
An Introduction to

SPIR-V

A Khronos-Defined Intermediate Language

for

Native Representation of Graphical Shaders and Compute Kernels

John Kessenich, LunarG

(C) Copyright 2015, LunarG, Inc.



SPIR-V 1 / 18

1 Introduction

Figure 1: The SPIR-V Binary Intermediate Language. The first 5 slots form the header. The remaining slots hold a linear
sequence of variable-length instructions (one per color in the figure). Each instruction starts with a word that encodes the
instruction’s opcode and size, followed by a variable number of 32-bit operands.



SPIR-V 2 / 18

Abstract

Abstract. SPIR-V is a new platform-independent intermediate language. It is a self-contained, fully specified, binary format
for representing graphical-shader stages and compute kernels for multiple APIs. Physically, it is a stream of 32-bit words.
Logically, it is a header and a linear stream of instructions. These encode, first, a set of annotations and decorations, and second
a collection of functions. Each function encodes a control-flow graph (CFG) of basic blocks, with additional instructions to
preserve source-code structured flow control. Load/store instructions are used to access declared variables, which includes all
input/output (IO). Intermediate results bypassing load/store use single static-assignment (SSA) representation. Data objects are
represented logically, with hierarchical type information: There is no flattening of aggregates or assignment to physical register
banks, etc. Selectable addressing models establish whether general pointers may be used, or if memory access is purely logical.

Note
A provisional SPIR-V specification was released March 3rd, 2015 by Khronos. It contains the full instruction set and specifica-
tion, and can be used as a reference while reading this paper.

1.1 What SPIR-V Accomplishes

Figure 2: SPIR-V serves as a common single language for multiple languages feeding multiple drivers. It can also target other
languages. It is fully defined by Khronos, and can natively represent the features needed by graphical shaders and compute
kernels.



SPIR-V 3 / 18

SPIR-V is a relatively high-level intermediate language. It is:

• low-level enough to bypass all text-based parsing, dependence on a single high-level language, and avoid portability issues
caused by the convenience of high-level languages, and

• high-level enough to be device independent and to not lose information needed for maximum performance on the target device.

How does SPIR-V meet common expectations of an intermediate language (IL)?

Portability

SPIR-V improves portability in three ways:

1. Enabling shared tools. There is no need for every hardware platform to provide its own high-level language translator.
Such translators can be much fewer in number than the compiler back ends SPIR-V will feed.

2. A single tool set for a single ISV. An individual ISV can generate SPIR-V with a single tool set, eliminating all issues with
portability of the high-level language.

3. SPIR-V is simpler. It is easier to have a fully concise, pinned down, description of SPIR-V than of a high-level language.
Getting independent implementations to match SPIR-V processing is correspondingly simpler. Some examples of this,
comparing to GLSL:

• Policies for qualifier defaults, inheritance, etc., are gone. Everything is explicit (precision, row_major, stream number,
etc.).

• No implicit conversions.

• No function overloading or resolution; call sites identify the specific function instance to call.

• Only one compilation unit; multiple compilation units that need to merge to form a single executable will be merged by
a front end.

• The variable name space is flat; there are no nested scopes.

Performance

Expectations around compile-time performance with an IL vary wildly, and indeed, SPIR-V experience will depend highly on
how applications generate shaders, the way shaders are cached, the performance of the underlying target compiler, and what
optimizations were done offline. Online performance results include some combination of:

• eliminating the compiler front end; this processing, including reflection, can be done offline

• optimization passes that settle faster, for optimizations done offline

• time saved when multiple source shaders reduce to the same IL instruction stream (this multiplies any expectations of the first
reason by a factor equal to the many-to-one mapping present between source shaders and unique ILs)

Your mileage will definitely vary. How much SPIR-V should be optimized before entering the run-time driver is discussed further
down. Note that a typical optimizing run-time compiler will execute register allocation and scheduling transformations specific
to the target system. These transforms tend to be computationally expensive and can only be done in a platform-specific compiler
layer (back end).

