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1. Introduction

SYCL is an open standard C++ programming model for OpenCL. SYCL v2.2 builds on the underlying concepts,
portability and efficiency of OpenCL v2.2 while adding much of the ease of use and flexibility of C++. Developers
using SYCL are able to write standard C++ code, with many of the techniques they are accustomed to, such as
inheritance and templating. At the same time, developers have access to the full range of capabilities of OpenCL
both through the features of the SYCL libraries and, where necessary, through interoperation with code written
directly to use the OpenCL APIs. SYCL v2.2 is backwards compatible with the previous version of the SYCL
standard, v1.2.

SYCL uses the braided parallelism model of parallelism, whereby a task graph is built up (at runtime) made up of
data parallel and task parallel tasks running across different cores and devices within a system.

SYCL implements a shared source design which offers the power of source integration while allowing toolchains
to remain flexible. The shared source design supports embedding of code intended to be compiled for an OpenCL
device, for example a GPU, inline with host code. This embedding of code offers three primary benefits:

Simplicity For novice programmers, the separation of host and device source code in OpenCL can become com-
plicated to deal with, particularly when similar kernel code is used for multiple different operations. A
single compiler flow and integrated tool chain combined with libraries that perform a lot of simple tasks
simplifies initial OpenCL programs to a minimum complexity. This reduces the learning curve for pro-
grammers new to OpenCL and allows them to concentrate on parallelization techniques rather than syntax.

Reuse C++’s type system allows for complex interactions between different code units and supports efficient
abstract interface design and reuse of library code. For example, a transform or map operation applied to an
array of data may allow specialization on both the operation applied to each element of the array and on the
type of the data. The shared source design of SYCL enables this interaction to bridge the host code/device
code boundary such that the device code to be specialized on both of these factors directly from the host
code.

Efficiency Tight integration with the type system and reuse of library code enables a compiler to perform inlining
of code and to produce efficient specialized device code based on decisions made in the host code without
having to generate kernel source strings dynamically.

SYCL is designed to allow a compilation flow where the source file is passed through multiple different compilers,
including a standard C++ host compiler of the developer’s choice, and where the resulting application combines
the results of these compilation passes. This is distinct from a single-source flow that might use language exten-
sions that preclude the use of a standard host compiler. The SYCL standard does not preclude the use of a single
compiler flow, but is designed to not require it.

The advantages of this design are two-fold. First, it offers better integration with existing tool chains. An appli-
cation that already builds using a chosen compiler can continue to do so when SYCL code is added. Using the
SYCL tools on a source file within a project will both compile for an OpenCL device and let the same source
file be compiled using the same host compiler that the rest of the project is compiled with. Linking and library
relationships are unaffected. This design simplifies porting of pre-existing applications to SYCL. Second, the
design allows the optimal compiler to be chosen for each device where different vendors may provide optimised
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tool-chains.

SYCL is designed to be as close to standard C++14 as possible. In practice, this means that as long as no
dependence is created on SYCL’s integration with OpenCL, a standard C++14 compiler can compile the SYCL
programs and they will run correctly on host CPU. Any use of specialized low-level features can be masked using
the C pre-processor in the same way that compiler-specific intrinsics may be hidden to ensure portability between
different host compilers.

SYCL retains the execution model, runtime feature set and device capabilities of the underlying OpenCL stan-
dards. Different devices within a system may support different versions, optional capabilities or extensions of the
OpenCL standards. This version of the specification (version 2.2) provides a programming model that exposes
the capabilities of all OpenCL devices up to and including OpenCL 2.2. The user must specify, for a given kernel,
the required version and capabilities of the underlying OpenCL device which will execute that kernel and the user
must ensure that the kernel only uses the capabilities of that device.

While the code can be written in standard C++ syntax with interoperability with standard C++ programs, there are
C++ capabilities which are not supported in SYCL device code. For all currently specified devices, SYCL device
code does not support virtual function calls, function pointers in general, exceptions, or runtime type information.
There are other C++ features that are disallowed according to the capabilities of the device being compiled for.
This means that users cannot rely on making use of C++ libraries inside SYCL device code unless those libraries
have been limited to only use features supported by SYCL for the relevant device. The restrictions on device code
are described in this specification.

The use of C++ features such as templates and inheritance on top of the OpenCL execution model opens a wide
scope for innovation in software design for heterogeneous systems. Clean integration of device and host code
within a single C++ type system enables the development of modern templated libraries that build simple, yet
efficient, interfaces to offer more developers access to OpenCL capabilities and devices. SYCL is intended to
serve as a foundation for innovation in programming models for heterogeneous systems that builds on an open
and widely implemented standard foundation in the form of OpenCL.

SYCL exposes the parallelism of OpenCL’s work-items, work-groups and sub-groups via a hierarchical paral-
lelism syntax. This form cleanly layers parallel loops and synchronization points to avoid fragmentation of code
and to efficiently map algorithms to CPU-style architectures.

OpenCL v2.2 supports Shared Virtual Memory (or SVM) which enables pointers to be shared between host and
device code. Different OpenCL devices support different optional capabilities of SVM. To enable the widest level
of portability, SYCL v2.2 supports the RAII buffer/image/accessor model of data access from SYCL v1.2. Also,
to support the full capabilities of OpenCL 2.2 capable devices, SYCL supports different levels of OpenCL SVM.
Developers using SYCL 2.2 can decide whether to use the buffer/image/accessor model to achieve maximum
portability and to allow the system to extract parallelism from the application. Or, developers can choose to use
one or more of the levels of SVM to allow greater user control over data management and sharing.

To summarize, SYCL enables OpenCL kernels to be written inside C++ source files. This means that software
developers can develop and use generic algorithms and data structures using standard C++ template techniques,
while still supporting the multi-platform, multi-device heterogeneous execution of OpenCL. The specification
has been designed to enable implementation across as wide a variety of platforms as possible as well as ease of
integration with other platform-specific technologies, thereby letting both users and implementers build on top of
SYCL as an open platform for heterogeneous processing innovation.

14



2. SYCL Architecture

This chapter builds on the structure of the OpenCL specification’s architecture chapter to explain how SYCL
overlays the OpenCL 2.2 specification and inherits its capabilities and restrictions as well as the additional features
it provides on top of OpenCL 2.2.

2.1 Overview

SYCL is an open industry standard for programming a heterogeneous system. The design of SYCL allows stan-
dard C++ source code to be written such that it can run on either an OpenCL device or on the host CPU. SYCL
2.2 is designed to be backwards compatible with SYCL 1.2, but updated with support for the features of OpenCL
2.2 capable devices. As OpenCL 2.2 contains a number of optional capabilities and extensions, the user should
specify the capabilities of the device that code is designed to execute on.

The terminology used for SYCL inherits that of OpenCL with some SYCL-specific additions. The code that can
run on either an OpenCL device or host CPU is called a kernel. To ensure maximum backward-compatibility, a
software developer can produce a program that mixes standard OpenCL C kernels and OpenCL API code with
SYCL code and expect fully compatible interoperation.

The target users of SYCL are C++ programmers who want all the performance and portability features of OpenCL,
but with the flexibility to use higher-level C++ abstractions across the host/device code boundary. Developers can
use most of the abstraction features of C++, such as templates, classes and operator overloading. However, some
C++ language features are not permitted inside kernels, due to the limitations imposed by the capabilities of
the underlying OpenCL standard. These features include virtual functions, virtual inheritance, throwing/catching
exceptions, and run-time type-information. These features are available outside kernels as normal. Within these
constraints, developers can use abstractions defined by SYCL, or they can develop their own on top. These
capabilities make SYCL ideal for library developers, middleware providers and applications developers who want
to separate low-level highly-tuned algorithms or data structures that work on heterogeneous systems from higher-
level software development. OpenCL developers can produce templated algorithms that are easily usable by
developers in other fields.

2.2 The SYCL Platform and Device Model

The SYCL platform model is based on the OpenCL platform model, but there are a few additional abstractions
available to programmers.

The OpenCL model consists of a host with one or more OpenCL platforms. Each OpenCL platform can have
one or more OpenCL devices. Each device can support different versions of OpenCL, with different optional
capabilities and extensions. SYCL abstracts this to have a host and zero or more OpenCL devices, of which the
host itself is also a SYCL device.
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A SYCL application is implemented as both host code and device kernel code. The host code portion of a SYCL
application runs on a host processor according to the models native to the host platform. The SYCL application
code submits command groups to queues that are executed on devices. A SYCL device (which may be the host
or an OpenCL device) executes the commands on the device. A command group consists of synchronization and
data movement commands, as well as user-defined kernels, which are embedded within the C++ source code of
the SYCL program.

A SYCL device has considerable latitude on how computations are mapped onto the device’s processing elements.
When processing elements within a compute unit execute the same sequence of statements across the processing
elements, the control flow is said to be converged. Hardware optimized for executing a single stream of instruc-
tions over multiple processing elements is well suited to converged control flows. When the control flow varies
from one processing elements to another, it is said to be diverged. While a kernel always begins execution with
a converged control flow, due to branching statements within a kernel, converged and diverged control flows may
occur within a single kernel. This provides a great deal of flexibility in the algorithms that can be implemented
with SYCL.

2.2.1 Platform Mixed Version Support

OpenCL is designed to support devices with different capabilities on a single machine. This includes devices
which conform to different versions of the OpenCL specification and devices which support different extensions
to the OpenCL specification. There are three important sets of capabilities to consider for a SYCL device: the
platform version, the version of a device and the extensions supported.

The SYCL system presents the user with a set of devices, which can be queried for their capabilities. If a SYCL
device is the SYCL host device, then there are a limited number of queries, due to the relative simplicity of host
device capabilities. If a SYCL device is an OpenCL device, then SYCL provides all of the OpenCL device query
operations.

Also, in SYCL v2.2, command groups can specify the capability requirements of the command group, via template
parameters to the execution_handle type in the queue submit method call. This allows users of SYCL to specify
what special requirements (such as the level of Shared Virtual Memory, or SVM) that is required for correct
data access and kernel execution. This allows the SYCL runtime to ensure the device capabilities match the
requirements of the command group, as well passing down to the underlying OpenCL runtime any optional
capabilities that may need to be configured.

The device version is an indication of the device’s capabilities, as represented by the device information returned
by the cl::sycl::device::get_info() method. Examples of attributes associated with the device version are
resource limits and information about functionality beyond the core OpenCL specification’s requirements. The
version returned corresponds to the highest version of the OpenCL specification for which the device is con-
formant, but is not higher than the version of the device’s platform which bounds the overall capabilities of the
runtime operating the device.

In OpenCL, a device has a language version. In SYCL, the source language is independent of the device version.
SYCL 2.2 source code can run on a variety of devices (including OpenCL 1.2 devices), if the capabilities specified
by the user in the command group execution_handle are within the capabilities of the underlying device.
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2.3 SYCL Execution Model

Execution of a SYCL program occurs in two parts: kernels that execute on either the host CPU, or one or more
OpenCL devices, and a host program that executes on the host CPU. The host program defines the context for the
kernels and manages their execution. Like OpenCL, SYCL is capable of running kernels on multiple device types.
However, SYCL builds on top of OpenCL due to the integration into a host toolchain by providing an ability to
run kernel code directly on the CPU without interacting with an OpenCL runtime. This is distinct from running
on the CPU via an OpenCL device and can be used when no OpenCL platform is available on the machine.

In OpenCL, queues contain commands, which can include data transfer operations, synchronization commands,
or kernels submitted for execution. In SYCL, the commands are grouped together into a functor object called
command group. Command groups associate sets of data movement operations with kernels that will be enqueued
together on an underlying OpenCL queue, through the command group handler object which is created for every
command group functor. These data transfer operations may be needed to make available data that the kernel
needs or to return its results to other devices.

When a kernel is submitted for execution by the host, an index space is defined. An instance of the kernel body
executes for each point in this index space. This kernel instance is called a work-item and is identified by its point
in the index space, which provides a global ID for the work-item. Each work-item executes the same code but the
specific execution pathway through the code and the data operated upon can vary by using the work-item global
ID to specialize the computation.

Work-items are organized into work-groups. The work-groups provide a more coarse-grained decomposition of
the index space. Each work-group is assigned a unique work-group ID with the same dimensionality as the index
space used for the work-items. Work-items are each assigned a local ID, unique within the work-group, so that
a single work-item can be uniquely identified by its global ID or by a combination of its local ID and work-
group ID. The work-items in a given work-group execute concurrently on the processing elements of a single
compute unit. Within a work-group, work-items may be divided into sub-groups. The mapping of work-items to
sub-groups is implementation-defined and may be queried at runtime. While sub-groups may be used in multi-
dimensional work-groups, each sub-group is 1-dimensional and any given work-item may query which sub-group
it is a member of.

The index space supported in SYCL is called an nd_range. An nd_range is an N-dimensional index space, where n
is one, two or three. In SYCL, the nd_range is represented via the nd_range<N> class. An nd_range<N> is made up
of a global range and a local range, each represented via values of type range<N> and a global offset, represented
via a value of type id<N>. The types nd_range<N> and id<N> are each N-dimensional arrays of integers. The
iteration space defined via an range<N> is an N-dimensional index space starting at the nd range’s global offset
and being of the size of its global range, split into work-groups of the size of its local range.

Each work-item in the nd_range is identified by a value of type nd_item<N>. The type nd_item<N> encapsulates
a global ID, local ID and work-group ID, all of type id<N>, the iteration space offset also of type id<N>, as well
as global and local ranges and synchronization operations necessary to make work-groups useful. Work-groups
are assigned IDs using a similar approach to that used for work-item global IDs. Work-items are assigned to a
work-group and given a local ID with components in the range from zero to the size of the work-group in that
dimension minus one. Hence, the combination of a work-group ID and the local-ID within a work-group uniquely
defines a work-item.

SYCL allows a simplified execution model in which the workgroup size is left undefined. A kernel invoked over
a range<N>, instead of an nd_range<N> is executed within an iteration space of undefined workgroup size. In this
case, less information is available to each work-item through the simpler item<N> class.
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2.3.1 Execution Model: Queues, Command Groups and Contexts

In OpenCL, a developer must create a context to be able to execute commands on a device. Creating a context
involves choosing a platform and a list of devices. In SYCL, contexts, platforms and devices all exist, but the user
can choose whether to specify them or have the SYCL implementation create them automatically. The minimum
required object for submitting work to devices in SYCL is the queue, which contains references to a platform,
device and context internally.

The resources managed by SYCL are:

1. Platforms: All features of OpenCL are implemented by platforms. A platform can be viewed as a given
hardware vendor’s runtime and the devices accessible through it. Some devices will only be accessible to
one vendor’s runtime and hence multiple platforms may be present. SYCL manages the different platforms
for the user. In SYCL, a platform resource is accessible through a cl::sycl::platform object. SYCL also
provides a host platform object, which only contains a single host device.

2. Contexts: Any OpenCL resource that is acquired by the user is attached to a context. A context contains
a collection of devices that the host can use and manages memory objects that can be shared between the
devices. Data movement between devices within a context may be efficient and hidden by the underlying
runtime while data movement between contexts must involve the host. A given context can only wrap
devices owned by a single platform. In SYCL, a context resource is accessible through by a cl::sycl::
context object.

3. Devices: Platforms provide one or more devices for executing kernels. In SYCL, a device is accessible
through a cl::sycl::device object. SYCL provides the abstract cl::sycl::device_selector class which
the user can subclass to define how the runtime should select the best device from all available platforms
for the user to use. For ease of use, SYCL provides a set of predefined concrete device_selector instances
that select devices based on common criteria, such as type of device. SYCL, unlike OpenCL, defines a host
device, which means any work that uses the host device will execute on the host and not on any OpenCL
device.

4. Command groups: SYCL groups OpenCL commands into a functor given a unique command group
handler object to perform all the necessary work required to correctly process host data on a device us-
ing a kernel. In this way, they group the commands of transferring and processing these data in order to
enqueue them on a device for execution. Command groups are submitted to a SYCL queue. The handler
object can be optionally templated with capabilities, which determine the required capabilities of the device
and context executing the command group. These capabilities may include features like level of shared
virtual memory required by the command-group, which impacts scheduling and how data is shared and
synchronized between host and command groups.

5. Kernels: The SYCL functions that run on SYCL devices (i.e. either an OpenCL device, or the host) are
defined as C++ functors or lambda functions. In SYCL, all kernels must have a name, which must be
a globally-accessible C++ typename. This is required to enable kernels compiled with one compiler to
be linked to host code compiled with a different compiler. For functors, the typename of the functor is
sufficient as the kernel name, but for C++11 lambda functions, the user must provide a user- defined name.

6. Program Objects: OpenCL objects that store implementation data for the SYCL kernels. These objects are
only required for advanced use in SYCL and are encapsulated in the cl::sycl::program class.

7. Command-queues: SYCL kernels execute in command queues. The user must create a queue, which ref-
erences an associated context, platform and device. The context, platform and device may be chosen au-
tomatically, or specified by the user. In SYCL, command queues are accessible through cl::sycl::queue
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objects.

The command-queue schedules commands submitted to it for execution on a device. Commands launched by
the host execute asynchronously with respect to the host thread, and not necessarily ordered with respect to each
other. It is the responsibility of the SYCL implementation to ensure that the different commands execute in
an order which preserves SYCL semantics. This means that a SYCL implementation must map, move or copy
data between host and device memory, execute kernels and perform synchronization between different queues,
devices and the host in a way that matches the semantics defined in this specification. If a command group runs
on an OpenCL device, then this is expected to be achieved by enqueuing the right memory and synchronization
commands to the queue to ensure correct execution. If a command group runs on the host device, then this
is expected to be achieved by host-specific synchronization as well as by ensuring that no OpenCL device is
simultaneously using any required data.

2.3.2 Execution Model: Command Queues

SYCL command groups are submitted to command-queues, via a command group handler. Each command-queue
is associated with a single device. The commands placed into the command-queue fall into one of three types:

• Kernel-enqueue commands: Enqueue a kernel for execution on a device.

• Memory commands: Transfer data between the host and device memory, between memory objects, or map
and unmap memory objects from the host address space.

• Synchronization commands: Explicit synchronization points that define order constraints between com-
mands.

Mostly, with SYCL, individual OpenCL commands are enqueued to OpenCL command queues automatically,
using the data access encapsulated in SYCL objects, such as buffers and accessors as well as the enqueuing of
kernels from parallel kernel invocation functions, such as parallel_for.

In addition to commands submitted from the host command-queue, a kernel running on a device can enqueue
commands to a device-side command queue. This results in child kernels enqueued by a kernel executing on
a device (the parent kernel). Regardless of whether the command-queue resides on the host or a device, each
command passes through six states.

1. Queued: The command is enqueued to a command-queue. A command may reside in the queue until it is
flushed either explicitly or implicitly by some other command.

2. Submitted: The command is flushed from the command-queue and submitted for execution on the device.
Once flushed from the command-queue, a command will execute after any prerequisites for execution are
met.

3. Ready: All prerequisites constraining execution of a command have been met. The command, or for a
kernel-enqueue command the collection of work groups associated with a command, is placed in a device
work-pool from which it is scheduled for execution.

4. Running: Execution of the command starts. For the case of a kernel-enqueue command, one or more
work-groups associated with the command start to execute.

5. Ended: Execution of a command ends. When a Kernel-enqueue command ends, all of the work-groups
associated with that command have finished their execution. Immediate side effects, i.e. those associated
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with the kernel but not necessarily with its child kernels, are visible to other units of execution. These side
effects include updates to values in global memory.

6. Complete: The command and its child commands have finished execution and the status of the event object,
if any, associated with the command is set to event_status::complete.

The execution states and the transitions between them are summarized in Figure 2.1.

These states and the concept of a device work-pool are conceptual elements of the execution model. An imple-
mentation of OpenCL has considerable freedom in how these are exposed to a program. Five of the transitions,
however, are directly observable through a profiling interface. These profiled states are shown in Figure 2.1.

Figure 2.1: The states and transitions between states as defined in the OpenCL 2.2 execution model.

Commands communicate their status through event objects. Successful completion is indicated by setting the
event status associated with a command to event_status::complete. Unsuccessful completion results in abnor-
mal termination of the command which is indicated by setting the event status to a negative value. In this case,
the command-queue associated with the abnormally terminated command and all other command-queues in the
same context may no longer be available and their behavior is implementation defined.

A command submitted to a device will not launch until prerequisites that constrain the order of commands have
been resolved. These prerequisites have three main sources:

1. Commands that access buffer or image objects via accessor objects are scheduled by the SYCL runtime
to ensure that accesses to buffers and images are ordered to preserve correct access semantics.

2. In the case of command groups that are specified to run with fine grained buffer sharing, synchronization
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is performed on the SVM allocations that are registered to be accessed by the command group. As with
buffers and images, the synchronization ensures correctly ordered access semantics.

3. They may arise from commands submitted to a command-queue that constrain the order in which commands
are launched. For example, commands that follow a command queue barrier will not launch until all
commands prior to the barrier are complete.

Most SYCL operations are non-blocking. Enqueueing a command group on the host does not block host execu-
tion, instead it enqueues work to a command queue. The only main blocking operations are accessing data on
host, which includes construction of host accessors and destruction of buffers (in the case where the buffer needs
to ensure results are available on the host after destruction).

Multiple command-queues can be present within a single context. Multiple command- queues execute commands
independently. Command groups enqueued to different queues by SYCL are scheduled correctly by the SYCL
runtime to ensure correct data access ordering.

When a kernel-invocation command such as parallel_for submits a kernel for execution, an index space is
defined. The kernel, its captured arguments (in the case of a C++11 lambda) or its data members (in the case of
a kernel functor) and the parameters that define the index space define a kernel-instance. When a kernel-instance
executes on a device, the kernel functor or lambda executes for each point in the defined index space. Each of
these executing kernel methods are called a work-item. The work-items associated with a given kernel-instance are
managed by the device in groups called work-groups. These work-groups define a coarse grained decomposition
of the Index space. Work-groups are further divided into sub-groups, which provide an additional level of control
over execution.

Work-items have a global ID based on their coordinates within the Index space. They can also be defined in
terms of their work-group and the local ID within a work-group. The details of this mapping are described in the
following section.

2.3.3 Execution Model: Mapping work-items onto an nd range

The index space supported by OpenCL is called an nd_range. An nd_range is an N-dimensional index space,
where N is one, two or three. The nd_range is decomposed into work-groups forming blocks that cover the Index
space. An nd_range is defined by three integer arrays of length N:

• The extent of the index space (or global size) in each dimension.

• An offset index F indicating the initial value of the indices in each dimension (zero by default).

• The size of a work-group (local size) in each dimension.

Each work-items global ID is an N-dimensional tuple. The global ID components are values in the range from F,
to F plus the number of elements in that dimension minus one.

If a kernel is compiled within a SYCL 2.2 command group handler, the size of work-groups in an nd_range (the
local size) need not be the same for all work-groups. In this case, any single dimension for which the global size
is not divisible by the local size will be partitioned into two regions. One region will have work-groups that have
the same number of work items as was specified for that dimension by the programmer (the local size). The other
region will have work-groups with less than the number of work items specified by the local size parameter in
that dimension (the remainder work-groups). Work-group sizes could be non-uniform in multiple dimensions,
potentially producing work-groups of up to 4 different sizes in a 2D range and 8 different sizes in a 3D range.
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Each work-item is assigned to a work-group and given a local ID to represent its position within the work-group.
A work-item’s local ID is an N-dimensional tuple with components in the range from zero to the size of the
work-group in that dimension minus one.

Work-groups are assigned IDs similarly. The number of work-groups in each dimension is not directly defined
but is inferred from the local and global nd_range provided when a kernel-instance is enqueued. A work-group’s
ID is an N- dimensional tuple with components in the range 0 to the ceiling of the global size in that dimension
divided by the local size in the same dimension. As a result, the combination of a work-group ID and the local-ID
within a work-group uniquely defines a work-item. Each work-item is identifiable in two ways; in terms of a
global index, and in terms of a work-group index plus a local index within a work group.

For example, consider the 2-dimensional index space in Figure2.2. We input the index space for the work-items
(Gx, Gy), the size of each work-group (S x, S y) and the global ID offset (Fx, Fy). The global ndices define an Gx

by Gy index space where the total number of work-items is the product of Gx and Gy. The local indices define an
S x by S y index space where the number of work-items in a single work-group is the product of S x and S y. Given
the size of each work-group and the total number of work-items we can compute the number of work-groups. A
2-dimensional index space is used to uniquely identify a work- group. Each work-item is identified by its global
ID (gx, gy) or by the combination of the work-group ID (wx, wy), the size of each work-group (S x,S y) and the
local ID (sx, sy) inside the work-group such that

gx, gy) = (wx ∗ S x + sx + Fx,wy ∗ S y + sy + Fy) (2.1)

The number of work-groups can be computed as:

Wx,Wy) = (ceil(Gx/S x), ceil(Gy/S y)) (2.2)

Given a global ID and the work-group size, the work-group ID for a work-item is computed as:

wx,wy) = ((gxsxFx)/S x, (gysyFy)/S y) (2.3)

Within a work-group, work-items may be divided into sub-groups. The mapping of work-items to sub-groups
is implementation-defined and may be queried at runtime. While sub-groups may be used in multi-dimensional
work-groups, each sub-group is 1-dimensional and any given work-item may query which sub-group it is a mem-
ber of.

Work items are mapped into sub-groups through a combination of decisions and during the compilation from
SPIR-V to device-specific binary as well as the parameters of the dispatch. The mapping to sub-groups is invariant
for the duration of a kernels execution, across dispatches of a given kernel with the same work-group dimensions,
between dispatches and query operations consistent with the dispatch parameterization, and from one work-group
to another within the dispatch (excluding the trailing edge work-groups in the presence of non-uniform work-
group sizes). In addition, all sub-groups within a work-group will be the same size, apart from the sub-group with
the maximum index which may be smaller if the size of the work-group is not evenly divisible by the size of the
sub- groups.

In the degenerate case, a single sub-group must be supported for each work-group. In this situation all sub-group
scope functions are equivalent to their work- group level equivalents.

2.3.4 Execution Model: Execution of kernel-instances

The work carried out by a SYCL program occurs through the execution of kernel- instances on compute devices.
To understand the details of SYCLs execution model, we need to consider how a kernel object moves from the
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Figure 2.2: An example of an NDRange index space showing work-items, their global IDs and their mapping onto
the pair of work-group and local IDs. In this case, we assume that in each dimension, the size of the work-group
evenly divides the global NDRange size (i.e. all work-groups have the same size) and that the offset is equal to
zero

kernel-enqueue command, into a command-queue, executes on a device, and completes.

A kernel-object is defined from a functor or lambda within a command group. The host program enqueues a
kernel-object to the command queue along with the nd_range, and the work-group decomposition. These define a
kernel- instance. In addition, the SYCL scheduler will determine a correct ordering of command execution, based
on preserving correct data access semantics.

If a command-group uses Fine Grained System Sharing, then the SYCL implementation is not given any informa-
tion about data access within the kernel. This means that the SYCL scheduler cannot ensure any correct schedule
and so it is the user’s responsibility to schedule code correctly.

For any command-group that is not fine grained system sharing, the kernel instances appear to launch and then
execute in that same order; where we use the term appear to emphasize that when there are no dependencies
between command groups and hence differences in the order that commands execute cannot be observed in a
program, an implementation can reorder commands.

Once these conditions are met, the kernel-instance is launched and the work- groups associated with the kernel-
instance are placed into a pool of ready to execute work-groups. This pool is called a work-pool. The work-pool
may be implemented in any manner as long as it assures that work-groups placed in the pool will eventually exe-
cute. The device schedules work-groups from the work-pool for execution on the compute units of the device. The
kernel-enqueue command is complete when all work-groups associated with the kernel-instance end their execu-
tion, updates to global memory associated with a command are visible globally, and the device signals successful
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completion by setting the event associated with the kernel-enqueue command to event_status::complete.

While a command-queue is associated with only one device, a single device may be associated with multiple
command-queues all feeding into the single work-pool. A device may also be associated with command queues
associated with different contexts within the same platform, again all feeding into the single work-pool. The
device will pull work-groups from the work-pool and execute them on one or several compute units in any order;
possibly interleaving execution of work- groups from multiple commands. A conforming implementation may
choose to serialize the work-groups so a correct algorithm cannot assume that work-groups will execute in parallel.
There is no safe and portable way to synchronize across the independent execution of work-groups since once in
the work-pool, they can execute in any order.

The work-items within a single sub-group execute concurrently but not necessarily in parallel (i.e. they are not
guaranteed to make independent forward progress). Therefore, only high-level synchronization constructs (e.g.
sub-group functions such as barriers) that apply to all the work-items in a sub-group are well defined and included
in SYCL.

Sub-groups execute concurrently within a given work-group and with appropriate device support may make inde-
pendent forward progress with respect to each other, with respect to host threads and with respect to any entities
external to the SYCL system but running on an OpenCL device, even in the absence of work-group barrier
operations. In this situation, sub-groups are able to internally synchronize using barrier operations without syn-
chronizing with each other and may perform operations that rely on runtime dependencies on operations other
sub- groups perform.

The work-items within a single work-group execute concurrently but are only guaranteed to make independent
forward progress in the presence of sub-groups and device support. In the absence of this capability, only high-
level synchronization constructs (e.g. work-group functions such as barriers) that apply to all the work-items in a
work-group are well defined and included in SYCL for synchronization within the work-group.

In the absence of synchronization functions (e.g. a barrier), work-items within a sub-group may be serialized. In
the presence of sub-group functions, work-items within a sub-group may be serialized before any given sub-group
function, between dynamically encountered pairs of sub-group functions and between a work- group function and
the end of the kernel.

In the absence of independent forward progress of constituent sub-groups, work- items within a work-group may
be serialized before, after or between work-group synchronization functions.

2.3.5 Execution Model: Hierarchical Parallelism

In SYCL, the work-item, sub-group and work-group hierarchy can be represented by nested parallel_for sec-
tions. It is the responsibility of the SYCL system to execute these as if they are nested parallel loops. This means
that no dependency checking is performed between different iterations of the same loop and there is no guarantee
that the loops are executed either serial or parallel. The end of the hierarchical loops are synchronization points.
It is the responsibility of the SYCL system to ensure that correct OpenCL synchronization code is inserted at the
ends and starts of parallel loops.

