NOTE: CoreWindow is activated later after the HolographicSpace has been

 created.

72 }

73

74 bool m_windowClosed{false};

75 };

76

77 struct AppViewSource : winrt::implements<AppViewSource, IFrameworkViewSource> {

78 windows::IFrameworkView CreateView() {

79 return winrt::make<AppView>();

80 }

81 };

82

83 int __stdcall wWinMain(HINSTANCE, HINSTANCE, PWSTR, int) {

84 CoreApplication::Run(make<AppViewSource>());

85 }

Version History

• Revision 1, 2020-05-18 (Bryce Hutchings)

◦ Initial extension description

12.116. XR_MSFT_perception_anchor_interop

Name String

XR_MSFT_perception_anchor_interop

Extension Type

Instance extension

Registered Extension Number

57

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_MSFT_spatial_anchor

1212 | Chapter 12. List of Current Extensions

Last Modified Date

2020-06-16

IP Status

No known IP claims.

Contributors

Lachlan Ford, Microsoft

Bryce Hutchings, Microsoft

Yin Li, Microsoft

Overview

This extension supports conversion between XrSpatialAnchorMSFT and

Windows.Perception.Spatial.SpatialAnchor. An application can use this extension to persist spatial

anchors on the Windows device through SpatialAnchorStore or transfer spatial anchors between

devices through SpatialAnchorTransferManager.

The xrCreateSpatialAnchorFromPerceptionAnchorMSFT function creates a XrSpatialAnchorMSFT

handle from an IUnknown pointer to Windows.Perception.Spatial.SpatialAnchor.

// Provided by XR_MSFT_perception_anchor_interop

XrResult xrCreateSpatialAnchorFromPerceptionAnchorMSFT(

 XrSession session,

 IUnknown* perceptionAnchor,

 XrSpatialAnchorMSFT* anchor);

Parameter Descriptions

• session is the specified XrSession.

• perceptionAnchor is an IUnknown pointer to a Windows.Perception.Spatial.SpatialAnchor

object.

• anchor is a pointer to XrSpatialAnchorMSFT to receive the returned anchor handle.

The input perceptionAnchor must support successful QueryInterface to

Windows.Perception.Spatial.SpatialAnchor , otherwise the runtime must return

XR_ERROR_VALIDATION_FAILURE.

If the function successfully returned, the output anchor must be a valid handle. This also increments

the refcount of the perceptionAnchor object.

Chapter 12. List of Current Extensions | 1213

https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchor
https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchorStore
https://docs.microsoft.com/uwp/api/windows.perception.spatial.spatialanchortransfermanager
https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchor
https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchor
https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchor

When application is done with the anchor handle, it can be destroyed using

xrDestroySpatialAnchorMSFT function. This also decrements the refcount of underlying windows

perception anchor object.

Valid Usage (Implicit)

• The XR_MSFT_perception_anchor_interop extension must be enabled prior to calling

xrCreateSpatialAnchorFromPerceptionAnchorMSFT

• session must be a valid XrSession handle

• perceptionAnchor must be a pointer to an IUnknown value

• anchor must be a pointer to an XrSpatialAnchorMSFT handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

The xrTryGetPerceptionAnchorFromSpatialAnchorMSFT function converts a XrSpatialAnchorMSFT

handle into an IUnknown pointer to Windows.Perception.Spatial.SpatialAnchor.

// Provided by XR_MSFT_perception_anchor_interop

XrResult xrTryGetPerceptionAnchorFromSpatialAnchorMSFT(

 XrSession session,

 XrSpatialAnchorMSFT anchor,

 IUnknown** perceptionAnchor);

1214 | Chapter 12. List of Current Extensions

https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchor

Parameter Descriptions

• session is the specified XrSession.

• anchor is a valid XrSpatialAnchorMSFT handle.

• perceptionAnchor is a valid pointer to IUnknown pointer to receive the output

Windows.Perception.Spatial.SpatialAnchor object.

If the runtime can convert the anchor to a Windows.Perception.Spatial.SpatialAnchor object, this

function must return XR_SUCCESS, and the output IUnknown in the pointer of perceptionAnchor must be

not NULL. This also increments the refcount of the object. The application can then use QueryInterface

to get the pointer for Windows.Perception.Spatial.SpatialAnchor object. The application should release

the COM pointer after done with the object, or attach it to a smart COM pointer such as winrt::com_ptr.

If the runtime cannot convert the anchor to a Windows.Perception.Spatial.SpatialAnchor object, the

function must return XR_SUCCESS, and the output IUnknown in the pointer of perceptionAnchor must be

NULL.

Valid Usage (Implicit)

• The XR_MSFT_perception_anchor_interop extension must be enabled prior to calling

xrTryGetPerceptionAnchorFromSpatialAnchorMSFT

• session must be a valid XrSession handle

• anchor must be a valid XrSpatialAnchorMSFT handle

• perceptionAnchor must be a pointer to a pointer to an IUnknown value

• anchor must have been created, allocated, or retrieved from session

Chapter 12. List of Current Extensions | 1215

https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchor
https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchor
https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchor
https://docs.microsoft.com/uwp/api/Windows.Perception.Spatial.SpatialAnchor

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

xrCreateSpatialAnchorFromPerceptionAnchorMSFT

xrTryGetPerceptionAnchorFromSpatialAnchorMSFT

Issues

Version History

• Revision 1, 2020-06-16 (Yin Li)

◦ Initial extension proposal

12.117. XR_MSFT_scene_marker

Name String

XR_MSFT_scene_marker

1216 | Chapter 12. List of Current Extensions

Extension Type

Instance extension

Registered Extension Number

148

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_MSFT_scene_understanding

Contributors

Alain Zanchetta, Microsoft

Yin Li, Microsoft

Alex Turner, Microsoft

12.117.1. Overview

This extension enables the application to observe the tracked markers, such as the QR Code markers in

ISO/IEC 18004:2015. This extension also enables future extensions to easily add new types of marker

tracking.

The application must enable both XR_MSFT_scene_marker and XR_MSFT_scene_understanding in order to

use this extension.

Chapter 12. List of Current Extensions | 1217

https://www.iso.org/standard/62021.html

 Note

A typical use of this extension is:

1. Verify if marker detection is supported by calling

xrEnumerateSceneComputeFeaturesMSFT and validate that the returned

supported features include XR_SCENE_COMPUTE_FEATURE_MARKER_MSFT.

2. If supported, create an XrSceneObserverMSFT handle.

3. Pass in XR_SCENE_COMPUTE_FEATURE_MARKER_MSFT as requested feature when starting

the scene compute by calling xrComputeNewSceneMSFT function.

4. Inspect the completion of computation by polling xrGetSceneComputeStateMSFT.

5. Once compute is successfully completed, create an XrSceneMSFT handle to the

result by calling xrCreateSceneMSFT.

6. Get the list of detected markers using xrGetSceneComponentsMSFT:

◦ optionally: filter the type of the returned markers using

XrSceneMarkerTypeFilterMSFT.

◦ optionally: retrieve additional marker properties by chaining

XrSceneMarkersMSFT and/or XrSceneMarkerQRCodesMSFT to the next pointer

of XrSceneComponentsMSFT.

7. Get the data encoded in a marker using xrGetSceneMarkerDecodedStringMSFT or

xrGetSceneMarkerRawDataMSFT.

8. Locate markers using xrLocateSceneComponentsMSFT.

12.117.2. Retrieve marker properties

The XrSceneMarkersMSFT structure is defined as:

// Provided by XR_MSFT_scene_marker

typedef struct XrSceneMarkersMSFT {

 XrStructureType type;

 const void* next;

 uint32_t sceneMarkerCapacityInput;

 XrSceneMarkerMSFT* sceneMarkers;

} XrSceneMarkersMSFT;

1218 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. See also:

XrSceneComponentsMSFT, XrSceneMarkerQRCodesMSFT

• sceneMarkerCapacityInput is a uint32_t indicating the capacity of elements in the sceneMarkers

array.

• sceneMarkers is an array of XrSceneMarkerMSFT to fill with the properties of the markers.

Once the application creates an XrSceneMSFT after a successful scene compute, it can retrieve the

scene markers' properties by chaining XrSceneMarkersMSFT structure to the next pointer of

XrSceneComponentsGetInfoMSFT when calling xrGetSceneComponentsMSFT.

xrGetSceneComponentsMSFT follows the two-call idiom for filling the XrSceneComponentsMSFT

structure to which an XrSceneMarkersMSFT structure can be chained.

The input sceneMarkerCapacityInput must be equal to or greater than the corresponding

XrSceneComponentsMSFT::componentCapacityInput, otherwise the runtime must return

XR_ERROR_SIZE_INSUFFICIENT.

The actual count of elements returned in the array sceneMarkers is consistent with the extended

XrSceneComponentsMSFT structure and returned in XrSceneComponentsMSFT::componentCountOutput.

Valid Usage (Implicit)

• The XR_MSFT_scene_marker extension must be enabled prior to using XrSceneMarkersMSFT

• type must be XR_TYPE_SCENE_MARKERS_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If sceneMarkerCapacityInput is not 0, sceneMarkers must be a pointer to an array of

sceneMarkerCapacityInput XrSceneMarkerMSFT structures

The XrSceneMarkerMSFT structure is defined as:

Chapter 12. List of Current Extensions | 1219

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_scene_marker

typedef struct XrSceneMarkerMSFT {

 XrSceneMarkerTypeMSFT markerType;

 XrTime lastSeenTime;

 XrOffset2Df center;

 XrExtent2Df size;

} XrSceneMarkerMSFT;

Member Descriptions

• markerType is an XrSceneMarkerTypeMSFT indicating the type of the marker.

• lastSeenTime is an XrTime indicating when the marker was seen last.

• center is an XrOffset2Df structure representing the location of the center of the axis-aligned

bounding box of the marker in the XY plane of the marker’s coordinate system.

• size is an XrExtent2Df structure representing the width and height of the axis-aligned

bounding box of the marker in the XY plane of the marker’s coordinate system.

The XrSceneMarkerMSFT structure is an element in the array of XrSceneMarkersMSFT::sceneMarkers.

Refer to the QR code convention for an example of marker’s center and size in the context of a QR

code.

When the runtime updates the location or properties of an observed marker, the runtime must set the

XrSceneMarkerMSFT::lastSeenTime to the new timestamp of the update.

When the runtime cannot observe a previously observed XrSceneMarkerMSFT, the runtime must keep

the previous lastSeenTime for the marker. Hence, the application can use the lastSeenTime to know how

fresh the tracking information is for a given marker.

The center and size are measured in meters, relative to the XrPosef of the marker for the visual bound

of the marker in XY plane, regardless of the marker type.

Valid Usage (Implicit)

• The XR_MSFT_scene_marker extension must be enabled prior to using XrSceneMarkerMSFT

The XrSceneMarkerTypeFilterMSFT structure is defined as:

1220 | Chapter 12. List of Current Extensions

// Provided by XR_MSFT_scene_marker

typedef struct XrSceneMarkerTypeFilterMSFT {

 XrStructureType type;

 const void* next;

 uint32_t markerTypeCount;

 XrSceneMarkerTypeMSFT* markerTypes;

} XrSceneMarkerTypeFilterMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• markerTypeCount is a uint32_t indicating the count of elements in the markerTypes array.

• markerTypes is an array of XrSceneMarkerTypeMSFT indicating the types of markers to

return.

The application can filter the returned scene components to specific marker types by chaining

XrSceneMarkerTypeFilterMSFT to the next pointer of XrSceneComponentsGetInfoMSFT when calling

xrGetSceneComponentsMSFT.

When XrSceneMarkerTypeFilterMSFT is provided to xrGetSceneComponentsMSFT, the runtime must

only return scene components that match the requested types.

The application must provide a non-empty array of unique markerTypes, i.e. the markerTypeCount must

be positive and the elements in the markerTypes array must not have duplicated values. Otherwise, the

runtime must return XR_ERROR_VALIDATION_FAILURE for xrGetSceneComponentsMSFT function.

Valid Usage (Implicit)

• The XR_MSFT_scene_marker extension must be enabled prior to using

XrSceneMarkerTypeFilterMSFT

• type must be XR_TYPE_SCENE_MARKER_TYPE_FILTER_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If markerTypeCount is not 0, markerTypes must be a pointer to an array of markerTypeCount

XrSceneMarkerTypeMSFT values

The XrSceneMarkerTypeMSFT identifies the type of a scene marker.

Chapter 12. List of Current Extensions | 1221

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_scene_marker

typedef enum XrSceneMarkerTypeMSFT {

 XR_SCENE_MARKER_TYPE_QR_CODE_MSFT = 1,

 XR_SCENE_MARKER_TYPE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrSceneMarkerTypeMSFT;

Enumerant Descriptions

• XR_SCENE_MARKER_TYPE_QR_CODE_MSFT represents a marker that follows the ISO standard for QR

code in ISO/IEC 18004:2015.

12.117.3. Locate markers

Applications can use xrLocateSceneComponentsMSFT to locate an XrSceneMarkerMSFT.

The scene marker’s locations are snapshots of the XrSceneMSFT, that do not change for the lifecycle of

the result. To get updated tracking, the application can issue another xrComputeNewSceneMSFT and

obtain a new XrSceneMSFT. The application can use the XrSceneComponentMSFT::id to correlate the

same marker across multiple scene computes.

The pose and geometry of scene markers returned from this extension follows these general

conventions:

• The marker image reside in the plane of X and Y axes.

• Z axis is perpendicular to the X and Y axes and follows the right hand rule. +Z is pointing into the

marker image.

• The origin of the marker is runtime defined for the specific XrSceneMarkerTypeMSFT, and it

typically represents the most stable and accurate point for tracking the marker. This allows the

application to use the marker as a tracked point.

• In cases where the origin does not necessarily coincide with the center of the marker geometry,

applications can obtain additional geometry information from the XrSceneMarkerMSFT structure.

This information includes the center and size of the marker image in the X and Y plane.

The exact origin and geometry properties relative to the tracked marker image in physical world must

be well defined and consistent for each XrSceneMarkerTypeMSFT, including the new marker types

defined in future extensions.

12.117.4. The convention of QRCode marker location

For a marker with XR_SCENE_MARKER_TYPE_QR_CODE_MSFT, the origin is at the top left corner of the QR code

image, where the orientation of the QR code image in the XY plane follows the convention in ISO/IEC

18004:2015. The X axis of QR code pose points to the right of the marker image, and the Z axis points

1222 | Chapter 12. List of Current Extensions

https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html

inward to the marker image, as illustrated in following image.

Figure 17. The pose convention of a QR code marker.

The QR Code marker’s center and size are defined in the XY plane, as illustrated in following pictures.

Chapter 12. List of Current Extensions | 1223

Figure 18. The center and size of QR Code marker.

12.117.5. Retrieving QRCode marker properties

The XrSceneMarkerQRCodesMSFT structure is defined as:

// Provided by XR_MSFT_scene_marker

typedef struct XrSceneMarkerQRCodesMSFT {

 XrStructureType type;

 const void* next;

 uint32_t qrCodeCapacityInput;

 XrSceneMarkerQRCodeMSFT* qrCodes;

} XrSceneMarkerQRCodesMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. See also:

XrSceneComponentsMSFT, XrSceneMarkersMSFT

• qrCodeCapacityInput is a uint32_t indicating the count of elements in the qrCodes array.

• qrCodes is an array of XrSceneMarkerQRCodeMSFT for the runtime to fill with the properties

of the QR Codes.

An XrSceneMarkerQRCodesMSFT structure can be chained to the next pointer of

XrSceneComponentsMSFT when calling xrGetSceneComponentsMSFT function to retrieve the QR Code

1224 | Chapter 12. List of Current Extensions

specific properties through an array of XrSceneMarkerQRCodeMSFT structures.

xrGetSceneComponentsMSFT follows the two-call idiom for filling the XrSceneComponentsMSFT

structure to which an XrSceneMarkerQRCodesMSFT structure can be chained.

The qrCodeCapacityInput must be equal to or greater than the corresponding

XrSceneComponentsMSFT::componentCapacityInput, otherwise the runtime must return the success

code XR_ERROR_SIZE_INSUFFICIENT from xrGetSceneComponentsMSFT.

The actual count of elements returned in the array qrCodes is consistent to the extended

XrSceneComponentsMSFT structure and returned in

XrSceneComponentsMSFT::componentCountOutput.

Valid Usage (Implicit)

• The XR_MSFT_scene_marker extension must be enabled prior to using

XrSceneMarkerQRCodesMSFT

• type must be XR_TYPE_SCENE_MARKER_QR_CODES_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If qrCodeCapacityInput is not 0, qrCodes must be a pointer to an array of qrCodeCapacityInput

XrSceneMarkerQRCodeMSFT structures

The XrSceneMarkerQRCodeMSFT structure is defined as:

// Provided by XR_MSFT_scene_marker

typedef struct XrSceneMarkerQRCodeMSFT {

 XrSceneMarkerQRCodeSymbolTypeMSFT symbolType;

 uint8_t version;

} XrSceneMarkerQRCodeMSFT;

Member Descriptions

• symbolType is an XrSceneMarkerQRCodeSymbolTypeMSFT indicating the symbol type of the

QR Code.

• version is a uint8_t indicating the version of the QR Code

The XrSceneMarkerQRCodeMSFT structure contains the detailed QR Code symbol type and version

according to ISO/IEC 18004:2015. The version must be in the range 1 to 40 inclusively for a QR Code

and 1 to 4 inclusively for a Micro QR Code.

Chapter 12. List of Current Extensions | 1225

#valid-usage-for-structure-pointer-chains
https://www.iso.org/standard/62021.html

Valid Usage (Implicit)

• The XR_MSFT_scene_marker extension must be enabled prior to using

XrSceneMarkerQRCodeMSFT

// Provided by XR_MSFT_scene_marker

typedef enum XrSceneMarkerQRCodeSymbolTypeMSFT {

 XR_SCENE_MARKER_QR_CODE_SYMBOL_TYPE_QR_CODE_MSFT = 1,

 XR_SCENE_MARKER_QR_CODE_SYMBOL_TYPE_MICRO_QR_CODE_MSFT = 2,

 XR_SCENE_MARKER_QRCODE_SYMBOL_TYPE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrSceneMarkerQRCodeSymbolTypeMSFT;

The XrSceneMarkerQRCodeSymbolTypeMSFT identifies the symbol type of the QR Code.

Enumerant Descriptions

• XR_SCENE_MARKER_QR_CODE_SYMBOL_TYPE_QR_CODE_MSFT if the marker is a QR Code.

• XR_SCENE_MARKER_QR_CODE_SYMBOL_TYPE_MICRO_QR_CODE_MSFT if the marker is a Micro QR Code.

The xrGetSceneMarkerDecodedStringMSFT function is defined as:

// Provided by XR_MSFT_scene_marker

XrResult xrGetSceneMarkerDecodedStringMSFT(

 XrSceneMSFT scene,

 const XrUuidMSFT* markerId,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 char* buffer);

1226 | Chapter 12. List of Current Extensions

Parameter Descriptions

• scene is an XrSceneMSFT previously created by xrCreateSceneMSFT.

• markerId is an XrUuidMSFT identifying the marker, returned previously from

XrSceneComponentMSFT::id when calling xrGetSceneComponentsMSFT.

• bufferCapacityInput is the capacity of the string buffer, or 0 to indicate a request to retrieve

the required capacity.

• bufferCountOutput is a pointer to the count of characters written (including the terminating

'\0'), or a pointer to the required capacity in the case that bufferCapacityInput is insufficient.

• buffer is a pointer to an application-allocated buffer that will be filled with the string stored

in the QR Code. It can be NULL if bufferCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

The xrGetSceneMarkerDecodedStringMSFT function retrieves the string stored in the scene marker as

an UTF-8 string, including the terminating '\0'. This function follows the two-call idiom for filling the

buffer array.

If the stored data in the marker is not an encoded string, the runtime must return the success code

XR_SCENE_MARKER_DATA_NOT_STRING_MSFT, set bufferCountOutput to 1, and make buffer an empty string.

Valid Usage (Implicit)

• The XR_MSFT_scene_marker extension must be enabled prior to calling

xrGetSceneMarkerDecodedStringMSFT

• scene must be a valid XrSceneMSFT handle

• markerId must be a pointer to a valid XrUuidMSFT structure

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

char values

Chapter 12. List of Current Extensions | 1227

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SCENE_MARKER_DATA_NOT_STRING_MSFT

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SCENE_COMPONENT_TYPE_MISMATCH_MSFT

• XR_ERROR_SCENE_COMPONENT_ID_INVALID_MSFT

The xrGetSceneMarkerRawDataMSFT function is defined as:

// Provided by XR_MSFT_scene_marker

XrResult xrGetSceneMarkerRawDataMSFT(

 XrSceneMSFT scene,

 const XrUuidMSFT* markerId,

 uint32_t bufferCapacityInput,

 uint32_t* bufferCountOutput,

 uint8_t* buffer);

1228 | Chapter 12. List of Current Extensions

Parameter Descriptions

• scene is an XrSceneMSFT previously created by xrCreateSceneMSFT.

• markerId is an XrUuidMSFT identifying the marker, and it is returned previous from

XrSceneComponentMSFT when calling xrGetSceneComponentsMSFT.

• bufferCapacityInput is the capacity of the buffer, or 0 to indicate a request to retrieve the

required capacity.

• bufferCountOutput is a pointer to the count of bytes written, or a pointer to the required

capacity in the case that bufferCapacityInput is insufficient.

• buffer is a pointer to an application-allocated buffer that will be filled with the data stored in

the QR Code. It can be NULL if bufferCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

buffer size.

The xrGetSceneMarkerRawDataMSFT function retrieves the data stored in the scene marker.

Valid Usage (Implicit)

• The XR_MSFT_scene_marker extension must be enabled prior to calling

xrGetSceneMarkerRawDataMSFT

• scene must be a valid XrSceneMSFT handle

• markerId must be a pointer to a valid XrUuidMSFT structure

• bufferCountOutput must be a pointer to a uint32_t value

• If bufferCapacityInput is not 0, buffer must be a pointer to an array of bufferCapacityInput

uint8_t values

Chapter 12. List of Current Extensions | 1229

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SCENE_COMPONENT_TYPE_MISMATCH_MSFT

• XR_ERROR_SCENE_COMPONENT_ID_INVALID_MSFT

New Object Types

New Flag Types

New Enum Constants

XrSceneComputeFeatureMSFT enumeration is extended with:

• XR_SCENE_COMPUTE_FEATURE_MARKER_MSFT

XrSceneComponentTypeMSFT enumeration is extended with:

• XR_SCENE_COMPONENT_TYPE_MARKER_MSFT

XrStructureType enumeration is extended with:

• XR_TYPE_SCENE_MARKERS_MSFT

• XR_TYPE_SCENE_MARKER_TYPE_FILTER_MSFT

• XR_TYPE_SCENE_MARKER_QR_CODES_MSFT

XrResult enumeration is extended with:

• XR_SCENE_MARKER_DATA_NOT_STRING_MSFT

1230 | Chapter 12. List of Current Extensions

New Enums

• XrSceneMarkerTypeMSFT

• XrSceneMarkerQRCodeSymbolTypeMSFT

New Structures

• XrSceneMarkerMSFT

• XrSceneMarkersMSFT

• XrSceneMarkerTypeFilterMSFT

• XrSceneMarkerQRCodeMSFT

• XrSceneMarkerQRCodesMSFT

New Functions

• xrGetSceneMarkerRawDataMSFT

• xrGetSceneMarkerDecodedStringMSFT

Version History

• Revision 1, 2023-01-11 (Alain Zanchetta)

◦ Initial extension description

12.118. XR_MSFT_scene_understanding

Name String

XR_MSFT_scene_understanding

Extension Type

Instance extension

Registered Extension Number

98

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-05-03

Chapter 12. List of Current Extensions | 1231

IP Status

No known IP claims.

Contributors

Darryl Gough, Microsoft

Yin Li, Microsoft

Bryce Hutchings, Microsoft

Alex Turner, Microsoft

Simon Stachniak, Microsoft

David Fields, Microsoft

Overview

Scene understanding provides applications with a structured, high-level representation of the planes,

meshes, and objects in the user’s environment, enabling the development of spatially-aware

applications.

The application requests computation of a scene, receiving the list of scene components observed in

the environment around the user. These scene components contain information such as:

• The type of the discovered objects (wall, floor, ceiling, or other surface type).

• The planes and their bounds that represent the object.

• The visual and collider triangle meshes that represent the object.

The application can use this information to reason about the structure and location of the

environment, to place holograms on surfaces, or render clues for grounding objects.

An application typically uses this extension in the following steps:

1. Create an XrSceneObserverMSFT handle to manage the system resource of the scene

understanding compute.

2. Start the scene compute by calling xrComputeNewSceneMSFT with XrSceneBoundsMSFT to specify

the scan range and a list of XrSceneComputeFeatureMSFT features.

3. Inspect the completion of computation by polling xrGetSceneComputeStateMSFT.

4. Once compute is completed, create an XrSceneMSFT handle to the result by calling

xrCreateSceneMSFT.

5. Get properties of scene components using xrGetSceneComponentsMSFT.

6. Locate scene components using xrLocateSceneComponentsMSFT.

Create a scene observer handle

The XrSceneObserverMSFT handle represents the resources for computing scenes. It maintains a

correlation of scene component identifiers across multiple scene computes.

1232 | Chapter 12. List of Current Extensions

 Note

The application should destroy the XrSceneObserverMSFT handle when it is done

with scene compute and scene component data to save system power consumption.

 XR_DEFINE_HANDLE(XrSceneObserverMSFT)

An XrSceneObserverMSFT handle is created using xrCreateSceneObserverMSFT.

// Provided by XR_MSFT_scene_understanding

XrResult xrCreateSceneObserverMSFT(

 XrSession session,

 const XrSceneObserverCreateInfoMSFT* createInfo,

 XrSceneObserverMSFT* sceneObserver);

Parameter Descriptions

• session is an XrSession in which the scene observer will be active.

• createInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrSceneObserverCreateInfoMSFT structure.

• sceneObserver is the returned XrSceneObserverMSFT handle.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrCreateSceneObserverMSFT

• session must be a valid XrSession handle

• If createInfo is not NULL, createInfo must be a pointer to a valid

XrSceneObserverCreateInfoMSFT structure

• sceneObserver must be a pointer to an XrSceneObserverMSFT handle

Chapter 12. List of Current Extensions | 1233

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

The XrSceneObserverCreateInfoMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneObserverCreateInfoMSFT {

 XrStructureType type;

 const void* next;

} XrSceneObserverCreateInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

1234 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneObserverCreateInfoMSFT

• type must be XR_TYPE_SCENE_OBSERVER_CREATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

The xrDestroySceneObserverMSFT function releases the sceneObserver and the underlying resources.

// Provided by XR_MSFT_scene_understanding

XrResult xrDestroySceneObserverMSFT(

 XrSceneObserverMSFT sceneObserver);

Parameter Descriptions

• sceneObserver is an XrSceneObserverMSFT previously created by

xrCreateSceneObserverMSFT.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrDestroySceneObserverMSFT

• sceneObserver must be a valid XrSceneObserverMSFT handle

Thread Safety

• Access to sceneObserver, and any child handles, must be externally synchronized

Chapter 12. List of Current Extensions | 1235

#valid-usage-for-structure-pointer-chains

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

Compute a new scene and wait for completion

The xrComputeNewSceneMSFT function begins the compute of a new scene and the runtime must

return quickly without waiting for the compute to complete. The application should use

xrGetSceneComputeStateMSFT to inspect the compute status.

The application can control the compute features by passing a list of XrSceneComputeFeatureMSFT via

XrNewSceneComputeInfoMSFT::requestedFeatures.

• If XR_SCENE_COMPUTE_FEATURE_PLANE_MSFT is passed, but XR_SCENE_COMPUTE_FEATURE_PLANE_MESH_MSFT is

not passed, then:

◦ The application may be able to read XR_SCENE_COMPONENT_TYPE_PLANE_MSFT and

XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT scene components from the resulting XrSceneMSFT

handle.

◦ XrScenePlaneMSFT::meshBufferId must be zero to indicate that the plane scene component does

not have a mesh buffer available to read.

• If XR_SCENE_COMPUTE_FEATURE_PLANE_MSFT and XR_SCENE_COMPUTE_FEATURE_PLANE_MESH_MSFT are passed,

then:

◦ the application may be able to read XR_SCENE_COMPONENT_TYPE_PLANE_MSFT and

XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT scene components from the resulting XrSceneMSFT

handle

◦ XrScenePlaneMSFT::meshBufferId may contain a non-zero mesh buffer identifier to indicate that

the plane scene component has a mesh buffer available to read.

• If XR_SCENE_COMPUTE_FEATURE_VISUAL_MESH_MSFT is passed then:

◦ the application may be able to read XR_SCENE_COMPONENT_TYPE_VISUAL_MESH_MSFT and

XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT scene components from the resulting XrSceneMSFT

handle.

• If XR_SCENE_COMPUTE_FEATURE_COLLIDER_MESH_MSFT is passed then:

◦ the application may be able to read XR_SCENE_COMPONENT_TYPE_COLLIDER_MESH_MSFT and

XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT scene components from the resulting XrSceneMSFT

handle.

1236 | Chapter 12. List of Current Extensions

// Provided by XR_MSFT_scene_understanding

XrResult xrComputeNewSceneMSFT(

 XrSceneObserverMSFT sceneObserver,

 const XrNewSceneComputeInfoMSFT* computeInfo);

Parameter Descriptions

• sceneObserver is a handle to an XrSceneObserverMSFT.

• computeInfo is a pointer to an XrNewSceneComputeInfoMSFT structure.

The runtime must return XR_ERROR_SCENE_COMPUTE_FEATURE_INCOMPATIBLE_MSFT if incompatible features

were passed or no compatible features were passed.

The runtime must return XR_ERROR_SCENE_COMPUTE_FEATURE_INCOMPATIBLE_MSFT if

XR_SCENE_COMPUTE_FEATURE_PLANE_MESH_MSFT was passed but XR_SCENE_COMPUTE_FEATURE_PLANE_MSFT was

not passed.

The runtime must return XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT if xrComputeNewSceneMSFT

is called while the scene computation is in progress.

An application that wishes to use XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT must create

an XrSceneObserverMSFT handle that passes neither

XR_SCENE_COMPUTE_CONSISTENCY_SNAPSHOT_COMPLETE_MSFT nor

XR_SCENE_COMPUTE_CONSISTENCY_SNAPSHOT_INCOMPLETE_FAST_MSFT to xrComputeNewSceneMSFT for the

lifetime of that XrSceneObserverMSFT handle. This allows the runtime to return occlusion mesh at a

different cadence than non-occlusion mesh or planes.

• The runtime must return XR_ERROR_SCENE_COMPUTE_CONSISTENCY_MISMATCH_MSFT if:

◦ XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT is passed to xrComputeNewSceneMSFT

and

◦ a previous call to xrComputeNewSceneMSFT did not pass

XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT for the same XrSceneObserverMSFT

handle.

• The runtime must return XR_ERROR_SCENE_COMPUTE_CONSISTENCY_MISMATCH_MSFT if:

◦ XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT is not passed to

xrComputeNewSceneMSFT and

◦ a previous call to xrComputeNewSceneMSFT did pass

XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT for the same XrSceneObserverMSFT

handle.

Chapter 12. List of Current Extensions | 1237

• The runtime must return XR_ERROR_SCENE_COMPUTE_FEATURE_INCOMPATIBLE_MSFT if:

◦ XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT is passed to xrComputeNewSceneMSFT

and

◦ neither XR_SCENE_COMPUTE_FEATURE_VISUAL_MESH_MSFT nor

XR_SCENE_COMPUTE_FEATURE_COLLIDER_MESH_MSFT are also passed.

• The runtime must return XR_ERROR_SCENE_COMPUTE_FEATURE_INCOMPATIBLE_MSFT if:

◦ XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT is passed to xrComputeNewSceneMSFT

and

◦ at least one of XR_SCENE_COMPUTE_FEATURE_SERIALIZE_SCENE_MSFT,

XR_SCENE_COMPUTE_FEATURE_PLANE_MSFT, XR_SCENE_COMPUTE_FEATURE_PLANE_MESH_MSFT, or

XR_SCENE_COMPUTE_FEATURE_SERIALIZE_SCENE_MSFT are also passed.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrComputeNewSceneMSFT

• sceneObserver must be a valid XrSceneObserverMSFT handle

• computeInfo must be a pointer to a valid XrNewSceneComputeInfoMSFT structure

1238 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_TIME_INVALID

• XR_ERROR_SCENE_COMPUTE_FEATURE_INCOMPATIBLE_MSFT

• XR_ERROR_SCENE_COMPUTE_CONSISTENCY_MISMATCH_MSFT

• XR_ERROR_POSE_INVALID

• XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT

An XrSceneMSFT handle represents the collection of scene components that were detected during the

scene computation.

 XR_DEFINE_HANDLE(XrSceneMSFT)

The XrNewSceneComputeInfoMSFT structure is defined as:

Chapter 12. List of Current Extensions | 1239

// Provided by XR_MSFT_scene_understanding

typedef struct XrNewSceneComputeInfoMSFT {

 XrStructureType type;

 const void* next;

 uint32_t requestedFeatureCount;

 const XrSceneComputeFeatureMSFT* requestedFeatures;

 XrSceneComputeConsistencyMSFT consistency;

 XrSceneBoundsMSFT bounds;

} XrNewSceneComputeInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• requestedFeatureCount is the number of features.

• requestedFeatures is an array of XrSceneComputeFeatureMSFT.

• consistency indicates the requested XrSceneComputeConsistencyMSFT, trading off speed

against the quality of the resulting scene.

• bounds is an XrSceneBoundsMSFT representing the culling volume. Scene components

entirely outside this volume should culled.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrNewSceneComputeInfoMSFT

• type must be XR_TYPE_NEW_SCENE_COMPUTE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrVisualMeshComputeLodInfoMSFT

• requestedFeatures must be a pointer to an array of requestedFeatureCount valid

XrSceneComputeFeatureMSFT values

• consistency must be a valid XrSceneComputeConsistencyMSFT value

• bounds must be a valid XrSceneBoundsMSFT structure

• The requestedFeatureCount parameter must be greater than 0

The XrSceneComputeFeatureMSFT enumeration identifies the different scene compute features that

may be passed to xrComputeNewSceneMSFT.

1240 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_scene_understanding

typedef enum XrSceneComputeFeatureMSFT {

 XR_SCENE_COMPUTE_FEATURE_PLANE_MSFT = 1,

 XR_SCENE_COMPUTE_FEATURE_PLANE_MESH_MSFT = 2,

 XR_SCENE_COMPUTE_FEATURE_VISUAL_MESH_MSFT = 3,

 XR_SCENE_COMPUTE_FEATURE_COLLIDER_MESH_MSFT = 4,

 // Provided by XR_MSFT_scene_understanding_serialization

 XR_SCENE_COMPUTE_FEATURE_SERIALIZE_SCENE_MSFT = 1000098000,

 // Provided by XR_MSFT_scene_marker

 XR_SCENE_COMPUTE_FEATURE_MARKER_MSFT = 1000147000,

 XR_SCENE_COMPUTE_FEATURE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrSceneComputeFeatureMSFT;

Enumerant Descriptions

• XR_SCENE_COMPUTE_FEATURE_PLANE_MSFT specifies that plane data for objects should be included

in the resulting scene.

• XR_SCENE_COMPUTE_FEATURE_PLANE_MESH_MSFT specifies that planar meshes for objects should be

included in the resulting scene.

• XR_SCENE_COMPUTE_FEATURE_VISUAL_MESH_MSFT specifies that 3D visualization meshes for objects

should be included in the resulting scene.

• XR_SCENE_COMPUTE_FEATURE_COLLIDER_MESH_MSFT specifies that 3D collider meshes for objects

should be included in the resulting scene. Note

Applications wanting to use the scene for analysis, or in a physics simulation should

set consistency to XR_SCENE_COMPUTE_CONSISTENCY_SNAPSHOT_COMPLETE_MSFT in order to

avoid physics objects falling through the gaps and escaping the scene.

Setting consistency to XR_SCENE_COMPUTE_CONSISTENCY_SNAPSHOT_INCOMPLETE_FAST_MSFT

might speed up the compute but it will result in gaps in the scene.

Setting consistency to XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT should

be done when the resulting mesh will only be used to occlude virtual objects that are

behind real-world surfaces. This mode will be most efficient and have the lowest-

latency, but will return meshes less suitable for analysis or visualization.

The XrSceneComputeConsistencyMSFT enumeration identifies the different scene compute

consistencies that may be passed to xrComputeNewSceneMSFT.

Chapter 12. List of Current Extensions | 1241

// Provided by XR_MSFT_scene_understanding

typedef enum XrSceneComputeConsistencyMSFT {

 XR_SCENE_COMPUTE_CONSISTENCY_SNAPSHOT_COMPLETE_MSFT = 1,

 XR_SCENE_COMPUTE_CONSISTENCY_SNAPSHOT_INCOMPLETE_FAST_MSFT = 2,

 XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT = 3,

 XR_SCENE_COMPUTE_CONSISTENCY_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrSceneComputeConsistencyMSFT;

Enumerant Descriptions

• XR_SCENE_COMPUTE_CONSISTENCY_SNAPSHOT_COMPLETE_MSFT. The runtime must return a scene that

is a consistent and complete snapshot of the environment, inferring the size and shape of

objects as needed where the objects were not directly observed, in order to generate a

watertight representation of the scene.

• XR_SCENE_COMPUTE_CONSISTENCY_SNAPSHOT_INCOMPLETE_FAST_MSFT. The runtime must return a

consistent snapshot of the scene with meshes that do not overlap adjacent meshes at their

edges, but may skip returning objects with XrSceneObjectTypeMSFT of

XR_SCENE_OBJECT_TYPE_INFERRED_MSFT in order to return the scene faster.

• XR_SCENE_COMPUTE_CONSISTENCY_OCCLUSION_OPTIMIZED_MSFT. The runtime may react to this value

by computing scenes more quickly and reusing existing mesh buffer IDs more often to

minimize app overhead, with potential tradeoffs such as returning meshes that are not

watertight, meshes that overlap adjacent meshes at their edges to allow partial updates in the

future, or other reductions in mesh quality that are less observable when mesh is used for

occlusion only.

An application can pass one or more bounding volumes when calling xrComputeNewSceneMSFT.

These bounding volumes are used to determine which scene components to include in the resulting

scene. Scene components that intersect one or more of the bounding volumes should be included, and

all other scene components should be excluded. If an application inputs no bounding volumes, then

the runtime must not associate any scene components with the resulting XrSceneMSFT handle.

1242 | Chapter 12. List of Current Extensions

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneBoundsMSFT {

 XrSpace space;

 XrTime time;

 uint32_t sphereCount;

 const XrSceneSphereBoundMSFT* spheres;

 uint32_t boxCount;

 const XrSceneOrientedBoxBoundMSFT* boxes;

 uint32_t frustumCount;

 const XrSceneFrustumBoundMSFT* frustums;

} XrSceneBoundsMSFT;

Member Descriptions

• space is a handle to the XrSpace in which the bounds are specified.

• time is the XrTime at which the bounds will be evaluated within space.

• sphereCount is the number of sphere bounds.

• spheres is an array of XrSceneSphereBoundMSFT.

• boxCount is the number of oriented box bounds.

• boxes is an array of XrSceneOrientedBoxBoundMSFT.

• frustumCount is the number of frustum bounds.

• frustums is an array of XrSceneFrustumBoundMSFT.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneBoundsMSFT

• space must be a valid XrSpace handle

• If sphereCount is not 0, spheres must be a pointer to an array of sphereCount

XrSceneSphereBoundMSFT structures

• If boxCount is not 0, boxes must be a pointer to an array of boxCount

XrSceneOrientedBoxBoundMSFT structures

• If frustumCount is not 0, frustums must be a pointer to an array of frustumCount

XrSceneFrustumBoundMSFT structures

An XrSceneSphereBoundMSFT structure describes the center and radius of a sphere bounds.

Chapter 12. List of Current Extensions | 1243

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneSphereBoundMSFT {

 XrVector3f center;

 float radius;

} XrSceneSphereBoundMSFT;

Member Descriptions

• center is an XrVector3f representing the center of the sphere bound within the reference

frame of the corresponding XrSceneBoundsMSFT::space.

• radius is the finite positive radius of the sphere bound.

The runtime must return XR_ERROR_VALIDATION_FAILURE if radius is not a finite positive value.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneSphereBoundMSFT

An XrSceneOrientedBoxBoundMSFT structure describes the pose and extents of an oriented box

bounds.

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneOrientedBoxBoundMSFT {

 XrPosef pose;

 XrVector3f extents;

} XrSceneOrientedBoxBoundMSFT;

Member Descriptions

• pose is an XrPosef defining the center position and orientation of the oriented bounding box

bound within the reference frame of the corresponding XrSceneBoundsMSFT::space.

• extents is an XrVector3f defining the edge-to-edge length of the box along each dimension

with pose as the center.

The runtime must return XR_ERROR_VALIDATION_FAILURE if any component of extents is not finite or less

than or equal to zero.

1244 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneOrientedBoxBoundMSFT

An XrSceneFrustumBoundMSFT structure describes the pose, field of view, and far distance of a

frustum bounds.

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneFrustumBoundMSFT {

 XrPosef pose;

 XrFovf fov;

 float farDistance;

} XrSceneFrustumBoundMSFT;

Member Descriptions

• pose is an XrPosef defining the position and orientation of the tip of the frustum bound

within the reference frame of the corresponding XrSceneBoundsMSFT::space.

• fov is an XrFovf for the four sides of the frustum bound where XrFovf::angleLeft and XrFovf

::angleRight are along the X axis and XrFovf::angleUp and XrFovf::angleDown are along the Y

axis of the frustum bound space.

• farDistance is the positive distance of the far plane of the frustum bound along the -Z

direction of the frustum bound space.

The runtime must return XR_ERROR_VALIDATION_FAILURE if farDistance is less than or equal to zero. The

runtime must return XR_ERROR_VALIDATION_FAILURE if the fov angles are not between between -π/2 and

π/2 exclusively.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneFrustumBoundMSFT

Applications can request a desired visual mesh level of detail by including

XrVisualMeshComputeLodInfoMSFT in the XrNewSceneComputeInfoMSFT::next chain. If

XrVisualMeshComputeLodInfoMSFT is not included in the XrNewSceneComputeInfoMSFT::next chain,

then XR_MESH_COMPUTE_LOD_COARSE_MSFT must be used for the visual mesh level of detail.

Chapter 12. List of Current Extensions | 1245

The XrVisualMeshComputeLodInfoMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrVisualMeshComputeLodInfoMSFT {

 XrStructureType type;

 const void* next;

 XrMeshComputeLodMSFT lod;

} XrVisualMeshComputeLodInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• lod is the requested mesh level of detail specified by XrMeshComputeLodMSFT.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrVisualMeshComputeLodInfoMSFT

• type must be XR_TYPE_VISUAL_MESH_COMPUTE_LOD_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• lod must be a valid XrMeshComputeLodMSFT value

The XrMeshComputeLodMSFT enumeration identifies the level of detail of visual mesh compute.

// Provided by XR_MSFT_scene_understanding

typedef enum XrMeshComputeLodMSFT {

 XR_MESH_COMPUTE_LOD_COARSE_MSFT = 1,

 XR_MESH_COMPUTE_LOD_MEDIUM_MSFT = 2,

 XR_MESH_COMPUTE_LOD_FINE_MSFT = 3,

 XR_MESH_COMPUTE_LOD_UNLIMITED_MSFT = 4,

 XR_MESH_COMPUTE_LOD_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrMeshComputeLodMSFT;

1246 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Enumerant Descriptions

• XR_MESH_COMPUTE_LOD_COARSE_MSFT. Coarse mesh compute level of detail will generate roughly

100 triangles per cubic meter.

• XR_MESH_COMPUTE_LOD_MEDIUM_MSFT. Medium mesh compute level of detail will generate roughly

400 triangles per cubic meter.

• XR_MESH_COMPUTE_LOD_FINE_MSFT. Fine mesh compute level of detail will generate roughly 2000

triangles per cubic meter.

• XR_MESH_COMPUTE_LOD_UNLIMITED_MSFT. Unlimited mesh compute level of detail. There is no

guarantee as to the number of triangles returned.

The xrEnumerateSceneComputeFeaturesMSFT function enumerates the supported scene compute

features of the given system.

This function follows the two-call idiom for filling the features array.

// Provided by XR_MSFT_scene_understanding

XrResult xrEnumerateSceneComputeFeaturesMSFT(

 XrInstance instance,

 XrSystemId systemId,

 uint32_t featureCapacityInput,

 uint32_t* featureCountOutput,

 XrSceneComputeFeatureMSFT* features);

Parameter Descriptions

• instance is a handle to an XrInstance.

• systemId is the XrSystemId whose scene compute features will be enumerated.

• featureCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve the

required capacity.

• featureCountOutput is a pointer to the count of scene compute features, or a pointer to the

required capacity in the case that featureCapacityInput is insufficient.

• features is an array of XrSceneComputeFeatureMSFT.

Chapter 12. List of Current Extensions | 1247

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrEnumerateSceneComputeFeaturesMSFT

• instance must be a valid XrInstance handle

• featureCountOutput must be a pointer to a uint32_t value

• If featureCapacityInput is not 0, features must be a pointer to an array of

featureCapacityInput XrSceneComputeFeatureMSFT values

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SYSTEM_INVALID

An application can inspect the completion of the compute by polling xrGetSceneComputeStateMSFT.

This function should typically be called once per frame per XrSceneObserverMSFT.

// Provided by XR_MSFT_scene_understanding

XrResult xrGetSceneComputeStateMSFT(

 XrSceneObserverMSFT sceneObserver,

 XrSceneComputeStateMSFT* state);

1248 | Chapter 12. List of Current Extensions

Parameter Descriptions

• sceneObserver is a handle to an XrSceneObserverMSFT.

• state is the returned XrSceneComputeStateMSFT value.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrGetSceneComputeStateMSFT

• sceneObserver must be a valid XrSceneObserverMSFT handle

• state must be a pointer to an XrSceneComputeStateMSFT value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

XrSceneComputeStateMSFT identifies the different states of computing a new scene.

Chapter 12. List of Current Extensions | 1249

// Provided by XR_MSFT_scene_understanding

typedef enum XrSceneComputeStateMSFT {

 XR_SCENE_COMPUTE_STATE_NONE_MSFT = 0,

 XR_SCENE_COMPUTE_STATE_UPDATING_MSFT = 1,

 XR_SCENE_COMPUTE_STATE_COMPLETED_MSFT = 2,

 XR_SCENE_COMPUTE_STATE_COMPLETED_WITH_ERROR_MSFT = 3,

 XR_SCENE_COMPUTE_STATE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrSceneComputeStateMSFT;

Enumerant Descriptions

• XR_SCENE_COMPUTE_STATE_NONE_MSFT indicates that no scene is available, and that a scene is not

being computed. The application may call xrComputeNewSceneMSFT to start computing a

scene.

• XR_SCENE_COMPUTE_STATE_UPDATING_MSFT indicates that a new scene is being computed. Calling

xrCreateSceneMSFT or xrComputeNewSceneMSFT must return the error

XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT.

• XR_SCENE_COMPUTE_STATE_COMPLETED_MSFT indicates that a new scene has completed computing.

The application may call xrCreateSceneMSFT to get the results of the query or the application

may call xrComputeNewSceneMSFT to start computing a new scene.

• XR_SCENE_COMPUTE_STATE_COMPLETED_WITH_ERROR_MSFT indicates that the new scene computation

completed with an error. Calling xrCreateSceneMSFT must return a valid XrSceneMSFT

handle but calling xrGetSceneComponentsMSFT with that handle must return zero scene

components. The runtime must allow the application to call xrComputeNewSceneMSFT to try

computing a scene again, even if the last call to xrComputeNewSceneMSFT resulted in

XR_SCENE_COMPUTE_STATE_COMPLETED_WITH_ERROR_MSFT.

• The xrGetSceneComputeStateMSFT function must return XR_SCENE_COMPUTE_STATE_NONE_MSFT if it is

called before xrComputeNewSceneMSFT is called for the first time for the given

XrSceneObserverMSFT handle.

• After calling xrComputeNewSceneMSFT but before the asynchronous operation has completed, any

calls to xrGetSceneComputeStateMSFT should return XR_SCENE_COMPUTE_STATE_UPDATING_MSFT.

• Once the asynchronous operation has completed successfully, xrGetSceneComputeStateMSFT must

return XR_SCENE_COMPUTE_STATE_COMPLETED_MSFT until xrComputeNewSceneMSFT is called again.

Create a scene handle after a new scene compute has completed

The xrCreateSceneMSFT functions creates an XrSceneMSFT handle. It can only be called after

xrGetSceneComputeStateMSFT returns XR_SCENE_COMPUTE_STATE_COMPLETED_MSFT to indicate that the

asynchronous operation has completed. The XrSceneMSFT handle manages the collection of scene

components that represents the detected objects found during the query.

1250 | Chapter 12. List of Current Extensions

After an XrSceneMSFT handle is created, the handle and associated data must remain valid until

destroyed, even after xrCreateSceneMSFT is called again to create the next scene. The runtime must

keep alive any component data and mesh buffers relating to this historical scene until its handle is

destroyed.

// Provided by XR_MSFT_scene_understanding

XrResult xrCreateSceneMSFT(

 XrSceneObserverMSFT sceneObserver,

 const XrSceneCreateInfoMSFT* createInfo,

 XrSceneMSFT* scene);

Parameter Descriptions

• sceneObserver is a handle to an XrSceneObserverMSFT.

• createInfo exists for extensibility purposes, it is NULL or a pointer to a valid

XrSceneCreateInfoMSFT structure.

• scene is the returned XrSceneMSFT handle.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrCreateSceneMSFT

• sceneObserver must be a valid XrSceneObserverMSFT handle

• If createInfo is not NULL, createInfo must be a pointer to a valid XrSceneCreateInfoMSFT

structure

• scene must be a pointer to an XrSceneMSFT handle

Chapter 12. List of Current Extensions | 1251

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT

Calling xrCreateSceneMSFT when xrGetSceneComputeStateMSFT returns

XR_SCENE_COMPUTE_STATE_NONE_MSFT or XR_SCENE_COMPUTE_STATE_UPDATING_MSFT must return the error

XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT.

The XrSceneCreateInfoMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneCreateInfoMSFT {

 XrStructureType type;

 const void* next;

} XrSceneCreateInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

1252 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneCreateInfoMSFT

• type must be XR_TYPE_SCENE_CREATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

The xrDestroySceneMSFT function releases the scene and the underlying resources.

// Provided by XR_MSFT_scene_understanding

XrResult xrDestroySceneMSFT(

 XrSceneMSFT scene);

Parameter Descriptions

• scene is an XrSceneMSFT previously created by xrCreateSceneMSFT.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrDestroySceneMSFT

• scene must be a valid XrSceneMSFT handle

Thread Safety

• Access to scene, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

Chapter 12. List of Current Extensions | 1253

#valid-usage-for-structure-pointer-chains

Scene component types and Universally Unique Identifiers

Each XrSceneMSFT may contain one or more scene components. Scene components are uniquely

identified by a Universally Unique Identifier, represented by XrUuidMSFT. Each scene component

belongs to one XrSceneComponentTypeMSFT. The XrSceneComponentTypeMSFT denotes which

additional properties can be read for that scene component.

• Get a list of scene objects and their properties in the scene by calling xrGetSceneComponentsMSFT

with XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT and including XrSceneObjectsMSFT in the

XrSceneComponentsMSFT::next chain.

• Get the list of scene planes and their properties in the scene if XR_SCENE_COMPUTE_FEATURE_PLANE_MSFT

was passed to xrComputeNewSceneMSFT by calling xrGetSceneComponentsMSFT with

XR_SCENE_COMPONENT_TYPE_PLANE_MSFT and including XrScenePlanesMSFT in the

XrSceneComponentsMSFT::next chain.

• Get the list of scene visual meshes and their properties in the scene if

XR_SCENE_COMPUTE_FEATURE_VISUAL_MESH_MSFT was passed to xrComputeNewSceneMSFT by calling

xrGetSceneComponentsMSFT with XR_SCENE_COMPONENT_TYPE_VISUAL_MESH_MSFT and including

XrSceneMeshesMSFT in the XrSceneComponentsMSFT::next chain.

• Get the list of scene collider meshes and their properties in the scene if

XR_SCENE_COMPUTE_FEATURE_COLLIDER_MESH_MSFT was passed to xrComputeNewSceneMSFT by calling

xrGetSceneComponentsMSFT with XR_SCENE_COMPONENT_TYPE_COLLIDER_MESH_MSFT and including

XrSceneMeshesMSFT in the XrSceneComponentsMSFT::next chain.

The XrUuidMSFT structure is a 128-bit UUID (Universally Unique IDentifier) that follows RFC 4122

Variant 1. The structure is composed of 16 octets, typically with the sizes and order of the fields defined

in RFC 4122 section 4.1.2. The XrUuidMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrUuidMSFT {

 uint8_t bytes[16];

} XrUuidMSFT;

Member Descriptions

• bytes is a 128-bit Variant-1 Universally Unique Identifier.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using XrUuidMSFT

1254 | Chapter 12. List of Current Extensions

https://www.rfc-editor.org/rfc/rfc4122.html#section-4.1.1
https://www.rfc-editor.org/rfc/rfc4122.html#section-4.1.1
https://www.rfc-editor.org/rfc/rfc4122.html#section-4.1.2

The XrSceneComponentTypeMSFT enumeration identifies the scene component type.

// Provided by XR_MSFT_scene_understanding

typedef enum XrSceneComponentTypeMSFT {

 XR_SCENE_COMPONENT_TYPE_INVALID_MSFT = -1,

 XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT = 1,

 XR_SCENE_COMPONENT_TYPE_PLANE_MSFT = 2,

 XR_SCENE_COMPONENT_TYPE_VISUAL_MESH_MSFT = 3,

 XR_SCENE_COMPONENT_TYPE_COLLIDER_MESH_MSFT = 4,

 // Provided by XR_MSFT_scene_understanding_serialization

 XR_SCENE_COMPONENT_TYPE_SERIALIZED_SCENE_FRAGMENT_MSFT = 1000098000,

 // Provided by XR_MSFT_scene_marker

 XR_SCENE_COMPONENT_TYPE_MARKER_MSFT = 1000147000,

 XR_SCENE_COMPONENT_TYPE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrSceneComponentTypeMSFT;

Enumerant Descriptions

• XR_SCENE_COMPONENT_TYPE_INVALID_MSFT indicates an invalid scene component type.

• XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT indicates a discrete object detected in the world, such as

a wall, floor, ceiling or table. Scene objects then provide their geometric representations such

as planes and meshes as child scene components with the types below.

• XR_SCENE_COMPONENT_TYPE_PLANE_MSFT indicates a flat 2D representation of a surface in the

world, such as a wall, floor, ceiling or table.

• XR_SCENE_COMPONENT_TYPE_VISUAL_MESH_MSFT indicates a visual mesh representation of an object

in the world, optimized for visual quality when directly rendering a wireframe or other mesh

visualization to the user. Visual mesh can also be used for rendering the silhouettes of

objects. Applications can request varying levels of detail for visual meshes when calling

xrComputeNewSceneMSFT using XrVisualMeshComputeLodInfoMSFT.

• XR_SCENE_COMPONENT_TYPE_COLLIDER_MESH_MSFT indicates a collider mesh representation of an

object in the world, optimized to maintain the silhouette of an object while reducing detail on

mostly-flat surfaces. Collider mesh is useful when calculating physics collisions or when

rendering silhouettes of objects for occlusion.

Get scene components

Scene components are read from an XrSceneMSFT using xrGetSceneComponentsMSFT and passing one

XrSceneComponentTypeMSFT. This function follows the two-call idiom for filling multiple buffers in a

struct. Different scene component types may have additional properties that can be read by chaining

additional structures to XrSceneComponentsMSFT. Those additional structures must have an array

Chapter 12. List of Current Extensions | 1255

size that is at least as large as XrSceneComponentsMSFT::componentCapacityInput, otherwise the

runtime must return XR_ERROR_SIZE_INSUFFICIENT.

• If XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT is passed to xrGetSceneComponentsMSFT, then

XrSceneObjectsMSFT may be included in the XrSceneComponentsMSFT::next chain.

• If XR_SCENE_COMPONENT_TYPE_PLANE_MSFT is passed to xrGetSceneComponentsMSFT, then

XrScenePlanesMSFT may be included in the XrSceneComponentsMSFT::next chain.