Multiple Source Languages

SPIR-V is fully set up to support multiple source languages. It includes all the features needed to support shipping GLSL shaders,
OpenCL C kernels, and support for C++ is progressing.

SPIR-V also enables development of new experimental languages.



SPIR-V 4 / 18

IP Protection

SPIR-V is sufficiently far removed from source code that a significant explicit step is required to recover the original. Without
tools, its raw binary form is difficult to read or modify.

Additionally. . .

In addition to the primary expectations above, SPIR-V meets the following goals:

Self Contained: Khronos fully defines SPIR-V in Khronos specifications.

Native Representation: SPIR-V contains, natively, the constructs needed to represent the functionality in Khronos source
languages, including objects like matrices and images.

Simple: Tool sets need to find SPIR-V binary form simple to read and process. This is achieved through a highly-regular linear
stream of words. Instructions encode their size, making it easy to process just the instructions of interest while skipping irrelevant
(or unrecogized) instructions. New instructions can be added through extensions without breaking existing tools.

Binary Representation: SPIR-V is the binary form that an API entry point will accept, to eliminate all need for parsing and
string processing in the driver.

Easy to Convert to other IRs: SPIR-V is a relatively high-level IL, preserving all vital information from the source language
needed to translate it easily to existing intermediate representations drivers are likely to have in their stacks. It is higher-level
than some existing graphical ILs, preserving more information that allows translation to higher-performance run-time code.

Extendable: The ability for single vendors or groups of vendors to extend an API/IL is important to Khronos. SPIR-V is easily
extended:

• Tools are written to only process instructions they understand, skipping others, making it easy to extend SPIR-V without
breaking tools.

• The OpExtension instruction declares extensions that semantically require processing new instructions.

• Sets of extended instructions can be provided and specified in separate specifications. This is done for core versions of graphics
and OpenCL modules, for operations like sin, cos, min, max, exp, etc.

• Reserving (registering) vendor-specific ranges of enumerants.

1.2 Optimization

SPIR-V can be partially optimized off line, to reduce amount of optimization needed on line. However, this should be done
with care, as too much optimization can lose information a target device needs to attain its highest performance. Typically, the
following are relatively safe optimizations to perform:

• simple constant propagation

• constant folding and coalescing

• dead code, type, variable, and function elimination

• moving from a load/store form of shader variables to an SSA intermediate-object form, and using phi-functions for impacted
flow-control

• simple if-conversion to select for single operations

These optimizations, however, potentially hurt performance, and are generally undesirable:

• function specialization

• inlining functions that have multiple call sites



SPIR-V 5 / 18

• general loop unwinding or unrolling (except perhaps small loops with statically known small number of iterations)

• common subexpression elimination that increases data pressure

• code motion that increases data pressure

• complex transforms that lose information valuable to back-end optimizations

So, the above list should be avoided in off-line transforms of SPIR-V meant to be portable across devices.

Instead of doing such undesirable optimizations off line, SPIR-V has optimization control enumerants for loops, functions, and
branches that allow communicating, say, that a loop is faster if not unrolled, based on some knowledge not present in the module
itself. Such controls should be respected by target devices. See, for example, DontUnroll or InLine in the specification.

2 The SPIR-V Language

Here is a simple OpenCL example, which will make more sense as this section unfolds:

OpenCL C Kernel:

__kernel void add(__global int* in1, __global int* in2, __global int* out) {
size_t i = get_local_id(0);
out[i] = in1[i] + in2[i];

}



SPIR-V 6 / 18

Corresponding (human readable) SPIR-V:

// Magic number 0x07230203
// SPIR-V Version 99
// Generated by (magic number): 1
// Id’s are bound by 23
// schema 0

Source OpenCL 120
EntryPoint Kernel 9
MemoryModel Physical64 OpenCL1.2
Name 4 "LocalInvocationId"
Name 9 "add"
Name 10 "in1"
Name 11 "in2"
Name 12 "out"
Name 13 "entry"
Name 15 "call"
Name 16 "arrayidx"
Name 18 "arrayidx1"
Name 20 "add"
Name 21 "arrayidx2"
Decorate 4(LocalInvocationId) Constant
Decorate 4(LocalInvocationId) Built-In LocalInvocationId
Decorate 10(in1) FuncParamAttr 5
Decorate 11(in2) FuncParamAttr 5
Decorate 12(out) FuncParamAttr 5
Decorate 17 Alignment 4
Decorate 19 Alignment 4
Decorate 22 Alignment 4