To enable code at work-group or sub-group parallel_for scope to execute semantically correctly on OpenCL
devices, a SYCL compiler may need to transform the code to ensure that only one work-item per sub-group
or work-group executes that code. The nature of this transformation is not specified, however it may involve
predication by work-item id, or via uniform execution across a group.
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2.3.6 Execution Model: Device-side enqueue

Algorithms may need to generate additional work as they execute. In many cases, this additional work cannot
be determined statically; so the work associated with a kernel only emerges at runtime as the kernel-instance
executes. This capability could be implemented in logic running within the host program, but involvement of the
host may add significant overhead and/or complexity to the application control flow. A more efficient approach
would be to nest kernel-enqueue commands from inside other kernels. This nested parallelism can be realized
by supporting the enqueuing of kernels on a device without direct involvement by the host program; so-called
device-side enqueue.

Device-side kernel-enqueue operations are similar to host-side command groups. The kernel executing on a
device (the parent kernel) enqueues a kernel-instance (the child kernel) to a device-side command queue. This is
an out-of-order command-queue and follows the same behavior as the out-of-order command-queues exposed to
OpenCL host programs. Kernels enqueued to a device side command-queue generate and use events to enforce
order constraints. These events, however, are only visible to the parent kernel running on the device. When these
prerequisite events take on the value event_status::complete, the work-groups associated with the child kernel
are launched into the devices work pool. The device then schedules them for execution on the compute units
of the device. Child and parent kernels execute asynchronously. However, a parent will not indicate that it is
complete by setting its event to event_status::complete until all child kernels have ended execution and have
signalled completion by setting any associated events to the value event_status::complete. Should any child
kernel complete with an event status set to a negative value (i.e. abnormally terminate), the parent kernel will
abnormally terminate and propagate the childs negative event value as the value of the parents event. If there are
multiple children that have an event status set to a negative value, the selection of which childs negative event
value is propagated is implementation-defined.

2.3.7 Execution Model: Synchronization

Synchronization refers to mechanisms that constrain the order of execution between two or more units of execu-
tion. Consider the following three domains of synchronization in SYCL:

• Work-group synchronization: Constraints on the order of execution for work-items in a single work-group

• Sub-group synchronization: Constraints on the order of execution for work-items in a single sub-group

• Command group synchronization: Constraints on the order of command groups launched for execution

Synchronization across all work-items within a single work-group is carried out using either an explicit work-
group synchronization function, or implicitly at the start or end of hierarchical parallel_for loops.

Explicit work-group synchronization functions carry out collective operations across all the work-items in a work-
group. Available collective operations are: barrier, reduction, broadcast, prefix sum, and evaluation of a predicate.
A work- group function must occur within a converged control flow; i.e. all work-items in the work-group must
encounter precisely the same work-group function. For example, if a work-group function occurs within a loop,
the work-items must encounter the same work-group function in the same loop iterations. All the work- items
of a work-group must execute the work-group function and complete reads and writes to memory before any are
allowed to continue execution beyond the work- group function. Work-group functions that apply between work-
groups are not provided in SYCL since OpenCL does not define forward-progress or ordering relations between
work-groups, hence collective synchronization operations are not well defined.
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Synchronization across all work-items within a single sub-group is carried out either explicitly using a sub-group
function, or implicitly via hierarchical parallelism loops. The explicit sub-group functions carry out collective op-
erations across all the work-items in a sub-group. Available collective operations are: barrier, reduction, broadcast,
prefix sum, and evaluation of a predicate. A sub-group function must occur within a converged control flow; i.e.
all work-items in the sub-group must encounter precisely the same sub-group function. For example, if a work-
group function occurs within a loop, the work- items must encounter the same sub-group function in the same
loop iterations. All the work-items of a sub-group must execute the sub-group function and complete reads and
writes to memory before any are allowed to continue execution beyond the sub-group function. Synchronization
between sub-groups must either be performed using work-group functions, or through memory operations. Using
memory operations for sub-group synchronization should be used carefully as forward progress of sub-groups
relative to each other is only supported optionally by OpenCL implementations.

A single command-group is added to a queue as a single atomic operation. This means that a single queue
can have command-groups added to it from multiple host threads and each command-group is guaranteed to be
enqueued as a single operation in a thread-safe way. The start and end of a command group are therefore distinct
synchronization points. Command synchronization is defined in terms of these synchronization points.

For command groups that are specified to use fine grained system sharing, the SYCL system has no scheduling
information available to it, so no analysis is performed in this case to determine a synchronized schedule and the
user must add command-queue synchronization operations to ensure correct data access. For all other memory
modes (buffers, images and fine-grained buffer sharing) the SYCL system ensures that the synchronization point
enforces correct data ordering.

The synchronization point between a pair of command groups (A and B) assures that results of command group
A happens-before command group B is launched. This requires that any updates to memory from command
A complete are made available to other commands before the synchronization point completes. Likewise, this
requires that command B waits until after the synchronization point before loading values from global memory.
The concept of a synchronization point works in a similar fashion for commands such as a barrier that apply to
two sets of commands. All the commands prior to the barrier must complete and make their results available to
following commands. Furthermore, any commands following the barrier must wait for the commands prior to the
barrier before loading values and continuing their execution.

These happens-before relationships are a fundamental part of the SYCL and OpenCL memory model. When
applied at the level of commands, they are straightforward to define at a language level in terms of ordering
relationships between different commands. Ordering memory operations inside different commands, however,
requires rules more complex than can be captured by the high level concept of a synchronization point. These
rules are described in detail in section 3.3.6 of the OpenCL 2.2 specification.

2.4 Memory Model

Work-items executing in a kernel have access to four distinct memory regions:

• Global memory is accessible to all work-items in all work-groups. Work-items can read from or write to
any element of a global memory object. Reads and writes to global memory may be cached depending on
the capabilities of the device. Global memory is persistent across kernel invocations, however there is no
guarantee that two concurrently executing kernels can simultaneously write to the same memory object and
expect correct results.

• Constant memory is a region of global memory that remains constant during the execution of a kernel. The
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host allocates and initializes memory objects placed into constant memory.

• Local Memory is a distinct memory region shared between work-items in a single work-group and inac-
cessible to work-items in other work-groups. This memory region can be used to allocate variables that
are shared by all work-items in that work-group. Work-group-level visibility allows local memory to be
implemented as dedicated regions of memory on an OpenCL device where this is appropriate.

• Private Memory is a region of memory private to a work-item. Variables defined in one work-item’s private
memory are not visible to another work-item.

The application running on the host can use SYCL buffer objects using instances of the cl::sycl::buffer class
to allocate memory in the global address space, or can allocate specialized image memory using the cl::sycl
::image class. In OpenCL, a memory object is attached to a specific context. In SYCL, a cl::sycl::buffer
or cl::sycl::image object can encapsulate multiple underlying OpenCL memory objects and host memory

allocations to enable the same buffer or image to be shared between multiple devices in different contexts, and
hence different platforms. It is the responsibility of the SYCL implementation to ensure that a buffer or image
object shared between multiple OpenCL contexts is moved between contexts using the correct synchronization
and copy commands to preserve SYCL memory ordering semantics.

Alternatively, a SYCL application can use one of the OpenCL 2.2 shared virtual memory models. These memory
models are described in the OpenCL 2.2 specification.

2.4.1 Access to memory

To access data in buffers or coarse-grained svm allocations inside a kernel, the user must create a cl::sycl::
accessor object which parameterizes the type of access the kernel requires. The cl::sycl::accessor object
specifies whether the access is via global memory, a shared virtual memory pointer, constant memory or image
samplers (and their associated access functions). The accessor also specifies whether the access is read-only,
write-only or read-write. An optional discard flag can be added to an accessor to tell the system to discard any
previous contents of the data the accessor refers to. Atomic access can also be requested on an accessor which
allows cl::sycl::atomic classes to be used via the accessor.

It is only possible to pass a pointer into host memory directly as a kernel parameter if the device is an OpenCL
2.2 device. For coarse-grained shared virtual memory, the pointer can only be validly passed as a parameter to
the kernel if it is also passed in as a shared virtual memory accessor. For fine grained shared virtual memory, the
pointer can only be validly passed as a parameter to the kernel if it is also registered in the command group as
used by the kernel.

To allocate local memory within a kernel, the user can either pass a cl::sycl::local_accessor object to the
kernel as a parameter, or can define a variable in workgroup scope inside cl::sycl::parallel_for_work_group.

Any variable defined inside a cl::sycl::parallel_for scope or cl::sycl::parallel_for_work_item scope
will be allocated in private memory. Variables defined in functions called from workgroup scope (i.e. cl::
sycl::parallel_for_work_group will also be local, while variables defined in functions called from workitem
scope (i.e. cl::sycl::parallel_for or cl::sycl::parallel_for_work_item) will be allocated in private mem-
ory. Variables accessed in cl::sycl::parallel_for_sub_group scope are compiler-managed and so the specific
memory used for these variables is implementation-defined.

Users can create accessors that reference sub-buffers as well as entire buffers.
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Within kernels, accessors can be implicitly cast to C++ pointer types. The pointer types will contain a compile-
time deduced address space. So, for example, if an accessor to global memory is cast to a C++ pointer, the C++
pointer type will have a global address space attribute attached to it. The address space attribute will be compile-
time propagated to other pointer values when one pointer is initialized to another pointer value using a defined
mechanism.

When developers need to explicitly state the memory space of a pointer value, one of the explicit pointer classes
can be used. There is a different explicit pointer class for each address space: cl::sycl::local_ptr, cl::sycl
::global_ptr, cl::sycl::private_ptr, or cl::sycl::constant_ptr. An accessor declared with one address
space can be implicitly cast to an explicit pointer class for the same address space.

For templates that need to adapt to different address spaces, a cl::sycl::multi_ptr class is defined which is
templated via a compile-time constant enumerator value to specify the address space.

2.4.2 Memory consistency

OpenCL uses a relaxed memory consistency model, i.e. the state of memory visible to a work-item is not guaran-
teed to be consistent across the collection of work-items at all times. This also applies to SYCL kernels.

Within kernels, the consistency of memory is that defined by the underlying OpenCL device, as well as the level
of consistency specified in the command group execution_handle.

Memory consistency for cl::sycl::buffer and cl::sycl::image objects shared between enqueued commands
is enforced at synchronization points derived from completion of enqueued commands. Consistency of such data
between the OpenCL runtime and the host program is ensured via copy commands or map and unmap operations.

2.4.3 Atomic operations

Atomic operations can be performed on memory in buffers. The range of atomic operations available on a specific
OpenCL device is limited by the atomic capabilities of that device. The cl::sycl::atomic<T> must be used for
elements of a buffer to provide safe atomic access to the buffer from device code.

2.5 The SYCL programming model

A SYCL program is written in standard C++. Host code and device code is written in the same C++ source
file, enabling instantiation of templated kernels from host code and also enabling kernel source code to be shared
between host and device.

The C++ features used in SYCL are a subset of the C++14 standard features. Users will need to compile SYCL
source code with C++ compilers which support the following C++ features:

• All C++14 features, apart from Run Time Type Information

• Exception handling

• C++11 lambda functions
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• C++11 variadic templates

• C++11 template aliases

• C++11 rvalue references

• C++11 std::function, std::string and std::vector, although users can optionally define and use their
own versions of these classes, which SYCL can use via template aliases.

SYCL programs are explicitly parallel and expose the full heterogeneous parallelism of the underlying machine
model of OpenCL. This includes exposing the data-parallelism, multiple execution devices and multiple mem-
ory storage spaces of OpenCL. However, SYCL adds on top of OpenCL a higher level of abstraction allowing
developers to hide much of the complexity from the source code, when a developer so chooses.

A SYCL program is logically split into host code and kernels. Host code is standard C++ code, as provided
by whatever C++ compiler the developer chooses to use for the host code. The kernels are C++ functors (see
C++ documentation for an explanation of functors) or C++11 lambda functions which have been designated to be
compiled as SYCL kernels. SYCL will also accept OpenCL cl_kernel objects.

SYCL programs target heterogeneous systems. The kernels may be compiled and optimized for multiple different
processor architectures with very different binary representations.

In SYCL, kernels are contained within command group functors, which include all of the data movement/map-
ping/copying required to correctly execute the kernel. A command group functor takes as a parameter a command
group execution_handle class object which provides the interface for kernel invocations and then the functor
itself can be submitted to a queue. The command group functor is executed on the host in order to add all the
specified commands to the specified queue. Command group handlers can be optionally templated with required
capabilities for the command group.

SYCL 2.2 supports the multiple shared virtual memory options of OpenCL. The level of shared virtual memory
required for a command group must be specified via template parameters of the execution_handle object passed
via the queue submit operation for the command group.

For OpenCL 1.2 devices, only the basic buffer/image/ accessor model of SYCL 1.2 is supported. All OpenCL
2.2 devices support coarse-grained shared virtual memory (SVM) which is also exposed via buffers and accessors,
but the buffers are created using an svm_allocator. To use coarse-grained shared virtual memory in SYCL 2.2,
users still need to create a buffer and a accessor, but inside the kernel, users can choose to use the same pointer
as is used on the host. Also, to use coarse-grained shared virtual memory, users must create a context and ensure
that all accesses to the SVM buffer use the same context.

For OpenCL 2.2 devices that support fine-grained buffer shared virtual memory, users must also use an
svm_allocator to allocate the memory. The same context used to allocate the memory must also be used for all
command groups that operate on the SVM memory. All command groups that access the fine grained SVM buffer
must also register their access in the command group (using the register_access method on the handler) so that
the scheduler can ensure the correct ordering of execution and the correct data sharing. The data can be accessed
by the same pointer as on the host once inside the kernel, if the access is correctly registered.

For OpenCL 2.2 devices that support fine-grained system shared virtual memory, users do not need to do any spe-
cial allocation of data or access data in any different way than on the host. This memory can be allocated using a
normal C++ new or malloc and then accessed on device via pointers. There is no need to register access to the data
inside the command group. However, the SYCL system cannot manage scheduling and synchronization because
it has no information about access to data. So, for this mode of memory sharing, the user must manage all syn-
chronization. Users should only specify system sharing in the execution_handler and context if they know that
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the devices they are targeting supports this feature and if they are prepared to manage their own synchronization.

2.5.1 Basic data parallel kernels

Data-parallel kernels that execute as multiple work-items and where no local synchronization is required are
enqueued with the cl::sycl::parallel_for function parameterized by a cl::sycl::range parameter. These
kernels will execute the kernel function body once for each work-item in the range. The range passed to cl::sycl
::parallel_for represents the global size of an OpenCL kernel and will be divided into work-groups whose size
is chosen by the SYCL runtime. Barrier synchronization is not valid within these work-groups.

2.5.2 Work-group data parallel kernels

Data parallel kernels can also execute in a mode where the set of work-items is divided into work-groups of
user-defined dimensions. The user specifies the global range and local work-group size as parameters to the cl::
sycl::parallel_for function with a cl::sycl::nd_range parameter. In this mode of execution, kernels execute
over the nd_range in work-groups of the specified size. It is possible to share data among work-items within the
same work-group in local or global memory and to synchronize between work-items in the same work-group by
calling the barrier function on an nd_item object. All work-groups in a given parallel_for will be the same
size and the global size defined in the nd_range must be a multiple of the work-group size in each dimension.

2.5.3 Hierarchical data parallel kernels

The SYCL compiler provides a way of specifying data parallel kernels that execute within work groups via a
different syntax which highlights the hierarchical nature of the parallelism. This mode is purely a compiler feature
and does not change the execution model of the kernel. Instead of calling cl::sycl::parallel_for the user calls
cl::sycl::parallel_for_work_group with a cl::sycl::range value representing the number of work-groups
to launch and optionally a second cl::sycl::range representing the size of each work-group for performance
tuning. All code within the parallel_for_work_group scope effectively executes once per work-group. Within
the parallel_for_work_group scope, it is possible to call parallel_for_work_item which creates a new scope in
which all work-items within the current work-group execute. This enables a programmer to write code that looks
like there is an inner work-item loop inside an outer work-group loop, which closely matches the effect of the
execution model. All variables declared inside the parallel_for_work_group scope are allocated in workgroup
local memory, whereas all variables declared inside the parallel_for_work_item scope are declared in private
memory. All parallel_for_work_item calls within a given parallel_for_work_group execution must have the
same dimensions.

For OpenCL 2.2 capable devices, there is a new intermediate level of the hierarchy: parallel_for_sub_group
which occurs between the work-group and work-item scopes. Its size is controlled by the underlying OpenCL
device, but can be queried. SYCL creates a new form of data storage for the sub_group scope which allows
variables that are shared across a sub group. There is no associated address space for sub-group level variables.
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2.5.4 Kernels that are not launched over parallel instances

Simple kernels for which only a single instance of the kernel function will be executed are enqueued with the
cl::sycl::single_task function. The kernel enqueued takes no “work-item id” parameter and will only execute
once. The behavior is logically equivalent to executing a kernel on a single compute unit with a single work-group
comprising only one work-item. Such kernels may be enqueued on multiple queues and devices and as a result
may, like any other OpenCL entity, be executed in task-parallel fashion.

2.5.5 Synchronization

In SYCL, synchronization can be either global or local within a work-group. The SYCL implementation may
need to provide extra synchronization commands and host-side synchronization in order to enable synchronization
across OpenCL contexts, but this is handled internally within the SYCL host runtime.

Synchronization between work-items in a single work-group is achieved using a work-group barrier. This matches
the OpenCL C behaviour. All the work-items of a work-group must execute the barrier before any are allowed to
continue execution beyond the barrier. Note that the work-group barrier must be encountered by all work-items of
a work-group executing the kernel or by none at all. There is no mechanism for synchronization between work-
groups. In SYCL, workgroup barriers are exposed through a method on the cl::sycl::nd_item class, which
is only available inside kernels that are executed over workgroups. This ensures that developers can only use
workgroup barriers inside workgroups.

For OpenCL 2.2 devices that support sub-groups, there are sub-group barriers along with work-group barriers.
Also, OpenCL 2.2 devices support cross-work-group and cross-sub-group operations, which are also synchro-
nization operations as well as enabling operations across all work-items in a work-group or sub-group.

Synchronization points in SYCL are exposed through the following operations:

• Buffer destruction: The destructors for cl::sycl::buffer and cl::sycl::image objects wait for all en-
queued work on those objects to complete. If the objects were constructed with attached host memory, then
the destructor copies the data back to host memory before returning. More complex forms of synchroniza-
tion on buffer destruction can be specified by the user by constructing buffers with other kinds of references
to memory, such as shared_ptr and unique_ptr.

• Accessor construction: The constructor for a host accessor waits for all kernels that modify the same buffer
(or image) in any queues to complete and then copies data back to host memory before the constructor
returns. Any command groups submitted to any queue will wait for the accessor to be destroyed.

• Command group enqueue: The SYCL scheduler internally ensures that any command groups added to
queues have the correct event dependencies added to those queues to ensure correct operation. Adding
command groups to queues never blocks. Instead any required synchronization is added to the queue and
events of type handler_event are returned by the queue’s submit function that contain event information
related to the specific command group.

• Interaction with OpenCL synchronization operations: The user can obtain OpenCL events from command
groups, images and buffers which will enable the user to add barrier packets to their own queues to correctly
synchronize for buffer or image data dependencies.

• Queue destruction: The destructor for cl::sycl::queue objects waits for all commands executing on the
queue to complete before the destructor returns.
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• Context destruction: The destructor for cl::sycl::context objects waits for all commands executing on
any queues in the context to complete before the destructor returns.

• SYCL event objects: SYCL provides cl::sycl::event objects which can be used for user synchronization.
If synchronization is required between two different OpenCL contexts, then the SYCL runtime ensures
that any extra host-based synchronization is added to enable the SYCL event objects to operate between
contexts correctly.

2.5.6 Error handling

In SYCL, there are two types of error: synchronous errors that can be detected immediately, and asynchronous
errors that can only be detected later. Synchronous errors, such as failure to construct an object, are reported
immediately by the runtime throwing an exception. Asynchronous errors, such as an error occurring during
execution of a kernel on a device, are reported via user-supplied asynchronous error-handlers.

A cl::sycl::context can be constructed with a user-supplied asynchronous error handler. If a cl::sycl::queue
is constructed without a user-supplied context, then the user can supply an asynchronous error handler for the
queue, otherwise errors on that queue will be reported to its context error handler.

Asynchronous errors are not reported immediately as they occur. The asynchronous error handler for a context
or queue is called with a cl::sycl::exception_list object, which contains a list of asynchronously-generated
exception objects, either on destruction of the context or queue that the error handler is associated with, or via an
explicit wait_and_throwmethod call on an associated queue. This style of asynchronous error handling is similar
to that proposed for an upcoming revision of the C++ standard.

2.5.7 Scheduling of kernels and data movement

Within the command group functor, accessor objects specify what data the command group will read and write.
When enqueuing a command group functor, the runtime ensures that synchronization operations are also en-
queued. By these means it ensures that the reads and writes are semantically equivalent to an in-order execution.
Different command groups may execute out-of-order relative to each other, as long as read and write dependencies
are enforced.

A command group functor can be submitted either to a single queue to be executed on, or a secondary queue can
be provided as well. If a command group functor fails to be enqueued to the primary queue, then the system will
attempt to enqueue it to the secondary queue, if given as a parameter to the submit function. If the command
group functor fails to be queued to both of these queues, then a synchronous SYCL exception will be thrown.

It is possible that a command group may be successfully enqueued, but then asynchronously fail to run, for some
reason. In this case, it may be possible for the runtime system to execute the command group functor on the
secondary queue, instead of the primary queue. The situations where a SYCL runtime may be able to achieve this
asynchronous fall-back is implementation- defined.

A command group functor at construction takes a command group handler as a parameter and anything within
that scope is immediately executed and has to get the handler object as a parameter. The intention is that a user
will perform calls to SYCL functions, methods, destructors and constructors inside that scope. These calls will
be non-blocking on the host, but enqueue operations to the queue the command group is submitted at. All user
functions within the command group functor will be called on the host as the command group functor is executed,
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but any runtime SYCL operations will be queued.

The scheduler must treat command groups atomically. So if two threads simultaneously enqueue two command
groups onto the same queue, then each command group must be added to the queue as an atomic operation. The
order of two simultaneously enqueued command groups relative to each other is undefined but the constituent
commands must not interleave.

Command group functors are scheduled to enforce the ordering semantics of operations on memory objects (both
buffers and images). These ordering rules apply regardless of whether the command groups are enqueued in
the same context, queue, device or platform. Therefore, a SYCL implementation may need to produce extra
synchronization operations between contexts, platforms, devices and queues using OpenCL constructs such as
user events. How this is achieved is implementation defined. An implementation is free to re-order or parallelize
command groups in queues as long as the ordering semantics on memory objects are not violated.

The ordering semantics on memory objects are:

1. The ordering rules apply based on the totality of accessors constructed in the command group. The order
in which accessors are constructed within the command group is not relevant. If multiple accessors in
the same command group operate on the same memory object, then the command group’s access to that
memory object is the union of the access permissions of the accessors.

2. Accessors can be created to operate on sub-buffers. A buffer may be overlaid with any number of sub-
buffers. If two accessors are constructed to access the same buffer, but both are to non-overlapping sub-
buffers of the buffer, then the two accessors are said to not overlap, otherwise the accessors do overlap.
Overlapping is the test that is used to determine the scheduling order of command groups.

3. If a command group has any accessor with discard access to a memory object, then the scheduler does not
need to preserve the previous contents of the memory object when scheduling the command group.

4. All other accessors must preserve normal read-write ordering and data access. This means the scheduler
must ensure that a command group that reads a memory object must first copy or map onto the device the
data that might be read. Reads must follow writes to memory objects or overlapping sub-buffers.

5. It is permissible for command groups that only read data to not copy that data back to the host or other
devices after reading and for the scheduler to maintain multiple read-only copies of the data on multiple
devices.

In OpenCL, there are in-order queues and out-of-order queues. In SYCL, the SYCL queues are scheduled irre-
spective of the underlying OpenCL queues, maintaining the SYCL in-order execution semantics.

It is worth noting that a SYCL queue does not necessarily map to only one OpenCL queue, however, the OpenCL
queue that is given when interacting with the SYCL queue will retain any synchronization information is needed
for synchronization with any other OpenCL queues spawned by the system.

An OpenCL implementation can require different queues for different devices and contexts. The synchroniza-
tion required to ensure order between commands in different queues varies according to whether the queues have
shared contexts. A SYCL implementation must determine the required synchronization to ensure the above or-
dering rules above are enforced.

SYCL provides host accessors. These accessors give temporary access to data in buffers on the host, outside the
command group. Host accessors are the only kinds of accessors that can be created outside command groups.
Creation of a host accessor is a blocking operation: all command groups that read or write data in the buffer or
image that the host accessor targets must have completed before the host thread will continue. All data being
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written in an enqueued command group to the buffer or image must be completed and written to the associated
host memory before the host accessor constructor returns. Any subsequently enqueued command group that
accesses overlapping data in the buffer or image of the host accessor will block and not start execution until the
host accessor (and any copies) has been destroyed. This approach guarantees that there is no concurrent access to
a memory object between the host thread and any SYCL device.

If a user creates a SYCL buffer, image or accessor from an OpenCL object, then the SYCL runtime will correctly
manage synchronization and copying of data between the OpenCL memory object for the lifetime of the SYCL
buffer, image or accessor constructed from it. If a user makes use of the underlying OpenCL memory object at
the same time as a SYCL buffer, image or accessor is live, then the behaviour is undefined.

2.5.8 Managing object lifetimes

SYCL does not initialize any OpenCL features until a cl::sycl::context object is created. A user does not need
to explicitly create a cl::sycl::context object, but they do need to explicitly create a cl::sycl::queue object,
for which a cl::sycl::context object will be implicitly created if not provided by the user.

All OpenCL objects encapsulated in SYCL objects are reference-counted and will be destroyed once all references
have been released. This means that a user needs only create a SYCL queue (which will automatically create an
OpenCL context) for the lifetime of their application to initialize and release the OpenCL context safely.

When an OpenCL object that is encapsulated in a SYCL object is copied in C++, then the underlying OpenCL
object is not duplicated, but its OpenCL reference count is incremented. When the original or copied SYCL object
is destroyed, then the OpenCL reference count is decremented.

There is no global state specified to be required in SYCL implementations. This means, for example, that if the
user creates two queues without explicitly constructing a common context, then a SYCL implementation does not
have to create a shared context for the two queues. Implementations are free to share or cache state globally for
performance, but it is not required.

Memory objects can be constructed with or without attached host memory. If no host memory is attached at the
point of construction, then destruction of that memory object is non-blocking. The user may use C++ standard
pointer classes for sharing the host data with the user application and for defining blocking, or non-blocking
behavior of the buffers and images.

If host memory is attached by using a raw pointer, then the default behavior is followed, which is that the destructor
will block until any command groups operating on the memory object have completed, then, if the contents of the
memory object is modified on a device those contents are copied back to host and only then does the destructor
return. Instead of a raw pointer, a unique_ptr may be provided, which uses move semantics for initializing and
using the associated host memory. In this case, the behavior of the buffer in relation to the user application will
be non-blocking on destruction. In the case where host memory is shared between the user application and the
SYCL runtime, then the reference counter of the shared_ptr is determining whether the buffer needs to copy data
back on destruction and in that case the blocking or non-blocking behavior depends on the user application.

The only blocking operations in SYCL (apart from explicit wait operations) are:

• Host accessor constructor, which waits for any kernels enqueued before its creation that write to the corre-
sponding object to finish and be copied back on host memory before it starts processing. The host accessor
does not necessarily copy back to the same host memory as the one initially given by the user.
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• Memory object destruction, in the case where copies back to host memory have to be done

• Queue destruction, as all enqueued kernels need to finish executing first.

• Context destruction, as all enqueued kernels need to finish executing first.

• Device destruction, as all enqueued kernels need to finish executing first.

• Platform destruction, as all enqueued kernels need to finish executing first.

2.5.9 Device discovery and selection

A user specifies which queue to submit a command group functor on and each queue is targeted to run on a
specific device (and context). A user can specify the actual device on queue creation, or they can specify a device
selector which causes the SYCL runtime to choose a device based on the user’s provided preferences. Specifying
a selector causes the SYCL runtime to perform device discovery. No device discovery is performed until a SYCL
selector is passed to a queue constructor. Device topology may be cached by the SYCL runtime, but this is not
required.

Device discovery will return both OpenCL devices and platforms as well as a SYCL host platform and SYCL
host device. The host device allows queue creation and running of kernels, but does not support OpenCL-specific
features. It is an error for a user to request an underlying OpenCL device for the SYCL host device.

2.5.10 Interfacing with OpenCL

All SYCL objects which encapsulate an OpenCL object (such as contexts or queues) can be constructed from
the OpenCL object. The constructor takes one argument, the OpenCL object, and performs an OpenCL retain
operation on the OpenCL object to increase its reference count. The destructor for the SYCL object performs an
OpenCL release operation on the OpenCL object. The copy construction semantics of the SYCL object ensure
that each new SYCL copy of the object also does an OpenCL retain on the underlying object.

To obtain the underlying OpenCL object from a SYCL object, there is a getmethod on all relevant SYCL objects.
The get method returns the underlying OpenCL object and also performs a retain operation on the object. It is
the user’s responsibility to release the OpenCL object when the user has finished with it.

SYCL images and buffers are treated differently in that SYCL image and buffer objects do not refer to an OpenCL
context and may reference multiple underlying OpenCL image or buffer objects as well as host allocations. It is
the accessors to the image and buffer objects that refer to an actual OpenCL context. Accessors provide synchro-
nization in place of the events that the OpenCL runtime would use directly. Therefore, obtaining OpenCL cl_mem
objects from SYCL is achieved via special accessor classes which can return OpenCL cl_mem and cl_event ob-
jects. SYCL memory objects can be constructed from cl_mem objects, but the SYCL system is free to copy from
the OpenCL memory object into another memory object or host memory, to achieve normal SYCL semantics, for
as long as the SYCL memory object is live.