• If XR_SCENE_COMPONENT_TYPE_VISUAL_MESH_MSFT or XR_SCENE_COMPONENT_TYPE_COLLIDER_MESH_MSFT are

passed to xrGetSceneComponentsMSFT, then XrSceneMeshesMSFT may be included in the

XrSceneComponentsMSFT::next chain.

// Provided by XR_MSFT_scene_understanding

XrResult xrGetSceneComponentsMSFT(

 XrSceneMSFT scene,

 const XrSceneComponentsGetInfoMSFT* getInfo,

 XrSceneComponentsMSFT* components);

Parameter Descriptions

• scene is an XrSceneMSFT previously created by xrCreateSceneMSFT.

• getInfo is a pointer to an XrSceneComponentsGetInfoMSFT structure.

• components is the XrSceneComponentsMSFT output structure.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrGetSceneComponentsMSFT

• scene must be a valid XrSceneMSFT handle

• getInfo must be a pointer to a valid XrSceneComponentsGetInfoMSFT structure

• components must be a pointer to an XrSceneComponentsMSFT structure

1256 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SCENE_COMPONENT_TYPE_MISMATCH_MSFT

An application can use XrSceneComponentsGetInfoMSFT to read the state of a specific component type

using the xrGetSceneComponentsMSFT function. Applications can chain one or more of following

extension structures to the XrSceneComponentsGetInfoMSFT::next chain to further narrow the

returned components. The returned components must satisfy all conditions in the extension structs.

• XrSceneComponentParentFilterInfoMSFT to return only scene components that match the given

parent object identifier.

• XrSceneObjectTypesFilterInfoMSFT to return only scene components that match any of the given

XrSceneObjectTypeMSFT values or if a scene component does not have an XrSceneObjectTypeMSFT

property then the parent’s XrSceneObjectTypeMSFT property will be compared.

• XrScenePlaneAlignmentFilterInfoMSFT to return only scene components that match any of the

given XrScenePlaneAlignmentTypeMSFT values.

The XrSceneComponentsGetInfoMSFT structure is defined as:

Chapter 12. List of Current Extensions | 1257

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneComponentsGetInfoMSFT {

 XrStructureType type;

 const void* next;

 XrSceneComponentTypeMSFT componentType;

} XrSceneComponentsGetInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• componentType is the scene component type requested.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneComponentsGetInfoMSFT

• type must be XR_TYPE_SCENE_COMPONENTS_GET_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSceneComponentParentFilterInfoMSFT, XrSceneMarkerTypeFilterMSFT,

XrSceneObjectTypesFilterInfoMSFT, XrScenePlaneAlignmentFilterInfoMSFT

• componentType must be a valid XrSceneComponentTypeMSFT value

The XrSceneComponentsMSFT structure contains an array of XrSceneComponentMSFT returning the

components that satisfy the conditions in xrGetSceneComponentsMSFT::getInfo. The

XrSceneComponentsMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneComponentsMSFT {

 XrStructureType type;

 void* next;

 uint32_t componentCapacityInput;

 uint32_t componentCountOutput;

 XrSceneComponentMSFT* components;

} XrSceneComponentsMSFT;

1258 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• componentCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve the

required capacity.

• componentCountOutput is a pointer to the count of components, or a pointer to the required

capacity in the case that componentCapacityInput is insufficient.

• components is an array of XrSceneComponentMSFT.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

components size.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneComponentsMSFT

• type must be XR_TYPE_SCENE_COMPONENTS_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSceneMarkerQRCodesMSFT, XrSceneMarkersMSFT, XrSceneMeshesMSFT,

XrSceneObjectsMSFT, XrScenePlanesMSFT

• If componentCapacityInput is not 0, components must be a pointer to an array of

componentCapacityInput XrSceneComponentMSFT structures

The XrSceneComponentMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneComponentMSFT {

 XrSceneComponentTypeMSFT componentType;

 XrUuidMSFT id;

 XrUuidMSFT parentId;

 XrTime updateTime;

} XrSceneComponentMSFT;

Chapter 12. List of Current Extensions | 1259

#valid-usage-for-structure-pointer-chains

Member Descriptions

• componentType is the XrSceneComponentTypeMSFT of the scene component.

• id is the XrUuidMSFT of the scene component.

• parentId is the XrUuidMSFT of the parent scene object. If the scene component does not have

a parent, then parentId will be equal to zero.

• updateTime is the XrTime that this scene component was last updated.

The runtime must set parentId to either zero or a valid XrUuidMSFT that corresponds to a scene

component of type XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT that exists in the XrSceneMSFT. Note

The parent scene object is intended to allow scene components to be grouped. For

example, the scene object for a wall might have multiple scene component children

like XR_SCENE_COMPONENT_TYPE_PLANE_MSFT, XR_SCENE_COMPONENT_TYPE_VISUAL_MESH_MSFT,

and XR_SCENE_COMPONENT_TYPE_COLLIDER_MESH_MSFT. Those child scene components

would be alternative representations of the same wall.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneComponentMSFT

• componentType must be a valid XrSceneComponentTypeMSFT value

Get scene components using filters

The scene components that are returned by xrGetSceneComponentsMSFT can be filtered by chaining

optional structures to XrSceneComponentsGetInfoMSFT. The runtime must combine multiple filters

with a logical AND.

The XrSceneComponentParentFilterInfoMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneComponentParentFilterInfoMSFT {

 XrStructureType type;

 const void* next;

 XrUuidMSFT parentId;

} XrSceneComponentParentFilterInfoMSFT;

1260 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• parentId is the XrUuidMSFT of the parent scene component to filter by.

The runtime must return only scene components with matching parentId. If parentId is zero then the

runtime must return only scene components that do not have a parent.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneComponentParentFilterInfoMSFT

• type must be XR_TYPE_SCENE_COMPONENT_PARENT_FILTER_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrSceneObjectTypesFilterInfoMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneObjectTypesFilterInfoMSFT {

 XrStructureType type;

 const void* next;

 uint32_t objectTypeCount;

 const XrSceneObjectTypeMSFT* objectTypes;

} XrSceneObjectTypesFilterInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• objectTypeCount is a uint32_t describing the count of elements in the objectTypes array.

• objectTypes is an array of XrSceneObjectTypeMSFT to filter by.

The runtime must return only scene components that match any of the XrSceneObjectTypeMSFT in

objectTypes. If a scene component does not have an XrSceneObjectTypeMSFT then the parent’s

XrSceneObjectTypeMSFT value will be used for the comparison if it exists.

Chapter 12. List of Current Extensions | 1261

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneObjectTypesFilterInfoMSFT

• type must be XR_TYPE_SCENE_OBJECT_TYPES_FILTER_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If objectTypeCount is not 0, objectTypes must be a pointer to an array of objectTypeCount valid

XrSceneObjectTypeMSFT values

The XrScenePlaneAlignmentFilterInfoMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrScenePlaneAlignmentFilterInfoMSFT {

 XrStructureType type;

 const void* next;

 uint32_t alignmentCount;

 const XrScenePlaneAlignmentTypeMSFT* alignments;

} XrScenePlaneAlignmentFilterInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• alignmentCount is a uint32_t describing the count of elements in the alignments array.

• alignments is an array of XrScenePlaneAlignmentTypeMSFT to filter by.

The runtime must return only scene components that match one of the

XrScenePlaneAlignmentTypeMSFT values passed in alignments.

1262 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrScenePlaneAlignmentFilterInfoMSFT

• type must be XR_TYPE_SCENE_PLANE_ALIGNMENT_FILTER_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If alignmentCount is not 0, alignments must be a pointer to an array of alignmentCount valid

XrScenePlaneAlignmentTypeMSFT values

Get scene objects

The runtime must fill out the XrSceneObjectsMSFT structure when included in the

XrSceneComponentsMSFT::next chain. The XrSceneComponentsGetInfoMSFT::componentType must

be XR_SCENE_COMPONENT_TYPE_OBJECT_MSFT when XrSceneObjectsMSFT is included in the next chain. If it is

not, the XR_ERROR_SCENE_COMPONENT_TYPE_MISMATCH_MSFT error must be returned.

The XrSceneObjectsMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneObjectsMSFT {

 XrStructureType type;

 void* next;

 uint32_t sceneObjectCount;

 XrSceneObjectMSFT* sceneObjects;

} XrSceneObjectsMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• sceneObjectCount is a uint32_t describing the count of elements in the sceneObjects array.

• sceneObjects is an array of XrSceneObjectMSFT.

The runtime must only set XrSceneObjectMSFT::objectType to any of the following

XrSceneObjectTypeMSFT values:

• XR_SCENE_OBJECT_TYPE_UNCATEGORIZED_MSFT

• XR_SCENE_OBJECT_TYPE_BACKGROUND_MSFT

Chapter 12. List of Current Extensions | 1263

#valid-usage-for-structure-pointer-chains

• XR_SCENE_OBJECT_TYPE_WALL_MSFT

• XR_SCENE_OBJECT_TYPE_FLOOR_MSFT

• XR_SCENE_OBJECT_TYPE_CEILING_MSFT

• XR_SCENE_OBJECT_TYPE_PLATFORM_MSFT

• XR_SCENE_OBJECT_TYPE_INFERRED_MSFT

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneObjectsMSFT

• type must be XR_TYPE_SCENE_OBJECTS_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If sceneObjectCount is not 0, sceneObjects must be a pointer to an array of sceneObjectCount

XrSceneObjectMSFT structures

The XrSceneObjectMSFT structure represents the state of a scene object.

It is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneObjectMSFT {

 XrSceneObjectTypeMSFT objectType;

} XrSceneObjectMSFT;

Member Descriptions

• objectType is the type of the object specified by XrSceneObjectTypeMSFT.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneObjectMSFT

• objectType must be a valid XrSceneObjectTypeMSFT value

The XrSceneObjectTypeMSFT enumeration identifies the different types of scene objects.

1264 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_scene_understanding

typedef enum XrSceneObjectTypeMSFT {

 XR_SCENE_OBJECT_TYPE_UNCATEGORIZED_MSFT = -1,

 XR_SCENE_OBJECT_TYPE_BACKGROUND_MSFT = 1,

 XR_SCENE_OBJECT_TYPE_WALL_MSFT = 2,

 XR_SCENE_OBJECT_TYPE_FLOOR_MSFT = 3,

 XR_SCENE_OBJECT_TYPE_CEILING_MSFT = 4,

 XR_SCENE_OBJECT_TYPE_PLATFORM_MSFT = 5,

 XR_SCENE_OBJECT_TYPE_INFERRED_MSFT = 6,

 XR_SCENE_OBJECT_TYPE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrSceneObjectTypeMSFT;

Enumerant Descriptions

• XR_SCENE_OBJECT_TYPE_UNCATEGORIZED_MSFT. This scene object has yet to be classified and

assigned a type. This should not be confused with background, as this object could be

anything; the system has just not come up with a strong enough classification for it yet.

• XR_SCENE_OBJECT_TYPE_BACKGROUND_MSFT. The scene object is known to be not one of the other

recognized types of scene object. This class should not be confused with uncategorized where

background is known not to be wall/floor/ceiling etc. while uncategorized is not yet

categorized.

• XR_SCENE_OBJECT_TYPE_WALL_MSFT. A physical wall. Walls are assumed to be immovable

environmental structures.

• XR_SCENE_OBJECT_TYPE_FLOOR_MSFT. Floors are any surfaces on which one can walk. Note: stairs

are not floors. Also note, that floors assume any walkable surface and therefore there is no

explicit assumption of a singular floor. Multi-level structures, ramps, etc. should all classify as

floor.

• XR_SCENE_OBJECT_TYPE_CEILING_MSFT. The upper surface of a room.

• XR_SCENE_OBJECT_TYPE_PLATFORM_MSFT. A large flat surface on which you could place holograms.

These tend to represent tables, countertops, and other large horizontal surfaces.

• XR_SCENE_OBJECT_TYPE_INFERRED_MSFT. An imaginary object that was added to the scene in

order to make the scene watertight and avoid gaps.

Get scene planes

The runtime must fill out the XrScenePlanesMSFT structure when included in the

XrSceneComponentsMSFT::next chain. The XrSceneComponentsGetInfoMSFT::componentType must

be XR_SCENE_COMPONENT_TYPE_PLANE_MSFT when XrScenePlanesMSFT is included in the next chain. If it is

not, the XR_ERROR_SCENE_COMPONENT_TYPE_MISMATCH_MSFT error must be returned.

Chapter 12. List of Current Extensions | 1265

The XrScenePlanesMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrScenePlanesMSFT {

 XrStructureType type;

 void* next;

 uint32_t scenePlaneCount;

 XrScenePlaneMSFT* scenePlanes;

} XrScenePlanesMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• scenePlaneCount is a uint32_t describing the count of elements in the XrScenePlaneMSFT

array.

• scenePlanes is an array of XrScenePlaneMSFT.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrScenePlanesMSFT

• type must be XR_TYPE_SCENE_PLANES_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If scenePlaneCount is not 0, scenePlanes must be a pointer to an array of scenePlaneCount

XrScenePlaneMSFT structures

The XrScenePlaneMSFT structure represents the state of a scene plane.

It is defined as:

1266 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_scene_understanding

typedef struct XrScenePlaneMSFT {

 XrScenePlaneAlignmentTypeMSFT alignment;

 XrExtent2Df size;

 uint64_t meshBufferId;

 XrBool32 supportsIndicesUint16;

} XrScenePlaneMSFT;

Member Descriptions

• alignment is the alignment type of the plane specified by XrScenePlaneAlignmentTypeMSFT.

• size is the 2D size of the plane’s extent, where XrExtent2Df::width is the width of the plane

along the X axis, and XrExtent2Df::height is the height of the plane along the Y axis.

• meshBufferId is the uint64_t identifier that specifies the scene mesh buffer of this plane’s

triangle mesh. If meshBufferId is zero then this plane does not have a mesh. The triangles in a

planar mesh are coplanar.

• supportsIndicesUint16 is XR_TRUE if the mesh supports reading 16-bit unsigned indices.

The size of a plane refers to the plane’s size in the x-y plane of the plane’s coordinate system. A plane

with a position of {0,0,0}, rotation of {0,0,0,1} (no rotation), and an extent of {1,1} refers to a 1 meter x 1

meter plane centered at {0,0,0} with its front face normal vector pointing towards the +Z direction in

the plane component’s space. For planes with an alignment of

XR_SCENE_PLANE_ALIGNMENT_TYPE_VERTICAL_MSFT, the +Y direction must point up away from the direction

of gravity.

X

Y

Z

Height

Y

Z
X

Vertical plane Horizontal Plane

WidthW
idth

H
eight

Viewer does not support full SVG 1.1

Figure 19. Scene Understanding Plane Coordinate System

Chapter 12. List of Current Extensions | 1267

 Note

OpenXR uses an X-Y plane with +Z as the plane normal but other APIs may use an X-Z

plane with +Y as the plane normal. The X-Y plane can be converted to an X-Z plane by

rotating -π/2 radians around the +X axis.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrScenePlaneMSFT

• alignment must be a valid XrScenePlaneAlignmentTypeMSFT value

XrScenePlaneAlignmentTypeMSFT identifies the different plane alignment types.

// Provided by XR_MSFT_scene_understanding

typedef enum XrScenePlaneAlignmentTypeMSFT {

 XR_SCENE_PLANE_ALIGNMENT_TYPE_NON_ORTHOGONAL_MSFT = 0,

 XR_SCENE_PLANE_ALIGNMENT_TYPE_HORIZONTAL_MSFT = 1,

 XR_SCENE_PLANE_ALIGNMENT_TYPE_VERTICAL_MSFT = 2,

 XR_SCENE_PLANE_ALIGNMENT_TYPE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrScenePlaneAlignmentTypeMSFT;

Enumerant Descriptions

• XR_SCENE_PLANE_ALIGNMENT_TYPE_NON_ORTHOGONAL_MSFT means the plane’s normal is not

orthogonal or parallel to the gravity direction.

• XR_SCENE_PLANE_ALIGNMENT_TYPE_HORIZONTAL_MSFT means the plane’s normal is roughly parallel

to the gravity direction.

• XR_SCENE_PLANE_ALIGNMENT_TYPE_VERTICAL_MSFT means the plane’s normal is roughly

orthogonal to the gravity direction.

Get scene mesh

The runtime must fill out the XrSceneMeshesMSFT structure when included in the

XrSceneComponentsMSFT::next chain. The XrSceneComponentsGetInfoMSFT::componentType must

be XR_SCENE_COMPONENT_TYPE_VISUAL_MESH_MSFT or XR_SCENE_COMPONENT_TYPE_COLLIDER_MESH_MSFT when

XrSceneMeshesMSFT is included in the next chain. If it is not, the

XR_ERROR_SCENE_COMPONENT_TYPE_MISMATCH_MSFT error must be returned.

The XrSceneMeshesMSFT structure is defined as:

1268 | Chapter 12. List of Current Extensions

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneMeshesMSFT {

 XrStructureType type;

 void* next;

 uint32_t sceneMeshCount;

 XrSceneMeshMSFT* sceneMeshes;

} XrSceneMeshesMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• sceneMeshCount is a uint32_t describing the count of elements in the sceneMeshes array.

• sceneMeshes is an array of XrSceneMeshMSFT.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneMeshesMSFT

• type must be XR_TYPE_SCENE_MESHES_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If sceneMeshCount is not 0, sceneMeshes must be a pointer to an array of sceneMeshCount

XrSceneMeshMSFT structures

The XrSceneMeshMSFT structure represents the state of a scene component’s mesh.

It is defined as:

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneMeshMSFT {

 uint64_t meshBufferId;

 XrBool32 supportsIndicesUint16;

} XrSceneMeshMSFT;

Chapter 12. List of Current Extensions | 1269

#valid-usage-for-structure-pointer-chains

Member Descriptions

• meshBufferId is the uint64_t identifier that specifies the scene mesh buffer. If meshBufferId is

zero then this scene component does not have mesh data of corresponding

XrSceneComponentTypeMSFT in xrGetSceneComponentsMSFT::getInfo.

• supportsIndicesUint16 is XR_TRUE if the mesh supports reading 16-bit unsigned indices.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneMeshMSFT

Read scene mesh buffer

The xrGetSceneMeshBuffersMSFT function retrieves the scene mesh vertex buffer and index buffer for

the given scene mesh buffer identifier. Note

Applications may use the scene mesh buffer identifier as a key to cache the vertices

and indices of a mesh for reuse within an XrSceneMSFT or across multiple

XrSceneMSFT for the same XrSession.

Applications can avoid unnecessarily calling xrGetSceneMeshBuffersMSFT for a scene

component if XrSceneComponentMSFT::updateTime is equal to the

XrSceneComponentMSFT::updateTime value in the previous XrSceneMSFT. A scene

component is uniquely identified by XrUuidMSFT.

This function follows the two-call idiom for filling multiple buffers in a struct.

The xrGetSceneMeshBuffersMSFT function is defined as:

// Provided by XR_MSFT_scene_understanding

XrResult xrGetSceneMeshBuffersMSFT(

 XrSceneMSFT scene,

 const XrSceneMeshBuffersGetInfoMSFT* getInfo,

 XrSceneMeshBuffersMSFT* buffers);

1270 | Chapter 12. List of Current Extensions

Parameter Descriptions

• scene is an XrSceneMSFT previously created by xrCreateSceneMSFT.

• getInfo is a pointer to an XrSceneMeshBuffersGetInfoMSFT structure.

• buffers is a pointer to an XrSceneMeshBuffersMSFT structure for reading a scene mesh

buffer.

Applications can request the vertex buffer of the mesh by including XrSceneMeshVertexBufferMSFT in

the XrSceneMeshBuffersMSFT::next chain. Runtimes must support requesting a 32-bit index buffer

and may support requesting a 16-bit index buffer. Applications can request a 32-bit index buffer by

including XrSceneMeshIndicesUint32MSFT in the XrSceneMeshBuffersMSFT::next chain. Applications

can request a 16-bit index buffer by including XrSceneMeshIndicesUint16MSFT in the

XrSceneMeshBuffersMSFT::next chain. If the runtime for the given scene mesh buffer does not support

requesting a 16-bit index buffer then XR_ERROR_VALIDATION_FAILURE must be returned. The runtime

must support reading a 16-bit index buffer for the given scene mesh buffer if

XrScenePlaneMSFT:supportsIndicesUint16 or XrSceneMeshMSFT:supportsIndicesUint16 are XR_TRUE

for the scene component that contained that scene mesh buffer identifier.

The runtime must return XR_ERROR_SCENE_MESH_BUFFER_ID_INVALID_MSFT if none of the scene components

in the given XrSceneMSFT contain XrSceneMeshBuffersGetInfoMSFT::meshBufferId. The runtime must

return XR_ERROR_SCENE_MESH_BUFFER_ID_INVALID_MSFT if XrSceneMeshBuffersGetInfoMSFT::meshBufferId

is zero. The runtime must return XR_ERROR_VALIDATION_FAILURE if both XrSceneMeshIndicesUint32MSFT

and XrSceneMeshIndicesUint16MSFT are included in the XrSceneMeshBuffersMSFT::next chain. The

runtime must return XR_ERROR_VALIDATION_FAILURE if the XrSceneMeshBuffersMSFT::next does not

contain at least one of XrSceneMeshVertexBufferMSFT, XrSceneMeshIndicesUint32MSFT or

XrSceneMeshIndicesUint16MSFT.

The runtime must return the same vertices and indices for a given scene mesh buffer identifier and

XrSession. A runtime may return zero vertices and indices if the underlying mesh data is no longer

available.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrGetSceneMeshBuffersMSFT

• scene must be a valid XrSceneMSFT handle

• getInfo must be a pointer to a valid XrSceneMeshBuffersGetInfoMSFT structure

• buffers must be a pointer to an XrSceneMeshBuffersMSFT structure

Chapter 12. List of Current Extensions | 1271

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SCENE_MESH_BUFFER_ID_INVALID_MSFT

• XR_ERROR_SCENE_COMPONENT_ID_INVALID_MSFT

XrSceneMeshBuffersGetInfoMSFT is an input structure for the xrGetSceneMeshBuffersMSFT function.

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneMeshBuffersGetInfoMSFT {

 XrStructureType type;

 const void* next;

 uint64_t meshBufferId;

} XrSceneMeshBuffersGetInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• meshBufferId is the uint64_t identifier that specifies the scene mesh buffer to read.

1272 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneMeshBuffersGetInfoMSFT

• type must be XR_TYPE_SCENE_MESH_BUFFERS_GET_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

XrSceneMeshBuffersMSFT is an input/output structure for reading scene mesh buffers.

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneMeshBuffersMSFT {

 XrStructureType type;

 void* next;

} XrSceneMeshBuffersMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneMeshBuffersMSFT

• type must be XR_TYPE_SCENE_MESH_BUFFERS_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

XrSceneMeshVertexBufferMSFT is an input/output structure for reading scene mesh buffer vertices.

Chapter 12. List of Current Extensions | 1273

#valid-usage-for-structure-pointer-chains
#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneMeshVertexBufferMSFT {

 XrStructureType type;

 void* next;

 uint32_t vertexCapacityInput;

 uint32_t vertexCountOutput;

 XrVector3f* vertices;

} XrSceneMeshVertexBufferMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• vertexCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve the

required capacity.

• vertexCountOutput is the count of vertices, or the required capacity in the case that

vertexCapacityInput is insufficient.

• vertices is an array of XrVector3f filled in by the runtime returns the position of vertices in

the mesh component’s space.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

vertices size.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneMeshVertexBufferMSFT

• type must be XR_TYPE_SCENE_MESH_VERTEX_BUFFER_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If vertexCapacityInput is not 0, vertices must be a pointer to an array of vertexCapacityInput

XrVector3f structures

XrSceneMeshIndicesUint32MSFT is an input/output structure for reading 32-bit indices from a scene

mesh buffer.

1274 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneMeshIndicesUint32MSFT {

 XrStructureType type;

 void* next;

 uint32_t indexCapacityInput;

 uint32_t indexCountOutput;

 uint32_t* indices;

} XrSceneMeshIndicesUint32MSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• indexCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve the

required capacity.

• indexCountOutput is the count of indices, or the required capacity in the case that

indexCapacityInput is insufficient.

• indices is an array of triangle indices filled in by the runtime, specifying the indices of the

scene mesh buffer in the vertices array. The triangle indices must be returned in counter-

clockwise order and three indices denote one triangle.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

indices size.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneMeshIndicesUint32MSFT

• type must be XR_TYPE_SCENE_MESH_INDICES_UINT32_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If indexCapacityInput is not 0, indices must be a pointer to an array of indexCapacityInput

uint32_t values

XrSceneMeshIndicesUint16MSFT is an input/output structure for reading 16-bit indices from a scene

mesh buffer.

Chapter 12. List of Current Extensions | 1275

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneMeshIndicesUint16MSFT {

 XrStructureType type;

 void* next;

 uint32_t indexCapacityInput;

 uint32_t indexCountOutput;

 uint16_t* indices;

} XrSceneMeshIndicesUint16MSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• indexCapacityInput is the capacity of the array, or 0 to indicate a request to retrieve the

required capacity.

• indexCountOutput is a pointer to the count of indices, or a pointer to the required capacity in

the case that indexCapacityInput is insufficient.

• indices is an array of triangle indices filled in by the runtime, specifying the indices of the

scene mesh buffer in the vertices array. The triangle indices must be returned in counter-

clockwise order and three indices denote one triangle.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

indices size.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneMeshIndicesUint16MSFT

• type must be XR_TYPE_SCENE_MESH_INDICES_UINT16_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If indexCapacityInput is not 0, indices must be a pointer to an array of indexCapacityInput

uint16_t values

Locate scene objects

The xrLocateSceneComponentsMSFT function locates an array of scene components to a base space at

a given time.

1276 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_MSFT_scene_understanding

XrResult xrLocateSceneComponentsMSFT(

 XrSceneMSFT scene,

 const XrSceneComponentsLocateInfoMSFT* locateInfo,

 XrSceneComponentLocationsMSFT* locations);

Parameter Descriptions

• scene is a handle to an XrSceneMSFT.

• locateInfo is a pointer to XrSceneComponentsLocateInfoMSFT describing information to

locate scene components.

• locations is a pointer to XrSceneComponentLocationsMSFT receiving the returned scene

component locations.

The runtime must return XR_ERROR_SIZE_INSUFFICIENT if XrSceneComponentLocationsMSFT

::locationCount is less than XrSceneComponentsLocateInfoMSFT::componentIdCount. Note

Similar to xrLocateSpace, apps should call xrLocateSceneComponentsMSFT each

frame because the location returned by xrLocateSceneComponentsMSFT in later

frames may change over time as the target space or the scene components may refine

their locations.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to calling

xrLocateSceneComponentsMSFT

• scene must be a valid XrSceneMSFT handle

• locateInfo must be a pointer to a valid XrSceneComponentsLocateInfoMSFT structure

• locations must be a pointer to an XrSceneComponentLocationsMSFT structure

Chapter 12. List of Current Extensions | 1277

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_TIME_INVALID

The XrSceneComponentsLocateInfoMSFT structure describes the information to locate scene

components.

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneComponentsLocateInfoMSFT {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

 uint32_t componentIdCount;

 const XrUuidMSFT* componentIds;

} XrSceneComponentsLocateInfoMSFT;

1278 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace is an XrSpace within which the scene components will be located.

• time is an XrTime at which to locate the scene components.

• componentIdCount is a uint32_t describing the count of elements in the componentIds array.

• componentIds is an array of XrUuidMSFT identifiers for the scene components to location.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneComponentsLocateInfoMSFT

• type must be XR_TYPE_SCENE_COMPONENTS_LOCATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

• If componentIdCount is not 0, componentIds must be a pointer to an array of componentIdCount

XrUuidMSFT structures

The XrSceneComponentLocationsMSFT structure returns scene component locations.

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneComponentLocationsMSFT {

 XrStructureType type;

 void* next;

 uint32_t locationCount;

 XrSceneComponentLocationMSFT* locations;

} XrSceneComponentLocationsMSFT;

Chapter 12. List of Current Extensions | 1279

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• locationCount is a uint32_t describing the count of elements in the locations array.

• locations is an array of XrSceneComponentLocationMSFT scene component locations.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneComponentLocationsMSFT

• type must be XR_TYPE_SCENE_COMPONENT_LOCATIONS_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If locationCount is not 0, locations must be a pointer to an array of locationCount

XrSceneComponentLocationMSFT structures

The XrSceneComponentLocationMSFT structure describes the position and orientation of a scene

component to space XrSceneComponentsLocateInfoMSFT::baseSpace at time

XrSceneComponentsLocateInfoMSFT::time. If the scene component identified by XrUuidMSFT is not

found, flags should be empty.

// Provided by XR_MSFT_scene_understanding

typedef struct XrSceneComponentLocationMSFT {

 XrSpaceLocationFlags flags;

 XrPosef pose;

} XrSceneComponentLocationMSFT;

Member Descriptions

• flags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits, to indicate which

members contain valid data.

• pose is an XrPosef defining the position and orientation of the scene component within the

reference frame of the corresponding XrSceneComponentsLocateInfoMSFT::baseSpace.

1280 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding extension must be enabled prior to using

XrSceneComponentLocationMSFT

• flags must be 0 or a valid combination of XrSpaceLocationFlagBits values

New Object Types

• XrSceneObserverMSFT

• XrSceneMSFT

New Flag Types

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_SCENE_OBSERVER_MSFT

• XR_OBJECT_TYPE_SCENE_MSFT

XrStructureType enumeration is extended with:

• XR_TYPE_SCENE_OBSERVER_CREATE_INFO_MSFT

• XR_TYPE_SCENE_CREATE_INFO_MSFT

• XR_TYPE_NEW_SCENE_COMPUTE_INFO_MSFT

• XR_TYPE_VISUAL_MESH_COMPUTE_LOD_INFO_MSFT

• XR_TYPE_SCENE_COMPONENTS_MSFT

• XR_TYPE_SCENE_COMPONENTS_GET_INFO_MSFT

• XR_TYPE_SCENE_COMPONENT_LOCATIONS_MSFT

• XR_TYPE_SCENE_COMPONENTS_LOCATE_INFO_MSFT

• XR_TYPE_SCENE_OBJECTS_MSFT

• XR_TYPE_SCENE_COMPONENT_PARENT_FILTER_INFO_MSFT

• XR_TYPE_SCENE_OBJECT_TYPES_FILTER_INFO_MSFT

• XR_TYPE_SCENE_PLANES_MSFT

• XR_TYPE_SCENE_PLANE_ALIGNMENT_FILTER_INFO_MSFT

• XR_TYPE_SCENE_MESHES_MSFT

• XR_TYPE_SCENE_MESH_BUFFERS_GET_INFO_MSFT

• XR_TYPE_SCENE_MESH_BUFFERS_MSFT

Chapter 12. List of Current Extensions | 1281

XrResult enumeration is extended with:

• XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT

• XR_ERROR_SCENE_COMPONENT_ID_INVALID_MSFT

• XR_ERROR_SCENE_COMPONENT_TYPE_MISMATCH_MSFT

• XR_ERROR_SCENE_MESH_BUFFER_ID_INVALID_MSFT

• XR_ERROR_SCENE_COMPUTE_FEATURE_INCOMPATIBLE_MSFT

• XR_ERROR_SCENE_COMPUTE_CONSISTENCY_MISMATCH_MSFT

New Enums

• XrSceneComputeFeatureMSFT

• XrSceneComputeConsistencyMSFT

• XrSceneObjectTypeMSFT

• XrScenePlaneAlignmentTypeMSFT

• XrSceneComputeStateMSFT

• XrSceneComponentTypeMSFT

• XrMeshComputeLodMSFT

New Structures

• XrSceneObserverCreateInfoMSFT

• XrSceneCreateInfoMSFT

• XrNewSceneComputeInfoMSFT

• XrUuidMSFT

• XrSceneObserverCreateInfoMSFT

• XrSceneCreateInfoMSFT

• XrNewSceneComputeInfoMSFT

• XrVisualMeshComputeLodInfoMSFT

• XrSceneSphereBoundMSFT

• XrSceneOrientedBoxBoundMSFT

• XrSceneFrustumBoundMSFT

• XrSceneBoundsMSFT

• XrSceneComponentMSFT

• XrSceneComponentsMSFT

• XrSceneComponentsGetInfoMSFT

1282 | Chapter 12. List of Current Extensions

• XrSceneComponentLocationMSFT

• XrSceneComponentLocationsMSFT

• XrSceneComponentsLocateInfoMSFT

• XrSceneObjectMSFT

• XrSceneObjectsMSFT

• XrSceneComponentParentFilterInfoMSFT

• XrSceneObjectTypesFilterInfoMSFT

• XrScenePlaneMSFT

• XrScenePlanesMSFT

• XrScenePlaneAlignmentFilterInfoMSFT

• XrSceneMeshMSFT

• XrSceneMeshesMSFT

• XrSceneMeshBuffersGetInfoMSFT

• XrSceneMeshBuffersMSFT

New Functions

• xrCreateSceneObserverMSFT

• xrDestroySceneObserverMSFT

• xrCreateSceneMSFT

• xrDestroySceneMSFT

• xrComputeNewSceneMSFT

• xrGetSceneComponentsMSFT

• xrLocateSceneComponentsMSFT

• xrGetSceneMeshBuffersMSFT

Issues

Version History

• Revision 1, 2021-05-03 (Darryl Gough)

◦ Initial extension description

• Revision 2, 2022-06-29 (Darryl Gough)

◦ Fix missing error codes

Chapter 12. List of Current Extensions | 1283

12.119. XR_MSFT_scene_understanding_serialization

Name String

XR_MSFT_scene_understanding_serialization

Extension Type

Instance extension

Registered Extension Number

99

Revision

2

Extension and Version Dependencies

OpenXR 1.0

and

XR_MSFT_scene_understanding

Last Modified Date

2021-05-03

IP Status

No known IP claims.

Contributors

Darryl Gough, Microsoft

Yin Li, Microsoft

Bryce Hutchings, Microsoft

Alex Turner, Microsoft

Simon Stachniak, Microsoft

David Fields, Microsoft

Overview

This extension extends the scene understanding extension and enables scenes to be serialized or

deserialized. It enables computing a new scene into a serialized binary stream and it enables

deserializing a binary stream into an XrSceneMSFT handle.

Serialize a scene

This extension adds XR_SCENE_COMPUTE_FEATURE_SERIALIZE_SCENE_MSFT to XrSceneComputeFeatureMSFT,

which can be passed to xrComputeNewSceneMSFT plus one or more of

XR_SCENE_COMPUTE_FEATURE_PLANE_MSFT, XR_SCENE_COMPUTE_FEATURE_PLANE_MESH_MSFT,

XR_SCENE_COMPUTE_FEATURE_VISUAL_MESH_MSFT or XR_SCENE_COMPUTE_FEATURE_COLLIDER_MESH_MSFT to inform

1284 | Chapter 12. List of Current Extensions

the runtime that it should compute a serialized binary representation of the scene. If

XR_SCENE_COMPUTE_FEATURE_SERIALIZE_SCENE_MSFT is the only XrSceneComputeFeatureMSFT passed to

xrComputeNewSceneMSFT then XR_ERROR_SCENE_COMPUTE_FEATURE_INCOMPATIBLE_MSFT must be returned.

If an XrSceneMSFT was created using XR_SCENE_COMPUTE_FEATURE_SERIALIZE_SCENE_MSFT then

XR_SCENE_COMPONENT_TYPE_SERIALIZED_SCENE_FRAGMENT_MSFT can be passed to the

xrGetSceneComponentsMSFT function to read the list of serialized scene fragment XrUuidMSFT values

from XrSceneComponentMSFT::id. The XrUuidMSFT of a scene fragment can be passed to

xrGetSerializedSceneFragmentDataMSFT to read the binary data of the given scene fragment.

The application can call the xrGetSerializedSceneFragmentDataMSFT function to read the binary data

of a serialized scene fragment from the XrSceneMSFT handle. This function follows the two-call idiom

for filling the buffer.

The xrGetSerializedSceneFragmentDataMSFT function is defined as:

// Provided by XR_MSFT_scene_understanding_serialization

XrResult xrGetSerializedSceneFragmentDataMSFT(

 XrSceneMSFT scene,

 const XrSerializedSceneFragmentDataGetInfoMSFT* getInfo,

 uint32_t countInput,

 uint32_t* readOutput,

 uint8_t* buffer);

Parameter Descriptions

• scene is the XrSceneMSFT handle to read from.

• getInfo is a pointer to an XrSerializedSceneFragmentDataGetInfoMSFT structure.

• countInput is the number of bytes that should be read.

• readOutput is the number of bytes read.

• buffer is a pointer to the buffer where the data should be copied.

The runtime must return XR_ERROR_SCENE_COMPONENT_ID_INVALID_MSFT if the given scene fragment

XrUuidMSFT was not found.

Chapter 12. List of Current Extensions | 1285

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding_serialization extension must be enabled prior to calling

xrGetSerializedSceneFragmentDataMSFT

• scene must be a valid XrSceneMSFT handle

• getInfo must be a pointer to a valid XrSerializedSceneFragmentDataGetInfoMSFT structure

• readOutput must be a pointer to a uint32_t value

• If countInput is not 0, buffer must be a pointer to an array of countInput uint8_t values

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_SCENE_COMPONENT_ID_INVALID_MSFT

The XrSerializedSceneFragmentDataGetInfoMSFT structure is defined as:

// Provided by XR_MSFT_scene_understanding_serialization

typedef struct XrSerializedSceneFragmentDataGetInfoMSFT {

 XrStructureType type;

 const void* next;

 XrUuidMSFT sceneFragmentId;

} XrSerializedSceneFragmentDataGetInfoMSFT;

1286 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• sceneFragmentId is the XrUuidMSFT of the serialized scene fragment that was previously read

from xrGetSceneComponentsMSFT with

XR_SCENE_COMPONENT_TYPE_SERIALIZED_SCENE_FRAGMENT_MSFT.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding_serialization extension must be enabled prior to using

XrSerializedSceneFragmentDataGetInfoMSFT

• type must be XR_TYPE_SERIALIZED_SCENE_FRAGMENT_DATA_GET_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

Deserialize a scene

This extension enables an application to deserialize the binary representation of a scene that was

previously serialized.

For a given XrSceneObserverMSFT handle, instead of calling xrComputeNewSceneMSFT, which

computes the scene from the system’s sensors, the application can use xrDeserializeSceneMSFT to

produce a scene from the given binary scene fragment data.

The xrDeserializeSceneMSFT function is defined as:

// Provided by XR_MSFT_scene_understanding_serialization

XrResult xrDeserializeSceneMSFT(

 XrSceneObserverMSFT sceneObserver,

 const XrSceneDeserializeInfoMSFT* deserializeInfo);

Parameter Descriptions

• sceneObserver is a handle to an XrSceneObserverMSFT previously created with

xrCreateSceneObserverMSFT.

• deserializeInfo is a pointer to an XrSceneDeserializeInfoMSFT structure.

Chapter 12. List of Current Extensions | 1287

#valid-usage-for-structure-pointer-chains

The xrDeserializeSceneMSFT function begins deserializing a list of serialized scene fragments. The

runtime must return quickly without waiting for the deserialization to complete. The application

should use xrGetSceneComputeStateMSFT to inspect the completeness of the deserialization.

The runtime must return XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT if xrDeserializeSceneMSFT is

called while the scene computation is in progress.

The xrGetSceneComputeStateMSFT function must return XR_SCENE_COMPUTE_STATE_UPDATING_MSFT while

the deserialization is in progress, and XR_SCENE_COMPUTE_STATE_COMPLETED_MSFT when the deserialization

has completed successfully. If the runtime fails to deserialize the binary stream,

xrGetSceneComputeStateMSFT must return XR_SCENE_COMPUTE_STATE_COMPLETED_WITH_ERROR_MSFT to

indicate that the deserialization has completed but an error occurred.

When xrGetSceneComputeStateMSFT returns XR_SCENE_COMPUTE_STATE_COMPLETED_MSFT, the application

may call xrCreateSceneMSFT to create the XrSceneMSFT handle. If xrCreateSceneMSFT is called while

xrGetSceneComputeStateMSFT returns XR_SCENE_COMPUTE_STATE_COMPLETED_WITH_ERROR_MSFT, a valid

XrSceneMSFT handle must be returned, but that handle must contain zero scene components.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding_serialization extension must be enabled prior to calling

xrDeserializeSceneMSFT

• sceneObserver must be a valid XrSceneObserverMSFT handle

• deserializeInfo must be a pointer to a valid XrSceneDeserializeInfoMSFT structure

1288 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_COMPUTE_NEW_SCENE_NOT_COMPLETED_MSFT

XrSceneDeserializeInfoMSFT is an input structure that describes the array of serialized scene

fragments that will be deserialized by the xrDeserializeSceneMSFT function.

// Provided by XR_MSFT_scene_understanding_serialization

typedef struct XrSceneDeserializeInfoMSFT {

 XrStructureType type;

 const void* next;

 uint32_t fragmentCount;

 const XrDeserializeSceneFragmentMSFT* fragments;

} XrSceneDeserializeInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• fragmentCount is the count of XrDeserializeSceneFragmentMSFT structures in the fragments

array.

• fragments is an array of XrDeserializeSceneFragmentMSFT.

Chapter 12. List of Current Extensions | 1289

If the scene fragments are not in the same order as returned by xrGetSceneComponentsMSFT or the

runtime failed to deserialized the binary data then xrGetSceneComputeStateMSFT must return

XR_SCENE_COMPUTE_STATE_COMPLETED_WITH_ERROR_MSFT.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding_serialization extension must be enabled prior to using

XrSceneDeserializeInfoMSFT

• type must be XR_TYPE_SCENE_DESERIALIZE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• If fragmentCount is not 0, fragments must be a pointer to an array of fragmentCount valid

XrDeserializeSceneFragmentMSFT structures

The XrDeserializeSceneFragmentMSFT structure represents a single fragment of a binary stream to be

deserialized. It is defined as:

// Provided by XR_MSFT_scene_understanding_serialization

typedef struct XrDeserializeSceneFragmentMSFT {

 uint32_t bufferSize;

 const uint8_t* buffer;

} XrDeserializeSceneFragmentMSFT;

Member Descriptions

• bufferSize is the size of the buffer array.

• buffer is an array of uint_8 data for the scene fragment to be deserialized.

Valid Usage (Implicit)

• The XR_MSFT_scene_understanding_serialization extension must be enabled prior to using

XrDeserializeSceneFragmentMSFT

• If bufferSize is not 0, buffer must be a pointer to an array of bufferSize uint8_t values

New Object Types

New Flag Types

New Enum Constants

1290 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

XrSceneComponentTypeMSFT enumeration is extended with:

• XR_SCENE_COMPONENT_TYPE_SERIALIZED_SCENE_FRAGMENT_MSFT

XrSceneComputeFeatureMSFT enumeration is extended with:

• XR_SCENE_COMPUTE_FEATURE_SERIALIZE_SCENE_MSFT

XrStructureType enumeration is extended with:

• XR_TYPE_SERIALIZED_SCENE_FRAGMENT_DATA_GET_INFO_MSFT

• XR_TYPE_SCENE_DESERIALIZE_INFO_MSFT

New Enums

New Structures

• XrSerializedSceneFragmentDataGetInfoMSFT

• XrSceneDeserializeInfoMSFT

• XrDeserializeSceneFragmentMSFT

New Functions

• xrGetSerializedSceneFragmentDataMSFT

• xrDeserializeSceneMSFT

Issues

Version History

• Revision 1, 2021-05-03 (Darryl Gough)

◦ Initial extension description

• Revision 2, 2022-06-29 (Darryl Gough)

◦ Fix missing error codes

12.120. XR_MSFT_secondary_view_configuration

Name String

XR_MSFT_secondary_view_configuration

Extension Type

Instance extension

Chapter 12. List of Current Extensions | 1291

Registered Extension Number

54

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2020-05-02

IP Status

No known IP claims.

Contributors

Yin Li, Microsoft

Zonglin Wu, Microsoft

Alex Turner, Microsoft

12.120.1. Overview

This extension allows an application to enable support for one or more secondary view

configurations. A secondary view configuration is a well-known set of views that the runtime can

make active while a session is running. In a frame where a secondary view configuration is active, the

application’s single frame loop should additionally render into those active secondary views, sharing

the frame waiting logic and update loop with the primary view configuration for that running session.

A proper secondary view configuration support includes following steps:

1. When calling xrCreateInstance, enable the XR_MSFT_secondary_view_configuration extension and the

extension defines a concrete secondary view configuration type, for example,

XR_MSFT_first_person_observer.

2. Inspect supported secondary view configurations using the xrEnumerateViewConfigurations

function.

3. Enable supported secondary view configurations using the xrBeginSession function with an

XrSecondaryViewConfigurationSessionBeginInfoMSFT chained extension structure.

4. Inspect if an enabled secondary view configuration is activated by the system or the user using the

xrWaitFrame function with an XrSecondaryViewConfigurationFrameStateMSFT chained extension

structure.

5. When a secondary view configuration is changed to active, get the latest view configuration

properties using the xrGetViewConfigurationProperties and xrEnumerateViewConfigurationViews

functions.

1292 | Chapter 12. List of Current Extensions

6. Create the swapchain images for the active secondary view configuration using the

xrCreateSwapchain function with an XrSecondaryViewConfigurationSwapchainCreateInfoMSFT

chained extension structure using recommendedImageRectWidth and recommendedImageRectHeight in the

corresponding XrViewConfigurationView structure returned from

xrEnumerateViewConfigurationViews.

7. Locate the secondary view configuration views using the xrLocateViews function with the active

secondary view configuration type.

8. Submit the composition layers using the swapchain images for an active secondary view

configuration using the xrEndFrame function with the

XrSecondaryViewConfigurationFrameEndInfoMSFT chained extension structure.

12.120.2. Enumerate supported secondary view configurations

The first step is for the application to inspect if a runtime supports certain secondary view

configurations. The app uses the existing API xrEnumerateViewConfigurations for this.

For example, when the XR_MSFT_first_person_observer extension is enabled, the application will

enumerate a view configuration of type

XR_VIEW_CONFIGURATION_TYPE_SECONDARY_MONO_FIRST_PERSON_OBSERVER_MSFT, and can use this secondary

view configuration type in later functions.

12.120.3. Secondary view configuration properties

The application can inspect the properties of a secondary view configuration through the existing

xrGetViewConfigurationProperties, xrEnumerateViewConfigurationViews and

xrEnumerateEnvironmentBlendModes functions using a supported secondary view configuration type.

The runtime may change the recommended properties, such as recommended image width or height,

when the secondary view configuration becomes active. The application should use the latest

recommended width and height when creating swapchain images and related resources for the active

secondary view configuration.

When an application creates swapchain images for a secondary view configuration, it can chain a

XrSecondaryViewConfigurationSwapchainCreateInfoMSFT structure to XrSwapchainCreateInfo when

calling xrCreateSwapchain. This hints to the runtime that the created swapchain image will be

submitted to the given secondary view configuration, allowing the runtime to make optimizations for

such usage when there is opportunity.

Chapter 12. List of Current Extensions | 1293

// Provided by XR_MSFT_secondary_view_configuration

typedef struct XrSecondaryViewConfigurationSwapchainCreateInfoMSFT {

 XrStructureType type;

 const void* next;

 XrViewConfigurationType viewConfigurationType;

} XrSecondaryViewConfigurationSwapchainCreateInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• viewConfigurationType is the secondary view configuration type the application is intending

to use this swapchain for.

If this structure is not present in the XrSwapchainCreateInfo next chain when calling

xrCreateSwapchain, the runtime should optimize the created swapchain for the primary view

configuration of the session.

If the application submits a swapchain image created with one view configuration type to a

composition layer for another view configuration, the runtime may need to copy the resource across

view configurations. However, the runtime must correctly compose the image regardless which view

configuration type was hinted when swapchain image was created.

Valid Usage (Implicit)

• The XR_MSFT_secondary_view_configuration extension must be enabled prior to using

XrSecondaryViewConfigurationSwapchainCreateInfoMSFT

• type must be XR_TYPE_SECONDARY_VIEW_CONFIGURATION_SWAPCHAIN_CREATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewConfigurationType must be a valid XrViewConfigurationType value

12.120.4. Enable secondary view configuration

The application indicates to the runtime which secondary view configurations it can support by

chaining an XrSecondaryViewConfigurationSessionBeginInfoMSFT structure to the

XrSessionBeginInfo::next pointer when calling xrBeginSession.

The XrSecondaryViewConfigurationSessionBeginInfoMSFT structure is used by the application to

indicate the list of secondary XrViewConfigurationType to enable for this session.

1294 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

It is defined as:

// Provided by XR_MSFT_secondary_view_configuration

typedef struct XrSecondaryViewConfigurationSessionBeginInfoMSFT {

 XrStructureType type;

 const void* next;

 uint32_t viewConfigurationCount;

 const XrViewConfigurationType* enabledViewConfigurationTypes;

} XrSecondaryViewConfigurationSessionBeginInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• viewConfigurationCount is the number of elements in enabledViewConfigurationTypes

• enabledViewConfigurationTypes is an array of enabled secondary view configuration types that

application supports.

If there are any duplicated view configuration types in the array of enabledViewConfigurationTypes, the

runtime must return error XR_ERROR_VALIDATION_FAILURE.

If there are any primary view configuration types in the array of enabledViewConfigurationTypes, the

runtime must return error XR_ERROR_VALIDATION_FAILURE.

If there are any secondary view configuration types not returned by xrEnumerateViewConfigurations

in the array of enabledViewConfigurationTypes, the runtime must return error

XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED.

Valid Usage (Implicit)

• The XR_MSFT_secondary_view_configuration extension must be enabled prior to using

XrSecondaryViewConfigurationSessionBeginInfoMSFT

• type must be XR_TYPE_SECONDARY_VIEW_CONFIGURATION_SESSION_BEGIN_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• enabledViewConfigurationTypes must be a pointer to an array of viewConfigurationCount valid

XrViewConfigurationType values

• The viewConfigurationCount parameter must be greater than 0

Chapter 12. List of Current Extensions | 1295

#valid-usage-for-structure-pointer-chains

12.120.5. Per-frame active view configurations

The runtime then tells the application at each xrWaitFrame function call which of the enabled

secondary view configurations are active for that frame. When extension structure

XrSecondaryViewConfigurationFrameStateMSFT is chained to the XrFrameState::next pointer, the

runtime writes into this structure the state of each enabled secondary view configuration.

The XrSecondaryViewConfigurationFrameStateMSFT structure returns whether the enabled view

configurations are active or inactive.

It is defined as as:

// Provided by XR_MSFT_secondary_view_configuration

typedef struct XrSecondaryViewConfigurationFrameStateMSFT {

 XrStructureType type;

 void* next;

 uint32_t viewConfigurationCount;

 XrSecondaryViewConfigurationStateMSFT* viewConfigurationStates;

} XrSecondaryViewConfigurationFrameStateMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• viewConfigurationCount is the number of elements in viewConfigurationStates.

• viewConfigurationStates is an array of XrSecondaryViewConfigurationStateMSFT structures.

The array size viewConfigurationCount in the XrSecondaryViewConfigurationFrameStateMSFT

structure must be the same as the array size enabled through

XrSecondaryViewConfigurationSessionBeginInfoMSFT when calling xrBeginSession earlier, otherwise

the runtime must return error XR_ERROR_VALIDATION_FAILURE.

1296 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_MSFT_secondary_view_configuration extension must be enabled prior to using

XrSecondaryViewConfigurationFrameStateMSFT

• type must be XR_TYPE_SECONDARY_VIEW_CONFIGURATION_FRAME_STATE_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewConfigurationStates must be a pointer to an array of viewConfigurationCount

XrSecondaryViewConfigurationStateMSFT structures

• The viewConfigurationCount parameter must be greater than 0

The XrSecondaryViewConfigurationStateMSFT structure returns the state of an enabled secondary

view configurations.

// Provided by XR_MSFT_secondary_view_configuration

typedef struct XrSecondaryViewConfigurationStateMSFT {

 XrStructureType type;

 void* next;

 XrViewConfigurationType viewConfigurationType;

 XrBool32 active;

} XrSecondaryViewConfigurationStateMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• viewConfigurationType is an XrViewConfigurationType that represents the returned state.

• active is an XrBool32 returns whether the secondary view configuration is active and

displaying frames to users.

When a secondary view configuration becomes active, the application should render its secondary

views as soon as possible, by getting their view transforms and FOV using xrLocateViews and then

submitting composition layers to xrEndFrame through the

XrSecondaryViewConfigurationFrameEndInfoMSFT extension structure. When a secondary view

configuration changes from inactive to active, the runtime may change XrViewConfigurationView of

the given view configuration such as the recommended image width or height. An application should

query for latest XrViewConfigurationView through xrEnumerateViewConfigurationViews function for

Chapter 12. List of Current Extensions | 1297

#valid-usage-for-structure-pointer-chains

the secondary view configuration and consider recreating swapchain images if necessary. The runtime

must not change the XrViewConfigurationView, including recommended image width and height of a

secondary view configuration when active remains true until the secondary view configuration

deactivated or the session has ended.

If necessary, the application can take longer than a frame duration to prepare by calling xrEndFrame

without submitting layers for that secondary view configuration until ready. The runtime should delay

the underlying scenario managed by the secondary view configuration until the application begins

submitting frames with layers for that configuration. The active secondary view configuration

composed output is undefined if the application stops submitting frames with layers for a secondary

view configuration while active remains true.

When the runtime intends to conclude a secondary view configuration, for example when user stops

video capture, the runtime makes the view configuration inactive by setting the corresponding active

in the XrSecondaryViewConfigurationStateMSFT structure to false.

Valid Usage (Implicit)

• The XR_MSFT_secondary_view_configuration extension must be enabled prior to using

XrSecondaryViewConfigurationStateMSFT

• type must be XR_TYPE_SECONDARY_VIEW_CONFIGURATION_STATE_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewConfigurationType must be a valid XrViewConfigurationType value

12.120.6. Locate and inspect view states of secondary view configurations

When the application calls xrLocateViews, it can use XrViewLocateInfo::viewConfigurationType field

to query the view locations and projections for any enabled XrViewConfigurationType for the running

session.

The runtime must return XR_ERROR_VIEW_CONFIGURATION_TYPE_UNSUPPORTED from xrLocateViews if the

specified XrViewConfigurationType is not enabled for the running session using

XrSecondaryViewConfigurationSessionBeginInfoMSFT when calling xrBeginSession.

If the view configuration is supported but not active, as indicated in

XrSecondaryViewConfigurationFrameStateMSFT, xrLocateViews will successfully return, but the

resulting XrViewState may have XR_VIEW_STATE_ORIENTATION_TRACKED_BIT and

XR_VIEW_STATE_ORIENTATION_TRACKED_BIT unset.

12.120.7. Submit composition layers to secondary view configurations

The application should submit layers each frame for all active secondary view configurations using

the xrEndFrame function, by chaining the XrSecondaryViewConfigurationFrameEndInfoMSFT

1298 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

structure to the next pointer of XrFrameEndInfo structure.

The XrSecondaryViewConfigurationFrameEndInfoMSFT structure is defined as as:

// Provided by XR_MSFT_secondary_view_configuration

typedef struct XrSecondaryViewConfigurationFrameEndInfoMSFT {

 XrStructureType type;

 const void* next;

 uint32_t viewConfigurationCount;

 const XrSecondaryViewConfigurationLayerInfoMSFT* viewConfigurationLayersInfo;

} XrSecondaryViewConfigurationFrameEndInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• viewConfigurationCount is the number of elements in viewConfigurationLayersInfo.

• viewConfigurationLayersInfo is an array of XrSecondaryViewConfigurationLayerInfoMSFT,

containing composition layers to be submitted for the specified active view configuration.

The view configuration type in each XrSecondaryViewConfigurationLayerInfoMSFT must be one of the

view configurations enabled when calling xrBeginSession in

XrSecondaryViewConfigurationSessionBeginInfoMSFT, or else the runtime must return error

XR_ERROR_SECONDARY_VIEW_CONFIGURATION_TYPE_NOT_ENABLED_MSFT.

The view configuration type in each XrSecondaryViewConfigurationLayerInfoMSFT must not be the

primary view configuration in this session, or else the runtime must return error

XR_ERROR_LAYER_INVALID. The primary view configuration layers continue to be submitted through

XrFrameEndInfo directly.

If the view configuration is not active, as indicated in XrSecondaryViewConfigurationFrameStateMSFT,

the composition layers submitted to this view configuration may be ignored by the runtime.

Applications should avoid rendering into secondary views when the view configuration is inactive.