1: TypeInt 64 0
2: TypeVector 1(int) 3
3: TypePointer UniformConstant 2(ivec3)
5: TypeVoid
6: TypeInt 32 0
7: TypePointer WorkgroupGlobal 6(int)
8: TypeFunction 5 7(ptr) 7(ptr) 7(ptr)

4(LocalInvocationId): 3(ptr) Variable UniformConstant
9(add): 5 Function NoControl 8

10(in1): 7(ptr) FunctionParameter
11(in2): 7(ptr) FunctionParameter
12(out): 7(ptr) FunctionParameter

13(entry): Label
14: 2(ivec3) Load 4(LocalInvocationId)

15(call): 1(int) CompositeExtract 14 0
16(arrayidx): 7(ptr) InBoundsAccessChain 10(in1) 15(call)

17: 6(int) Load 16(arrayidx)
18(arrayidx1): 7(ptr) InBoundsAccessChain 11(in2) 15(call)

19: 6(int) Load 18(arrayidx1)
20(add): 6(int) IAdd 19 17

21(arrayidx2): 7(ptr) InBoundsAccessChain 12(out) 15(call)
Store 22 21(arrayidx2) 20
Return
FunctionEnd

For an example of a graphics shader, see the example in the SPIR-V specification.

2.1 Result <id>s, Variables, and SSA Form

SPIR-V is based on each type declaration, each variable, each operation result, etc., getting a unique name: a result <id>. No
result <id> can be re-targeted by another different instruction, and all consumed <id>s are defined somewhere as a result <id>.



SPIR-V 7 / 18

Thus, any consumed <id> will have exactly one place it is defined.

When looking at examples, most opcodes result in an result <id>, and this is the first number shown, before the “:”. In the
following:

16: TypeInt 32 0 // 16 is the unique result <id> of this instruction

Text outside of a listing, including the specification, refer to this opcode as OpTypeInt, but it is shortened to just “TypeInt” in
the disassembly, where it is clear it’s the opcode.

Variables and Intermediate Objects

Some instructions produce an object as an intermediate result, meaning it is not allocated in memory, while other instructions
can allocate a variable in memory. For example:

17: TypePointer PrivateGlobal 16 // type 17 is a pointer type to a global of type 16
18: 17 Variable PrivateGlobal // make a variable of type 16; 18 is a pointer to it
19: 16 Load 18 // 19 is an intermediate object of type 16
20: 16 IAdd 19 19 // 20 is an intermediate object of type 16

Store 18 20 // store result of add back into the variable

Above, PrivateGlobal is a storage class, of which there are many, including the Function storage class for function local
variables. Some storage classes are for IO and, fundamentally, IO will be done through load/store.

Also, note the store instruction does not have a result <id> that participates in the SSA name space.

The above example also introduce result types which are the second number on some lines. These are the type of the result of
the instruction, and refer to the <id> of the appropriate type declaration.

Single Static Assignment (SSA)

An important, intentional, side effect of each <id> defined by exactly one instruction, is that SPIR-V is always in single static
assignment (SSA) form. The SSA from of SPIR-V is defined in terms of the result <id>, and not memory loads and stores. This
standard form is in common use now, and there is quite a bit of information available for it.

Phi-Function

A common optimization would be to eliminate unnecessary loads and stores, making more use of intermediate objects instead.
For IO storage classes, the initial load and final store can never be eliminated. However, for many variables, the memory could
be completely eliminated by removing all loads and stores for them.

SPIR-V includes an OpPhi opcode to allow the merging together of intermediate results from split flow control. This allows
computation across control flow, without needing store to memory, while still maintaining SSA form. OpPhi lists each parent
block in the CFG, and for each parent block, which variable to merge into the new name. (The new name is the result <id> of
the OpPhi instruction.)