No SYCL object is guaranteed to have only one underlying OpenCL object created, however, every SYCL object
is required to have an OpenCL object which an OpenCL program can interface with and have all synchronization
points refer to it.
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2.6 Anatomy of a SYCL application

Below is an example of a typical SYCL application which schedules a job to run in parallel on any OpenCL
device.

1 #include <CL/sycl.hpp>

2 #include <iostream>

3
4 int main() {

5 using namespace cl::sycl;

6
7 int data[1024]; // initialize data to be worked on

8
9 // By including all the SYCL work in a {} block, we ensure

10 // all SYCL tasks must complete before exiting the block

11 {

12 // create a queue to enqueue work to

13 queue myQueue;

14
15 // wrap our data variable in a buffer

16 buffer<int, 1> resultBuf(data, range<1>(1024));

17
18 // create a command group to issue commands to the queue

19 myQueue.submit([&](execution_handle& cgh) {

20 // request access to the buffer

21 auto writeResult = resultBuf.get_access<access::write>(cgh);

22
23 // enqueue a prallel_for task

24 cgh.parallel_for<class simple_test>(range<1>(1024), [=](id<1> idx) {

25 writeResult[idx] = static_cast<int>(idx[0]);

26 }); // end of the kernel function

27 }); // end of our commands for this queue

28 } // end of scope, so we wait for the queued work to complete

29
30 // print result

31 for (int i = 0; i < 1024; i++)

32 std::cout<<"data["<<i<<"] = "<<data[i]<<std::endl;

33
34 return 0;

35 }

At line 1, we “#include” the SYCL header files, which provide all of the SYCL features that will be used.

A SYCL application has three scopes which specify the different sections; application scope, command group
scope and kernel scope. The kernel scope specifies a single kernel function that will be, or has been, compiled
by a device compiler and executed on a device. In this example kernel scope is defined by lines 23 to 25. The
command group scope specifies a unit of work which will comprise of a kernel function and accessors. In this
example command group scope is defined by lines 18 to 26. The application scope specifies all other code outside
of a command group scope. These three scopes are used to control the application flow and the construction and
lifetimes of the various objects used within SYCL.

A kernel function is the scoped block of code that will be compiled using a device compiler. This code may
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be defined by the body of a lambda function, by the operator() function of a function object or by the binary
cl_kernel entity generated from an OpenCL C string. Each instance of the kernel function will be executed as
a single, though not necessarily entirely independent, flow of execution and has to adhere to restrictions on what
operations may be allowed to enable device compilers to safely compile it to a range of underlying devices.

The parallel_for function is templated with a class, in this case called class simple_test. This class is used
only as a name to enable the kernel (compiled with a device compiler) and the host code (possibly compiled with
a different host compiler) to be linked. This is required because C++ lambda functions have no name that a linker
could use to link the kernel to the host code.

The parallel_for method creates an instance of a kernel object. The kernel object is the entity that will be
enqueued within a command_group. In the case of parallel_for the kernel function will be executed over the
given range from 0 to 1023.

A kernel function can only be defined within a command group scope. Command group scope is the syntactic
scope wrapped by the construction of a command group functor object as seen on line 18. The command group
functor takes as a parameter a command group handler which is a runtime constructed object. The command
group functor contains all the the operations to be enqueued on the queue this functor will be submitted to. In this
case the constructor used for myQueue on line 13 is the default constructor, which allows the queue to select the
best underlying device to execute on, leaving the decision up to the runtime.

In SYCL, data that is required within a kernel function must be contained within a buffer or image. We construct
a buffer on line 16. Access to the buffer is controlled via an accessor which is constructed on line 21 through
the get_access method of the buffer. The buffer is used to keep track of access to the data and the accessor is
used to request access to the data on a queue, as well as to track the dependencies between kernel functions. In
this example the accessor is used to write to the data buffer on line 25. All buffers must be constructed in the
application scope, whereas all accessors must be constructed in the command group scope.

2.7 Memory objects

Memory objects in SYCL fall into one of three categories: buffer objects shared virtual memory allocations and
image objects. A buffer object stores a one-, two- or three-dimensional collection of elements that are stored
linearly directly back to back in the same way C or C++ stores arrays. An SVM allocation creates a region of
memory referenced via a pointer where the pointer itself can be shared between the host and OpenCL devices,
provided that all command groups accessing the data via this pointer are within the same context. An image
object is used to store a one-, two- or three-dimensional texture, frame- buffer or image that may be stored in an
optimized and device-specific format in memory and must be accessed through specialized operations.

Elements of a buffer object can be a scalar data type (such as an int, float), vector data type, or a user-defined
structure. In SYCL, a buffer object is a templated type (cl::sycl::buffer), parameterized by the element type
and number of dimensions. An image object is stored in one of a limited number of formats. The elements of an
image object are selected from a list of predefined image formats which are provided by an underlying OpenCL
implementation. Images are encapsulated in the cl::sycl::image type, which is templated by the number of
dimensions in the image. The minimum number of elements in a memory object is one.

The fundamental differences between a buffer and an image object are:

• Elements in a buffer are stored in an array of 1, 2 or 3 dimensions and can be accessed using an accessor by
a kernel executing on a device. The accessors for kernels can be converted within a kernel into C++ pointer
types, or the cl::sycl::global_ptr, cl::sycl::constant_ptr classes. Elements of an image are stored
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in a format that is opaque to the user and cannot be directly accessed using a pointer. SYCL provides image
accessors and samplers to allow a kernel to read from or write to an image.

• For a buffer object, the data is stored in the same format as it is accessed by the kernel, but in the case of
an image object the data format used to store the image elements may not be the same as the data format
used inside the kernel. Image elements are always a 4-component vector (each component can be a float
or signed/unsigned integer) in a kernel. The SYCL accessor and sampler methods to read from an image
convert an image element from the format it is stored into a 4-component vector. Similarly, the SYCL
accessor methods provided to write to an image convert the image element from a 4-component vector to
the appropriate image format specified such as 4 8-bit elements, for example.

Both buffers and images may have one or more underlying OpenCL cl_mem objects. When a buffer or image is
allocated on more than one OpenCL device, if these devices are on separate contexts then multiple cl_mem objects
may be allocated for the memory object, depending on whether the object has actively been used on these devices
yet or not.

Users may want fine-grained control of the synchronization, memory management and storage semantics of SYCL
image or buffer objects. For example, a user may wish to specify the host memory for a memory object to use,
but may not want the memory object to block on destruction.

Depending on the control and the use cases of the SYCL applications, well established C++ classes and patterns
can be used for reference counting and sharing data between user applications and the SYCL runtime. For control
over memory allocation on the host and mapping between host and device memory, C++ allocator classes are
used that can be the pre-defined ones or user-defined. For better control of synchronization between a SYCL
and a non SYCL application that share data shared_ptr and mutex classes are used. In the case where the user
would not like the host side to block on destruction of buffers or images, as the data given to the buffers are for
initialization only, the unique_ptr class can be used instead of a raw pointer to data.

For shared virtual memory allocations, as the user is provided with a pointer, it is the user’s responsibility to
manage allocation and deallocation (just as a user would have to with a normal C++ pointer). This can be achieved
with C++ pointer types, such as shared_ptr. Also, the user must ensure that the pointer is only used in command
groups that are within the same context.

2.8 SYCL for OpenCL Framework

The SYCL framework allows applications to use a host and one or more OpenCL devices as a single heterogeneous
parallel computer system. The framework contains the following components:

• SYCL C++ Template Library: The template library layer provides a set of C++ templates and classes which
provide the programming model to the user. It enables the creation of queues, buffers and images, as well
as access to some underlying OpenCL features such as contexts, platforms, devices and program objects.

• SYCL Runtime: The SYCL runtime interfaces with the underlying OpenCL implementations and handles
scheduling of commands in queues, moving of data between host and devices, manages contexts, programs,
kernel compilation and memory management.

• OpenCL Implementation(s): The SYCL system assumes the existence of one or more OpenCL imple-
mentations available on the host machine. If no OpenCL implementation is available, then the SYCL
implementation provides only a SYCL-specific host device to run kernels on.
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• SYCL Device Compiler(s): The SYCL device compilers compile SYCL C++ kernels into a format which
can be executed on an OpenCL device at runtime. There may be more than one SYCL device compiler in a
SYCL implementation. The format of the compiled SYCL kernels is not defined. A SYCL device compiler
may, or may not, also compile the host parts of the program.

2.9 SYCL device compiler

To enable SYCL to work on a variety of platforms, with different devices, operating systems, build systems and
host compilers, SYCL provides a number of options to implementers to enable the compilation of SYCL kernels
for devices, while still providing a unified programming model to the user.

2.9.1 Building a SYCL program

A SYCL program runs on a host and one or more OpenCL devices. This requires a compilation model that enables
compilation for a variety of targets. There is only ever one host for the SYCL program, so the compilation of the
source code for the host must happen once and only once. Both kernel and non-kernel source code is compiled
for host.

The design of SYCL enables a single SYCL source file to be passed to multiple, different compilers. This is an
implementation option and is not required. What this option enables is for an implementer to provide a device
compiler only and not have to provide a host compiler. A programmer who uses such an implementation will
compile the same source file twice: once with the host compiler of their choice and once with a device compiler.
This approach allows the advantages of having a single source file for both host code and kernels, while still
allowing users an independent choice of host and SYCL device compilers.

Only the kernels are compiled for OpenCL devices. Therefore, any compiler that compiles only for one or more
devices must not compile non-kernel source code. Kernels are contained within C++ source code and may be
dependent on lambda capture and template parameters, so compilation of the non-kernel code must determine
lambda captures and template parameters, but not generate device code for non-kernel code.

Compilation of a SYCL program may follow either of the following options. The choice of option is made by the
implementer:

1. Separate compilation: One or more device compilers compile just the SYCL kernels for one or more
devices. The device compilers all produce header files for interfacing between the compiler and the runtime,
which are integrated together with a tool that produces a single header file. The user compiles the source
file with a normal C++ host compiler for their platform. The user must ensure that the host compiler is
given the correct command-line arguments (potentially a macro) to ensure that the device compiler output
header file is #included from inside the SYCL header files.

2. Single-source compiler: In this approach, a single compiler may compile an entire source file for both
host and one or more devices. It is the responsibility of the single-source compiler to enable kernels to be
compiled correctly for devices and enqueued from the host.

An implementer of SYCL may choose an implementation approach from the options above.
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2.9.2 Naming of kernels

SYCL kernels are extracted from C++ source files and stored in an implementation-defined format. When the
SYCL runtime needs to enqueue a SYCL kernel, it is necessary for the runtime to load the kernel and pass it to an
OpenCL runtime. This requires the kernel to have a globally-visible name to enable an association between the
kernel invocation and the kernel itself. The association is achieved using a kernel name, which is a C++ typename.
For a functor, the kernel name can be the same type as the functor itself, as long as the functor type is globally
accessible. For a lambda function, there is no globally-visible name, so the user must provide one. In SYCL, the
name is provided as a template parameter to the kernel invocation, e.g. parallel_for<kernelname>.

A device compiler should detect the kernel invocations (e.g. parallel_for<kernelname>) in the source code and
compile the enclosed kernels, storing them with their associated type name. For details please refer to 9.2. The
user can also extract OpenCL cl_kernel and cl_program objects for kernels by providing the typename of the
kernel.

2.10 Language restrictions in kernels

The SYCL kernels are executed on SYCL devices and all of the functions called from a SYCL kernel is going
to be compiled for the device by a SYCL device compiler. Due to restrictions of different versions of OpenCL
capable devices, there are certain restrictions for SYCL kernels that vary by device. Those restrictions can be
summarized as: kernels cannot include RTTI information, exception classes, recursive code, virtual functions or
make use of C++ libraries that are not compiled for the device. For more details on language restrictions please
refer to 9.3.

SYCL kernels use parameters that are captured by value in the command group scope described in 5.1 or are
passed from the host to the device using the data management runtime classes of cl::sycl::accessors. Sharing
data structures between host and device code imposes certain restrictions, such as you can only use user defined
classes that are C++11 standard layout classes for the data structures.

For OpenCL 1.2 devices (which do not support shared virtual memory), no pointers initialized for host can be
used on the device. For these devices, the only way of passing pointers to a kernel is through the usage of cl
::sycl::accessor class, which supports the cl::sycl::buffer and cl::sycl::image classes. No hierarchical
structures of these classes are supported and any other data containers need to be converted to the SYCL data
management classes using the SYCL interface. For more details on the rules for kernel parameter passing, please
refer to 5.9.

For OpenCL 2.2 devices (which do support shared virtual memory), pointers can be passed as parameters to
kernels. However, there are restrictions on how the memory those pointers point to can be created that is dependent
on the level of shared virtual memory that the device supports and that the user has requested.

Some types in SYCL vary according to pointer size or vary on the host according to the host ABI, such as size_t
or long. It is the responsibility of the SYCL device compiler to ensure that the sizes of these types match the
sizes on the host, to enable data of these types to be shared between host and device.

The OpenCL C function qualifier __kernel and the access qualifiers: __read_only, __write_only and _-
_read_write are not exposed in SYCL via keywords, but instead encapsulated in SYCL’s parameter passing
system inside accessors. Users wishing to achieve the OpenCL equivalent of these qualifiers in SYCL should
instead use SYCL accessors with equivalent semantics.
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2.10.1 SYCL Linker

In SYCL only offline linking is supported for SYCL and OpenCL programs and libraries. In the case of linking
C++ functions and methods to a SYCL application, where the definitions and declarations are not available in the
same translation unit of the compiler, then the macro SYCL_EXTERNAL has to be provided.

Any OpenCL C function included in a pre-built OpenCL library can be defined as extern "C" function and the the
OpenCL program has to be linked against any SYCL program that contains kernels using the external function.
In this case, the data types used have to comply with the interoperability data types defined in 4.43.

2.10.2 Functions and datatypes available in kernels

Inside kernels, the functions and datatypes available are restricted by the underlying capabilities of OpenCL
devices. All OpenCL C features are provided by C++ classes and functions, which are available on host and
device.

2.11 Execution of kernels on the SYCL host device

SYCL enables kernels to run on either the host device or on OpenCL devices. When kernels run on an OpenCL
device, then the features and behaviour of that execution follows the OpenCL specification, otherwise they follow
the behaviour specified for the SYCL host device.

Any kernel enqueued to a host queue executes on the host device according to the same rules as the OpenCL
devices.

Kernel math library functions on the host must conform to OpenCL math precision requirements.

The range of image formats supported by the host device is implementation- defined, but must match the minimum
requirements of the OpenCL specification.

Some of the OpenCL extensions and optional features may be available on a SYCL host device, but since these
are optional features and vendor specific extensions, the user must query the host device to determine availability.
A SYCL implementer must state what OpenCL device features are available on their host device implementation.

The synchronization and data movement that occurs when a kernel is executed on the host may be implemented
in a variety of ways on top of OpenCL. The actual mechanism is implementation-defined.
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3. SYCL Runtime Library

The SYCL programming interface provides a C++ abstraction of the OpenCL 2.2 functionality and feature set.
This section describes all the available classes and interfaces of SYCL, focusing on the C++ interface of the
underlying runtime. In this section, we define all the classes and methods for the SYCL API which are available
for SYCL host and OpenCL devices. This section also describes the synchronization rules and OpenCL API
interoperability rules which guarantee that all the methods, including constructors, of the SYCL classes are thread
safe.

It is assumed that the OpenCL API is also available to the developer at the same time as SYCL.

3.1 Header files and namespaces

SYCL provides one standard header file: "CL/sycl.hpp", which needs to be included in every SYCL program.

All SYCL classes, constants, types and functions are defined within the cl::sycl namespace.

3.2 C++ Standard library classes required for the interface

The SYCL programming interfaces make extensive use of vectors, strings and function objects to carry infor-
mation. Moreover, SYCL provides user-customizable smart pointer and mutex classes which default to using
the STL string, vector, function, mutex and smart pointer classes, unless defined otherwise. These types are ex-
posed internally as cl::sycl::vector_class, cl::sycl::string_class, cl::sycl::function_class, cl::sycl
::mutex_class, cl::sycl::unique_ptr_class, cl::sycl::shared_ptr_class, cl::sycl::weak_ptr_class and
cl::sycl::future.

It is possible to disable the STL versions of these classes when required. A common reason for doing this is to
specify a custom allocator to move memory management under the control of the SYCL user. This is achieved
by defining CL_SYCL_NO_STD_VECTOR, CL_SYCL_NO_STD_STRING, CL_SYCL_NO_STD_FUNCTION, CL_SYCL_-
NO_STD_MUTEX, CL_SYCL_NO_UNIQUE_PTR, CL_SYCL_NO_SHARED_PTR, CL_SYCL_NO_WEAK_PTR, CL_SYCL_-
NO_FUTURE, respectively, before including "CL/sycl.hpp", and by replacing the template aliases in the cl::sycl
namespace as necessary.

1 #include <functional>

2 #include <memory>

3 #include <mutex>

4 #include <string>

5 #include <vector>

6
7 namespace cl {

8 namespace sycl {
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9 #define CL_SYCL_NO_STD_VECTOR

10 template < class T, class Alloc = std::allocator<T> >

11 using vector_class = std::vector<T, Alloc>;

12
13 #define CL_SYCL_NO_STD_STRING

14 using string_class = std::string;

15
16 #define CL_SYCL_NO_STD_FUNCTION

17 template<class R, class... ArgTypes>

18 using function_class = std::function<R(ArgTypes...)>;

19
20 #define CL_SYCL_NO_STD_MUTEX

21 using mutex_class = std::mutex;

22
23 #define CL_SYCL_NO_STD_UNIQUE_PTR

24 template <class T, class D = std::default_delete<T>>

25 using unique_ptr_class = std::unique_ptr<T[], D>;

26
27 #define CL_SYCL_NO_STD_SHARED_PTR

28 template <class T>

29 using shared_ptr_class = std::shared_ptr<T>;

30
31 #define CL_SYCL_NO_STD_WEAK_PTR

32 template <class T>

33 using weak_ptr_class = std::weak_ptr<T>;

34
35 } // sycl

36 } // cl

37
38 #include <CL/sycl.hpp>

3.3 Device selection class

The class device_selector is a functor which enables the SYCL runtime to choose the best device based on
heuristics specified by the user, or by one of the built-in device selectors. The built-in device selectors are listed
in Table 3.3. The device_selector constructors and methods are described in tables 3.1 and 3.2.

1 namespace cl {

2 namespace sycl {

3 class device_selector {

4 public:

5 device_selector();

6
7 device_selector(const device_selector &selector);

8
9 virtual ∼device_selector();

10
11 device select_device() const;

12
13 virtual int operator()(const device &device) const = 0;

14 };
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15 } // namespace sycl

16 } // namespace cl

Constructors Description
device_selector() Default device selector constructor for the

abstract class.
device_selector(const device_selector &selector) Copy constructor.

End of table
Table 3.1: Constructors of the device_selector class

Methods Description
device select_device()const Returns a selected device using the functor

operator defined in sub-classes operator()(
const device &device).

virtual int operator()(const device &device)const This pure virtual operator allows the cus-
tomization of device selection. It defines
the behavior of the device_selector func-
tor called by the SYCL runtime on device
selection. It returns a “score” for each de-
vice in the system and the highest rated de-
vice will be used by the SYCL runtime.

End of table
Table 3.2: Methods for the device_selector class

operator() is an abstract method which returns a “score” per-device. At the stage where the SYCL runtime
selects a device, the system will go through all the available devices in the system and choose the one with the
highest score as computed by the current device selection class. If a device has a negative score it will never be
chosen. While OpenCL devices may or may not be available, the SYCL host device is always available, so the
developer is able to choose the SYCL host device as a fall-back device. Selection of the SYCL host device will
allow execution of CPU-compiled versions of kernels scheduled on queues created against that device.

The system also provides built-in device selectors, including selectors which choose a device based on the default
behavior of the system. An important note is that the system is not required to have global state and its behavior
is defined by the platforms the developer chooses to target.

The default selector is the selector that incorporates the default behavior of the system, and it is implicitly used
by the system for the creation of the queue when no other device selector or underlying OpenCL identifier is
provided. The method the default selector uses to rank and select devices is implementation-defined. The default -
selector will choose the SYCL host device if there are no OpenCL devices available.

SYCL device selectors Description
default_selector Devices selected by the heuristics of the

system. If no OpenCL device is found then
it defaults to the SYCL host device.

Continued on next page
Table 3.3: Standard device selectors included with all SYCL implemen-
tations.
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SYCL device selectors Description
gpu_selector Select devices according to device type

info::device::device_type::gpu from all
the available OpenCL devices.
If no OpenCL GPU device is found, the se-
lector fails.

cpu_selector Select devices according to device type
info::device_type::cpu from all the avail-
able devices and heuristics. If no OpenCL
CPU device is found, the selector fails.

host_selector Selects the SYCL host CPU device that
does not require an OpenCL runtime.

capabilities_selector(exec_capabilities =

exec_capabilities::opencl22core)

Selects the devices according to the capa-
bilities the application needs to expose. The
default capabilities for SYCL 2.2 are the
exec_capabilities::opencl22core, which
expose the core functionality of OpenCL
2.2. The available values are:

• exec_capabilities::opencl12, for
OpenCL 1.2 execution capabilities,
• exec_capabilities::opencl22, for

core OpenCL 2.2 execution capabili-
ties,
• exec_capabilities::
svm_coarse_grain, for coarse-grain
buffer shared virtual memory,
• exec_capabilities::
svm_fine_buffer_sharing, for
fine-grain buffer shared virtual
memory without atomics,
• exec_capabilities::
svm_fine_buffer_sharing_atomics,
for fine-grain buffer shared virtual
memory with atomics,
• exec_capabilities::
svm_fine_system_sharing_atomics,
for fine-grain system shared virtual
memory with atomics.

svm::fine_grain_buffer_selector Selects the devices that support fine grain
shared virtual memory with buffer sharing
and no atomics. If no such devices are found
then selector fails.

svm::fine_grain_buffer_atomics_selector Selects the devices that support fine grain
shared virtual memory with buffer sharing
and atomics. If no such devices are found
then selector fails.

Continued on next page
Table 3.3: Standard device selectors included with all SYCL implemen-
tations.
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SYCL device selectors Description
svm::fine_grain_system_selector Selects the devices that support fine grain

shared virtual memory no atomics. If no
such devices are found then selector fails.

svm::fine_grain_system_atomics_selector Selects the devices that support fine grain
shared virtual memory with system sharing
and atomics. If no such devices are found
then the selector fails.

End of table
Table 3.3: Standard device selectors included with all SYCL implemen-
tations.

3.4 Platform class

The platform class represents a SYCL platform: a collection of related SYCL supported devices. Each platform
may be either an OpenCL platform, or it may be the SYCL host platform, containing only the SYCL host device.
The host platform is the default platform and can be useful when no OpenCL platform is available or during the
development process, especially for debugging. The platform class offers a selection of static methods to obtain
information about the platforms available at runtime. The SYCL host platform reports itself as a valid SYCL
platform. The constructors and methods of the platform class are listed in Tables3.4 and 3.5.

1 namespace cl {

2 namespace sycl {

3 namespace info {

4 enum class device_type : unsigned int {

5 cpu,

6 gpu,

7 accelerator,

8 custom,

9 defaults,

10 host,

11 all

12 }

13 } // info

14
15 class platform {

16 public:

17 platform();

18
19 explicit platform(cl_platform_id platformID);

20
21 explicit platform(device_selector &devSelector);

22
23 platform(const platform &rhs);

24
25 platform &operator=(const platform &rhs);

26
27 ∼platform();

28
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29 //The OpenCL cl_platform_id or nullptr for SYCL host.

30 cl_platform_id get() const;

31
32 // Returns all the available OpenCL platforms and the SYCL host platform

33 static vector_class<platform> get_platforms();

34
35 //Returns the devices available in this platform

36 vector_class<device> get_devices(

37 info::device_type = info::device_type::all) const;

38
39 //Returns the corresponding descriptor information for all SYCL platforms

40 //(OpenCL and host)

41 template <info::platform param>

42 typename info::param_traits<info::platform, param>::type get_info()

43 const;

44
45 //Returns the available extensions for all SYCL platforms( OpenCL and host)

46 bool has_extension(const string_class &extension) const;

47
48 //True if the platform is host

49 bool is_host() const;

50 };

51 } // namespace sycl

52 } // namespace cl

The SYCL host platform is not an OpenCL platform. The get() method will trigger an invalid object error
exception of type device error. The SYCL host platform will be included in the output of the static function
get platforms.

Constructors Description
platform() Default constructor for platform, which corresponds to the

host platform. Returns errors via the SYCL exception class.
explicit platform(cl::platform

platformId)

Construct a platform object from an OpenCL platform id.
Returns errors via the SYCL exception class.

explicit platform(const device_selector

&devSelector)

Construct a platform object from the device returned by a
device selector of the user’s choice. Returns errors via the
SYCL exception class.

platform(const platform &rhs) Copy constructor.
platform &operator=(const platform &rhs) Assignment operator.

End of table
Table 3.4: Constructors of platform class

The default constructor will create an instance of the platform class where the underlying platform will be the
SYCL host platform by default.
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Methods Description
cl::platform get ()const Returns the cl::platform of the underlying

OpenCL platform. If the platform is not a
valid OpenCL platform, for example if it is
the SYCL host, an invalid object error ex-
ception will be triggered of type device er-
ror.

static vector_class<platform> get_platforms ()const Returns all available platforms in the sys-
tem.

vector_class<device> get_devices(

info::device_type = info::device_type::all)const

Returns all the available devices for this
platform, of type device type, which is de-
faulted to info::device_type::all

template <info::platform param>

typename info::param_traits<info::platform,

param>::type

get_info()const

Queries OpenCL information for the under-
lying cl::platform.

bool has_extension(const string_class & extension)

const

Specifies whether a specific extension is
supported on the platform.

bool is_host()const Returns true if this is a SYCL host platform.
End of table

Table 3.5: Methods of platform class

3.4.1 Platform information descriptors

A SYCL platform can be queried for all of the following information using the get_info function. All SYCL
contexts have valid devices for them, including the SYCL host device. The available information is in table 3.6.
The interface of all available platform descriptors in the appendix C.1.

Platform Descriptors Return type Description
info::platform::profile string_class Returns the profile name supported by the imple-

mentation. Can be either FULL PROFILE or EM-
BEDDED PROFILE.

info::platform::version string_class OpenCL software driver version string in the form
major number.minor number

info::platform::name string_class Name of the platform.
info::platform::vendor string_class String provided by the platform vendor.
info::platform::extensions string_class A space-separated list of extension names sup-

ported by the platform.
info::platform::

host_timer_resolution

cl_ulong Returns the resolution of the host timer in
nanoseconds.

End of table
Table 3.6: Platform information descriptors.
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3.5 Context class

The context class encapsulates an OpenCL context, which is implicitly created and the lifetime of the context
instance defines the lifetime of the underlying OpenCL context instance. On destruction clReleaseContext is
called. The default context is the SYCL host context containing only the SYCL host device.

The constructors and methods of the context class are listed in Tables 3.7 and 3.8.

3.5.1 Context interface

1 namespace cl {

2 namespace sycl {

3 class context {

4 public:

5 context();

6
7 explicit context(async_handler asyncHandler = nullptr);

8
9 context(cl_context clContext, async_handler asyncHandler = nullptr);

10
11 context(const device_selector &deviceSelector,

12 info::gl_context_interop interopFlag,

13 async_handler asyncHandler = nullptr);

14
15 context(const device &dev, info::gl_context_interop interopFlag,

16 async_handler asyncHandler = nullptr);

17
18 context(const platform &plt, info::gl_context_interop interopFlag,

19 async_handler asyncHandler = nullptr);

20
21 context(const vector_class<device> &deviceList, info::gl_context_interop interopFlag,

22 async_handler asyncHandler = nullptr);

23
24 context(const context &rhs);

25
26 context &operator=(const context &rhs);

27
28 ∼context();

29
30 cl_context get() const;

31
32 bool is_host() const;

33
34 platform get_platform() const;

35
36 vector_class<device> get_devices() const;

37
38 template <info::context param>

39 typename param_traits<info::context, param>::type get_info() const;

40 };
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41 } // namespace sycl

42 } // namespace cl

Constructors Description
context () Default constructor that creates a SYCL

host context. Returns synchronous errors via
the SYCL exception class.

explicit context(async_handler a_handler = nullptr) Constructs a context object for SYCL host
using an async handler 5.11.2 for handling
asynchronous errors.

context(const capability_selector &device_selection,

async_handler a_handler = nullptr)

Constructs a context using the
capability_selector object. The con-
text is constructed using implementation
heuristics for choosing all of the devices
belonging to a platform that satisfy the
capability selector requirements.

context(const device_selector &device_selection,

info::gl_context_interop flag,

async_handler a_handler = nullptr)

Constructs a context object using a
device_selector object. The context is
constructed with a single device retrieved
from the device_selector object provided.
Returns synchronous errors via the SYCL
exception class and asynchronous errors are
handled via the async handler 5.11.2, if
provided.

context(const device &dev,

info::gl_context_interop flag,

async_handler a_handler = nullptr)

Constructs a context object using a de-
vice object. Returns synchronous errors
via the SYCL exception class and asyn-
chronous errors are handled via the async -
handler5.11.2, if provided.

context(const platform &plt,

info::gl_context_interop flag,

async_handler a_handler = nullptr)

Constructs a context object using a plat-
form object. Returns synchronous errors via
the SYCL exception class and asynchronous
errors are handled via the async handler
5.11.2, if provided.

context(const vector_class<device> & deviceList,

info::gl_context_interop flag,

async_handler a_handler = nullptr)

Constructs a context object using a vec-
tor class of device objects. Returns syn-
chronous errors via the SYCL exception
class and asynchronous errors are handled
via the async handler 5.11.2, if provided.

context (cl::context context,

async_handler a_handler = nullptr)

Context constructor, where the underlying
OpenCL context is given as a parameter.
The constructor executes a retain on the
cl::context. Returns synchronous errors via
the SYCL exception class and asynchronous
errors are handled via the async handler
5.11.2, if provided.

context(const context &rhs) Constructs a context object from another
context object and retains the cl context ob-
ject if the context is not SYCL host.