Chapter 12. List of Current Extensions | 1299

Valid Usage (Implicit)

• The XR_MSFT_secondary_view_configuration extension must be enabled prior to using

XrSecondaryViewConfigurationFrameEndInfoMSFT

• type must be XR_TYPE_SECONDARY_VIEW_CONFIGURATION_FRAME_END_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewConfigurationLayersInfo must be a pointer to an array of viewConfigurationCount valid

XrSecondaryViewConfigurationLayerInfoMSFT structures

• The viewConfigurationCount parameter must be greater than 0

The application should submit an XrSecondaryViewConfigurationLayerInfoMSFT in

XrSecondaryViewConfigurationFrameEndInfoMSFT for each active secondary view configuration type

when calling xrEndFrame.

The XrSecondaryViewConfigurationLayerInfoMSFT structure is defined as as:

// Provided by XR_MSFT_secondary_view_configuration

typedef struct XrSecondaryViewConfigurationLayerInfoMSFT {

 XrStructureType type;

 const void* next;

 XrViewConfigurationType viewConfigurationType;

 XrEnvironmentBlendMode environmentBlendMode;

 uint32_t layerCount;

 const XrCompositionLayerBaseHeader* const* layers;

} XrSecondaryViewConfigurationLayerInfoMSFT;

1300 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• viewConfigurationType is XrViewConfigurationType to which the composition layers will be

displayed.

• environmentBlendMode is the XrEnvironmentBlendMode value representing the desired

environment blend mode for this view configuration.

• layerCount is the number of composition layers in this frame for the secondary view

configuration type. The maximum supported layer count is identified by

XrSystemGraphicsProperties::maxLayerCount. If layerCount is greater than the maximum

supported layer count then XR_ERROR_LAYER_LIMIT_EXCEEDED is returned.

• layers is a pointer to an array of XrCompositionLayerBaseHeader pointers.

This structure is similar to the XrFrameEndInfo structure, with an extra XrViewConfigurationType

field to specify the view configuration for which the submitted layers will be rendered.

The application should render its content for both the primary and secondary view configurations

using the same XrFrameState::predictedDisplayTime reported by xrWaitFrame. The runtime must treat

both the primary views and secondary views as being submitted for the same XrViewLocateInfo

::displayTime specified in the call to xrEndFrame.

For layers such as quad layers whose content is identical across view configurations, the application

can submit the same XrCompositionLayerBaseHeader structures to multiple view configurations in the

same xrEndFrame function call.

For each frame, the application should only render and submit layers for the secondary view

configurations that were active that frame, as indicated in the

XrSecondaryViewConfigurationFrameStateMSFT filled in for that frame’s xrWaitFrame call. The

runtime must ignore composition layers submitted for an inactive view configuration.

Chapter 12. List of Current Extensions | 1301

Valid Usage (Implicit)

• The XR_MSFT_secondary_view_configuration extension must be enabled prior to using

XrSecondaryViewConfigurationLayerInfoMSFT

• type must be XR_TYPE_SECONDARY_VIEW_CONFIGURATION_LAYER_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• viewConfigurationType must be a valid XrViewConfigurationType value

• environmentBlendMode must be a valid XrEnvironmentBlendMode value

• layers must be a pointer to an array of layerCount valid XrCompositionLayerBaseHeader

-based structures. See also: XrCompositionLayerCubeKHR, XrCompositionLayerCylinderKHR,

XrCompositionLayerEquirect2KHR, XrCompositionLayerEquirectKHR,

XrCompositionLayerPassthroughHTC, XrCompositionLayerProjection,

XrCompositionLayerQuad

• The layerCount parameter must be greater than 0

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SECONDARY_VIEW_CONFIGURATION_SESSION_BEGIN_INFO_MSFT

• XR_TYPE_SECONDARY_VIEW_CONFIGURATION_STATE_MSFT

• XR_TYPE_SECONDARY_VIEW_CONFIGURATION_FRAME_STATE_MSFT

• XR_TYPE_SECONDARY_VIEW_CONFIGURATION_FRAME_END_INFO_MSFT

• XR_TYPE_SECONDARY_VIEW_CONFIGURATION_LAYER_INFO_MSFT

• XR_ERROR_SECONDARY_VIEW_CONFIGURATION_TYPE_NOT_ENABLED_MSFT

New Enums

New Structures

• XrSecondaryViewConfigurationSessionBeginInfoMSFT

• XrSecondaryViewConfigurationStateMSFT

• XrSecondaryViewConfigurationFrameStateMSFT

• XrSecondaryViewConfigurationFrameEndInfoMSFT

• XrSecondaryViewConfigurationLayerInfoMSFT

1302 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

New Functions

Issues

Version History

• Revision 1, 2019-07-30 (Yin Li)

◦ Initial extension description

12.121. XR_MSFT_spatial_anchor

Name String

XR_MSFT_spatial_anchor

Extension Type

Instance extension

Registered Extension Number

40

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Overview

This extension allows an application to create a spatial anchor, an arbitrary freespace point in the

user’s physical environment that will then be tracked by the runtime. The runtime should then adjust

the position and orientation of that anchor’s origin over time as needed, independently of all other

spaces and anchors, to ensure that it maintains its original mapping to the real world.

XR_DEFINE_HANDLE(XrSpatialAnchorMSFT)

Spatial anchors are often used in combination with an UNBOUNDED_MSFT reference space. UNBOUNDED_MSFT

reference spaces adjust their origin as necessary to keep the viewer’s coordinates relative to the

space’s origin stable. Such adjustments maintain the visual stability of content currently near the

viewer, but may cause content placed far from the viewer to drift in its alignment to the real world by

the time the user moves close again. By creating an XrSpatialAnchorMSFT where a piece of content is

placed and then always rendering that content relative to its anchor’s space, an application can ensure

that each piece of content stays at a fixed location in the environment.

Chapter 12. List of Current Extensions | 1303

The xrCreateSpatialAnchorMSFT function is defined as:

// Provided by XR_MSFT_spatial_anchor

XrResult xrCreateSpatialAnchorMSFT(

 XrSession session,

 const XrSpatialAnchorCreateInfoMSFT* createInfo,

 XrSpatialAnchorMSFT* anchor);

Parameter Descriptions

• session is a handle to an XrSession.

• createInfo is a pointer to an XrSpatialAnchorCreateInfoMSFT structure containing

information about how to create the anchor.

• anchor is a pointer to a handle in which the created XrSpatialAnchorMSFT is returned.

Creates an XrSpatialAnchorMSFT handle representing a spatial anchor that will track a fixed location

in the physical world over time. That real-world location is specified by the position and orientation of

the specified XrSpatialAnchorCreateInfoMSFT::pose within XrSpatialAnchorCreateInfoMSFT::space at

XrSpatialAnchorCreateInfoMSFT::time.

The runtime must avoid long blocking operations such as networking or disk operations for

xrCreateSpatialAnchorMSFT function. The application may safely use this function in UI thread.

Though, the created anchor handle may not be ready immediately for certain operations yet. For

example, the corresponding anchor space may not return valid location, or its location may not be

successfully saved in anchor store.

If XrSpatialAnchorCreateInfoMSFT::space cannot be located relative to the environment at the moment

of the call to xrCreateSpatialAnchorMSFT, the runtime must return

XR_ERROR_CREATE_SPATIAL_ANCHOR_FAILED_MSFT.

After the anchor is created, the runtime should then adjust its position and orientation over time

relative to other spaces so as to maintain maximum alignment to its original real-world location, even

if that changes the anchor’s relationship to the original XrSpatialAnchorCreateInfoMSFT::space used to

initialize it.

1304 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor extension must be enabled prior to calling

xrCreateSpatialAnchorMSFT

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrSpatialAnchorCreateInfoMSFT structure

• anchor must be a pointer to an XrSpatialAnchorMSFT handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_TIME_INVALID

• XR_ERROR_POSE_INVALID

• XR_ERROR_CREATE_SPATIAL_ANCHOR_FAILED_MSFT

The XrSpatialAnchorCreateInfoMSFT structure is defined as:

typedef struct XrSpatialAnchorCreateInfoMSFT {

 XrStructureType type;

 const void* next;

 XrSpace space;

 XrPosef pose;

 XrTime time;

} XrSpatialAnchorCreateInfoMSFT;

Chapter 12. List of Current Extensions | 1305

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• space is a handle to the XrSpace in which pose is specified.

• pose is the XrPosef within space at time that specifies the point in the real world used to

initialize the new anchor.

• time is the XrTime at which pose will be evaluated within space.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor extension must be enabled prior to using

XrSpatialAnchorCreateInfoMSFT

• type must be XR_TYPE_SPATIAL_ANCHOR_CREATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• space must be a valid XrSpace handle

The xrCreateSpatialAnchorSpaceMSFT function is defined as:

// Provided by XR_MSFT_spatial_anchor

XrResult xrCreateSpatialAnchorSpaceMSFT(

 XrSession session,

 const XrSpatialAnchorSpaceCreateInfoMSFT* createInfo,

 XrSpace* space);

Parameter Descriptions

• session is a handle to an XrSession.

• createInfo is a pointer to an XrSpatialAnchorSpaceCreateInfoMSFT structure containing

information about how to create the anchor.

• space is a pointer to a handle in which the created XrSpace is returned.

Creates an XrSpace handle based on a spatial anchor. Application can provide an XrPosef to define the

position and orientation of the new space’s origin relative to the anchor’s natural origin.

1306 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Multiple XrSpace handles may exist for a given XrSpatialAnchorMSFT simultaneously, up to some limit

imposed by the runtime. The XrSpace handle must be eventually freed via the xrDestroySpace function

or by destroying the parent XrSpatialAnchorMSFT handle.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor extension must be enabled prior to calling

xrCreateSpatialAnchorSpaceMSFT

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrSpatialAnchorSpaceCreateInfoMSFT structure

• space must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

The XrSpatialAnchorSpaceCreateInfoMSFT structure is defined as:

typedef struct XrSpatialAnchorSpaceCreateInfoMSFT {

 XrStructureType type;

 const void* next;

 XrSpatialAnchorMSFT anchor;

 XrPosef poseInAnchorSpace;

} XrSpatialAnchorSpaceCreateInfoMSFT;

Chapter 12. List of Current Extensions | 1307

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• anchor is a handle to an XrSpatialAnchorMSFT previously created with

xrCreateSpatialAnchorMSFT.

• poseInAnchorSpace is an XrPosef defining the position and orientation of the new space’s

origin relative to the anchor’s natural origin.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor extension must be enabled prior to using

XrSpatialAnchorSpaceCreateInfoMSFT

• type must be XR_TYPE_SPATIAL_ANCHOR_SPACE_CREATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• anchor must be a valid XrSpatialAnchorMSFT handle

The xrDestroySpatialAnchorMSFT function is defined as:

// Provided by XR_MSFT_spatial_anchor

XrResult xrDestroySpatialAnchorMSFT(

 XrSpatialAnchorMSFT anchor);

Parameter Descriptions

• anchor is a handle to an XrSpatialAnchorMSFT previously created by

xrCreateSpatialAnchorMSFT.

XrSpatialAnchorMSFT handles are destroyed using xrDestroySpatialAnchorMSFT. By destroying an

anchor, the runtime can stop spending resources used to maintain tracking for that anchor’s origin.

1308 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor extension must be enabled prior to calling

xrDestroySpatialAnchorMSFT

• anchor must be a valid XrSpatialAnchorMSFT handle

Thread Safety

• Access to anchor, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

New Object Types

XrSpatialAnchorMSFT

New Flag Types

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_SPATIAL_ANCHOR_MSFT

XrStructureType enumeration is extended with:

• XR_TYPE_SPATIAL_ANCHOR_CREATE_INFO_MSFT

• XR_TYPE_SPATIAL_ANCHOR_SPACE_CREATE_INFO_MSFT

XrResult enumeration is extended with:

• XR_ERROR_CREATE_SPATIAL_ANCHOR_FAILED_MSFT

New Enums

Chapter 12. List of Current Extensions | 1309

New Structures

XrSpatialAnchorCreateInfoMSFT

XrSpatialAnchorSpaceCreateInfoMSFT

New Functions

xrCreateSpatialAnchorMSFT

xrCreateSpatialAnchorSpaceMSFT

xrDestroySpatialAnchorMSFT

Issues

Version History

• Revision 1, 2019-07-30 (Alex Turner)

◦ Initial extension description

• Revision 2, 2021-06-02 (Rylie Pavlik, Collabora, Ltd.)

◦ Note that the parameter to xrDestroySpatialAnchorMSFT must be externally synchronized

12.122. XR_MSFT_spatial_anchor_persistence

Name String

XR_MSFT_spatial_anchor_persistence

Extension Type

Instance extension

Registered Extension Number

143

Revision

2

Extension and Version Dependencies

OpenXR 1.0

and

XR_MSFT_spatial_anchor

Last Modified Date

2021-07-15

1310 | Chapter 12. List of Current Extensions

IP Status

No known IP claims.

Contributors

Lachlan Ford, Microsoft

Yin Li, Microsoft

Norman Pohl, Microsoft

Alex Turner, Microsoft

Bryce Hutchings, Microsoft

12.122.1. Overview

This extension allows persistence and retrieval of spatial anchors sharing and localization across

application sessions on a device. Spatial anchors persisted during an application session on a device

will only be able to be retrieved during sessions of that same application on the same device. This

extension requires XR_MSFT_spatial_anchor to also be enabled.

12.122.2. Spatial Anchor Store Connection

The XrSpatialAnchorStoreConnectionMSFT handle represents a connection to the spatial anchor store

and is used by the application to perform operations on the spatial anchor store such as:

• Persisting and unpersisting of spatial anchors.

• Enumeration of currently persisted anchors.

• Clearing the spatial anchor store of all anchors.

// Provided by XR_MSFT_spatial_anchor_persistence

XR_DEFINE_HANDLE(XrSpatialAnchorStoreConnectionMSFT)

The application can use the xrCreateSpatialAnchorStoreConnectionMSFT function to create an handle

to the spatial anchor store. The application can use this handle to interact with the spatial anchor store

in order to persist anchors across application sessions.

The xrCreateSpatialAnchorStoreConnectionMSFT function may be a slow operation and therefore

should be invoked from a non-timing critical thread.

Chapter 12. List of Current Extensions | 1311

// Provided by XR_MSFT_spatial_anchor_persistence

XrResult xrCreateSpatialAnchorStoreConnectionMSFT(

 XrSession session,

 XrSpatialAnchorStoreConnectionMSFT* spatialAnchorStore);

Parameter Descriptions

• session is the XrSession the anchor was created with.

• spatialAnchorStore is a pointer to the XrSpatialAnchorStoreConnectionMSFT handle.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to calling

xrCreateSpatialAnchorStoreConnectionMSFT

• session must be a valid XrSession handle

• spatialAnchorStore must be a pointer to an XrSpatialAnchorStoreConnectionMSFT handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

The application can use the xrDestroySpatialAnchorStoreConnectionMSFT function to destroy an

anchor store connection.

1312 | Chapter 12. List of Current Extensions

// Provided by XR_MSFT_spatial_anchor_persistence

XrResult xrDestroySpatialAnchorStoreConnectionMSFT(

 XrSpatialAnchorStoreConnectionMSFT spatialAnchorStore);

Parameter Descriptions

• spatialAnchorStore is the XrSpatialAnchorStoreConnectionMSFT to be destroyed.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to calling

xrDestroySpatialAnchorStoreConnectionMSFT

• spatialAnchorStore must be a valid XrSpatialAnchorStoreConnectionMSFT handle

Thread Safety

• Access to spatialAnchorStore, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_OUT_OF_MEMORY

12.122.3. Persist Spatial Anchor

The application can use the xrPersistSpatialAnchorMSFT function to persist a spatial anchor in the

spatial anchor store for this application. The given XrSpatialAnchorPersistenceInfoMSFT

::spatialAnchorPersistenceName will be the string to retrieve the spatial anchor from the Spatial Anchor

store or subsequently remove the record of this spatial anchor from the store. This name will uniquely

identify the spatial anchor for the current application. If there is already a spatial anchor of the same

name persisted in the spatial anchor store, the existing spatial anchor will be replaced and

xrPersistSpatialAnchorMSFT must return XR_SUCCESS.

Chapter 12. List of Current Extensions | 1313

// Provided by XR_MSFT_spatial_anchor_persistence

XrResult xrPersistSpatialAnchorMSFT(

 XrSpatialAnchorStoreConnectionMSFT spatialAnchorStore,

 const XrSpatialAnchorPersistenceInfoMSFT* spatialAnchorPersistenceInfo);

Parameter Descriptions

• spatialAnchorStore is the XrSpatialAnchorStoreConnectionMSFT with which to persist the

XrSpatialAnchorPersistenceInfoMSFT::spatialAnchor.

• spatialAnchorPersistenceInfo is a pointer to XrSpatialAnchorPersistenceInfoMSFT structure

to specify the anchor and its name to persist.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to calling

xrPersistSpatialAnchorMSFT

• spatialAnchorStore must be a valid XrSpatialAnchorStoreConnectionMSFT handle

• spatialAnchorPersistenceInfo must be a pointer to a valid

XrSpatialAnchorPersistenceInfoMSFT structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SPATIAL_ANCHOR_NAME_INVALID_MSFT

1314 | Chapter 12. List of Current Extensions

The XrSpatialAnchorPersistenceNameMSFT structure is the name associated with the

XrSpatialAnchorMSFT in the spatial anchor store. It is used to perform persist and unpersist on an name

in the spatial anchor store.

The XrSpatialAnchorPersistenceNameMSFT structure is defined as:

// Provided by XR_MSFT_spatial_anchor_persistence

typedef struct XrSpatialAnchorPersistenceNameMSFT {

 char name[XR_MAX_SPATIAL_ANCHOR_NAME_SIZE_MSFT];

} XrSpatialAnchorPersistenceNameMSFT;

Member Descriptions

• name is a null terminated character array of size XR_MAX_SPATIAL_ANCHOR_NAME_SIZE_MSFT.

If an XrSpatialAnchorPersistenceNameMSFT with an empty name value is passed to any function as a

parameter, that function must return XR_ERROR_SPATIAL_ANCHOR_NAME_INVALID_MSFT.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to using

XrSpatialAnchorPersistenceNameMSFT

• name must be a null-terminated UTF-8 string whose length is less than or equal to
XR_MAX_SPATIAL_ANCHOR_NAME_SIZE_MSFT

The XrSpatialAnchorPersistenceInfoMSFT structure is defined as:

// Provided by XR_MSFT_spatial_anchor_persistence

typedef struct XrSpatialAnchorPersistenceInfoMSFT {

 XrStructureType type;

 const void* next;

 XrSpatialAnchorPersistenceNameMSFT spatialAnchorPersistenceName;

 XrSpatialAnchorMSFT spatialAnchor;

} XrSpatialAnchorPersistenceInfoMSFT;

Chapter 12. List of Current Extensions | 1315

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• spatialAnchorPersistenceName is an XrSpatialAnchorPersistenceNameMSFT containing the

name associated with the XrSpatialAnchorMSFT in the spatial anchor store.

• spatialAnchor is the XrSpatialAnchorMSFT that the application wishes to perform persistence

operations on.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to using

XrSpatialAnchorPersistenceInfoMSFT

• type must be XR_TYPE_SPATIAL_ANCHOR_PERSISTENCE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• spatialAnchorPersistenceName must be a valid XrSpatialAnchorPersistenceNameMSFT

structure

• spatialAnchor must be a valid XrSpatialAnchorMSFT handle

The application can use the xrEnumeratePersistedSpatialAnchorNamesMSFT function to enumerate

the names of all spatial anchors currently persisted in the spatial anchor store for this application. This

function follows the two-call idiom for filling the spatialAnchorNames.

// Provided by XR_MSFT_spatial_anchor_persistence

XrResult xrEnumeratePersistedSpatialAnchorNamesMSFT(

 XrSpatialAnchorStoreConnectionMSFT spatialAnchorStore,

 uint32_t spatialAnchorNameCapacityInput,

 uint32_t* spatialAnchorNameCountOutput,

 XrSpatialAnchorPersistenceNameMSFT* spatialAnchorNames);

1316 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• spatialAnchorStore is the XrSpatialAnchorStoreConnectionMSFT anchor store to perform the

enumeration operation on.

• spatialAnchorNameCapacityInput is the capacity of the spatialAnchorNames array, or 0 to

indicate a request to retrieve the required capacity.

• spatialAnchorNameCountOutput is filled in by the runtime with the count of anchor names

written or the required capacity in the case that spatialAnchorNameCapacityInput is

insufficient.

• spatialAnchorNames is a pointer to an array of XrSpatialAnchorPersistenceNameMSFT

structures, but can be NULL if propertyCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

spatialAnchorNames size.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to calling

xrEnumeratePersistedSpatialAnchorNamesMSFT

• spatialAnchorStore must be a valid XrSpatialAnchorStoreConnectionMSFT handle

• spatialAnchorNameCountOutput must be a pointer to a uint32_t value

• If spatialAnchorNameCapacityInput is not 0, spatialAnchorNames must be a pointer to an array

of spatialAnchorNameCapacityInput XrSpatialAnchorPersistenceNameMSFT structures

Chapter 12. List of Current Extensions | 1317

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

The application can use the xrCreateSpatialAnchorFromPersistedNameMSFT function to create a

XrSpatialAnchorMSFT from the spatial anchor store. If the

XrSpatialAnchorFromPersistedAnchorCreateInfoMSFT::spatialAnchorPersistenceName provided does

not correspond to a currently stored anchor (i.e. the list of spatial anchor names returned from

xrEnumeratePersistedSpatialAnchorNamesMSFT), the function must return

XR_ERROR_SPATIAL_ANCHOR_NAME_NOT_FOUND_MSFT.

// Provided by XR_MSFT_spatial_anchor_persistence

XrResult xrCreateSpatialAnchorFromPersistedNameMSFT(

 XrSession session,

 const XrSpatialAnchorFromPersistedAnchorCreateInfoMSFT* spatialAnchorCreateInfo,

 XrSpatialAnchorMSFT* spatialAnchor);

Parameter Descriptions

• session is a handle to an XrSession previously created with xrCreateSession.

• spatialAnchorCreateInfo is a pointer to the

XrSpatialAnchorFromPersistedAnchorCreateInfoMSFT.

• spatialAnchor is a pointer to an XrSpatialAnchorMSFT handle that will be set by the runtime

on successful load.

1318 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to calling

xrCreateSpatialAnchorFromPersistedNameMSFT

• session must be a valid XrSession handle

• spatialAnchorCreateInfo must be a pointer to a valid

XrSpatialAnchorFromPersistedAnchorCreateInfoMSFT structure

• spatialAnchor must be a pointer to an XrSpatialAnchorMSFT handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_SPATIAL_ANCHOR_NAME_NOT_FOUND_MSFT

• XR_ERROR_SPATIAL_ANCHOR_NAME_INVALID_MSFT

The XrSpatialAnchorFromPersistedAnchorCreateInfoMSFT structure is defined as:

// Provided by XR_MSFT_spatial_anchor_persistence

typedef struct XrSpatialAnchorFromPersistedAnchorCreateInfoMSFT {

 XrStructureType type;

 const void* next;

 XrSpatialAnchorStoreConnectionMSFT spatialAnchorStore;

 XrSpatialAnchorPersistenceNameMSFT spatialAnchorPersistenceName;

} XrSpatialAnchorFromPersistedAnchorCreateInfoMSFT;

Chapter 12. List of Current Extensions | 1319

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR.

• spatialAnchorStore is the XrSpatialAnchorStoreConnectionMSFT from which the spatial

anchor will be loaded from.

• spatialAnchorPersistenceName is the XrSpatialAnchorPersistenceNameMSFT associated with

the XrSpatialAnchorMSFT in the spatial anchor store. This name is used to create an

XrSpatialAnchorMSFT handle from a spatial anchor persisted in the spatial anchor store.

The spatialAnchorPersistenceName is a character array of maximum size

XR_MAX_SPATIAL_ANCHOR_NAME_SIZE_MSFT, which must include a null terminator and must not be empty

(i.e. the first element is the null terminator). If an empty spatialAnchorPersistenceName value is passed

to any function as a parameter, that function must return XR_ERROR_SPATIAL_ANCHOR_NAME_INVALID_MSFT.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to using

XrSpatialAnchorFromPersistedAnchorCreateInfoMSFT

• type must be XR_TYPE_SPATIAL_ANCHOR_FROM_PERSISTED_ANCHOR_CREATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• spatialAnchorStore must be a valid XrSpatialAnchorStoreConnectionMSFT handle

• spatialAnchorPersistenceName must be a valid XrSpatialAnchorPersistenceNameMSFT

structure

The application can use the xrUnpersistSpatialAnchorMSFT function to remove the record of the

anchor in the spatial anchor store. This operation will not affect any XrSpatialAnchorMSFT handles

previously created. If the spatialAnchorPersistenceName provided does not correspond to a currently

stored anchor, the function must return XR_ERROR_SPATIAL_ANCHOR_NAME_NOT_FOUND_MSFT.

// Provided by XR_MSFT_spatial_anchor_persistence

XrResult xrUnpersistSpatialAnchorMSFT(

 XrSpatialAnchorStoreConnectionMSFT spatialAnchorStore,

 const XrSpatialAnchorPersistenceNameMSFT* spatialAnchorPersistenceName);

1320 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• spatialAnchorStore is an XrSpatialAnchorStoreConnectionMSFT anchor store to perform the

unpersist operation on.

• spatialAnchorPersistenceName is a pointer to the XrSpatialAnchorPersistenceNameMSFT.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to calling

xrUnpersistSpatialAnchorMSFT

• spatialAnchorStore must be a valid XrSpatialAnchorStoreConnectionMSFT handle

• spatialAnchorPersistenceName must be a pointer to a valid

XrSpatialAnchorPersistenceNameMSFT structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SPATIAL_ANCHOR_NAME_NOT_FOUND_MSFT

• XR_ERROR_SPATIAL_ANCHOR_NAME_INVALID_MSFT

The application can use the xrClearSpatialAnchorStoreMSFT function to remove all spatial anchors

from the spatial anchor store for this application. The function only removes the record of the spatial

anchors in the store but does not affect any XrSpatialAnchorMSFT handles previously loaded in the

current session.

Chapter 12. List of Current Extensions | 1321

// Provided by XR_MSFT_spatial_anchor_persistence

XrResult xrClearSpatialAnchorStoreMSFT(

 XrSpatialAnchorStoreConnectionMSFT spatialAnchorStore);

Parameter Descriptions

• spatialAnchorStore is XrSpatialAnchorStoreConnectionMSFT to perform the clear operation

on.

Valid Usage (Implicit)

• The XR_MSFT_spatial_anchor_persistence extension must be enabled prior to calling

xrClearSpatialAnchorStoreMSFT

• spatialAnchorStore must be a valid XrSpatialAnchorStoreConnectionMSFT handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

New Object Types

• XrSpatialAnchorStoreConnectionMSFT

New Flag Types

New Enum Constants

• XR_TYPE_SPATIAL_ANCHOR_PERSISTENCE_INFO_MSFT

1322 | Chapter 12. List of Current Extensions

• XR_TYPE_SPATIAL_ANCHOR_FROM_PERSISTED_ANCHOR_CREATE_INFO_MSFT

• XR_ERROR_SPATIAL_ANCHOR_NAME_NOT_FOUND_MSFT

• XR_ERROR_SPATIAL_ANCHOR_NAME_INVALID_MSFT

• XR_MAX_SPATIAL_ANCHOR_NAME_SIZE_MSFT

New Enums

New Structures

• XrSpatialAnchorPersistenceNameMSFT

• XrSpatialAnchorPersistenceInfoMSFT

• XrSpatialAnchorFromPersistedAnchorCreateInfoMSFT

New Functions

• xrCreateSpatialAnchorStoreConnectionMSFT

• xrDestroySpatialAnchorStoreConnectionMSFT

• xrPersistSpatialAnchorMSFT

• xrEnumeratePersistedSpatialAnchorNamesMSFT

• xrCreateSpatialAnchorFromPersistedNameMSFT

• xrUnpersistSpatialAnchorMSFT

• xrClearSpatialAnchorStoreMSFT

Version History

• Revision 1, 2021-02-19 (Lachlan Ford)

◦ Initial extension proposal

• Revision 2, 2021-07-15 (Yin Li)

◦ Extension proposal to OpenXR working group

12.123. XR_MSFT_spatial_graph_bridge

Name String

XR_MSFT_spatial_graph_bridge

Extension Type

Instance extension

Registered Extension Number

50

Chapter 12. List of Current Extensions | 1323

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Contributors

Darryl Gough, Microsoft

Yin Li, Microsoft

Alex Turner, Microsoft

David Fields, Microsoft

Overview

This extension enables applications to interop between XrSpace handles and other Windows Mixed

Reality device platform libraries or APIs. These libraries represent a spatially tracked point, also

known as a "spatial graph node", with a GUID value. This extension enables applications to create

XrSpace handles from spatial graph nodes. Applications can also try to get a spatial graph node from

an XrSpace handle.

12.123.1. Create XrSpace from Spatial Graph Node

The xrCreateSpatialGraphNodeSpaceMSFT function creates an XrSpace handle for a given spatial

graph node type and ID.

// Provided by XR_MSFT_spatial_graph_bridge

XrResult xrCreateSpatialGraphNodeSpaceMSFT(

 XrSession session,

 const XrSpatialGraphNodeSpaceCreateInfoMSFT* createInfo,

 XrSpace* space);

Parameter Descriptions

• session is the XrSession which will use the created space.

• createInfo is an XrSpatialGraphNodeSpaceCreateInfoMSFT specifying the space to be created.

• space is the returned XrSpace handle for the given spatial node ID.

1324 | Chapter 12. List of Current Extensions

Valid Usage (Implicit)

• The XR_MSFT_spatial_graph_bridge extension must be enabled prior to calling

xrCreateSpatialGraphNodeSpaceMSFT

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrSpatialGraphNodeSpaceCreateInfoMSFT structure

• space must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

The XrSpatialGraphNodeSpaceCreateInfoMSFT structure is used with

xrCreateSpatialGraphNodeSpaceMSFT to create an XrSpace handle for a given spatial node type and

node ID.

Chapter 12. List of Current Extensions | 1325

// Provided by XR_MSFT_spatial_graph_bridge

typedef struct XrSpatialGraphNodeSpaceCreateInfoMSFT {

 XrStructureType type;

 const void* next;

 XrSpatialGraphNodeTypeMSFT nodeType;

 uint8_t nodeId[XR_GUID_SIZE_MSFT];

 XrPosef pose;

} XrSpatialGraphNodeSpaceCreateInfoMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• nodeType is an XrSpatialGraphNodeTypeMSFT specifying the spatial node type.

• nodeId is a global unique identifier (a.k.a. GUID or 16 byte array), representing the spatial

node that is being tracked.

• pose is an XrPosef defining the position and orientation of the new space’s origin within the

natural reference frame of the spatial graph node.

Valid Usage (Implicit)

• The XR_MSFT_spatial_graph_bridge extension must be enabled prior to using

XrSpatialGraphNodeSpaceCreateInfoMSFT

• type must be XR_TYPE_SPATIAL_GRAPH_NODE_SPACE_CREATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• nodeType must be a valid XrSpatialGraphNodeTypeMSFT value

The enum XrSpatialGraphNodeTypeMSFT describes the types of spatial graph nodes.

// Provided by XR_MSFT_spatial_graph_bridge

typedef enum XrSpatialGraphNodeTypeMSFT {

 XR_SPATIAL_GRAPH_NODE_TYPE_STATIC_MSFT = 1,

 XR_SPATIAL_GRAPH_NODE_TYPE_DYNAMIC_MSFT = 2,

 XR_SPATIAL_GRAPH_NODE_TYPE_MAX_ENUM_MSFT = 0x7FFFFFFF

} XrSpatialGraphNodeTypeMSFT;

1326 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

There are two types of spatial graph nodes: static and dynamic.

Static spatial nodes track the pose of a fixed location in the world relative to reference spaces. The

tracking of static nodes may slowly adjust the pose over time for better accuracy but the pose is

relatively stable in the short term, such as between rendering frames. For example, a QR code tracking

library can use a static node to represent the location of the tracked QR code. Static spatial nodes are

represented by XR_SPATIAL_GRAPH_NODE_TYPE_STATIC_MSFT.

Dynamic spatial nodes track the pose of a physical object that moves continuously relative to reference

spaces. The pose of dynamic spatial nodes can be very different within the duration of a rendering

frame. It is important for the application to use the correct timestamp to query the space location using

xrLocateSpace. For example, a color camera mounted in front of a HMD is also tracked by the HMD so

a web camera library can use a dynamic node to represent the camera location. Dynamic spatial nodes

are represented by XR_SPATIAL_GRAPH_NODE_TYPE_DYNAMIC_MSFT.

12.123.2. Create Spatial Graph Node Binding from XrSpace

The XrSpatialGraphNodeBindingMSFT handle represents a binding to a spatial graph node. This

handle allows an application to get a spatial graph node GUID from an XrSpace to use in other

Windows Mixed Reality device platform libraries or APIs.

The runtime must remember the spatial graph node and track it for the lifetime of the

XrSpatialGraphNodeBindingMSFT handle. When the XrSpatialGraphNodeBindingMSFT handle is

destroyed then the runtime’s tracking system may forget about the spatial graphic node and stop

tracking it.

XR_DEFINE_HANDLE(XrSpatialGraphNodeBindingMSFT)

The xrTryCreateSpatialGraphStaticNodeBindingMSFT function tries to create a binding to the best

spatial graph static node relative to the given location and returns an

XrSpatialGraphNodeBindingMSFT handle.

// Provided by XR_MSFT_spatial_graph_bridge

XrResult xrTryCreateSpatialGraphStaticNodeBindingMSFT(

 XrSession session,

 const XrSpatialGraphStaticNodeBindingCreateInfoMSFT* createInfo,

 XrSpatialGraphNodeBindingMSFT* nodeBinding);

Chapter 12. List of Current Extensions | 1327

Parameter Descriptions

• session is the specified XrSession.

• createInfo is the XrSpatialGraphStaticNodeBindingCreateInfoMSFT input structure.

• nodeBinding is the XrSpatialGraphNodeBindingMSFT output structure.

The runtime may return XR_SUCCESS and set nodeBinding to XR_NULL_HANDLE if it is unable to create a

spatial graph static node binding. This may happen when the given XrSpace cannot be properly

tracked at the moment. The application can retry creating the XrSpatialGraphNodeBindingMSFT

handle again after a reasonable period of time when tracking is regained.

The xrTryCreateSpatialGraphStaticNodeBindingMSFT function may be a slow operation and therefore

should be invoked from a non-timing critical thread.

Valid Usage (Implicit)

• The XR_MSFT_spatial_graph_bridge extension must be enabled prior to calling

xrTryCreateSpatialGraphStaticNodeBindingMSFT

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrSpatialGraphStaticNodeBindingCreateInfoMSFT

structure

• nodeBinding must be a pointer to an XrSpatialGraphNodeBindingMSFT handle

1328 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_TIME_INVALID

• XR_ERROR_POSE_INVALID

XrSpatialGraphStaticNodeBindingCreateInfoMSFT is an input structure for

xrTryCreateSpatialGraphStaticNodeBindingMSFT.

// Provided by XR_MSFT_spatial_graph_bridge

typedef struct XrSpatialGraphStaticNodeBindingCreateInfoMSFT {

 XrStructureType type;

 const void* next;

 XrSpace space;

 XrPosef poseInSpace;

 XrTime time;

} XrSpatialGraphStaticNodeBindingCreateInfoMSFT;

Chapter 12. List of Current Extensions | 1329

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• space is a handle to the XrSpace in which poseInSpace is specified.

• poseInSpace is the XrPosef within space at time.

• time is the XrTime at which poseInSpace will be evaluated within space.

Valid Usage (Implicit)

• The XR_MSFT_spatial_graph_bridge extension must be enabled prior to using

XrSpatialGraphStaticNodeBindingCreateInfoMSFT

• type must be XR_TYPE_SPATIAL_GRAPH_STATIC_NODE_BINDING_CREATE_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

• space must be a valid XrSpace handle

The xrDestroySpatialGraphNodeBindingMSFT function releases the nodeBinding and the underlying

resources.

// Provided by XR_MSFT_spatial_graph_bridge

XrResult xrDestroySpatialGraphNodeBindingMSFT(

 XrSpatialGraphNodeBindingMSFT nodeBinding);

Parameter Descriptions

• nodeBinding is an XrSpatialGraphNodeBindingMSFT previously created by

xrTryCreateSpatialGraphStaticNodeBindingMSFT.

Valid Usage (Implicit)

• The XR_MSFT_spatial_graph_bridge extension must be enabled prior to calling

xrDestroySpatialGraphNodeBindingMSFT

• nodeBinding must be a valid XrSpatialGraphNodeBindingMSFT handle

1330 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Thread Safety

• Access to nodeBinding, and any child handles, must be externally synchronized

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_HANDLE_INVALID

Get spatial graph node binding properties

The xrGetSpatialGraphNodeBindingPropertiesMSFT function retrieves the spatial graph node GUID

and the pose in the node space from an XrSpatialGraphNodeBindingMSFT handle.

// Provided by XR_MSFT_spatial_graph_bridge

XrResult xrGetSpatialGraphNodeBindingPropertiesMSFT(

 XrSpatialGraphNodeBindingMSFT nodeBinding,

 const XrSpatialGraphNodeBindingPropertiesGetInfoMSFT* getInfo,

 XrSpatialGraphNodeBindingPropertiesMSFT* properties);

Parameter Descriptions

• nodeBinding is an XrSpatialGraphNodeBindingMSFT previously created by

xrTryCreateSpatialGraphStaticNodeBindingMSFT.

• getInfo is a pointer to an XrSpatialGraphNodeBindingPropertiesGetInfoMSFT input structure.

• properties is a pointer to an XrSpatialGraphNodeBindingPropertiesMSFT output structure.

Chapter 12. List of Current Extensions | 1331

Valid Usage (Implicit)

• The XR_MSFT_spatial_graph_bridge extension must be enabled prior to calling

xrGetSpatialGraphNodeBindingPropertiesMSFT

• nodeBinding must be a valid XrSpatialGraphNodeBindingMSFT handle

• If getInfo is not NULL, getInfo must be a pointer to a valid

XrSpatialGraphNodeBindingPropertiesGetInfoMSFT structure

• properties must be a pointer to an XrSpatialGraphNodeBindingPropertiesMSFT structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

XrSpatialGraphNodeBindingPropertiesGetInfoMSFT is an input structure for

xrGetSpatialGraphNodeBindingPropertiesMSFT.

// Provided by XR_MSFT_spatial_graph_bridge

typedef struct XrSpatialGraphNodeBindingPropertiesGetInfoMSFT {

 XrStructureType type;

 const void* next;

} XrSpatialGraphNodeBindingPropertiesGetInfoMSFT;

1332 | Chapter 12. List of Current Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

Valid Usage (Implicit)

• The XR_MSFT_spatial_graph_bridge extension must be enabled prior to using

XrSpatialGraphNodeBindingPropertiesGetInfoMSFT

• type must be XR_TYPE_SPATIAL_GRAPH_NODE_BINDING_PROPERTIES_GET_INFO_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

XrSpatialGraphNodeBindingPropertiesMSFT is an output structure for

xrGetSpatialGraphNodeBindingPropertiesMSFT.

// Provided by XR_MSFT_spatial_graph_bridge

typedef struct XrSpatialGraphNodeBindingPropertiesMSFT {

 XrStructureType type;

 void* next;

 uint8_t nodeId[XR_GUID_SIZE_MSFT];

 XrPosef poseInNodeSpace;

} XrSpatialGraphNodeBindingPropertiesMSFT;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• nodeId is a global unique identifier (a.k.a. GUID or 16 byte array), representing the spatial

graph node.

• poseInNodeSpace is an XrPosef defining the pose in the underlying node’s space.

Chapter 12. List of Current Extensions | 1333

#valid-usage-for-structure-pointer-chains

Valid Usage (Implicit)

• The XR_MSFT_spatial_graph_bridge extension must be enabled prior to using

XrSpatialGraphNodeBindingPropertiesMSFT

• type must be XR_TYPE_SPATIAL_GRAPH_NODE_BINDING_PROPERTIES_MSFT

• next must be NULL or a valid pointer to the next structure in a structure chain

New Object Types

• XrSpatialGraphNodeBindingMSFT

New Flag Types

New Enum Constants

XrObjectType enumeration is extended with:

• XR_OBJECT_TYPE_SPATIAL_GRAPH_NODE_BINDING_MSFT

XrStructureType enumeration is extended with:

• XR_TYPE_SPATIAL_GRAPH_NODE_SPACE_CREATE_INFO_MSFT

• XR_TYPE_SPATIAL_GRAPH_STATIC_NODE_BINDING_CREATE_INFO_MSFT

• XR_TYPE_SPATIAL_GRAPH_NODE_BINDING_PROPERTIES_GET_INFO_MSFT

• XR_TYPE_SPATIAL_GRAPH_NODE_BINDING_PROPERTIES_MSFT

New Enums

• XrSpatialGraphNodeTypeMSFT

New Structures

• XrSpatialGraphNodeSpaceCreateInfoMSFT

• XrSpatialGraphStaticNodeBindingCreateInfoMSFT

• XrSpatialGraphNodeBindingPropertiesGetInfoMSFT

• XrSpatialGraphNodeBindingPropertiesMSFT

New Functions

• xrTryCreateSpatialGraphStaticNodeBindingMSFT

• xrDestroySpatialGraphNodeBindingMSFT

• xrGetSpatialGraphNodeBindingPropertiesMSFT

1334 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

Issues

Version History

• Revision 1, 2019-10-31 (Yin LI)

◦ Initial extension description

• Revision 2, 2022-01-13 (Darryl Gough)

◦ Added Spatial Graph Node Binding handle.

12.124. XR_MSFT_unbounded_reference_space

Name String

XR_MSFT_unbounded_reference_space

Extension Type

Instance extension

Registered Extension Number

39

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Overview

This extension allows an application to create an UNBOUNDED_MSFT reference space. This reference space

enables the viewer to move freely through a complex environment, often many meters from where

they started, while always optimizing for coordinate system stability near the viewer. This is done by

allowing the origin of the reference space to drift as necessary to keep the viewer’s coordinates

relative to the space’s origin stable.

To create an UNBOUNDED_MSFT reference space, the application can pass

XR_REFERENCE_SPACE_TYPE_UNBOUNDED_MSFT to xrCreateReferenceSpace.

The UNBOUNDED_MSFT reference space establishes a world-locked origin, gravity-aligned to exclude pitch

and roll, with +Y up, +X to the right, and -Z forward. This space begins with an arbitrary initial position

and orientation, which the runtime may define to be either the initial position at app launch or some

other initial zero position. Unlike a STAGE reference space, the runtime may place the origin of an

UNBOUNDED_MSFT reference space at any height, rather than fixing it at the floor. This is because the

viewer may move through various rooms and levels of their environment, each of which has a

different floor height. Runtimes should not automatically adjust the position of the origin when the

Chapter 12. List of Current Extensions | 1335

viewer moves to a room with a different floor height.

UNBOUNDED_MSFT space is useful when an app needs to render world-scale content that spans beyond the

bounds of a single STAGE, for example, an entire floor or multiple floors of a building.

An UNBOUNDED_MSFT space maintains stability near the viewer by slightly adjusting its origin over time.

The runtime must not queue the XrEventDataReferenceSpaceChangePending event in response to

these minor adjustments.

When views, controllers or other spaces experience tracking loss relative to the UNBOUNDED_MSFT space,

runtimes should continue to provide inferred or last-known position and orientation values. These

inferred poses can, for example, be based on neck model updates, inertial dead reckoning, or a last-

known position, so long as it is still reasonable for the application to use that pose. While a runtime is

providing position data, it must continue to set XR_SPACE_LOCATION_POSITION_VALID_BIT and

XR_VIEW_STATE_POSITION_VALID_BIT but it can clear XR_SPACE_LOCATION_POSITION_TRACKED_BIT and

XR_VIEW_STATE_POSITION_TRACKED_BIT to indicate that the position is inferred or last-known in this way.

When tracking is recovered, runtimes should snap the pose of other spaces back into position relative

to the UNBOUNDED_MSFT space’s original origin. However, if tracking recovers into a new tracking volume

in which the original origin can no longer be located (e.g. the viewer moved through a dark hallway

and regained tracking in a new room), the runtime may recenter the origin arbitrarily, for example

moving the origin to coincide with the viewer. If such recentering occurs, the runtime must queue the

XrEventDataReferenceSpaceChangePending event with poseValid set to false.

If the viewer moves far enough away from the origin of an UNBOUNDED_MSFT reference space that floating

point error would introduce noticeable error when locating the viewer within that space, the runtime

may recenter the space’s origin to a new location closer to the viewer. If such recentering occurs, the

runtime must queue the XrEventDataReferenceSpaceChangePending event with poseValid set to true.

Runtimes must support the UNBOUNDED_MSFT reference space when this extension is enabled.

New Object Types

New Flag Types

New Enum Constants

XrReferenceSpaceType enumeration is extended with:

• XR_REFERENCE_SPACE_TYPE_UNBOUNDED_MSFT

New Enums

New Structures

New Functions

Issues

1336 | Chapter 12. List of Current Extensions

Version History

• Revision 1, 2019-07-30 (Alex Turner)

◦ Initial extension description

12.125. XR_OCULUS_audio_device_guid

Name String

XR_OCULUS_audio_device_guid

Extension Type

Instance extension

Registered Extension Number

160

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Overview

This extension enables the querying of audio device information associated with an OpenXR instance.

On Windows, there may be multiple audio devices available on the system. This extensions allows

applications to query the runtime for the appropriate audio devices for the active HMD.

New Object Types

New Flag Types

New Enum Constants

• XR_MAX_AUDIO_DEVICE_STR_SIZE_OCULUS

New Enums

New Structures

New Functions

Chapter 12. List of Current Extensions | 1337

// Provided by XR_OCULUS_audio_device_guid

XrResult xrGetAudioOutputDeviceGuidOculus(

 XrInstance instance,

 wchar_t buffer

[XR_MAX_AUDIO_DEVICE_STR_SIZE_OCULUS]);

Parameter Descriptions

• instance is the XrInstance to query the audio device state in.

• buffer is a fixed size buffer which will contain the audio device GUID. The format of this data

matches the IMMDevice::GetId API.

Valid Usage (Implicit)

• The XR_OCULUS_audio_device_guid extension must be enabled prior to calling

xrGetAudioOutputDeviceGuidOculus

• instance must be a valid XrInstance handle

• buffer must be a wide character array of length XR_MAX_AUDIO_DEVICE_STR_SIZE_OCULUS

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

1338 | Chapter 12. List of Current Extensions

https://docs.microsoft.com/en-us/windows/win32/api/mmdeviceapi/nf-mmdeviceapi-immdevice-getid

// Provided by XR_OCULUS_audio_device_guid

XrResult xrGetAudioInputDeviceGuidOculus(

 XrInstance instance,

 wchar_t buffer

[XR_MAX_AUDIO_DEVICE_STR_SIZE_OCULUS]);

Parameter Descriptions

• instance is the XrInstance to query the audio device state in.

• buffer is a fixed size buffer which will contain the audio device GUID. The format of this data

matches the IMMDevice::GetId API.

Valid Usage (Implicit)

• The XR_OCULUS_audio_device_guid extension must be enabled prior to calling

xrGetAudioInputDeviceGuidOculus

• instance must be a valid XrInstance handle

• buffer must be a wide character array of length XR_MAX_AUDIO_DEVICE_STR_SIZE_OCULUS

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

Issues

Version History

• Revision 1, 2021-05-13 (John Kearney)

Chapter 12. List of Current Extensions | 1339

https://docs.microsoft.com/en-us/windows/win32/api/mmdeviceapi/nf-mmdeviceapi-immdevice-getid

◦ Initial extension description

12.126. XR_OCULUS_external_camera

Name String

XR_OCULUS_external_camera

Extension Type

Instance extension

Registered Extension Number

227

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Overview

This extension enables the querying of external camera information for a session. This extension is

intended to enable mixed reality capture support for applications.

This extension does not provide a mechanism for supplying external camera information to the

runtime. If external camera information is not supplied to the runtime before using this extension, no

camera information will be returned.

This API supports returning camera intrinsics and extrinsics:

• Camera intrinsics are the attributes of the camera: resolution, field of view, etc.

• Camera extrinsics are everything external to the camera: relative pose, attached to, etc.

• We do not expect the camera intrinsics to change frequently. We expect the camera extrinsics to

change frequently.

New Object Types

New Flag Types

typedef XrFlags64 XrExternalCameraStatusFlagsOCULUS;

1340 | Chapter 12. List of Current Extensions

// Flag bits for XrExternalCameraStatusFlagsOCULUS

static const XrExternalCameraStatusFlagsOCULUS

XR_EXTERNAL_CAMERA_STATUS_CONNECTED_BIT_OCULUS = 0x00000001;

static const XrExternalCameraStatusFlagsOCULUS

XR_EXTERNAL_CAMERA_STATUS_CALIBRATING_BIT_OCULUS = 0x00000002;

static const XrExternalCameraStatusFlagsOCULUS

XR_EXTERNAL_CAMERA_STATUS_CALIBRATION_FAILED_BIT_OCULUS = 0x00000004;

static const XrExternalCameraStatusFlagsOCULUS

XR_EXTERNAL_CAMERA_STATUS_CALIBRATED_BIT_OCULUS = 0x00000008;

static const XrExternalCameraStatusFlagsOCULUS

XR_EXTERNAL_CAMERA_STATUS_CAPTURING_BIT_OCULUS = 0x00000010;

Flag Descriptions

• XR_EXTERNAL_CAMERA_STATUS_CONNECTED_BIT_OCULUS  — External camera is connected

• XR_EXTERNAL_CAMERA_STATUS_CALIBRATING_BIT_OCULUS  — External camera is undergoing

calibration

• XR_EXTERNAL_CAMERA_STATUS_CALIBRATION_FAILED_BIT_OCULUS  — External camera has tried and

failed calibration

• XR_EXTERNAL_CAMERA_STATUS_CALIBRATED_BIT_OCULUS  — External camera has tried and passed

calibration

• XR_EXTERNAL_CAMERA_STATUS_CAPTURING_BIT_OCULUS  — External camera is capturing

New Enum Constants

XR_MAX_EXTERNAL_CAMERA_NAME_SIZE_OCULUS defines the length of the field XrExternalCameraOCULUS

::name.

#define XR_MAX_EXTERNAL_CAMERA_NAME_SIZE_OCULUS 32

XrStructureType enumeration is extended with:

• XR_TYPE_EXTERNAL_CAMERA_OCULUS

New Enums

Chapter 12. List of Current Extensions | 1341

// Provided by XR_OCULUS_external_camera

typedef enum XrExternalCameraAttachedToDeviceOCULUS {

 XR_EXTERNAL_CAMERA_ATTACHED_TO_DEVICE_NONE_OCULUS = 0,

 XR_EXTERNAL_CAMERA_ATTACHED_TO_DEVICE_HMD_OCULUS = 1,

 XR_EXTERNAL_CAMERA_ATTACHED_TO_DEVICE_LTOUCH_OCULUS = 2,

 XR_EXTERNAL_CAMERA_ATTACHED_TO_DEVICE_RTOUCH_OCULUS = 3,

 XR_EXTERNAL_CAMERA_ATTACHED_TO_DEVICE_MAX_ENUM_OCULUS = 0x7FFFFFFF

} XrExternalCameraAttachedToDeviceOCULUS;

Enum Description

XR_EXTERNAL_CAMERA_ATTACHED_TO_DEVICE_NONE_OCULU
S

External camera is at a fixed point in LOCAL space

XR_EXTERNAL_CAMERA_ATTACHED_TO_DEVICE_HMD_OCULUS External camera is attached to the HMD

XR_EXTERNAL_CAMERA_ATTACHED_TO_DEVICE_LTOUCH_OCU
LUS

External camera is attached to a left Touch

controller

XR_EXTERNAL_CAMERA_ATTACHED_TO_DEVICE_RTOUCH_OCU
LUS

External camera is attached to a right Touch

controller

New Structures

The XrExternalCameraIntrinsicsOCULUS structure is defined as:

// Provided by XR_OCULUS_external_camera

typedef struct XrExternalCameraIntrinsicsOCULUS {

 XrTime lastChangeTime;

 XrFovf fov;

 float virtualNearPlaneDistance;

 float virtualFarPlaneDistance;

 XrExtent2Di imageSensorPixelResolution;

} XrExternalCameraIntrinsicsOCULUS;

1342 | Chapter 12. List of Current Extensions

Member Descriptions

• lastChangeTime is the XrTime when this camera’s intrinsics last changed.

• fov is the XrFovf for this camera’s viewport.

• virtualNearPlaneDistance is the near plane distance of the virtual camera used to match the

external camera

• virtualFarPlaneDistance is the far plane distance of the virtual camera used to match the

external camera

• imageSensorPixelResolution is the XrExtent2Di specifying the camera’s resolution (in pixels).

Valid Usage (Implicit)

• The XR_OCULUS_external_camera extension must be enabled prior to using

XrExternalCameraIntrinsicsOCULUS

The XrExternalCameraExtrinsicsOCULUS structure is defined as:

// Provided by XR_OCULUS_external_camera

typedef struct XrExternalCameraExtrinsicsOCULUS {

 XrTime lastChangeTime;

 XrExternalCameraStatusFlagsOCULUS cameraStatusFlags;

 XrExternalCameraAttachedToDeviceOCULUS attachedToDevice;

 XrPosef relativePose;

} XrExternalCameraExtrinsicsOCULUS;

Member Descriptions

• lastChangeTime is the XrTime when this camera’s extrinsics last changed.

• cameraStatusFlags is the XrExternalCameraStatusFlagsOCULUS for this camera’s status.

• attachedToDevice is the XrExternalCameraAttachedToDeviceOCULUS for the device this

camera is attached to

• relativePose is the XrPosef for offset of the camera from the device that the camera is

attached to

Chapter 12. List of Current Extensions | 1343

Valid Usage (Implicit)

• The XR_OCULUS_external_camera extension must be enabled prior to using

XrExternalCameraExtrinsicsOCULUS

• cameraStatusFlags must be 0 or a valid combination of

XrExternalCameraStatusFlagBitsOCULUS values

• attachedToDevice must be a valid XrExternalCameraAttachedToDeviceOCULUS value

The XrExternalCameraOCULUS structure is defined as:

// Provided by XR_OCULUS_external_camera

typedef struct XrExternalCameraOCULUS {

 XrStructureType type;

 const void* next;

 char name[XR_MAX_EXTERNAL_CAMERA_NAME_SIZE_OCULUS];

 XrExternalCameraIntrinsicsOCULUS intrinsics;

 XrExternalCameraExtrinsicsOCULUS extrinsics;

} XrExternalCameraOCULUS;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• name is a null-terminated UTF-8 string containing a camera identifier: VID (vendor ID), PID

(product ID), and serial number

• intrinsics is the XrExternalCameraIntrinsicsOCULUS for the camera

• extrinsics is the XrExternalCameraExtrinsicsOCULUS for the camera

Valid Usage (Implicit)

• The XR_OCULUS_external_camera extension must be enabled prior to using

XrExternalCameraOCULUS

• type must be XR_TYPE_EXTERNAL_CAMERA_OCULUS

• next must be NULL or a valid pointer to the next structure in a structure chain

1344 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

New Functions

The xrEnumerateExternalCamerasOCULUS function enumerates all the external cameras that are

supported by the runtime, it is defined as:

// Provided by XR_OCULUS_external_camera

XrResult xrEnumerateExternalCamerasOCULUS(

 XrSession session,

 uint32_t cameraCapacityInput,

 uint32_t* cameraCountOutput,

 XrExternalCameraOCULUS* cameras);

Parameter Descriptions

• session is the XrSession to query the external cameras in

• cameraCapacityInput is the capacity of the cameras array, or 0 to indicate a request to retrieve

the required capacity.

• cameraCountOutput is filled in by the runtime with the count of cameras written or the required

capacity in the case that cameraCapacityInput is insufficient.

• cameras is an array of XrExternalCameraOCULUS filled in by the runtime which contains all

the available external cameras, but can be NULL if cameraCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

cameras size.

Valid Usage (Implicit)

• The XR_OCULUS_external_camera extension must be enabled prior to calling

xrEnumerateExternalCamerasOCULUS

• session must be a valid XrSession handle

• cameraCountOutput must be a pointer to a uint32_t value

• If cameraCapacityInput is not 0, cameras must be a pointer to an array of cameraCapacityInput

XrExternalCameraOCULUS structures

Chapter 12. List of Current Extensions | 1345

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_SIZE_INSUFFICIENT

Issues

Version History

• Revision 1, 2022-08-31 (John Kearney)

◦ Initial extension description

12.127. XR_OPPO_controller_interaction

Name String

XR_OPPO_controller_interaction

Extension Type

Instance extension

Registered Extension Number

454

Revision

1

Extension and Version Dependencies

OpenXR 1.0

1346 | Chapter 12. List of Current Extensions

Contributors

Haomiao Jiang, OPPO

Buyi Xu, OPPO

Yebao Cai, OPPO

Overview

This extension defines a new interaction profile for the OPPO Controller, including but not limited to

OPPO MR Glasses Controller.