2.2 Decorations

Generally, source-level languages for shaders and kernels have a number of unusual qualifiers and variables. Most of these are
handled as decorations in SPIR-V, for two reasons:

• any particular one of these would apply to only a small subset of declarations

• they normally have no effect on the semantics of operation with the instruction stream in SPIR-V

That is, they are both sparse and typically “pass-through” semantics, versus information that internally effects the semantics of
the SPIR-V instruction stream. Hence, these are not an intrinsic part of declaring a variable, type, etc., but instead a decoration
that is declared independently. For (a graphics) example:



SPIR-V 8 / 18

Decorate 39 Noperspective // will make 39 use "noperspective" interpolation
...

39: 22 Variable Input // define 39 (through type 22) as an input variable

Decorations are declared early, as a forward reference, so that when the object or type is actually made, everything is known
about it.

SPIR-V also identifies built-in variables from a high-level language with OpDecoration, where the decoration is Built-In,
followed by which built-in variable it is. This assigns any unusual semantics to the SPIR-V variable.

Decorate 4 Built-In LocalInvocationId // will make 4 the built-in LocalInvocationId
...

4: 3 Variable UniformConstant // define 4 (through type 3) as a uniform

Generally, the variable behaves and is operated on within SPIR-V based on it’s actual declaration, not as a special built-in
variable. They are declared and treated the same as any other variable in SPIR-V.

2.3 Creating Types

Types are built up, by each module from (parameterized) scalars. A floating-point or integer scalar type (OpTypeFloat or
OpTypeInt instruction) takes an operand that says how many bits wide it is, and validation rules say which sizes are allowed
for which execution models. Vector types (OpTypeVector) have an operand for what type the component is, and how many
components it has. Structure types take a list of member types, etc.

2.3.1 Hierarchical Type Building

Types are parameterized and built up hierarchically, one instruction at a time. There are no built-in aggregate types. This is best
demonstrated in the Type Graph figure.



SPIR-V 9 / 18

Figure 3: Type Graph. The SPIR-V instructions build the given GLSL-like structure, and assign it an <id> of 15 for later use.



SPIR-V 10 / 18

2.3.2 Unsigned Versus Signed Integers

The integer type, OpTypeInt, is parameterized not only with a size, but also with signedness. There are two typical ways to
think about signedness in SPIR-V, both equally valid:

1. As if all integers are “signless”, meaning they are neither signed nor unsigned: All OpTypeInt instructions select a
signedness of 0 to conceptually mean “no sign” (rather than “unsigned”). This is useful when translating from a language
that does not distinguish between signed and unsigned types. The type of operation (signed or unsigned) to perform is
always decided by the opcode.

2. As if some integers are signed, and some are unsigned: Some OpTypeInt instructions select signedness of 0 to mean
“unsigned” and some select signedness of 1 to mean “signed”. This is useful when signedness matters to external interface,
or when targeting a higher-level language that cares about types being signed and unsigned. The type of operation (signed
or unsigned) to perform is still always decided by the opcode, but a small amount of validation is done where it is non-
sensible to use a signed type.

Note in both cases all signed and unsigned operations always work on unsigned types, and the semantics of operation come from
the opcode. SPIR-V does not know which way is being used; it is set up to support both ways of thinking.

2.3.3 Boolean Type

There is a built-in non-numeric Boolean type (OpTypeBool). This type is the result of instructions doing relational testing (e.g.,
OpSLessThan), with true or false being the possible values. These are also the required type of operand to logical instructions
(e.g., OpLogicalOr).

Different source languages or target architectures have differing numeric definitions of true and false. When interfacing between
such definitions and the SPIR-V Boolean type, OpSelect can be used to convert to arbitrary true and false numeric values, or
comparisons can be done (e.g., OpINotEqual) on numeric values to convert to SPIR-V’s Boolean non-numeric true and false
values.