End of table
Table 3.7: Constructors of the context class.
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Methods Description
cl::context get ()const Returns the underlying cl context object, af-

ter retaining the cl context. Retains a ref-
erence to the returned cl_context object.
Caller should release it when finished. If the
context is a SYCL host context, then an in-
valid object error exception of the type de-
vice error.

bool is_host ()const Specifies whether the context is in SYCL
Host Execution Mode.

template <info::context param>

typename param_traits

<info::context, param>::type

get_info ()const

Queries OpenCL information for the under-
lying cl context.

platform get_platform()const Returns the SYCL platform that the context
is initialized for.

vector_class<device>

get_devices()const

Returns the set of devices that are part of this
context.

Table 3.8: Methods of context class

3.5.2 Context information descriptors

A SYCL context can be queried for all of the following information using the get_info function. All SYCL
contexts have valid devices for them, including the SYCL host device. The available information is in table 3.9.
The interface of all available context descriptors in the appendix C.2.

Context Descriptors Return type Description
info::context::reference_count cl_uint Return the context reference count.
info::context::num_devices cl_uint Return the number of devices in

context.
info::context::devices vector_class<cl_device_id> Return the list of devices in context.
info::context::gl_interop info::gl_context_interop Boolean value which specifies

whether the context is used for
OpenCL/OpenGL interoperability
according to the OpenCL 1.2 or
OpenCL 2.2 extensions specifica-
tion document [2].

End of table
Table 3.9: Context information descriptors

On construction of a context, it is possible to supply an asynchronous error handler function object. If supplied,
then asynchronous errors can be reported to the error handler. Asynchronous errors are only reported to the user
when a queue attached to the context is destroyed or has its wait_and_throw() method called.
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3.6 Device class

The SYCL device class encapsulates a particular SYCL device on which kernels may be executed. The SYCL
device may be an OpenCL device or it may be a SYCL host device representing the host CPU. In the OpenCL
device case, it should have a valid cl_device_id and cl_platform_id available. The cl_device_id for the SYCL
host device is not going to be available through the OpenCL interface, as it is not an OpenCL device. In the case
where the SYCL device is constructed from an existing cl_device_id the system will call clRetainDevice. On
destruction, the runtime will call clReleaseDevice. It is the user’s responsibility to make sure that the device
object with cl_device_id is a valid object during the lifetime of the device class.

3.6.1 Device interface

The constructors and methods of the device class are listed in Tables 3.10 and 3.11.

1 namespace cl {

2 namespace sycl {

3 class device {

4 public:

5 device();

6
7 explicit device(cl_device_id deviceId);

8
9 explicit device(const device_selector &deviceSelector);

10
11 device(const device &rhs);

12
13 device &operator=(const device &rhs);

14
15 ∼device();

16
17 // The OpenCL cl_platform_id or nullptr for SYCL host.

18 cl_device_id get() const;

19
20 bool is_host() const;

21
22 bool is_cpu() const;

23
24 bool is_gpu() const;

25
26 bool is_accelerator() const;

27
28 platform get_platform() const;

29
30 // Returns all the available OpenCL devices and the SYCL host device

31 static vector_class<device> get_devices(

32 info::device_type deviceType = info::device_type::all);

33
34 template <info::device param>

35 typename info::param_traits<info::device, param>::type

36 get_info<info::device>() const;
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37
38 bool has_extension(const string_class &extension) const;

39
40 vector_class<device> create_sub_devices(

41 info::device_partition_type partitionType,

42 info::device_partition_property partitionProperty,

43 info::device_affinity_domain affinityDomain) const;

44
45
46 };

47 } // namespace sycl

48 } // namespace cl

The default constructor will create an instance of the SYCL host device.

The developer can partition existing devices through the create_sub_devices API. More documentation on
this is in the OpenCL 2.2 specification [3, sec. 4.3]. It is valid to construct a SYCL device directly from an
OpenCL sub-device.

Information about the SYCL device may be queried through the get_info method. The developer can also query
the device instance for the cl_device_id which will be nullptr if the SYCL device is the host device. The
get_platform method will return the corresponding platform object.

To facilitate the different options for SYCL devices, there are methods that check the type of device. The method
is_host() returns true if the device is actually the host. In the case where an OpenCL device has been initialized
through this API, the methods is_cpu() , is_gpu() and is_accelerator() return true if the OpenCL device is
CPU, GPU or an accelerator.

Constructors Description
device () Default constructor for the device. It

chooses a device using host selector. Re-
turns errors via C++ exception class.

explicit device (const device_selector &

deviceSelector)

Constructs a device class instance using the
device selector provided. Returns errors via
C++ exceptionss.

explicit device (cl_device_id deviceId) Constructs a device class instance using cl -
device id of the OpenCL device. Returns
synchronous errors via the SYCL exception
class. Retains a reference to the OpenCL de-
vice and if this device was an OpenCL sub-
device the device should be released by the
caller when it is no longer needed.

device (const device &rhs) Copy constructor. Returns synchronous er-
rors via the SYCL exception class.

device &operator=(const device &rhs) Assignment constructor. Returns syn-
chronous errors via the SYCL exception
class.

End of table
Table 3.10: Constructors of the device class
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Methods Description
cl_device_id get ()const Returns the cl device id of the underlying

OpenCL platform. Returns synchronous er-
rors via the SYCL exception class. Retains a
reference to the returned cl_device_id ob-
ject. Caller should release it when finished.
In the case where this is the SYCL host de-
vice, it will trigger an invalid object error
exception of type device error.

platform get_platform ()const Returns the platform of the device. Returns
synchronous errors via the SYCL exception
class.

bool is_host ()const Returns true if the device is a SYCL host
device.

bool is_cpu ()const Returns true if the device is an OpenCL
CPU device.

bool is_gpu ()const Returns true if the device is an OpenCL
GPU device.

bool is_accelerator ()const Returns true if the device is an OpenCL ac-
celerator device.

template <info::device param> typename info::

param_traits

<info::device, param>::type

get_info ()const

Queries the device for OpenCL
info::device info. Returns synchronous
errors via the SYCL exception class.

bool has_extension (const string_class &extension)

const

Specifies whether a specific extension is
supported on the device.

vector_class<device> create_sub_devices (

info::device_partition_type partitionType,

info::device_partition_property

partitionProperty,

info::device_affinity_domain affinityDomain)

const

Partitions the device into sub devices based
upon the properties provided. Returns syn-
chronous errors via SYCL exception classes.

static vector_class<device>

get_devices (

info::device_type deviceType =

info::device_type::all)

Returns a list of all available devices. Re-
turns synchronous errors via SYCL excep-
tion classes.

End of table
Table 3.11: Methods of the device class

3.6.2 Device information descriptors

A SYCL device can be queried for all of the following information using the get_info function. All SYCL
devices have valid queries for them, including the SYCL host device. The available information is in table 3.12.
The interface of all available device descriptors in the appendix C.3.
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Device Descriptors Return type Description
info::device::type info::

device_type

The SYCL device type. Currently supported
values are: cpu, gpu, accelerator, defaults, cus-
tom, host, all.

info::device::vendor_id cl_uint A unique SYCL device vendor identifier. An
example of a unique device identifier could be
the PCIe ID. The SYCL host device has to re-
port a valid vendor id.

info::device::

max_compute_units

cl_uint The number of parallel compute units on the
SYCL device. A work-group executes on a
single compute unit. The minimum value is
1.

info::device::

max_work_item_dimensions

cl_uint Maximum dimensions that specify the global
and local work-item IDs used by the data par-
allel execution model. The minimum value
is 3 for devices that are not of type info::
device_type::custom.

info::device::

max_work_item_sizes

id<3> Maximum number of work-items that can be
specified in each dimension of the work-group
to the nd range. The minimum value is (1,
1, 1) for devices that are not of type info::
device_type::custom.

info::device::

max_work_group_size

size_t Maximum number of work-items in a work-
group executing a kernel on a single compute
unit, using the data parallel execution model.
The minimum value is 1.

info::device::

preferred_vector_width_char

info::device::

preferred_vector_width_short

info::device::

preferred_vector_width_int

info::device::

preferred_vector_width_long

info::device::

preferred_vector_width_float

info::device::

preferred_vector_width_double

info::device::

preferred_vector_width_half

cl_uint Preferred native vector width size for builtin
scalar types that can be put into vectors.
The vector width is defined as the number
of scalar elements that can be stored in the
vector. If double precision is not supported,
info::device_preferred_width_double

must return 0. If the cl_khr_fp16

extension is not supported, info::device::
preferred_vector_width_half must return
0.

Continued on next page
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55



Device Descriptors Return type Description
info::device::

native_vector_width_char

info::device::

native_vector_width_short

info::device::

native_vector_width_int

info::device::

native_vector_width_long

info::device::

native_vector_width_float

info::device::

native_vector_width_double

info::device::

native_vector_width_half

cl_uint Returns the native ISA vector width. The
vector width is defined as the number of scalar
elements that can be stored in the vector.
If double precision is not supported, info
::device::native_vector_width_double

must return 0. If the cl_khr_fp16 ex-
tension is not supported, info::device::
native_vector_width_half must return
0.

info::device::

max_clock_frequency

cl_uint Maximum configured clock frequency of the
device in MHz.

info::device::address_bits cl_uint The default compute device address space size
specified as an unsigned integer value in bits.
Currently supported values are 32 or 64 bits.

info::device::

max_mem_alloc_size

cl_long Max size of memory object allocation
in bytes. The minimum value is max
(1/4th of info::device::global_mem_size
,128*1024*1024) for devices that are not of
type info::device type::custom.

info::device::IL_version string_class The intermediate languages that can be
supported for this device. Returns a space-
separated list of IL version strings of the form
¡IL Prefix¿ ¡Major Version¿.¡Minor Ver-
sion¿. For OpenCL 2.2, SPIR-V is a required
IL prefix.

info::device::image_support cl_bool Is 1 if images are supported by the SYCL de-
vice and 0 otherwise.

info::device::

max_read_image_args

cl_uint Max number of simultaneous image objects
that can be read by a kernel. The minimum
value is 128 if info::device::image support is
true.

info::device::

max_write_image_args

cl_uint Max number of simultaneous image objects
that can be written to by a kernel. The min-
imum value is 64 if info::device::image sup-
port is true.

info::device::

max_read_write_image_args

cl_uint Max number image objects as arguments to
a kernel with write or read_write flags.
The minimum value is 64 if info::device::
image_support is true.

info::device::

image2d_max_width

size_t Max width of 2D image or 1D image, not
created from a buffer object, in pixels. The
minimum value is 16384 if info::device::
image_support is true.

Continued on next page
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info::device::

image_2d_max_height

size_t Max height of 2D image in pixels. The min-
imum value is 16384 if info::device::image -
support is true.

info::device::

image3d_max_width

size_t Max width of 3D image in pixels. The
minimum value is 2048 if info::device::
image_support is true.

info::device::

image3d_max_height

size_t Max height of 3D image in pixels. The
minimum value is 2048 if info::device::
image_support is true.

info::device::

image3d_max_depth

size_t Max depth of 3D image in pixels. The
minimum value is 2048 if info::device::
image_support is true.

info::device::

image_max_buffer_size

size_t Max number of pixels for a 1D image cre-
ated from a buffer object. The minimum value
is 65536 if info::device::image_support is
true.

info::device::

image_max_array_size

size_t Max number of images in a 1D or 2D image
array. The minimum value is 2048 if info::
device::image_support is true.

info::device::max_samplers cl_uint Maximum number of samplers that can be
used in a kernel. The minimum value is 16
info::device::image_support is true.

info::device::

image_pitch_alignment

cl_uint The row pitch alignment size in pixels for 2D
images created from a buffer. The value re-
turned must be a power of 2. If the device does
not support images, this value must be 0.

info::device::max_pipe_args cl_uint The maximum number of pipe objects that can
be passed as arguments to a kernel. The mini-
mum value is 16.

info:device::

pipe_max_active_reservations

cl_uint The maximum number of reservations that
can be active for a pipe per work-item in a ker-
nel. A work-group reservation is counted as
one reservation per work-item. The minimum
value is 1.

info::device::

pipe_max_packet_size

cl_uint The maximum size of pipe packet in bytes.
The minimum value is 1024 bytes.

info::device::

max_parameter_size

size_t Max size in bytes of the arguments that can
be passed to a kernel. The minimum value
is 1024 for devices that are not of type info
::device_type::custom. For this minimum
value, only a maximum of 128 arguments can
be passed to a kernel.

info::device::

mem_base_addr_align

cl_uint The minimum value is the size (in bits) of the
largest SYCL built-in data type supported by
the device is longlong16 for devices that are
not of type info::device type::custom.

Continued on next page
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info::device::single_fp_config info::

device_fp_config

Describes single precision floating-point ca-
pability of the device. This is a bit-field that
describes one or more of the following values:
• info::fp config::denorm : denorms are

supported
• info::fp config::inf nan : INF and quiet

NaNs are supported.
• info::fp config::round to nearest: round

to nearest even rounding mode sup-
ported

• info::fp config::round to zero : round
to zero rounding mode supported

• info::fp config::round to inf : round to
positive and negative infinity rounding
modes supported

• info::fp config::fma : IEEE754-2008
fused multiply add is supported.

• info::fp config::correctly rounded di-
vide sqrt : divide and sqrt are correctly
rounded as defined by the IEEE754
specification.

• info::fp config::soft float : Basic
floating-point operations (such as
addition, subtraction, multiplication)
are implemented in software. The
mandated minimum floating-point
capability for devices that are not
of type info::device type::custom
is: info::fp config::round to nearest
info::fp config::inf nan

Continued on next page
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info::device::double_fp_config info::

device_fp_config

Describes double precision floating-point ca-
pability of the SYCL device. This is a bit-field
that describes one or more of the following
values:
• info::fp_config::denorm: denorms

are supported
• info::fp_config::inf_nan : INF and

NaNs are supported.
• info::fp_config::round_to_nearest

: round to nearest even rounding mode
supported.

• info::fp_config::round_to_zero :
round to zero rounding mode supported.

• info::fp_config::round_to_inf :
round to positive and negative infinity
rounding modes supported.

• info::fp_config::fma : IEEE754-
2008 fused multiply-add is supported.

• info::fp_config::soft_float : Basic
floating-point operations (such as addi-
tion, subtraction, multiplication) are im-
plemented in software.

Double precision is an optional feature so
the mandated minimum double precision
floating-point capability is 0. If double
precision is supported by the device, then
the minimum double precision floating-point
capability must be: info::fp_config::fma
| info::fp_config::round_to_nearest

| info::fp_config::round_to_zero |

info::fp_config::round_to_inf | info::

fp_config::inf_nan | info::fp_config::

denorm.
info::device::

global_mem_cache_type

info::

device_mem_cache_type

Type of global memory cache supported.
Valid values are: none, read only cache,
write only cache.

info::device::

global_mem_cache_line_size

cl_uint Size of global memory cache line in bytes.

info::device::

global_mem_cache_size

cl_ulong Size of global memory cache in bytes.

info::device::global_mem_size cl_ulong Size of global device memory in bytes.
info::device::

max_constant_buffer_size

cl_ulong Max size in bytes of a constant buffer alloca-
tion. The minimum value is 64 KB for devices
that are not of type info::device type::custom.

info::device::

max_constant_args

cl_uint Max number of constant arguments declared
in a kernel. The minimum value is 8 for
devices that are not of type info::device -
type::custom.

Continued on next page
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info::device::

max_global_variable_size

size_t The maximum number of bytes of storage that
may be allocated for any single variable in pro-
gram scope or inside a function declared in the
global address space. The minimum value is
64 KB.

info::device::

global_variable_preferred_total_size

size_t Maximum preferred total size, in bytes, of all
program variables in the global address space.
This is a performance hint. An implementation
may place such variables in storage with opti-
mized device access. This query returns the
capacity of such storage. The minimum value
is 0.

info::device::local_mem_type info::

local_mem_type

Type of local memory supported. This can
be set to info::local mem type::local imply-
ing dedicated local memory storage such as
SRAM, or info::local mem type::global. For
custom devices, info::local mem type::none
can also be returned indicating no local mem-
ory support.

info::device::local_mem_size cl_ulong Size of local memory arena in bytes. The min-
imum value is 32 KB for devices that are not
of type info::device type::custom.

info::device::

error_correction_support

cl_bool Is true if the device implements error correc-
tion for all accesses to compute device mem-
ory (global and constant). Is false if the device
does not implement such error correction.

info::device::

profiling_timer_resolution

size_t Describes the resolution of device timer. This
is measured in nanoseconds.

info::device::is_endian_little cl_bool Is true if the SYCL device is a little endian
device and false otherwise.

info::device::is_available cl_bool Is true if the device is available and false if the
device is not available.

info::device::

is_compiler_available

cl_bool Is false if the implementation does not have
a compiler available to compile the program
source. An OpenCL device that conforms to
the OpenCL Embedded Profile may not have
an online compiler available.

info::device::

is_linker_available

cl_bool Is false if the implementation does not have a
linker available. An OpenCL device that con-
forms to the OpenCL Embedded Profile may
not have a linker available. However, it needs
to be true if info::device::is compiler available
is true.

Continued on next page
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info::device::

execution_capabilities

info::

device_exec_

capabilities

Describes the execution capabilities of the de-
vice. This is a bit-field that describes one or
more of the following values:
• info::device execution capabili-

ties::exec kernel : The OpenCL
device can execute OpenCL kernels.

• info::device execution capabili-
ties::exec native kernel : The OpenCL
device can execute native kernels.
The mandated minimum capability
is: info::device execution capabili-
ties::exec kernel.

info::device::

opencl_queue_out_of_order_exec

cl_bool Check whether the opencl queue on host is ex-
ecuting out-of-order. Returns true if out-of-
order is enabled.

info::device::

queue_profiling_enabled

cl_bool Check whether the opencl queue has profiling
info enabled.

info::device::

device_queue_out_of_order_exec

cl_bool Check whether the device_queue is execu-
tion in an out of order mode. Returns true if
out-of-order is enabled.

info::device::

device_queue_profiling_enabled

cl_bool Check whether the device queue has profiling
info enabled.

info::device::

device_queue_preferred_size

cl_uint The size of the device queue in bytes preferred
by the implementation. Applications should
use this size for the device queue to ensure
good performance. The minimum value is 16
KB

info::device::

device_queue_max_size

cl_uint The max. size of the device queue in bytes.
The minimum value is 256 KB for the full pro-
file and 64 KB for the embedded profile

info::device::

max_device_queues

cl_uint Maximum number of device queues that can
be created per context. The minimum value is
1.

info::device::

max_device_events

cl_uint The maximum number of events in use by a
device queue. These refer to events created
when submitting command groups on a de-
vice queue and they haven’t been released yet.
The minimum value is 1024.

info::device::built_in_kernels string_class A semi-colon separated list of built-in kernels
supported by the device. An empty string is
returned if no built-in kernels are supported by
the device.

info::device::platform cl_platform_id The platform associated with this device.
info::device::name string_class Device name string
info::device::vendor string_class Vendor name string.

Continued on next page
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info::device::driver_version string_class OpenCL software driver version string in the

form major number.minor number
info::device::profile string_class OpenCL profile string. Returns the profile

name supported by the device. The profile
name returned can be one of the following
strings:
• FULL PROFILE : if the device supports

the OpenCL specification (functionality
defined as part of the core specification
and does not require any extensions to
be supported).

• EMBEDDED PROFILE - if the device
supports the OpenCL embedded profile.

info::device::version string_class OpenCL version string. Returns the OpenCL
version supported by the device. This version
string has the following format: OpenCL<

space><major_version.minor_version><

space><vendor-specific-information>

The major_version.minor_version value
returned will be 1.2.

info::device::opencl_c_version string_class OpenCL C version string. Returns the
highest OpenCL C version supported by the
compiler for this device that is not of type
info::device type::custom. This version string
has the following format: OpenCL<space>

C<space><major_version.minor_version

><space><vendor-specific-information>

The major_version.minor_version value
returned must be 1.2 if info::device::version
is OpenCL 1.2. The major_version.

minor_version value returned must be
1.1 if info::device::version is OpenCL 1.1.
The major_version.minor_version value re-
turned can be 1.0 or 1.1 if info::device::version
is OpenCL 1.0.

Continued on next page
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info::device::extensions vector<

string_class>

Returns a space separated list of extension
names (the extension names themselves do not
contain any spaces) supported by the device.
The list of extension names returned can be
vendor supported extension names and one or
more of the following Khronos approved ex-
tension names:
• cl_khr_int64_base_atomics
• cl_khr_int64_extended_atomics
• cl_khr_3d_image_writes
• cl_khr_fp16
• cl_khr_gl_sharing
• cl_khr_gl_event
• cl_khr_d3d10_sharing
• cl_khr_dx9_media_sharing
• cl_khr_d3d11_sharing
• cl_khr_depth_images
• cl_khr_gl_depth_images
• cl_khr_gl_msaa_sharing
• cl_khr_initialize_memory
• cl_khr_terminate_context
• cl_khr_spir
• cl_khr_srgb_image_writes

The following approved Khronos extension
names must be returned by all device that sup-
port OpenCL C 2.0:
• cl_khr_byte_addressable_store
• cl_khr_fp64 (for backward
compatibility if double precision

is supported)

• cl_khr_3d_image_writes
• cl_khr_image2d_from_buffer
• ccl_khr_depth_images

Please refer to the OpenCL 2.0 Extension
Specification for a detailed description of these
extensions.

info::device::

printf_buffer_size

size_t Maximum size of the internal buffer that holds
the output of printf calls from a kernel. The
minimum value for the full profile is 1 MB.

info::device::

preferred_interop_user_sync

cl_bool Is true if the devices preference is for the user
to be responsible for synchronization, when
sharing memory objects between OpenCL and
other APIs such as DirectX, false if the de-
vice/implementation has a performant path for
performing synchronization of memory object
shared between OpenCL and other APIs such
as DirectX.

Continued on next page
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info::device::parent_device cl_device_id Returns the cl device id of the parent device

to which this sub-device belongs. If device is
a root-level device, or the host device a NULL
value is returned.

info::device::

partition_max_sub_devices

cl_uint Returns the maximum number of subdevices
that can be created when a device is parti-
tioned. The value returned cannot exceed info
::device::device_max_compute_units

info::device::

partition_properties

vector_class

< info::

device_partition_

property >

Returns the list of partition types sup-
ported by device. The is an array of info
::device_partition_property values drawn
from the following list:
• info::device partition prop-

erty::partition equally
• info::device partition prop-

erty::partition by counts
• info::device partition by affinity do-

main
If the device cannot be partitioned (i.e. there
is no partitioning scheme supported by the de-
vice that will return at least two subdevices), a
value of 0 will be returned.

info::device::

partition_affinity_domain

info::

device_affinity_

domain

Returns the list of supported affinity domains
for partitioning the device using info::device -
affinity domain. This is a bit-field that de-
scribes one or more of the following values:
• info::device affinity do-

main::unsupported
• info::device affinity domain::numa
• info::device affinity domain::L4 cache
• info::device affinity domain::L3 cache
• info::device affinity domain::L2 cache
• info::device affinity domain::L1 cache
• info::device affinity domain::next par-

titionable

Continued on next page
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info::device::partition_type vector< info::

device_partition

_property >

Returns the properties argument specified
when creating sub devices, if device is a
subdevice. In the case where the proper-
ties argument to creating sub devices is
info::device partition property::partition by -
affinity domain info::device partition prop-
erty::partition affinity domain next partition-
able, the affinity domain used to perform the
partition will be returned. This can be one of
the following values:
• info::device affinity do-

main::unsupported
• info::device affinity domain::numa
• info::device affinity domain::L4 cache
• info::device affinity domain::L3 cache
• info::device affinity domain::L2 cache
• info::device affinity domain::L1 cache

Otherwise the implementation may either re-
turn a param_value_size_ret of 0 i.e. there is
no partition type associated with device or can
return a property value of 0 (where 0 is used
to terminate the partition property list) in the
memory that param value points to.

info::device::reference_count cl_uint Returns the device reference count. If the de-
vice is a root-level device, a reference count of
one is returned.

info::device::svm_capabilities svm::

capabilities

Describes the various shared virtual memory
(a.k.a. SVM) memory allocation types the de-
vice supports. Coarse-grain SVM allocations
are required to be supported by all OpenCL
2.2 devices. This is an enum class that sup-
ports the following:
• svm coarse grain buffer
• svm coarse grain buffer with atomics
• svm fine grain buffer
• svm fine grain buffer with atomics
• svm fine grain system
• svm fine grain system with atomics

info::device::

preferred_platform_atomic_alignment

cl_uint Returns the value representing the preferred
alignment in bytes for OpenCL 2.2 fine-
grained SVM atomic types. This query can re-
turn 0 which indicates that the preferred align-
ment is aligned to the natural size of the type.

Continued on next page
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info::device::

preferred_global_atomic_alignment

cl_uint Returns the value representing the preferred
alignment in bytes for OpenCL 2.2 atomic
types to global memory. This query can return
0 which indicates that the preferred alignment
is aligned to the natural size of the type.

info::device::

preferred_local_atomic_alignment

cl_uint Returns the value representing the preferred
alignment in bytes for OpenCL 2.2 atomic
types to local memory. This query can return
0 which indicates that the preferred alignment
is aligned to the natural size of the type.

info::device::

max_num_sub_groups

cl_uint Maximum number of sub-groups in a work-
group that a device is capable of executing on
a single compute unit, for any given kernel-
instance running on the device. The minimum
value is 1.

info::device::

sub_group_independent_forward_progress

cl_bool Is true if this device supports independent for-
ward progress of sub-groups, false otherwise.
If cl_khr_subgroups is supported by the de-
vice this must return true.

End of table
Table 3.12: Device information descriptors.

3.7 Queue class

The class queue provided in SYCL is a scheduling queue for a device which provides the functionality of schedul-
ing kernels on host or on an OpenCL device. A device_queue is an OpenCL default device queue for enqueuing
work on a device without needing to schedule it on host. This functionality is available through usage of nested
parallelism available to OpenCL 2.x devices. The SYCL queue is a host queue and is available only on host, and
the device_queue is a device queue and only available on a SYCL device. The latter is part of the SYCL kernel
library and not of the SYCL runtime library. Further description of the device_queue is in 5.5, 7.3.

The destructor of the SYCL queuewaits for all execution on the queue and its device queues to end and then passes
any exceptions that occurred asynchronously on the queue to the asynchronous error handler async_handler.

3.7.1 queue interface

The constructors and methods of the queue class are listed in Tables 3.13 and 3.14.

1 namespace cl {

2 namespace sycl {

3 class queue {

4 public:

5 explicit queue(async_handler asyncHandler = nullptr);

6
7 queue(const device_selector &deviceSelector,
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8 async_handler asyncHandler = nullptr);

9
10 queue(const context &syclContext, const device_selector &deviceSelector,

11 async_handler asyncHandler = nullptr);

12
13 queue(const context &syclContext, const device &syclDevice,

14 async_handler asyncHandler = nullptr);

15
16 queue(const context &syclContext, const device &syclDevice,

17 info::queue_profiling profilingFlag, async_handler asyncHandler = nullptr);

18
19 queue(const device &syclDevice, async_handler asyncHandler = nullptr);

20
21 queue(const cl_command_queue &clQueue, async_handler asyncHandler = nullptr);

22
23 queue(const queue &syclQueue);

24
25 ∼queue();

26
27 cl_command_queue get() const;

28
29 context get_context() const;

30
31 device get_device() const;

32
33 bool is_host() const;

34
35 template <info::queue param>

36 typename info::param_traits<info::queue, param>::type get_info() const;

37
38 template <typename T>

39 handler_event submit(T cgf);

40
41 template <typename T>

42 handler_event submit(T cgf, const queue &secondaryQueue);

43
44 void wait();

45
46 void wait_and_throw();

47
48 void throw_asynchronous();

49 };

50 } // namespace sycl

51 } // namespace cl
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Constructors Description
explicit queue (

async_handler a_handler = )

Creates a SYCL queue using the default
device_selector 3.3.
The heuristics regarding the choice for plat-
form and device for the default selector are
implementation defined. All runtime objects
necessary for the search and creation of the
queue are default constructed.
A SYCL queue corresponds to one or more
OpenCL queues and behaves as an out-of-
order queue. An OpenCL command queue
can be retrieved and the SYCL application
can interact with it with the guarantee that
all internal synchronization is handled by the
SYCL runtime.
Returns synchronous errors regarding the
creation of the queue and reports asyn-
chronous errors via the async handler
5.11.2 callback function class instance (if
provided) in conjunction with the synchro-
nization and throw methods.

queue (const device_selector &selector,

async_handler a_handler = )

Creates a queue for the device chosen by the
device_selector 3.3 provided. If no de-
vice is selected, an error is reported. All
runtime objects necessary for the search and
creation of the queue are using the rules pro-
vided by selector and the rest are default
constructed.
A SYCL queue corresponds to one or more
OpenCL queues. An OpenCL command
queue can be retrieved and the SYCL appli-
cation can interact with it with the guarantee
that all internal synchronization is handled
by the SYCL runtime.
Returns synchronous errors regarding
the creation of the queue and reports
asynchronous errors via the async han-
dler 5.11.2 callback function class instance
if and only if there is an async_handler
provided and throw methods are used.