OPPO Controller interaction profile

Interaction profile path:

• /interaction_profiles/oppo/mr_controller_oppo

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the OPPO Controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

◦ …/input/heartrate_oppo/value

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/home/click (may not be available for application use)

• …/input/squeeze/value

• …/input/trigger/touch

• …/input/trigger/value

Chapter 12. List of Current Extensions | 1347

• …/input/grip/pose

• …/input/aim/pose

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbstick

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/output/haptic

New Identifiers

• heartrate_oppo: OPPO MR Controller adds an optional heart rate sensor to monitor the heart

beat rate of the user.

Input Path Descriptions

• /input/heartrate_oppo/value : Allow developers to access the heart beat per minute (BPM) of

the user. The data would only be available with user’s active consent. Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose

1348 | Chapter 12. List of Current Extensions

 Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

Version History

• Revision 1, Haomiao Jiang

◦ Initial extension description

12.128. XR_QCOM_tracking_optimization_settings

Name String

XR_QCOM_tracking_optimization_settings

Extension Type

Instance extension

Registered Extension Number

307

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2022-06-02

Contributors

Daniel Guttenberg, Qualcomm

Martin Renschler, Qualcomm

Karthik Nagarajan, Qualcomm

Overview

This extension defines an API for the application to give optimization hints to the runtime for tracker

domains.

For example, an application might be interested in tracking targets that are at a far distance from the

camera which may increase tracking latency, while another application might be interested in

Chapter 12. List of Current Extensions | 1349

minimizing power consumption at the cost of tracking accuracy. Targets are domains which are

defined in XrTrackingOptimizationSettingsDomainQCOM.

This allows the application to tailor the tracking algorithms to specific use-cases and scene-scales in

order to provide the best experience possible.

Summary: provide domain hints to the run-time about which parameters to optimize tracking for.

12.128.1. Setting Tracking Optimization Hints

The tracking optimization hints are expressed as a hint XrTrackingOptimizationSettingsHintQCOM.

// Provided by XR_QCOM_tracking_optimization_settings

typedef enum XrTrackingOptimizationSettingsDomainQCOM {

 XR_TRACKING_OPTIMIZATION_SETTINGS_DOMAIN_ALL_QCOM = 1,

 XR_TRACKING_OPTIMIZATION_SETTINGS_DOMAIN_MAX_ENUM_QCOM = 0x7FFFFFFF

} XrTrackingOptimizationSettingsDomainQCOM;

Enumerant Descriptions

• XR_TRACKING_OPTIMIZATION_SETTINGS_DOMAIN_ALL_QCOM  — Setting applies to all QCOM tracking

extensions.

// Provided by XR_QCOM_tracking_optimization_settings

typedef enum XrTrackingOptimizationSettingsHintQCOM {

 XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_NONE_QCOM = 0,

 XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_LONG_RANGE_PRIORIZATION_QCOM = 1,

 XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_CLOSE_RANGE_PRIORIZATION_QCOM = 2,

 XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_LOW_POWER_PRIORIZATION_QCOM = 3,

 XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_HIGH_POWER_PRIORIZATION_QCOM = 4,

 XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_MAX_ENUM_QCOM = 0x7FFFFFFF

} XrTrackingOptimizationSettingsHintQCOM;

1350 | Chapter 12. List of Current Extensions

Enumerant Descriptions

• XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_NONE_QCOM  — Used by the application to indicate that

it does not have a preference to optimize for. The run-time is understood to choose a

balanced approach.

• XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_LONG_RANGE_PRIORIZATION_QCOM  — Used by the

application to indicate that it prefers tracking to be optimized for long range, possibly at the

expense of competing interests.

• XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_CLOSE_RANGE_PRIORIZATION_QCOM  — Used by the

application to indicate that it prefers tracking to be optimized for close range, possibly at the

expense of competing interests.

• XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_LOW_POWER_PRIORIZATION_QCOM  — Used by the

application to indicate that it prefers tracking to be optimized for low power consumption,

possibly at the expense of competing interests.

• XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_HIGH_POWER_PRIORIZATION_QCOM  — Used by the

application to indicate that it prefers tracking to be optimized for increased tracking

performance, possibly at the cost of increased power consumption.

The xrSetTrackingOptimizationSettingsHintQCOM function is defined as:

// Provided by XR_QCOM_tracking_optimization_settings

XrResult xrSetTrackingOptimizationSettingsHintQCOM(

 XrSession session,

 XrTrackingOptimizationSettingsDomainQCOM domain,

 XrTrackingOptimizationSettingsHintQCOM hint);

Parameter Descriptions

• session is a valid XrSession handle.

• domain is the tracking domain for which the hint is applied

• hint is the hint to be applied

The XR runtime behaves as if XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_NONE_QCOM was submitted if the

application does not provide a hint.

The XR runtime must return XR_ERROR_VALIDATION_FAILURE if the application sets a domain or hint not

part of XrTrackingOptimizationSettingsDomainQCOM or XrTrackingOptimizationSettingsHintQCOM.

Chapter 12. List of Current Extensions | 1351

A hint is typically set before a domain handle is created. If hints are set more than once from one or

concurrent sessions, the runtime may accommodate the first hint it received and return

XR_ERROR_HINT_ALREADY_SET_QCOM for any subsequent calls made.

If the application destroys the active domain handle associated with the hint, the runtime may behave

as if XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_NONE_QCOM was set. In this scenario, the runtime should

accommodate new valid hints that may be set for the same domain.

Valid Usage (Implicit)

• The XR_QCOM_tracking_optimization_settings extension must be enabled prior to calling

xrSetTrackingOptimizationSettingsHintQCOM

• session must be a valid XrSession handle

• domain must be a valid XrTrackingOptimizationSettingsDomainQCOM value

• hint must be a valid XrTrackingOptimizationSettingsHintQCOM value

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_HINT_ALREADY_SET_QCOM

12.128.2. Example of setting a tracking optimization hint

1352 | Chapter 12. List of Current Extensions

XrInstance instance; // previously initialized

XrSession session; // previously initialized

// Get function pointer for xrSetTrackingOptimizationSettingsHintQCOM

PFN_xrSetTrackingOptimizationSettingsHintQCOM pfnSetTrackingOptimizationSettingsHintQCOM;

CHK_XR(xrGetInstanceProcAddr(instance, "xrSetTrackingOptimizationSettingsHintQCOM",

 (PFN_xrVoidFunction*)(&pfnSetTrackingOptimizationSettingsHintQCOM)));

pfnSetTrackingOptimizationSettingsHintQCOM(session,

 XR_TRACKING_OPTIMIZATION_SETTINGS_DOMAIN_ALL_QCOM,

 XR_TRACKING_OPTIMIZATION_SETTINGS_HINT_LONG_RANGE_PRIORIZATION_QCOM);

// perform tracking while prioritizing long range tracking

New Object Types

New Flag Types

New Enum Constants

New Enums

• XrTrackingOptimizationSettingsHintQCOM

• XrTrackingOptimizationSettingsDomainQCOM

New Structures

New Functions

• xrSetTrackingOptimizationSettingsHintQCOM

Issues

Version History

• Revision 1, 2022-06-02

◦ Initial extension description

12.129. XR_ULTRALEAP_hand_tracking_forearm

Name String

XR_ULTRALEAP_hand_tracking_forearm

Extension Type

Instance extension

Chapter 12. List of Current Extensions | 1353

Registered Extension Number

150

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_EXT_hand_tracking

Last Modified Date

2022-04-19

IP Status

No known IP claims.

Contributors

Robert Blenkinsopp, Ultraleap

Adam Harwood, Ultraleap

Overview

This extension augments the XR_EXT_hand_tracking extension to enable applications to request the

default set of 26 hand joints, with the addition of a joint representing the user’s elbow.

The application must also enable the XR_EXT_hand_tracking extension in order to use this extension.

New joint set

This extension extends the XrHandJointSetEXT enumeration with a new member

XR_HAND_JOINT_SET_HAND_WITH_FOREARM_ULTRALEAP. This joint set is the same as the

XR_HAND_JOINT_SET_DEFAULT_EXT, plus a joint representing the user’s elbow,

XR_HAND_FOREARM_JOINT_ELBOW_ULTRALEAP.

1354 | Chapter 12. List of Current Extensions

// Provided by XR_ULTRALEAP_hand_tracking_forearm

typedef enum XrHandForearmJointULTRALEAP {

 XR_HAND_FOREARM_JOINT_PALM_ULTRALEAP = 0,

 XR_HAND_FOREARM_JOINT_WRIST_ULTRALEAP = 1,

 XR_HAND_FOREARM_JOINT_THUMB_METACARPAL_ULTRALEAP = 2,

 XR_HAND_FOREARM_JOINT_THUMB_PROXIMAL_ULTRALEAP = 3,

 XR_HAND_FOREARM_JOINT_THUMB_DISTAL_ULTRALEAP = 4,

 XR_HAND_FOREARM_JOINT_THUMB_TIP_ULTRALEAP = 5,

 XR_HAND_FOREARM_JOINT_INDEX_METACARPAL_ULTRALEAP = 6,

 XR_HAND_FOREARM_JOINT_INDEX_PROXIMAL_ULTRALEAP = 7,

 XR_HAND_FOREARM_JOINT_INDEX_INTERMEDIATE_ULTRALEAP = 8,

 XR_HAND_FOREARM_JOINT_INDEX_DISTAL_ULTRALEAP = 9,

 XR_HAND_FOREARM_JOINT_INDEX_TIP_ULTRALEAP = 10,

 XR_HAND_FOREARM_JOINT_MIDDLE_METACARPAL_ULTRALEAP = 11,

 XR_HAND_FOREARM_JOINT_MIDDLE_PROXIMAL_ULTRALEAP = 12,

 XR_HAND_FOREARM_JOINT_MIDDLE_INTERMEDIATE_ULTRALEAP = 13,

 XR_HAND_FOREARM_JOINT_MIDDLE_DISTAL_ULTRALEAP = 14,

 XR_HAND_FOREARM_JOINT_MIDDLE_TIP_ULTRALEAP = 15,

 XR_HAND_FOREARM_JOINT_RING_METACARPAL_ULTRALEAP = 16,

 XR_HAND_FOREARM_JOINT_RING_PROXIMAL_ULTRALEAP = 17,

 XR_HAND_FOREARM_JOINT_RING_INTERMEDIATE_ULTRALEAP = 18,

 XR_HAND_FOREARM_JOINT_RING_DISTAL_ULTRALEAP = 19,

 XR_HAND_FOREARM_JOINT_RING_TIP_ULTRALEAP = 20,

 XR_HAND_FOREARM_JOINT_LITTLE_METACARPAL_ULTRALEAP = 21,

 XR_HAND_FOREARM_JOINT_LITTLE_PROXIMAL_ULTRALEAP = 22,

 XR_HAND_FOREARM_JOINT_LITTLE_INTERMEDIATE_ULTRALEAP = 23,

 XR_HAND_FOREARM_JOINT_LITTLE_DISTAL_ULTRALEAP = 24,

 XR_HAND_FOREARM_JOINT_LITTLE_TIP_ULTRALEAP = 25,

 XR_HAND_FOREARM_JOINT_ELBOW_ULTRALEAP = 26,

 XR_HAND_FOREARM_JOINT_MAX_ENUM_ULTRALEAP = 0x7FFFFFFF

} XrHandForearmJointULTRALEAP; Note

The first XR_HAND_JOINT_COUNT_EXT members of XrHandForearmJointULTRALEAP

are identical to the members of XrHandJointEXT and can be used interchangeably.

The XR_HAND_FOREARM_JOINT_ELBOW_ULTRALEAP joint represents the center of an elbow and is orientated

with the backwards (+Z) direction parallel to the forearm and points away from the hand.

The up (+Y) direction is pointing out of the dorsal side of the forearm. The X direction is perpendicular

to Y and Z and follows the right hand rule.

Chapter 12. List of Current Extensions | 1355

// Provided by XR_ULTRALEAP_hand_tracking_forearm

#define XR_HAND_FOREARM_JOINT_COUNT_ULTRALEAP 27

XR_HAND_FOREARM_JOINT_COUNT_ULTRALEAP defines the number of hand joint enumerants

defined in XrHandForearmJointULTRALEAP.

New Object Types

New Flag Types

New Enum Constants

• XR_HAND_FOREARM_JOINT_COUNT_ULTRALEAP

XrHandJointSetEXT enumeration is extended with:

• XR_HAND_JOINT_SET_HAND_WITH_FOREARM_ULTRALEAP

New Enums

• XrHandForearmJointULTRALEAP

New Structures

New Functions

Issues

Version History

• Revision 1, 2022-04-19 (Robert Blenkinsopp)

◦ Initial version

12.130. XR_VALVE_analog_threshold

Name String

XR_VALVE_analog_threshold

Extension Type

Instance extension

Registered Extension Number

80

Revision

2

1356 | Chapter 12. List of Current Extensions

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-06-09

IP Status

No known IP claims.

Contributors

Joe Ludwig, Valve

Rune Berg, Valve

Andres Rodriguez, Valve

Overview

This extension allows the application to control the threshold and haptic feedback applied to an analog

to digital conversion. See XrInteractionProfileAnalogThresholdVALVE for more information.

Applications should also enable the XR_KHR_binding_modification extension to be able to define

multiple thresholds.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

The XrInteractionProfileAnalogThresholdVALVE structure is an input struct that defines thresholds

and haptic feedback behavior for action bindings and should be added to the

XrBindingModificationsKHR::bindingModifications array of the XrBindingModificationsKHR structure

(See XR_KHR_binding_modification extension).

Chapter 12. List of Current Extensions | 1357

// Provided by XR_VALVE_analog_threshold

typedef struct XrInteractionProfileAnalogThresholdVALVE {

 XrStructureType type;

 const void* next;

 XrAction action;

 XrPath binding;

 float onThreshold;

 float offThreshold;

 const XrHapticBaseHeader* onHaptic;

 const XrHapticBaseHeader* offHaptic;

} XrInteractionProfileAnalogThresholdVALVE;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• action is the handle of an action in the suggested binding list.

• binding is the input path used for the specified action in the suggested binding list.

• onThreshold is the value between 0.0 and 1.0 at which the runtime must consider the binding

to be true. The binding must remain true until the input analog value falls below

offThreshold.

• offThreshold is the value between 0.0 and 1.0 at which the runtime must consider the

binding to be false if it was previous true.

• onHaptic is the haptic output that the runtime must trigger when the binding changes from

false to true. If this field is NULL, the runtime must not trigger any haptic output on the

threshold. This field can point to any supported sub-type of XrHapticBaseHeader.

• offHaptic is the haptic output that the runtime must trigger when the binding changes from

true to false. If this field is NULL, the runtime must not trigger any haptic output on the

threshold. This field can point to any supported sub-type of XrHapticBaseHeader.

Applications can also chain a single XrInteractionProfileAnalogThresholdVALVE structure on the next

chain of any xrSuggestInteractionProfileBindings call. Runtimes must support this kind of chaining.

This method of specifying analog thresholds is deprecated however, and should not be used by any

new applications.

If a threshold struct is present for a given conversion, the runtime must use those thresholds instead

of applying its own whenever it is using the binding suggested by the application.

onThreshold and offThreshold permit allow the application to specify that it wants hysteresis to be

applied to the threshold operation. If onThreshold is smaller than offThreshold, the runtime must

1358 | Chapter 12. List of Current Extensions

return XR_ERROR_VALIDATION_FAILURE.

onHaptic and offHaptic allow the application to specify that it wants automatic haptic feedback to be

generated when the boolean output of the threshold operation changes from false to true or vice versa.

If these fields are not NULL, the runtime must trigger a haptic output with the specified

characteristics. If the device has multiple haptic outputs, the runtime should use the haptic output that

is most appropriate for the specified input path.

If a suggested binding with action and binding is not in the binding list for this interaction profile, the

runtime must return XR_ERROR_PATH_UNSUPPORTED.

Valid Usage (Implicit)

• The XR_VALVE_analog_threshold extension must be enabled prior to using

XrInteractionProfileAnalogThresholdVALVE

• type must be XR_TYPE_INTERACTION_PROFILE_ANALOG_THRESHOLD_VALVE

• next must be NULL or a valid pointer to the next structure in a structure chain

• action must be a valid XrAction handle

• If onHaptic is not NULL, onHaptic must be a pointer to a valid XrHapticBaseHeader-based

structure. See also: XrHapticAmplitudeEnvelopeVibrationFB, XrHapticPcmVibrationFB,

XrHapticVibration

• If offHaptic is not NULL, offHaptic must be a pointer to a valid XrHapticBaseHeader-based

structure. See also: XrHapticAmplitudeEnvelopeVibrationFB, XrHapticPcmVibrationFB,

XrHapticVibration

New Functions

Issues

Version History

• Revision 1, 2020-06-29 (Joe Ludwig)

◦ Initial version.

• Revision 2, 2021-07-28 (Rune Berg)

◦ Deprecate chaining of struct in XrInteractionProfileSuggestedBinding, applications should use

XrBindingModificationsKHR defined in the XR_KHR_binding_modification extension instead.

12.131. XR_VARJO_composition_layer_depth_test

Name String

XR_VARJO_composition_layer_depth_test

Chapter 12. List of Current Extensions | 1359

#valid-usage-for-structure-pointer-chains

Extension Type

Instance extension

Registered Extension Number

123

Revision

2

Extension and Version Dependencies

OpenXR 1.0

and

XR_KHR_composition_layer_depth

Last Modified Date

2021-07-15

IP Status

No known IP claims.

Contributors

Sergiy Dubovik, Varjo Technologies

Antti Hirvonen, Varjo Technologies

Rémi Arnaud, Varjo Technologies

Overview

This extension enables depth-based layer composition inside the compositor.

Core OpenXR specifies that layer compositing must happen in the layer submission order (as described

in Compositing). However, an application may want to composite the final image against the other

layers based on depth information for proper occlusion. Layers can now provide depth information

that will be used to calculate occlusion between those layers, as well as with the environment depth

estimator (XR_VARJO_environment_depth_estimation) when enabled.

This extension defines a new type, XrCompositionLayerDepthTestVARJO, which can be chained to

XrCompositionLayerProjection in order to activate this functionality. An application must also specify

a range where depth testing will happen, potentially covering only a subset of the full depth range.

Composition

Layer composition rules change when this extension is enabled.

If the application does not chain XrCompositionLayerDepthTestVARJO, "painter’s algorithm" such as

described in Compositing must be used for layer composition.

1360 | Chapter 12. List of Current Extensions

Overall, composition should be performed in the following way:

1. Layers must be composited in the submission order. The compositor must track the depth value

nearest to the virtual camera. Initial value for the nearest depth should be infinity.

2. If the currently processed layer does not contain depth, compositor should composite the layer

against the previous layers with "painter’s algorithm" and move to the next layer.

3. If the layer depth or the active nearest depth fall inside the depth test range of the layer, the

compositor must perform depth test against the layer and active depth. If the layer depth is less or

equal than the active depth, layer is composited normally with the previous layers and active depth

is updated to match the layer depth. Otherwise the layer pixel is discarded, and compositor should

move to composite the next layer.

Example

Mixed reality applications may want to show hands on top of the rendered VR content. For this

purpose the application should enable environment depth estimation (see

XR_VARJO_environment_depth_estimation extension) and depth testing with range 0m to 1m.

The following code illustrates how to enable depth testing:

XrCompositionLayerProjection layer; // previously populated

XrCompositionLayerDepthTestVARJO depthTest{XR_TYPE_COMPOSITION_LAYER_DEPTH_TEST_VARJO,

layer.next};

depthTest.depthTestRangeNearZ = 0.0f; // in meters

depthTest.depthTestRangeFarZ = 1.0f; // in meters

layer.next = &depthTest;

New Structures

Applications can enable depth testing by adding XrCompositionLayerDepthTestVARJO to the next chain

for all XrCompositionLayerProjectionView structures in the given layer in addition to

XrCompositionLayerDepthInfoKHR. Missing XrCompositionLayerDepthInfoKHR automatically disables

the depth testing functionality.

The XrCompositionLayerDepthTestVARJO structure is defined as:

Chapter 12. List of Current Extensions | 1361

// Provided by XR_VARJO_composition_layer_depth_test

typedef struct XrCompositionLayerDepthTestVARJO {

 XrStructureType type;

 const void* next;

 float depthTestRangeNearZ;

 float depthTestRangeFarZ;

} XrCompositionLayerDepthTestVARJO;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• depthTestRangeNearZ in a non-negative distance in meters that specifies the lower bound of

the range where depth testing should be performed. Must be less than depthTestRangeFarZ.

Value of zero means that there is no lower bound.

• depthTestRangeFarZ is a positive distance in meters that specifies the upper bound of the

range where depth testing should be performed. Must be greater than depthTestRangeNearZ.

Value of floating point positive infinity means that there is no upper bound.

Valid Usage (Implicit)

• The XR_VARJO_composition_layer_depth_test extension must be enabled prior to using

XrCompositionLayerDepthTestVARJO

• type must be XR_TYPE_COMPOSITION_LAYER_DEPTH_TEST_VARJO

• next must be NULL or a valid pointer to the next structure in a structure chain

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_COMPOSITION_LAYER_DEPTH_TEST_VARJO

Version History

• Revision 1, 2021-02-16 (Sergiy Dubovik)

◦ Initial extension description

• Revision 2, 2021-07-15 (Rylie Pavlik, Collabora, Ltd., and Sergiy Dubovik)

◦ Update sample code so it is buildable

1362 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

12.132. XR_VARJO_environment_depth_estimation

Name String

XR_VARJO_environment_depth_estimation

Extension Type

Instance extension

Registered Extension Number

124

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-02-17

IP Status

No known IP claims.

Contributors

Sergiy Dubovik, Varjo Technologies

Antti Hirvonen, Varjo Technologies

Rémi Arnaud, Varjo Technologies

Overview

This extension provides a mechanism for enabling depth estimation of the environment in the

runtime-supplied compositor. This is an extension to XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND mode to

not only use the color but also depth for composition of the final image.

Mixed reality applications might want to mix real and virtual content based on the depth information

for proper occlusion. XR hardware and runtime may offer various ways to estimate the depth of the

environment inside the compositor. When this estimation is enabled, the compositor can generate

properly occluded final image when layers are submitted with depth information (both

XR_KHR_composition_layer_depth and XR_VARJO_composition_layer_depth_test).

This extension defines a new function, xrSetEnvironmentDepthEstimationVARJO, which can be used to

toggle environment depth estimation in the compositor. Toggling depth estimation is an asynchronous

operation and the feature may not be activated immediately. Function can be called immediately after

the session is created. Composition of the environment layer follows the rules as described in

XR_VARJO_composition_layer_depth_test.

Chapter 12. List of Current Extensions | 1363

New Structures

The xrSetEnvironmentDepthEstimationVARJO function is defined as:

// Provided by XR_VARJO_environment_depth_estimation

XrResult xrSetEnvironmentDepthEstimationVARJO(

 XrSession session,

 XrBool32 enabled);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• enabled is a boolean that specifies whether depth estimation functionality should be

activated. Compositor will disable depth estimation functionality if environment blend mode

is not XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND and will enable the functionality when

environment blend mode is set to XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND.

Valid Usage (Implicit)

• The XR_VARJO_environment_depth_estimation extension must be enabled prior to calling

xrSetEnvironmentDepthEstimationVARJO

• session must be a valid XrSession handle

1364 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

New Functions

Version History

• Revision 1, 2021-02-16 (Sergiy Dubovik)

◦ Initial extension description

12.133. XR_VARJO_foveated_rendering

Name String

XR_VARJO_foveated_rendering

Extension Type

Instance extension

Registered Extension Number

122

Revision

3

Extension and Version Dependencies

OpenXR 1.0

and

XR_VARJO_quad_views

Chapter 12. List of Current Extensions | 1365

Last Modified Date

2021-04-13

IP Status

No known IP claims.

Contributors

Sergiy Dubovik, Varjo Technologies

Rémi Arnaud, Varjo Technologies

Antti Hirvonen, Varjo Technologies

12.133.1. Overview

Varjo headsets provide extremely high pixel density displays in the center area of the display, blended

with a high density display covering the rest of the field of view. If the application has to provide a

single image per eye, that would cover the entire field of view, at the highest density it would be

extremely resource intensive, and in fact impossible for the most powerful desktop GPUs to render in

real time. So instead Varjo introduced the XR_VARJO_quad_views extension enabling the application to

provide two separate images for the two screen areas, resulting in a significant reduction in

processing, for pixels that could not even been seen.

This extension goes a step further by enabling the application to only generate the density that can be

seen by the user, which is another big reduction compared to the density that can be displayed, using

dedicated eye tracking.

This extension requires XR_VARJO_quad_views extension to be enabled.

An application using this extension to enable foveated rendering will take the following steps to

prepare:

1. Enable XR_VARJO_quad_views and XR_VARJO_foveated_rendering extensions.

2. Query system properties in order to determine if system supports foveated rendering.

3. Query texture sizes for foveated rendering.

In the render loop, for each frame, an application using this extension should

1. Check if rendering gaze is available using xrLocateSpace.

2. Enable foveated rendering when xrLocateViews is called.

12.133.2. Inspect system capability

An application can inspect whether the system is capable of foveated rendering by chaining an

XrSystemFoveatedRenderingPropertiesVARJO structure to the XrSystemProperties structure when

calling xrGetSystemProperties.

1366 | Chapter 12. List of Current Extensions

// Provided by XR_VARJO_foveated_rendering

typedef struct XrSystemFoveatedRenderingPropertiesVARJO {

 XrStructureType type;

 void* next;

 XrBool32 supportsFoveatedRendering;

} XrSystemFoveatedRenderingPropertiesVARJO;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• supportsFoveatedRendering is an XrBool32, indicating if current system is capable of

performoning foveated rendering.

The runtime should return XR_TRUE for supportsFoveatedRendering when rendering gaze is available in

the system. An application should avoid using foveated rendering functionality when

supportsFoveatedRendering is XR_FALSE.

Valid Usage (Implicit)

• The XR_VARJO_foveated_rendering extension must be enabled prior to using

XrSystemFoveatedRenderingPropertiesVARJO

• type must be XR_TYPE_SYSTEM_FOVEATED_RENDERING_PROPERTIES_VARJO

• next must be NULL or a valid pointer to the next structure in a structure chain

12.133.3. Determine foveated texture sizes

Foveated textures may have different sizes and aspect ratio compared to non-foveated textures. In

order to determine recommended foveated texture size, an application can chain

XrFoveatedViewConfigurationViewVARJO to XrViewConfigurationView and set

foveatedRenderingActive to XR_TRUE. Since an application using foveated rendering with this extension

has to render four views, XR_VARJO_quad_views must be enabled along with this extension when

XrInstance is created.

First and second views are non foveated views (covering whole field of view of HMD), third (left eye)

and fourth (right eye) are foveated e.g. following gaze.

Chapter 12. List of Current Extensions | 1367

#valid-usage-for-structure-pointer-chains

// Provided by XR_VARJO_foveated_rendering

typedef struct XrFoveatedViewConfigurationViewVARJO {

 XrStructureType type;

 void* next;

 XrBool32 foveatedRenderingActive;

} XrFoveatedViewConfigurationViewVARJO;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• foveatedRenderingActive is an XrBool32, indicating if the runtime should return foveated view

configuration view.

Valid Usage (Implicit)

• The XR_VARJO_foveated_rendering extension must be enabled prior to using

XrFoveatedViewConfigurationViewVARJO

• type must be XR_TYPE_FOVEATED_VIEW_CONFIGURATION_VIEW_VARJO

• next must be NULL or a valid pointer to the next structure in a structure chain

For example:

1368 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

XrInstance instance; // previously populated

XrSystemId systemId; // previously populated

XrViewConfigurationType viewConfigType; // Select

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_QUAD_VARJO

XrSystemFoveatedRenderingPropertiesVARJO foveatedRenderingProperties

{XR_TYPE_SYSTEM_FOVEATED_RENDERING_PROPERTIES_VARJO};

XrSystemProperties systemProperties{XR_TYPE_SYSTEM_PROPERTIES,

&foveatedRenderingProperties};

CHK_XR(xrGetSystemProperties(instance, systemId, &systemProperties));

uint32_t viewCount;

CHK_XR(xrEnumerateViewConfigurationViews(instance, systemId, viewConfigType, 0,

&viewCount, nullptr));

// Non-foveated rendering views dimensions

std::vector<XrViewConfigurationView> configViews(viewCount,

{XR_TYPE_VIEW_CONFIGURATION_VIEW});

CHK_XR(xrEnumerateViewConfigurationViews(instance, systemId, viewConfigType, viewCount,

&viewCount, configViews.data()));

// Foveated rendering views dimensions

std::vector<XrViewConfigurationView> foveatedViews;

if (foveatedRenderingProperties.supportsFoveatedRendering && viewConfigType ==

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_QUAD_VARJO) {

 std::vector<XrFoveatedViewConfigurationViewVARJO> requestFoveatedConfig{4,

{XR_TYPE_FOVEATED_VIEW_CONFIGURATION_VIEW_VARJO, nullptr, XR_TRUE}};

 foveatedViews = std::vector<XrViewConfigurationView>{4,

{XR_TYPE_VIEW_CONFIGURATION_VIEW}};

 for (size_t i = 0; i < 4; i++) {

 foveatedViews[i].next = &requestFoveatedConfig[i];

 }

 CHK_XR(xrEnumerateViewConfigurationViews(instance, systemId, viewConfigType, viewCount,

&viewCount, foveatedViews.data()));

}

Example 3. Note

Applications using this extension are encouraged to create two sets of swapchains or one big

enough set of swapchains and two sets of viewports. One set will be used when rendering gaze is

not available and other one will be used when foveated rendering and rendering gaze is

available. Using foveated textures may not provide optimal visual quality when rendering gaze is

not available.

Chapter 12. List of Current Extensions | 1369

12.133.4. Rendering gaze status

Extension defines new reference space type - XR_REFERENCE_SPACE_TYPE_COMBINED_EYE_VARJO which

should be used to determine whether rendering gaze is available. After calling xrLocateSpace,

application should inspect XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT bit. If it’s set, rendering gaze is

available otherwise not.

XrSession session; // previously populated

// Create needed spaces

XrSpace viewSpace;

XrReferenceSpaceCreateInfo createViewSpaceInfo{XR_TYPE_REFERENCE_SPACE_CREATE_INFO};

createViewSpaceInfo.referenceSpaceType = XR_REFERENCE_SPACE_TYPE_VIEW;

createViewSpaceInfo.poseInReferenceSpace.orientation.w = 1.0f;

CHK_XR(xrCreateReferenceSpace(session, &createViewSpaceInfo, &viewSpace));

XrSpace renderGazeSpace;

XrReferenceSpaceCreateInfo createReferenceSpaceInfo{XR_TYPE_REFERENCE_SPACE_CREATE_INFO};

createReferenceSpaceInfo.referenceSpaceType = XR_REFERENCE_SPACE_TYPE_COMBINED_EYE_VARJO;

createReferenceSpaceInfo.poseInReferenceSpace.orientation.w = 1.0f;

CHK_XR(xrCreateReferenceSpace(session, &createReferenceSpaceInfo, &renderGazeSpace));

// ...

// in frame loop

// ...

XrFrameState frameState; // previously populated by xrWaitFrame

// Query rendering gaze status

XrSpaceLocation renderGazeLocation{XR_TYPE_SPACE_LOCATION};

CHK_XR(xrLocateSpace(renderGazeSpace, viewSpace, frameState.predictedDisplayTime,

&renderGazeLocation));

const bool foveationActive = (renderGazeLocation.locationFlags &

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT) != 0;

if (foveationActive) {

 // Rendering gaze is available

} else {

 // Rendering gaze is not available

}

12.133.5. Request foveated field of view

For each frame, the application indicates if the runtime will return foveated or non-foveated field of

view. This is done by chaining XrViewLocateFoveatedRenderingVARJO to XrViewLocateInfo.

1370 | Chapter 12. List of Current Extensions

// Provided by XR_VARJO_foveated_rendering

typedef struct XrViewLocateFoveatedRenderingVARJO {

 XrStructureType type;

 const void* next;

 XrBool32 foveatedRenderingActive;

} XrViewLocateFoveatedRenderingVARJO;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• foveatedRenderingActive is an XrBool32, indicating if runtime should return foveated FoV.

The runtime must return foveated field of view when foveatedRenderingActive is XR_TRUE.

Valid Usage (Implicit)

• The XR_VARJO_foveated_rendering extension must be enabled prior to using

XrViewLocateFoveatedRenderingVARJO

• type must be XR_TYPE_VIEW_LOCATE_FOVEATED_RENDERING_VARJO

• next must be NULL or a valid pointer to the next structure in a structure chain

Chapter 12. List of Current Extensions | 1371

#valid-usage-for-structure-pointer-chains

// ...

// in frame loop

// ...

XrSession session; // previously populated

XrSpace appSpace; // previously populated

XrFrameState frameState; // previously populated by xrWaitFrame

XrViewConfigurationType viewConfigType; // previously populated

std::vector<XrView> views; // previously populated/resized to the correct size

bool foveationActive; // previously populated, as in the previous example

XrViewState viewState{XR_TYPE_VIEW_STATE};

uint32_t viewCapacityInput = static_cast<uint32_t>(views.size());

uint32_t viewCountOutput;

XrViewLocateInfo viewLocateInfo{XR_TYPE_VIEW_LOCATE_INFO};

viewLocateInfo.viewConfigurationType = viewConfigType;

viewLocateInfo.displayTime = frameState.predictedDisplayTime;

viewLocateInfo.space = appSpace;

XrViewLocateFoveatedRenderingVARJO viewLocateFoveatedRendering

{XR_TYPE_VIEW_LOCATE_FOVEATED_RENDERING_VARJO};

viewLocateFoveatedRendering.foveatedRenderingActive = foveationActive;

viewLocateInfo.next = &viewLocateFoveatedRendering;

CHK_XR(xrLocateViews(session, &viewLocateInfo, &viewState, viewCapacityInput,

&viewCountOutput, views.data()));

New Structures

• XrViewLocateFoveatedRenderingVARJO

• XrFoveatedViewConfigurationViewVARJO

• XrSystemFoveatedRenderingPropertiesVARJO

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_VIEW_LOCATE_FOVEATED_RENDERING_VARJO

• XR_TYPE_FOVEATED_VIEW_CONFIGURATION_VIEW_VARJO

• XR_TYPE_SYSTEM_FOVEATED_RENDERING_PROPERTIES_VARJO

XrReferenceSpaceType enumeration is extended with:

• XR_REFERENCE_SPACE_TYPE_COMBINED_EYE_VARJO

Version History

1372 | Chapter 12. List of Current Extensions

• Revision 1, 2020-12-16 (Sergiy Dubovik)

◦ Initial extension description

• Revision 2, 2021-04-13 (Rylie Pavlik, Collabora, Ltd., and Sergiy Dubovik)

◦ Update sample code so it is buildable

• Revision 3, 2022-02-21 (Denny Rönngren)

◦ Update sample code with a missing struct field initialization

12.134. XR_VARJO_marker_tracking

Name String

XR_VARJO_marker_tracking

Extension Type

Instance extension

Registered Extension Number

125

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-09-30

IP Status

No known IP claims.

Contributors

Roman Golovanov, Varjo Technologies

Rémi Arnaud, Varjo Technologies

Sergiy Dubovik, Varjo Technologies

12.134.1. Overview

Varjo Markers are physical markers tracked by the video cameras of the HMD. Different types of

markers can be used for different purposes. As an example, Varjo Markers can be used as cheap

replacements for electronic trackers. The cost per printed tracker is significantly lower and the

markers require no power to function.

This extension provides the tracking interface to a set of marker types and sizes. Markers can be

Chapter 12. List of Current Extensions | 1373

printed out from the PDF documents and instructions freely available at

https://developer.varjo.com/docs/get-started/varjo-markers#printing-varjo-markers. Note that the

printed marker must have the exact physical size for its ID.

Object markers are used to track static or dynamic objects in the user environment. You may use

object markers in both XR and VR applications. Each marker has a unique ID, and you must not use

the same physical marker more than once in any given environment. For added precision, an

application may use multiple markers to track a single object. For example, you could track a monitor

by placing a marker in each corner.

There is a set of marker IDs recognized by runtime and if the application uses ID which is not in the set

then runtime must return XR_ERROR_MARKER_ID_INVALID_VARJO.

New Object Types

New Flag Types

New Enums

New Functions

The xrSetMarkerTrackingVARJO function is defined as:

// Provided by XR_VARJO_marker_tracking

XrResult xrSetMarkerTrackingVARJO(

 XrSession session,

 XrBool32 enabled);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• enabled is the flag to enable or disable marker tracking.

The xrSetMarkerTrackingVARJO function enables or disables marker tracking functionality. As soon as

feature is become disabled all trackable markers become inactive and corresponding events will be

generated. An application may call any of the functions in this extension regardless if the marker

tracking functionality is enabled or disabled.

1374 | Chapter 12. List of Current Extensions

https://developer.varjo.com/docs/get-started/varjo-markers#printing-varjo-markers
https://developer.varjo.com/docs/get-started/varjo-markers#printing-varjo-markers

Valid Usage (Implicit)

• The XR_VARJO_marker_tracking extension must be enabled prior to calling

xrSetMarkerTrackingVARJO

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

The xrSetMarkerTrackingTimeoutVARJO function is defined as:

// Provided by XR_VARJO_marker_tracking

XrResult xrSetMarkerTrackingTimeoutVARJO(

 XrSession session,

 uint64_t markerId,

 XrDuration timeout);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• markerId is the unique identifier of the marker for which the timeout will be updated.

• timeout is the desired lifetime duration for a specified marker.

The xrSetMarkerTrackingTimeoutVARJO function sets a desired lifetime duration for a specified

Chapter 12. List of Current Extensions | 1375

marker. The default value is XR_NO_DURATION. Negative value will be clamped to XR_NO_DURATION.

It defines the time period during which the runtime must keep returning poses of previously tracked

markers. The tracking may be lost if the marker went outside of the trackable field of view. In this case

the runtime still will try to predict marker’s pose for the timeout period. The runtime must return

XR_ERROR_MARKER_ID_INVALID_VARJO if the supplied markerId is invalid.

Valid Usage (Implicit)

• The XR_VARJO_marker_tracking extension must be enabled prior to calling

xrSetMarkerTrackingTimeoutVARJO

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_MARKER_ID_INVALID_VARJO

• XR_ERROR_FEATURE_UNSUPPORTED

The xrSetMarkerTrackingPredictionVARJO function is defined as:

// Provided by XR_VARJO_marker_tracking

XrResult xrSetMarkerTrackingPredictionVARJO(

 XrSession session,

 uint64_t markerId,

 XrBool32 enable);

1376 | Chapter 12. List of Current Extensions

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• markerId is the unique identifier of the marker which should be tracked with prediction.

• enable is whether to enable the prediction feature.

The xrSetMarkerTrackingPredictionVARJO function enables or disables the prediction feature for a

specified marker. By default, markers are created with disabled prediction. This works well for

markers that are supposed to be stationary. The prediction can be used to improve tracking of movable

markers. The runtime must return XR_ERROR_MARKER_ID_INVALID_VARJO if the supplied markerId is invalid.

Valid Usage (Implicit)

• The XR_VARJO_marker_tracking extension must be enabled prior to calling

xrSetMarkerTrackingPredictionVARJO

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_MARKER_ID_INVALID_VARJO

• XR_ERROR_FEATURE_UNSUPPORTED

The xrGetMarkerSizeVARJO function is defined as:

Chapter 12. List of Current Extensions | 1377

// Provided by XR_VARJO_marker_tracking

XrResult xrGetMarkerSizeVARJO(

 XrSession session,

 uint64_t markerId,

 XrExtent2Df* size);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• markerId is the unique identifier of the marker for which size is requested.

• size is pointer to the size to populate by the runtime with the physical size of plane marker in

meters.

The xrGetMarkerSizeVARJO function retrieves the height and width of an active marker. The runtime

must return XR_ERROR_MARKER_NOT_TRACKED_VARJO if marker tracking functionality is disabled or the

marker with given markerId is inactive. The runtime must return XR_ERROR_MARKER_ID_INVALID_VARJO if

the supplied markerId is invalid.

Valid Usage (Implicit)

• The XR_VARJO_marker_tracking extension must be enabled prior to calling

xrGetMarkerSizeVARJO

• session must be a valid XrSession handle

• size must be a pointer to an XrExtent2Df structure

1378 | Chapter 12. List of Current Extensions

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_MARKER_NOT_TRACKED_VARJO

• XR_ERROR_MARKER_ID_INVALID_VARJO

• XR_ERROR_FEATURE_UNSUPPORTED

The xrCreateMarkerSpaceVARJO function is defined as:

// Provided by XR_VARJO_marker_tracking

XrResult xrCreateMarkerSpaceVARJO(

 XrSession session,

 const XrMarkerSpaceCreateInfoVARJO* createInfo,

 XrSpace* space);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• createInfo is the structure containing information about how to create the space based on

marker.

• space is a pointer to a handle in which the created XrSpace is returned.

The xrCreateMarkerSpaceVARJO function creates marker XrSpace for pose relative to the marker

specified in XrMarkerSpaceCreateInfoVARJO. The runtime must return

XR_ERROR_MARKER_ID_INVALID_VARJO if the supplied XrMarkerSpaceCreateInfoVARJO::markerId is invalid.

Chapter 12. List of Current Extensions | 1379

Valid Usage (Implicit)

• The XR_VARJO_marker_tracking extension must be enabled prior to calling

xrCreateMarkerSpaceVARJO

• session must be a valid XrSession handle

• createInfo must be a pointer to a valid XrMarkerSpaceCreateInfoVARJO structure

• space must be a pointer to an XrSpace handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_OUT_OF_MEMORY

• XR_ERROR_LIMIT_REACHED

• XR_ERROR_POSE_INVALID

• XR_ERROR_MARKER_ID_INVALID_VARJO

• XR_ERROR_FEATURE_UNSUPPORTED

New Structures

The XrSystemMarkerTrackingPropertiesVARJO structure is defined as:

1380 | Chapter 12. List of Current Extensions

// Provided by XR_VARJO_marker_tracking

typedef struct XrSystemMarkerTrackingPropertiesVARJO {

 XrStructureType type;

 void* next;

 XrBool32 supportsMarkerTracking;

} XrSystemMarkerTrackingPropertiesVARJO;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• supportsMarkerTracking is an XrBool32, indicating if current system is capable of performing

marker tracking.

An application may inspect whether the system is capable of marker tracking by chaining an

XrSystemMarkerTrackingPropertiesVARJO structure to the XrSystemProperties structure when calling

xrGetSystemProperties.

The runtime should return XR_TRUE for supportsMarkerTracking when marker tracking is available in

the system, otherwise XR_FALSE. Marker tracking calls must return XR_ERROR_FEATURE_UNSUPPORTED if

marker tracking is not available in the system.

Valid Usage (Implicit)

• The XR_VARJO_marker_tracking extension must be enabled prior to using

XrSystemMarkerTrackingPropertiesVARJO

• type must be XR_TYPE_SYSTEM_MARKER_TRACKING_PROPERTIES_VARJO

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataMarkerTrackingUpdateVARJO structure is defined as:

Chapter 12. List of Current Extensions | 1381

#valid-usage-for-structure-pointer-chains

// Provided by XR_VARJO_marker_tracking

typedef struct XrEventDataMarkerTrackingUpdateVARJO {

 XrStructureType type;

 const void* next;

 uint64_t markerId;

 XrBool32 isActive;

 XrBool32 isPredicted;

 XrTime time;

} XrEventDataMarkerTrackingUpdateVARJO;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• markerId unique identifier of the marker that has been updated.

• isActive the tracking state of the marker.

• isPredicted the prediction state of the marker.

• time the time of the marker update.

Receiving the XrEventDataMarkerTrackingUpdateVARJO event structure indicates that the tracking

information has changed. The runtime must not send more than one event per frame per marker. The

runtime must send an event if the marker has changed its state (active or inactive). The runtime must

send an event if it has detected pose change of the active marker.

Valid Usage (Implicit)

• The XR_VARJO_marker_tracking extension must be enabled prior to using

XrEventDataMarkerTrackingUpdateVARJO

• type must be XR_TYPE_EVENT_DATA_MARKER_TRACKING_UPDATE_VARJO

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrMarkerSpaceCreateInfoVARJO structure is defined as:

1382 | Chapter 12. List of Current Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_VARJO_marker_tracking

typedef struct XrMarkerSpaceCreateInfoVARJO {

 XrStructureType type;

 const void* next;

 uint64_t markerId;

 XrPosef poseInMarkerSpace;

} XrMarkerSpaceCreateInfoVARJO;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• markerId unique identifier of the marker.

• poseInMarkerSpace is an XrPosef defining the position and orientation of the new space’s

origin relative to the marker’s natural origin.

Valid Usage (Implicit)

• The XR_VARJO_marker_tracking extension must be enabled prior to using

XrMarkerSpaceCreateInfoVARJO

• type must be XR_TYPE_MARKER_SPACE_CREATE_INFO_VARJO

• next must be NULL or a valid pointer to the next structure in a structure chain

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_MARKER_TRACKING_PROPERTIES_VARJO

• XR_TYPE_EVENT_DATA_MARKER_TRACKING_UPDATE_VARJO

• XR_TYPE_MARKER_SPACE_CREATE_INFO_VARJO

XrResult enumeration is extended with:

• XR_ERROR_MARKER_ID_INVALID_VARJO

• XR_ERROR_MARKER_NOT_TRACKED_VARJO

Issues

Version History

Chapter 12. List of Current Extensions | 1383

#valid-usage-for-structure-pointer-chains

• Revision 1, 2021-09-30 (Roman Golovanov)

◦ Initial extension description

12.134.2. Example

The example below represents the routine which enables marker tracking feature and then polls

events. The event type XR_TYPE_EVENT_DATA_MARKER_TRACKING_UPDATE_VARJO has a special handler to

process marker state change.

 1 XrSession session; // previously initialized

 2 if(XR_SUCCESS != xrSetMarkerTrackingVARJO(session, XR_TRUE)) {

 3 return;

 4 }

 5

 6 XrInstance instance; // previously initialized

 7 XrFrameState frameState; // previously initialized

 8 XrSpace baseSpace; // previously initialized

 9 XrSpaceLocation location; // previously initialized

10

11 // Collection of tracked markers and their space handlers

12 std::unordered_map<uint64_t, XrSpace> markerSpaces;

13 // Initialize an event buffer to hold the output.

14 XrEventDataBuffer event{XR_TYPE_EVENT_DATA_BUFFER};

15 XrResult result = xrPollEvent(instance, &event);

16 if (result == XR_SUCCESS) {

17 switch (event.type) {

18 case XR_TYPE_EVENT_DATA_MARKER_TRACKING_UPDATE_VARJO: {

19 const auto& marker_update =

20 *reinterpret_cast<XrEventDataMarkerTrackingUpdateVARJO*>(&event);

21

22 const auto id = marker_update.markerId;

23

24 // If marker appeared for the first time then set some settings and

25 // add it to collection

26 if(0 == markerSpaces.count(id)) {

27 XrMarkerSpaceCreateInfoVARJO spaceInfo

 {XR_TYPE_MARKER_SPACE_CREATE_INFO_VARJO};

28 spaceInfo.markerId = id;

29 spaceInfo.poseInMarkerSpace = XrPosef{0};

30 spaceInfo.poseInMarkerSpace.orientation.w = 1.0f;

31 XrSpace markerSpace;

32 // Set 1 second timeout

33 if(XR_SUCCESS != xrSetMarkerTrackingTimeoutVARJO(

34 session, id, 1000000000))

35 {

36 break;

1384 | Chapter 12. List of Current Extensions

37 }

38 // Enable prediction for markers with `odd` ids.

39 if(XR_SUCCESS != xrSetMarkerTrackingPredictionVARJO(

40 session, id, id % 2))

41 {

42 break;

43 }

44 if(XR_SUCCESS != xrCreateMarkerSpaceVARJO(session, &spaceInfo,

45 &markerSpace)) {

46 break;

47 }

48 markerSpaces[id] = markerSpace;

49 }

50

51 if(marker_update.isActive) {

52 if(XR_SUCCESS != xrLocateSpace(markerSpaces.at(id), baseSpace,

53 frameState.predictedDisplayTime, &location)){

54 break;

55 }

56 if(marker_update.isPredicted) {

57 // Process marker as dynamic

58 } else {

59 // Process marker as stationary

60 }

61

62 } else {

63 // Remove previously tracked marker

64 markerSpaces.erase(id);

65 }

66

67 // ...

68 break;

69 }

70 }

71 }

12.135. XR_VARJO_view_offset

Name String

XR_VARJO_view_offset

Extension Type

Instance extension

Registered Extension Number

126

Chapter 12. List of Current Extensions | 1385

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-09-30

IP Status

No known IP claims.

Contributors

Rémi Arnaud, Varjo Technologies

Overview

Varjo headsets use video pass-through cameras to create the mixed reality (MR) image. The cameras

are located around 10 cm (3.9 inches) in front of the user’s eyes, which leads to an offset in depth

perception so that real-world objects in the video pass-through image appear larger than they are in

real life. The image below gives a visualization of the difference between what the camera sees and

what the user would see in real life.

This magnification effect is pronounced for objects that are close to the user – for example, their hands

1386 | Chapter 12. List of Current Extensions

may appear unnaturally large in the image. The effect decreases with distance, so that objects at a

distance of 2 meters already appear close to their actual size, and the sizes eventually converge at

infinity. Note that while the objects' sizes may differ, their geometry, relative sizes, locations, etc.

remain accurate. The extent of the magnification effect ultimately depends both on the application

itself and the user’s physiology, as the human visual system is highly adaptive in this type of setting.

When blending the video pass-through image with virtual content, it is important that their relative

geometries – position, size, and disparity – match one another. To achieve this, Varjo’s runtime

automatically places the virtual reality cameras in the same position as the physical cameras when the

video pass-through feature is enabled (see XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND). This allows virtual

and real-world content to appear at the same distance and on the same plane when viewed together.

While this can be observed as an apparent jump in the location of virtual objects compared to VR-only

content, this does not cause any distortion in the object geometry or location; it is only the viewer’s

location that changes.

In some cases, moving the VR content to match the real-world position may not be desirable. This

extension enable the application to control where the VR content is rendered from the location of the

user’s eyes while the video pass-through image uses the camera locations. For example, if the virtual

object is close the user, or if the application is switching between VR and MR modes. Offset values

between 0.0 and 1.0 are supported. You can use this to create a smooth, animated transition between

the two rendering positions in case you need to change from one to the other during a session.

New Functions

The xrSetViewOffsetVARJO function is defined as:

// Provided by XR_VARJO_view_offset

XrResult xrSetViewOffsetVARJO(

 XrSession session,

 float offset);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• offset is the view offset to be applied. Must be between 0 and 1.

The xrSetViewOffsetVARJO function takes a float between 0.0 and 1.0. 0.0 means the pose returned by

xrLocateViews will be at the eye location, a value of 1.0 means the pose will be at the camera location.

A value between 0.0 and 1.0 will interpolate the pose to be in between the eye and the camera location.

A value less than 0.0 or more than 1.0 will fail and return error XR_ERROR_VALIDATION_FAILURE.

Note that by default the offset is set to 0 if the pass-through cameras are not active, a.k.a. in VR

Chapter 12. List of Current Extensions | 1387

(XR_ENVIRONMENT_BLEND_MODE_OPAQUE), and 1 if the cameras are active, a.k.a. in MR

(XR_ENVIRONMENT_BLEND_MODE_ALPHA_BLEND or XR_ENVIRONMENT_BLEND_MODE_ADDITIVE).

Valid Usage (Implicit)

• The XR_VARJO_view_offset extension must be enabled prior to calling xrSetViewOffsetVARJO

• session must be a valid XrSession handle

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_FEATURE_UNSUPPORTED

Version History

• Revision 1, 2022-02-08 (Remi Arnaud)

◦ extension specification

12.136. XR_VARJO_xr4_controller_interaction

Name String

XR_VARJO_xr4_controller_interaction

Extension Type

Instance extension

Registered Extension Number

130

1388 | Chapter 12. List of Current Extensions

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-12-06

IP Status

No known IP claims.

Contributors

Denny Rönngren, Varjo Technologies

Szymon Policht, Varjo Technologies

Roman Golovanov, Varjo Technologies

Jussi Karhu, Varjo Technologies

Overview

This extension adds a new interaction profile for the Varjo Controllers compatible with the Varjo XR-4

headset.

Interaction profile path:

• /interaction_profiles/varjo/xr-4_controller

Valid for the user paths:

• /user/hand/left

• /user/hand/right

Supported component paths for /user/hand/left only:

• …/input/menu/click

Supported component paths for /user/hand/right only:

• …/input/system/click (may not be available for application use)

Supported component paths on both pathnames:

• …/input/a/click

• …/input/a/touch

• …/input/b/click

• …/input/b/touch

Chapter 12. List of Current Extensions | 1389

• …/input/squeeze/click

• …/input/squeeze/touch

• …/input/trigger/value

• …/input/trigger/touch

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2023-12-06 (Denny Rönngren)

◦ Initial extension description

12.137. XR_YVR_controller_interaction

Name String

XR_YVR_controller_interaction

Extension Type

Instance extension

Registered Extension Number

498

1390 | Chapter 12. List of Current Extensions

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_dpad_binding

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Last Modified Date

2023-07-12

IP Status

No known IP claims.

Contributors

Pengpeng Zhang, YVR

Xuanyu Chen, YVR

Overview

This extension defines a new interaction profile for the YVR Controller, including but not limited to

YVR1 and YVR2 Controller.

YVR Controller interaction profile

Interaction profile path:

• /interaction_profiles/yvr/touch_controller_yvr

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the YVR Controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

Chapter 12. List of Current Extensions | 1391

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

◦ …/input/system/click (may not be available for application use)

• On both:

◦ …/input/squeeze/click

◦ …/input/trigger/value

◦ …/input/trigger/touch

◦ …/input/thumbstick/x

◦ …/input/thumbstick/y

◦ …/input/thumbstick/click

◦ …/input/thumbstick/touch

◦ …/input/grip/pose

◦ …/input/aim/pose

◦ …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose

1392 | Chapter 12. List of Current Extensions

 Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2023-07-12 (Pengpeng Zhang)

◦ Initial extension description

Chapter 12. List of Current Extensions | 1393

Chapter 13. List of Provisional Extensions

• XR_EXTX_overlay

• XR_HTCX_vive_tracker_interaction

• XR_MNDX_egl_enable

• XR_MNDX_force_feedback_curl

1394 | Chapter 13. List of Provisional Extensions

13.1. XR_EXTX_overlay

Name String

XR_EXTX_overlay

Extension Type

Instance extension

Registered Extension Number

34

Revision

5

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2021-01-13

IP Status

No known IP claims.

Contributors

Mark Young, LunarG

Jules Blok, Epic

Jared Cheshier, Pluto VR

Nick Whiting, Epic

Brad Grantham, LunarG

Overview

Application developers may desire to implement an OpenXR application that renders content on top of

another OpenXR application. These additional applications will execute in a separate process, create a

separate session, generate separate content, but want the OpenXR runtime to composite their content

on top of the main OpenXR application. Examples of these applications might include:

• A debug environment outputting additional content

• A Store application that hovers to one side of the user’s view

• A interactive HUD designed to expose additional chat features

This extension introduces the concept of "Overlay Sessions" in order to expose this usage model.

This extension allows:

Chapter 13. List of Provisional Extensions | 1395

• An application to identify when the current sessions composition layers will be applied during

composition

• The ability for an overlay session to get information about what is going on with the main

application

To enable the functionality of this extension, an application must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo::enabledExtensionNames parameter as indicated in the

Extensions section.

To create an overlay session, an application must pass an XrSessionCreateInfoOverlayEXTX structure

to xrCreateSession via the XrSessionCreateInfo structure’s next parameter.

An overlay application should not assume that the values returned to it by xrWaitFrame in

predictedDisplayTime in XrFrameState will be the same as the values returned to the main application

or even correlated.

13.1.1. Overlay Session Layer Placement

Since one or more sessions may be active at the same time, this extension provides the ability for the

application to identify when the frames of the current session will be composited into the final frame.