2.4 Operations and Operand Types

One way SPIR-V increases portability is explicit operation. High-level languages, for convenience, make great use of implicit
type conversion and implicit operation inference, which also makes portability more difficult.

int a;
uint b;
... = a / b; // convert ’a’ to uint, then do an unsigned divide operation

// resulting in an unsigned type

There were three inferences: 1) a type conversion, 2) operation semantics, 3) a resulting type. In more complex expressions
involving more types, this is fragile, and sometimes subject to different interpretations.

Explicit Operation Semantics

In SPIR-V, the above operation would be explicitly encoded as OpUDiv. This says, regardless of the operand types, the operation
itself will be an unsigned divide. The target system did not decide what semantics to use based on examining the type of the
operands. This is typically true of how SPIR-V instructions work: the opcode dictates the semantics of the operation to perform,
and the instruction says what the resulting type is. For the example above:

16: TypeInt 32 0 // scalar unsigned 32-bit integers are id 16
... // creation of 20 and 21

22: 16 UDiv 20 21 // divide with unsigned-int semantics, resulting in an unsigned int



SPIR-V 11 / 18

Inferred Operation Widths

SPIR-V instructions do not, however, encode the full type of their operands. Here, as usual, take “type” to include the bit width
of scalars/components as well as number of components in a vector, etc. Many opcodes can operate both on scalars or vectors,
typically with all the operands and the result being the same type. These opcodes also operate on multiple bit widths (e.g., 32-bit
floats or 64-bit floats). Effectively, bit-width information and component-count information typically comes from the operands’
type and the result type, not from the opcode.

Validation

It is often easier to verify a claim is correct than to infer what is correct, and this is reflected in SPIR-V instruction’s explicitly
including their result type. This and more can be validated to be true sometime before run time:

• the operand types are compatible with the opcode (e.g., floating-point semantics not allowed on integer types),

• the operand types and result type are compatible with each other (e.g., all are 3-component vectors of 32-bit floats), and

• the result type is correct for the operation (e.g., a dot product results in a scalar).

The SPIR-V specification says for each opcode what must be true in a valid module. For our example here, it says 16, the type
of 20, and the type of 21 must all be unsigned integer types, all of the same width, and in this case, all scalars.

The result in arguably redundant information, but less inferencing means simpler algorithms and faster load times at run time.

No Function Overloading

Finding the right overloaded function in the face of implicit conversions is also quite tricky, and something SPIR-V avoids. The
SPIR-V function-call instruction explicitly says the <id> of the function definition to use. A direct call is not done by name
string, function signature, or any other kind of matching. It is direct and explicit.

30: Function ... // define a function
...

... FunctionCall 30 ... // call the function defined by id 30

When using the link capability of SPIR-V, linkage names will used along with import/export decorations to enable function calls
across modules.

2.5 CFG and Structured Flow Control

Instructions are grouped into blocks (the traditional “basic block”). A block always starts with a label and ends with a branch.
For example:

47: Label
49: 28 Load 45
51: 14 SLessThan 49 50

BranchConditional 51 52 48

Branches include conditional and unconditional branches, switch, kill, and return instructions.

There is no other way into a block than a branch to its beginning, either from being the first block in a function or having an
explicit branch to it. There is no other way out of a block than the branch at the end. Blocks always end in a branch; there is
no fall through to the next block. Branches can be conditional (two choices), or unconditional (one choice) or switches (many
choices, labeled with constants). They also include return statements.

The set of blocks and branches form a traditional control-flow graph (CFG), which is a directed graph that allows many topologies
for looping and selection.



SPIR-V 12 / 18

It is often desirable to represent structured flow control, meaning, roughly, the type of nested control-flow structure allowed by
the C language, without using gotos, but still allowing breaks, continues, and early return statements. Effectively meaning flow
must be strictly nested, except for jumping out of the nesting by one or more levels.

Many high-level languages allow representing structured flow control, and it is helpful for back ends of parallel-execution archi-
tectures to know it is present. Allowing arbitrary rearrangement of the CFG can lose this desirable information. Hence, SPIR-V
allows the CFG to be annotated to allow representation of structured control flow. This is done by recognizing when nested
control splits, it must merge again, and it is the pairs of splits and merges that nest.