Continued on next page
Table 3.13: Constructors of the queue class.
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queue (const device &syclDevice,

async_handler a_handler = )

A queue is created for the SYCL de-
vice syclDevice. All runtime objects nec-
essary for the creation of the queue are con-
structed given only the device 3.6 object.
A SYCL queue corresponds to one or more
OpenCL queues. An OpenCL command
queue can be retrieved and the SYCL appli-
cation can interact with it with the guarantee
that all internal synchronization is handled
by the SYCL runtime.
Returns synchronous errors regarding the
creation of the queue and reports asyn-
chronous errors via the async handler
5.11.2 callback function class instance if and
only if there is an async_handler provided
and throw methods are used.

queue (const context & s_context,

const device_selector &d_selector)

This constructor chooses a device based on
the provided device_selector 3.3, which
needs to be in the SYCL context 3.5 s con-
text. If no device is selected or the s context
is not valid for that device, an error is re-
ported.
A SYCL queue corresponds to one or more
OpenCL queues. An OpenCL command
queue can be retrieved and the SYCL appli-
cation can interact with it with the guarantee
that all internal synchronization is handled
by the SYCL runtime.
Returns synchronous errors regarding the
creation of the queue. If and only if there is
an async handler defined for the s_context
object and wait methods used, it reports

asynchronous errors via the async handler
5.11.2 callback function class instance of the
context 3.5.

queue (const context &s_context,

const device &d_selector)

Creates a SYCL queue from the SYCL con-
text 3.5 and device 3.5 provided.
Returns synchronous errors regarding the
creation of the queue. If and only if there is
an async handler defined for the s_context
object and wait methods used, it reports

asynchronous errors via the async handler
5.11.2 callback function class instance of the
context 3.5.

Continued on next page
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queue (const context &s_context,

const device &syclDevice,

info::queue_profiling flag)

Creates a SYCL queue from the SYCL con-
text 3.5 and device 3.5 given.
It enables profiling on the queue if the flag
is set to true.
Returns synchronous errors regarding the
creation of the queue. If and only if there is
an async handler defined for the s_context
object and wait methods used, it reports

asynchronous errors via the async handler
5.11.2 callback function class instance of the
context 3.5.

queue (cl_command_queue clqueue,

async_handler a_handler = )

Creates a SYCL queue that corresponds to
the OpenCL command queue provided, us-
ing the device and context information of the
OpenCL queue.
In this case, the SYCL queue is only going
to have one corresponding underlying object
and mirror the capabilities of the underlying
OpenCL queue.
At construction it does a retain on the queue
memory object.
Returns synchronous errors regarding the
creation of the queue. If and only if there
is an a_handler provided and throw meth-
ods are used, it reports asynchronous errors
via the async handler 5.11.2 callback func-
tion class instance.

queue (queue &syclQueue) Copy constructor
End of table

Table 3.13: Constructors of the queue class.

Methods Description
cl_command_queue get() Returns an OpenCL command queue for

synchronization purposes after doing a re-
tain. This memory object is expected to be
released by the developer. Retains a refer-
ence to the returned cl_command_queue ob-
ject. Caller should release it when finished.
If the queue is a SYCL host queue then a
synchronous invalid object error exception
will be triggered of type device error.

context get_context ()const Returns the SYCL queue’s context. Reports
errors using SYCL exception classes.

device get_device ()const Returns the SYCL device the queue is as-
sociated with. Reports errors using SYCL
exception classes.

Continued on next page
Table 3.14: Methods for class queue
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Methods Description
bool is_host ()const Returns whether the queue is executing on

a SYCL host device.
void wait() Performs a blocking wait for the comple-

tion all enqueued tasks in the queue. Syn-
chronous errors will be reported through
SYCL exceptions.

void wait_and_throw () Performs a blocking wait for the comple-
tion all enqueued tasks in the queue. Syn-
chronous errors will be reported via SYCL
exceptions. Asynchronous errors will be
passed to the async_handler passed to the
queue on construction. If no async_handler
was provided then asynchronous exceptions
will be lost.

void throw_asynchronous () Checks to see if any asynchronous er-
rors have been produced by the queue and
if so reports them by passing them to the
async_handler passed to the queue on con-
struction. If no async_handler was pro-
vided then asynchronous exceptions will be
lost.

template<info::queue param>

typename info::param_traits

<info::queue, param>::type

get_info ()const

Queries the platform for cl command -
queue info

template <typename T>

handler_event submit(T cgf)

Submit a command group functor to the
queue, in order to be scheduled for execu-
tion on the device.

template <typename T>

handler_event submit(

T cgf, queue & secondaryQueue)

Submit a command group functor to the
queue, in order to be scheduled for execu-
tion on the device. On kernel error, this com-
mand group functor, then it is scheduled for
execution on the secondary queue. Returns a
command group functor event, which is cor-
responds to the queue the command group
functor is being enqueued on.

device_queue get_default_device_queue() The default device queue which is created
by the OpenCL runtime is retrieved in or-
der to enable scheduling work on the de-
vice, without host intervention. All of the
errors for any subsequent kernels or events
scheduled using device queues based on the
host queue are returned using the async -
handler provided in the constructor. If
no async_handler was provided then asyn-
chronous exceptions will be lost.

End of table
Table 3.14: Methods for class queue
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3.7.2 Queue information descriptors

A SYCL queue can be queried for all of the following information using the get_info function. All SYCL
queues have valid queries for them, including the SYCL host queue. The available information is in table 3.15.
The interface of all available device descriptors in the appendix C.4.

Queue Descriptors Return type Description
info::queue::context cl_context Return the context specified when the

command-queue is created.
info::queue::device cl_device_id Return the device specified when the

command-queue is created.
info::queue::reference_count cl_uint Return the command-queue reference count.
info::queue::properties info::

queue_profiling

Return the currently specified properties for the
command-queue. These properties are speci-
fied by the properties argument in the queue
constructor.

End of table
Table 3.15: Queue information descriptors

3.7.2.1 Queue error handling

Queue errors come in two forms:

• Synchronous Errors are those that are reported directly at the point of waiting on an event or waiting for a
queue to complete, as well as any immediate errors reported by enqueuing work onto a queue. Such errors
are returned via C++ exceptions.

• Asynchronous errors are those that are produced via callback functions only. These will be stored within
the queue’s context until they are dispatched to the context’s asynchronous error handler. If a queue is
constructed with a user-supplied context, then it is this context’s asynchronous error handler to which asyn-
chronous errors are reported. If a queue is constructed without a user-supplied context, then the queue’s
constructor can be supplied with a queue-specific asynchronous error handler which will be used to con-
struct the queue’s context. To ensure that such errors are processed predictably in a known host thread
these errors are only passed to the asynchronous error handler on request when either wait_and_throw is
called or when throw_asynchronous is called. If no asynchronous error handler is passed to the queue or
its context on construction, then such errors go unhandled, much as they would if no callback were passed
to an OpenCL context.
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4. Data access and storage in SYCL

In SYCL, data storage and access are handled by separate classes. Buffers, SVM allocations and images handle
storage and ownership of the data, whereas accessors handle access to the data. Buffers and images in SYCL are
different to OpenCL buffers and images in that they can be bound to more than one device or context and they get
destroyed when they go out-of-scope. They also handle ownership of the data, while allowing exception handling
for blocking and non-blocking data transfers. Accessors manage data transfers between host and all the devices
in the system, as well as tracking data dependencies.

In SYCL 2.2, shared virtual memory between the host and device is exposed in all the different modes that are
core or optional features of OpenCL systems. The core functionality of shared virtual memory is to allow the
underlying pointers which are managed by the SYCL runtime to be the same on host and device. The synchroni-
sation rules for the core feature, which is coarse grained buffers, are very similar to the ones for non-svm buffers,
where the host and the device need to request access to the pointer. In this case, pointer structs can be allowed
for buffers and they will work for host and device buffers. The optional cases, where shared virtual memory
synchronisation is mainly done through atomics and not from enqueuing reads and writes, do not use the buffer
and accessor classes, as their allocation and synchronisation rules are different. The description of the different
shared virtual memory modes is in chapter 6. svm_allocator is the C++ allocator, used for shared allocations and
is compatible with buffer and accessor classes, is described in full in chapter 6.

4.1 Host allocation

A SYCL runtime may need to allocate temporary objects on the host to handle some operations (such as copying
data from one context to the other). Allocation on the host is managed using an allocator object, following the
standard C++ allocator class definition. The default allocator for memory objects is implementation defined, but
the user can supply their own allocator class.

1 {

2 buffer<int, 1, UserDefinedAllocator<int> > b(d);

3 }

When an allocator returns a nullptr, the runtime cannot create data in host memory. Note that in this case the
runtime will raise an error if it requires host memory but it is not available (e.g when moving data across OpenCL
contexts).

The user can implement an allocator that returns the same address as the one passed in the buffer constructor.

The definition of allocators extends the current functionality of SYCL, ensuring that users can define alloca-
tor functions for specific hardware or certain complex shared memory mechanism (e.g. NUMA) and improves
interoperability with STL-based libraries.
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In the case of shared virtual memory (SVM), allocations on host are also valid on device and the same
virtual pointers can be used on both. Depending on the mode of SVM, the allocators that are compatible for the
allocations differ. If System Sharing Virtual Memory is supported by the OpenCL system, then any C++ allocator
can be used on host to allocate shared virtual memory addresses, which can be used in any available device kernel.

4.1.1 Default Allocators

A default allocator is always defined by the implementation, and it is guaranteed to return non nullptr and new
memory positions every time. The default allocator for const buffers will remove the const-ness of the type
(therefore, the default allocator for a buffer of type ”const int” will be an Allocator<int>). This implies that
host accessors will not synchronize with the pointer given by the user in the buffer/image constructor, but will use
the memory returned by the Allocator itself for that purpose. The user can implement an allocator that returns
the same address as the one passed in the buffer constructor, but it is the responsibility of the user to handle the
potential race conditions.

Allocators Description
buffer_allocator This is the default buffer allocator used by

the runtime, when no allocator is defined by
the user.

image_allocator This is the default image allocator used by
the runtime, when no allocator is defined by
the user. The image allocator is required to
be a byte-sized allocator, so the default type
this allocator is typed to a type of size 1.

svm_allocator It is the only allocator supported by the
system for allocating buffer sharing SVM
pointers, either for coarse or fine grained
shared virtual address space. The pointer
allocations for the above two modes need,
can only allocate buffers and can be used
within a context. The structures allocated
may include pointer structures, which would
be pre-allocated. The svm allocator is com-
patible with the buffer class, and its default
mode is svm_coarse_grain.
The other alternative is fine grained buffer
sharing SVM with or without atomics,
which can be used with any container class
or directly for allocating and deallocating
raw pointers.
In the case of system sharing SVM, the
svm allocator is not necessary, as any C++
allocation on the host is a valid SVM system
allocation. For more detailed information,
please see 6.

End of table
Table 4.1: SYCL Default Allocators
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See later 4.6 for detail on manual host-device synchronization.

4.1.2 Map Allocator

The map_allocator is a class provided by the SYCL interface that can be matched with a specialized constructor
of the buffer or image in order to provide the capability of ’mapping’ the host data on any devices that the buffer
uses.

This allocator always uses the same host address in order to create or map any device buffers, avoiding any copies
from host data to host buffer and also uses the same host memory for all host accesses. A side effect of that is that
the host accessors will synchronize with the host memory and the runtime will handle that synchronization.

The host data address used for mapping the host data to the device data cannot be const, as the map_allocator
will always use that address even for transferring data across devices of different contexts.

4.2 Buffers

The buffer class defines a shared array data of one, two or three dimensions that can be used by kernels in queues
and has to be accessed using accessor classes. Buffers are templated on both the type of their data, and the
number of dimensions the data is stored and accessed through.

A cl::sycl::buffer does not map to only one OpenCL buffer object and all OpenCL buffer memory objects
are temporary for the use within a command group on a specific device. The only exception to this rule is when
a buffer is constructed from a cl_mem object to interoperate with OpenCL. In the interop case the buffer will
constitute a single cl_mem object and the ownership of the buffer cl_mem memory object remains at the OpenCL
side. The SYCL buffer constructor and destructor use the existing retain and release mechanism available in
OpenCL. Use of an interoperability buffer on a queue mapping to a context other than that in which the cl_mem
was created is an error.

In the case of coarse grained buffer shared virtual memory, SVM buffers can be used. These are only mapped to
one virtual memory buffer in one context, the context of the allocation, and are able to contain complex pointer
structures allocated on host and used on the context’s devices. This is a special case of a device buffer, where the
allocation happens on host using a context, and the underlying raw pointers can be used on host and device. The
svm_allocator class manages all the allocations and by default it allocates coarse grained buffers. The accessor
class requests access on host and device, managing all the dependencies and guaranteed data consistency across
host and device. More details of this mode can be found in 6.

4.2.1 Buffer Interface

Buffer constructors are listed in Table 4.2 and methods in Table 4.3.

1 namespace cl {

2 namespace sycl {

3 template <typename T, int dimensions,

4 typename AllocatorT = cl::sycl::buffer_allocator>
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5 class buffer {

6 public:

7 using value_type = T;

8 using reference = value_type &;

9 using const_reference = const value_type &;

10
11 buffer(const range<dimensions> &bufferRange, AllocatorT allocator = nullptr);

12
13 buffer(const T *hostData, const range<dimensions> &bufferRange,

14 AllocatorT allocator = nullptr);

15
16 buffer(T *hostData, const range<dimensions> &bufferRange,

17 AllocatorT allocator = nullptr);

18
19 buffer(shared_ptr_class<T> &hostData, const range<dimensions> &bufferRange,

20 AllocatorT allocator = nullptr);

21
22 buffer(shared_ptr_class<T> &hostData, const range<dimensions> &bufferRange,

23 cl::sycl::mutex_class *m, AllocatorT allocator = nullptr);

24
25 buffer(unique_ptr_class<void> &&hostData,

26 const range<dimensions> &bufferRange, AllocatorT allocator = nullptr);

27
28 buffer(buffer<T, dimensions, AllocatorT> b, const id<dimensions> &baseIndex,

29 const range<dimensions> &subRange, AllocatorT allocator = nullptr);

30
31 template <class InputIterator>

32 buffer<T, 1>(InputIterator first, InputIterator last,

33 AllocatorT allocator = nullptr);

34
35 buffer(cl_mem memObject, queue &fromQueue, event availableEvent = nullptr);

36
37 buffer(const buffer<T, dimensions, AllocatorT> &rhs);

38
39 buffer<T, dimensions, AllocatorT> &operator=(

40 const buffer<T, dimensions, AllocatorT> &rhs);

41
42 ∼buffer();

43
44 const range<dimensions> get_range();

45
46 size_t get_count() const;

47
48 size_t get_size() const;

49
50 allocatorT get_allocator() const;

51
52 template <access::mode mode, access::target target = access::global_buffer>

53 accessor<T, dimensions, mode, target> get_access(

54 handler &command_group_handler);

55
56 template <access::mode mode, access::target target = access::host_buffer>

57 accessor<T, dimensions, mode, target> get_access();

58
59 void set_final_data(weak_ptr_class<T> &finalData);
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60 };

61 } // namespace sycl

62 } // namespace cl

Constructors Description
template<typename T, int dimensions, typename

AllocatorT = cl::sycl::buffer_allocator>

buffer (const range<dimensions> & bufferRange,

AllocatorT allocator = nullptr)

Create a new buffer of the given size with
storage managed by the SYCL runtime. The
default behavior is to use the default host
buffer allocator, in order to allow for host
accesses. If the type of the buffer, has the
const qualifier, then the default allocator will
remove the qualifier to allow host access to
the data.

template<typename T, int dimensions, typename

AllocatorT = cl::sycl::buffer_allocator>

buffer(const T* hostData,

const range<dimensions> & bufferRange,

AllocatorT allocator = nullptr)

Create a new buffer with associated host
memory. hostData points to the stor-
age and values used by the buffer and
range<dimensions> defines the size. The
host address is const T, so the host accesses
can be read-only. However, the typename
T is not const so the device accesses can
be both read and write accesses. Since, the
hostData is const, this buffer is only ini-
tialized with this memory and there is no
write after its destruction, unless there is
another final data address given after con-
struction of the buffer. The default value of
the allocator is going to be the cl::sycl::
buffer_allocator which will be of type T.

template<typename T, int dimensions, typename

AllocatorT= cl::sycl::buffer_allocator>

buffer(T* hostData,

const range<dimensions> & bufferRange,

AllocatorT allocator = nullptr)

Create a new buffer with associated host
memory. The memory is owned by the
runtime during the lifetime of the object.
Data is copied back to the host unless
the user overrides the behavior using the
set_final_data method. hostData points
to the storage and values used by the buffer
and range<dimensions> defines the size.

template<typename T, bool Depth, int dimensions,

typename AllocatorT= cl::sycl::buffer_allocator>

buffer(shared_ptr_class<T>& hostData,

const range<dimensions> & bufferRange,

cl::sycl::mutex_class * m,

AllocatorT allocator = nullptr)

Create a new buffer with associated mem-
ory, using the data in hostData. The owner-
ship of the hostData is shared between the
runtime and the user. In order to enable
both the user application and the SYCL run-
time to use the same pointer, a cl::sycl::
mutex_class is used. The mutex m is locked
by the runtime whenever the data is in use
and unlocked otherwise. Data is synchro-
nized with hostData, when the mutex is un-
locked by the runtime.

Continued on next page
Table 4.2: Constructors for the buffer class.
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Constructors Description
template<typename T, bool Depth, int dimensions,

typename AllocatorT= cl::sycl::buffer_allocator>

buffer(unique_ptr_class<void> && hostData,

const range<dimensions> & bufferRange,

AllocatorT allocator = nullptr)

Create a new buffer which is initialized by
hostData. The SYCL runtime receives full
ownership of the hostData unique_ptr and
in effect there is no synchronization with the
application code using hostData.

template<typename T, int dimensions =1, typename

AllocatorT= cl::sycl::buffer_allocator>

buffer(Iterator first, Iterator last,

AllocatorT allocator = nullptr)

Create a new allocated 1D buffer initialized
from the given elements ranging from first
up to one before last. The data is copied
to an intermediate memory position by the
runtime. Data is written back to the same it-
erator set if the iterator is not a const iterator.

template<typename T, int dimensions,

typename AllocatorT= cl::sycl::buffer_allocator>

buffer(const buffer<T,dimensions,AllocatorT> & b

)

Create a new buffer copy that shares the data
with the original buffer. The system uses ref-
erence counting to deal with data lifetime.
The destruction of a copy of a buffer does
not trigger a copy back from the device.

template<typename T, int dimensions, typename

AllocatorT= cl::sycl::buffer_allocator>

buffer( buffer<T, dimensions, AllocatorT> &b,

const index<dimensions> & baseIndex,

const range<dimensions> & subRange)

Create a new sub-buffer without allocation
to have separate accessors later. b is the
buffer with the real data. baseIndex spec-
ifies the origin of the sub-buffer inside the
buffer b. subRange specifies the size of the
sub-buffer.

template<typename T, int dimensions, typename

AllocatorT= cl::sycl::buffer_allocator>

buffer (cl_mem memObject,

queue & fromQueue,

event availableEvent = nullptr)

Create a buffer from an existing OpenCL
memory object associated with a context af-
ter waiting for an event signaling the avail-
ability of the OpenCL data. memObject is the
OpenCL memory object to use. fromQueue
is the queue associated to the memory ob-
ject. availableEvent specifies the event to
wait for if non-null. Note that a buffer cre-
ated from a cl_mem object will only have
one underlying cl_mem for the lifetime of
the buffer and use on an incompatible queue
constitutes an error.

buffer(const buffer<T,dimensions,AllocatorT> & rhs) Copy constructor
Continued on next page

Table 4.2: Constructors for the buffer class.
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Constructors Description
template<typename T, bool Depth, bool MultiSample

typename AllocatorT = cl::sycl::svm_allocator<

svm_coarse_grain>>

buffer<T,1,AllocatorT> (const range<1> & bufferRange

, context & bufferContext

AllocatorT allocator)

Create an SVM buffer of size buffer-
Range, in bufferContext using an instance of
svm_allocator<svm_coarse_grain>. The
buffer allocation uses the svm allocator in
order to allocate and deallocate the buffer
from the shared virtual address space de-
fined for the given context.
The buffer may contain complex pointer
structures, which can be used both on host
and device, using accessors. The underly-
ing virtual pointers are valid on host and de-
vice, however, they need explicit synchroni-
sation rules that need to explicitly make the
pointers available on host and on device, in
a non-overlapping manner. Synchronisation
is managed by buffers and accessor lifetime
scopes.
This buffer cannot be copied or moved to a
differnt context without invalidating any vir-
tual memory pointer allocations. This buffer
also cannot be associated with a pre- allo-
cated data structure, as the allocation needs
to use the svm allocator.
There is no sychronization at buffer destruc-
tion on host, as there is no associated host
pointer with the allocation. On buffer de-
struction, the SVM buffer allocation will
deallocated using the svm allocator.

End of table
Table 4.2: Constructors for the buffer class.

Methods Description
range<dimensions> get_range()const Return a range object representing the size

of the buffer in terms of number of elements
in each dimension as passed to the construc-
tor.

size_t get_count()const Returns the total number of elements in the
buffer. Equal to get_range()[0] * ... *
get_range()[dimensions-1].

size_t get_size()const Returns the size of the buffer storage in
bytes. Equal to get_count()*sizeof(T).

allocatorT get_allocator()const Returns the allocator provided to the buffer.
Continued on next page

Table 4.3: Methods for the buffer class.
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Methods Description
template<access::mode mode, access::target target=

access::global_buffer>

accessor<T, dimensions, mode, target>

get_access(handler &command_group_handler)

Returns a valid accessor to the buffer with
the specified access mode and target in the
command group buffer. The value of target
can be access::global_buffer, access::
constant_buffer or access::host_buffer.
This accessor may provide access to an
SVM buffer, and in this case the underlying
pointer structure is guaranteed to have the
same virtual address as on the host. In the
case of an SVM buffer the command group
needs to be enqueued on a queue from the
same context as the buffer allocation, oth-
erwise an asynchronous exception will be
thrown.

template<access::mode mode, access::target target=

access::host_buffer>

accessor<T, dimensions, mode, target>

get_access()

Returns a valid host accessor to the buffer
with the specified access mode and target.
The value of target can only be access::
host_buffer.
This accessor may be providing access to an
SVM buffer, and in this case the underlying
pointer structure is guaranteed to have the
same virtual address as on the host. In the
case of an SVM buffer, the command group
needs to be enqueued on a queue from the
same context as the buffer allocation, oth-
erwise an asynchronous exception will be
thrown.

void set_final_data(weak_ptr_class<T> & finalData)) The finalData points to the host memory to
which the outcome of all the buffer process-
ing is going to be copied to. This is the final
pointer, which is going to be accessible after
the destruction of the buffer and in the case
where this is a valid pointer, the data will be
copied to this host address.
finalData is different from the original host
address, if the buffer was created associated
with one. This is mainly to be used when a
shared ptr is given in the constructor and the
output data will reside in a different location
from the initialization data.
It is defined as a weak_ptr referring to a
shared_ptr that is not associated with the
cl::sycl::buffer, and so the cl::sycl::
bufferwill have no ownership of finalData
.

End of table
Table 4.3: Methods for the buffer class.
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4.2.2 Buffer Synchronization Rules

Buffers are reference-counted. When a buffer value is constructed from another buffer, the two values reference
the same buffer and a reference count is incremented. When a buffer value is destroyed, the reference count
is decremented. Only when there are no more buffer values that reference a specific buffer is the actual buffer
destroyed and the buffer destruction behavior defined below is followed.

If any error occurs on buffer destruction, it is reported via the associated queue’s asynchronous error handling
mechanism

1. A buffer can be constructed with just a size and using the default buffer allocator. The memory management
for this type of buffer is entirely handled by the SYCL system. The destructor for this type of buffer never
blocks, even if work on the buffer has not completed. Instead, the SYCL system frees any storage required
for the buffer asynchronously when it is no longer in use in queues. The initial contents of the buffer are
undefined.

2. A buffer can be constructed with associated host memory and a default buffer allocator. The buffer will use
this host memory for its full lifetime, but the contents of this host memory are undefined for the lifetime
of the buffer. If the host memory is modified by the host, or mapped to another buffer or image during the
lifetime of this buffer, then the results are undefined. The initial contents of the buffer will be the contents
of the host memory at the time of construction.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have completed,
then copy the contents of the buffer back to the host memory (if required) and then return.

3. If the type of the host data is const, then the buffer is read-only; only read accessors are allowed on
the buffer and no-copy-back to host memory is performed (although the host memory must still be kept
available for use by SYCL). When using the default buffer allocator, the const-ness of the type will be
removed in order to allow host allocation of memory, which will allow temporary host copies of the data by
the SYCL runtime, for example for speeding up host accesses.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have completed
and then return, as there is no copy of data back to host.

4. If the type of the host data is not const but the pointer to host data is const, then the read-only restriction
applies only on host and not on device accessed.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have completed
and then return, as there is no copy of data back to host.

However, if the set_final_data() function is used and host data pointer is valid for copying data back,
then the buffer will block on destruction and copy data using the weak_ptr provided.

5. A buffer can be constructed using a unique_ptr to host data, which serve as an initialization point for the
buffer. The ownership of the host data pointer is moved to the SYCL runtime, and those data will not be
available after the destruction of the buffer.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have completed
and then return, as there is no copy of data back to host, since the original pointer is invalid.

However, if the set_final_data() function is used and host data pointer is valid for copying data back,
then the buffer will block on destruction and copy data using the weak_ptr provided.
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6. A buffer can be constructed using a shared_ptr to host data. This pointer is shared between the SYCL
application and runtime. In order to allow synchronization between the the application and the runtime an
mutex is used which will be locked by the runtime whenever the data are in use and unlock it when it no
longer needs them.

The shared_ptr reference counting is used in order to prevent either from destroying the buffer host data
prematurely. If the shared_ptr is deleted from the user application before the buffer destruction, the buffer
can continue securely due to the fact that the pointer hasn’t be destroyed yet, but will not copy data back to
the host before destruction, as the application side has already deleted its copy.

There is no need to use the set_final_data() function in order to set the final data pointer if its is going to
be the same as the shared_ptr used in construction of the buffer.

In the case where set_final_data() is used and a weak_ptr referencing to a valid shared_ptr on the SYCL
application side, the buffer will block and copy data back to that host memory.

7. A buffer can be constructed from a pair of iterator values. In this case, the buffer construction will copy the
data from the data range defined by the iterator pair. The destructor will not copy back any data and will
not block.

8. A buffer constructed from a cl_mem object creates a SYCL buffer that is initialized from a cl_mem object
and may use the cl_mem object for the lifetime of the buffer. The destructor for this type of buffer will
block until all operations on the buffer have completed and then will (if necessary) copy all modified data
back into the associated cl_mem object. The buffer will have a single cl_mem object and all operations will
be performed on this underlying storage.

9. An SVM buffer is created for a specific context and size of allocation. There is no host pointer parameter
for this allocation, since the contents of the buffer need to be allocated for the host and device shared
virtual memory. An svm_allocator is used for allocating and deallocation shared virtual memory for
coarse grained buffers. On buffer destruction, the memory is deallocated after all the kernels that have been
enqueued have completed.

As a convenience for the user, any constructor that takes a range argument can instead be passed range values as
1, 2 or 3 arguments of type size_t.

A buffer object can also be copied, which just copies a reference to the buffer. The buffer objects use reference
counting, so copying a buffer object increments a reference count on the underlying buffer. If after destruction,
the reference count for the buffer is non-zero, then no further action is taken.

A sub-buffer object can be created which is a sub-range reference to a base buffer. This sub-buffer can be used to
create accessors to the base buffer, but which only have access to the range specified at time of construction of the
sub-buffer.

If a buffer object is constructed from a cl_mem object, then the buffer is created and initialized from the OpenCL
memory object. The SYCL system may copy the data to another device and/or context, but must copy it back (if
modified) at the point of destruction of the buffer. The user must provide a queue and event. The memory object
is assumed to only be available to the SYCL scheduler after the event has signaled and is assumed to be currently
resident on the context and device signified by the queue.
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4.3 Images

The class image<int Dimensions, bool Depth, bool MultiSample (Table 4.4) defines shared image data of
one, two or three dimensions, that can be used by kernels in queues and has to be accessed using accessor
classes with image accessor modes.

Image constructors are listed in Table 4.4 and methods in Table 4.5. Where relevant, it is the responsibility of
the user to ensure that the format of the data matches the format described by order and type. Custom image
allocators can be defined, but they need to be byte-sized allocators.

If an image object is constructed from a cl_mem object, then the image is created and initialized from the OpenCL
memory object. The SYCL system may copy the data to the host, but must copy it back (if modified) at the point
of destruction of the image. The user must provide a queue and event. The memory object is assumed to only be
available to the SYCL scheduler after the event has signaled and is assumed to be currently resident on the context
and device signified by the queue.