The XrSessionCreateInfoOverlayEXTX sessionLayersPlacement parameter provides information on

when the sessions composition layers should be applied to the final composition frame. The larger the

value passed into sessionLayersPlacement, the closer to the front this session’s composition layers will

appear (relative to other overlay session’s composition layers). The smaller the value of

sessionLayersPlacement, the further to the back this session’s composition’s layers will appear. The

main session’s composition layers will always be composited first, resulting in any overlay content

being composited on top of the main application’s content.

If sessionLayersPlacement is 0, then the runtime will always attempt to composite that session’s

composition layers first. If sessionLayersPlacement is UINT32_MAX, then the runtime will always

attempt to composite that session’s composition layers last. If two or more overlay sessions are created

with the same sessionLayersPlacement value, then the newer session’s will be treated as if they had a

slightly higher value of sessionLayersPlacement than the previous sessions with the same value. This

should result in the newest overlay session being composited closer to the user than the older session.

The following image hopefully will provide any further clarification you need:

1396 | Chapter 13. List of Provisional Extensions

Resulting Image

Main
SessionsessionLayerPlacement MAX_UINT32 0Positive Value

Overlay Sessions

Figure 20. Overlay Composition Order

13.1.2. Main Session Behavior Event

Since an overlay session’s intends to work in harmony with a main session, some information needs to

be provided from that main session to the overlay session.

The XrEventDataMainSessionVisibilityChangedEXTX event structure provides information on the

visibility of the main session as well as some additional flags which can be used to adjust overlay

behavior.

If XR_KHR_composition_layer_depth is enabled in the main session, then

XrEventDataMainSessionVisibilityChangedEXTX flags should contain the value:

XR_OVERLAY_MAIN_SESSION_ENABLED_COMPOSITION_LAYER_INFO_DEPTH_BIT_EXTX. If the overlay session also

enables XR_KHR_composition_layer_depth, then when both sessions are visible, the runtime can integrate

their projection layer content together using depth information as described in the extension.

However, if either the main session or the overlay do not enable the extension, then composition

behavior will continue as if neither one enabled the extension.

13.1.3. Modifications to the OpenXR Specification

When this extension is enabled, certain core behaviors defined in the OpenXR specification must

change as defined below:

Modifications to Composition

The Compositing section description of the composition process will be changed if this extension is

enabled. If this extension is enabled, and there is only one active session, then there is no change.

However, if this extension is enabled, and there are multiple active sessions, then the composition will

Chapter 13. List of Provisional Extensions | 1397

occur in order based on the overlay session’s XrSessionCreateInfoOverlayEXTX

::sessionLayersPlacement value as described in the table below:

Table 6. Overlay Session Composition Order

Session Type
XrSessionCreateInfoOverlayEXTX::s

essionLayersPlacement
Composited

Overlay Session UINT32_MAX

Composited last,

appears in front of

all other XrSessions

Overlay Session <Positive value>

Overlay Session 0

Non-overlay Session N/A

Composited first,

appears behind all

other XrSessions

The above change only applies to when a session’s composition layers are applied to the resulting

image. The order in which composition layers are handled internal to a session does not change.

However, once the sessions have been properly ordered, the runtime should behave as if all the

composition layers have been placed into a single list (maintaining the separation of viewport images)

and treat them as if they were from one original session. From this point forward, the composition

behavior of the resulting composition layers is the same whether or not this extension is enabled.

If the overlay session is created as part of an XrInstance which has enabled the

XR_KHR_composition_layer_depth extension, and a XrCompositionLayerDepthInfoKHR structure has

been provided to one or more composition layers, then it intends for those layers to be composited into

the final image using that depth information. This composition occurs as defined in the

XR_KHR_composition_layer_depth extension. However, this is only possible if the main session has

provided depth buffer information as part of its swapchain. In the event that a main session does not

provide depth buffer information as part of its swapchain, then overlay application’s composition

layers containing depth information will be composited as if they did not contain that information.

Modifications to xrEndFrame Behavior

Frame Submission currently states that if xrEndFrame is called with no layers, then the runtime

should clear the VR display.

If this extension is enabled, the above statement is now only true if the session is not an overlay

session. If the session is an overlay session, and it provides 0 layers in the call to xrEndFrame, then the

runtime will just ignore the overlay session for the current frame.

Modifications to Input Synchronization

If a runtime supports this extension, it must separate input tracking on a per-session basis. This means

that reading the input from one active session does not disturb the input information that can be read

1398 | Chapter 13. List of Provisional Extensions

by another active session. This may require duplicating events to more than one session.

New Object Types

None

New Flag Types

typedef XrFlags64 XrOverlayMainSessionFlagsEXTX;

// Flag bits for XrOverlayMainSessionFlagsEXTX

static const XrOverlayMainSessionFlagsEXTX

XR_OVERLAY_MAIN_SESSION_ENABLED_COMPOSITION_LAYER_INFO_DEPTH_BIT_EXTX = 0x00000001;

typedef XrFlags64 XrOverlaySessionCreateFlagsEXTX;

// Flag bits for XrOverlaySessionCreateFlagsEXTX

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SESSION_CREATE_INFO_OVERLAY_EXTX

• XR_TYPE_EVENT_DATA_MAIN_SESSION_VISIBILITY_CHANGED_EXTX

New Enums

• XR_OVERLAY_MAIN_SESSION_ENABLED_COMPOSITION_LAYER_INFO_DEPTH_BIT_EXTX

New Structures

Chapter 13. List of Provisional Extensions | 1399

// Provided by XR_EXTX_overlay

typedef struct XrSessionCreateInfoOverlayEXTX {

 XrStructureType type;

 const void* next;

 XrOverlaySessionCreateFlagsEXTX createFlags;

 uint32_t sessionLayersPlacement;

} XrSessionCreateInfoOverlayEXTX;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• createFlags is 0 or one or more XrOverlaySessionCreateFlagBitsEXTX which indicate various

characteristics desired for the overlay session.

• sessionLayersPlacement is a value indicating the desired placement of the session’s

composition layers in terms of other sessions.

Valid Usage (Implicit)

• The XR_EXTX_overlay extension must be enabled prior to using

XrSessionCreateInfoOverlayEXTX

• type must be XR_TYPE_SESSION_CREATE_INFO_OVERLAY_EXTX

• next must be NULL or a valid pointer to the next structure in a structure chain

• createFlags must be 0

// Provided by XR_EXTX_overlay

typedef struct XrEventDataMainSessionVisibilityChangedEXTX {

 XrStructureType type;

 const void* next;

 XrBool32 visible;

 XrOverlayMainSessionFlagsEXTX flags;

} XrEventDataMainSessionVisibilityChangedEXTX;

Receiving the XrEventDataMainSessionVisibilityChangedEXTX event structure indicates that the main

session has gained or lost visibility. This can occur in many cases, one typical example is when a user

switches from one OpenXR application to another. See XrEventDataMainSessionVisibilityChangedEXTX

1400 | Chapter 13. List of Provisional Extensions

#valid-usage-for-structure-pointer-chains

for more information on the standard behavior. This structure contains additional information on the

main session including flags which indicate additional state information of the main session.

Currently, the only flag value supplied is

XR_OVERLAY_MAIN_SESSION_ENABLED_COMPOSITION_LAYER_INFO_DEPTH_BIT_EXTX which indicates if the main

session has enabled the XR_KHR_composition_layer_depth extension.

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• visible is an XrBool32 which indicates if the main session is now visible or is not.

• flags is 0 or one or more XrOverlayMainSessionFlagBitsEXTX which indicates various state

information for the main session.

Valid Usage (Implicit)

• The XR_EXTX_overlay extension must be enabled prior to using

XrEventDataMainSessionVisibilityChangedEXTX

• type must be XR_TYPE_EVENT_DATA_MAIN_SESSION_VISIBILITY_CHANGED_EXTX

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

None

New Function Pointers

None

Issues

None

Version History

• Revision 1, 2018-11-05 (Mark Young)

◦ Initial draft

• Revision 2, 2020-02-12 (Brad Grantham)

◦ Name change, remove overlay bool, add flags

• Revision 3, 2020-03-05 (Brad Grantham)

Chapter 13. List of Provisional Extensions | 1401

#valid-usage-for-structure-pointer-chains

◦ Name change

• Revision 4, 2020-03-23 (Brad Grantham)

◦ Fix enums

• Revision 5, 2021-01-13 (Brad Grantham)

◦ Remove bit requesting synchronized display times

13.2. XR_HTCX_vive_tracker_interaction

Name String

XR_HTCX_vive_tracker_interaction

Extension Type

Instance extension

Registered Extension Number

104

Revision

3

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_dpad_binding

• Interacts with XR_EXT_palm_pose

Last Modified Date

2023-07-14

IP Status

No known IP claims.

Contributors

Kyle Chen, HTC

Chris Kuo, HTC

Overview

This extension defines a new interaction profile for HTC VIVE Tracker. HTC VIVE Tracker is a generic

tracked device which can be attached to anything to make them trackable. For example, it can be

attached to user’s hands or feet to track the motion of human body. It can also be attached to any other

devices the user wants to track and interact with.

1402 | Chapter 13. List of Provisional Extensions

In order to enable the functionality of this extension, you must pass the name of the extension into

xrCreateInstance via the XrInstanceCreateInfo enabledExtensionNames parameter as indicated in the

Extensions section.

This extension allows:

• An application to enumerate the subpaths of all current connected VIVE trackers.

• An application to receive notification of the top level paths of a VIVE tracker when it is connected.

The paths of a VIVE tracker contains two paths below:

• VIVE tracker persistent path indicate a specific tracker whose lifetime lasts longer than an instance,

which means it must not change during its hardware lifetime. The format of this path string is

unspecified and should be treated as an opaque string.

• VIVE tracker role path may be constructed as "/user/vive_tracker_htcx/role/ROLE_VALUE", where

ROLE_VALUE takes one of the following values. The role path may be assigned from the tool

provided by the runtime and is XR_NULL_PATH if it has not been assigned. If this role path refers to

more than one tracker, the runtime should choose one of them to be currently active. The role path

may be changed during the lifetime of instance. Whenever it is changed, the runtime must send

event XR_TYPE_EVENT_DATA_VIVE_TRACKER_CONNECTED_HTCX to provide the new role path of that tracker.

ROLE_VALUE

◦ XR_NULL_PATH

◦ handheld_object

◦ left_foot

◦ right_foot

◦ left_shoulder

◦ right_shoulder

◦ left_elbow

◦ right_elbow

◦ left_knee

◦ right_knee

◦ left_wrist (rev: 3)

◦ right_wrist (rev: 3)

◦ left_ankle (rev: 3)

◦ right_ankle (rev: 3)

◦ waist

◦ chest

◦ camera

Chapter 13. List of Provisional Extensions | 1403

◦ keyboard

• Either the persistent path or the role path can be be passed as a subaction path to indicate a

specific tracker. For example, XrActionCreateInfo::subactionPaths into function xrCreateAction or

XrActionSpaceCreateInfo::subactionPath into function xrCreateActionSpace. Please see Example 1

below.

As with other controllers, if a VIVE tracker is connected and bound to a top-level user path, or

disconnected while bound to top-level user path, the runtime must send event

XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED, and the application may call

xrGetCurrentInteractionProfile to check if the tracker is active or not. The device that a tracker is attached to probably has a different motion model than

what the tracker assumes. The motion tracking might not be as expected in this case.

VIVE Tracker interaction profile

Interaction profile path:

• /interaction_profiles/htc/vive_tracker_htcx

This interaction profile represents the input sources and haptics on the VIVE Tracker.

Supported component paths:

• …/input/system/click (may not be available for application use)

• …/input/menu/click

• …/input/trigger/click

• …/input/squeeze/click

• …/input/trigger/value

• …/input/trackpad/x

• …/input/trackpad/y

• …/input/trackpad/click

• …/input/trackpad/touch

• …/input/grip/pose

• …/output/haptic

New Object Types

New Flag Types

New Enum Constants

1404 | Chapter 13. List of Provisional Extensions

XrStructureType enumeration is extended with:

• XR_TYPE_VIVE_TRACKER_PATHS_HTCX

• XR_TYPE_EVENT_DATA_VIVE_TRACKER_CONNECTED_HTCX

New Enums

New Structures

The XrViveTrackerPathsHTCX structure is defined as:

// Provided by XR_HTCX_vive_tracker_interaction

typedef struct XrViveTrackerPathsHTCX {

 XrStructureType type;

 void* next;

 XrPath persistentPath;

 XrPath rolePath;

} XrViveTrackerPathsHTCX;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• persistentPath is the unique path of the VIVE tracker which is persistent over the lifetime of

the hardware.

• rolePath is the path of the VIVE tracker role. This may be XR_NULL_PATH if the role is not

assigned.

The XrViveTrackerPathsHTCX structure contains two paths of VIVE tracker.

Valid Usage (Implicit)

• The XR_HTCX_vive_tracker_interaction extension must be enabled prior to using

XrViveTrackerPathsHTCX

• type must be XR_TYPE_VIVE_TRACKER_PATHS_HTCX

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrEventDataViveTrackerConnectedHTCX structure is defined as:

Chapter 13. List of Provisional Extensions | 1405

#valid-usage-for-structure-pointer-chains

// Provided by XR_HTCX_vive_tracker_interaction

typedef struct XrEventDataViveTrackerConnectedHTCX {

 XrStructureType type;

 const void* next;

 XrViveTrackerPathsHTCX* paths;

} XrEventDataViveTrackerConnectedHTCX;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• paths contains two paths of the connected VIVE tracker.

Receiving the XrEventDataViveTrackerConnectedHTCX event structure indicates that a new VIVE

tracker was connected or its role changed. It is received via xrPollEvent.

Valid Usage (Implicit)

• The XR_HTCX_vive_tracker_interaction extension must be enabled prior to using

XrEventDataViveTrackerConnectedHTCX

• type must be XR_TYPE_EVENT_DATA_VIVE_TRACKER_CONNECTED_HTCX

• next must be NULL or a valid pointer to the next structure in a structure chain

New Functions

The xrEnumerateViveTrackerPathsHTCX function is defined as:

// Provided by XR_HTCX_vive_tracker_interaction

XrResult xrEnumerateViveTrackerPathsHTCX(

 XrInstance instance,

 uint32_t pathCapacityInput,

 uint32_t* pathCountOutput,

 XrViveTrackerPathsHTCX* paths);

1406 | Chapter 13. List of Provisional Extensions

#valid-usage-for-structure-pointer-chains

Parameter Descriptions

• instance is an instance previously created.

• pathCapacityInput is the capacity of the paths, or 0 to retrieve the required capacity.

• pathCountOutput is a pointer to the count of XrViveTrackerPathsHTCX paths written, or a

pointer to the required capacity in the case that pathCapacityInput is insufficient.

• paths is a pointer to an array of XrViveTrackerPathsHTCX VIVE tracker paths, but can be NULL

if pathCapacityInput is 0.

• See the Buffer Size Parameters section for a detailed description of retrieving the required

paths size.

xrEnumerateViveTrackerPathsHTCX enumerates all connected VIVE trackers to retrieve their paths

under current instance.

Valid Usage (Implicit)

• The XR_HTCX_vive_tracker_interaction extension must be enabled prior to calling

xrEnumerateViveTrackerPathsHTCX

• instance must be a valid XrInstance handle

• pathCountOutput must be a pointer to a uint32_t value

• If pathCapacityInput is not 0, paths must be a pointer to an array of pathCapacityInput

XrViveTrackerPathsHTCX structures

Return Codes

Success

• XR_SUCCESS

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SIZE_INSUFFICIENT

Examples

Chapter 13. List of Provisional Extensions | 1407

Example 1

This example illustrates how to locate a VIVE tracker which is attached on the chest. First of all, create

an action with /user/vive_tracker_htcx/role/chest as the subaction path. Then, submit a suggested

binding for that action to the role path plus …/input/grip/pose, for the interaction profile

/interaction_profiles/htc/vive_tracker_htcx, using xrSuggestInteractionProfileBindings. To locate the

tracker, create an action space from that action, with /user/vive_tracker_htcx/role/chest once again

specified as the subaction path.

extern XrInstance instance; // previously initialized

extern XrSession session; // previously initialized

extern XrActionSet actionSet; // previously initialized

// Create the action with subaction path

XrPath chestTrackerRolePath;

CHK_XR(xrStringToPath(instance, "/user/vive_tracker_htcx/role/chest",

 &chestTrackerRolePath));

XrAction chestPoseAction;

XrActionCreateInfo actionInfo{XR_TYPE_ACTION_CREATE_INFO};

actionInfo.actionType = XR_ACTION_TYPE_POSE_INPUT;

actionInfo.countSubactionPaths = 1;

actionInfo.subactionPaths = &chestTrackerRolePath;

CHK_XR(xrCreateAction(actionSet, &actionInfo, &chestPoseAction));

// Describe a suggested binding for that action and subaction path.

XrPath suggestedBindingPath;

CHK_XR(xrStringToPath(instance,

 "/user/vive_tracker_htcx/role/chest/input/grip/pose",

 &suggestedBindingPath));

std::vector<XrActionSuggestedBinding> actionSuggBindings;

XrActionSuggestedBinding actionSuggBinding;

actionSuggBinding.action = chestPoseAction;

actionSuggBinding.binding = suggestedBindingPath;

actionSuggBindings.push_back(actionSuggBinding);

// Suggest that binding for the VIVE tracker interaction profile

XrPath viveTrackerInteractionProfilePath;

CHK_XR(xrStringToPath(instance, "/interaction_profiles/htc/vive_tracker_htcx",

 &viveTrackerInteractionProfilePath));

XrInteractionProfileSuggestedBinding profileSuggBindings{

 XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING};

profileSuggBindings.interactionProfile =

 viveTrackerInteractionProfilePath;

profileSuggBindings.suggestedBindings =

1408 | Chapter 13. List of Provisional Extensions

 actionSuggBindings.data();

profileSuggBindings.countSuggestedBindings =

 (uint32_t)actionSuggBindings.size();

CHK_XR(xrSuggestInteractionProfileBindings(instance, &profileSuggBindings));

// Create action space for locating tracker

XrSpace chestTrackerSpace;

XrActionSpaceCreateInfo actionSpaceInfo{XR_TYPE_ACTION_SPACE_CREATE_INFO};

actionSpaceInfo.action = chestPoseAction;

actionSpaceInfo.subactionPath = chestTrackerRolePath;

CHK_XR(xrCreateActionSpace(session, &actionSpaceInfo, &chestTrackerSpace));

Example 2

This example illustrates how to handle the VIVE tracker when it is connected or disconnected. When a

VIVE tracker is connected or its role changed, event XR_TYPE_EVENT_DATA_VIVE_TRACKER_CONNECTED_HTCX

will be received. The role path and persistent path of this tracker can be retrieved with this event.

When a VIVE tracker is connected or disconnected, event

XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED will also be received. The XrInteractionProfileState

::interactionProfile will be XR_NULL_PATH if the tracker represented by that top level path is not

connected.

Chapter 13. List of Provisional Extensions | 1409

extern XrInstance instance; // previously initialized

extern XrSession session; // previously initialized

extern XrEventDataBuffer xrEvent; // previously received from xrPollEvent

switch (xrEvent.type)

{

 case XR_TYPE_EVENT_DATA_VIVE_TRACKER_CONNECTED_HTCX: {

 const XrEventDataViveTrackerConnectedHTCX& viveTrackerConnected =

 reinterpret_cast<XrEventDataViveTrackerConnectedHTCX>(&xrEvent);

 uint32_t nCount;

 char sPersistentPath[XR_MAX_PATH_LENGTH];

 CHK_XR(xrPathToString(instance,

 viveTrackerConnected.paths->persistentPath,

 sizeof(sPersistentPath), &nCount, sPersistentPath));

 std::printf("Vive Tracker connected: %s \n", sPersistentPath);

 if (viveTrackerConnected.paths->rolePath != XR_NULL_PATH) {

 char sRolePath[XR_MAX_PATH_LENGTH];

 CHK_XR(xrPathToString(instance,

 viveTrackerConnected.paths->rolePath, sizeof(sRolePath),

 &nCount, sRolePath));

 std::printf(" New role is: %s\n\n", sRolePath);

 } else {

 std::printf(" No role path.\n\n");

 }

 break;

 }

 case XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED: {

 XrPath chestTrackerRolePath;

 XrInteractionProfileState xrInteractionProfileState {

 XR_TYPE_INTERACTION_PROFILE_STATE};

 CHK_XR(xrStringToPath(instance, "/user/vive_tracker_htcx/role/chest",

 &chestTrackerRolePath));

 CHK_XR(xrGetCurrentInteractionProfile(session, chestTrackerRolePath,

 &xrInteractionProfileState));

 break;

 }

}

Issues

Version History

1410 | Chapter 13. List of Provisional Extensions

• Revision 1, 2021-09-23 (Kyle Chen)

◦ Initial extension description.

• Revision 2, 2022-09-08 (Rylie Pavlik, Collabora, Ltd.)

◦ Mark event type as returned-only, updating the implicit valid usage.

• Revision 3, 2022-05-19 (Rune Berg, Valve Corporation)

◦ Add new wrist and ankle roles to match additional openvr roles.

13.3. XR_MNDX_egl_enable

Name String

XR_MNDX_egl_enable

Extension Type

Instance extension

Registered Extension Number

49

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Last Modified Date

2023-12-02

IP Status

No known IP claims.

Contributors

Jakob Bornecrantz, Collabora

Drew DeVault, Individual

Simon Ser, Individual

Overview

This extension must be provided by runtimes supporting applications using the EGL API to create

rendering contexts.

• XR_USE_PLATFORM_EGL

New Object Types

Chapter 13. List of Provisional Extensions | 1411

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_GRAPHICS_BINDING_EGL_MNDX

New Enums

New Structures

The XrGraphicsBindingEGLMNDX structure is defined as:

// Provided by XR_MNDX_egl_enable

typedef struct XrGraphicsBindingEGLMNDX {

 XrStructureType type;

 const void* next;

 PFN_xrEglGetProcAddressMNDX getProcAddress;

 EGLDisplay display;

 EGLConfig config;

 EGLContext context;

} XrGraphicsBindingEGLMNDX;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• getProcAddress is a valid function pointer to eglGetProcAddress.

• display is a valid EGL EGLDisplay.

• config is a valid EGL EGLConfig.

• context is a valid EGL EGLContext.

When creating an EGL based XrSession, the application will provide a pointer to an

XrGraphicsBindingEGLMNDX structure in the next chain of the XrSessionCreateInfo.

The required window system configuration define to expose this structure type is

XR_USE_PLATFORM_EGL.

1412 | Chapter 13. List of Provisional Extensions

Valid Usage (Implicit)

• The XR_MNDX_egl_enable extension must be enabled prior to using

XrGraphicsBindingEGLMNDX

• type must be XR_TYPE_GRAPHICS_BINDING_EGL_MNDX

• next must be NULL or a valid pointer to the next structure in a structure chain

• getProcAddress must be a valid PFN_xrEglGetProcAddressMNDX value

• display must be a valid EGLDisplay value

• config must be a valid EGLConfig value

• context must be a valid EGLContext value

New Functions

New Function Pointers

typedef PFN_xrVoidFunction (*PFN_xrEglGetProcAddressMNDX)(const char *name);

Parameter Descriptions

• name specifies the name of the function to return.

eglGetProcAddress returns the address of the client API or EGL function named by procname. For

details please see https://registry.khronos.org/EGL/sdk/docs/man/html/eglGetProcAddress.xhtml

Issues

Version History

• Revision 1, 2020-05-20 (Jakob Bornecrantz)

◦ Initial draft

• Revision 2, 2023-12-02

◦ Use PFN_xrEglGetProcAddressMNDX to replace PFNEGLGETPROCADDRESSPROC (for eglGetProcAddress).

Note this does change function pointer attributes on some platforms.

13.4. XR_MNDX_force_feedback_curl

Chapter 13. List of Provisional Extensions | 1413

#valid-usage-for-structure-pointer-chains
https://registry.khronos.org/EGL/sdk/docs/man/html/eglGetProcAddress.xhtml

Name String

XR_MNDX_force_feedback_curl

Extension Type

Instance extension

Registered Extension Number

376

Revision

1

Extension and Version Dependencies

OpenXR 1.0

and

XR_EXT_hand_tracking

Last Modified Date

2022-11-18

IP Status

No known IP claims.

Contributors

Daniel Willmott

Moses Turner (Collabora, Ltd.)

Christoph Haagch (Collabora, Ltd.)

Jakob Bornecrantz (Collabora, Ltd.)

Overview

This extension provides APIs for force feedback devices capable of restricting physical movement in a

single direction along a single dimension.

The intended use for this extension is to provide simple force feedback capabilities to restrict finger

movement for VR Gloves.

The application must also enable the XR_EXT_hand_tracking extension in order to use this extension.

The XrForceFeedbackCurlLocationMNDX describes which location to apply force feedback.

1414 | Chapter 13. List of Provisional Extensions

// Provided by XR_MNDX_force_feedback_curl

typedef enum XrForceFeedbackCurlLocationMNDX {

 XR_FORCE_FEEDBACK_CURL_LOCATION_THUMB_CURL_MNDX = 0,

 XR_FORCE_FEEDBACK_CURL_LOCATION_INDEX_CURL_MNDX = 1,

 XR_FORCE_FEEDBACK_CURL_LOCATION_MIDDLE_CURL_MNDX = 2,

 XR_FORCE_FEEDBACK_CURL_LOCATION_RING_CURL_MNDX = 3,

 XR_FORCE_FEEDBACK_CURL_LOCATION_LITTLE_CURL_MNDX = 4,

 XR_FORCE_FEEDBACK_CURL_LOCATION_MAX_ENUM_MNDX = 0x7FFFFFFF

} XrForceFeedbackCurlLocationMNDX;

Enumerant Descriptions

• XR_FORCE_FEEDBACK_CURL_LOCATION_THUMB_CURL_MNDX  — force feedback for thumb curl

• XR_FORCE_FEEDBACK_CURL_LOCATION_INDEX_CURL_MNDX  — force feedback for index finger curl

• XR_FORCE_FEEDBACK_CURL_LOCATION_MIDDLE_CURL_MNDX  — force feedback for middle finger curl

• XR_FORCE_FEEDBACK_CURL_LOCATION_RING_CURL_MNDX  — force feedback for ring finger curl

• XR_FORCE_FEEDBACK_CURL_LOCATION_LITTLE_CURL_MNDX  — force feedback for little finger curl

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SYSTEM_FORCE_FEEDBACK_CURL_PROPERTIES_MNDX

• XR_TYPE_FORCE_FEEDBACK_CURL_APPLY_LOCATIONS_MNDX

New Enums

• XrForceFeedbackCurlLocationMNDX

New Structures

The XrSystemForceFeedbackCurlPropertiesMNDX structure is defined as:

Chapter 13. List of Provisional Extensions | 1415

// Provided by XR_MNDX_force_feedback_curl

typedef struct XrSystemForceFeedbackCurlPropertiesMNDX {

 XrStructureType type;

 void* next;

 XrBool32 supportsForceFeedbackCurl;

} XrSystemForceFeedbackCurlPropertiesMNDX;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• supportsForceFeedbackCurl is an XrBool32, indicating if the current system is capable of

performing force feedback.

An application may inspect whether the system is capable of force feedback by chaining an

XrSystemForceFeedbackCurlPropertiesMNDX structure to the XrSystemProperties structure when

calling xrGetSystemProperties.

The runtime should return XR_TRUE for supportsForceFeedbackCurl when force feedback is available in

the system, otherwise XR_FALSE. Force feedback calls must return XR_ERROR_FEATURE_UNSUPPORTED if force

feedback is not available in the system.

Valid Usage (Implicit)

• The XR_MNDX_force_feedback_curl extension must be enabled prior to using

XrSystemForceFeedbackCurlPropertiesMNDX

• type must be XR_TYPE_SYSTEM_FORCE_FEEDBACK_CURL_PROPERTIES_MNDX

• next must be NULL or a valid pointer to the next structure in a structure chain

The XrForceFeedbackCurlApplyLocationsMNDX structure is defined as:

// Provided by XR_MNDX_force_feedback_curl

typedef struct XrForceFeedbackCurlApplyLocationsMNDX {

 XrStructureType type;

 const void* next;

 uint32_t locationCount;

 XrForceFeedbackCurlApplyLocationMNDX* locations;

} XrForceFeedbackCurlApplyLocationsMNDX;

1416 | Chapter 13. List of Provisional Extensions

#valid-usage-for-structure-pointer-chains

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• locationCount is the number of elements in the locations array.

• locations is a pointer to an array of locations to apply force feedback.

Contains an array of XrForceFeedbackCurlApplyLocationMNDX that contains information on locations

to apply force feedback to.

Valid Usage (Implicit)

• The XR_MNDX_force_feedback_curl extension must be enabled prior to using

XrForceFeedbackCurlApplyLocationsMNDX

• type must be XR_TYPE_FORCE_FEEDBACK_CURL_APPLY_LOCATIONS_MNDX

• next must be NULL or a valid pointer to the next structure in a structure chain

• locations must be a pointer to an array of locationCount

XrForceFeedbackCurlApplyLocationMNDX structures

• The locationCount parameter must be greater than 0

The XrForceFeedbackCurlApplyLocationMNDX structure is defined as:

// Provided by XR_MNDX_force_feedback_curl

typedef struct XrForceFeedbackCurlApplyLocationMNDX {

 XrForceFeedbackCurlLocationMNDX location;

 float value;

} XrForceFeedbackCurlApplyLocationMNDX;

Chapter 13. List of Provisional Extensions | 1417

#valid-usage-for-structure-pointer-chains

Member Descriptions

• location represents the location to apply force feedback to.

• value is a value from 0-1 representing the amount of force feedback to apply. The range of the

value should represent the entire range the location is capable of moving through, with 1

representing making the location incapable of movement, and 0 being fully flexible. For

example, in the case of a finger curl, setting value to 1 would prevent the finger from curling

at all (fully extended), and 0 would allow the finger to have free range of movement, being

able to curl fully.

value is specified as a limit in a single direction. For example, if the value specified is 0.5, a location

must have free movement from the point where it would be incapable of movement if value was 1, to

0.5 of the range the location is capable of moving.

Valid Usage (Implicit)

• The XR_MNDX_force_feedback_curl extension must be enabled prior to using

XrForceFeedbackCurlApplyLocationMNDX

• location must be a valid XrForceFeedbackCurlLocationMNDX value

New Functions

The xrApplyForceFeedbackCurlMNDX function is defined as:

// Provided by XR_MNDX_force_feedback_curl

XrResult xrApplyForceFeedbackCurlMNDX(

 XrHandTrackerEXT handTracker,

 const XrForceFeedbackCurlApplyLocationsMNDX* locations);

Parameter Descriptions

• handTracker is an XrHandTrackerEXT handle previously created with

xrCreateHandTrackerEXT.

• locations is an XrForceFeedbackCurlApplyLocationsMNDX containing a set of locations to

apply force feedback to.

The xrApplyForceFeedbackCurlMNDX function applies force feedback to the set locations listed in

XrForceFeedbackCurlApplyLocationsMNDX.

1418 | Chapter 13. List of Provisional Extensions

xrApplyForceFeedbackCurlMNDX should be called every time an application wishes to update a set of

force feedback locations.

Submits a request for force feedback for a set of locations. The runtime should deliver this request to

the handTracker device. If the handTracker device is not available, the runtime may ignore this request

for force feedback.

If the session associated with handTracker is not focused, the runtime must return

XR_SESSION_NOT_FOCUSED, and not apply force feedback.

When an application submits force feedback for a set of locations, the runtime must update the set of

locations to that specified by the application. A runtime must set any locations not specified by the

application when submitting force feedback to 0.

The runtime may discontinue force feedback if the application that set it loses focus. An application

should call the function again after regaining focus if force feedback is still desired.

Valid Usage (Implicit)

• The XR_MNDX_force_feedback_curl extension must be enabled prior to calling

xrApplyForceFeedbackCurlMNDX

• handTracker must be a valid XrHandTrackerEXT handle

• locations must be a pointer to a valid XrForceFeedbackCurlApplyLocationsMNDX structure

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

• XR_SESSION_NOT_FOCUSED

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

Issues

Chapter 13. List of Provisional Extensions | 1419

Version History

• Revision 1, 2022-09-07 (Daniel Willmott)

◦ Initial version

1420 | Chapter 13. List of Provisional Extensions

Chapter 14. List of Deprecated Extensions

• XR_KHR_locate_spaces

• XR_KHR_maintenance1

• XR_EXT_hp_mixed_reality_controller

• XR_EXT_local_floor

• XR_EXT_palm_pose

• XR_EXT_samsung_odyssey_controller

• XR_EXT_uuid

• XR_BD_controller_interaction

• XR_HTC_vive_cosmos_controller_interaction

• XR_HTC_vive_focus3_controller_interaction

• XR_ML_ml2_controller_interaction

• XR_MND_swapchain_usage_input_attachment_bit

• XR_OCULUS_android_session_state_enable

• XR_VARJO_quad_views

Chapter 14. List of Deprecated Extensions | 1421

14.1. XR_KHR_locate_spaces

Name String

XR_KHR_locate_spaces

Extension Type

Instance extension

Registered Extension Number

472

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2024-01-19

IP Status

No known IP claims.

Contributors

Yin Li, Microsoft

Bryce Hutchings, Microsoft

Andreas Loeve Selvik, Meta Platforms

John Kearney, Meta Platforms

Robert Blenkinsopp, Ultraleap

Rylie Pavlik, Collabora

Ron Bessems, Magic Leap

Jakob Bornecrantz, NVIDIA

14.1.1. Overview

This extension introduces the xrLocateSpacesKHR function, which enables applications to locate an

array of spaces in a single function call. Runtimes may provide performance benefits for applications

that use many spaces.

Compared to the xrLocateSpace function, the new xrLocateSpacesKHR function also provides

extensible input parameters for future extensions to extend using additional chained structures.

1422 | Chapter 14. List of Deprecated Extensions

14.1.2. Locate spaces

Applications can use xrLocateSpacesKHR function to locate an array of spaces.

The xrLocateSpacesKHR function is defined as:

// Provided by XR_KHR_locate_spaces

XrResult xrLocateSpacesKHR(

 XrSession session,

 const XrSpacesLocateInfo* locateInfo,

 XrSpaceLocations* spaceLocations);

Parameter Descriptions

• session is an XrSession handle previously created with xrCreateSession.

• locateInfo is a pointer to an XrSpacesLocateInfoKHR that provides the input information to

locate spaces.

• spaceLocations is a pointer to an XrSpaceLocationsKHR for the runtime to return the

locations of the specified spaces in the base space.

xrLocateSpacesKHR provides the physical location of one or more spaces in a base space at a specified

time, if currently known by the runtime.

The XrSpacesLocateInfoKHR::time, the XrSpacesLocateInfoKHR::baseSpace, and each space in

XrSpacesLocateInfoKHR::spaces, in the locateInfo parameter, all follow the same specifics as the

corresponding inputs to the xrLocateSpace function.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to calling xrLocateSpacesKHR

• session must be a valid XrSession handle

• locateInfo must be a pointer to a valid XrSpacesLocateInfo structure

• spaceLocations must be a pointer to an XrSpaceLocations structure

Chapter 14. List of Deprecated Extensions | 1423

Return Codes

Success

• XR_SUCCESS

• XR_SESSION_LOSS_PENDING

Failure

• XR_ERROR_FUNCTION_UNSUPPORTED

• XR_ERROR_VALIDATION_FAILURE

• XR_ERROR_RUNTIME_FAILURE

• XR_ERROR_HANDLE_INVALID

• XR_ERROR_INSTANCE_LOST

• XR_ERROR_SESSION_LOST

• XR_ERROR_SIZE_INSUFFICIENT

• XR_ERROR_TIME_INVALID

The XrSpacesLocateInfoKHR structure is defined as:

// Provided by XR_KHR_locate_spaces

// XrSpacesLocateInfoKHR is an alias for XrSpacesLocateInfo

typedef struct XrSpacesLocateInfo {

 XrStructureType type;

 const void* next;

 XrSpace baseSpace;

 XrTime time;

 uint32_t spaceCount;

 const XrSpace* spaces;

} XrSpacesLocateInfo;

typedef XrSpacesLocateInfo XrSpacesLocateInfoKHR;

1424 | Chapter 14. List of Deprecated Extensions

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain. No such structures are

defined in core OpenXR or this extension.

• baseSpace identifies the underlying space in which to locate spaces.

• time is the time for which the location is requested.

• spaceCount is a uint32_t specifying the count of elements in the spaces array.

• spaces is an array of valid XrSpace handles to be located.

The time, the baseSpace, and each space in spaces all follow the same specifics as the corresponding

inputs to the xrLocateSpace function.

The baseSpace and all of the XrSpace handles in the spaces array must be valid and share the same

parent XrSession.

If the time is invalid, the xrLocateSpacesKHR must return XR_ERROR_TIME_INVALID.

The spaceCount must be a positive number, i.e. the array spaces must not be empty. Otherwise, the

runtime must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using XrSpacesLocateInfoKHR

• Note: XrSpacesLocateInfoKHR is an alias for XrSpacesLocateInfo, so the following items

replicate the implicit valid usage for XrSpacesLocateInfo

• type must be XR_TYPE_SPACES_LOCATE_INFO

• next must be NULL or a valid pointer to the next structure in a structure chain

• baseSpace must be a valid XrSpace handle

• spaces must be a pointer to an array of spaceCount valid XrSpace handles

• The spaceCount parameter must be greater than 0

• Both of baseSpace and the elements of spaces must have been created, allocated, or retrieved

from the same XrSession

The XrSpaceLocationsKHR structure is defined as:

Chapter 14. List of Deprecated Extensions | 1425

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_locate_spaces

// XrSpaceLocationsKHR is an alias for XrSpaceLocations

typedef struct XrSpaceLocations {

 XrStructureType type;

 void* next;

 uint32_t locationCount;

 XrSpaceLocationData* locations;

} XrSpaceLocations;

typedef XrSpaceLocations XrSpaceLocationsKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain, such as

XrSpaceVelocitiesKHR.

• locationCount is a uint32_t specifying the count of elements in the locations array.

• locations is an array of XrSpaceLocationsKHR for the runtime to populate with the locations

of the specified spaces in the XrSpacesLocateInfoKHR::baseSpace at the specified

XrSpacesLocateInfoKHR::time.

The XrSpaceLocationsKHR structure contains an array of space locations in the member locations, to

be used as output for xrLocateSpacesKHR. The application must allocate this array to be populated

with the function output. The locationCount value must be the same as XrSpacesLocateInfoKHR

::spaceCount, otherwise, the xrLocateSpacesKHR function must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using XrSpaceLocationsKHR

• Note: XrSpaceLocationsKHR is an alias for XrSpaceLocations, so the following items replicate

the implicit valid usage for XrSpaceLocations

• type must be XR_TYPE_SPACE_LOCATIONS

• next must be NULL or a valid pointer to the next structure in a structure chain. See also:

XrSpaceVelocities

• locations must be a pointer to an array of locationCount XrSpaceLocationData structures

• The locationCount parameter must be greater than 0

The XrSpaceLocationDataKHR structure is defined as:

1426 | Chapter 14. List of Deprecated Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_locate_spaces

// XrSpaceLocationDataKHR is an alias for XrSpaceLocationData

typedef struct XrSpaceLocationData {

 XrSpaceLocationFlags locationFlags;

 XrPosef pose;

} XrSpaceLocationData;

typedef XrSpaceLocationData XrSpaceLocationDataKHR;

Member Descriptions

• locationFlags is a bitfield, with bit masks defined in XrSpaceLocationFlagBits. It behaves the

same as XrSpaceLocation::locationFlags.

• pose is an XrPosef that behaves the same as XrSpaceLocation::pose.

This is a single element of the array in XrSpaceLocationsKHR::locations, and is used to return the pose

and location flags for a single space with respect to the specified base space from a call to

xrLocateSpacesKHR. It does not accept chained structures to allow for easier use in dynamically

allocated container datatypes. Chained structures are possible with the XrSpaceLocationsKHR that

describes an array of these elements.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using

XrSpaceLocationDataKHR

14.1.3. Locate space velocities

Applications can request the velocities of spaces by chaining the XrSpaceVelocitiesKHR structure to the

next pointer of XrSpaceLocationsKHR when calling xrLocateSpacesKHR.

The XrSpaceVelocitiesKHR structure is defined as:

Chapter 14. List of Deprecated Extensions | 1427

// Provided by XR_KHR_locate_spaces

// XrSpaceVelocitiesKHR is an alias for XrSpaceVelocities

typedef struct XrSpaceVelocities {

 XrStructureType type;

 void* next;

 uint32_t velocityCount;

 XrSpaceVelocityData* velocities;

} XrSpaceVelocities;

typedef XrSpaceVelocities XrSpaceVelocitiesKHR;

Member Descriptions

• type is the XrStructureType of this structure.

• next is NULL or a pointer to the next structure in a structure chain.

• velocityCount is a uint32_t specifying the count of elements in the velocities array.

• velocities is an array of XrSpaceVelocityDataKHR for the runtime to populate with the

velocities of the specified spaces in the XrSpacesLocateInfoKHR::baseSpace at the specified

XrSpacesLocateInfoKHR::time.

The velocities member contains an array of space velocities in the member velocities, to be used as

output for xrLocateSpacesKHR. The application must allocate this array to be populated with the

function output. The velocityCount value must be the same as XrSpacesLocateInfoKHR::spaceCount,

otherwise, the xrLocateSpacesKHR function must return XR_ERROR_VALIDATION_FAILURE.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using XrSpaceVelocitiesKHR

• Note: XrSpaceVelocitiesKHR is an alias for XrSpaceVelocities, so the following items replicate

the implicit valid usage for XrSpaceVelocities

• type must be XR_TYPE_SPACE_VELOCITIES

• next must be NULL or a valid pointer to the next structure in a structure chain

• velocities must be a pointer to an array of velocityCount XrSpaceVelocityData structures

• The velocityCount parameter must be greater than 0

The XrSpaceVelocityDataKHR structure is defined as:

1428 | Chapter 14. List of Deprecated Extensions

#valid-usage-for-structure-pointer-chains

// Provided by XR_KHR_locate_spaces

// XrSpaceVelocityDataKHR is an alias for XrSpaceVelocityData

typedef struct XrSpaceVelocityData {

 XrSpaceVelocityFlags velocityFlags;

 XrVector3f linearVelocity;

 XrVector3f angularVelocity;

} XrSpaceVelocityData;

typedef XrSpaceVelocityData XrSpaceVelocityDataKHR;

Member Descriptions

• velocityFlags is a bitfield, with bit values defined in XrSpaceVelocityFlagBits. It behaves the

same as XrSpaceVelocity::velocityFlags.

• linearVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::linearVelocity.

• angularVelocity is an XrVector3f. It behaves the same as XrSpaceVelocity::angularVelocity.

This is a single element of the array in XrSpaceVelocitiesKHR::velocities, and is used to return the

linear and angular velocity and velocity flags for a single space with respect to the specified base space

from a call to xrLocateSpacesKHR. It does not accept chained structures to allow for easier use in

dynamically allocated container datatypes.

Valid Usage (Implicit)

• The XR_KHR_locate_spaces extension must be enabled prior to using XrSpaceVelocityDataKHR

14.1.4. Example code for xrLocateSpacesKHR

The following example code shows how an application retrieves both the location and velocity of one

or more spaces in a base space at a given time using the xrLocateSpacesKHR function.

XrInstance instance; // previously initialized

XrSession session; // previously initialized

XrSpace baseSpace; // previously initialized

std::vector<XrSpace> spacesToLocate; // previously initialized

// Prepare output buffers to receive data and get reused in frame loop.

std::vector<XrSpaceLocationDataKHR> locationBuffer(spacesToLocate.size());

std::vector<XrSpaceVelocityDataKHR> velocityBuffer(spacesToLocate.size());

// Get function pointer for xrLocateSpacesKHR.

Chapter 14. List of Deprecated Extensions | 1429

PFN_xrLocateSpacesKHR xrLocateSpacesKHR;

CHK_XR(xrGetInstanceProcAddr(instance, "xrLocateSpacesKHR",

 reinterpret_cast<PFN_xrVoidFunction*>(

 &xrLocateSpacesKHR)));

// application frame loop

while (1) {

 // Typically the time is the predicted display time returned from xrWaitFrame.

 XrTime displayTime; // previously initialized.

 XrSpacesLocateInfoKHR locateInfo{XR_TYPE_SPACES_LOCATE_INFO_KHR};

 locateInfo.baseSpace = baseSpace;

 locateInfo.time = displayTime;

 locateInfo.spaceCount = (uint32_t)spacesToLocate.size();

 locateInfo.spaces = spacesToLocate.data();

 XrSpaceLocationsKHR locations{XR_TYPE_SPACES_LOCATE_INFO_KHR};

 locations.locationCount = (uint32_t)locationBuffer.size();

 locations.locations = locationBuffer.data();

 XrSpaceVelocitiesKHR velocities{XR_TYPE_SPACE_VELOCITIES_KHR};

 velocities.velocityCount = (uint32_t)velocityBuffer.size();

 velocities.velocities = velocityBuffer.data();

 locations.next = &velocities;

 CHK_XR(xrLocateSpacesKHR(session, &locateInfo, &locations));

 for (uint32_t i = 0; i < spacesToLocate.size(); i++) {

 const auto positionAndOrientationTracked =

 XR_SPACE_LOCATION_POSITION_TRACKED_BIT |

XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;

 const auto orientationOnlyTracked = XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT;

 if ((locationBuffer[i].locationFlags & positionAndOrientationTracked) ==

positionAndOrientationTracked) {

 // if the location is 6dof tracked

 do_something(locationBuffer[i].pose.position);

 do_something(locationBuffer[i].pose.orientation);

 const auto velocityValidBits =

 XR_SPACE_VELOCITY_LINEAR_VALID_BIT | XR_SPACE_VELOCITY_ANGULAR_VALID_BIT;

 if ((velocityBuffer[i].velocityFlags & velocityValidBits) ==

velocityValidBits) {

 do_something(velocityBuffer[i].linearVelocity);

 do_something(velocityBuffer[i].angularVelocity);

 }

 }

 else if ((locationBuffer[i].locationFlags & orientationOnlyTracked) ==

1430 | Chapter 14. List of Deprecated Extensions

orientationOnlyTracked) {

 // if the location is 3dof tracked

 do_something(locationBuffer[i].pose.orientation);

 if ((velocityBuffer[i].velocityFlags & XR_SPACE_VELOCITY_ANGULAR_VALID_BIT)

== XR_SPACE_VELOCITY_ANGULAR_VALID_BIT) {

 do_something(velocityBuffer[i].angularVelocity);

 }

 }

 }

}

New Object Types

New Flag Types

New Enum Constants

XrStructureType enumeration is extended with:

• XR_TYPE_SPACES_LOCATE_INFO_KHR

• XR_TYPE_SPACE_LOCATIONS_KHR

• XR_TYPE_SPACE_VELOCITIES_KHR

New Enums

New Structures

• XrSpacesLocateInfoKHR

• XrSpaceLocationsKHR

• XrSpaceLocationDataKHR

• XrSpaceVelocitiesKHR

• XrSpaceVelocityDataKHR

New Functions

• xrLocateSpacesKHR

Issues

Version History

• Revision 1, 2023-04-22 (Yin LI)

◦ Initial extension description

Chapter 14. List of Deprecated Extensions | 1431

14.2. XR_KHR_maintenance1

Name String

XR_KHR_maintenance1

Extension Type

Instance extension

Registered Extension Number

711

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_BD_controller_interaction

• Interacts with XR_EXT_hp_mixed_reality_controller

• Interacts with XR_EXT_samsung_odyssey_controller

• Interacts with XR_FB_touch_controller_pro

• Interacts with XR_HTCX_vive_tracker_interaction

• Interacts with XR_HTC_hand_interaction

• Interacts with XR_HTC_vive_cosmos_controller_interaction

• Interacts with XR_HTC_vive_focus3_controller_interaction

• Interacts with XR_HUAWEI_controller_interaction

• Interacts with XR_META_touch_controller_plus

• Interacts with XR_ML_ml2_controller_interaction

• Interacts with XR_MSFT_hand_interaction

• Interacts with XR_OPPO_controller_interaction

• Interacts with XR_YVR_controller_interaction

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2023-10-25

1432 | Chapter 14. List of Deprecated Extensions

IP Status

No known IP claims.

Contributors

Ron Bessems, Magic Leap

Karthik Kadappan, Magic Leap

Rylie Pavlik, Collabora

Nihav Jain, Google

Lachlan Ford, Google

John Kearney, Meta

Yin Li, Microsoft

Robert Blenkinsopp, Ultraleap

14.2.1. Overview

XR_KHR_maintenance1 adds a collection of minor features that were intentionally left out or overlooked

from the original OpenXR 1.0 release. All are promoted to the OpenXR 1.1 release.

// Provided by XR_KHR_maintenance1

// XrColor3fKHR is an alias for XrColor3f

typedef struct XrColor3f {

 float r;

 float g;

 float b;

} XrColor3f;

typedef XrColor3f XrColor3fKHR;

// Provided by XR_KHR_maintenance1

// XrExtent3DfKHR is an alias for XrExtent3Df

typedef struct XrExtent3Df {

 float width;

 float height;

 float depth;

} XrExtent3Df;

typedef XrExtent3Df XrExtent3DfKHR;

Chapter 14. List of Deprecated Extensions | 1433

// Provided by XR_KHR_maintenance1

// XrSpherefKHR is an alias for XrSpheref

typedef struct XrSpheref {

 XrPosef center;

 float radius;

} XrSpheref;

typedef XrSpheref XrSpherefKHR;

// Provided by XR_KHR_maintenance1

// XrBoxfKHR is an alias for XrBoxf

typedef struct XrBoxf {

 XrPosef center;

 XrExtent3Df extents;

} XrBoxf;

typedef XrBoxf XrBoxfKHR;

// Provided by XR_KHR_maintenance1

// XrFrustumfKHR is an alias for XrFrustumf

typedef struct XrFrustumf {

 XrPosef pose;

 XrFovf fov;

 float nearZ;

 float farZ;

} XrFrustumf;

typedef XrFrustumf XrFrustumfKHR;

14.2.2. New Structures

• XrBoxfKHR

• XrColor3fKHR

• XrExtent3DfKHR

• XrFrustumfKHR

• XrSpherefKHR

1434 | Chapter 14. List of Deprecated Extensions

14.2.3. New Enum Constants

• XR_KHR_MAINTENANCE1_EXTENSION_NAME

• XR_KHR_maintenance1_SPEC_VERSION

• Extending XrResult:

◦ XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED_KHR

◦ XR_ERROR_PERMISSION_INSUFFICIENT_KHR

14.2.4. Version History

• Revision 1, 2023-10-25 (Ron Bessems)

◦ Initial extension description

14.3. XR_EXT_hp_mixed_reality_controller

Name String

XR_EXT_hp_mixed_reality_controller

Extension Type

Instance extension

Registered Extension Number

96

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_dpad_binding

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2020-06-08

Chapter 14. List of Deprecated Extensions | 1435

IP Status

No known IP claims.

Contributors

Alain Zanchetta, Microsoft

Lachlan Ford, Microsoft

Alex Turner, Microsoft

Yin Li, Microsoft

Nathan Nuber, HP Inc.

Overview

This extension added a new interaction profile path for the HP Reverb G2 Controllers:

• /interaction_profiles/hp/mixed_reality_controller

Note

The interaction profile path /interaction_profiles/hp/mixed_reality_controller defined here does

not follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/hp/mixed_reality_controller_hp, to allow for modifications

when promoted to a KHR extension or the core specification.

Valid for the user paths

• /user/hand/left

• /user/hand/right

Supported component paths:

• On /user/hand/left only

◦ …/input/x/click

◦ …/input/y/click

• On /user/hand/right only

◦ …/input/a/click

◦ …/input/b/click

• On both hands

◦ …/input/menu/click

◦ …/input/squeeze/value

◦ …/input/trigger/value

◦ …/input/thumbstick/x

1436 | Chapter 14. List of Deprecated Extensions

◦ …/input/thumbstick/y

◦ …/input/thumbstick/click

◦ …/input/grip/pose

◦ …/input/aim/pose

◦ …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

Version History

• Revision 1, 2020-06-08 (Yin Li)

◦ Initial extension proposal

14.4. XR_EXT_local_floor

Name String

XR_EXT_local_floor

Chapter 14. List of Deprecated Extensions | 1437

Extension Type

Instance extension

Registered Extension Number

427

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2022-11-28

IP Status

No known IP claims.

Contributors

John Kearney, Meta

Alex Turner, Microsoft

Yin Li, Microsoft

Cass Everitt, Meta

Contacts

John Kearney, Meta

Overview

The core OpenXR spec contains two world-locked reference space XrSpace types in

XrReferenceSpaceType, XR_REFERENCE_SPACE_TYPE_LOCAL and XR_REFERENCE_SPACE_TYPE_STAGE with a

design goal that LOCAL space gets the user positioned correctly in XZ space and STAGE gets the user

positioned correctly in Y space.

As defined in the core OpenXR spec, LOCAL space is useful when an application needs to render seated-

scale content that is not positioned relative to the physical floor and STAGE space is useful when an

application needs to render standing-scale content that is relative to the physical floor.

The core OpenXR specification describes that standing-scale experiences are meant to use the STAGE

reference space. However, using the STAGE forces the user to move to the stage space in order to

operate their experience, rather than just standing locally where they are.

Definition of the space

1438 | Chapter 14. List of Deprecated Extensions

Similar to LOCAL space, the LOCAL_FLOOR reference space (XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR_EXT)

establishes a world-locked origin, gravity-aligned to exclude pitch and roll, with +Y up, +X to the right,

and -Z forward.

The location of the origin of the LOCAL_FLOOR space must match the LOCAL space in the X and Z

coordinates but not in the Y coordinate.

The orientation of the LOCAL_FLOOR space must match the LOCAL space.

If the STAGE space is supported, then the floor level (Y coordinate) of the LOCAL_FLOOR space and the STAGE

space must match.

If the STAGE space is not supported, then the runtime must give a best estimate of the floor level.

Note: The LOCAL_FLOOR space could be implemented by an application without support from the

runtime by using the difference between in the Y coordinate of the pose of the LOCAL and STAGE

reference spaces.

When this extension is enabled, a runtime must support XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR_EXT (in

xrEnumerateReferenceSpaces).

When a user needs to recenter LOCAL space, the LOCAL_FLOOR space will also be recentered.

When such a recentering occurs, the runtime must queue the

XrEventDataReferenceSpaceChangePending event, with the recentered LOCAL_FLOOR space origin only

taking effect for xrLocateSpace or xrLocateViews calls whose XrTime parameter is greater than or equal

to the changeTime provided in that event. Additionally, when the runtime changes the floor level (or the

floor level estimate), the runtime must queue this event.

New Object Types

New Flag Types

New Enum Constants

XrReferenceSpaceType enumeration is extended with:

• XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR_EXT

New Enums

New Structures

Examples

If a runtime does not support the local floor extension, an application can construct an equivalent

space using the LOCAL and STAGE spaces.