Figure 4: Structured Source



SPIR-V 13 / 18

Figure 5: Nesting CFG for Structured Source.



SPIR-V 14 / 18

Below is the example corresponding SPIR-V for the above. Loop breaks would also branch to the loop merge point.

11: Label
18: ... // set up loop exit condition

LoopMerge 12 NoControl // declare loop merge point
BranchConditional 18 19 12 // branch to the loop or out to merge point

19: Label
22: ... // set up if-test condition

SelectionMerge 24 NoControl // declare if merge point
BranchConditional 22 23 28 // if-test branch to true or false branch

23: Label // true branch
...
Branch 24

28: Label // false branch
...
Branch 24

24: Label // if merge point
...
Branch 11

12: Label // loop merge point
...

Note: Khronos is currently considering whether to further restrict structured loops to just “infinite” do loops containing breaks,
rather than supporting the above “for” loop topology.

The following are critical components for preserving structured control flow:

• Header blocks declare their merge points (blocks) with the OpSelectionMerge or OpLoopMerge instruction.

• The header and merge blocks bracket a nested construct, defined through dominance and post dominance of the construct’s
blocks.

• Breaks, continues, and early returns can bypass a nested structure’s merge block.

Preserving structured control flow is optional from a SPIR-V perspective, but there are vertical paths that will require it. For
example, going from GLSL down to hardware-specific shaders will require preserving the structured control flow from GLSL,
through SPIR-V.

2.6 Function Calling

To make a function, you first need a function type (OpTypeFunction) that gives types to parameters and a return value. A
function definition (OpFunction) then refers to this type. To call a function defined in the current module, use OpFunctionCall
with an operand that is the <id> of the OpFunction definition to call, and the <id>s of the arguments to pass. All arguments are
passed by value into the called function. This includes pointers, through which a callee object could be modified.

A forward function call is possible in part because there is no missing type information: The call’s result Type must match the
return type of the function, and the calling argument types must match the formal parameter types.

A function definition’s parameters each get their own instruction declaring them (OpFunctionParameter), giving <id>s to the
formal parameters used within the definition’s body. This is in keeping with every <id> being defined in exactly one place.

2.7 Debuggability

SPIR-V allows assigning a string to any result <id>. That means any type, variable, function, intermediate result, etc. can be
named for debug purposes. This can be used to aid in understandability when disassembling or debugging lowered versions of
SPIR-V. Line numbers and file names can also be declared for any type, variable, instruction result, etc.:

80: String "add.cl" // 80 can be a shorthand for the file name add.cl
Name 11 "in2" // the name associated with id 11 is in2
Line 11 80 1 52 // in2 is on line 1, column 52 of add.cl

Such instructions can be removed from a module without changing its semantics; they are for debug-style information only.



SPIR-V 15 / 18

2.8 Specialization

Specialization enables creating a portable SPIR-V module outside the target execution environment, based on constant values
that won’t be known until inside the execution environment. For example, to size a fixed array with a constant not known during
creation of a SPIR-V module, but is known by the time a driver lowers that module to its target architecture.

The mechanism is to label a specialization constant offline, so it can be later updated with a final value. For example, in the
following (extended) GLSL:

layout(constantId = 42) const uint NumTextures = 12; // 12 is just a default
float TextureWeights[NumTextures]; // NumTextures treated as a constant

Which translates to the following SPIR-V:

Name 50 "NumTextures" // optional
Decorate 50 SpecId 42 // the "constantId"
...

16: TypeInt 32 0 // 16 is a uint
50: 16 SpecConstant 12 // 50 has default constant value of 12
51: TypeArray 16 50 // an array of uint, length in id 50

...
60: 51 OpVariable PrivateGlobal // global of type 51

Now, the module above has a default size of 12 for the array (the constant value for <id> 50). If no specialization is applied, 12
will be its size.

At any point, a specialization can be applied to the module, which will replace specialization constants with actual constants.
A specialization is an independent entity from a module that a tool or driver can use to turn specialization constants into actual
constants. Lets say it is time to compile on the target system, and it is better to only use 10 textures, so a specialization is created
that says “specialization constant 42 should get the value 10”. On processing such as specialization with the above module, the
following is produced:

Name 50 "NumTextures" // optional
Name 51
Decorate 50 SpecId 42 // the "constantId"
...