4.3.1 Image Interface

1 namespace cl {

2 namespace sycl {

3 enum class image_channel_order : unsigned int {

4 r,

5 rx,

6 a,

7 intensity,

8 luminance,

9 rg,

10 rgx,

11 ra,

12 rgb,

13 rgbx,

14 rgba,

15 argb,

16 bgra,

17 depth,

18 srgb,

19 srgbx,

20 srgba,

21 sbgra,

22 abgr

23 };

24
25 enum class image_channel_type : unsigned int {

26 snorm_int8,

27 snorm_int16,

28 unorm_int8,

29 unorm_int16,

30 unorm_short_565,

31 unorm_short_555,

32 unorm_int_101010,
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33 signed_int8,

34 signed_int16,

35 signed_int32,

36 unsigned_int8,

37 unsigned_int16,

38 unsigned_int32,

39 half_float,

40 float,

41 unorm_int_101010_2

42 };

43
44 template <int dimensions, bool Depth, bool MultiSample, typename AllocatorT = cl::sycl::

image_allocator>

45 class image {

46 public:

47 image(void *hostPointer, image_format::channel_order order,

48 image_format::channel_type type, const range<dimensions> &range,

49 AllocatorT allocator = nullptr);

50
51 image(void *hostPointer, image_format::channel_order order,

52 image_format::channel_type type, const range<dimensions> &range,

53 range<dimensions - 1> &pitch, AllocatorT allocator = nullptr);

54
55 image(shared_ptr_class<void> &hostPointer, image_format::channel_order order,

56 image_format::channel_type type, const range<dimensions> &range,

57 AllocatorT allocator = nullptr);

58
59 image(shared_ptr_class<void> &hostPointer, image_format::channel_order order,

60 image_format::channel_type type, const range<dimensions> &range,

61 const range<dimensions - 1> &pitch, AllocatorT allocator = nullptr);

62
63 image(shared_ptr_class<void> &hostPointer, image_format::channel_order order,

64 image_format::channel_type type, const range<dimensions> &range,

65 mutex_class *m, AllocatorT allocator = nullptr);

66
67 image(shared_ptr_class<void> &hostPointer, image_format::channel_order order,

68 image_format::channel_type type, const range<dimensions> &range,

69 const range<dimensions - 1> &pitch, mutex_class *m,

70 AllocatorT allocator = nullptr);

71
72 image(unique_ptr_class<void> &hostPointer, image_format::channel_order order,

73 image_format::channel_type type, const range<dimensions> &range,

74 AllocatorT allocator = nullptr);

75
76 image(unique_ptr_class<void> &hostPointer, image_format::channel_order order,

77 image_format::channel_type type, const range<dimensions> &range,

78 const range<dimensions - 1> &pitch, AllocatorT allocator = nullptr);

79
80 image(image_format::channel_order order, image_format::channel_type type,

81 const range<dimensions> &range, AllocatorT allocator = nullptr);

82
83 image(image_format::channel_order order, image_format::channel_type type,

84 const range<dimensions> &range, const range<dimensions - 1> &pitch,

85 AllocatorT allocator = nullptr);

86
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87 image(const image<dimensions, AllocatorT> &rhs);

88
89 image<dimensions, AllocatorT> &operator=(

90 const image<dimensions, AllocatorT> &rhs);

91
92 image(cl_mem memObject, const queue &fromQueue, event availableEvent = nullptr);

93
94 image(const image &rhs);

95
96 ∼image();

97
98 range<dimensions> get_range();

99
100 range<dimensions - 1> get_pitch();

101
102 size_t get_size();

103
104 size_t get_count();

105
106 allocatorT get_allocator() const;

107
108 template <access::mode accessMode,

109 access::target accessTarget = access::image>

110 accessor<T, dimensions, accessMode, accessTarget> get_access();

111
112 template<T>

113 set_final_data(weak_ptr_class<T> & finalPointer));

114 };

115 } // namespace sycl

116 } // namespace cl

Constructors Description
template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image (void * hostPointer,

image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

AllocatorT allocator = nullptr)

Construct an image using the data from the
host pointer. The type of the image data is
defined by order and type.The size of the
image in pixels is defined by size.
During the lifetime of the image, the
hostPointer ownership is passed to the
SYCL runtime.
An allocator instance, if provided, manages
the image memory allocation on the host.
If no allocator is provided, the default allo-
cator is cl::sycl::image_allocator 4.1.1
will be used.

Continued on next page
Table 4.4: Constructors for the image class.
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Constructors Description
template<int dimensions,bool Depth, bool MultiSample

, typename AllocatorT= cl::sycl::image_allocator>

image<dimensions>(void *hostPointer,

image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

const range<dimensions-1> &pitch,

AllocatorT allocator = nullptr)

Construct an image using the data from the
host pointer hostPointer. The type of the
image data is defined by order and type
and whether it is a depth image or it sup-
ports mult-sampling. The size of the image
in pixels is defined by size and the pitch is
defined by pitch.
During the lifetime of the image, the
hostPointer ownership is passed to the
SYCL runtime.
An allocator instance, if provided, manages
the image memory allocation on the host.
If no allocator is provided, the default allo-
cator is cl::sycl::image_allocator 4.1.1
will be used.

template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image(shared_ptr_class<void>& hostPointer,

image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

AllocatorT allocator = nullptr)

Construct an image from shared host mem-
ory between the SYCL application and run-
time. The type of the image data is defined
by order and type. The size of the image
in pixels is defined by size.
During the lifetime of the image, the
hostPointer ownership is passed to the
SYCL runtime.
An allocator instance, if provided, manages
the image memory allocation on the host.
If no allocator is provided, the default allo-
cator is cl::sycl::image_allocator 4.1.1
will be used.

template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image(shared_ptr_class<void>& hostPointer,

image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

const range<dimensions-1> & pitch,

AllocatorT allocator = {}))

Construct an image using the data in host
pointer. The type of the image data is de-
fined by order and type.The size of the im-
age in pixels is defined by size. The pitch
of the image data, in bytes, is defined by
pitch.
The ownership is shared between the SYCL
runtime and application, using the mutex
provided and managing the synchronization
from the SYCL application side. The mutex
is locked by the runtime whenever the data is
in use and unlocked otherwise. Data is syn-
chronized with host pointer when the mutex
is unlocked by the runtime.
An allocator instance, if provided, manages
the image memory allocation on the host.
If no allocator is provided, the default allo-
cator is cl::sycl::image_allocator 4.1.1
will be used.

Continued on next page
Table 4.4: Constructors for the image class.
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Constructors Description
template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image(shared_ptr_class<void>& hostPointer,

image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

mutex_class * mutex,

AllocatorT allocator = nullptr)

Construct an image from shared host mem-
ory between the SYCL application and run-
time. The type of the image data is defined
by order and type. The size of the image
in pixels is defined by size.
The ownership is shared between the SYCL
runtime and application, using the mutex
provided and managing the synchronization
from the SYCL application side. The mutex
is locked by the runtime whenever the data is
in use and unlocked otherwise. Data is syn-
chronized with host pointer when the mutex
is unlocked by the runtime.
An allocator instance, if provided, manages
the image memory allocation on the host.
If no allocator is provided, the default allo-
cator is cl::sycl::image_allocator 4.1.1
will be used.

template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image(shared_ptr_class<void>& hostPointer,

image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

const range<dimensions-1> & pitch,

mutex_class * mutex,

AllocatorT allocator = nullptr)

Construct an image using the data in host
pointer. The type of the image data is de-
fined by order and type.The size of the im-
age in pixels is defined by size. The pitch
of the image data, in bytes, is defined by
pitch.
The ownership is shared between the SYCL
runtime and application, using the mutex
provided and managing the synchronization
from the SYCL application side. The mutex
is locked by the runtime whenever the data
is in use and unlocked otherwise. When the
mutex is unlocked by the SYCL runtime the
data is synchronized with hostPointer.
An allocator instance, if provided, manages
the image memory allocation on the host.
If no allocator is provided, the default allo-
cator is cl::sycl::image_allocator 4.1.1
will be used.

Continued on next page
Table 4.4: Constructors for the image class.
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Constructors Description
template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image(unique_ptr_class<void>& hostPointer,

image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

AllocatorT allocator = {})

Construct an image from a unique pointer
class instance hostPointer. The type of the
image data is defined by order and type.
The size of the image in pixels is defined by
size.
The host memory ownership is moved
to the SYCL image and unless the
get_final_data() method is used with a
host memory location that will be valid after
the destruction of the image, no transfer
back to host is done.
An allocator instance, if provided, manages
the image memory allocation on the host.
If no allocator is provided, the default allo-
cator is cl::sycl::image_allocator 4.1.1
will be used.

template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image(unique_ptr_class<void>& hostPointer,

image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

const range<dimensions-1> & pitch,

AllocatorT allocator = nullptr)

Construct an image from a unique pointer
class instance hostPointer. The type of the
image data is defined by order and type.
The size of the image in pixels is defined by
size. The pitch of the image data, in bytes,
is defined by pitch.
The host memory ownership is moved
to the SYCL image and unless the
get_final_data() method is used with a
host memory location that will be valid after
the destruction of the image, no transfer
back to host is done.
An allocator instance, if provided, manages
the image memory allocation on the host.
If no allocator is provided, the default allo-
cator is cl::sycl::image_allocator 4.1.1
will be used.

template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image (image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

AllocatorT allocator = nullptr)

Create an image without any host data as-
sociated with it. This image will be created
on the device side with no initial data. Un-
less the method final_data() is used, there
will be no copy back to host on destruction.
The type of the image data is defined by its
order and type. The size of the image in
pixels is defined by size.
The default allocator is a byte allocator, it
will be used for memory allocation man-
agement on host. If no allocator is pro-
vided, the default allocator is cl::sycl::
image_allocator 4.1.1 will be used.

Continued on next page
Table 4.4: Constructors for the image class.
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Constructors Description
template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image<dimensions>( image_channel_order order,

image_channel_type type,

const range<dimensions> & range,

const range<dimensions-1> &pitch,

AllocatorT allocator = nullptr)

Create an image without any host data asso-
ciated with it. This image will be created on
the device side with no initial data. Unless
the method final_data() is used, there will
be no copy back to host on destruction. The
type of the image data is defined by order
and type. The size of the image in pixels is
defined by size and the pitch is defined by
pitch.
The default allocator is a byte allocator, it
will be used for memory allocation man-
agement on host. If no allocator is pro-
vided, the default allocator is cl::sycl::
image_allocator 4.1.1 will be used.

template<int dimensions, bool Depth, bool

MultiSample, typename AllocatorT= cl::sycl::

image_allocator>

image(image<dimensions, AllocatorT> & rhs)

Copy construct an image as a reference
to another image. Images are reference
counted, so that they all point to the same
underlying memory.

template<int dimensions, bool Depth, bool

MultiSample,

typename AllocatorT= cl::sycl::image_allocator>

image<dimensions>( cl_mem memObject,

queue fromQueue,

event availableEvent = nullptr)

Create an image from an existing OpenCL
memory object associated with a context af-
ter waiting for an event signaling the avail-
ability of the OpenCL data. memObject is the
OpenCL memory object to use. fromQueue
is the queue associated to the memory ob-
ject. Depending on whether it is a depth im-
age or it supports multi-sampling the param-
eters should be set accordingly.
availableEvent specifies the event to wait
for if non-null. Retains a reference to the
cl_mem object. Caller should release the
passed cl_mem object when it is no longer
needed. Note that an image created from a
cl_mem object will only have one underlying
cl_mem for the lifetime of the buffer and use
on an incompatible queue constitues an er-
ror.

image(const image<dimensions, AllocatorT> & rhs) Copy Constructor
image<dimensions,AllocatorT> &operator=(

const image<dimensions,AllocatorT> &rhs)

Assignment operator which will be sharing
the same underlying object and will be ref-
erence counted internally by the SYCL run-
time.

End of table
Table 4.4: Constructors for the image class.
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Methods Description
const range<dimensions> get_range() Return a range object representing the size

of the image in terms of the number of el-
ements in each dimension as passed to the
constructor.

const range<dimensions-1> get_pitch() Return a range object representing the pitch
of the image in bytes.

size_t get_count()const Returns the total number of elements in the
image. Equal to get_range()[0] * ... *
get_range()[dimensions-1].

size_t get_size()const Returns the size of the image storage
in bytes. The number of bytes may
be greater than get_count()*element size
due to padding of elements, rows and slices
of the image for efficient access.

allocatorT get_allocator()const Returns the allocator provided to the buffer.
template<access::mode mode, access::target target=

access::image>

accessor<T, dimensions, mode, target>

get_access(handler & command_group_handler)

Returns a valid accessor to the image with
the specified access mode and target. The
value of target can be access::image

template<access::mode mode, access::target target=

access::host_image>

accessor<T, dimensions, mode, target>

get_access()

Returns a valid accessor to the image with
the specified access mode and target. The
value of target can be access::host_image.

void set_final_data(weak_ptr_class<T>& finalPointer) Function that sets the final data pointer, to
be different than the original pointer given.
This is mainly to be used when a shared -
ptr is given in the constructor and the output
data will reside in a different location than
the initialization data.

End of table
Table 4.5: Methods of the image class.

4.3.2 Image Synchronization Rules

For the lifetime of the image object, the associated host memory must be left available to the SYCL runtime and
the contents of the associated host memory is undefined until the image object is destroyed. If an image object
value is copied, then only a reference to the underlying image object is copied. The underlying image object is
reference-counted. Only after all image value references to the underlying image object have been destroyed is
the actual image object itself destroyed.

If an image object is constructed with associated host memory, then its destructor blocks until all operations in all
SYCL queues on that image object have completed. Any modifications to the image data will be copied back, if
necessary, to the associated host memory. Any errors occurring during destruction are reported to any associated
context’s asynchronous error handler. If an image object is constructed with a storage object, then the storage
object defines what synchronization or copying behaviour occurs on image object destruction.

90



4.3.3 Samplers

Samplers use the cl::sycl::sampler type which is equivalent to the OpenCL C cl_sampler and sampler_t types.
Constructors for the sampler class are listed in Table 4.9 and methods in Table 4.10.

1 namespace cl {

2 namespace sycl {

3
4 enum class addressing_mode: unsigned int {

5 mirrored_repeat,

6 repeat,

7 clamp_to_edge,

8 clamp,

9 none

10 };

11
12 enum class normalized_coordinates : unsigned int{ normalized, denormalized };

13
14 enum class filtering_mode: unsigned int { nearest, linear };

15
16 #ifdef cl_khr_mipmap_image

17 enum class mipmap_filtering_mode { mipmap_none, mipmap_nearest, mipmap_linear };

18 #endif

19
20 class sampler {

21 public:

22 sampler(bool normalized_coords, addressing_mode addressing,

23 filtering_mode filtering);

24
25 sampler(cl_sampler);

26
27 ∼sampler() {}

28
29 addressing_mode get_address() const;

30
31 filtering_mode get_filter() const;

32
33 cl_sampler get_opencl_sampler() const;

34 };

35 } // namespace sycl

36 } // namespace cl

sampler addressing mode Description
mirrored_repeat Out of range coordinates will be flipped

at every integer junction. This addressing
mode can only be used with normalized co-
ordinates. If normalized coordinates are not
used, this addressing mode may generate
image coordinates that are undefined.

Continued on next page
Table 4.6: Addressing modes description
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sampler addressing mode Description
repeat Out of range image coordinates are wrapped

to the valid range. This addressing mode can
only be used with normalized coordinates.
If normalized coordinates are not used, this
addressing mode may generate image coor-
dinates that are undefined.

clamp_to_edge Out of range image coordinates are clamped
to the extent.

clamp Out of range image coordinates will return
a border color.

none For this addressing mode the programmer
guarantees that the image coordinates used
to sample elements of the image refer to a
location inside the image; otherwise the re-
sults are undefined.

End of table
Table 4.6: Addressing modes description

sampler filtering mode Description
nearest Chooses a color of nearest pixel.
linear Performs a linear sampling of adjacent pix-

els.
End of table

Table 4.7: Filtering modes description

sampler mipmap filtering mode Description
mipmap_none Non-integer mipmap coordinates result in

undefined behaviour
mipmap_nearest Chooses a color of nearest pixel from near-

est mipmap.
mipmap_linear Performs a sampling from adjacent pixels

from the image and its mipmaps.
End of table

Table 4.8: Mipmap filterting mode description
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Constructors Description
sampler(

bool normalized_coords,

sampler_addressing_mode addressing_mode,

sampler_filter_mode filter_mode)

normalized_coords selects whether nor-
malized or un-normalized coordinates are
used for accessing image data.
addressing_mode specifies how out-of-
range image coordinates are handled.
filtering_mode specifies the type of filter
that must be applied when reading an image.

sampler(cl_sampler)

Construct a sampler from an OpenCL sam-
pler object. Retains a reference to the
cl_sampler object. Caller should release
the passed cl_sampler object when it is no
longer needed.

End of table
Table 4.9: Constructors for the sampler class.

Methods Description
sampler_addressing_mode get_address()const Return the addressing mode used to con-

struct the sampler.
sampler_filtering_mode get_filter()const Return the filter mode used to construct the

sampler.
cl_sampler get_sampler()const Returns the underlying cl sampler ob-

ject. Retains a reference to the returned
cl_sampler object. Caller should release it
when finished.

End of table
Table 4.10: Methods for the sampler class.

4.4 Sharing Host Memory With The SYCL Data Management
Classes

In SYCL, in order to allow the SYCL runtime to do the memory management and allow for data dependencies,
there are two classes defined: buffer and image. The default behavior for them is that a ’raw’ pointer is given
at the construction of the data management class with full ownership to use it until the destruction of the SYCL
object.

In this section we go in greater detail into sharing or explicitly not sharing host memory with the SYCL data
classes. We will use the buffer class as an example. However, the same rules apply to images, as well.
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4.5 Default behavior

When using a SYCL buffer, the ownership of the pointer passed to the constructor of the class is, by default, passed
to the SYCL runtime and that pointer cannot be used on the host side until the buffer or image is destroyed. A
SYCL application can use memory managed by a SYCL buffer within the buffer scope by using a host_accessor,
as defined in 4.7. However, there is no guarantee that the host accessor uses the same memory as the original host
address used in its constructor.

The pointer passed in is the one use to copy data back, if needed, before buffer destruction. This host pointer will
not de-allocated by the runtime when the buffer is back on the host, and the data is always copied back from the
device (if there was a need for it).

4.5.1 SYCL ownership of the host memory

In the case where there is host memory to be used for initialization of data but there is no intention of using that
host memory after the buffer is destroyed, then the buffer can take full ownership of that host memory.

When a buffer owns the host pointer there is no copy back, by default. In this situation, the SYCL application
may pass a unique pointer to the host data, which will be then used by the runtime internally to initialize the data
in the device.

If the pointer contained in the unique_ptr is null, pointer is initialized internally in the runtime but no data is
copied in. This will be the generic case of a buffer constructor that takes no host pointer.

In this case the buffer and image constructors used will be the following:

• template<typename T, int dimensions, typename U=default_allocator> buffer(cl::sycl::
unique_ptr_class<T> hostData,range<dimensions> myRange);

• template<int dimensions, typename U=image_allocator> image(cl::sycl::unique_ptr_class<void
> hostData, cl_channel_order order, cl_channel_type type, range<dimensions> size)

For example, the following could be used:

1 {

2 cl::sycl::unique_ptr_class<int> ptr(data);

3 buffer<int, 1> b(std::move(ptr));

4 // ptr is not valid anymore

5 // There is nowhere to copy data back

6 }

However, optionally, the buffer::set final data() can be set to a cl::sycl::weak_ptr_class to enable copying data
back, to another host memory address that is going to be valid after buffer construction.

1 {

2 cl::sycl::unique_ptr_class<int> ptr(data);

3 buffer<int, 1> b(std::move(ptr));
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4 // ptr is not valid anymore

5 // There is nowhere to copy data back

6 b.set_final_data(cl::sycl::weak_ptr_class<int>(....))

7 }

4.5.2 Shared SYCL ownership of the host memory

When a shared_ptr is passed to the buffer constructor, then the buffer object and the developer’s application data
is shared. If the shared pointer is still used in the application’s code then the data will be copied back from the
buffer or image and be available to the application after the buffer or image is destroyed.

If the data pointed by the shared object is initialized to some data, then that data is used to initialize the buffer.
If the shared pointer is null, the pointer is initialized by the runtime internally (and, therefore, the user can use it
afterwards on the host).

When the buffer is destroyed, if the number of copies of the shared pointer outside the runtime is 0, there is no
user-side shared pointer to read the data and therefore the data is not copied out, and the buffer destructor does not
need to wait for the data processes to be finished from OpenCL, as the outcome is not needed on the application’s
side.

This behavior can be overridden using the set_final_data() method of the buffer class, which will force the
buffer destructor to wait until the data is copied to wherever the set_final_data()method has requested the data
(or not wait nor copy if set final data is nullptr).

1 {

2 cl::sycl::shared_ptr_class<int> ptr(data);

3 {

4 buffer<int, 1> b(ptr, range<2>(10, 10));

5 } // Data is copied back because there is an user side shared ptr

6 }

1 {

2 cl::sycl::shared_ptr_class<int> ptr(data);

3 {

4 buffer<int, 1> b(ptr, range<2>(10, 10));

5 ptr.release();

6 } // Data is not copied back, there is no user side shared ptr.

7 }

4.6 Synchronisation Primitives

When the user wants to use the buffer simultaneously in the SYCL runtime and its own code (e.g. a multi-threaded
mechanism) and wants to use manual synchonization without host accessors, a pointer to a cl::sycl::mutex can
be passed to the buffer constructor.

The runtime promises to lock the mutex whenever the data is in use and unlock it when it no longer needs it.
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1 {

2 cl::sycl::mutex_class * m;

3 auto shD = std::make_shared<int>(42)

4 {

5 buffer<int, 1> b(shD, m);

6
7 m.lock();

8 // User accesses the data

9 do_something(shD);

10 m.unlock();

11
12 }

13 }

When the runtime releases the mutex the user is guaranteed to have the data copied back on the shared pointer -
unless the final data destination has been changed using the method set_final_data.

4.7 Accessors

Accessors manage the access to data in buffers, coarse-grained SVM allocations and images. The user specifies
the type of access to the data and the SYCL implementation ensures that the data is accessible in the right way
on the right device in a queue. This separation allows a SYCL implementation to choose an efficient way to
provide access to the data within an execution schedule. Common ways of allowing data access to shared data
in a heterogeneous system include: copying between different memory systems; mapping memory into different
device address spaces, or direct sharing of data in memory. The buffers and images are SYCL runtime classes that
provide the management of the data.

Accessors are device accessors by default, but can optionally be specified as being host accessors. Device acces-
sors can only be constructed within command groups and provide access to the underlying data in a queue. Only
a kernel can access data using a device accessor. Constructing a device accessor is a non-blocking operation: the
synchronization is added to the queue, not the host.

Host accessors can be created outside command groups and give immediate access to data on the host. Con-
struction of host accessors is blocking, waiting for all previous operations on the underlying buffer or image to
complete, including copying from device memory to host memory. Any subsequent device accessors need to
block until the processing of the host accessor is done and the data is copied to the device.

Accessors always have an element data type. When accessing a buffer, the accessor’s element data type must
match the same data type as the buffer. An image accessor may have an element data type of either an integer
vector or a floating-point vector. The image accessor data type provides the number and type of components of
the pixel read. The actual format of the underlying image data is not encoded in the accessor, but in the image
object itself. The data types allowed by buffers can be SYCL data types or user defined types that are aligned with
the restrictions on kernel parameter passing 5.9.

There are two enumeration types inside namespace cl::sycl::access, access::mode and access::target.
These two enumerations define both the access mode and the data that the accessor is targeting.
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4.7.0.1 Access modes

The mode enumeration, shown in Table 4.11, has a base value, which must be provided.

The user must provide the access mode when defining an accessor. This information is used by the scheduler to
ensure that any data dependencies are resolved by enqueuing any data transfers before or after the execution of a
kernel. If a command group contains only discard write mode accesses to a buffer, then the previous contents of
the buffer (or sub-range of the buffer, if provided) are not preserved. If a user wants to modify only certain parts
of a buffer, preserving other parts of the buffer, then the user should specify the exact sub-range of modification
of the buffer. A command-group’s access to a specific buffer is the union of all access modes to that buffer in
the command group, regardless of construction order. Atomic access is only valid to local, global_buffer and
host_buffer targets (see next section).

access::mode Description

read read-only access

write write-only access. Previous contents not dis-
carded.

read_write read and write access

discard_write write-only access. Previous contents discarded.

discard_read_write read and write access. Previous contents dis-
carded.

atomic atomic access.

Table 4.11: Enumeration of access modes available to accessors.

4.7.0.2 Access targets

The target enumeration, shown in Table 4.12, describes the type of object to be accessed via the accessor. The
different values of the target enumeration require different constructors for the accessors.

access::target Description

global_buffer Access buffer via global memory.

constant_buffer Access buffer via constant memory.

local Access work-group-local memory.

image Access an image.

host_buffer Access a buffer immediately in host code.

host_image Access an image immediately in host code.

image_array Access an array of images on a device.

Table 4.12: Enumeration of access modes available to accessors.
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4.7.0.3 Accessor class

The accessor makes data available to host code, or to a specific kernel. The accessor is parameterized with the
type and number of dimensions of the data. An accessor also has a mode, which defines the operations possible
on the underlying data (see Table 4.11) and a target (see Table 4.12, which defines the type of data object to be
modified. The constructors and methods available on an accessor depend on the mode and target.

The generic methods for the accessor class are defined in Table 4.14. Available methods are limited by the access
mode and target provided as template parameters to the accessor object.

1 namespace cl {

2 namespace sycl {

3 namespace access {

4 enum class mode {

5 read = 1,

6 write,

7 read_write,

8 discard_write,

9 discard_read_write,

10 atomic

11 };

12
13 enum class target {

14 global_buffer = 2014,

15 constant_buffer,

16 local,

17 image,

18 host_buffer,

19 host_image,

20 image_array

21 };

22 } // namespace access

23
24 template <

25 typename elementType,

26 int dimensions,

27 access::mode accessMode,

28 access::target accessTarget>

29 class accessor {

30 public:

31 using value_type = T;

32 using reference = value_type&;

33 using const_reference = const value_type&;

34
35 // Available only for: access::global_buffer, access::host_buffer,

36 // and access::constant_buffer

37 accessor(buffer<elementType, dimensions> &bufferRef,

38 handler &commandGroupHandler);

39
40 accessor(buffer<elementType, dimensions> &bufferRef,

41 handler &commandGroupHandler,

42 range<dimensions> offset, range<dimensions> range);

43
44 // Available only for: access::image and access::host_image
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45 accessor(image<dimensions> &imageRef, handler &commandGroupHandler);

46
47 // Available only for: access::local

48 accessor(range<dimensions> allocationSize, handler &commandGroupHandler);

49
50 size_t get_size();

51
52 // Methods available to buffer targets

53 // Available when access_mode includes non-atomic write permissions

54 // and dimensions>0

55 elementType &operator[](id<dimensions>);

56 // Available when access_mode is read-only and dimensions>0

57 const elementType &operator[](id<dimensions>);

58 // Available when access_mode includes non-atomic write permissions

59 // and dimensions==0

60 elementType &operator*();

61
62 // Available when access_mode is read-only and dimensions==0

63 const elementType &operator[]();

64 elementType operator*();

65
66 // Available when dimensions==0 and access mode is non-atomic.

67 operator elementType();

68
69 // Methods available for image targets

70 __undefined__ &operator()(sampler sample);

71 __undefined__ &operator[](id<dimensions>);

72
73 // Available when the accessor is to an image array

74 // Returns an accessor to a particular slice

75 accessor<elementType, 2, mode, image> operator[](size_t index)

76
77 // Available when the access target is global_buffer, host_buffer,

78 // or local, and access mode is atomic

79 // and dimensions>0

80 atomic<elementType> &operator[](id<dimensions);

81
82 // Available when the access target is global_buffer, host_buffer,

83 // or local, and access mode is atomic

84 // and dimensions==0

85 atomic<elementType> operator()();

86 atomic<elementType> operator*();

87
88
89 //Available when access target is local and access mode is non-atomic

90 local_ptr<elementType> get_pointer();

91
92 //Available when access target is global_buffer and access mode is non-atomic

93 global_ptr<elementType> get_pointer();

94
95 //Available when access target is constant_buffer

96 constant_ptr<elementType> get_pointer();

97
98 //Available when access target is generic and access mode is non-atomic

99 generic_ptr<elementType> get_pointer();
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100
101
102 //Available when access target is host_buffer and access mode is non-atomic

103 elementType * get_pointer();

104 };

105
106 } // namespace sycl

107 } // namespace cl

Constructors Description
accessor(buffer<elementType, dimensions> &bufferRef,

handler &commandGroupHandler)

Construct a buffer accessor from a buffer
using a command group handler ob-
ject from the command group functor.
Constructor only available for access
modes global_buffer, host_buffer

constant_buffer see Table 4.11.
access_target defines the form of ac-
cess being obtained. See Table 4.12.

accessor(

buffer<elementType, dimensions> &bufferRef,

handler &commandGroupHandler,

range<dimensions> offset,

range<dimensions> range)

Construct a buffer accessor from a buffer
given a specific range for access permis-
sions and an offset that provides the start-
ing point for the access range using an in-
stance of the execution_handle. This ac-
cessor limits the processing of the buffer to
the [offset, offset+range] for every dimen-
sion. Any other parts of the buffer will be
unaffected. Constructor only available for
access modes global_buffer, host_buffer

or constant_buffer (see Table 4.11).
access_target defines the form of access
being obtained (see Table 4.12). This acces-
sor is recommended for discard write and
discard read write access modes, when the
unaffected parts of the processing should be
retained.

accessor(image<dimensions> &imageRef,

handler &commandGroupHandler)

Construct an image accessor from an im-
age using a command group handler object
in the command group functor. Construc-
tor only available if accessMode is image, or
host_image, see Table 4.11. access_target
defines the form of access being obtained.

See Table 4.12. The elementType for im-
age accessors must be defined by the user
and is the type returned by any sampler or
accessor read operation, as well as the value
accepted by any write operation. It must be
an int, unsigned int or float vector of 4
dimensions.

Continued on next page
Table 4.13: Accessor constructors.
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Constructors Description
accessor(range<dimensions> allocationSize,

handler &commandGroupHandler)

Construct an accessor of dimensions dimen-
sions with elements of type elementType
using the passed range to specify the size

in each dimension. It needs as a param-
eter an instance of the execution_handle.
Constructor only available if accessMode is
local, see Table 4.11.

End of table
Table 4.13: Accessor constructors.

Methods Description
size_t get_size() Returns the size of the underlying buffer in

number of elements.
elementType &operator[](id<dimensions>) Return a writeable reference to an ele-

ment in the buffer. Available when mode
includes non-atomic write permissions and
dimensions 0.

elementType &operator[](int) Return a writeable reference to an ele-
ment in the buffer. Available when mode
includes non-atomic write permissions and
dimensions == 1.

const elementType &operator[](id<dimensions>) Return the value of an element in the
buffer. Available when mode is read-only and
dimensions 0.

const elementType &operator[](int) Return the value of an element in the
buffer. Available when mode is read-only and
dimensions == 1.

elementType &operator[]() Return a writeable reference to the ele-
ment in the buffer. Available when mode
includes non-atomic write permissions and
dimensions == 0.

const elementType &operator[]() Return the value of the element in the
buffer. Available when mode is read-only and
dimensions == 0.

operator elementType() Return the value of the element in the
buffer. Available when mode is non-atomic
and dimensions == 0.

accessor<elementType, 2, mode, image>

operator[](size_t index)

Returns an accessor to a particular plane of
an image array. Available when accessor
acts on an image array.

__undefined__ <dimensions-1> &operator[](int) Return an intermediate type with an addi-
tional subscript operator for each subsequent
dimension of buffer where (dimensions ¿ 0).
Available when mode non-atomic and for ac-
cess mode read only the return type is const.