Chapter 14. List of Deprecated Extensions | 1439

extern XrSession session;

extern bool supportsStageSpace;

extern bool supportsLocalFloorExtension;

extern XrTime curtime; // previously initialized

XrSpace localFloorSpace = XR_NULL_HANDLE;

if (supportsLocalFloorExtension)

{

 XrReferenceSpaceCreateInfo localFloorCreateInfo{XR_TYPE_REFERENCE_SPACE_CREATE_INFO};

 localFloorCreateInfo.poseInReferenceSpace = {{0.f, 0.f, 0.f, 1.f}, {0.f, 0.f, 0.f}};

 localFloorCreateInfo.referenceSpaceType = XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR_EXT;

 CHK_XR(xrCreateReferenceSpace(session, &localFloorCreateInfo, &localFloorSpace));

}

else if (supportsStageSpace)

{

 XrSpace localSpace = XR_NULL_HANDLE;

 XrSpace stageSpace = XR_NULL_HANDLE;

 XrReferenceSpaceCreateInfo createInfo{XR_TYPE_REFERENCE_SPACE_CREATE_INFO};

 createInfo.poseInReferenceSpace.orientation.w = 1.f;

 createInfo.referenceSpaceType = XR_REFERENCE_SPACE_TYPE_LOCAL;

 CHK_XR(xrCreateReferenceSpace(session, &createInfo, &localSpace));

 createInfo.referenceSpaceType = XR_REFERENCE_SPACE_TYPE_STAGE;

 CHK_XR(xrCreateReferenceSpace(session, &createInfo, &stageSpace));

 XrSpaceLocation stageLoc{XR_TYPE_SPACE_LOCATION};

 CHK_XR(xrLocateSpace(stageSpace, localSpace, curtime, &stageLoc));

 CHK_XR(xrDestroySpace(localSpace));

 CHK_XR(xrDestroySpace(stageSpace));

 float floorOffset = stageLoc.pose.position.y;

 XrReferenceSpaceCreateInfo localFloorCreateInfo{XR_TYPE_REFERENCE_SPACE_CREATE_INFO};

 localFloorCreateInfo.referenceSpaceType = XR_REFERENCE_SPACE_TYPE_LOCAL;

 localFloorCreateInfo.poseInReferenceSpace = {{0.f, 0.f, 0.f, 1.f}, {0.f, floorOffset,

0.f}};

 CHK_XR(xrCreateReferenceSpace(session, &localFloorCreateInfo, &localFloorSpace));

}

else

{

 // We do not support local floor or stage - make an educated guess

 float floorOffset = -1.5;

 XrReferenceSpaceCreateInfo localFloorCreateInfo{XR_TYPE_REFERENCE_SPACE_CREATE_INFO};

1440 | Chapter 14. List of Deprecated Extensions

 localFloorCreateInfo.referenceSpaceType = XR_REFERENCE_SPACE_TYPE_LOCAL;

 localFloorCreateInfo.poseInReferenceSpace = {{0.f, 0.f, 0.f, 1.f}, {0.f, floorOffset,

0.f}};

 CHK_XR(xrCreateReferenceSpace(session, &localFloorCreateInfo, &localFloorSpace));

}

Issues

None

Version History

• Revision 1, 2022-11-28 (John Kearney)

◦ Initial draft

14.5. XR_EXT_palm_pose

Name String

XR_EXT_palm_pose

Extension Type

Instance extension

Registered Extension Number

177

Revision

3

Extension and Version Dependencies

OpenXR 1.0

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2022-05-23

IP Status

No known IP claims.

Contributors

Jack Pritz, Unity Technologies

Joe Ludwig, Valve

Rune Berg, Valve

Chapter 14. List of Deprecated Extensions | 1441

John Kearney, Facebook

Peter Kuhn, Unity Technologies

Lachlan Ford, Microsoft

Overview

This extension defines a new "standard pose identifier" for interaction profiles, named "palm_ext". The

new identifier is a pose that can be used to place application-specific visual content such as avatar

visuals that may or may not match human hands. This extension also adds a new input component

path using this "palm_ext" pose identifier to existing interaction profiles when active.

The application can use the …/input/palm_ext/pose component path to place visual content

representing the user’s physical hand location. Application visuals may depict, for example, realistic

human hands that are very simply animated or creative depictions such as an animal, an alien, or

robot limb extremity.

Note that this is not intended to be an alternative to extensions that perform hand tracking for more

complex use cases: the use of "palm" in the name is to reflect that it is a user-focused pose rather than a

held-object-focused pose. Note

OpenXR 1.1 replaces …/input/palm_ext/pose with …/input/grip_surface/pose. The

definitions of both poses are identical.

Pose Identifier

When this extension is active, a runtime must behave as if the following were added to the list of

Standard pose identifiers.

• palm_ext - a pose that allows applications to reliably anchor visual content relative to the user’s

physical hand, whether the user’s hand is tracked directly or its position and orientation is inferred

by a physical controller. The palm pose is defined as follows:

◦ The palm position: The user’s physical palm centroid, at the surface of the palm.

◦ The palm orientation’s +X axis: When a user is holding the controller and straightens their

index finger, the ray that is normal to the user’s palm (away from the palm in the left hand, into

the palm in the right hand).

◦ The palm orientation’s -Z axis: When a user is holding the controller and straightens their index

finger, the ray that is parallel to their finger’s pointing direction.

◦ The palm orientation’s +Y axis: orthogonal to +Z and +X using the right-hand rule.

1442 | Chapter 14. List of Deprecated Extensions

Figure 21. Example palm pose for (from left to right) a generic motion controller, tracked hand, and a digital

hand avatar). The X axis is depicted in red. The Y axis is depicted in green. The Z axis is depicted in blue.

This pose is explicitly static for rigid controller type devices. The pose of …/input/palm_ext/pose and

…/input/grip_surface/pose must be identical.

Interaction Profile Additions

When this extension is active, a runtime must accept the …/input/palm_ext/pose component path for all

interaction profiles that are valid for at least one of the user paths listed below listed below, including

those interaction profiles enabled through extensions. Actions bound to such palm input component

paths must behave as though those paths were listed in the original definition of an interaction profile.

Valid for the user paths

• /user/hand/left

• /user/hand/right

Supported component paths:

• On both user paths

◦ …/input/palm_ext/pose

Chapter 14. List of Deprecated Extensions | 1443

 Note

While this extension itself does not add the …/input/palm_ext/pose input component

path to interaction profiles defined in extensions, extension authors may update

existing extensions to add this path, or submit new extensions defining new

interaction profiles using this pose identifier and component path. For consistency, it

is recommended that the …/input/palm_ext/pose path in extension-defined interaction

profiles be specified as only valid when this XR_EXT_palm_pose extension is also

enabled.

This extension does pose a challenge to API layer implementers attempting to provide

interaction profile support through their layer. If a runtime implements

XR_EXT_palm_pose, and an application enables it, but such an API layer is unaware of it,

the runtime may "accept" (not error) the additional suggested binding but the layer

will not know to provide data or indicate an active binding. This behavior, while

unexpected, does not violate the specification, and does not substantially increase the

difficulty of providing additional input support using an API layer.

Version History

• Revision 1, 2020-07-26 (Jack Pritz)

◦ Initial extension proposal

• Revision 2, 2022-05-18 (Lachlan Ford)

◦ Modification and cleanup of extension proposal based on working group discussion.

• Revision 3, 2023-11-16 (Ron Bessems)

◦ Notes and clarification for the addition of …/input/grip_surface/pose to the core spec in OpenXR

1.1.

14.6. XR_EXT_samsung_odyssey_controller

Name String

XR_EXT_samsung_odyssey_controller

Extension Type

Instance extension

Registered Extension Number

95

Revision

1

1444 | Chapter 14. List of Deprecated Extensions

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_dpad_binding

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2020-06-08

IP Status

No known IP claims.

Contributors

Lachlan Ford, Microsoft

Alex Turner, Microsoft

Yin Li, Microsoft

Philippe Harscoet, Samsung Electronics

Overview

This extension enables the application to differentiate the newer form factor of motion controller

released with the Samsung Odyssey headset. It enables the application to customize the appearance

and experience of the controller differently from the original mixed reality motion controller.

This extension added a new interaction profile /interaction_profiles/samsung/odyssey_controller to

describe the Odyssey controller. The action bindings of this interaction profile work exactly the same

as the /interaction_profiles/microsoft/motion_controller in terms of valid user paths and supported

input and output component paths.

Note

The interaction profile path /interaction_profiles/samsung/odyssey_controller defined here does

not follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/samsung/odyssey_controller_samsung, to allow for

modifications when promoted to a KHR extension or the core specification.

If the application does not do its own custom rendering for specific motion controllers, it should avoid

using this extension and instead just use …/microsoft/motion_controller, as runtimes should treat both

controllers equally when applications declare action bindings only for that profile.

Chapter 14. List of Deprecated Extensions | 1445

If the application wants to customize rendering for specific motion controllers, it should setup the

suggested bindings for …/samsung/odyssey_controller the same as …/microsoft/motion_controller when

calling xrSuggestInteractionProfileBindings, and expect the same action bindings. Then the application

can listen to the XrEventDataInteractionProfileChanged event and inspect the returned interaction

profile from xrGetCurrentInteractionProfile to differentiate which controller is being used by the user,

and hence customize the appearance or experience of the motion controller specifically for the form

factor of …/samsung/odyssey_controller.

Version History

• Revision 1, 2020-06-08 (Yin Li)

◦ Initial extension proposal

14.7. XR_EXT_uuid

Name String

XR_EXT_uuid

Extension Type

Instance extension

Registered Extension Number

300

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2021-10-27

IP Status

No known IP claims.

Contributors

Darryl Gough, Microsoft

Yin Li, Microsoft

Alex Turner, Microsoft

David Fields, Microsoft

1446 | Chapter 14. List of Deprecated Extensions

Overview

This extension defines a Universally Unique Identifier that follows RFC 4122.

The XrUuidEXT structure is a 128-bit Universally Unique Identifier and is defined as:

// Provided by XR_EXT_uuid

// XrUuidEXT is an alias for XrUuid

typedef struct XrUuid {

 uint8_t data[XR_UUID_SIZE];

} XrUuid;

typedef XrUuid XrUuidEXT;

Member Descriptions

• data is a 128-bit Universally Unique Identifier.

The structure is composed of 16 octets, with the size and order of the fields defined in RFC 4122 section

4.1.2.

Valid Usage (Implicit)

• The XR_FB_spatial_entity extension must be enabled prior to using XrUuidEXT

New Object Types

New Flag Types

New Enum Constants

• XR_UUID_SIZE_EXT

New Enums

New Structures

• XrUuidEXT

New Functions

Issues

Chapter 14. List of Deprecated Extensions | 1447

https://www.rfc-editor.org/rfc/rfc4122.html
https://www.rfc-editor.org/rfc/rfc4122.html#section-4.1.2
https://www.rfc-editor.org/rfc/rfc4122.html#section-4.1.2

Version History

• Revision 1, 2021-10-27 (Darryl Gough)

◦ Initial extension description

14.8. XR_BD_controller_interaction

Name String

XR_BD_controller_interaction

Extension Type

Instance extension

Registered Extension Number

385

Revision

2

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_dpad_binding

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2023-08-10

IP Status*

No known IP claims.

Contributors

Baolin Fu, Bytedance

Shanliang Xu, Bytedance

Zhanrui Jia, Bytedance

Overview

This extension defines the interaction profile for PICO Neo3, PICO 4, and PICO G3 Controllers.

1448 | Chapter 14. List of Deprecated Extensions

BD(Bytedance) Controller interaction profile

Interaction profile path for PICO Neo3:

• /interaction_profiles/bytedance/pico_neo3_controller

Note

The interaction profile path /interaction_profiles/bytedance/pico_neo3_controller defined here

does not follow current rules for interaction profile names. If this extension were introduced

today, it would be called /interaction_profiles/bytedance/pico_neo3_controller_bd, to allow for

modifications when promoted to a KHR extension or the core specification.

Interaction profile path for PICO 4:

• /interaction_profiles/bytedance/pico4_controller

Note

The interaction profile path /interaction_profiles/bytedance/pico4_controller defined here does not

follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/bytedance/pico4_controller_bd, to allow for modifications

when promoted to a KHR extension or the core specification.

Interaction profile path for PICO G3:

• /interaction_profiles/bytedance/pico_g3_controller

Note

The interaction profile path /interaction_profiles/bytedance/pico_g3_controller defined here does

not follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/bytedance/pico_g3_controller_bd, to allow for modifications

when promoted to a KHR extension or the core specification.

Valid for user paths for pico_neo3_controller, pico4_controller, and pico_g3_controller:

• /user/hand/left

• /user/hand/right

Supported component paths for pico_neo3_controller:

• On /user/hand/left only:

Chapter 14. List of Deprecated Extensions | 1449

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

• …/input/menu/click

• …/input/system/click (may not be available for application use)

• …/input/trigger/click

• …/input/trigger/value

• …/input/trigger/touch

• …/input/thumbstick/y

• …/input/thumbstick/x

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/squeeze/click

• …/input/squeeze/value

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic

Supported component paths for pico4_controller:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/x/touch

◦ …/input/y/click

◦ …/input/y/touch

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

1450 | Chapter 14. List of Deprecated Extensions

◦ …/input/a/touch

◦ …/input/b/click

◦ …/input/b/touch

• …/input/system/click (may not be available for application use)

• …/input/trigger/click

• …/input/trigger/value

• …/input/trigger/touch

• …/input/thumbstick/y

• …/input/thumbstick/x

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/squeeze/click

• …/input/squeeze/value

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic

Supported component paths for pico_g3_controller:

• …/input/trigger/click

• …/input/trigger/value

• …/input/menu/click

• …/input/grip/pose

• …/input/aim/pose

• …/input/thumbstick

• …/input/thumbstick/click

Be careful with the following difference:

• pico_neo3_controller supports …/input/menu/click both on /user/hand/left and /user/hand/right.

• pico4_controller supports …/input/menu/click only on /user/hand/left.

• pico_g3_controller has only one physical controller. When designing suggested bindings for this

interaction profile, you may suggest bindings for both /user/hand/left and /user/hand/right.

However, only one of them will be active at a given time, so do not design interactions that require

simultaneous use of both hands.

Chapter 14. List of Deprecated Extensions | 1451

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2023-01-04 (Baolin Fu)

◦ Initial extension description

• Revision 2, 2023-08-10 (Shanliang Xu)

1452 | Chapter 14. List of Deprecated Extensions

◦ Add support for G3 devices

14.9. XR_HTC_vive_cosmos_controller_interaction

Name String

XR_HTC_vive_cosmos_controller_interaction

Extension Type

Instance extension

Registered Extension Number

103

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_dpad_binding

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2020-09-28

IP Status

No known IP claims.

Contributors

Chris Kuo, HTC

Kyle Chen, HTC

Overview

This extension defines a new interaction profile for the VIVE Cosmos Controller.

VIVE Cosmos Controller interaction profile

Interaction profile path:

Chapter 14. List of Deprecated Extensions | 1453

• /interaction_profiles/htc/vive_cosmos_controller

Note

The interaction profile path /interaction_profiles/htc/vive_cosmos_controller defined here does

not follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/htc/vive_cosmos_controller_htc, to allow for modifications

when promoted to a KHR extension or the core specification.

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the VIVE Cosmos Controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/y/click

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/b/click

◦ …/input/system/click (may not be available for application use)

• …/input/shoulder/click

• …/input/squeeze/click

• …/input/trigger/click

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/grip/pose

• …/input/aim/pose

• …/output/haptic

1454 | Chapter 14. List of Deprecated Extensions

 Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2020-09-28 (Chris Kuo)

◦ Initial extension description

Chapter 14. List of Deprecated Extensions | 1455

14.10. XR_HTC_vive_focus3_controller_interaction

Name String

XR_HTC_vive_focus3_controller_interaction

Extension Type

Instance extension

Registered Extension Number

106

Revision

2

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_dpad_binding

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2022-04-29

IP Status

No known IP claims.

Contributors

Ria Hsu, HTC

Overview

This extension defines a new interaction profile for the VIVE Focus 3 Controller.

VIVE Focus 3 Controller interaction profile

Interaction profile path:

• /interaction_profiles/htc/vive_focus3_controller

1456 | Chapter 14. List of Deprecated Extensions

Note

The interaction profile path /interaction_profiles/htc/vive_focus3_controller defined here does not

follow current rules for interaction profile names. If this extension were introduced today, it

would be called /interaction_profiles/htc/vive_focus3_controller_htc, to allow for modifications

when promoted to a KHR extension or the core specification.

Valid for user paths:

• /user/hand/left

• /user/hand/right

This interaction profile represents the input sources and haptics on the VIVE Focus 3 Controller.

Supported component paths:

• On /user/hand/left only:

◦ …/input/x/click

◦ …/input/y/click

◦ …/input/menu/click

• On /user/hand/right only:

◦ …/input/a/click

◦ …/input/b/click

◦ …/input/system/click (may not be available for application use)

• …/input/squeeze/click

• …/input/squeeze/touch

• …/input/squeeze/value

• …/input/trigger/click

• …/input/trigger/touch

• …/input/trigger/value

• …/input/thumbstick/x

• …/input/thumbstick/y

• …/input/thumbstick/click

• …/input/thumbstick/touch

• …/input/thumbrest/touch

• …/input/grip/pose

Chapter 14. List of Deprecated Extensions | 1457

• …/input/aim/pose

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2022-01-03 (Ria Hsu)

1458 | Chapter 14. List of Deprecated Extensions

◦ Initial extension description

• Revision 2, 2022-04-29 (Ria Hsu)

◦ Support component path "/input/squeeze/value"

14.11. XR_ML_ml2_controller_interaction

Name String

XR_ML_ml2_controller_interaction

Extension Type

Instance extension

Registered Extension Number

135

Revision

1

Extension and Version Dependencies

OpenXR 1.0

API Interactions

• Interacts with XR_EXT_dpad_binding

• Interacts with XR_EXT_hand_interaction

• Interacts with XR_EXT_palm_pose

Deprecation State

• Promoted to OpenXR 1.1

Last Modified Date

2022-07-22

IP Status

No known IP claims.

Contributors

Ron Bessems, Magic Leap

Rafael Wiltz, Magic Leap

Overview

This extension defines the interaction profile for the Magic Leap 2 Controller.

Magic Leap 2 Controller interaction profile

Chapter 14. List of Deprecated Extensions | 1459

This interaction profile represents the input sources and haptics on the Magic Leap 2 Controller.

Interaction profile path:

• /interaction_profiles/ml/ml2_controller

Note

The interaction profile path /interaction_profiles/ml/ml2_controller defined here does not follow

current rules for interaction profile names. If this extension were introduced today, it would be

called /interaction_profiles/ml/ml2_controller_ml, to allow for modifications when promoted to a

KHR extension or the core specification.

Valid for user paths:

• /user/hand/left

• /user/hand/right

Supported component paths:

• …/input/menu/click

• …/input/home/click (may not be available for application use)

• …/input/trigger/click

• …/input/trigger/value

• …/input/trackpad/y

• …/input/trackpad/x

• …/input/trackpad/click

• …/input/trackpad/force

• …/input/trackpad/touch

• …/input/grip/pose

• …/input/aim/pose

• …/input/shoulder/click

• …/output/haptic Note

When the runtime supports XR_VERSION_1_1 and use of OpenXR 1.1 is requested by the

application, this interaction profile must also support

• …/input/grip_surface/pose

1460 | Chapter 14. List of Deprecated Extensions

 Note

When the XR_KHR_maintenance1 extension is available and enabled, this interaction

profile must also support

• …/input/grip_surface/pose Note

When the XR_EXT_palm_pose extension is available and enabled, this interaction profile

must also support

• …/input/palm_ext/pose Note

When the XR_EXT_hand_interaction extension is available and enabled, this interaction

profile must also support

• …/input/pinch_ext/pose

• …/input/poke_ext/pose

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2022-07-22 (Ron Bessems)

◦ Initial extension description

14.12. XR_MND_swapchain_usage_input_attachment_bit

Name String

XR_MND_swapchain_usage_input_attachment_bit

Chapter 14. List of Deprecated Extensions | 1461

Extension Type

Instance extension

Registered Extension Number

97

Revision

2

Extension and Version Dependencies

OpenXR 1.0

Deprecation State

• Deprecated by XR_KHR_swapchain_usage_input_attachment_bit extension

Last Modified Date

2020-07-24

IP Status

No known IP claims.

Contributors

Jakob Bornecrantz, Collabora

Overview

This extension enables an application to specify that swapchain images should be created in a way so

that they can be used as input attachments. At the time of writing this bit only affects Vulkan

swapchains.

New Object Types

New Flag Types

New Enum Constants

XrSwapchainUsageFlagBits enumeration is extended with:

• XR_SWAPCHAIN_USAGE_INPUT_ATTACHMENT_BIT_MND

New Enums

New Structures

New Functions

Issues

1462 | Chapter 14. List of Deprecated Extensions

Version History

• Revision 1, 2020-07-23 (Jakob Bornecrantz)

◦ Initial draft

• Revision 2, 2020-07-24 (Jakob Bornecrantz)

◦ Added note about only affecting Vulkan

◦ Changed from MNDX to MND

14.13. XR_OCULUS_android_session_state_enable

Name String

XR_OCULUS_android_session_state_enable

Extension Type

Instance extension

Registered Extension Number

45

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Deprecation State

• Deprecated without replacement

Overview

This extension enables the integration of the Android session lifecycle and an OpenXR runtime session

state. Some OpenXR runtimes may require this extension to transition the application to the session

READY or STOPPING state.

Applications that run on an Android system with this extension enabled have a different OpenXR

Session state flow.

On Android, it is the Android Activity lifecycle that will dictate when the system is ready for the

application to begin or end its session, not the runtime.

When XR_OCULUS_android_session_state is enabled, the following changes are made to Session State

handling:

• The runtime does not determine when the application’s session should be moved to the ready state,

Chapter 14. List of Deprecated Extensions | 1463

XR_SESSION_STATE_READY. The application should not wait to receive the XR_SESSION_STATE_READY

session state changed event before beginning a session. Instead, the application should begin their

session once there is a surface and the activity is resumed.

• The application should not call xrRequestExitSession to request the session move to the stopping

state, XR_SESSION_STATE_STOPPING. xrRequestExitSession will return XR_ERROR_VALIDATION_FAILURE if

called.

• The application should not wait to receive the XR_SESSION_STATE_STOPPING session state changed

event before ending a session. Instead, the application should end its session once the surface is

destroyed or the activity is paused.

• The runtime will not transition to XR_SESSION_STATE_READY or XR_SESSION_STATE_STOPPING as the state

is implicit from the Android activity and surface lifecycles.

Android Activity life cycle

An Android Activity can only be in the session running state while the activity is in the resumed state.

The following shows how beginning and ending an XR session fits into the Android Activity life cycle.

 1. VrActivity::onCreate() <---------+

 2. VrActivity::onStart() <-------+ |

 3. VrActivity::onResume() <---+ | |

 4. xrBeginSession() | | |

 5. xrEndSession() | | |

 6. VrActivity::onPause() -----+ | |

 7. VrActivity::onStop() ---------+ |

 8. VrActivity::onDestroy() ---------+

Android Surface life cycle

An Android Activity can only be in the session running state while there is a valid Android Surface.

The following shows how beginning and ending an XR session fits into the Android Surface life cycle.

 1. VrActivity::surfaceCreated() <----+

 2. VrActivity::surfaceChanged() |

 3. xrBeginSession() |

 4. xrEndSession() |

 5. VrActivity::surfaceDestroyed() ---+

Note that the life cycle of a surface is not necessarily tightly coupled with the life cycle of an activity.

These two life cycles may interleave in complex ways. Usually surfaceCreated() is called after

onResume() and surfaceDestroyed() is called between onPause() and onDestroy(). However, this is not

guaranteed and, for instance, surfaceDestroyed() may be called after onDestroy() or even before

onPause().

1464 | Chapter 14. List of Deprecated Extensions

An Android Activity is only in the resumed state with a valid Android Surface between

surfaceChanged() or onResume(), whichever comes last, and surfaceDestroyed() or onPause(),

whichever comes first. In other words, a XR application will typically begin the session from

surfaceChanged() or onResume(), whichever comes last, and end the session from surfaceDestroyed()

or onPause(), whichever comes first.

New Object Types

New Flag Types

New Enum Constants

New Enums

New Structures

New Functions

Issues

Version History

• Revision 1, 2019-08-16 (Cass Everitt)

◦ Initial extension description

14.14. XR_VARJO_quad_views

Name String

XR_VARJO_quad_views

Extension Type

Instance extension

Registered Extension Number

38

Revision

1

Extension and Version Dependencies

OpenXR 1.0

Deprecation State

• Promoted to OpenXR 1.1

Chapter 14. List of Deprecated Extensions | 1465

Last Modified Date

2019-04-16

IP Status

No known IP claims.

Contributors

Sergiy Dubovik, Varjo Technologies

Rémi Arnaud, Varjo Technologies

Robert Menzel, NVIDIA

14.14.1. Overview

This extension adds a new view configuration type - XR_VIEW_CONFIGURATION_TYPE_PRIMARY_QUAD_VARJO to

XrViewConfigurationType which can be returned by xrEnumerateViewConfigurations to indicate that

the runtime supports 4 viewports.

In this configuration each eye consists of two viewports of which one is smaller (in terms of field of

view) of the other and fully included inside of the larger FoV one. The small FoV viewport however can

have a higher resolution with respect to the same field of view in the outer viewport. The motivation is

special hardware which superimposes a smaller, high resolution screen for the fovea region onto a

larger screen for the periphery.

The runtime guarantees that the inner viewport of each eye is fully inside of the outer viewport.

To enumerate the 4 views xrEnumerateViewConfigurationViews can be used. The first two views

(XrViewConfigurationView) will be for the left and right eyes for the outer viewport. The views 2 and 3

are for the left and right eyes for the inner viewport.

The relative position of the inner views relative to the outer views can change at run-time.

The runtime might blend between the views at the edges, so the application should not omit the inner

field of view from being generated in the outer view.

New Object Types

New Flag Types

New Enum Constants

XrViewConfigurationType enumeration is extended with:

• XR_VIEW_CONFIGURATION_TYPE_PRIMARY_QUAD_VARJO

New Enums

New Structures

1466 | Chapter 14. List of Deprecated Extensions

New Functions

Issues

Version History

• Revision 1, 2019-04-16 (Sergiy Dubovik)

◦ Initial draft

Chapter 14. List of Deprecated Extensions | 1467

Chapter 15. Core Revisions (Informative)

New minor versions of the OpenXR API are defined periodically by the Khronos OpenXR Working

Group. These consist of some amount of additional functionality added to the core API, potentially

including both new functionality and functionality promoted from extensions.

15.1. Version 1.1

15.1.1. OpenXR 1.1 Promotions

OpenXR version 1.1 promoted a number of key extensions into the core API:

• XR_KHR_locate_spaces

• XR_KHR_maintenance1

• XR_EXT_hp_mixed_reality_controller

• XR_EXT_local_floor

• XR_EXT_palm_pose

• XR_EXT_samsung_odyssey_controller

• XR_EXT_uuid

• XR_BD_controller_interaction

• XR_HTC_vive_cosmos_controller_interaction

• XR_HTC_vive_focus3_controller_interaction

• XR_ML_ml2_controller_interaction

• XR_VARJO_quad_views

All differences in behavior between these extensions and the corresponding OpenXR 1.1 functionality

are summarized below.

Differences Relative to XR_EXT_local_floor

The definition of this space was made more precise, and it was clarified that the mandatory support of

this space does not dictate any particular quality of floor level estimation. Applications that can

provide a head-relative interaction experience in the absence of a defined stage continue to use LOCAL

space, while those that need higher quality assertions about floor level continue to use STAGE space or

scene understanding extensions to detect floor level. The (mandatory) presence of this space when

enumerating reference spaces is a convenience for portability rather than an assertion that e.g. floor

detection scene understanding has taken place or that the floor is inherently walkable.

1468 | Chapter 15. Core Revisions (Informative)

Differences Relative to XR_EXT_palm_pose

The input identifier palm_ext defined in the extension has been renamed to grip_surface to more

clearly describe its intended use and distinguish it from hand tracking.

Differences Relative to XR_VARJO_quad_views

The view configuration type enumerant XR_VIEW_CONFIGURATION_TYPE_PRIMARY_QUAD_VARJO was renamed

to XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET, to clarify that it is not vendor-

specific nor the only way four views are possible. In OpenXR 1.1, a runtime may support

XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET, but this is optional like the other

view configuration types. Use xrEnumerateViewConfigurations to determine if it is provided, rather

than using the presence or absence of the extension.

15.1.2. Additional OpenXR 1.1 Changes

In addition to the promoted extensions described above, OpenXR 1.1 changed the following:

• Substantial clarifications in the input and fundamentals chapters, intended to be non-substantive.

• Added the following legacy interaction profiles to represent specific controllers shipped under the

Oculus/Meta Touch name and previously grouped into a single Oculus Touch interaction profile:

◦ /interaction_profiles/meta/touch_controller_rift_cv1 - Meta Touch Controller (Rift CV1) Profile

◦ /interaction_profiles/meta/touch_controller_quest_1_rift_s - Meta Touch Controller (Rift S / Quest

1) Profile

◦ /interaction_profiles/meta/touch_controller_quest_2 - Meta Touch Controller (Quest 2) Profile

15.1.3. New Commands

• xrLocateSpaces

15.1.4. New Structures

• XrBoxf

• XrColor3f

• XrExtent3Df

• XrFrustumf

• XrSpaceLocationData

• XrSpaceLocations

• XrSpaceVelocityData

• XrSpacesLocateInfo

• XrSpheref

Chapter 15. Core Revisions (Informative) | 1469

• XrUuid

• Extending XrSpaceLocations:

◦ XrSpaceVelocities

15.1.5. New Enum Constants

• XR_UUID_SIZE

• Extending XrReferenceSpaceType:

◦ XR_REFERENCE_SPACE_TYPE_LOCAL_FLOOR

• Extending XrResult:

◦ XR_ERROR_EXTENSION_DEPENDENCY_NOT_ENABLED

◦ XR_ERROR_PERMISSION_INSUFFICIENT

• Extending XrStructureType:

◦ XR_TYPE_SPACES_LOCATE_INFO

◦ XR_TYPE_SPACE_LOCATIONS

◦ XR_TYPE_SPACE_VELOCITIES

• Extending XrViewConfigurationType:

◦ XR_VIEW_CONFIGURATION_TYPE_PRIMARY_STEREO_WITH_FOVEATED_INSET

15.2. Loader Runtime and API Layer Negotiation Version

1.0

The OpenXR version 1.0.33 patch release included ratification of the runtime and API layer negotiation

API, associated with the identifier XR_LOADER_VERSION_1_0, substantially unchanged from the unratified

form previously described in the loader design document. This interface is intended for use only

between the loader, runtimes, and API layers, and is not typically directly used by an application.

15.2.1. New Macros

• XR_API_LAYER_CREATE_INFO_STRUCT_VERSION

• XR_API_LAYER_INFO_STRUCT_VERSION

• XR_API_LAYER_MAX_SETTINGS_PATH_SIZE

• XR_API_LAYER_NEXT_INFO_STRUCT_VERSION

• XR_CURRENT_LOADER_API_LAYER_VERSION

• XR_CURRENT_LOADER_RUNTIME_VERSION

• XR_LOADER_INFO_STRUCT_VERSION

1470 | Chapter 15. Core Revisions (Informative)

• XR_RUNTIME_INFO_STRUCT_VERSION

15.2.2. New Commands

• xrCreateApiLayerInstance

• xrNegotiateLoaderApiLayerInterface

• xrNegotiateLoaderRuntimeInterface

15.3. Version 1.0

OpenXR version 1.0 defined the initial core API.

15.3.1. New Macros

• XR_CURRENT_API_VERSION

• XR_DEFINE_HANDLE

• XR_DEFINE_OPAQUE_64

• XR_EXTENSION_ENUM_BASE

• XR_EXTENSION_ENUM_STRIDE

• XR_FAILED

• XR_FREQUENCY_UNSPECIFIED

• XR_INFINITE_DURATION

• XR_MAX_EVENT_DATA_SIZE

• XR_MAY_ALIAS

• XR_MIN_COMPOSITION_LAYERS_SUPPORTED

• XR_MIN_HAPTIC_DURATION

• XR_NO_DURATION

• XR_NULL_HANDLE

• XR_NULL_PATH

• XR_NULL_SYSTEM_ID

• XR_SUCCEEDED

• XR_UNQUALIFIED_SUCCESS

• XR_VERSION_MAJOR

• XR_VERSION_MINOR

• XR_VERSION_PATCH

Chapter 15. Core Revisions (Informative) | 1471

15.3.2. New Base Types

• XrVersion

15.3.3. New Commands

• xrAcquireSwapchainImage

• xrApplyHapticFeedback

• xrAttachSessionActionSets

• xrBeginFrame

• xrBeginSession

• xrCreateAction

• xrCreateActionSet

• xrCreateActionSpace

• xrCreateInstance

• xrCreateReferenceSpace

• xrCreateSession

• xrCreateSwapchain

• xrDestroyAction

• xrDestroyActionSet

• xrDestroyInstance

• xrDestroySession

• xrDestroySpace

• xrDestroySwapchain

• xrEndFrame

• xrEndSession

• xrEnumerateApiLayerProperties

• xrEnumerateBoundSourcesForAction

• xrEnumerateEnvironmentBlendModes

• xrEnumerateInstanceExtensionProperties

• xrEnumerateReferenceSpaces

• xrEnumerateSwapchainFormats

• xrEnumerateSwapchainImages

• xrEnumerateViewConfigurationViews

1472 | Chapter 15. Core Revisions (Informative)

• xrEnumerateViewConfigurations

• xrGetActionStateBoolean

• xrGetActionStateFloat

• xrGetActionStatePose

• xrGetActionStateVector2f

• xrGetCurrentInteractionProfile

• xrGetInputSourceLocalizedName

• xrGetInstanceProcAddr

• xrGetInstanceProperties

• xrGetReferenceSpaceBoundsRect

• xrGetSystem

• xrGetSystemProperties

• xrGetViewConfigurationProperties

• xrLocateSpace

• xrLocateViews

• xrPathToString

• xrPollEvent

• xrReleaseSwapchainImage

• xrRequestExitSession

• xrResultToString

• xrStopHapticFeedback

• xrStringToPath

• xrStructureTypeToString

• xrSuggestInteractionProfileBindings

• xrSyncActions

• xrWaitFrame

• xrWaitSwapchainImage

15.3.4. New Structures

• XrBaseInStructure

• XrBaseOutStructure

• XrColor4f

• XrCompositionLayerProjection

Chapter 15. Core Revisions (Informative) | 1473

• XrCompositionLayerQuad

• XrEventDataBaseHeader

• XrEventDataEventsLost

• XrEventDataInstanceLossPending

• XrEventDataInteractionProfileChanged

• XrEventDataReferenceSpaceChangePending

• XrEventDataSessionStateChanged

• XrExtent2Df

• XrHapticVibration

• XrOffset2Df

• XrRect2Df

• XrVector4f

• Extending XrSpaceLocation:

◦ XrSpaceVelocity

15.3.5. New Enums

• XrObjectType

15.3.6. New Headers

• openxr_platform_defines

15.3.7. New Enum Constants

• XR_FALSE

• XR_MAX_API_LAYER_DESCRIPTION_SIZE

• XR_MAX_API_LAYER_NAME_SIZE

• XR_MAX_APPLICATION_NAME_SIZE

• XR_MAX_ENGINE_NAME_SIZE

• XR_MAX_EXTENSION_NAME_SIZE

• XR_MAX_PATH_LENGTH

• XR_MAX_RESULT_STRING_SIZE

• XR_MAX_RUNTIME_NAME_SIZE

• XR_MAX_STRUCTURE_NAME_SIZE

• XR_MAX_SYSTEM_NAME_SIZE

1474 | Chapter 15. Core Revisions (Informative)

• XR_TRUE

Chapter 15. Core Revisions (Informative) | 1475

Appendix

Code Style Conventions

These are the code style conventions used in this specification to define the API.

Conventions

• Enumerants and defines are all upper case with words separated by an underscore.

• Neither type, function or member names contain underscores.

• Structure members start with a lower case character and each consecutive word starts with a

capital.

• A structure that has a pointer to an array includes a structure member named fooCount of

type uint32_t to denote the number of elements in the array of foo.

• A structure that has a pointer to an array lists the fooCount member first and then the array

pointer.

• Unless a negative value has a clearly defined meaning all fooCount variables are unsigned.

• Function parameters that are modified are always listed last.

Prefixes are used in the API to denote specific semantic meaning of names, or as a label to avoid name

clashes, and are explained here:

Prefix Description

XR_ Enumerants and defines are prefixed with these

characters.

Xr Non-function-pointer types are prefixed with

these characters.

xr Functions are prefixed with these characters.

PFN_xr Function pointer types are prefixed with these

characters.

Application Binary Interface

This section describes additional definitions and conventions that define the application binary

interface.

1476 | Appendix

Structure Types

typedef enum XrStructureType {

 XR_TYPE_UNKNOWN = 0,

 XR_TYPE_API_LAYER_PROPERTIES = 1,

 XR_TYPE_EXTENSION_PROPERTIES = 2,

 XR_TYPE_INSTANCE_CREATE_INFO = 3,

 XR_TYPE_SYSTEM_GET_INFO = 4,

 XR_TYPE_SYSTEM_PROPERTIES = 5,

 XR_TYPE_VIEW_LOCATE_INFO = 6,

 XR_TYPE_VIEW = 7,

 XR_TYPE_SESSION_CREATE_INFO = 8,

 XR_TYPE_SWAPCHAIN_CREATE_INFO = 9,

 XR_TYPE_SESSION_BEGIN_INFO = 10,

 XR_TYPE_VIEW_STATE = 11,

 XR_TYPE_FRAME_END_INFO = 12,

 XR_TYPE_HAPTIC_VIBRATION = 13,

 XR_TYPE_EVENT_DATA_BUFFER = 16,

 XR_TYPE_EVENT_DATA_INSTANCE_LOSS_PENDING = 17,

 XR_TYPE_EVENT_DATA_SESSION_STATE_CHANGED = 18,

 XR_TYPE_ACTION_STATE_BOOLEAN = 23,

 XR_TYPE_ACTION_STATE_FLOAT = 24,

 XR_TYPE_ACTION_STATE_VECTOR2F = 25,

 XR_TYPE_ACTION_STATE_POSE = 27,

 XR_TYPE_ACTION_SET_CREATE_INFO = 28,

 XR_TYPE_ACTION_CREATE_INFO = 29,

 XR_TYPE_INSTANCE_PROPERTIES = 32,

 XR_TYPE_FRAME_WAIT_INFO = 33,

 XR_TYPE_COMPOSITION_LAYER_PROJECTION = 35,

 XR_TYPE_COMPOSITION_LAYER_QUAD = 36,

 XR_TYPE_REFERENCE_SPACE_CREATE_INFO = 37,

 XR_TYPE_ACTION_SPACE_CREATE_INFO = 38,

 XR_TYPE_EVENT_DATA_REFERENCE_SPACE_CHANGE_PENDING = 40,

 XR_TYPE_VIEW_CONFIGURATION_VIEW = 41,

 XR_TYPE_SPACE_LOCATION = 42,

 XR_TYPE_SPACE_VELOCITY = 43,

 XR_TYPE_FRAME_STATE = 44,

 XR_TYPE_VIEW_CONFIGURATION_PROPERTIES = 45,

 XR_TYPE_FRAME_BEGIN_INFO = 46,

 XR_TYPE_COMPOSITION_LAYER_PROJECTION_VIEW = 48,

 XR_TYPE_EVENT_DATA_EVENTS_LOST = 49,

 XR_TYPE_INTERACTION_PROFILE_SUGGESTED_BINDING = 51,

 XR_TYPE_EVENT_DATA_INTERACTION_PROFILE_CHANGED = 52,

 XR_TYPE_INTERACTION_PROFILE_STATE = 53,

 XR_TYPE_SWAPCHAIN_IMAGE_ACQUIRE_INFO = 55,

Appendix | 1477

 XR_TYPE_SWAPCHAIN_IMAGE_WAIT_INFO = 56,

 XR_TYPE_SWAPCHAIN_IMAGE_RELEASE_INFO = 57,

 XR_TYPE_ACTION_STATE_GET_INFO = 58,

 XR_TYPE_HAPTIC_ACTION_INFO = 59,

 XR_TYPE_SESSION_ACTION_SETS_ATTACH_INFO = 60,

 XR_TYPE_ACTIONS_SYNC_INFO = 61,

 XR_TYPE_BOUND_SOURCES_FOR_ACTION_ENUMERATE_INFO = 62,

 XR_TYPE_INPUT_SOURCE_LOCALIZED_NAME_GET_INFO = 63,

 // Provided by XR_VERSION_1_1

 XR_TYPE_SPACES_LOCATE_INFO = 1000471000,

 // Provided by XR_VERSION_1_1

 XR_TYPE_SPACE_LOCATIONS = 1000471001,

 // Provided by XR_VERSION_1_1

 XR_TYPE_SPACE_VELOCITIES = 1000471002,

 // Provided by XR_KHR_composition_layer_cube

 XR_TYPE_COMPOSITION_LAYER_CUBE_KHR = 1000006000,

 // Provided by XR_KHR_android_create_instance

 XR_TYPE_INSTANCE_CREATE_INFO_ANDROID_KHR = 1000008000,

 // Provided by XR_KHR_composition_layer_depth

 XR_TYPE_COMPOSITION_LAYER_DEPTH_INFO_KHR = 1000010000,

 // Provided by XR_KHR_vulkan_swapchain_format_list

 XR_TYPE_VULKAN_SWAPCHAIN_FORMAT_LIST_CREATE_INFO_KHR = 1000014000,

 // Provided by XR_EXT_performance_settings

 XR_TYPE_EVENT_DATA_PERF_SETTINGS_EXT = 1000015000,

 // Provided by XR_KHR_composition_layer_cylinder

 XR_TYPE_COMPOSITION_LAYER_CYLINDER_KHR = 1000017000,

 // Provided by XR_KHR_composition_layer_equirect

 XR_TYPE_COMPOSITION_LAYER_EQUIRECT_KHR = 1000018000,

 // Provided by XR_EXT_debug_utils

 XR_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT = 1000019000,

 // Provided by XR_EXT_debug_utils

 XR_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT = 1000019001,

 // Provided by XR_EXT_debug_utils

 XR_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT = 1000019002,

 // Provided by XR_EXT_debug_utils

 XR_TYPE_DEBUG_UTILS_LABEL_EXT = 1000019003,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_WIN32_KHR = 1000023000,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_XLIB_KHR = 1000023001,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_XCB_KHR = 1000023002,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_WAYLAND_KHR = 1000023003,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_KHR = 1000023004,

 // Provided by XR_KHR_opengl_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_KHR = 1000023005,

1478 | Appendix

 // Provided by XR_KHR_opengl_es_enable

 XR_TYPE_GRAPHICS_BINDING_OPENGL_ES_ANDROID_KHR = 1000024001,

 // Provided by XR_KHR_opengl_es_enable

 XR_TYPE_SWAPCHAIN_IMAGE_OPENGL_ES_KHR = 1000024002,

 // Provided by XR_KHR_opengl_es_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_OPENGL_ES_KHR = 1000024003,

 // Provided by XR_KHR_vulkan_enable

 XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR = 1000025000,

 // Provided by XR_KHR_vulkan_enable

 XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR = 1000025001,

 // Provided by XR_KHR_vulkan_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR = 1000025002,

 // Provided by XR_KHR_D3D11_enable

 XR_TYPE_GRAPHICS_BINDING_D3D11_KHR = 1000027000,

 // Provided by XR_KHR_D3D11_enable

 XR_TYPE_SWAPCHAIN_IMAGE_D3D11_KHR = 1000027001,

 // Provided by XR_KHR_D3D11_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_D3D11_KHR = 1000027002,

 // Provided by XR_KHR_D3D12_enable

 XR_TYPE_GRAPHICS_BINDING_D3D12_KHR = 1000028000,

 // Provided by XR_KHR_D3D12_enable

 XR_TYPE_SWAPCHAIN_IMAGE_D3D12_KHR = 1000028001,

 // Provided by XR_KHR_D3D12_enable

 XR_TYPE_GRAPHICS_REQUIREMENTS_D3D12_KHR = 1000028002,

 // Provided by XR_EXT_eye_gaze_interaction

 XR_TYPE_SYSTEM_EYE_GAZE_INTERACTION_PROPERTIES_EXT = 1000030000,

 // Provided by XR_EXT_eye_gaze_interaction

 XR_TYPE_EYE_GAZE_SAMPLE_TIME_EXT = 1000030001,

 // Provided by XR_KHR_visibility_mask

 XR_TYPE_VISIBILITY_MASK_KHR = 1000031000,

 // Provided by XR_KHR_visibility_mask

 XR_TYPE_EVENT_DATA_VISIBILITY_MASK_CHANGED_KHR = 1000031001,

 // Provided by XR_EXTX_overlay

 XR_TYPE_SESSION_CREATE_INFO_OVERLAY_EXTX = 1000033000,

 // Provided by XR_EXTX_overlay

 XR_TYPE_EVENT_DATA_MAIN_SESSION_VISIBILITY_CHANGED_EXTX = 1000033003,

 // Provided by XR_KHR_composition_layer_color_scale_bias

 XR_TYPE_COMPOSITION_LAYER_COLOR_SCALE_BIAS_KHR = 1000034000,

 // Provided by XR_MSFT_spatial_anchor

 XR_TYPE_SPATIAL_ANCHOR_CREATE_INFO_MSFT = 1000039000,

 // Provided by XR_MSFT_spatial_anchor

 XR_TYPE_SPATIAL_ANCHOR_SPACE_CREATE_INFO_MSFT = 1000039001,

 // Provided by XR_FB_composition_layer_image_layout

 XR_TYPE_COMPOSITION_LAYER_IMAGE_LAYOUT_FB = 1000040000,

 // Provided by XR_FB_composition_layer_alpha_blend

 XR_TYPE_COMPOSITION_LAYER_ALPHA_BLEND_FB = 1000041001,

 // Provided by XR_EXT_view_configuration_depth_range

 XR_TYPE_VIEW_CONFIGURATION_DEPTH_RANGE_EXT = 1000046000,

Appendix | 1479

 // Provided by XR_MNDX_egl_enable

 XR_TYPE_GRAPHICS_BINDING_EGL_MNDX = 1000048004,

 // Provided by XR_MSFT_spatial_graph_bridge

 XR_TYPE_SPATIAL_GRAPH_NODE_SPACE_CREATE_INFO_MSFT = 1000049000,

 // Provided by XR_MSFT_spatial_graph_bridge

 XR_TYPE_SPATIAL_GRAPH_STATIC_NODE_BINDING_CREATE_INFO_MSFT = 1000049001,

 // Provided by XR_MSFT_spatial_graph_bridge

 XR_TYPE_SPATIAL_GRAPH_NODE_BINDING_PROPERTIES_GET_INFO_MSFT = 1000049002,

 // Provided by XR_MSFT_spatial_graph_bridge

 XR_TYPE_SPATIAL_GRAPH_NODE_BINDING_PROPERTIES_MSFT = 1000049003,

 // Provided by XR_EXT_hand_tracking

 XR_TYPE_SYSTEM_HAND_TRACKING_PROPERTIES_EXT = 1000051000,

 // Provided by XR_EXT_hand_tracking

 XR_TYPE_HAND_TRACKER_CREATE_INFO_EXT = 1000051001,

 // Provided by XR_EXT_hand_tracking

 XR_TYPE_HAND_JOINTS_LOCATE_INFO_EXT = 1000051002,

 // Provided by XR_EXT_hand_tracking

 XR_TYPE_HAND_JOINT_LOCATIONS_EXT = 1000051003,

 // Provided by XR_EXT_hand_tracking

 XR_TYPE_HAND_JOINT_VELOCITIES_EXT = 1000051004,

 // Provided by XR_MSFT_hand_tracking_mesh

 XR_TYPE_SYSTEM_HAND_TRACKING_MESH_PROPERTIES_MSFT = 1000052000,

 // Provided by XR_MSFT_hand_tracking_mesh

 XR_TYPE_HAND_MESH_SPACE_CREATE_INFO_MSFT = 1000052001,

 // Provided by XR_MSFT_hand_tracking_mesh

 XR_TYPE_HAND_MESH_UPDATE_INFO_MSFT = 1000052002,

 // Provided by XR_MSFT_hand_tracking_mesh

 XR_TYPE_HAND_MESH_MSFT = 1000052003,

 // Provided by XR_MSFT_hand_tracking_mesh

 XR_TYPE_HAND_POSE_TYPE_INFO_MSFT = 1000052004,

 // Provided by XR_MSFT_secondary_view_configuration

 XR_TYPE_SECONDARY_VIEW_CONFIGURATION_SESSION_BEGIN_INFO_MSFT = 1000053000,

 // Provided by XR_MSFT_secondary_view_configuration

 XR_TYPE_SECONDARY_VIEW_CONFIGURATION_STATE_MSFT = 1000053001,

 // Provided by XR_MSFT_secondary_view_configuration

 XR_TYPE_SECONDARY_VIEW_CONFIGURATION_FRAME_STATE_MSFT = 1000053002,

 // Provided by XR_MSFT_secondary_view_configuration

 XR_TYPE_SECONDARY_VIEW_CONFIGURATION_FRAME_END_INFO_MSFT = 1000053003,

 // Provided by XR_MSFT_secondary_view_configuration

 XR_TYPE_SECONDARY_VIEW_CONFIGURATION_LAYER_INFO_MSFT = 1000053004,

 // Provided by XR_MSFT_secondary_view_configuration

 XR_TYPE_SECONDARY_VIEW_CONFIGURATION_SWAPCHAIN_CREATE_INFO_MSFT = 1000053005,

 // Provided by XR_MSFT_controller_model

 XR_TYPE_CONTROLLER_MODEL_KEY_STATE_MSFT = 1000055000,

 // Provided by XR_MSFT_controller_model

 XR_TYPE_CONTROLLER_MODEL_NODE_PROPERTIES_MSFT = 1000055001,

 // Provided by XR_MSFT_controller_model

 XR_TYPE_CONTROLLER_MODEL_PROPERTIES_MSFT = 1000055002,

1480 | Appendix

 // Provided by XR_MSFT_controller_model

 XR_TYPE_CONTROLLER_MODEL_NODE_STATE_MSFT = 1000055003,

 // Provided by XR_MSFT_controller_model

 XR_TYPE_CONTROLLER_MODEL_STATE_MSFT = 1000055004,

 // Provided by XR_EPIC_view_configuration_fov

 XR_TYPE_VIEW_CONFIGURATION_VIEW_FOV_EPIC = 1000059000,

 // Provided by XR_MSFT_holographic_window_attachment

 XR_TYPE_HOLOGRAPHIC_WINDOW_ATTACHMENT_MSFT = 1000063000,

 // Provided by XR_MSFT_composition_layer_reprojection

 XR_TYPE_COMPOSITION_LAYER_REPROJECTION_INFO_MSFT = 1000066000,

 // Provided by XR_MSFT_composition_layer_reprojection

 XR_TYPE_COMPOSITION_LAYER_REPROJECTION_PLANE_OVERRIDE_MSFT = 1000066001,

 // Provided by XR_FB_android_surface_swapchain_create

 XR_TYPE_ANDROID_SURFACE_SWAPCHAIN_CREATE_INFO_FB = 1000070000,

 // Provided by XR_FB_composition_layer_secure_content

 XR_TYPE_COMPOSITION_LAYER_SECURE_CONTENT_FB = 1000072000,

 // Provided by XR_FB_body_tracking

 XR_TYPE_BODY_TRACKER_CREATE_INFO_FB = 1000076001,

 // Provided by XR_FB_body_tracking

 XR_TYPE_BODY_JOINTS_LOCATE_INFO_FB = 1000076002,

 // Provided by XR_FB_body_tracking

 XR_TYPE_SYSTEM_BODY_TRACKING_PROPERTIES_FB = 1000076004,

 // Provided by XR_FB_body_tracking

 XR_TYPE_BODY_JOINT_LOCATIONS_FB = 1000076005,

 // Provided by XR_FB_body_tracking

 XR_TYPE_BODY_SKELETON_FB = 1000076006,

 // Provided by XR_EXT_dpad_binding

 XR_TYPE_INTERACTION_PROFILE_DPAD_BINDING_EXT = 1000078000,

 // Provided by XR_VALVE_analog_threshold

 XR_TYPE_INTERACTION_PROFILE_ANALOG_THRESHOLD_VALVE = 1000079000,

 // Provided by XR_EXT_hand_joints_motion_range

 XR_TYPE_HAND_JOINTS_MOTION_RANGE_INFO_EXT = 1000080000,

 // Provided by XR_KHR_loader_init_android

 XR_TYPE_LOADER_INIT_INFO_ANDROID_KHR = 1000089000,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_VULKAN_INSTANCE_CREATE_INFO_KHR = 1000090000,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_VULKAN_DEVICE_CREATE_INFO_KHR = 1000090001,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_VULKAN_GRAPHICS_DEVICE_GET_INFO_KHR = 1000090003,

 // Provided by XR_KHR_composition_layer_equirect2

 XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR = 1000091000,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_OBSERVER_CREATE_INFO_MSFT = 1000097000,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_CREATE_INFO_MSFT = 1000097001,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_NEW_SCENE_COMPUTE_INFO_MSFT = 1000097002,

Appendix | 1481

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_VISUAL_MESH_COMPUTE_LOD_INFO_MSFT = 1000097003,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_COMPONENTS_MSFT = 1000097004,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_COMPONENTS_GET_INFO_MSFT = 1000097005,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_COMPONENT_LOCATIONS_MSFT = 1000097006,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_COMPONENTS_LOCATE_INFO_MSFT = 1000097007,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_OBJECTS_MSFT = 1000097008,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_COMPONENT_PARENT_FILTER_INFO_MSFT = 1000097009,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_OBJECT_TYPES_FILTER_INFO_MSFT = 1000097010,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_PLANES_MSFT = 1000097011,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_PLANE_ALIGNMENT_FILTER_INFO_MSFT = 1000097012,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_MESHES_MSFT = 1000097013,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_MESH_BUFFERS_GET_INFO_MSFT = 1000097014,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_MESH_BUFFERS_MSFT = 1000097015,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_MESH_VERTEX_BUFFER_MSFT = 1000097016,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_MESH_INDICES_UINT32_MSFT = 1000097017,