16: TypeInt 32 0 // 16 is a uint
50: 16 Constant 10 // 50 has constant value of 10
51: TypeArray 16 50 // an array of type int, length is 10

...
60: 51 OpVariable PrivateGlobal // global of type 51: i.e., uint[10]

The module now is now specialized.

2.9 Pointers (or Not)

SPIR-V fully supports pointers, in all their (ugly) glory. Variable declarations (OpVariable) result in a type that is a pointer to
them, for future load/store. General arithmetic and type casting can be performed on such pointers, resulting in new pointers that
do not point to declared variables. This functionality is required by OpenCL.

However, key graphical-shader programming models do not expose pointers, do not support general arithmetic on them, and do
not want them in registers at the machine level. This programming model is also fully supported.

Which style of pointer is declared early in the module through the Addressing Model operand of the OpMemoryModel instruc-
tion. It can be Logical to enable the graphical-shader programming model, or Physical32 or Physical64 to enable the full pointer
model needed by OpenCL.

When the Logical Addressing Model is used, the result of a variable declaration (OpVariable) can instead be considered a
reference or handle to the variable, rather than its address. In fact, the resulting pointer has no numeric value and cannot be
arithmetically manipulated or cast to a numeric type. The pointer types also have no bit width, and variables cannot be made in
memory that would hold a pointer.



SPIR-V 16 / 18

For either style, to access a part of a composite object, say a structure containing an array, use OpAccessChain, which gives a
chain of indexes to walk the type’s hierarchy. Let’s say we want to access the the z component of element 4 of the array in the
Type Graph figure.

64: 16 Constant 1
65: 16 Constant 2
66: 16 Constant 4

...
70: ... // type: pointer to a float
71: ... // a variable of type struct { mat3x4; vec4[6]; int; }
72: 70 AccessChain 71 64 66 65 // member 64, element 66, component 65: 71->1.4.2

Note that <id>s (not literals) are used for indexing to support variable indexes (allowed for arrays, not for structures).

A physical-pointer model might have memory layout information that allows turning such an OpAccessChain into an address
computation. However, the logical addressing model will not, and <id> 72 simply remains as a logical statement of how to walk
the structure, and not an address computation.

2.10 Other Instructions

We’ve already sampled some instructions for

• annotation

• debug

• type declaration

• variable declaration and load/store

• phi-function

• arithmetic operation

• control flow

• function types, formal parameters, and calls

• specialization

Also present are

• mode setting instructions for declaring the memory model, execution model and modes, entry points, and compilation flags

• constant instructions for creating constants, done hierarchically, analogously to type creation

• texturing instructions to do graphical texture lookup, including use of implicit derivative and subsequent code motion con-
straints

• composite instructions for modifying subsets of composite objects (structures, arrays, matrices, and vectors) and doing swizzle-
like operations

• relational instructions for comparing and testing numeric and Boolean values

• derivatives: OpDPdy, OpFwidth, etc.

• atomic operations, unified across atomic counters, images, etc.

• geometry shader primitive emit vertex, end stream, etc.

• control and memory barrier

• execution-group instructions

• OpenCL device-side equeue instructions and pipe instructions

• extension instructions, discussed in the next section



SPIR-V 17 / 18

3 Extending the Core

There are multiple ways of extending SPIR-V from the core specification.

3.1 Extended Instruction Sets

SPIR-V can import an extended instruction set (OpExInstImport). An extended instruction set is typically associated with a
particular source language to provide, for example, built-in functions from that source language that are not represented by the
core SPIR-V instruction set. Extended instruction sets are specified in separate documents from the core specification.