Continued on next page
Table 4.14: Methods for the accessor class.
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Methods Description
__undefined__ &operator()(sampler sample) Return the value of an element in the image

given a sampler. Available only for the case
of an image accessor type.

__undefined__ &operator [ ] ( id < dimensions > ) Return the value of an element in the image
with a sampler-less read. Available only for
the case of an image accessor type.

atomic<elementType> &operator[](id<dimensions>) Returns a reference to an atomic object,
when the accessor if of type access::
global_buffer, access::local_buffer,

access::host_buffer, the target mode is
access::mode::atomic and dimensions >0
.

atomic<elementType> &operator()() Returns a reference to an atomic object,
when the accessor if of type access::
global_buffer, access::local_buffer,

access::host_buffer, the target mode is
access::mode::atomic and dimensions

==0.
atomic<elementType> &operator*() Returns a reference to an atomic object,

when the accessor if of type access::
global_buffer, access::local_buffer,

access::host_buffer, the target mode is
access::mode::atomic and dimensions

==0.
local_ptr<elementType> get_pointer() Returns the accessor pointer, when the ac-

cessor is of type access::local and mode is
non-atomic.

global_ptr<elementType> get_pointer() Returns the accessor pointer, when the ac-
cessor is of type access::global_buffer
and mode is non-atomic.

constant_ptr<elementType> get_pointer() Returns the accessor pointer, when the ac-
cessor is of type access::constant_buffer

generic_ptr<elementType> get_pointer() Returns the accessor pointer, when the ac-
cessor is of type access::global_ptr

elementType* get_pointer() Returns the accessor pointer, when the ac-
cessor is of type access::host_buffer and
mode is non-atomic.

End of table
Table 4.14: Methods for the accessor class.

4.7.0.4 Buffer accessors

Accessors to buffers are constructed from a buffer with the same element data type and dimensionality as the
accessor. A buffer accessor uses global memory by default, but can optionally be set to use constant memory.
Accessors that use constant memory are restricted by the underlying OpenCL restrictions on device constant
memory, i.e. there is a maximum total constant memory usable by a kernel and that maximum is specified by the
OpenCL device. Only certain methods and constructors are available for buffer accessors.
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The array operator [id<dimensions>] provides access to the elements of the buffer. The user can provide an
index as an id parameter of the same dimensionality of the buffer, or just like C++ arrays, can provide one array
operator per dimension, with individual indices of type size_t (e.g. myAccessor[i][j][k]).

The address space for the index operator matches that of the accessor target. For an access::global_buffer,
the address space is global. For an access::constant_buffer, the address space is global.

Accessors to buffers can be constructed to only access a sub-range of the buffer. The sub-range restricts access
to just that range of the buffer, which the scheduler can use as extra information to extract more parallelism from
queues as well as restrict the amount of information copied between devices.

4.7.0.5 Image accessors

Accessors that target images must be constructed from images of the same dimensionality as the acces-
sor. The target parameter must be either image or host_image. The dataType parameter must be a 4
dimension vector of unsigned int, int or float. The array operator [id<dimensions>] provides sam-
plerless reading and writing of the image. The user can provide an index as an id parameter of the same
dimensionality of the image, or just like C++ arrays, can provide one array operator per dimension, with
individual indices of type size_t (e.g. myAccessor[i][j][k]). The bracket operator takes a sampler
(see 4.3.3) parameter, which then allows floating-point sampler-based reading using the array operator (e.g.
myAccessor(mySampler)[my2dFloatVector]).

To enable the reading and writing of pixels with and without samplers, using standard C++ operators, there are
two internal classes: __image_ref and _ _sampler. These classes only exist to ensure that assignment to pixels
uses image write functions and reading the value of pixels uses image read functions.

There are restrictions that apply to cl::sycl::access::mode depending on the SYCL device they are used. For
OpenCL 2.x devices all the access modes are availables for images. In OpenCL 1.2 devices, there are extensions
that can allow access::mode::read_write on images, but this is not a core feature of OpenCL 1.2 devices. It
is the developer’s responsibility to check whether there is this capability on the target SYCL device. Core capa-
bilities for OpenCL 1.2 are access::mode::read, access::mode::write and access::discard_write, whereas
for OpenCL 2.2 they are access::mode::read, access::mode::write, access::mode::read_write, access
::mode::discard_write and access::mode::discard_read_write.

4.7.0.6 Local accessors

Accessors can also be created for local memory, to enable pre-allocation of local buffers used inside a kernel.
These accessors are constructed using cl::sycl::range, which defines the size of the memory to be allocated
on a per work-group basis and must be constructed with an access target of local. Local memory is only shared
across a work-group. A local accessor can provide a local_ptr to the underlying data within a kernel and is only
usable within a kernel. The host has no access to the data of the local buffer and cannot read or write to the data,
so the accessor cannot read or write data back to the host. There can be no associated host pointer for a local
buffer or data transfers.

Local accessors are not valid for single-task or basic parallel_for invocations.
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4.7.0.7 Host accessors

Host accessors have a target of access::host_buffer or access::host_image. Unlike other accessors, host
accessors should be constructed outside of any command group and they do not require an execution_handler
. The constructor will block until the data is ready for the host to access, while the destructor will block any
further operations on the data in any SYCL queue. There are no special constructor or method signatures for host
accessors, so there are is no table for special host accessors here (see buffer and image accessors above).

Host accessors are constructed outside command groups and not associated with any queue, so any error reporting
is synchronous. By default, error reporting is via C++ exceptions.

4.7.0.8 Accessor capabilities and restrictions

Accessors provide access on the device or on the host to a buffer or image. The access modes allowed depend on
the accessor type and target. A device accessor grants access to a kernel inside a command group functor, and
depending on the access target, there are different accesses allowed. A host accessor grants access to the host
program to the access target. Tables 4.15, 4.16 and 4.17 show all the permitted access modes depending on target.

Accessor Type Access Target Access mode Data Type Description

Device global_buffer read
write
read_write

discard_write
discard_read_write

All available data types
supported in SYCL.

Access a buffer allocated in global memory
on the device.

Device constant_buffer read All available data types
supported in SYCL.

Access a buffer allocated in constant mem-
ory on the device.

Host host_buffer read
write
read_write
discard_write
discard_read_write

All available data types
supported in SYCL.

Access a host allocated buffer on host.

Device local read
write
read_write

All supported data types
in local memory

Access work-group local buffer, which is
not associated with a host buffer.
This is only accessible on device.

Table 4.15: Description of all the accessor types and modes with their valid combinations for buffers and local
memory

Rules for casting apply to the accessors, as there is only a specific set of permitted conversions.
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Accessor Type Access Target Access mode Data Type Description

Device image read
write
read_write
discard_-
writediscard_read_-
write

uint4, int4,
float4, half4

Access an image on device.

Host host_image read
write
read_write
discard_-
writediscard_read_-
write

uint4, int4,
float4, half4

Access an image on the host.

Device image_array read
write
read_write
discard_-
writediscard_read_-
write

uint4, int4,
float4, half4

Access an array of images on device.

Table 4.16: Description of all the accessor types and modes with their valid combinations for images

Accessor
Types

Original
Accessor Target

Original Access Mode Converted Accessor
Target

Converted
Access Mode

Device global_buffer read_write global_buffer read
write
discard_read_write

Device local_buffer read_write local_buffer read
write

Host host_buffer read_write host_buffer read
write
discard_read_write

Table 4.17: Description of the accessor to accessor conversions allowed
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4.8 Address space classes

In OpenCL, there are four different address spaces. These are: global, local, constant and private. In the OpenCL
2.2 C++ kernel language, these address spaces can be specified using the templated types local<T>, global<
T>,private<T> and constant<T>. Or, if left unspecified, they default to generic pointer, which overlaps with
global,local and private address spaces and is allocated in one of those address spaces at runtime. In OpenCL C
1.2, the address spaces are manually specified using OpenCL-specific keywords.

In SYCL, the device compiler is expected to auto-deduce the address space for pointers in common situations
of pointer usage. However, there are situations where auto-deduction is not possible. If the target device is a
OpenCL 2.x device and auto-deduction at compile time wasn’t possible, then the pointer will be defaulted to
generic pointer type. However, if the device is an OpenCL 1.2 device, then an error will occur.

Here are the most common situations where auto-deduction may fail:

• When linking SYCL kernels with OpenCL C 1.2 functions. In this case, it is necessary to specify the
address space for any pointer parameters when declaring an extern "C" function.

• For OpenCL 1.2 devices, when declaring data structures with pointers inside, it is not possible for the SYCL
compiler to deduce at the time of declaration of the data structure what address space pointer values assigned
to members of the structure will be. So, in this case, the address spaces will have to be explicitly declared by
the developer. For OpenCL 2.x devices, declaring the address spaces may prove more performant depending
on the platform.

• When a pointer is declared as a variable, but not initialized, then address space deduction is not automatic.
For OpenCL 1.2, an explicit pointer class should be used, or the pointer should be initialized at declaration.

4.8.1 Explicit pointer classes

Explicit pointer classes are just like pointers: they can be converted to and from pointers with compatible address
spaces, qualifiers and types. Assignment between explicit pointer types of incompatible address spaces is illegal.
In SYCL 1.2, all address spaces are incompatible with all other address spaces. In SYCL 2.2, the generic address
space is compatible with the global, local and private (but not constant) address spaces. Conversion from an
explicit pointer to a C++ pointer preserves the address space.

In order to facilitate SYCL/OpenCL C interoperability, the pointer type is provided within each explicit pointer
class. It is an implementation-defined type which corresponds to the underlying OpenCL C pointer type and can
be used in extern "C" function declarations for OpenCL C functions called from SYCL kernels.

Explicit Pointer Classes OpenCL Address Space Compatible Accessor Target
global_ptr global_ptr global buffer
constant_ptr constant_ptr constant buffer
local_ptr local_ptr local
private_ptr private_ptr none
generic_ptr none global buffer and local

End of table
Table 4.18: Description of the pointer classes
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An overview of the interface provided for all the explicit pointer classes is the following. For the full interface,
please refer to B.1.

1 namespace cl {

2 namespace sycl {

3
4 template <typename ElementType>

5 class global_ptr {

6 public:

7 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

8 // interoperability type for OpenCL C functions

9 typedef __undefined__ pointer;

10 typedef ElementType element_type;

11 typedef ptrdiff_t difference_type;

12 typedef __undefined__ ElementType& reference;

13 typedef const __undefined__ ElementType& const_reference;

14 typedef const __undefined__ const_pointer;

15
16 constexpr global_ptr();

17 global_ptr(pointer);

18 template <access::mode Mode>

19 global_ptr(accessor<ElementType, 1, Mode, global_buffer>);

20 global_ptr(const global_ptr&);

21 global_ptr &operator=(global_ptr &&r);

22 constexpr global_ptr(nullptr);

23 ∼global_ptr();

24
25 global_ptr &operator=(pointer r);

26 global_ptr &operator=(nullptr_t);

27 reference operator*();

28 reference operator[](size_t i);

29
30 pointer release();

31 void reset(pointer p = pointer());

32 void swap(global_ptr& r);

33 global_ptr &operator++();

34 global_ptr operator++(int);

35 global_ptr &operator--();

36 global_ptr operator--(int);

37 global_ptr &operator+=(difference_type r);

38 global_ptr &operator-=(difference_type r);

39 global_ptr operator+(difference_type r);

40 global_ptr operator-(difference_type r);

41
42 // implementation defined implicit conversion

43 // to OpenCL C pointer types.

44 operator pointer();

45 };

46
47 template <typename ElementType>

48 class constant_ptr {

49 public:

50 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

51 // interoperability type for OpenCL C functions

52 typedef __undefined__ pointer;
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53 typedef ElementType element_type;

54 typedef ptrdiff_t difference_type;

55 typedef __undefined__ ElementType& reference;

56 typedef const __undefined__ ElementType& const_reference;

57 typedef const __undefined__ const_pointer;

58
59 constexpr constant_ptr();

60 constant_ptr(pointer);

61 template <access::mode Mode>

62 constant_ptr(accessor<ElementType, 1, Mode, global_buffer>);

63 constant_ptr(const constant_ptr&);

64 constant_ptr &operator=(constant_ptr &&r);

65 constexpr constant_ptr(nullptr);

66 ∼constant_ptr();

67
68 constant_ptr &operator=(pointer r);

69 constant_ptr &operator=(nullptr_t);

70 reference operator*();

71 reference operator[](size_t i);

72
73 pointer release();

74 void reset(pointer p = pointer());

75 void swap(constant_ptr& r);

76 constant_ptr &operator++();

77 constant_ptr operator++(int);

78 constant_ptr &operator--();

79 constant_ptr operator--(int);

80 constant_ptr &operator+=(difference_type r);

81 constant_ptr &operator-=(difference_type r);

82 constant_ptr operator+(difference_type r);

83 constant_ptr operator-(difference_type r);

84
85 // implementation defined implicit conversion

86 // to OpenCL C pointer types.

87 operator pointer();

88 };

89
90 template <typename ElementType>

91 class local_ptr {

92 public:

93 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

94 // interoperability type for OpenCL C functions

95 typedef __undefined__ pointer;

96 typedef ElementType element_type;

97 typedef ptrdiff_t difference_type;

98 typedef __undefined__ ElementType& reference;

99 typedef const __undefined__ ElementType& const_reference;

100 typedef const __undefined__ const_pointer;

101
102 constexpr local_ptr();

103 local_ptr(pointer);

104 template <access::mode Mode>

105 local_ptr(accessor<ElementType, 1, Mode, global_buffer>);

106 local_ptr(const local_ptr&);

107 local_ptr &operator=(local_ptr &&r);
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108 constexpr local_ptr(nullptr);

109 ∼local_ptr();

110
111 local_ptr &operator=(pointer r);

112 local_ptr &operator=(nullptr_t);

113 reference operator*();

114 reference operator[](size_t i);

115
116 pointer release();

117 void reset(pointer p = pointer());

118 void swap(local_ptr& r);

119 local_ptr &operator++();

120 local_ptr operator++(int);

121 local_ptr &operator--();

122 local_ptr operator--(int);

123 local_ptr &operator+=(difference_type r);

124 local_ptr &operator-=(difference_type r);

125 local_ptr operator+(difference_type r);

126 local_ptr operator-(difference_type r);

127 // implementation defined implicit conversion

128 // to OpenCL C pointer types.

129 operator pointer();

130 };

131
132 template <typename ElementType>

133 class private_ptr {

134 public:

135 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

136 // interoperability type for OpenCL C functions

137 typedef __undefined__ pointer;

138 typedef ElementType element_type;

139 typedef ptrdiff_t difference_type;

140 typedef __undefined__ ElementType& reference;

141 typedef const __undefined__ ElementType& const_reference;

142 typedef const __undefined__ const_pointer;

143
144 constexpr private_ptr();

145 private_ptr(pointer);

146 template <access::mode Mode>

147 private_ptr(accessor<ElementType, 1, Mode, global_buffer>);

148 private_ptr(const private_ptr&);

149 private_ptr &operator=(private_ptr &&r);

150 constexpr private_ptr(nullptr);

151 ∼private_ptr();

152
153 private_ptr &operator=(pointer r);

154 private_ptr &operator=(nullptr_t);

155 reference operator*();

156 reference operator[](size_t i);

157
158 pointer release();

159 void reset(pointer p = pointer());

160 void swap(private_ptr& r);

161 private_ptr &operator++();

162 private_ptr operator++(int);
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163 private_ptr &operator--();

164 private_ptr operator--(int);

165 private_ptr &operator+=(difference_type r);

166 private_ptr &operator-=(difference_type r);

167 private_ptr operator+(difference_type r);

168 private_ptr operator-(difference_type r);

169 // implementation defined implicit conversion

170 // to OpenCL C pointer types.

171 operator pointer();

172 };

173
174 template <typename ElementType>

175 class generic_ptr {

176 public:

177 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

178 // default generic space and forces disabling the address-space deduction

179 typedef __undefined__ pointer;

180 typedef ElementType element_type;

181 typedef ptrdiff_t difference_type;

182 typedef __undefined__ ElementType& reference;

183 typedef const __undefined__ ElementType& const_reference;

184 typedef const __undefined__ const_pointer;

185
186 constexpr generic_ptr();

187 generic_ptr(pointer);

188 template <access::mode Mode>

189 generic_ptr(accessor<ElementType, 1, Mode, global_buffer>);

190 generic_ptr(const generic_ptr&);

191 generic_ptr &operator=(generic_ptr &&r);

192 constexpr generic_ptr(nullptr);

193 ∼generic_ptr();

194
195 generic_ptr &operator=(pointer r);

196 generic_ptr &operator=(nullptr_t);

197 reference operator*();

198 reference operator[](size_t i);

199
200 pointer release();

201 void reset(pointer p = pointer());

202 void swap(generic_ptr& r);

203 generic_ptr &operator++();

204 generic_ptr operator++(int);

205 generic_ptr &operator--();

206 generic_ptr operator--(int);

207 generic_ptr &operator+=(difference_type r);

208 generic_ptr &operator-=(difference_type r);

209 generic_ptr operator+(difference_type r);

210 generic_ptr operator-(difference_type r);

211 // implementation defined implicit conversion

212 // to OpenCL C pointer types.

213 operator pointer();

214 };

215
216 } // namespace sycl

217 } // namespace cl
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Constructors Description
template <typename ElementType>

global_ptr(pointer)

Constructs a global_ptr from the underly-
ing ElementType pointer.

template <access::mode Mode>

global_ptr(

accessor<ElementType, 1, Mode, global_buffer>)

Constructs a global_ptr from an accessor
of access::target::global_buffer.

template <typename ElementType>

global_ptr(const global_ptr &)

Copy constructor.

End of table
Table 4.19: Constructors for global_ptr explicit pointer class.

Operators Description
template <typename ElementType>

ElementType &operator*()

Returns the ElementType of the de-
referenced pointer class.

template <typename ElementType>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType>

operator pointer()

Returns the underlying pointer type of the
global_ptr class

End of table
Table 4.20: Operators on the global_ptr explicit pointer class.

Constructors Description
template <typename ElementType>

constant_ptr(pointer)

Constructs a constant_ptr from the under-
lying ElementType pointer.

template <access::mode Mode>

constant_ptr(

accessor<ElementType, 1, Mode, constant_buffer>)

Constructs a constant_ptr from an accessor
of access::target::constant_buffer.

template <typename ElementType>

constant_ptr(const constant_ptr &)

Copy constructor.

End of table
Table 4.21: Constructors for constant_ptr explicit pointer class.

Operators Description
template <typename ElementType>

ElementType &operator*()

Returns the ElementType of the de-
referenced pointer class.

template <typename ElementType>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType>

operator pointer()

Returns the underlying pointer type of the
constant_ptr class

End of table
Table 4.22: Operators on the constant_ptr explicit pointer class.
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Constructors Description
template <typename ElementType>

local_ptr(pointer)

Constructs a local_ptr from the underlying
ElementType pointer.

template <access::mode Mode>

local_ptr(

accessor<ElementType, 1, Mode, constant_buffer>)

Constructs a local_ptr from an accessor of
access::target::local.

template <typename ElementType>

local_ptr(const local_ptr &)

Copy constructor.

End of table
Table 4.23: Constructors for local_ptr explicit pointer class.

Operators Description
template <typename ElementType>

ElementType &operator*()

Returns the ElementType of the de-
referenced pointer class.

template <typename ElementType>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType>

operator pointer()

Returns the underlying pointer type of the
local_ptr class

End of table
Table 4.24: Operators on the local_ptr explicit pointer class.

Constructors Description
template <typename ElementType>

private_ptr(pointer)

Constructs a private_ptr from an Element-
Type pointer.

template <typename ElementType>

private_ptr(const private_ptr &)

Copy constructor.

End of table
Table 4.25: Constructors for private_ptr explicit pointer class.

Operators Description
template <typename ElementType>

ElementType &operator*()

Returns the ElementType of the de-
referenced pointer class.

template <typename ElementType>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType>

operator pointer()

Returns the underlying pointer type of the
private_ptr class

End of table
Table 4.26: Operators on the private_ptr explicit pointer class.
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Constructors Description
template <typename ElementType>

generic_ptr(pointer)

Constructs a generic_ptr from the underly-
ing ElementType pointer.

template <access::mode Mode>

generic_ptr(

accessor<ElementType, 1, Mode, generic_buffer>)

Constructs a generic_ptr from an accessor
of access::target::generic_buffer.

template <typename ElementType>

generic_ptr(const generic_ptr &)

Copy constructor.

End of table
Table 4.27: Constructors for generic_ptr explicit pointer class, which
will force disabling auto-deduction of address space pointers and let the
pointers be deduced at runtime by defaulting them to the OpenCL generic
address space.

Operators Description
template <typename ElementType>

ElementType &operator*()

Returns the ElementType of the de-
referenced pointer class.

template <typename ElementType>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType>

operator pointer()

Returns the underlying pointer type of the
generic_ptr class

End of table
Table 4.28: Operators on the generic_ptr explicit pointer class.

Non-member functions Description
template <typename ElementType>

bool operator==(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator == for global_ptr
class.

template <typename ElementType>

bool operator!=(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator != for global_ptr
class.

template <typename ElementType>

bool operator<(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator < for global_ptr
class.

template <typename ElementType>

bool operator>(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator > for global_ptr
class.

template <typename ElementType>

bool operator>=(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator >= for global_ptr
class.

Continued on next page
Table 4.29: Non-member functions of the explicit pointer classes.
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Non-member functions Description
template <typename ElementType>

bool operator<=(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator <= for global_ptr
class.

template <typename ElementType>

bool operator!=(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator != for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator!=(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator != for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator == for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator == for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator > for global_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator>(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator > for global_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator < for global_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator < for global_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator

¿=(constglobalptr < ElementType > &lhs, nullptrtrhs)

Comparison operator >= for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator >= for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator <= for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator == for constant_ptr
class.

Continued on next page
Table 4.29: Non-member functions of the explicit pointer classes.

114



Non-member functions Description
template <typename ElementType>

bool operator!=(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator != for constant_ptr
class.

template <typename ElementType>

bool operator<(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator < for constant_ptr
class.

template <typename ElementType>

bool operator>(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator > for constant_ptr
class.

template <typename ElementType>

bool operator>=(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator >= for constant_ptr
class.

template <typename ElementType>

bool operator<=(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator <= for constant_ptr
class.

template <typename ElementType>

bool operator!=(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator!=(nullptr_t lhs, const

constant_ptr<ElementType>& rhs)

Comparison operator ! = for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator == for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(nullptr_t lhs, const

constant_ptr<ElementType>& rhs)

Comparison operator == for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator > for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(nullptr_t lhs, const constant_ptr

<ElementType>& rhs)

Comparison operator > for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator < for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(nullptr_t lhs, const constant_ptr

<ElementType>& rhs)

Comparison operator < for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator >= for constant_ptr
class with a nullptr_t.

Continued on next page
Table 4.29: Non-member functions of the explicit pointer classes.
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Non-member functions Description
template <typename ElementType>

bool operator>=(nullptr_t lhs, const

constant_ptr<ElementType>& rhs)

Comparison operator >= for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(nullptr_t lhs, const

constant_ptr<ElementType>& rhs)

Comparison operator <= for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const local_ptr<ElementType>&

lhs,

const local_ptr<ElementType>& rhs)

Comparison operator == for local_ptr
class.

template <typename ElementType>

bool operator!=(const local_ptr<ElementType>&

lhs,

const local_ptr<ElementType>& rhs)

Comparison operator != for local_ptr
class.

template <typename ElementType>

bool operator<(const local_ptr<ElementType>& lhs

,

const local_ptr<ElementType>& rhs)

Comparison operator < for local_ptr class.

template <typename ElementType>

bool operator>(const local_ptr<ElementType>& lhs

,

const local_ptr<ElementType>& rhs)

Comparison operator > for local_ptr class.

template <typename ElementType>

bool operator>=(const local_ptr<ElementType>&

lhs,

const local_ptr<ElementType>& rhs)

Comparison operator >= for local_ptr
class.

template <typename ElementType>

bool operator<=(const local_ptr<ElementType>&

lhs,

const local_ptr<ElementType>& rhs)

Comparison operator <= for local_ptr
class.

template <typename ElementType>

bool operator!=(const local_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator ! = for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator!=(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator ! = for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const local_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator == for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator == for local_ptr
class with a nullptr_t.

Continued on next page
Table 4.29: Non-member functions of the explicit pointer classes.
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Non-member functions Description
template <typename ElementType>

bool operator>(const local_ptr<ElementType>& lhs

, nullptr_t rhs)

Comparison operator > for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator>(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator > for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<(const local_ptr<ElementType>& lhs

, nullptr_t rhs)

Comparison operator < for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator < for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator>=(const local_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator >= for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator>=(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator >= for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<=(const local_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<=(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator <= for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator==(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator == for private_ptr
class.

template <typename ElementType>

bool operator!=(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator != for private_ptr
class.

template <typename ElementType>

bool operator<(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator < for private_ptr
class.

template <typename ElementType>

bool operator>(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator > for private_ptr
class.

template <typename ElementType>

bool operator>=(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator >= for private_ptr
class.

Continued on next page
Table 4.29: Non-member functions of the explicit pointer classes.
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Non-member functions Description
template <typename ElementType>

bool operator<=(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator <= for private_ptr
class.

template <typename ElementType>

bool operator!=(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator ! = for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator!=(nullptr_t lhs, const private_ptr

<ElementType>& rhs)

Comparison operator ! = for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator == for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(nullptr_t lhs, const private_ptr

<ElementType>& rhs)

Comparison operator == for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator >= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(nullptr_t lhs, const private_ptr<

ElementType>& rhs)

Comparison operator >= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(nullptr_t lhs, const private_ptr<

ElementType>& rhs)

Comparison operator < for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(nullptr_t lhs, const private_ptr

<ElementType>& rhs)

Comparison operator >= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(nullptr_t lhs, const private_ptr

<ElementType>& rhs)

Comparison operator <= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const generic_ptr<ElementType>&

lhs,

const generic_ptr<ElementType>& rhs)

Comparison operator == for generic_ptr
class.

Continued on next page
Table 4.29: Non-member functions of the explicit pointer classes.
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Non-member functions Description
template <typename ElementType>

bool operator!=(const generic_ptr<ElementType>&

lhs,

const generic_ptr<ElementType>& rhs)

Comparison operator != for generic_ptr
class.

template <typename ElementType>

bool operator<(const generic_ptr<ElementType>&

lhs,

const generic_ptr<ElementType>& rhs)

Comparison operator < for generic_ptr
class.

template <typename ElementType>

bool operator>(const generic_ptr<ElementType>&

lhs,

const generic_ptr<ElementType>& rhs)

Comparison operator > for generic_ptr
class.

template <typename ElementType>

bool operator>=(const generic_ptr<ElementType>&

lhs,

const generic_ptr<ElementType>& rhs)

Comparison operator >= for generic_ptr
class.

template <typename ElementType>

bool operator<=(const generic_ptr<ElementType>&

lhs,

const generic_ptr<ElementType>& rhs)

Comparison operator <= for generic_ptr
class.

template <typename ElementType>

bool operator!=(const generic_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator ! = for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator!=(nullptr_t lhs, const generic_ptr

<ElementType>& rhs)

Comparison operator ! = for generic_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const generic_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator == for generic_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(nullptr_t lhs, const generic_ptr

<ElementType>& rhs)

Comparison operator == for generic_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(const generic_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator >= for generic_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(nullptr_t lhs, const generic_ptr<

ElementType>& rhs)

Comparison operator >= for generic_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(const generic_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for generic_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(nullptr_t lhs, const generic_ptr<

ElementType>& rhs)

Comparison operator < for generic_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(const generic_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for generic_ptr
class with a nullptr_t.

Continued on next page
Table 4.29: Non-member functions of the explicit pointer classes.
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Non-member functions Description
template <typename ElementType>

bool operator>=(nullptr_t lhs, const generic_ptr

<ElementType>& rhs)

Comparison operator >= for generic_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(const generic_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for generic_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(nullptr_t lhs, const generic_ptr

<ElementType>& rhs)

Comparison operator <= for private_ptr
class with a nullptr_t.

End of table
Table 4.29: Non-member functions of the explicit pointer classes.

4.8.1.1 Multi-pointer class

There are situations where a user may want to template a data structure by an address space. Or, a user may want
to write templates that adapt to the address space of a pointer. An example might be wrapping a pointer inside
a class, where a user may need to template the class according to the address space of the pointer the class is
initialized with. In this case, the multi_ptr class enables users to do this. In order to facilitate SYCL/OpenCL
C interoperability, the pointer type is provided. It is an implementation-defined type which corresponds to the
underlying OpenCL pointer type and can be used in extern "C" function declarations for OpenCL C 1.2 functions
used in SYCL kernels or OpenCL C++ kernels.

If OpenCL 2.x devices are used, then the user can mark the data structure as generic_ptr and the default generic
space will be assigned to all of the pointers of that structure. The default address space of OpenCL 2.x pointers
is the generic address space and at runtime the pointers will be allocated on one of the following address spaces:
local, global and private. That will force disabling any compile-time address-space reduction and usage of that
data structure with the constant address space will result in undefined behaviour.

An overview of the interface provided for the multi_ptr class is the following, for the full interface please refer
to B.2.