 // Provided by XR_MSFT_scene_understanding

 XR_TYPE_SCENE_MESH_INDICES_UINT16_MSFT = 1000097018,

 // Provided by XR_MSFT_scene_understanding_serialization

 XR_TYPE_SERIALIZED_SCENE_FRAGMENT_DATA_GET_INFO_MSFT = 1000098000,

 // Provided by XR_MSFT_scene_understanding_serialization

 XR_TYPE_SCENE_DESERIALIZE_INFO_MSFT = 1000098001,

 // Provided by XR_FB_display_refresh_rate

 XR_TYPE_EVENT_DATA_DISPLAY_REFRESH_RATE_CHANGED_FB = 1000101000,

 // Provided by XR_HTCX_vive_tracker_interaction

 XR_TYPE_VIVE_TRACKER_PATHS_HTCX = 1000103000,

 // Provided by XR_HTCX_vive_tracker_interaction

 XR_TYPE_EVENT_DATA_VIVE_TRACKER_CONNECTED_HTCX = 1000103001,

 // Provided by XR_HTC_facial_tracking

 XR_TYPE_SYSTEM_FACIAL_TRACKING_PROPERTIES_HTC = 1000104000,

 // Provided by XR_HTC_facial_tracking

 XR_TYPE_FACIAL_TRACKER_CREATE_INFO_HTC = 1000104001,

 // Provided by XR_HTC_facial_tracking

 XR_TYPE_FACIAL_EXPRESSIONS_HTC = 1000104002,

1482 | Appendix

 // Provided by XR_FB_color_space

 XR_TYPE_SYSTEM_COLOR_SPACE_PROPERTIES_FB = 1000108000,

 // Provided by XR_FB_hand_tracking_mesh

 XR_TYPE_HAND_TRACKING_MESH_FB = 1000110001,

 // Provided by XR_FB_hand_tracking_mesh

 XR_TYPE_HAND_TRACKING_SCALE_FB = 1000110003,

 // Provided by XR_FB_hand_tracking_aim

 XR_TYPE_HAND_TRACKING_AIM_STATE_FB = 1000111001,

 // Provided by XR_FB_hand_tracking_capsules

 XR_TYPE_HAND_TRACKING_CAPSULES_STATE_FB = 1000112000,

 // Provided by XR_FB_spatial_entity

 XR_TYPE_SYSTEM_SPATIAL_ENTITY_PROPERTIES_FB = 1000113004,

 // Provided by XR_FB_spatial_entity

 XR_TYPE_SPATIAL_ANCHOR_CREATE_INFO_FB = 1000113003,

 // Provided by XR_FB_spatial_entity

 XR_TYPE_SPACE_COMPONENT_STATUS_SET_INFO_FB = 1000113007,

 // Provided by XR_FB_spatial_entity

 XR_TYPE_SPACE_COMPONENT_STATUS_FB = 1000113001,

 // Provided by XR_FB_spatial_entity

 XR_TYPE_EVENT_DATA_SPATIAL_ANCHOR_CREATE_COMPLETE_FB = 1000113005,

 // Provided by XR_FB_spatial_entity

 XR_TYPE_EVENT_DATA_SPACE_SET_STATUS_COMPLETE_FB = 1000113006,

 // Provided by XR_FB_foveation

 XR_TYPE_FOVEATION_PROFILE_CREATE_INFO_FB = 1000114000,

 // Provided by XR_FB_foveation

 XR_TYPE_SWAPCHAIN_CREATE_INFO_FOVEATION_FB = 1000114001,

 // Provided by XR_FB_foveation

 XR_TYPE_SWAPCHAIN_STATE_FOVEATION_FB = 1000114002,

 // Provided by XR_FB_foveation_configuration

 XR_TYPE_FOVEATION_LEVEL_PROFILE_CREATE_INFO_FB = 1000115000,

 // Provided by XR_FB_keyboard_tracking

 XR_TYPE_KEYBOARD_SPACE_CREATE_INFO_FB = 1000116009,

 // Provided by XR_FB_keyboard_tracking

 XR_TYPE_KEYBOARD_TRACKING_QUERY_FB = 1000116004,

 // Provided by XR_FB_keyboard_tracking

 XR_TYPE_SYSTEM_KEYBOARD_TRACKING_PROPERTIES_FB = 1000116002,

 // Provided by XR_FB_triangle_mesh

 XR_TYPE_TRIANGLE_MESH_CREATE_INFO_FB = 1000117001,

 // Provided by XR_FB_passthrough

 XR_TYPE_SYSTEM_PASSTHROUGH_PROPERTIES_FB = 1000118000,

 // Provided by XR_FB_passthrough

 XR_TYPE_PASSTHROUGH_CREATE_INFO_FB = 1000118001,

 // Provided by XR_FB_passthrough

 XR_TYPE_PASSTHROUGH_LAYER_CREATE_INFO_FB = 1000118002,

 // Provided by XR_FB_passthrough

 XR_TYPE_COMPOSITION_LAYER_PASSTHROUGH_FB = 1000118003,

 // Provided by XR_FB_passthrough

 XR_TYPE_GEOMETRY_INSTANCE_CREATE_INFO_FB = 1000118004,

Appendix | 1483

 // Provided by XR_FB_passthrough

 XR_TYPE_GEOMETRY_INSTANCE_TRANSFORM_FB = 1000118005,

 // Provided by XR_FB_passthrough

 XR_TYPE_SYSTEM_PASSTHROUGH_PROPERTIES2_FB = 1000118006,

 // Provided by XR_FB_passthrough

 XR_TYPE_PASSTHROUGH_STYLE_FB = 1000118020,

 // Provided by XR_FB_passthrough

 XR_TYPE_PASSTHROUGH_COLOR_MAP_MONO_TO_RGBA_FB = 1000118021,

 // Provided by XR_FB_passthrough

 XR_TYPE_PASSTHROUGH_COLOR_MAP_MONO_TO_MONO_FB = 1000118022,

 // Provided by XR_FB_passthrough

 XR_TYPE_PASSTHROUGH_BRIGHTNESS_CONTRAST_SATURATION_FB = 1000118023,

 // Provided by XR_FB_passthrough

 XR_TYPE_EVENT_DATA_PASSTHROUGH_STATE_CHANGED_FB = 1000118030,

 // Provided by XR_FB_render_model

 XR_TYPE_RENDER_MODEL_PATH_INFO_FB = 1000119000,

 // Provided by XR_FB_render_model

 XR_TYPE_RENDER_MODEL_PROPERTIES_FB = 1000119001,

 // Provided by XR_FB_render_model

 XR_TYPE_RENDER_MODEL_BUFFER_FB = 1000119002,

 // Provided by XR_FB_render_model

 XR_TYPE_RENDER_MODEL_LOAD_INFO_FB = 1000119003,

 // Provided by XR_FB_render_model

 XR_TYPE_SYSTEM_RENDER_MODEL_PROPERTIES_FB = 1000119004,

 // Provided by XR_FB_render_model

 XR_TYPE_RENDER_MODEL_CAPABILITIES_REQUEST_FB = 1000119005,

 // Provided by XR_KHR_binding_modification

 XR_TYPE_BINDING_MODIFICATIONS_KHR = 1000120000,

 // Provided by XR_VARJO_foveated_rendering

 XR_TYPE_VIEW_LOCATE_FOVEATED_RENDERING_VARJO = 1000121000,

 // Provided by XR_VARJO_foveated_rendering

 XR_TYPE_FOVEATED_VIEW_CONFIGURATION_VIEW_VARJO = 1000121001,

 // Provided by XR_VARJO_foveated_rendering

 XR_TYPE_SYSTEM_FOVEATED_RENDERING_PROPERTIES_VARJO = 1000121002,

 // Provided by XR_VARJO_composition_layer_depth_test

 XR_TYPE_COMPOSITION_LAYER_DEPTH_TEST_VARJO = 1000122000,

 // Provided by XR_VARJO_marker_tracking

 XR_TYPE_SYSTEM_MARKER_TRACKING_PROPERTIES_VARJO = 1000124000,

 // Provided by XR_VARJO_marker_tracking

 XR_TYPE_EVENT_DATA_MARKER_TRACKING_UPDATE_VARJO = 1000124001,

 // Provided by XR_VARJO_marker_tracking

 XR_TYPE_MARKER_SPACE_CREATE_INFO_VARJO = 1000124002,

 // Provided by XR_ML_frame_end_info

 XR_TYPE_FRAME_END_INFO_ML = 1000135000,

 // Provided by XR_ML_global_dimmer

 XR_TYPE_GLOBAL_DIMMER_FRAME_END_INFO_ML = 1000136000,

 // Provided by XR_ML_compat

 XR_TYPE_COORDINATE_SPACE_CREATE_INFO_ML = 1000137000,

1484 | Appendix

 // Provided by XR_ML_marker_understanding

 XR_TYPE_SYSTEM_MARKER_UNDERSTANDING_PROPERTIES_ML = 1000138000,

 // Provided by XR_ML_marker_understanding

 XR_TYPE_MARKER_DETECTOR_CREATE_INFO_ML = 1000138001,

 // Provided by XR_ML_marker_understanding

 XR_TYPE_MARKER_DETECTOR_ARUCO_INFO_ML = 1000138002,

 // Provided by XR_ML_marker_understanding

 XR_TYPE_MARKER_DETECTOR_SIZE_INFO_ML = 1000138003,

 // Provided by XR_ML_marker_understanding

 XR_TYPE_MARKER_DETECTOR_APRIL_TAG_INFO_ML = 1000138004,

 // Provided by XR_ML_marker_understanding

 XR_TYPE_MARKER_DETECTOR_CUSTOM_PROFILE_INFO_ML = 1000138005,

 // Provided by XR_ML_marker_understanding

 XR_TYPE_MARKER_DETECTOR_SNAPSHOT_INFO_ML = 1000138006,

 // Provided by XR_ML_marker_understanding

 XR_TYPE_MARKER_DETECTOR_STATE_ML = 1000138007,

 // Provided by XR_ML_marker_understanding

 XR_TYPE_MARKER_SPACE_CREATE_INFO_ML = 1000138008,

 // Provided by XR_ML_localization_map

 XR_TYPE_LOCALIZATION_MAP_ML = 1000139000,

 // Provided by XR_ML_localization_map

 XR_TYPE_EVENT_DATA_LOCALIZATION_CHANGED_ML = 1000139001,

 // Provided by XR_ML_localization_map

 XR_TYPE_MAP_LOCALIZATION_REQUEST_INFO_ML = 1000139002,

 // Provided by XR_ML_localization_map

 XR_TYPE_LOCALIZATION_MAP_IMPORT_INFO_ML = 1000139003,

 // Provided by XR_ML_localization_map

 XR_TYPE_LOCALIZATION_ENABLE_EVENTS_INFO_ML = 1000139004,

 // Provided by XR_ML_user_calibration

 XR_TYPE_EVENT_DATA_HEADSET_FIT_CHANGED_ML = 1000472000,

 // Provided by XR_ML_user_calibration

 XR_TYPE_EVENT_DATA_EYE_CALIBRATION_CHANGED_ML = 1000472001,

 // Provided by XR_ML_user_calibration

 XR_TYPE_USER_CALIBRATION_ENABLE_EVENTS_INFO_ML = 1000472002,

 // Provided by XR_MSFT_spatial_anchor_persistence

 XR_TYPE_SPATIAL_ANCHOR_PERSISTENCE_INFO_MSFT = 1000142000,

 // Provided by XR_MSFT_spatial_anchor_persistence

 XR_TYPE_SPATIAL_ANCHOR_FROM_PERSISTED_ANCHOR_CREATE_INFO_MSFT = 1000142001,

 // Provided by XR_MSFT_scene_marker

 XR_TYPE_SCENE_MARKERS_MSFT = 1000147000,

 // Provided by XR_MSFT_scene_marker

 XR_TYPE_SCENE_MARKER_TYPE_FILTER_MSFT = 1000147001,

 // Provided by XR_MSFT_scene_marker

 XR_TYPE_SCENE_MARKER_QR_CODES_MSFT = 1000147002,

 // Provided by XR_FB_spatial_entity_query

 XR_TYPE_SPACE_QUERY_INFO_FB = 1000156001,

 // Provided by XR_FB_spatial_entity_query

 XR_TYPE_SPACE_QUERY_RESULTS_FB = 1000156002,

Appendix | 1485

 // Provided by XR_FB_spatial_entity_query

 XR_TYPE_SPACE_STORAGE_LOCATION_FILTER_INFO_FB = 1000156003,

 // Provided by XR_FB_spatial_entity_query

 XR_TYPE_SPACE_UUID_FILTER_INFO_FB = 1000156054,

 // Provided by XR_FB_spatial_entity_query

 XR_TYPE_SPACE_COMPONENT_FILTER_INFO_FB = 1000156052,

 // Provided by XR_FB_spatial_entity_query

 XR_TYPE_EVENT_DATA_SPACE_QUERY_RESULTS_AVAILABLE_FB = 1000156103,

 // Provided by XR_FB_spatial_entity_query

 XR_TYPE_EVENT_DATA_SPACE_QUERY_COMPLETE_FB = 1000156104,

 // Provided by XR_FB_spatial_entity_storage

 XR_TYPE_SPACE_SAVE_INFO_FB = 1000158000,

 // Provided by XR_FB_spatial_entity_storage

 XR_TYPE_SPACE_ERASE_INFO_FB = 1000158001,

 // Provided by XR_FB_spatial_entity_storage

 XR_TYPE_EVENT_DATA_SPACE_SAVE_COMPLETE_FB = 1000158106,

 // Provided by XR_FB_spatial_entity_storage

 XR_TYPE_EVENT_DATA_SPACE_ERASE_COMPLETE_FB = 1000158107,

 // Provided by XR_FB_foveation_vulkan

 XR_TYPE_SWAPCHAIN_IMAGE_FOVEATION_VULKAN_FB = 1000160000,

 // Provided by XR_FB_swapchain_update_state_android_surface

 XR_TYPE_SWAPCHAIN_STATE_ANDROID_SURFACE_DIMENSIONS_FB = 1000161000,

 // Provided by XR_FB_swapchain_update_state_opengl_es

 XR_TYPE_SWAPCHAIN_STATE_SAMPLER_OPENGL_ES_FB = 1000162000,

 // Provided by XR_FB_swapchain_update_state_vulkan

 XR_TYPE_SWAPCHAIN_STATE_SAMPLER_VULKAN_FB = 1000163000,

 // Provided by XR_FB_spatial_entity_sharing

 XR_TYPE_SPACE_SHARE_INFO_FB = 1000169001,

 // Provided by XR_FB_spatial_entity_sharing

 XR_TYPE_EVENT_DATA_SPACE_SHARE_COMPLETE_FB = 1000169002,

 // Provided by XR_FB_space_warp

 XR_TYPE_COMPOSITION_LAYER_SPACE_WARP_INFO_FB = 1000171000,

 // Provided by XR_FB_space_warp

 XR_TYPE_SYSTEM_SPACE_WARP_PROPERTIES_FB = 1000171001,

 // Provided by XR_FB_haptic_amplitude_envelope

 XR_TYPE_HAPTIC_AMPLITUDE_ENVELOPE_VIBRATION_FB = 1000173001,

 // Provided by XR_FB_scene

 XR_TYPE_SEMANTIC_LABELS_FB = 1000175000,

 // Provided by XR_FB_scene

 XR_TYPE_ROOM_LAYOUT_FB = 1000175001,

 // Provided by XR_FB_scene

 XR_TYPE_BOUNDARY_2D_FB = 1000175002,

 // Provided by XR_FB_scene

 XR_TYPE_SEMANTIC_LABELS_SUPPORT_INFO_FB = 1000175010,

 // Provided by XR_ALMALENCE_digital_lens_control

 XR_TYPE_DIGITAL_LENS_CONTROL_ALMALENCE = 1000196000,

 // Provided by XR_FB_scene_capture

 XR_TYPE_EVENT_DATA_SCENE_CAPTURE_COMPLETE_FB = 1000198001,

1486 | Appendix

 // Provided by XR_FB_scene_capture

 XR_TYPE_SCENE_CAPTURE_REQUEST_INFO_FB = 1000198050,

 // Provided by XR_FB_spatial_entity_container

 XR_TYPE_SPACE_CONTAINER_FB = 1000199000,

 // Provided by XR_META_foveation_eye_tracked

 XR_TYPE_FOVEATION_EYE_TRACKED_PROFILE_CREATE_INFO_META = 1000200000,

 // Provided by XR_META_foveation_eye_tracked

 XR_TYPE_FOVEATION_EYE_TRACKED_STATE_META = 1000200001,

 // Provided by XR_META_foveation_eye_tracked

 XR_TYPE_SYSTEM_FOVEATION_EYE_TRACKED_PROPERTIES_META = 1000200002,

 // Provided by XR_FB_face_tracking

 XR_TYPE_SYSTEM_FACE_TRACKING_PROPERTIES_FB = 1000201004,

 // Provided by XR_FB_face_tracking

 XR_TYPE_FACE_TRACKER_CREATE_INFO_FB = 1000201005,

 // Provided by XR_FB_face_tracking

 XR_TYPE_FACE_EXPRESSION_INFO_FB = 1000201002,

 // Provided by XR_FB_face_tracking

 XR_TYPE_FACE_EXPRESSION_WEIGHTS_FB = 1000201006,

 // Provided by XR_FB_eye_tracking_social

 XR_TYPE_EYE_TRACKER_CREATE_INFO_FB = 1000202001,

 // Provided by XR_FB_eye_tracking_social

 XR_TYPE_EYE_GAZES_INFO_FB = 1000202002,

 // Provided by XR_FB_eye_tracking_social

 XR_TYPE_EYE_GAZES_FB = 1000202003,

 // Provided by XR_FB_eye_tracking_social

 XR_TYPE_SYSTEM_EYE_TRACKING_PROPERTIES_FB = 1000202004,

 // Provided by XR_FB_passthrough_keyboard_hands

 XR_TYPE_PASSTHROUGH_KEYBOARD_HANDS_INTENSITY_FB = 1000203002,

 // Provided by XR_FB_composition_layer_settings

 XR_TYPE_COMPOSITION_LAYER_SETTINGS_FB = 1000204000,

 // Provided by XR_FB_haptic_pcm

 XR_TYPE_HAPTIC_PCM_VIBRATION_FB = 1000209001,

 // Provided by XR_FB_haptic_pcm

 XR_TYPE_DEVICE_PCM_SAMPLE_RATE_STATE_FB = 1000209002,

 // Provided by XR_FB_composition_layer_depth_test

 XR_TYPE_COMPOSITION_LAYER_DEPTH_TEST_FB = 1000212000,

 // Provided by XR_META_local_dimming

 XR_TYPE_LOCAL_DIMMING_FRAME_END_INFO_META = 1000216000,

 // Provided by XR_META_passthrough_preferences

 XR_TYPE_PASSTHROUGH_PREFERENCES_META = 1000217000,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_SYSTEM_VIRTUAL_KEYBOARD_PROPERTIES_META = 1000219001,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_VIRTUAL_KEYBOARD_CREATE_INFO_META = 1000219002,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_VIRTUAL_KEYBOARD_SPACE_CREATE_INFO_META = 1000219003,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_VIRTUAL_KEYBOARD_LOCATION_INFO_META = 1000219004,

Appendix | 1487

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_VIRTUAL_KEYBOARD_MODEL_VISIBILITY_SET_INFO_META = 1000219005,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_VIRTUAL_KEYBOARD_ANIMATION_STATE_META = 1000219006,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_VIRTUAL_KEYBOARD_MODEL_ANIMATION_STATES_META = 1000219007,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_VIRTUAL_KEYBOARD_TEXTURE_DATA_META = 1000219009,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_VIRTUAL_KEYBOARD_INPUT_INFO_META = 1000219010,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_VIRTUAL_KEYBOARD_TEXT_CONTEXT_CHANGE_INFO_META = 1000219011,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_COMMIT_TEXT_META = 1000219014,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_BACKSPACE_META = 1000219015,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_ENTER_META = 1000219016,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_SHOWN_META = 1000219017,

 // Provided by XR_META_virtual_keyboard

 XR_TYPE_EVENT_DATA_VIRTUAL_KEYBOARD_HIDDEN_META = 1000219018,

 // Provided by XR_OCULUS_external_camera

 XR_TYPE_EXTERNAL_CAMERA_OCULUS = 1000226000,

 // Provided by XR_META_vulkan_swapchain_create_info

 XR_TYPE_VULKAN_SWAPCHAIN_CREATE_INFO_META = 1000227000,

 // Provided by XR_META_performance_metrics

 XR_TYPE_PERFORMANCE_METRICS_STATE_META = 1000232001,

 // Provided by XR_META_performance_metrics

 XR_TYPE_PERFORMANCE_METRICS_COUNTER_META = 1000232002,

 // Provided by XR_FB_spatial_entity_storage_batch

 XR_TYPE_SPACE_LIST_SAVE_INFO_FB = 1000238000,

 // Provided by XR_FB_spatial_entity_storage_batch

 XR_TYPE_EVENT_DATA_SPACE_LIST_SAVE_COMPLETE_FB = 1000238001,

 // Provided by XR_FB_spatial_entity_user

 XR_TYPE_SPACE_USER_CREATE_INFO_FB = 1000241001,

 // Provided by XR_META_headset_id

 XR_TYPE_SYSTEM_HEADSET_ID_PROPERTIES_META = 1000245000,

 // Provided by XR_META_recommended_layer_resolution

 XR_TYPE_RECOMMENDED_LAYER_RESOLUTION_META = 1000254000,

 // Provided by XR_META_recommended_layer_resolution

 XR_TYPE_RECOMMENDED_LAYER_RESOLUTION_GET_INFO_META = 1000254001,

 // Provided by XR_META_passthrough_color_lut

 XR_TYPE_SYSTEM_PASSTHROUGH_COLOR_LUT_PROPERTIES_META = 1000266000,

 // Provided by XR_META_passthrough_color_lut

 XR_TYPE_PASSTHROUGH_COLOR_LUT_CREATE_INFO_META = 1000266001,

 // Provided by XR_META_passthrough_color_lut

 XR_TYPE_PASSTHROUGH_COLOR_LUT_UPDATE_INFO_META = 1000266002,

1488 | Appendix

 // Provided by XR_META_passthrough_color_lut

 XR_TYPE_PASSTHROUGH_COLOR_MAP_LUT_META = 1000266100,

 // Provided by XR_META_passthrough_color_lut

 XR_TYPE_PASSTHROUGH_COLOR_MAP_INTERPOLATED_LUT_META = 1000266101,

 // Provided by XR_META_spatial_entity_mesh

 XR_TYPE_SPACE_TRIANGLE_MESH_GET_INFO_META = 1000269001,

 // Provided by XR_META_spatial_entity_mesh

 XR_TYPE_SPACE_TRIANGLE_MESH_META = 1000269002,

 // Provided by XR_FB_face_tracking2

 XR_TYPE_SYSTEM_FACE_TRACKING_PROPERTIES2_FB = 1000287013,

 // Provided by XR_FB_face_tracking2

 XR_TYPE_FACE_TRACKER_CREATE_INFO2_FB = 1000287014,

 // Provided by XR_FB_face_tracking2

 XR_TYPE_FACE_EXPRESSION_INFO2_FB = 1000287015,

 // Provided by XR_FB_face_tracking2

 XR_TYPE_FACE_EXPRESSION_WEIGHTS2_FB = 1000287016,

 // Provided by XR_META_environment_depth

 XR_TYPE_ENVIRONMENT_DEPTH_PROVIDER_CREATE_INFO_META = 1000291000,

 // Provided by XR_META_environment_depth

 XR_TYPE_ENVIRONMENT_DEPTH_SWAPCHAIN_CREATE_INFO_META = 1000291001,

 // Provided by XR_META_environment_depth

 XR_TYPE_ENVIRONMENT_DEPTH_SWAPCHAIN_STATE_META = 1000291002,

 // Provided by XR_META_environment_depth

 XR_TYPE_ENVIRONMENT_DEPTH_IMAGE_ACQUIRE_INFO_META = 1000291003,

 // Provided by XR_META_environment_depth

 XR_TYPE_ENVIRONMENT_DEPTH_IMAGE_VIEW_META = 1000291004,

 // Provided by XR_META_environment_depth

 XR_TYPE_ENVIRONMENT_DEPTH_IMAGE_META = 1000291005,

 // Provided by XR_META_environment_depth

 XR_TYPE_ENVIRONMENT_DEPTH_HAND_REMOVAL_SET_INFO_META = 1000291006,

 // Provided by XR_META_environment_depth

 XR_TYPE_SYSTEM_ENVIRONMENT_DEPTH_PROPERTIES_META = 1000291007,

 // Provided by XR_HTC_passthrough

 XR_TYPE_PASSTHROUGH_CREATE_INFO_HTC = 1000317001,

 // Provided by XR_HTC_passthrough

 XR_TYPE_PASSTHROUGH_COLOR_HTC = 1000317002,

 // Provided by XR_HTC_passthrough

 XR_TYPE_PASSTHROUGH_MESH_TRANSFORM_INFO_HTC = 1000317003,

 // Provided by XR_HTC_passthrough

 XR_TYPE_COMPOSITION_LAYER_PASSTHROUGH_HTC = 1000317004,

 // Provided by XR_HTC_foveation

 XR_TYPE_FOVEATION_APPLY_INFO_HTC = 1000318000,

 // Provided by XR_HTC_foveation

 XR_TYPE_FOVEATION_DYNAMIC_MODE_INFO_HTC = 1000318001,

 // Provided by XR_HTC_foveation

 XR_TYPE_FOVEATION_CUSTOM_MODE_INFO_HTC = 1000318002,

 // Provided by XR_HTC_anchor

 XR_TYPE_SYSTEM_ANCHOR_PROPERTIES_HTC = 1000319000,

Appendix | 1489

 // Provided by XR_HTC_anchor

 XR_TYPE_SPATIAL_ANCHOR_CREATE_INFO_HTC = 1000319001,

 // Provided by XR_EXT_active_action_set_priority

 XR_TYPE_ACTIVE_ACTION_SET_PRIORITIES_EXT = 1000373000,

 // Provided by XR_MNDX_force_feedback_curl

 XR_TYPE_SYSTEM_FORCE_FEEDBACK_CURL_PROPERTIES_MNDX = 1000375000,

 // Provided by XR_MNDX_force_feedback_curl

 XR_TYPE_FORCE_FEEDBACK_CURL_APPLY_LOCATIONS_MNDX = 1000375001,

 // Provided by XR_EXT_hand_tracking_data_source

 XR_TYPE_HAND_TRACKING_DATA_SOURCE_INFO_EXT = 1000428000,

 // Provided by XR_EXT_hand_tracking_data_source

 XR_TYPE_HAND_TRACKING_DATA_SOURCE_STATE_EXT = 1000428001,

 // Provided by XR_EXT_plane_detection

 XR_TYPE_PLANE_DETECTOR_CREATE_INFO_EXT = 1000429001,

 // Provided by XR_EXT_plane_detection

 XR_TYPE_PLANE_DETECTOR_BEGIN_INFO_EXT = 1000429002,

 // Provided by XR_EXT_plane_detection

 XR_TYPE_PLANE_DETECTOR_GET_INFO_EXT = 1000429003,

 // Provided by XR_EXT_plane_detection

 XR_TYPE_PLANE_DETECTOR_LOCATIONS_EXT = 1000429004,

 // Provided by XR_EXT_plane_detection

 XR_TYPE_PLANE_DETECTOR_LOCATION_EXT = 1000429005,

 // Provided by XR_EXT_plane_detection

 XR_TYPE_PLANE_DETECTOR_POLYGON_BUFFER_EXT = 1000429006,

 // Provided by XR_EXT_plane_detection

 XR_TYPE_SYSTEM_PLANE_DETECTION_PROPERTIES_EXT = 1000429007,

 // Provided by XR_EXT_future

 XR_TYPE_FUTURE_CANCEL_INFO_EXT = 1000469000,

 // Provided by XR_EXT_future

 XR_TYPE_FUTURE_POLL_INFO_EXT = 1000469001,

 // Provided by XR_EXT_future

 XR_TYPE_FUTURE_COMPLETION_EXT = 1000469002,

 // Provided by XR_EXT_future

 XR_TYPE_FUTURE_POLL_RESULT_EXT = 1000469003,

 // Provided by XR_EXT_user_presence

 XR_TYPE_EVENT_DATA_USER_PRESENCE_CHANGED_EXT = 1000470000,

 // Provided by XR_EXT_user_presence

 XR_TYPE_SYSTEM_USER_PRESENCE_PROPERTIES_EXT = 1000470001,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_GRAPHICS_BINDING_VULKAN2_KHR = XR_TYPE_GRAPHICS_BINDING_VULKAN_KHR,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_SWAPCHAIN_IMAGE_VULKAN2_KHR = XR_TYPE_SWAPCHAIN_IMAGE_VULKAN_KHR,

 // Provided by XR_KHR_vulkan_enable2

 XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN2_KHR = XR_TYPE_GRAPHICS_REQUIREMENTS_VULKAN_KHR,

 // Provided by XR_FB_haptic_pcm

 XR_TYPE_DEVICE_PCM_SAMPLE_RATE_GET_INFO_FB = XR_TYPE_DEVICE_PCM_SAMPLE_RATE_STATE_FB,

 // Provided by XR_KHR_locate_spaces

 XR_TYPE_SPACES_LOCATE_INFO_KHR = XR_TYPE_SPACES_LOCATE_INFO,

1490 | Appendix

 // Provided by XR_KHR_locate_spaces

 XR_TYPE_SPACE_LOCATIONS_KHR = XR_TYPE_SPACE_LOCATIONS,

 // Provided by XR_KHR_locate_spaces

 XR_TYPE_SPACE_VELOCITIES_KHR = XR_TYPE_SPACE_VELOCITIES,

 XR_STRUCTURE_TYPE_MAX_ENUM = 0x7FFFFFFF

} XrStructureType;

Most structures containing type members have a value of type matching the type of the structure, as

described more fully in Valid Usage for Structure Types.

Note that all extension enums begin at the extension enum base of 10^9 (base 10). Each extension is

assigned a block of 1000 enums, starting at the enum base and arranged by the extension’s number.

// Provided by XR_VERSION_1_0

#define XR_EXTENSION_ENUM_BASE 1000000000

// Provided by XR_VERSION_1_0

#define XR_EXTENSION_ENUM_STRIDE 1000

For example, if extension number 5 wants to use an enum value of 3, the final enum is computed by:

enum = XR_EXTENSION_ENUM_BASE + (extension_number - 1) * XR_EXTENSION_ENUM_STRIDE +

enum_value

1000004003 = 1000000000 + 4 * 1000 + 3

The maximum allowed enum value in an extension is 2,147,482,999, which belongs to extension

number 2147483.

Flag Types

Flag types are all bitmasks aliasing the base type XrFlags64 and with corresponding bit flag types

defining the valid bits for that flag, as described in Valid Usage for Flags.

Flag types defined in the core specification were originally listed/defined here, but have been moved to

be adjacent to their associated FlagBits type. See the Index for a list.

General Macro Definitions

This API is defined in C and uses "C" linkage. The openxr.h header file is opened with:

Appendix | 1491

1 #ifdef __cplusplus

2 extern "C" {

3 #endif

and closed with:

1 #ifdef __cplusplus

2 }

3 #endif

The supplied openxr.h header defines a small number of C preprocessor macros that are described

below.

Version Number Macros

Two version numbers are defined in openxr.h. Each is packed into a 32-bit integer as described in API

Version Number Function-like Macros.

// Provided by XR_VERSION_1_0

// OpenXR current version number.

#define XR_CURRENT_API_VERSION XR_MAKE_VERSION(1, 1, 36)

XR_CURRENT_API_VERSION is the current version of the OpenXR API.

API Version Number Function-like Macros

API Version Numbers are three components, packed into a single 64-bit integer. The following macros

manipulate version components and packed version numbers.

#define XR_MAKE_VERSION(major, minor, patch) \

 ((((major) & 0xffffULL) << 48) | (((minor) & 0xffffULL) << 32) | ((patch) &

0xffffffffULL))

1492 | Appendix

Parameter Descriptions

• major is the major version number, packed into the most-significant 16 bits.

• minor is the minor version number, packed into the second-most-significant group of 16 bits.

• patch is the patch version number, in the least-significant 32 bits.

XR_MAKE_VERSION constructs a packed 64-bit integer API version number from three components.

The format used is described in API Version Numbers and Semantics.

This macro can be used when constructing the XrApplicationInfo::apiVersion parameter passed to

xrCreateInstance.

// Provided by XR_VERSION_1_0

#define XR_VERSION_MAJOR(version) (uint16_t)(((uint64_t)(version) >> 48)& 0xffffULL)

Parameter Descriptions

• version is a packed version number, such as those produced with XR_MAKE_VERSION.

XR_VERSION_MAJOR extracts the API major version number from a packed version number.

// Provided by XR_VERSION_1_0

#define XR_VERSION_MINOR(version) (uint16_t)(((uint64_t)(version) >> 32) & 0xffffULL)

Parameter Descriptions

• version is a packed version number, such as those produced with XR_MAKE_VERSION.

XR_VERSION_MINOR extracts the API minor version number from a packed version number.

// Provided by XR_VERSION_1_0

#define XR_VERSION_PATCH(version) (uint32_t)((uint64_t)(version) & 0xffffffffULL)

Appendix | 1493

Parameter Descriptions

• version is a packed version number, such as those produced with XR_MAKE_VERSION.

XR_VERSION_PATCH extracts the API patch version number from a packed version number.

Handle and Atom Macros

// Provided by XR_VERSION_1_0

#if !defined(XR_DEFINE_HANDLE)

#if (XR_PTR_SIZE == 8)

 #define XR_DEFINE_HANDLE(object) typedef struct object##_T* object;

#else

 #define XR_DEFINE_HANDLE(object) typedef uint64_t object;

#endif

#endif

Parameter Descriptions

• object is the name of the resulting C type.

XR_DEFINE_HANDLE defines a handle type, which is an opaque 64 bit value, which may be

implemented as an opaque, distinct pointer type on platforms with 64 bit pointers.

For further details, see Handles.

// Provided by XR_VERSION_1_0

#if !defined(XR_NULL_HANDLE)

#if (XR_PTR_SIZE == 8) && XR_CPP_NULLPTR_SUPPORTED

 #define XR_NULL_HANDLE nullptr

#else

 #define XR_NULL_HANDLE 0

#endif

#endif

XR_NULL_HANDLE is a reserved value representing a non-valid object handle. It may be passed to and

returned from API functions only when specifically allowed.

1494 | Appendix

#if !defined(XR_DEFINE_ATOM)

 #define XR_DEFINE_ATOM(object) typedef uint64_t object;

#endif

Parameter Descriptions

• object is the name of the resulting C type.

XR_DEFINE_ATOM defines an atom type, which is an opaque 64 bit integer.

// Provided by XR_VERSION_1_0

#if !defined(XR_DEFINE_OPAQUE_64)

 #if (XR_PTR_SIZE == 8)

 #define XR_DEFINE_OPAQUE_64(object) typedef struct object##_T* object;

 #else

 #define XR_DEFINE_OPAQUE_64(object) typedef uint64_t object;

 #endif

#endif

Parameter Descriptions

• object is the name of the resulting C type.

XR_DEFINE_OPAQUE_64 defines an opaque 64 bit value, which may be implemented as an opaque,

distinct pointer type on platforms with 64 bit pointers.

Platform-Specific Macro Definitions

Additional platform-specific macros and interfaces are defined using the included openxr_platform.h

file. These macros are used to control platform-dependent behavior, and their exact definitions are

under the control of specific platform implementations of the API.

Platform-Specific Calling Conventions

On many platforms the following macros are empty strings, causing platform- and compiler-specific

default calling conventions to be used.

XRAPI_ATTR is a macro placed before the return type of an API function declaration. This macro

controls calling conventions for C++11 and GCC/Clang-style compilers.

Appendix | 1495

XRAPI_CALL is a macro placed after the return type of an API function declaration. This macro

controls calling conventions for MSVC-style compilers.

XRAPI_PTR is a macro placed between the (and * in API function pointer declarations. This macro also

controls calling conventions, and typically has the same definition as XRAPI_ATTR or XRAPI_CALL,

depending on the compiler.

Examples:

Function declaration:

XRAPI_ATTR <return_type> XRAPI_CALL <function_name>(<function_parameters>);

Function pointer type declaration:

typedef <return_type> (XRAPI_PTR *PFN_<function_name>)(<function_parameters>);

Platform-Specific Header Control

If the XR_NO_STDINT_H macro is defined by the application at compile time, before including any

OpenXR header, extended integer types normally found in <stdint.h> and used by the OpenXR

headers, such as uint8_t, must also be defined (as typedef or with the preprocessor) before including

any OpenXR header. Otherwise, openxr.h and related headers will not compile. If XR_NO_STDINT_H is

not defined, the system-provided <stdint.h> is used to define these types. There is a fallback path for

Microsoft Visual Studio version 2008 and earlier versions (which lack this header) that is automatically

activated as needed.

Graphics API Header Control

Compile Time Symbol Graphics API Name

XR_USE_GRAPHICS_API_OPENGL OpenGL

XR_USE_GRAPHICS_API_OPENGL_ES OpenGL ES

XR_USE_GRAPHICS_API_VULKAN Vulkan

XR_USE_GRAPHICS_API_D3D11 Direct3D 11

XR_USE_GRAPHICS_API_D3D12 Direct3D 12

Window System Header Control

Compile Time Symbol Window System Name

XR_USE_PLATFORM_WIN32 Microsoft Windows

XR_USE_PLATFORM_XLIB X Window System Xlib

1496 | Appendix

Compile Time Symbol Window System Name

XR_USE_PLATFORM_XCB X Window System XCB

XR_USE_PLATFORM_WAYLAND Wayland

XR_USE_PLATFORM_ANDROID Android Native

Android Notes

Android specific notes for using the OpenXR specification.

Android Runtime category tag for immersive mode selection

Android applications should add the <category

android:name="org.khronos.openxr.intent.category.IMMERSIVE_HMD" /> tag inside the intent-filter to

indicate that the activity starts in an immersive OpenXR mode and will not touch the native Android

2D surface.

The HMD suffix indicates the preferred form-factor used by the application and can be used by

launchers to filter applications listed.

For example:

<intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 <category android:name="org.khronos.openxr.intent.category.IMMERSIVE_HMD" />

</intent-filter>

Glossary

The terms defined in this section are used throughout this Specification. Capitalization is not

significant for these definitions.

Term Description

Application The XR application which calls the OpenXR API to

communicate with an OpenXR runtime.

Appendix | 1497

Term Description

Deprecated A feature/extension is deprecated if it is no longer

recommended as the correct or best way to

achieve its intended purpose. Generally a newer

feature/extension will have been created that

solves the same problem - in cases where no

newer alternative feature exists, justification

should be provided.

Handle An opaque integer or pointer value used to refer

to an object. Each object type has a unique handle

type.

Haptic Haptic or kinesthetic communication recreates

the sense of touch by applying forces, vibrations,

or motions to the user.

In-Process Something that executes in the application’s

process.

Instance The top-level object, which represents the

application’s connection to the runtime.

Represented by an XrInstance object.

Normalized A value that is interpreted as being in the range

[0,1], or a vector whose norm is in that range, as a

result of being implicitly divided or scaled by

some other value.

Out-Of-Process Something that executes outside the application’s

process.

Promoted A feature is promoted if it is taken from an older

extension and made available as part of a new

core version of the API, or a newer extension that

is considered to be either as widely supported or

more so. A promoted feature may have minor

differences from the original such as:

• It may be renamed

• A small number of non-intrusive parameters

may have been added

• The feature may be advertised differently by

device features

• The author ID suffixes will be changed or

removed as appropriate

1498 | Appendix

Term Description

Provisional A feature is released provisionally in order to get

wider feedback on the functionality before it is

finalized. Provisional features may change in

ways that break backwards compatibility, and

thus are not recommended for use in production

applications.

Required Extensions Extensions that must be enabled alongside

extensions dependent on them, or that must be

enabled to use given hardware.

Runtime The software which implements the OpenXR API

and allows applications to interact with XR

hardware.

Swapchain A resource that represents a chain of images in

device memory. Represented by an XrSwapchain

object.

Swapchain Image Each element in a swapchain. Commonly these

are simple formatted 2D images, but in other

cases they may be array images. Represented by a

structure related to

XrSwapchainImageBaseHeader.

Abbreviations

Abbreviations and acronyms are sometimes used in the API where they are considered clear and

commonplace, and are defined here:

Abbreviation Description

API Application Programming Interface

AR Augmented Reality

ER Eye Relief

IAD Inter Axial Distance

IPD Inter Pupillary Distance

MR Mixed Reality

OS Operating System

TSG Technical Sub-Group. A specialized sub-group

within a Khronos Working Group (WG).

VR Virtual Reality

Appendix | 1499

Abbreviation Description

WG Working Group. An organized group of people

working to define/augment an API.

XR VR + AR + MR

1500 | Appendix

Dedication (Informative)

In memory of Johannes van Waveren: a loving father, husband, son, brother, colleague, and dear

friend.

Johannes, known to his friends as "JP", had a great sense of humor, fierce loyalty, intense drive, a love

of rainbow unicorns, and deep disdain for processed American cheese. Perhaps most distinguishing of

all, though, was his love of technology and his extraordinary technical ability.

JP’s love of technology started at an early age --- instead of working on his homework, he built train

sets, hovercrafts, and complex erector sets from scratch; fashioned a tool for grabbing loose change out

of street grates; and played computer games. The passion for computer games continued at Delft

University of Technology, where, armed with a T1 internet connection and sheer talent, he regularly

destroyed his foes in arena matches without being seen, earning him the moniker "MrElusive". During

this time, he wrote the Gladiator-bot AI, which earned him acclaim in the community and led directly

to a job at the iconic American computer game company, id Software. From there, he quickly became

an expert in every system he touched, contributing significantly to every facet of the technology: AI,

path navigation, networking, skeletal animation, virtual texturing, advanced rendering, and physics.

He became a master of all. He famously owned more lines of code than anyone else, but he was also a

generous mentor, helping junior developers hone their skills and make their own contributions.

When the chance to work in the VR industry arose, he saw it as an opportunity to help shape the

future. Having never worked on VR hardware did not phase him; he quickly became a top expert in

the field. Many of his contributions directly moved the industry forward, most recently his work on

asynchronous timewarp and open-standards development.

Time was not on his side. Even in his final days, JP worked tirelessly on the initial proposal for this

specification. The treatments he had undergone took a tremendous physical toll, but he continued to

work because of his love of technology, his dedication to the craft, and his desire to get OpenXR started

on a solid footing. His focus was unwavering.

His proposal was unofficially adopted several days before his passing - and upon hearing, he mustered

the energy for a smile. While it was his great dream to see this process through, he would be proud of

the spirit of cooperation, passion, and dedication of the industry peers who took up the torch to drive

this specification to completion.

JP lived a life full of accomplishment, as evidenced by many publications, credits, awards, and

nominations where you will find his name. A less obvious accomplishment --- but of equal importance

--- is the influence he had on people through his passionate leadership. He strove for excellence in

everything that he did. He was always excited to talk about technology and share the discoveries made

while working through complex problems. He created excitement and interest around engineering

and technical excellence. He was a mentor and teacher who inspired those who knew him and many

continue to benefit from his hard work and generosity.

Appendix | 1501

JP was a rare gem; fantastically brilliant intellectually, but also warm, compassionate, generous,

humble, and funny. Those of us lucky enough to have crossed paths with him knew what a privilege

and great honor it was to know him. He is certainly missed.

1502 | Appendix

Contributors (Informative)

OpenXR is the result of contributions from many people and companies participating in the Khronos

OpenXR Working Group. Members of the Working Group, including the company that they represented

at the time of their most recent contribution, are listed below.

Working Group Contributors to OpenXR

• Adam Gousetis, Google (version 1.0)

• Alain Zanchetta, Microsoft (version 1.1)

• Alex Turner, Microsoft (versions 1.0, 1.1)

• Alex Sink, HTC (version 1.1)

• Alfredo Muniz, XEED (version 1.1) (Working Group Chair)

• Andreas Loeve Selvik, Meta Platforms (versions 1.0, 1.1)

• Andres Rodriguez, Valve Software (version 1.0)

• Armelle Laine, Qualcomm Technologies (version 1.0)

• Attila Maczak, CTRL-labs (version 1.0)

• David Fields, Microsoft (version 1.1)

• Baolin Fu, Bytedance (version 1.1)

• Blake Taylor, Magic Leap (version 1.0)

• Brad Grantham, Google (version 1.0)

• Brandon Jones, Google (version 1.0)

• Brent E. Insko, Intel (version 1.0) (former Working Group Chair)

• Brent Wilson, Microsoft (version 1.0)

• Bryce Hutchings, Microsoft (versions 1.0, 1.1)

• Cass Everitt, Meta Platforms (versions 1.0, 1.1)

• Charles Egenbacher, Epic Games (version 1.0)

• Charlton Rodda, Collabora (version 1.1)

• Chris Kuo, HTC (version 1.1)

• Chris Osborn, CTRL-labs (version 1.0)

• Christine Perey, Perey Research & Consulting (version 1.0)

• Christoph Haag, Collabora (version 1.0, 1.1)

• Christopher Fiala, Epic Games (version 1.1)

• Craig Donner, Google (version 1.0)

Appendix | 1503

• Dan Ginsburg, Valve Software (version 1.0)

• Dave Houlton, LunarG (version 1.0)

• Dave Shreiner, Unity Technologies (version 1.0)

• Darryl Gough, Microsoft (version 1.1)

• Denny Rönngren, Varjo (versions 1.0, 1.1)

• Dmitriy Vasilev, Samsung Electronics (version 1.0)

• Doug Twileager, ZSpace (version 1.0)

• Ed Hutchins, Meta Platforms (version 1.0)

• Eryk Pecyna, Meta Platforms (version 1.1)

• Frederic Plourde, Collabora (version 1.1)

• Gloria Kennickell, Meta Platforms (version 1.0)

• Gregory Greeby, AMD (version 1.0)

• Guodong Chen, Huawei (version 1.0)

• Jack Pritz, Unity Technologies (versions 1.0, 1.1)

• Jakob Bornecrantz, Collabora (versions 1.0, 1.1)

• Jared Cheshier, PlutoVR (versions 1.0, 1.1)

• Jared Finder, Google (version 1.1)

• Javier Martinez, Intel (version 1.0)

• Jeff Bellinghausen, Valve Software (version 1.0)

• Jiehua Guo, Huawei (version 1.0)

• Joe Ludwig, Valve Software (versions 1.0, 1.1)

• John Kearney, Meta Platforms (version 1.1)

• Johannes van Waveren, Meta Platforms (version 1.0)

• Jon Leech, Khronos (version 1.0)

• Jonas Pegerfalk, Tobii (version 1.1)

• Jonathan Wright, Meta Platforms (versions 1.0, 1.1)

• Juan Wee, Samsung Electronics (version 1.0)

• Jules Blok, Epic Games (version 1.0)

• Jun Yan, ByteDance (version 1.1)

• Karl Schultz, LunarG (version 1.0)

• Karthik Kadappan, Magic Leap (version 1.1)

• Karthik Nagarajan, Qualcomm Technologies (version 1.1)

1504 | Appendix

• Kaye Mason, Google (version 1.0)

• Krzysztof Kosiński, Google (version 1.0)

• Kyle Chen, HTC (version 1.1)

• Lachlan Ford, Google (versions 1.0, 1.1)

• Lubosz Sarnecki, Collabora (version 1.0)

• Mark Young, LunarG (version 1.0)

• Martin Renschler, Qualcomm Technologies (version 1.0)

• Matias Koskela, Tampere University of Technology (version 1.0)

• Matt Wash, Arm (version 1.0)

• Mattias Brand, Tobii (version 1.0)

• Mattias O. Karlsson, Tobii (version 1.0)

• Matthieu Bucchianeri, Microsoft (version 1.1)

• Michael Gatson, Dell (version 1.0)

• Minmin Gong, Microsoft (version 1.0)

• Mitch Singer, AMD (version 1.0)

• Nathan Nuber, Valve (version 1.1)

• Nell Waliczek, Microsoft (version 1.0)

• Nick Whiting, Epic Games (version 1.0) (former Working Group Chair)

• Nigel Williams, Sony (version 1.0)

• Nihav Jain, Google, Inc (version 1.1)

• Paul Pedriana, Meta Platforms (version 1.0)

• Paulo Gomes, Samsung Electronics (version 1.0)

• Peter Kuhn, Unity Technologies (versions 1.0, 1.1)

• Peter Peterson, HP Inc (version 1.0)

• Philippe Harscoet, Samsung Electronics (versions 1.0, 1.1)

• Pierre-Loup Griffais, Valve Software (version 1.0)

• Rafael Wiltz, Magic Leap (version 1.1)

• Rajeev Gupta, Sony (version 1.0)

• Remi Arnaud, Starbreeze (version 1.0)

• Remy Zimmerman, Logitech (version 1.0)

• Ria Hsu, HTC (version 1.1)

• River Gillis, Google (version 1.0)

Appendix | 1505

• Robert Blenkinsopp, Ultraleap (version 1.1)

• Robert Memmott, Meta Platforms (version 1.0)

• Robert Menzel, NVIDIA (version 1.0)

• Robert Simpson, Qualcomm Technologies (version 1.0)

• Robin Bourianes, Starbreeze (version 1.0)

• Ron Bessems, Magic Leap (version 1.1) (Working Group Vice-Chair)

• Rune Berg, independent (version 1.1)

• Rylie Pavlik, Collabora (versions 1.0, 1.1) (Spec Editor)

• Ryan Vance, Epic Games (version 1.0)

• Sam Martin, Arm (version 1.0)

• Satish Salian, NVIDIA (version 1.0)

• Scott Flynn, Unity Technologies (version 1.0)

• Shanliang Xu, Bytedance (version 1.1)

• Sean Payne, CTRL-labs (version 1.0)

• Sophia Baldonado, PlutoVR (version 1.0)

• Steve Smith, Epic Games (version 1.0)

• Sungye Kim, Intel (version 1.0)

• Tom Flynn, Samsung Electronics (version 1.0)

• Trevor F. Smith, Mozilla (version 1.0)

• Victor Brodin, Epic Games (version 1.1)

• Vivek Viswanathan, Dell (version 1.0)

• Wenlin Mao, Meta Platforms (version 1.1)

• Xiang Wei, Meta Platforms (version 1.1)

• Yin Li, Microsoft (versions 1.0, 1.1)

• Yuval Boger, Sensics (version 1.0)

• Zhanrui Jia, Bytedance (version 1.1)

• Zheng Qin, Microsoft (version 1.0)