While the semantics of the core instructions are intended to be the same for all source languages, other operations have semantics
that vary across source languages. For example, the performance/accuracy trade-offs of trigonometric and exponential built-in
functions like atan() or pow(). Or, the behavior of NaN operands in min() or max(). Rather than having modes in SPIR-V that
modify the behavior of such operations, or having many different min, max, pow, and atan core instructions, these instead are
kept unique through extended instruction sets, where each document specifies the correct semantics for its extended instruction
set. This allows mode-less SPIR-V → SPIR-V transforms that know the semantics of the extended instructions.

Some important notes:

• An extended instruction could also represent some operation other than something that looks like a function in the source
language. It could be a syntax/operator driven operation, or even a built-in variable.

• In the above, the “built-in functions” referred to are meant to be intrinsic to the source language, rather than libraries. Libraries
are quite different, and discussed in the next section.

• Tools expected to process extended instructions must know the semantics of the instruction to the same extent they would know
the semantics of core instruction they operate on. This is in contrast to an external call to a library function, where all that
would be known would be the signature and possibly memory characteristics of the function.

Extended instructions are called by number, not by name. Other than the name of the extended instruction set itself, there is no
string processing. These numbers are part of the specification of the extended instructions, and must be shared by at least the
front end creating SPIR-V and the back-end lowering it to a target instruction set. That is, they are not black boxes; they are
known as well as the core instructions.

This example usage is from the shader example from the specification:

1: ExtInstImport "GLSL.std.450" // declare use
...

40: 8 Load 39 // load a vec4
41: 8 ExtInst 1(GLSL.std.450) 28(sqrt) 40 // take its sqrt

In the above, it is simply known that extended instruction 28 in the GLSL.std.450 instruction set means the GLSL semantics for
the built-in sqrt(). This is known from the extended instruction specification just as well as it is known that core instruction 122
is OpIAdd.

3.2 Libraries

Currently, in graphical shading languages, there are no libraries of functions to call, only intrinsic built-in functions, or possibly
separate compilation units of function bodies. Further, for graphical shaders, one SPIR-V module represents an entire stage of a
graphical-shader pipeline: All compilation units for that stages must be linked together by the front end for that language, making
a single SPIR-V module. Thus, as graphical shading languages stand today, they do not link to external libraries of unknown
semantics, and this section does not apply to them.

OpenCL source languages, however, support multiple compilation units, where external functions and variables can be imported
and exported. Libraries, for example, make use of separate compilation units. This is represented in SPIR-V using multiple
modules that are subsequently linked together. Within a module, use the Linkage Type decoration on functions and variables
to decorate them as being either definitions to Export, or declarations to Import. Linkers will subsequently link symbols by an
exported name string.



SPIR-V 18 / 18

3.3 Extensions

Traditional-style extensions can also be added to SPIR-V. It is easy to extend all the types, storage classes, opcodes, decorations,
etc. by adding to the enumeration tokens. Of course, if done independently by two parties, this would cause some obvious
conflicts. So, vendors wishing to write extensions to SPIR-V can register for a range of enumeration values to avoid conflict.

Use of such extensions must be declared near the beginning of the module, using the OpExtension instruction.

Extending SPIR-V through OpExtension is not necessarily the same thing as the source language using an extension. It is quite
possible that core SPIR-V has all the features needed to support some source-language extensions. For debug purposes only,
extensions used at the source-language level can be documented in a SPIR-V module using the OpSourceExtension instruction.
If such a source extension does require a SPIR-V extension, that is a separate thing, a SPIR-V extension, which still must be
declared through the OpExtension instruction.


	1 Introduction
	1.1 What SPIR-V Accomplishes
	1.2 Optimization

	2 The SPIR-V Language
	2.1 Result <id>s, Variables, and SSA Form
	2.2 Decorations
	2.3 Creating Types
	2.3.1 Hierarchical Type Building
	2.3.2 Unsigned Versus Signed Integers
	2.3.3 Boolean Type

	2.4 Operations and Operand Types
	2.5 CFG and Structured Flow Control
	2.6 Function Calling
	2.7 Debuggability
	2.8 Specialization
	2.9 Pointers (or Not)
	2.10 Other Instructions

	3 Extending the Core
	3.1 Extended Instruction Sets
	3.2 Libraries
	3.3 Extensions