1506 | Appendix

Index

A

XR_API_LAYER_CREATE_INFO_STRUCT_VERSION

(define), 72

XR_API_LAYER_INFO_STRUCT_VERSION (define),

69

XR_API_LAYER_MAX_SETTINGS_PATH_SIZE

(define), 72

XR_API_LAYER_NEXT_INFO_STRUCT_VERSION

(define), 73

xrAcquireEnvironmentDepthImageMETA

(function), 991

xrAcquireSwapchainImage (function), 213

XrAction (type), 255

XrActionCreateInfo (type), 256

XrActionSet (type), 251

XrActionSetCreateInfo (type), 252

XrActionSpaceCreateInfo (type), 157

XrActionsSyncInfo (type), 289

XrActionStateBoolean (type), 274

XrActionStateFloat (type), 276

XrActionStateGetInfo (type), 271

XrActionStatePose (type), 281

XrActionStateVector2f (type), 278

XrActionSuggestedBinding (type), 264

XrActionType (type), 259

XrActiveActionSet (type), 289

XrActiveActionSetPrioritiesEXT (type), 420

XrActiveActionSetPriorityEXT (type), 422

XrAndroidSurfaceSwapchainCreateInfoFB (type),

593

XrAndroidSurfaceSwapchainFlagBitsFB (type),

592

XrAndroidSurfaceSwapchainFlagsFB (type), 592

XrAndroidThreadTypeKHR (type), 308

XrApiLayerCreateInfo (type), 71

XrApiLayerNextInfo (type), 72

XrApiLayerProperties (type), 76

XrApplicationInfo (type), 83

xrApplyForceFeedbackCurlMNDX (function), 1418

xrApplyFoveationHTC (function), 948

xrApplyHapticFeedback (function), 282

XrAsyncRequestIdFB (type), 822

xrAttachSessionActionSets (function), 264

B

XrBaseInStructure (type), 17

XrBaseOutStructure (type), 17

xrBeginFrame (function), 230

xrBeginPlaneDetectionEXT (function), 551

xrBeginSession (function), 192

XrBindingModificationBaseHeaderKHR (type), 313

XrBindingModificationsKHR (type), 312

XrBlendFactorFB (type), 620

XrBodyJointFB (type), 609

XrBodyJointLocationFB (type), 604

XrBodyJointLocationsFB (type), 602

XrBodyJointSetFB (type), 599

XrBodyJointsLocateInfoFB (type), 601

XrBodySkeletonFB (type), 606

XrBodySkeletonJointFB (type), 606

XrBodyTrackerCreateInfoFB (type), 598

XrBodyTrackerFB (type), 596

XrBool32 (type), 49

XrBoundary2DFB (type), 802

XrBoundSourcesForActionEnumerateInfo (type),

292

XrBoxf (type), 46

XrBoxfKHR (type), 1434

C

XR_CURRENT_API_VERSION (define), 1492

XR_CURRENT_LOADER_API_LAYER_VERSION

(define), 63

XR_CURRENT_LOADER_RUNTIME_VERSION

(define), 63

xrCancelFutureEXT (function), 480

xrChangeVirtualKeyboardTextContextMETA

(function), 1074

xrClearSpatialAnchorStoreMSFT (function), 1321

XrColor3f (type), 38

XrColor3fKHR (type), 1433

XrColor4f (type), 38

XrColorSpaceFB (type), 613

XrCompareOpFB (type), 623

Index | 1507

XrCompositionLayerAlphaBlendFB (type), 620

XrCompositionLayerBaseHeader (type), 238

XrCompositionLayerColorScaleBiasKHR (type),

315

XrCompositionLayerCubeKHR (type), 318

XrCompositionLayerCylinderKHR (type), 322

XrCompositionLayerDepthInfoKHR (type), 325

XrCompositionLayerDepthTestFB (type), 623

XrCompositionLayerDepthTestVARJO (type), 1361

XrCompositionLayerEquirect2KHR (type), 333

XrCompositionLayerEquirectKHR (type), 330

XrCompositionLayerFlagBits (type), 236

XrCompositionLayerFlags (type), 236

XrCompositionLayerImageLayoutFB (type), 626

XrCompositionLayerImageLayoutFlagBitsFB

(type), 625

XrCompositionLayerImageLayoutFlagsFB (type),

625

XrCompositionLayerPassthroughFB (type), 757

XrCompositionLayerPassthroughHTC (type), 962

XrCompositionLayerProjection (type), 240

XrCompositionLayerProjectionView (type), 241

XrCompositionLayerQuad (type), 242

XrCompositionLayerReprojectionInfoMSFT (type),

1166

XrCompositionLayerReprojectionPlaneOver

rideMSFT (type), 1168

XrCompositionLayerSecureContentFB (type), 629

XrCompositionLayerSecureContentFlagBitsFB

(type), 628

XrCompositionLayerSecureContentFlagsFB (type),

628

XrCompositionLayerSettingsFB (type), 632

XrCompositionLayerSettingsFlagBitsFB (type), 630

XrCompositionLayerSettingsFlagsFB (type), 630

XrCompositionLayerSpaceWarpInfoFB (type), 817

XrCompositionLayerSpaceWarpInfoFlagBitsFB

(type), 817

XrCompositionLayerSpaceWarpInfoFlagsFB

(type), 817

xrComputeNewSceneMSFT (function), 1237

XrControllerModelKeyMSFT (type), 1173

XrControllerModelKeyStateMSFT (type), 1172

XrControllerModelNodePropertiesMSFT (type),

1178

XrControllerModelNodeStateMSFT (type), 1181

XrControllerModelPropertiesMSFT (type), 1177

XrControllerModelStateMSFT (type), 1181

xrConvertTimespecTimeToTimeKHR (function),

336

xrConvertTimeToTimespecTimeKHR (function),

337

xrConvertTimeToWin32PerformanceCounterKHR

(function), 418

xrConvertWin32PerformanceCounterToTimeKHR

(function), 417

XrCoordinateSpaceCreateInfoML (type), 1091

xrCreateAction (function), 255

xrCreateActionSet (function), 251

xrCreateActionSpace (function), 156

xrCreateApiLayerInstance (function), 69

xrCreateBodyTrackerFB (function), 596

xrCreateDebugUtilsMessengerEXT (function), 443

xrCreateEnvironmentDepthProviderMETA

(function), 975

xrCreateEnvironmentDepthSwapchainMETA

(function), 983

xrCreateExportedLocalizationMapML (function),

1112

xrCreateEyeTrackerFB (function), 642

xrCreateFaceTracker2FB (function), 669

xrCreateFaceTrackerFB (function), 654

xrCreateFacialTrackerHTC (function), 923

xrCreateFoveationProfileFB (function), 711

xrCreateGeometryInstanceFB (function), 774

xrCreateHandMeshSpaceMSFT (function), 1190

xrCreateHandTrackerEXT (function), 511

xrCreateInstance (function), 79

xrCreateKeyboardSpaceFB (function), 747

xrCreateMarkerDetectorML (function), 1120

xrCreateMarkerSpaceML (function), 1149

xrCreateMarkerSpaceVARJO (function), 1379

xrCreatePassthroughColorLutMETA (function),

1017

xrCreatePassthroughFB (function), 765

xrCreatePassthroughHTC (function), 959

xrCreatePassthroughLayerFB (function), 769

1508 | Index

xrCreatePlaneDetectorEXT (function), 547

xrCreateReferenceSpace (function), 154

xrCreateSceneMSFT (function), 1251

xrCreateSceneObserverMSFT (function), 1233

xrCreateSession (function), 188

xrCreateSpaceFromCoordinateFrameUIDML

(function), 1092

xrCreateSpaceUserFB (function), 876

xrCreateSpatialAnchorFB (function), 828

xrCreateSpatialAnchorFromPerceptionAnch

orMSFT (function), 1213

xrCreateSpatialAnchorFromPersistedNameMSFT

(function), 1318

xrCreateSpatialAnchorHTC (function), 916

xrCreateSpatialAnchorMSFT (function), 1304

xrCreateSpatialAnchorSpaceMSFT (function),

1306

xrCreateSpatialAnchorStoreConnectionMSFT

(function), 1311

xrCreateSpatialGraphNodeSpaceMSFT (function),

1324

xrCreateSwapchain (function), 204

xrCreateSwapchainAndroidSurfaceKHR

(function), 305

xrCreateTriangleMeshFB (function), 904

xrCreateVirtualKeyboardMETA (function), 1051

xrCreateVirtualKeyboardSpaceMETA (function),

1054

xrCreateVulkanDeviceKHR (function), 404

xrCreateVulkanInstanceKHR (function), 399

D

XR_DEFINE_ATOM (define), 1494

XR_DEFINE_HANDLE (define), 1494

XR_DEFINE_OPAQUE_64 (define), 1495

XrDebugUtilsLabelEXT (type), 438

XrDebugUtilsMessageSeverityFlagBitsEXT (type),

436

XrDebugUtilsMessageSeverityFlagsEXT (type), 436

XrDebugUtilsMessageTypeFlagBitsEXT (type), 436

XrDebugUtilsMessageTypeFlagsEXT (type), 436

XrDebugUtilsMessengerCallbackDataEXT (type),

438

XrDebugUtilsMessengerCreateInfoEXT (type), 440

XrDebugUtilsMessengerEXT (type), 435

XrDebugUtilsObjectNameInfoEXT (type), 437

XrDeserializeSceneFragmentMSFT (type), 1290

xrDeserializeSceneMSFT (function), 1287

xrDestroyAction (function), 259

xrDestroyActionSet (function), 254

xrDestroyBodyTrackerFB (function), 599

xrDestroyDebugUtilsMessengerEXT (function),

445

xrDestroyEnvironmentDepthProviderMETA

(function), 977

xrDestroyEnvironmentDepthSwapchainMETA

(function), 988

xrDestroyExportedLocalizationMapML (function),

1113

xrDestroyEyeTrackerFB (function), 644

xrDestroyFaceTracker2FB (function), 673

xrDestroyFaceTrackerFB (function), 656

xrDestroyFacialTrackerHTC (function), 926

xrDestroyFoveationProfileFB (function), 712

xrDestroyGeometryInstanceFB (function), 776

xrDestroyHandTrackerEXT (function), 514

xrDestroyInstance (function), 84

xrDestroyMarkerDetectorML (function), 1130

xrDestroyPassthroughColorLutMETA (function),

1018

xrDestroyPassthroughFB (function), 766

xrDestroyPassthroughHTC (function), 961

xrDestroyPassthroughLayerFB (function), 770

xrDestroyPlaneDetectorEXT (function), 550

xrDestroySceneMSFT (function), 1253

xrDestroySceneObserverMSFT (function), 1235

xrDestroySession (function), 191

xrDestroySpace (function), 158

xrDestroySpaceUserFB (function), 878

xrDestroySpatialAnchorMSFT (function), 1308

xrDestroySpatialAnchorStoreConnectionMSFT

(function), 1312

xrDestroySpatialGraphNodeBindingMSFT

(function), 1330

xrDestroySwapchain (function), 210

xrDestroyTriangleMeshFB (function), 905

xrDestroyVirtualKeyboardMETA (function), 1053

Index | 1509

XrDevicePcmSampleRateStateFB (type), 739

XrDigitalLensControlALMALENCE (type), 587

XrDigitalLensControlFlagBitsALMALENCE (type),

587

XrDigitalLensControlFlagsALMALENCE (type), 587

XrDuration (type), 37

E

XR_EXTENSION_ENUM_BASE (define), 1491

XR_EXTENSION_ENUM_STRIDE (define), 1491

xrEnableLocalizationEventsML (function), 1102

xrEnableUserCalibrationEventsML (function),

1158

xrEndFrame (function), 232

xrEndSession (function), 195

xrEnumerateApiLayerProperties (function), 75

xrEnumerateBoundSourcesForAction (function),

290

xrEnumerateColorSpacesFB (function), 615

xrEnumerateDisplayRefreshRatesFB (function),

635

xrEnumerateEnvironmentBlendModes (function),

245

xrEnumerateEnvironmentDepthSwapchainI

magesMETA (function), 989

xrEnumerateExternalCamerasOCULUS (function),

1345

xrEnumerateInstanceExtensionProperties

(function), 77

xrEnumeratePerformanceMetricsCounterPa

thsMETA (function), 1030

xrEnumeratePersistedSpatialAnchorNamesMSFT

(function), 1316

xrEnumerateReferenceSpaces (function), 152

xrEnumerateRenderModelPathsFB (function), 790

xrEnumerateReprojectionModesMSFT (function),

1165

xrEnumerateSceneComputeFeaturesMSFT

(function), 1247

xrEnumerateSpaceSupportedComponentsFB

(function), 831

xrEnumerateSwapchainFormats (function), 202

xrEnumerateSwapchainImages (function), 211

xrEnumerateViewConfigurations (function), 177

xrEnumerateViewConfigurationViews (function),

180

xrEnumerateViveTrackerPathsHTCX (function),

1406

XrEnvironmentBlendMode (type), 247

XrEnvironmentDepthHandRemovalSetInfoMETA

(type), 982

XrEnvironmentDepthImageAcquireInfoMETA

(type), 993

XrEnvironmentDepthImageMETA (type), 995

XrEnvironmentDepthImageViewMETA (type), 994

XrEnvironmentDepthProviderCreateFlagBit

sMETA (type), 977

XrEnvironmentDepthProviderCreateFlagsMETA

(type), 977

XrEnvironmentDepthProviderCreateInfoMETA

(type), 976

XrEnvironmentDepthProviderMETA (type), 975

XrEnvironmentDepthSwapchainCreateFlag

BitsMETA (type), 986

XrEnvironmentDepthSwapchainCreateFlagsMETA

(type), 986

XrEnvironmentDepthSwapchainCreateInfoMETA

(type), 985

XrEnvironmentDepthSwapchainMETA (type), 983

XrEnvironmentDepthSwapchainStateMETA (type),

987

xrEraseSpaceFB (function), 867

XrEventDataBaseHeader (type), 52

XrEventDataBuffer (type), 53

XrEventDataDisplayRefreshRateChangedFB (type),

634

XrEventDataEventsLost (type), 54

XrEventDataEyeCalibrationChangedML (type),

1161

XrEventDataHeadsetFitChangedML (type), 1159

XrEventDataInstanceLossPending (type), 87

XrEventDataInteractionProfileChanged (type), 269

XrEventDataLocalizationChangedML (type), 1100

XrEventDataMainSessionVisibilityChangedEXTX

1510 | Index

(type), 1400

XrEventDataMarkerTrackingUpdateVARJO (type),

1381

XrEventDataPassthroughStateChangedFB (type),

764

XrEventDataPerfSettingsEXT (type), 542

XrEventDataReferenceSpaceChangePending

(type), 150

XrEventDataSceneCaptureCompleteFB (type), 813

XrEventDataSessionStateChanged (type), 197

XrEventDataSpaceEraseCompleteFB (type), 864

XrEventDataSpaceListSaveCompleteFB (type), 870

XrEventDataSpaceQueryCompleteFB (type), 850

XrEventDataSpaceQueryResultsAvailableFB

(type), 849

XrEventDataSpaceSaveCompleteFB (type), 863

XrEventDataSpaceSetStatusCompleteFB (type),

827

XrEventDataSpaceShareCompleteFB (type), 856

XrEventDataSpatialAnchorCreateCompleteFB

(type), 826

XrEventDataUserPresenceChangedEXT (type), 577

XrEventDataVirtualKeyboardBackspaceMETA

(type), 1077

XrEventDataVirtualKeyboardCommitTextMETA

(type), 1076

XrEventDataVirtualKeyboardEnterMETA (type),

1078

XrEventDataVirtualKeyboardHiddenMETA (type),

1080

XrEventDataVirtualKeyboardShownMETA (type),

1079

XrEventDataVisibilityMaskChangedKHR (type),

379

XrEventDataViveTrackerConnectedHTCX (type),

1406

XrExportedLocalizationMapML (type), 1116

XrExtensionProperties (type), 79

XrExtent2Df (type), 43

XrExtent2Di (type), 44

XrExtent3Df (type), 44

XrExtent3DfEXT (type), 566

XrExtent3DfFB (type), 798

XrExtent3DfKHR (type), 1433

XrExternalCameraAttachedToDeviceOCULUS

(type), 1341

XrExternalCameraExtrinsicsOCULUS (type), 1343

XrExternalCameraIntrinsicsOCULUS (type), 1342

XrExternalCameraOCULUS (type), 1344

XrExternalCameraStatusFlagBitsOCULUS (type),

1340

XrExternalCameraStatusFlagsOCULUS (type), 1340

XrEyeCalibrationStatusML (type), 1161

XrEyeExpressionHTC (type), 929

XrEyeGazeFB (type), 648

XrEyeGazeSampleTimeEXT (type), 470

XrEyeGazesFB (type), 647

XrEyeGazesInfoFB (type), 646

XrEyePositionFB (type), 649

XrEyeTrackerCreateInfoFB (type), 643

XrEyeTrackerFB (type), 642

XrEyeVisibility (type), 244

F

XR_FACE_EXPRESSSION_SET_DEFAULT_FB

(define), 656

XR_FACIAL_EXPRESSION_EYE_COUNT_HTC

(define), 929

XR_FACIAL_EXPRESSION_LIP_COUNT_HTC

(define), 929

XR_FAILED (define), 30

XR_FALSE (define), 49

XR_FREQUENCY_UNSPECIFIED (define), 286

XrFaceConfidence2FB (type), 704

XrFaceConfidenceFB (type), 665

XrFaceExpression2FB (type), 680

XrFaceExpressionFB (type), 663

XrFaceExpressionInfo2FB (type), 675

XrFaceExpressionInfoFB (type), 658

XrFaceExpressionSet2FB (type), 672

XrFaceExpressionSetFB (type), 656

XrFaceExpressionStatusFB (type), 661

XrFaceExpressionWeights2FB (type), 676

XrFaceExpressionWeightsFB (type), 659

XrFaceTracker2FB (type), 669

XrFaceTrackerCreateInfo2FB (type), 670

XrFaceTrackerCreateInfoFB (type), 655

XrFaceTrackerFB (type), 654

Index | 1511

XrFaceTrackingDataSource2FB (type), 672

XrFacialExpressionsHTC (type), 927

XrFacialTrackerCreateInfoHTC (type), 924

XrFacialTrackerHTC (type), 923

XrFacialTrackingTypeHTC (type), 925

XrFlags64 (type), 15

XrForceFeedbackCurlApplyLocationMNDX (type),

1417

XrForceFeedbackCurlApplyLocationsMNDX (type),

1416

XrForceFeedbackCurlLocationMNDX (type), 1414

XrFormFactor (type), 91

XrFoveatedViewConfigurationViewVARJO (type),

1367

XrFoveationApplyInfoHTC (type), 949

XrFoveationConfigurationHTC (type), 954

XrFoveationCustomModeInfoHTC (type), 953

XrFoveationDynamicFB (type), 715

XrFoveationDynamicFlagBitsHTC (type), 952

XrFoveationDynamicFlagsHTC (type), 952

XrFoveationDynamicModeInfoHTC (type), 951

XrFoveationEyeTrackedProfileCreateFlagBit

sMETA (type), 999

XrFoveationEyeTrackedProfileCreateFlagsMETA

(type), 999

XrFoveationEyeTrackedProfileCreateInfoMETA

(type), 1000

XrFoveationEyeTrackedStateFlagBitsMETA (type),

999

XrFoveationEyeTrackedStateFlagsMETA (type),

999

XrFoveationEyeTrackedStateMETA (type), 1000

XrFoveationLevelFB (type), 715

XrFoveationLevelHTC (type), 954

XrFoveationLevelProfileCreateInfoFB (type), 716

XrFoveationModeHTC (type), 950

XrFoveationProfileCreateInfoFB (type), 709

XrFoveationProfileFB (type), 707

XrFovf (type), 48

XrFrameBeginInfo (type), 231

XrFrameEndInfo (type), 234

XrFrameEndInfoFlagBitsML (type), 1094

XrFrameEndInfoFlagsML (type), 1094

XrFrameEndInfoML (type), 1095

XrFrameState (type), 228

XrFrameWaitInfo (type), 227

XrFrustumf (type), 47

XrFrustumfKHR (type), 1434

XrFutureCancelInfoEXT (type), 482

XrFutureCompletionBaseHeaderEXT (type), 478

XrFutureCompletionEXT (type), 479

XrFutureEXT (type), 474

XrFuturePollInfoEXT (type), 476

XrFuturePollResultEXT (type), 477

XrFutureStateEXT (type), 482

G

XrGeometryInstanceCreateInfoFB (type), 758

XrGeometryInstanceFB (type), 750

xrGeometryInstanceSetTransformFB (function),

777

XrGeometryInstanceTransformFB (type), 759

xrGetActionStateBoolean (function), 273

xrGetActionStateFloat (function), 275

xrGetActionStatePose (function), 279

xrGetActionStateVector2f (function), 277

xrGetAudioInputDeviceGuidOculus (function),

1338

xrGetAudioOutputDeviceGuidOculus (function),

1337

xrGetBodySkeletonFB (function), 604

xrGetControllerModelKeyMSFT (function), 1171

xrGetControllerModelPropertiesMSFT (function),

1176

xrGetControllerModelStateMSFT (function), 1179

xrGetCurrentInteractionProfile (function), 266

xrGetD3D11GraphicsRequirementsKHR

(function), 343

xrGetD3D12GraphicsRequirementsKHR

(function), 350

xrGetDeviceSampleRateFB (function), 738

xrGetDisplayRefreshRateFB (function), 637

xrGetEnvironmentDepthSwapchainStateMETA

(function), 986

xrGetExportedLocalizationMapDataML (function),

1114

xrGetEyeGazesFB (function), 645

1512 | Index

xrGetFaceExpressionWeights2FB (function), 673

xrGetFaceExpressionWeightsFB (function), 657

xrGetFacialExpressionsHTC (function), 926

xrGetFoveationEyeTrackedStateMETA (function),

1002

xrGetHandMeshFB (function), 731

xrGetInputSourceLocalizedName (function), 293

xrGetInstanceProcAddr (function), 56

xrGetInstanceProperties (function), 85

xrGetMarkerDetectorStateML (function), 1138

xrGetMarkerLengthML (function), 1147

xrGetMarkerNumberML (function), 1142

xrGetMarkerReprojectionErrorML (function),

1146

xrGetMarkerSizeVARJO (function), 1377

xrGetMarkersML (function), 1140

xrGetMarkerStringML (function), 1144

xrGetOpenGLESGraphicsRequirementsKHR

(function), 373

xrGetOpenGLGraphicsRequirementsKHR

(function), 366

xrGetPassthroughPreferencesMETA (function),

1023

xrGetPerformanceMetricsStateMETA (function),

1032

xrGetPlaneDetectionsEXT (function), 556

xrGetPlaneDetectionStateEXT (function), 555

xrGetPlanePolygonBufferEXT (function), 563

xrGetRecommendedLayerResolutionMETA

(function), 1037

xrGetReferenceSpaceBoundsRect (function), 149

xrGetRenderModelPropertiesFB (function), 792

xrGetSceneComponentsMSFT (function), 1256

xrGetSceneComputeStateMSFT (function), 1248

xrGetSceneMarkerDecodedStringMSFT (function),

1226

xrGetSceneMarkerRawDataMSFT (function), 1228

xrGetSceneMeshBuffersMSFT (function), 1270

xrGetSerializedSceneFragmentDataMSFT

(function), 1285

xrGetSpaceBoundary2DFB (function), 808

xrGetSpaceBoundingBox2DFB (function), 804

xrGetSpaceBoundingBox3DFB (function), 805

xrGetSpaceComponentStatusFB (function), 834

xrGetSpaceContainerFB (function), 839

xrGetSpaceRoomLayoutFB (function), 809

xrGetSpaceSemanticLabelsFB (function), 807

xrGetSpaceTriangleMeshMETA (function), 1040

xrGetSpaceUserIdFB (function), 877

xrGetSpaceUuidFB (function), 830

xrGetSpatialAnchorNameHTC (function), 919

xrGetSpatialGraphNodeBindingPropertiesMSFT

(function), 1331

xrGetSwapchainStateFB (function), 882

xrGetSystem (function), 92

xrGetSystemProperties (function), 95

xrGetViewConfigurationProperties (function), 178

xrGetVirtualKeyboardDirtyTexturesMETA

(function), 1063

xrGetVirtualKeyboardModelAnimationState

sMETA (function), 1067

xrGetVirtualKeyboardScaleMETA (function), 1060

xrGetVirtualKeyboardTextureDataMETA

(function), 1065

xrGetVisibilityMaskKHR (function), 380

xrGetVulkanDeviceExtensionsKHR (function), 393

xrGetVulkanGraphicsDevice2KHR (function), 402

xrGetVulkanGraphicsDeviceKHR (function), 391

xrGetVulkanGraphicsRequirements2KHR

(function), 397

xrGetVulkanGraphicsRequirementsKHR

(function), 389

xrGetVulkanInstanceExtensionsKHR (function),

392

XrGlobalDimmerFrameEndInfoFlagBitsML (type),

1097

XrGlobalDimmerFrameEndInfoFlagsML (type),

1097

XrGlobalDimmerFrameEndInfoML (type), 1097

XrGraphicsBindingD3D11KHR (type), 340

XrGraphicsBindingD3D12KHR (type), 347

XrGraphicsBindingEGLMNDX (type), 1412

XrGraphicsBindingOpenGLESAndroidKHR (type),

370

XrGraphicsBindingOpenGLWaylandKHR (type),

363

XrGraphicsBindingOpenGLWin32KHR (type), 359

Index | 1513

XrGraphicsBindingOpenGLXcbKHR (type), 362

XrGraphicsBindingOpenGLXlibKHR (type), 360

XrGraphicsBindingVulkan2KHR (type), 408

XrGraphicsBindingVulkanKHR (type), 386

XrGraphicsRequirementsD3D11KHR (type), 342

XrGraphicsRequirementsD3D12KHR (type), 349

XrGraphicsRequirementsOpenGLESKHR (type),

372

XrGraphicsRequirementsOpenGLKHR (type), 365

XrGraphicsRequirementsVulkan2KHR (type), 398

XrGraphicsRequirementsVulkanKHR (type), 388

H

XR_HAND_FOREARM_JOINT_COUNT_ULTRALEAP

(define), 1355

XR_HAND_JOINT_COUNT_EXT (define), 526

XrHandCapsuleFB (type), 724

XrHandEXT (type), 513

XrHandForearmJointULTRALEAP (type), 1354

XrHandJointEXT (type), 524

XrHandJointLocationEXT (type), 518

XrHandJointLocationsEXT (type), 517

XrHandJointSetEXT (type), 513

XrHandJointsLocateInfoEXT (type), 516

XrHandJointsMotionRangeEXT (type), 507

XrHandJointsMotionRangeInfoEXT (type), 508

XrHandJointVelocitiesEXT (type), 519

XrHandJointVelocityEXT (type), 521

XrHandMeshIndexBufferMSFT (type), 1198

XrHandMeshMSFT (type), 1196

XrHandMeshSpaceCreateInfoMSFT (type), 1192

XrHandMeshUpdateInfoMSFT (type), 1195

XrHandMeshVertexBufferMSFT (type), 1199

XrHandMeshVertexMSFT (type), 1201

XrHandPoseTypeInfoMSFT (type), 1204

XrHandPoseTypeMSFT (type), 1204

XrHandTrackerCreateInfoEXT (type), 512

XrHandTrackerEXT (type), 510

XrHandTrackingAimFlagBitsFB (type), 720

XrHandTrackingAimFlagsFB (type), 720

XrHandTrackingAimStateFB (type), 722

XrHandTrackingCapsulesStateFB (type), 725

XrHandTrackingDataSourceEXT (type), 529

XrHandTrackingDataSourceInfoEXT (type), 530

XrHandTrackingDataSourceStateEXT (type), 531

XrHandTrackingMeshFB (type), 728

XrHandTrackingScaleFB (type), 730

XrHapticActionInfo (type), 272

XrHapticAmplitudeEnvelopeVibrationFB (type),

734

XrHapticBaseHeader (type), 284

XrHapticPcmVibrationFB (type), 736

XrHapticVibration (type), 285

XrHeadsetFitStatusML (type), 1160

XrHolographicWindowAttachmentMSFT (type),

1209

I

XR_INFINITE_DURATION (define), 37

xrImportLocalizationMapML (function), 1109

xrInitializeLoaderKHR (function), 354

XrInputSourceLocalizedNameFlagBits (type), 295

XrInputSourceLocalizedNameFlags (type), 295

XrInputSourceLocalizedNameGetInfo (type), 294

XrInstance (type), 74

XrInstanceCreateFlagBits (type), 83

XrInstanceCreateFlags (type), 82

XrInstanceCreateInfo (type), 81

XrInstanceCreateInfoAndroidKHR (type), 303

XrInstanceProperties (type), 86

XrInteractionProfileAnalogThresholdVALVE

(type), 1357

XrInteractionProfileDpadBindingEXT (type), 462

XrInteractionProfileState (type), 268

XrInteractionProfileSuggestedBinding (type), 263

K

XrKeyboardSpaceCreateInfoFB (type), 745

XrKeyboardTrackingDescriptionFB (type), 745

XrKeyboardTrackingFlagBitsFB (type), 742

XrKeyboardTrackingFlagsFB (type), 741

XrKeyboardTrackingQueryFB (type), 744

XrKeyboardTrackingQueryFlagBitsFB (type), 742

XrKeyboardTrackingQueryFlagsFB (type), 742

L

XR_LOADER_INFO_STRUCT_VERSION (define), 63

XrLipExpressionHTC (type), 934

xrLoadControllerModelMSFT (function), 1174

1514 | Index

XrLoaderInitInfoAndroidKHR (type), 356

XrLoaderInitInfoBaseHeaderKHR (type), 353

XrLoaderInterfaceStructs (type), 63

xrLoadRenderModelFB (function), 793

XrLocalDimmingFrameEndInfoMETA (type), 1008

XrLocalDimmingModeMETA (type), 1008

XrLocalizationEnableEventsInfoML (type), 1103

XrLocalizationMapConfidenceML (type), 1117

XrLocalizationMapErrorFlagBitsML (type), 1101

XrLocalizationMapErrorFlagsML (type), 1101

XrLocalizationMapImportInfoML (type), 1111

XrLocalizationMapML (type), 1104

XrLocalizationMapQueryInfoBaseHeaderML

(type), 1106

XrLocalizationMapStateML (type), 1117

XrLocalizationMapTypeML (type), 1118

xrLocateBodyJointsFB (function), 600

xrLocateHandJointsEXT (function), 515

xrLocateSceneComponentsMSFT (function), 1276

xrLocateSpace (function), 159

xrLocateSpaces (function), 166

xrLocateSpacesKHR (function), 1423

xrLocateViews (function), 220

M

XR_MAKE_VERSION (define), 1492

XR_MAX_EVENT_DATA_SIZE (define), 54

XR_MAX_EXTERNAL_CAMERA_NAME_SIZE_

OCULUS (define), 1341

XR_MAX_HAPTIC_AMPLITUDE_ENVELOPE_

SAMPLES_FB (define), 735

XR_MAX_HAPTIC_PCM_BUFFER_SIZE_FB (define),

740

XR_MAY_ALIAS (define), 13

XR_MIN_COMPOSITION_LAYERS_SUPPORTED

(define), 98

XR_MIN_HAPTIC_DURATION (define), 286

XrMapLocalizationRequestInfoML (type), 1108

XrMarkerAprilTagDictML (type), 1128

XrMarkerArucoDictML (type), 1125

XrMarkerDetectorAprilTagInfoML (type), 1127

XrMarkerDetectorArucoInfoML (type), 1124

XrMarkerDetectorCameraML (type), 1134

XrMarkerDetectorCornerRefineMethodML (type),

1134

XrMarkerDetectorCreateInfoML (type), 1121

XrMarkerDetectorCustomProfileInfoML (type),

1131

XrMarkerDetectorFpsML (type), 1133

XrMarkerDetectorFullAnalysisIntervalML (type),

1135

XrMarkerDetectorML (type), 1119

XrMarkerDetectorProfileML (type), 1122

XrMarkerDetectorResolutionML (type), 1133

XrMarkerDetectorSizeInfoML (type), 1129

XrMarkerDetectorSnapshotInfoML (type), 1137

XrMarkerDetectorStateML (type), 1139

XrMarkerDetectorStatusML (type), 1140

XrMarkerML (type), 1142

XrMarkerSpaceCreateInfoML (type), 1151

XrMarkerSpaceCreateInfoVARJO (type), 1382

XrMarkerTypeML (type), 1123

XrMeshComputeLodMSFT (type), 1246

N

XR_NO_DURATION (define), 37

XR_NULL_CONTROLLER_MODEL_KEY_MSFT

(define), 1173

XR_NULL_HANDLE (define), 1494

XR_NULL_PATH (define), 101

XR_NULL_RENDER_MODEL_KEY_FB (define), 784

XR_NULL_SYSTEM_ID (define), 92

XrNegotiateApiLayerRequest (type), 67

xrNegotiateLoaderApiLayerInterface (function),

65

XrNegotiateLoaderInfo (type), 62

xrNegotiateLoaderRuntimeInterface (function), 60

XrNegotiateRuntimeRequest (type), 64

XrNewSceneComputeInfoMSFT (type), 1239

O

XrObjectType (type), 32

XrOffset2Df (type), 42

XrOffset2Di (type), 43

XrOffset3DfFB (type), 798

XrOverlayMainSessionFlagBitsEXTX (type), 1399

XrOverlayMainSessionFlagsEXTX (type), 1399

Index | 1515

XrOverlaySessionCreateFlagBitsEXTX (type), 1399

XrOverlaySessionCreateFlagsEXTX (type), 1399

P

PFN_xrCreateApiLayerInstance, 59

PFN_xrDebugUtilsMessengerCallbackEXT, 451

PFN_xrEglGetProcAddressMNDX, 1413

PFN_xrGetInstanceProcAddr, 59

PFN_xrVoidFunction, 59

XrPassthroughBrightnessContrastSaturationFB

(type), 763

XrPassthroughCapabilityFlagBitsFB (type), 752

XrPassthroughCapabilityFlagsFB (type), 751

XrPassthroughColorHTC (type), 964

XrPassthroughColorLutChannelsMETA (type),

1011

XrPassthroughColorLutCreateInfoMETA (type),

1012

XrPassthroughColorLutDataMETA (type), 1012

XrPassthroughColorLutMETA (type), 1010

XrPassthroughColorLutUpdateInfoMETA (type),

1014

XrPassthroughColorMapInterpolatedLutMETA

(type), 1016

XrPassthroughColorMapLutMETA (type), 1015

XrPassthroughColorMapMonoToMonoFB (type),

762

XrPassthroughColorMapMonoToRgbaFB (type),

761

XrPassthroughCreateInfoFB (type), 755

XrPassthroughCreateInfoHTC (type), 960

XrPassthroughFB (type), 750

XrPassthroughFlagBitsFB (type), 750

XrPassthroughFlagsFB (type), 750

XrPassthroughFormHTC (type), 961

XrPassthroughHTC (type), 959

XrPassthroughKeyboardHandsIntensityFB (type),

780

XrPassthroughLayerCreateInfoFB (type), 756

XrPassthroughLayerFB (type), 750

xrPassthroughLayerPauseFB (function), 771

XrPassthroughLayerPurposeFB (type), 753

xrPassthroughLayerResumeFB (function), 772

xrPassthroughLayerSetKeyboardHandsInte

nsityFB (function), 781

xrPassthroughLayerSetStyleFB (function), 773

XrPassthroughMeshTransformInfoHTC (type), 965

xrPassthroughPauseFB (function), 768

XrPassthroughPreferenceFlagBitsMETA (type),

1022

XrPassthroughPreferenceFlagsMETA (type), 1022

XrPassthroughPreferencesMETA (type), 1022

xrPassthroughStartFB (function), 767

XrPassthroughStateChangedFlagBitsFB (type), 751

XrPassthroughStateChangedFlagsFB (type), 751

XrPassthroughStyleFB (type), 760

XrPath (type), 99

xrPathToString (function), 103

XrPerformanceMetricsCounterFlagBitsMETA

(type), 1026

XrPerformanceMetricsCounterFlagsMETA (type),

1026

XrPerformanceMetricsCounterMETA (type), 1028

XrPerformanceMetricsCounterUnitMETA (type),

1027

XrPerformanceMetricsStateMETA (type), 1028

XrPerfSettingsDomainEXT (type), 534

XrPerfSettingsLevelEXT (type), 535

XrPerfSettingsNotificationLevelEXT (type), 543

xrPerfSettingsSetPerformanceLevelEXT

(function), 541

XrPerfSettingsSubDomainEXT (type), 543

xrPersistSpatialAnchorMSFT (function), 1314

XrPlaneDetectionCapabilityFlagBitsEXT (type), 546

XrPlaneDetectionCapabilityFlagsEXT (type), 546

XrPlaneDetectionStateEXT (type), 563

XrPlaneDetectorBeginInfoEXT (type), 553

XrPlaneDetectorCreateInfoEXT (type), 549

XrPlaneDetectorEXT (type), 547

XrPlaneDetectorFlagBitsEXT (type), 550

XrPlaneDetectorFlagsEXT (type), 550

XrPlaneDetectorGetInfoEXT (type), 558

XrPlaneDetectorLocationEXT (type), 560

XrPlaneDetectorLocationsEXT (type), 559

XrPlaneDetectorOrientationEXT (type), 561

XrPlaneDetectorPolygonBufferEXT (type), 565

XrPlaneDetectorSemanticTypeEXT (type), 562

1516 | Index

xrPollEvent (function), 50

xrPollFutureEXT (function), 475

XrPosef (type), 41

Q

XrQuaternionf (type), 41

xrQueryLocalizationMapsML (function), 1105

xrQueryPerformanceMetricsCounterMETA

(function), 1033

xrQuerySpacesFB (function), 851

xrQuerySystemTrackedKeyboardFB (function),

746

R

XR_RUNTIME_INFO_STRUCT_VERSION (define), 65

XrRecommendedLayerResolutionGetInfoMETA

(type), 1036

XrRecommendedLayerResolutionMETA (type),

1035

XrRect2Df (type), 45

XrRect2Di (type), 46

XrRect3DfFB (type), 799

XrReferenceSpaceCreateInfo (type), 155

XrReferenceSpaceType (type), 145

xrReleaseSwapchainImage (function), 218

XrRenderModelBufferFB (type), 789

XrRenderModelCapabilitiesRequestFB (type), 787

XrRenderModelFlagBitsFB (type), 783

XrRenderModelFlagsFB (type), 783

XrRenderModelKeyFB (type), 784

XrRenderModelLoadInfoFB (type), 788

XrRenderModelPathInfoFB (type), 785

XrRenderModelPropertiesFB (type), 786

XrReprojectionModeMSFT (type), 1167

xrRequestDisplayRefreshRateFB (function), 638

xrRequestExitSession (function), 196

xrRequestMapLocalizationML (function), 1107

xrRequestSceneCaptureFB (function), 814

XrResult (type), 19

xrResultToString (function), 88

xrRetrieveSpaceQueryResultsFB (function), 852

XrRoomLayoutFB (type), 801

S

XR_SUCCEEDED (define), 30

xrSaveSpaceFB (function), 865

xrSaveSpaceListFB (function), 872

XrSceneBoundsMSFT (type), 1242

XrSceneCaptureRequestInfoFB (type), 812

XrSceneComponentLocationMSFT (type), 1280

XrSceneComponentLocationsMSFT (type), 1279

XrSceneComponentMSFT (type), 1259

XrSceneComponentParentFilterInfoMSFT (type),

1260

XrSceneComponentsGetInfoMSFT (type), 1257

XrSceneComponentsLocateInfoMSFT (type), 1278

XrSceneComponentsMSFT (type), 1258

XrSceneComponentTypeMSFT (type), 1255

XrSceneComputeConsistencyMSFT (type), 1241

XrSceneComputeFeatureMSFT (type), 1240

XrSceneComputeStateMSFT (type), 1249

XrSceneCreateInfoMSFT (type), 1252

XrSceneDeserializeInfoMSFT (type), 1289

XrSceneFrustumBoundMSFT (type), 1245

XrSceneMarkerMSFT (type), 1219

XrSceneMarkerQRCodeMSFT (type), 1225

XrSceneMarkerQRCodesMSFT (type), 1224

XrSceneMarkerQRCodeSymbolTypeMSFT (type),

1226

XrSceneMarkersMSFT (type), 1218

XrSceneMarkerTypeFilterMSFT (type), 1220

XrSceneMarkerTypeMSFT (type), 1221

XrSceneMeshBuffersGetInfoMSFT (type), 1272

XrSceneMeshBuffersMSFT (type), 1273

XrSceneMeshesMSFT (type), 1269

XrSceneMeshIndicesUint16MSFT (type), 1275

XrSceneMeshIndicesUint32MSFT (type), 1274

XrSceneMeshMSFT (type), 1269

XrSceneMeshVertexBufferMSFT (type), 1273

XrSceneMSFT (type), 1239

XrSceneObjectMSFT (type), 1264

XrSceneObjectsMSFT (type), 1263

XrSceneObjectTypeMSFT (type), 1265

XrSceneObjectTypesFilterInfoMSFT (type), 1261

XrSceneObserverCreateInfoMSFT (type), 1234

XrSceneObserverMSFT (type), 1233

XrSceneOrientedBoxBoundMSFT (type), 1244

XrScenePlaneAlignmentFilterInfoMSFT (type),

1262

Index | 1517

XrScenePlaneAlignmentTypeMSFT (type), 1268

XrScenePlaneMSFT (type), 1266

XrScenePlanesMSFT (type), 1266

XrSceneSphereBoundMSFT (type), 1243

XrSecondaryViewConfigurationFrameEndIn

foMSFT (type), 1299

XrSecondaryViewConfigurationFrameStateMSFT

(type), 1296

XrSecondaryViewConfigurationLayerInfoMSFT

(type), 1300

XrSecondaryViewConfigurationSessionBegi

nInfoMSFT (type), 1295

XrSecondaryViewConfigurationStateMSFT (type),

1297

XrSecondaryViewConfigurationSwapchainC

reateInfoMSFT (type), 1293

XrSemanticLabelsFB (type), 800

XrSemanticLabelsSupportFlagBitsFB (type), 796

XrSemanticLabelsSupportFlagsFB (type), 796

XrSemanticLabelsSupportInfoFB (type), 803

xrSendVirtualKeyboardInputMETA (function),

1071

XrSerializedSceneFragmentDataGetInfoMSFT

(type), 1286

XrSession (type), 186

XrSessionActionSetsAttachInfo (type), 266

xrSessionBeginDebugUtilsLabelRegionEXT

(function), 447

XrSessionBeginInfo (type), 194

XrSessionCreateFlagBits (type), 191

XrSessionCreateFlags (type), 191

XrSessionCreateInfo (type), 190

XrSessionCreateInfoOverlayEXTX (type), 1399

xrSessionEndDebugUtilsLabelRegionEXT

(function), 448

xrSessionInsertDebugUtilsLabelEXT (function),

449

XrSessionState (type), 198

xrSetAndroidApplicationThreadKHR (function),

309

xrSetColorSpaceFB (function), 617

xrSetDebugUtilsObjectNameEXT (function), 442

xrSetDigitalLensControlALMALENCE (function),

588

xrSetEnvironmentDepthEstimationVARJO

(function), 1364

xrSetEnvironmentDepthHandRemovalMETA

(function), 981

xrSetInputDeviceActiveEXT (function), 424

xrSetInputDeviceLocationEXT (function), 429

xrSetInputDeviceStateBoolEXT (function), 425

xrSetInputDeviceStateFloatEXT (function), 427

xrSetInputDeviceStateVector2fEXT (function), 428

xrSetMarkerTrackingPredictionVARJO (function),

1376

xrSetMarkerTrackingTimeoutVARJO (function),

1375

xrSetMarkerTrackingVARJO (function), 1374

xrSetPerformanceMetricsStateMETA (function),

1031

xrSetSpaceComponentStatusFB (function), 833

xrSetTrackingOptimizationSettingsHintQCOM

(function), 1351

xrSetViewOffsetVARJO (function), 1387

xrSetVirtualKeyboardModelVisibilityMETA

(function), 1061

xrShareSpacesFB (function), 858

xrSnapshotMarkerDetectorML (function), 1136

XrSpace (type), 144

XrSpaceComponentFilterInfoFB (type), 847

XrSpaceComponentStatusFB (type), 825

XrSpaceComponentStatusSetInfoFB (type), 824

XrSpaceComponentTypeFB (type), 822

XrSpaceContainerFB (type), 837

XrSpaceEraseInfoFB (type), 862

XrSpaceFilterInfoBaseHeaderFB (type), 843

XrSpaceListSaveInfoFB (type), 869

XrSpaceLocation (type), 162

XrSpaceLocationData (type), 169

XrSpaceLocationDataKHR (type), 1427

XrSpaceLocationFlagBits (type), 163

XrSpaceLocationFlags (type), 163

XrSpaceLocations (type), 168

XrSpaceLocationsKHR (type), 1425

XrSpacePersistenceModeFB (type), 861

1518 | Index

XrSpaceQueryActionFB (type), 841

XrSpaceQueryInfoBaseHeaderFB (type), 842

XrSpaceQueryInfoFB (type), 844

XrSpaceQueryResultFB (type), 848

XrSpaceQueryResultsFB (type), 848

XrSpaceSaveInfoFB (type), 862

XrSpaceShareInfoFB (type), 855

XrSpacesLocateInfo (type), 167

XrSpacesLocateInfoKHR (type), 1424

XrSpaceStorageLocationFB (type), 861

XrSpaceStorageLocationFilterInfoFB (type), 845

XrSpaceTriangleMeshGetInfoMETA (type), 1041

XrSpaceTriangleMeshMETA (type), 1042

XrSpaceUserCreateInfoFB (type), 875

XrSpaceUserFB (type), 874

XrSpaceUserIdFB (type), 875

XrSpaceUuidFilterInfoFB (type), 846

XrSpaceVelocities (type), 170

XrSpaceVelocitiesKHR (type), 1427

XrSpaceVelocity (type), 164

XrSpaceVelocityData (type), 171

XrSpaceVelocityDataKHR (type), 1428

XrSpaceVelocityFlagBits (type), 165

XrSpaceVelocityFlags (type), 165

XrSpatialAnchorCreateInfoFB (type), 823

XrSpatialAnchorCreateInfoHTC (type), 918

XrSpatialAnchorCreateInfoMSFT (type), 1305

XrSpatialAnchorFromPersistedAnchorCreat

eInfoMSFT (type), 1319

XrSpatialAnchorMSFT (type), 1303

XrSpatialAnchorNameHTC (type), 918

XrSpatialAnchorPersistenceInfoMSFT (type), 1315

XrSpatialAnchorPersistenceNameMSFT (type),

1315

XrSpatialAnchorSpaceCreateInfoMSFT (type),

1307

XrSpatialAnchorStoreConnectionMSFT (type),

1311

XrSpatialGraphNodeBindingMSFT (type), 1327

XrSpatialGraphNodeBindingPropertiesGetIn

foMSFT (type), 1332

XrSpatialGraphNodeBindingPropertiesMSFT

(type), 1333

XrSpatialGraphNodeSpaceCreateInfoMSFT (type),

1325

XrSpatialGraphNodeTypeMSFT (type), 1326

XrSpatialGraphStaticNodeBindingCreateInfoMSFT

(type), 1329

XrSpheref (type), 46

XrSpherefKHR (type), 1433

xrStartEnvironmentDepthProviderMETA

(function), 978

xrStopEnvironmentDepthProviderMETA

(function), 980

xrStopHapticFeedback (function), 286

xrStringToPath (function), 101

XrStructureType (type), 1477

xrStructureTypeToString (function), 89

xrSubmitDebugUtilsMessageEXT (function), 446

xrSuggestInteractionProfileBindings (function),

261

xrSuggestVirtualKeyboardLocationMETA

(function), 1057

XrSwapchain (type), 202

XrSwapchainCreateFlagBits (type), 208

XrSwapchainCreateFlags (type), 208

XrSwapchainCreateFoveationFlagBitsFB (type),

707

XrSwapchainCreateFoveationFlagsFB (type), 707

XrSwapchainCreateInfo (type), 205

XrSwapchainCreateInfoFoveationFB (type), 709

XrSwapchainImageAcquireInfo (type), 215

XrSwapchainImageBaseHeader (type), 212

XrSwapchainImageD3D11KHR (type), 341

XrSwapchainImageD3D12KHR (type), 348

XrSwapchainImageFoveationVulkanFB (type), 718

XrSwapchainImageOpenGLESKHR (type), 371

XrSwapchainImageOpenGLKHR (type), 364

XrSwapchainImageReleaseInfo (type), 219

XrSwapchainImageVulkan2KHR (type), 410

XrSwapchainImageVulkanKHR (type), 387

XrSwapchainImageWaitInfo (type), 217

XrSwapchainStateAndroidSurfaceDimensionsFB

(type), 885

XrSwapchainStateBaseHeaderFB (type), 880

XrSwapchainStateFoveationFB (type), 710

Index | 1519

XrSwapchainStateFoveationFlagBitsFB (type), 708

XrSwapchainStateFoveationFlagsFB (type), 708

XrSwapchainStateSamplerOpenGLESFB (type),

887

XrSwapchainStateSamplerVulkanFB (type), 890

XrSwapchainSubImage (type), 239

XrSwapchainUsageFlagBits (type), 209

XrSwapchainUsageFlags (type), 208

xrSyncActions (function), 287

XrSystemAnchorPropertiesHTC (type), 915

XrSystemBodyTrackingPropertiesFB (type), 595

XrSystemColorSpacePropertiesFB (type), 615

XrSystemEnvironmentDepthPropertiesMETA

(type), 974

XrSystemEyeGazeInteractionPropertiesEXT (type),

468

XrSystemEyeTrackingPropertiesFB (type), 641

XrSystemFaceTrackingProperties2FB (type), 668

XrSystemFaceTrackingPropertiesFB (type), 653

XrSystemFacialTrackingPropertiesHTC (type), 922

XrSystemForceFeedbackCurlPropertiesMNDX

(type), 1415

XrSystemFoveatedRenderingPropertiesVARJO

(type), 1367

XrSystemFoveationEyeTrackedPropertiesMETA

(type), 1001

XrSystemGetInfo (type), 93

XrSystemGraphicsProperties (type), 97

XrSystemHandTrackingMeshPropertiesMSFT

(type), 1189

XrSystemHandTrackingPropertiesEXT (type), 509

XrSystemHeadsetIdPropertiesMETA (type), 1005

XrSystemId (type), 92

XrSystemKeyboardTrackingPropertiesFB (type),

743

XrSystemMarkerTrackingPropertiesVARJO (type),

1380

XrSystemMarkerUnderstandingPropertiesML

(type), 1156

XrSystemPassthroughColorLutPropertiesMETA

(type), 1011

XrSystemPassthroughProperties2FB (type), 754

XrSystemPassthroughPropertiesFB (type), 754

XrSystemPlaneDetectionPropertiesEXT (type), 545

XrSystemProperties (type), 96

XrSystemRenderModelPropertiesFB (type), 784

XrSystemSpaceWarpPropertiesFB (type), 819

XrSystemSpatialEntityPropertiesFB (type), 823

XrSystemTrackingProperties (type), 98

XrSystemUserPresencePropertiesEXT (type), 576

XrSystemVirtualKeyboardPropertiesMETA (type),

1050

T

XR_TRUE (define), 49

xrThermalGetTemperatureTrendEXT (function),

573

XrTime (type), 36

XrTrackingOptimizationSettingsDomainQCOM

(type), 1350

XrTrackingOptimizationSettingsHintQCOM (type),

1350

xrTriangleMeshBeginUpdateFB (function), 909

xrTriangleMeshBeginVertexBufferUpdateFB

(function), 912

XrTriangleMeshCreateInfoFB (type), 902

xrTriangleMeshEndUpdateFB (function), 910

xrTriangleMeshEndVertexBufferUpdateFB

(function), 913

XrTriangleMeshFB (type), 900

XrTriangleMeshFlagBitsFB (type), 900

XrTriangleMeshFlagsFB (type), 900

xrTriangleMeshGetIndexBufferFB (function), 908

xrTriangleMeshGetVertexBufferFB (function), 906

xrTryCreateSpatialGraphStaticNodeBindingMSFT

(function), 1327

xrTryGetPerceptionAnchorFromSpatialAnc

horMSFT (function), 1214

U

XR_UNQUALIFIED_SUCCESS (define), 31

xrUnpersistSpatialAnchorMSFT (function), 1320

xrUpdateHandMeshMSFT (function), 1193

xrUpdatePassthroughColorLutMETA (function),

1019

xrUpdateSwapchainFB (function), 881

XrUserCalibrationEnableEventsInfoML (type),

1158

1520 | Index

XrUuid (type), 48

XrUuidEXT (type), 1447

XrUuidMSFT (type), 1254

V

XR_VERSION_MAJOR (define), 1493

XR_VERSION_MINOR (define), 1493

XR_VERSION_PATCH (define), 1493

XrVector2f (type), 40

XrVector3f (type), 40

XrVector4f (type), 40

XrVector4sFB (type), 727

XrVersion (type), 6

XrView (type), 222

XrViewConfigurationDepthRangeEXT (type), 583

XrViewConfigurationProperties (type), 179

XrViewConfigurationType (type), 174

XrViewConfigurationView (type), 182

XrViewConfigurationViewFovEPIC (type), 590

XrViewLocateFoveatedRenderingVARJO (type),

1371

XrViewLocateInfo (type), 221

XrViewState (type), 223

XrViewStateFlagBits (type), 224

XrViewStateFlags (type), 224

XrVirtualKeyboardAnimationStateMETA (type),

1069

XrVirtualKeyboardCreateInfoMETA (type), 1053

XrVirtualKeyboardInputInfoMETA (type), 1073

XrVirtualKeyboardInputSourceMETA (type), 1086

XrVirtualKeyboardInputStateFlagBitsMETA (type),

1084

XrVirtualKeyboardInputStateFlagsMETA (type),

1084

XrVirtualKeyboardLocationInfoMETA (type), 1058

XrVirtualKeyboardLocationTypeMETA (type),

1085

XrVirtualKeyboardMETA (type), 1084

XrVirtualKeyboardModelAnimationStatesMETA

(type), 1070

XrVirtualKeyboardModelVisibilitySetInfoMETA

(type), 1062

XrVirtualKeyboardSpaceCreateInfoMETA (type),

1056

XrVirtualKeyboardTextContextChangeInfoMETA

(type), 1075

XrVirtualKeyboardTextureDataMETA (type), 1066

XrVisibilityMaskKHR (type), 378

XrVisibilityMaskTypeKHR (type), 377

XrVisualMeshComputeLodInfoMSFT (type), 1246

XrViveTrackerPathsHTCX (type), 1405

XrVulkanDeviceCreateFlagBitsKHR (type), 407

XrVulkanDeviceCreateFlagsKHR (type), 407

XrVulkanDeviceCreateInfoKHR (type), 405

XrVulkanGraphicsDeviceGetInfoKHR (type), 403

XrVulkanInstanceCreateFlagBitsKHR (type), 402

XrVulkanInstanceCreateFlagsKHR (type), 402

XrVulkanInstanceCreateInfoKHR (type), 400

XrVulkanSwapchainCreateInfoMETA (type), 1089

XrVulkanSwapchainFormatListCreateInfoKHR

(type), 414

W

xrWaitFrame (function), 225

xrWaitSwapchainImage (function), 216

XrWindingOrderFB (type), 901

Index | 1521

	The OpenXR™ 1.1.36 Specification (with all registered extensions)
	Table of Contents
	Preamble
	Chapter 1. Introduction
	1.1. What is OpenXR?
	1.2. The Programmer’s View of OpenXR
	1.3. The Implementor’s View of OpenXR
	1.4. Our View of OpenXR
	1.5. Filing Bug Reports
	1.6. Document Conventions

	Chapter 2. Fundamentals
	2.1. API Version Numbers and Semantics
	2.2. String Encoding
	2.3. Threading Behavior
	2.4. Multiprocessing Behavior
	2.5. Runtime
	2.6. Extensions
	2.7. API Layers
	2.8. Type Aliasing
	2.9. Valid Usage
	2.10. Return Codes
	2.11. Handles
	2.12. Object Handle Types
	2.13. Buffer Size Parameters
	2.14. Time
	2.15. Duration
	2.16. Prediction Time Limits
	2.17. Colors
	2.18. Coordinate System
	2.19. Common Data Types
	2.20. Angles
	2.21. Boolean Values
	2.22. Events
	2.23. System resource lifetime

	Chapter 3. API Initialization
	3.1. Exported Functions
	3.2. Function Pointers
	3.3. Runtime Interface Negotiation
	3.4. API Layer Interface Negotiation

	Chapter 4. Instance
	4.1. API Layers and Extensions
	4.2. Instance Lifecycle
	4.3. Instance Information
	4.4. Platform-Specific Instance Creation
	4.5. Instance Enumerated Type String Functions

	Chapter 5. System
	5.1. Form Factors
	5.2. Getting the XrSystemId
	5.3. System Properties

	Chapter 6. Path Tree and Semantic Paths
	6.1. Path Atom Type
	6.2. Well-Formed Path Strings
	6.3. Reserved Paths
	6.4. Interaction Profile Paths

	Chapter 7. Spaces
	7.1. Reference Spaces
	7.2. Action Spaces
	7.3. Space Lifecycle
	7.4. Locating Spaces

	Chapter 8. View Configurations
	8.1. Primary View Configurations
	8.2. View Configuration API
	8.3. Example View Configuration Code

	Chapter 9. Session
	9.1. Session Lifecycle
	9.2. Session Creation
	9.3. Session Control
	9.4. Session States

	Chapter 10. Rendering
	10.1. Swapchain Image Management
	10.2. View and Projection State
	10.3. Frame Synchronization
	10.4. Frame Submission
	10.5. Frame Rate
	10.6. Compositing

	Chapter 11. Input and Haptics
	11.1. Action Overview
	11.2. Action Sets
	11.3. Creating Actions
	11.4. Suggested Bindings
	11.5. Current Interaction Profile
	11.6. Reading Input Action State
	11.7. Output Actions and Haptics
	11.8. Input Action State Synchronization
	11.9. Bound Sources

	Chapter 12. List of Current Extensions
	12.1. XR_KHR_android_create_instance
	12.2. XR_KHR_android_surface_swapchain
	12.3. XR_KHR_android_thread_settings
	12.4. XR_KHR_binding_modification
	12.5. XR_KHR_composition_layer_color_scale_bias
	12.6. XR_KHR_composition_layer_cube
	12.7. XR_KHR_composition_layer_cylinder
	12.8. XR_KHR_composition_layer_depth
	12.9. XR_KHR_composition_layer_equirect
	12.10. XR_KHR_composition_layer_equirect2
	12.11. XR_KHR_convert_timespec_time
	12.12. XR_KHR_D3D11_enable
	12.13. XR_KHR_D3D12_enable
	12.14. XR_KHR_loader_init
	12.15. XR_KHR_loader_init_android
	12.16. XR_KHR_opengl_enable
	12.17. XR_KHR_opengl_es_enable
	12.18. XR_KHR_swapchain_usage_input_attachment_bit
	12.19. XR_KHR_visibility_mask
	12.20. XR_KHR_vulkan_enable
	12.21. XR_KHR_vulkan_enable2
	12.22. XR_KHR_vulkan_swapchain_format_list
	12.23. XR_KHR_win32_convert_performance_counter_time
	12.24. XR_EXT_active_action_set_priority
	12.25. XR_EXT_conformance_automation
	12.26. XR_EXT_debug_utils
	12.27. XR_EXT_dpad_binding
	12.28. XR_EXT_eye_gaze_interaction
	12.29. XR_EXT_future
	12.30. XR_EXT_hand_interaction
	12.31. XR_EXT_hand_joints_motion_range
	12.32. XR_EXT_hand_tracking
	12.33. XR_EXT_hand_tracking_data_source
	12.34. XR_EXT_performance_settings
	12.35. XR_EXT_plane_detection
	12.36. XR_EXT_thermal_query
	12.37. XR_EXT_user_presence
	12.38. XR_EXT_view_configuration_depth_range
	12.39. XR_EXT_win32_appcontainer_compatible
	12.40. XR_ALMALENCE_digital_lens_control
	12.41. XR_EPIC_view_configuration_fov
	12.42. XR_FB_android_surface_swapchain_create
	12.43. XR_FB_body_tracking
	12.44. XR_FB_color_space
	12.45. XR_FB_composition_layer_alpha_blend
	12.46. XR_FB_composition_layer_depth_test
	12.47. XR_FB_composition_layer_image_layout
	12.48. XR_FB_composition_layer_secure_content
	12.49. XR_FB_composition_layer_settings
	12.50. XR_FB_display_refresh_rate
	12.51. XR_FB_eye_tracking_social
	12.52. XR_FB_face_tracking
	12.53. XR_FB_face_tracking2
	12.54. XR_FB_foveation
	12.55. XR_FB_foveation_configuration
	12.56. XR_FB_foveation_vulkan
	12.57. XR_FB_hand_tracking_aim
	12.58. XR_FB_hand_tracking_capsules
	12.59. XR_FB_hand_tracking_mesh
	12.60. XR_FB_haptic_amplitude_envelope
	12.61. XR_FB_haptic_pcm
	12.62. XR_FB_keyboard_tracking
	12.63. XR_FB_passthrough
	12.64. XR_FB_passthrough_keyboard_hands
	12.65. XR_FB_render_model
	12.66. XR_FB_scene
	12.67. XR_FB_scene_capture
	12.68. XR_FB_space_warp
	12.69. XR_FB_spatial_entity
	12.70. XR_FB_spatial_entity_container
	12.71. XR_FB_spatial_entity_query
	12.72. XR_FB_spatial_entity_sharing
	12.73. XR_FB_spatial_entity_storage
	12.74. XR_FB_spatial_entity_storage_batch
	12.75. XR_FB_spatial_entity_user
	12.76. XR_FB_swapchain_update_state
	12.77. XR_FB_swapchain_update_state_android_surface
	12.78. XR_FB_swapchain_update_state_opengl_es
	12.79. XR_FB_swapchain_update_state_vulkan
	12.80. XR_FB_touch_controller_pro
	12.81. XR_FB_touch_controller_proximity
	12.82. XR_FB_triangle_mesh
	12.83. XR_HTC_anchor
	12.84. XR_HTC_facial_tracking
	12.85. XR_HTC_foveation
	12.86. XR_HTC_hand_interaction
	12.87. XR_HTC_passthrough
	12.88. XR_HTC_vive_wrist_tracker_interaction
	12.89. XR_HUAWEI_controller_interaction
	12.90. XR_META_automatic_layer_filter
	12.91. XR_META_environment_depth
	12.92. XR_META_foveation_eye_tracked
	12.93. XR_META_headset_id
	12.94. XR_META_local_dimming
	12.95. XR_META_passthrough_color_lut
	12.96. XR_META_passthrough_preferences
	12.97. XR_META_performance_metrics
	12.98. XR_META_recommended_layer_resolution
	12.99. XR_META_spatial_entity_mesh
	12.100. XR_META_touch_controller_plus
	12.101. XR_META_virtual_keyboard
	12.102. XR_META_vulkan_swapchain_create_info
	12.103. XR_ML_compat
	12.104. XR_ML_frame_end_info
	12.105. XR_ML_global_dimmer
	12.106. XR_ML_localization_map
	12.107. XR_ML_marker_understanding
	12.108. XR_ML_user_calibration
	12.109. XR_MND_headless
	12.110. XR_MSFT_composition_layer_reprojection
	12.111. XR_MSFT_controller_model
	12.112. XR_MSFT_first_person_observer
	12.113. XR_MSFT_hand_interaction
	12.114. XR_MSFT_hand_tracking_mesh
	12.115. XR_MSFT_holographic_window_attachment
	12.116. XR_MSFT_perception_anchor_interop
	12.117. XR_MSFT_scene_marker
	12.118. XR_MSFT_scene_understanding
	12.119. XR_MSFT_scene_understanding_serialization
	12.120. XR_MSFT_secondary_view_configuration
	12.121. XR_MSFT_spatial_anchor
	12.122. XR_MSFT_spatial_anchor_persistence
	12.123. XR_MSFT_spatial_graph_bridge
	12.124. XR_MSFT_unbounded_reference_space
	12.125. XR_OCULUS_audio_device_guid
	12.126. XR_OCULUS_external_camera
	12.127. XR_OPPO_controller_interaction
	12.128. XR_QCOM_tracking_optimization_settings
	12.129. XR_ULTRALEAP_hand_tracking_forearm
	12.130. XR_VALVE_analog_threshold
	12.131. XR_VARJO_composition_layer_depth_test
	12.132. XR_VARJO_environment_depth_estimation
	12.133. XR_VARJO_foveated_rendering
	12.134. XR_VARJO_marker_tracking
	12.135. XR_VARJO_view_offset
	12.136. XR_VARJO_xr4_controller_interaction
	12.137. XR_YVR_controller_interaction

	Chapter 13. List of Provisional Extensions
	13.1. XR_EXTX_overlay
	13.2. XR_HTCX_vive_tracker_interaction
	13.3. XR_MNDX_egl_enable
	13.4. XR_MNDX_force_feedback_curl

	Chapter 14. List of Deprecated Extensions
	14.1. XR_KHR_locate_spaces
	14.2. XR_KHR_maintenance1
	14.3. XR_EXT_hp_mixed_reality_controller
	14.4. XR_EXT_local_floor
	14.5. XR_EXT_palm_pose
	14.6. XR_EXT_samsung_odyssey_controller
	14.7. XR_EXT_uuid
	14.8. XR_BD_controller_interaction
	14.9. XR_HTC_vive_cosmos_controller_interaction
	14.10. XR_HTC_vive_focus3_controller_interaction
	14.11. XR_ML_ml2_controller_interaction
	14.12. XR_MND_swapchain_usage_input_attachment_bit
	14.13. XR_OCULUS_android_session_state_enable
	14.14. XR_VARJO_quad_views

	Chapter 15. Core Revisions (Informative)
	15.1. Version 1.1
	15.2. Loader Runtime and API Layer Negotiation Version 1.0
	15.3. Version 1.0

	Appendix
	Code Style Conventions
	Application Binary Interface
	Android Notes
	Glossary
	Abbreviations
	Dedication (Informative)
	Contributors (Informative)

	Index