1 namespace cl {

2 namespace sycl {

3 namespace access {

4 enum class address_space : int {

5 global_space,

6 local_space,

7 constant_space,

8 private_space

9 };

10 } // namespace access

11
12 template <typename ElementType, access::address_space Space>

13 class multi_ptr {

14 public:

15 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

16 // interoperability type for OpenCL C functions

17 typedef __undefined__ pointer;

18 typedef ptrdiff_t difference_type;
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19 typedef __undefined__ T& reference;

20 typedef __undefined__ const T& const_reference;

21 typedef __undefined__ T* pointer;

22 typedef __undefined__ const T* const_pointer;

23
24 const address_space space;

25 constexpr multi_ptr();

26 multi_ptr(pointer);

27 multi_ptr(const multi_ptr&);

28 multi_ptr(multi_ptr&& r);

29 constexpr multi_ptr(nullptr_t);

30 ∼multi_ptr();

31
32 reference operator*();

33
34 // Only if Space == global_space

35 operator global_ptr<ElementType>();

36 global_ptr<ElementType> pointer();

37
38 // Only if Space == local_space

39 operator local_ptr<ElementType>();

40 local_ptr<ElementType> pointer();

41
42 // Only if Space == constant_space

43 operator constant_ptr<ElementType>();

44 constant_ptr<ElementType> pointer();

45
46 // Only if Space == private_space

47 operator private_ptr<ElementType>();

48 private_ptr<ElementType> pointer();

49
50 // Only if Space == generic

51 operator generic_ptr<ElementType>();

52 generic_ptr<ElementType> pointer();

53
54 pointer release();

55 void reset(pointer p = pointer());

56 void swap(multi_ptr& r);

57
58 multi_ptr& operator++();

59 multi_ptr operator++(int);

60 multi_ptr& operator--();

61 multi_ptr operator--(int);

62 multi_ptr& operator+=(difference_type r);

63 multi_ptr& operator-=(difference_type r);

64 multi_ptr operator+(difference_type r);

65 multi_ptr operator-(difference_type r);

66 };

67
68 template <typename ElementType, access::address_space Space>

69 multi_ptr<ElementType, Space> make_ptr(pointer);

70 } // namespace sycl

71 } // namespace cl

121



Constructors Description
template <typename ElementType, enum address_space

Space>

explicit multi_ptr(pointer)

Constructor that takes as an argument a
pointer of ElementType.

template <typename ElementType, access::

address_space Space>

multi_ptr(const multi_ptr &)

Copy constructor.

template <typename ElementType, access::

address_space Space>

multi_ptr<ElementType, Space> make_ptr(pointer)

Global function to create a multi_ptr in-
stance depending on the address space of the
pointer type.

End of table
Table 4.30: Constructors for multi_ptr class

Methods Description
template <typename ElementType, access::

address_space Space>

ElementType &operator*()

Operator that returns a reference to the Ele-
mentType of the multi ptr class.

template <typename ElementType, access::

address_space Space>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType,

access::address_space Space = access::

address_space::global_space>

operator global_ptr<ElementType>()

Conversion operator from multi_ptr

<ElementType,address_space::

global_space> to global_ptr<

ElementType>.
template <typename ElementType,

access::address_space Space = access::

address_space::global_space>

global_ptr<ElementType> pointer()

Pointer method that returns a global_ptr
<ElementType> from a multi_ptr

<ElementType,address_space::

global_space>.
template <typename ElementType,

access::address_space Space = access::

address_space::local_space>

operator local_ptr<ElementType>()

Conversion operator from multi_ptr

<ElementType,address_space::

local_space> to local_ptr<ElementType>.

template <typename ElementType,

access::address_space Space = access::

address_space::local_space>

local_ptr<ElementType> pointer()

Pointer method that returns a local_ptr
<ElementType> from a multi_ptr

<ElementType,address_space::

local_space>.
template <typename ElementType,

access::address_space Space = access::

address_space::constant_space>

operator constant_ptr<ElementType>()

Conversion operator from multi_ptr

<ElementType,address_space::

constant_space> to constant_ptr<

ElementType>.
template <typename ElementType,

access::address_space Space = access::

address_space::constant_space>

constant_ptr<ElementType> pointer()

Pointer method that returns a constant_ptr
<ElementType> from a multi_ptr

<ElementType,address_space::

constant_space>.
Continued on next page

Table 4.31: Methods of multi_ptr class
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Methods Description
template <typename ElementType,

access::address_space Space = access::

address_space::private_space>

operator private_ptr<ElementType>()

Conversion operator from multi_ptr

<ElementType,address_space::

private_space> to private_ptr<

ElementType>.
template <typename ElementType,

access::address_space Space = access::

address_space::private_space>

private_ptr<ElementType> pointer()

Pointer method that returns a private_ptr
<ElementType> from a multi_ptr

<ElementType,address_space::

private_space>.
template <typename ElementType,

access::address_space Space = access::

address_space::generic_space>

operator private_ptr<ElementType>()

Conversion operator from multi_ptr

<ElementType,address_space::

generic_space> to generic_ptr<

ElementType>.
template <typename ElementType,

access::address_space Space = access::

address_space::generic_space>

generic_ptr<ElementType> pointer()

Pointer method that returns a private_ptr
<ElementType> from a multi_ptr

<ElementType,address_space::

generic_space>.
End of table

Table 4.31: Methods of multi_ptr class

Non-member functions Description
template <typename ElementType, access::

address_space Space>

bool operator==(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator == for multi_ptr
class.

template <typename ElementType, access::

address_space Space>

bool operator!=(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator != for multi_ptr
class.

template <typename ElementType, access::

address_space Space>

bool operator<(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator < for multi_ptr class.

template <typename ElementType, access::

address_space Space>

bool operator>(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator > for multi_ptr class.

template <typename ElementType, access::

address_space Space>

bool operator<=(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator <= for multi_ptr
class.

Continued on next page
Table 4.32: Non-member functions of the multi ptr class.
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Non-member functions Description
template <typename ElementType, access::

address_space Space>

bool operator>=(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator >= for multi_ptr
class.

template <typename ElementType, access::

address_space Space>

bool operator!=(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator != for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator!=(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator != for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator==(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator == for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator==(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator == for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator>(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator > for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator>(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator > for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator<(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator < for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator<(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator < for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator>=(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator >= for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator>=(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator >= for multi_ptr class
with a nullptr_t.

Continued on next page
Table 4.32: Non-member functions of the multi ptr class.
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InputOutput w_17r_4r_2
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Figure 4.1: Pipe with elements already read and written elements to be read.

Non-member functions Description
template <typename ElementType, access::

address_space Space>

bool operator<=(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator <= for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator<=(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator <= for multi_ptr class
with a nullptr_t.

End of table
Table 4.32: Non-member functions of the multi ptr class.

4.9 Pipes

4.9.1 Overview

Pipes are communication channels between kernels. More conceptually, a pipe memory object is an ordered
sequence of data items that stores data organized as a FIFO (first in, first out). A pipe has two endpoints: a write
endpoint into which data items are inserted, and a read endpoint from which data items are removed. At any one
time, only one kernel instance may write into a pipe, and only one kernel instance may read from a pipe. To
support the producer-consumer design pattern, one kernel instance connects to the write endpoint (the producer)
while another kernel instance connects to the reading endpoint (the consumer). Pipe data is not accessible from
the host.

A pipe object is typed to store objects of a given type and has a capacity to store up to a given amount of objects
set at the definition point of the pipe. An abstract view of a simple pipe is given on Figure 4.1.

Since access to pipes are done with read or write methods, but the pipe itself is an ordered storage of object(s),
the read or write methods require some kind of mutual exclusion, which may not be possible when using a pipe
from different work-items, for example. This is why the concept of reservation in a pipe has been introduced in
OpenCL 2.0. A reservation station is a kind of array view that is reserved inside the pipe and each element of this
reservation can be accessed independently from the other in a race-free way and in a parallel way. The reservation
lasts up to the commit action that sends the written data to the pipe or frees the read reservation, according to
whether write or read mode. There can be several reservations on-going in a pipe (typically from different work-
groups or subgroups) and intermixed with normal read/write actions on the pipe, as shown of Figure 4.2. There is
an auto-commit behaviour in the destructor of the reservation if it was not already committed, to ease the life of
the programmer. See Section 4.9.7 for a use case.

Even if the reservation looks like an array view inside the pipe, the order in which a reservation element is read
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r_r_1 r_r_3 w_r_17

InputOutput w_18w_19r_4r_2

ReadableBlocked by reading Blocked by writing

Uncommited reservation stations

0 1 0 1 0 1 2 3

w_5 w_6 w_7 w_8 w_9 w_10w_11w_12w_13w_14w_15w_16

Figure 4.2: Pipe with read and write reservations intermixed with normal read and write operations. The uncom-
mitted r r1 and r r3 read reservation prevent the elements in red from being reused for writing and the uncommit-
ted w r1 write reservation prevents the elements in blue from being read yet.

from or written to the pipe is actually implementation-dependent. Note that committing a write reservation with
some elements uninitialized is an undefined behavior.

A pipe application running with a SYCL implementation based on an OpenCL 2.x device
should respect the limits retrieved through the device properties CL_DEVICE_MAX_PIPE_ARGS,
CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATION and CL_DEVICE_PIPE_MAX_PACKET_SIZE.

Note that pipes rely on the memory and execution model of the underlying OpenCL 2.x device. If a read, write
or reserve action on a pipe fails, for example because a consumer has nothing to read, this action may fail forever
because the producer may or not be able to run at the same time, since in OpenCL 2.x there is no independent
forward progress guarantee in OpenCL 2.x. Furthermore, if an implementation chooses to use plain memory
without atomic operations to implement the FIFO data structure of a pipe, the memory model of the OpenCL 2.x
implementation is used. Since there is no synchronization of the memory view between the 2 kernels, even if they
are running in parallel, a pipe read action may never see a pipe write action from a kernel before the completion
of the writing kernel. It is up to the programmer to write kernels in such a way there is no deadlock.

The portable way to have an application using pipes is to create each pipe with a capacity sufficient to store all the
data produced by the producer and have no cyclic dependency between kernels interacting through pipes.

This does not preclude some implementations using optimziations to alleviate these constraints.

4.9.2 pipe class

The pipe creates a pipe object to allow kernel communications of one kind of objects.

The pipe is parameterized with the object type and the maximum number of objects to be stored in the pipe at
some point. Pipe constructors are listed in Table 4.33 and methods in Table 4.34.

Constructors Description
pipe(std::size_t capacity) Construct a pipe able to store up to capacity

T objects.
End of table

Table 4.33: Pipe constructors.

Methods Description
template <access::mode Mode, typename CGH>

accessor<T, 1, Mode, access::pipe>

get_access(CGH &command_group_handler)const

Get an accessor to the pipe with the required
mode.
Mode is the requested access mode, read or
write.
command_group_handler is the command
group handler in which the kernel is to be
executed.

std::size_t capacity()const Return the maximum number of elements
that can fit in the pipe.

End of table
Table 4.34: Methods for the pipe class.
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1 namespace cl {

2 namespace sycl {

3 /** A SYCL pipe

4
5 Implement a FIFO-style object that can be used through accessors

6 to send some objects T from the input to the output

7 */

8 template <typename T>

9 class pipe {

10 public:

11 /// The STL-like type

12 using value_type = T;

13
14 /// Construct a pipe able to store up to capacity T objects

15 pipe(std::size_t capacity);

16
17 /** Get an accessor to the pipe with the required mode

18
19 \param Mode is the requested access mode

20
21 \param[in] command_group_handler is the command group handler in

22 which the kernel is to be executed

23 */

24 template <access::mode Mode, typename CommandGroupHandler>

25 accessor<value_type, 1, Mode, access::pipe>

26 get_access(CommandGroupHandler &command_group_handler) const;

27
28 /// Return the maximum number of elements that can fit in the pipe

29 std::size_t capacity() const;

30
31 };

32 } // namespace sycl

33 } // namespace cl

4.9.3 Pipe accessor class

The accessor makes pipe methods available to kernel code. The accessor is parameterized with the mode of
access, either read or write (see Table 4.11).

Pipe accessor constructors are listed in Table 4.35. The generic methods for the accessor class are defined in
Table 4.36.

The read methods should only exist for read accessors and the write methods for write accessors.

Implementation advice: after some experiments, to help programmers to detect errors when a method used does
not match the access mode, we found it is less confusing to have the methods always defined but controlled with
a static_assert to display a clear error message to the programmer about why the given method cannot be used
or which one should be used instead.
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Constructors Description
accessor(pipe<value_type> &p, CGH &

command_group_handler)const

Construct a pipe accessor from a pipe p us-
ing a command_group_handler object from
the command group scope.

End of table
Table 4.35: Pipe accessor constructors.

Methods Description
pipe_reservation<accessor> reserve(std::size_t size)

const

Make a reservation inside the pipe.

std::size_t capacity()const Return the maximum number of elements
that can fit in the pipe.

std::size_t size()const Return the maximum number of elements
that can fit in the pipe.

bool empty()const Test if the pipe is empty.
This is obviously a volatile value which is
constrained by restricted relativity.

bool full()const Test if the pipe is full.
This is obviously a volatile value which is
constrained by restricted relativity.

explicit operator bool()const In an explicit bool context, the accessor
gives the success status of the last access.
It is not impacted by reservation success.
The explicitness is related to avoid
some_pipe << some_value to be inter-
preted as some_bool << some_value when
the type of some_value is not the same type
as the pipe type.
Return true on success of the previous read
or write operation.

const accessor &write(const value_type &value)const Try to write a value to the pipe.
value is what we want to write. Return this
so we can apply a sequence of write for ex-
ample.
This function is const so it can work when
the accessor is passed by copy in the [=] ker-
nel lambda, which is not mutable by default.

const accessor &operator<<(const value_type &value)

const

Some syntactic sugar to use a << v instead
of a.write(v).

const accessor &read(value_type &value)const Try to read a value from the pipe.
value is the reference to where to store what
is read.
Return this so we can apply a sequence of
read for example.
This function is const so it can work when
the accessor is passed by copy in the [=] ker-
nel lambda, which is not mutable by default.

Continued on next page
Table 4.36: Methods for the pipe accessor class.
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Methods Description
const accessor &operator>>(value_type &value)const Some syntactic sugar to use a >> v instead

of a.read(v).
End of table

Table 4.36: Methods for the pipe accessor class.

1 namespace cl {

2 namespace sycl {

3 /** The pipe accessor abstracts the way pipe data are accessed inside

4 a kernel

5
6 This is a specialization of the plain accessor.

7 */

8 template <typename T,

9 access::mode AccessMode>

10 class accessor<T, 1, AccessMode, access::pipe> {

11 public:

12 static constexpr auto rank = 1;

13 static constexpr auto mode = AccessMode;

14 static constexpr auto target = access::pipe;

15
16 /// The STL-like types

17 using value_type = T;

18 using reference = value_type&;

19 using const_reference = const value_type&;

20
21 /** Construct a pipe accessor from a pipe using a command group

22 handler object from the command group scope

23 */

24 accessor(pipe<value_type> &p, handler &command_group_handler);

25
26 // To have the copy and move constructors working

27 accessor() = default;

28
29 /// Make a reservation inside the pipe

30 pipe_reservation<accessor> reserve(std::size_t size) const;

31
32 /// Return the maximum number of elements that can fit in the pipe

33 std::size_t capacity() const;

34
35 /** Get the current number of elements in the pipe

36
37 This is obviously a volatile value which is constrained by

38 restricted relativity.

39 */

40 std::size_t size() const;

41
42 /** Test if the pipe is empty

43
44 This is obviously a volatile value which is constrained by

45 restricted relativity.

46 */
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47 bool empty() const;

48
49 /** Test if the pipe is full

50
51 This is obviously a volatile value which is constrained by

52 restricted relativity.

53 */

54 bool full() const;

55
56 /** In an explicit bool context, the accessor gives the success

57 status of the last access

58
59 It is not impacted by reservation success.

60
61 The explicitness is related to avoid \code some_pipe <<

62 some_value \endcode to be interpreted as \code some_bool <<

63 some_value \endcode when the type of \code some_value \endcode

64 is not the same type as the pipe type.

65
66 \return true on success of the previous read or write operation

67 */

68 explicit operator bool() const;

69
70 /** Try to write a value to the pipe

71
72 \param[in] value is what we want to write

73
74 \return \code this \endcode so we can apply a sequence of write

75 for example (but do not do this on a non blocking pipe...)

76
77 \todo provide a && version

78
79 This function is const so it can work when the accessor is

80 passed by copy in the [=] kernel lambda, which is not mutable by

81 default

82 */

83 const accessor &write(const value_type &value) const;

84
85 /** Some syntactic sugar to use \code a << v \endcode instead of

86 \code a.write(v) \endcode */

87 const accessor &operator<<(const value_type &value) const;

88
89 /** Try to read a value from the pipe

90
91 \param[out] value is the reference to where to store what is

92 read

93
94 \return \code this \endcode so we can apply a sequence of read

95 for example (but do not do this on a non blocking pipe...)

96
97 This function is const so it can work when the accessor is

98 passed by copy in the [=] kernel lambda, which is not mutable by

99 default

100 */

101 const accessor &read(value_type &value) const;
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102
103 /// Some syntactic sugar to use a >> v instead of a.read(v)

104 const accessor &operator>>(value_type &value) const;

105
106 };

107 } // namespace sycl

108 } // namespace cl

4.9.4 pipe_reservation class

The class pipe_reservation represents a reservation made inside a pipe object, either for reading or writing
a given amount of objects, according to the accessor used. A successful reservation can be used by different
work-item to access to different elements of the reservation in parallel.

A pipe reservation may fail at creation time if there is not enough room to write or not enough things to be read
in the pipe. The success status of the pipe_reservation is tested by evaluating it in a boolean context.

A pipe_reservation is expected to be committed after use either by using the explicit commit or more easily by
letting the destructor to do it. Only a successful reservation can be committed.

pipe_reservation constructors are listed in Table 4.37. The generic methods for the pipe_reservation class are
defined in Table 4.38.

Constructors Description
pipe_reservation(accessor_type &accessor, std::

size_t s)

Create a pipe reservation for an accessor and
a number of elements.

End of table
Table 4.37: Pipe reservation constructors.

Methods Description
operator bool()const Test if the pipe_reservation has been cor-

rectly allocated.
Return true if the pipe_reservation can be
used and committed.

std::size_t size()const Get the number of reserved element(s).
reference operator[](std::size_t index)const Access to a given element of the reservation.
void commit()const Force a commit operation.

Normally the commit is implicitly done in
the destructor, but sometime it is useful to
do it earlier.

iterator begin()const Get an iterator on the first element of the
reservation station.

iterator end()const Get an iterator past the end of the reservation
station.

const_iterator cbegin()const Build a constant iterator on the first element
of the reservation station.

Continued on next page
Table 4.38: Methods for the pipe_reservation class.
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Methods Description
const_iterator cend()const Build a constant iterator past the end of the

reservation station.
reverse_iterator rbegin()const Get a reverse iterator on the last element of

the reservation station.
reverse_iterator rend()const Get a reverse iterator on the first element

past the end of the reservation station.
const_reverse_iterator crbegin()const Get a constant reverse iterator on the last el-

ement of the reservation station.
const_reverse_iterator crend()const Get a constant reverse iterator on the first el-

ement past the end of the reservation station.
End of table

Table 4.38: Methods for the pipe_reservation class.

1 namespace cl {

2 namespace sycl {

3 /** The pipe reservation station allows to reserve an array-like view

4 inside the pipe for ordered race-free access from various

5 work-items for example

6 */

7 template <typename PipeAccessor>

8 struct pipe_reservation {

9 using accessor_type = PipeAccessor;

10 /// The STL-like types

11 using value_type = typename accessor_type::value_type;

12 using reference = value_type&;

13 using const_reference = const value_type&;

14 using pointer = value_type*;

15 using const_pointer = const value_type*;

16 using size_type = std::size_t;

17 using difference_type = ptrdiff_t;

18 using iterator = implementation-defined;

19 using const_iterator = implementation-defined;

20 using reverse_iterator = implementation-defined;

21 using const_reverse_iterator = implementation-defined;

22
23 /// Create a pipe_reservation for an accessor and a number of elements

24 pipe_reservation(accessor_type &accessor, std::size_t s);

25
26 /** Use default constructors so that we can create a new buffer copy

27 from another one, with either a l-value or a r-value (for

28 std::move() for example).

29 */

30 pipe_reservation() = default;

31
32 /** Test if the pipe_reservation has been correctly allocated

33
34 \return true if the pipe_reservation can be used and committed

35 */

36 operator bool() const;

37
38 /// Get the number of reserved element(s)
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39 std::size_t size() const;

40
41 /// Access to a given element of the reservation

42 reference operator[](std::size_t index) const;

43
44 /** Force a commit operation

45
46 Normally the commit is implicitly done in the destructor, but

47 sometime it is useful to do it earlier.

48 */

49 void commit() const;

50
51 /// Get an iterator on the first element of the reservation station

52 iterator begin() const;

53
54 /// Get an iterator past the end of the reservation station

55 iterator end() const;

56
57 /// Build a constant iterator on the first element of the reservation station

58 const_iterator cbegin() const;

59
60 /// Build a constant iterator past the end of the reservation station

61 const_iterator cend() const;

62
63 /// Get a reverse iterator on the last element of the reservation station

64 reverse_iterator rbegin() const;

65
66 /** Get a reverse iterator on the first element past the end of the

67 reservation station */

68 reverse_iterator rend() const;

69
70 /** Get a constant reverse iterator on the last element of the

71 reservation station */

72 const_reverse_iterator crbegin() const;

73
74 /** Get a constant reverse iterator on the first element past the

75 end of the reservation station */

76 const_reverse_iterator crend() const;

77
78 };

79
80 } // namespace sycl

81 } // namespace cl

4.9.5 static_pipe class

A SYCL static-scope pipe is a pipe with a constexpr capacity that can be analysed at either compile-time or
run-time to allow an implementation to choose the best underlying implementation of the pipe.

Compared to a normal pipe, a static_pipe takes a constexpr capacity and is expected to be declared and used
in a single C++ translation unit so the device compiler can analyse everything at compile time. This will enable
a device compiler, or a device optimized runtime to layout the pipe, along with its producer and consumer in an
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efficient manner for the hardware being targeted.

This pipe object can only be used on the same device. It is the responsibility of the programmer to launch the
kernels using this kind of pipe on the same device.

Pipe constructors are listed in Table 4.39 and methods in Table 4.40.

Constructors Description
static_pipe() Construct a static-scoped pipe able to store

up to Capacity T objects.
End of table

Table 4.39: Static pipe constructors.

Methods Description
template <access::mode Mode, typename CGH>

accessor<T, 1, Mode, access::pipe>

get_access(CGH &command_group_handler)const

Get an accessor to the pipe with the required
mode.
Mode is the requested access mode, read or
write.
command_group_handler is the command
group handler in which the kernel is to be
executed.

std::size_t constexpr capacity()const Return the maximum number of elements
that can fit in the pipe.
This is a constexpr since the capacity is in
the type.

End of table
Table 4.40: Methods for the static_pipe class.

1 namespace cl {

2 namespace sycl {

3 /** A SYCL static-scope pipe is a pipe with a constexpr capacity that

4 can be declared in a static context and is expected to be

5 equivalent to an OpenCL program-scope pipe

6
7 Implement a FIFO-style object that can be used through accessors

8 to send some objects T from the input to the output.

9
10 Compared to a normal pipe, a static_pipe takes a constexpr

11 capacity and is expected to be declared in a compile-unit scope or

12 class static scope so the device compiler can generate everything

13 at compile time.

14
15 This is useful to generate a fixed and optimized hardware

16 implementation on FPGA for example, where the interconnection

17 graph can be also inferred at compile time.

18
19 This pipe object can only be used on the same device.It is up to

20 the responsability of the programmer to launch the kernels using
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21 this kind of pipe on the same device.

22 */

23 template <typename T, std::size_t Capacity>

24 struct static_pipe {

25 /// The STL-like type

26 using value_type = T;

27
28 /// Construct a static-scope pipe able to store up to Capacity T objects

29 static_pipe();

30
31 /** Get an accessor to the pipe with the required mode

32
33 \param Mode is the requested access mode, read or write.

34
35 \param[in] command_group_handler is the command group handler in

36 which the kernel is to be executed

37 */

38 template <access::mode Mode, typename CommandGroupHandler>

39 accessor<value_type, 1, Mode, access::pipe>

40 get_access(CommandGroupHandler &command_group_handler);

41
42 /** Return the maximum number of elements that can fit in the pipe

43
44 This is a constexpr since the capacity is in the type

45 */

46 std::size_t constexpr capacity() const;

47
48 };

49 } // namespace sycl

50 } // namespace cl

4.9.6 Pipe exceptions

4.9.7 Example of using pipes

Pipes are useful to implement data-flow applications with kernels consuming data produced by other kernels.
According to the underlying devices, it is possible for example to implement full applications with data flowing
through a graph of kernels without any further action from the host besides starting the kernel graph.

4.9.7.1 Producer-consumer example with pipe

In the following example, a producer streams some data from a buffer to a pipe and a consumer kernel reads data
from the pipe to add them with another buffer.

1 #include <CL/sycl.hpp>

2 #include <iostream>

3 #include <iterator>

4
5 constexpr size_t N = 3;
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6 using Vector = float[N];

7
8 int main() {

9 Vector a = { 1, 2, 3 };

10 Vector b = { 5, 6, 8 };

11 Vector c;

12
13 {

14 // Create buffers from a & b vectors

15 cl::sycl::buffer<float> A { std::begin(a), std::end(a) };

16 cl::sycl::buffer<float> B { std::begin(b), std::end(b) };

17
18 // A buffer of N float using the storage of c

19 cl::sycl::buffer<float> C { c, N };

20
21 // A pipe of 1 float elements

22 cl::sycl::pipe<float> P { 1 };

23
24 // Create a queue to launch the kernels

25 cl::sycl::queue q;

26
27 // Launch the producer to stream A to the pipe

28 q.submit([&](cl::sycl::handler &cgh) {

29 // Get write access to the pipe

30 auto p = P.get_access<cl::sycl::access::write>(cgh);

31 // Get read access to the data

32 auto ka = A.get_access<cl::sycl::access::read>(cgh);

33
34 cgh.single_task<class producer>([=] {

35 for (int i = 0; i != N; i++)

36 // Try to write to the pipe up to success

37 while (!(p << ka[i]))

38 ;

39 });

40 });

41
42 // Launch the consumer that adds the pipe stream with B to C

43 q.submit([&](cl::sycl::handler &cgh) {

44 // Get read access to the pipe

45 auto p = P.get_access<cl::sycl::access::read>(cgh);

46
47 // Get access to the input/output buffers

48 auto kb = B.get_access<cl::sycl::access::read>(cgh);

49 auto kc = C.get_access<cl::sycl::access::write>(cgh);

50
51 cgh.single_task<class consumer>([=] {

52 for (int i = 0; i != N; i++) {

53 /* Declare a variable of the same type as what the pipe

54 can deal (a good example of single source advantage)

55 */

56 decltype(p)::value_type e;

57 // Try to read from the pipe up to success

58 while (!(p >> e))

59 ;

60 kc[i] = e + kb[i];
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61 }

62 });

63 });

64 } //< End scope for the queue and the buffers, so wait for completion

65
66 std::cout << std::endl << "Result:" << std::endl;

67 for(auto e : c)

68 std::cout << e << " ";

69 std::cout << std::endl;

70 }

4.9.7.2 Producer-consumer example with pipe reservation

The following example shows a program with a producer and consumer, both using reservation, but one is using
explicit commit.

1 #include <CL/sycl.hpp>

2 #include <iostream>

3 #include <iterator>

4 #include <numeric>

5
6 // Size of the buffers

7 constexpr size_t N = 200;

8 // Number of work-item per work-group

9 constexpr size_t WI = 20;

10 static_assert(N == WI*(N/WI), "N needs to be a multiple of WI");

11
12 using Type = int;

13
14 int main(int argc, char *argv[]) {

15 // Initialize the input buffers to some easy-to-compute values

16 cl::sycl::buffer<Type> a { N };

17 {

18 auto aa = a.get_access<cl::sycl::access::write>();

19 // Initialize buffer a with increasing integer numbers starting at 0

20 std::iota(aa.begin(), aa.end(), 0);

21 }

22
23 // A buffer of N Type to get the result

24 cl::sycl::buffer<Type> c { N };

25
26 // The plumbing with some weird size prime to WI to exercise the system

27 cl::sycl::pipe<Type> pa { 2*WI + 7 };

28
29 // Create a queue to launch the kernels

30 cl::sycl::queue q;

31
32 // Launch a producer for streaming va to the pipe pa

33 q.submit([&] (cl::sycl::handler &cgh) {

34 // Get write access to the pipe

35 auto apa = pa.get_access<cl::sycl::access::write>(cgh);

36 // Get read access to the data

37 auto aa = a.get_access<cl::sycl::access::read>(cgh);
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38 /* Create a kernel with WI work-items executed by work-groups of

39 size WI, that is only 1 work-group of WI work-items */

40 cgh.parallel_for_work_group<class producer>(

41 { WI, WI },

42 [=] (auto group) {

43 // Use a sequential loop in the work-group to stream chunks in order

44 for (int start = 0; start != N; start += WI) {

45 /* To keep the reservation status outside the scope of the

46 reservation itself */

47 bool ok;

48 do {

49 // Try to reserve a chunk of WI elements of the pipe for writing

50 auto r = apa.reserve(WI);

51 // Evaluating the reservation as a bool returns the status

52 ok = r;

53 if (ok) {

54 /* There was enough room for the reservation, then

55 launch the work-items in this work-group to do the

56 writing in parallel */

57 group.parallel_for_work_item([=] (cl::sycl::item<> i) {

58 r[i[0]] = aa[start + i[0]];

59 });

60 }

61 // Here the reservation object goes out of scope: commit

62 }

63 while (!ok);

64 }

65 });

66 });

67
68 // Launch the consumer to read stream from pipe pa to buffer c

69 q.submit([&] (cl::sycl::handler &cgh) {

70 // Get read access to the pipe

71 auto apa = pa.get_access<cl::sycl::access::read>(cgh);

72 // Get write access to the data

73 auto ac = c.get_access<cl::sycl::access::write>(cgh);

74
75 /* Create a kernel with WI work-items executed by work-groups of

76 size WI, that is only 1 work-group of WI work-items */

77 cgh.parallel_for_work_group<class consumer>(

78 { WI, WI },

79 [=] (auto group) {

80 /* Use another approach different from the writing part to

81 demonstrate the way to use an explicit commit as proposed

82 by Alex Bourd */

83 cl::sycl:: pipe_reservation<decltype(apa)> r;

84 // Use a sequential loop in the work-group to stream chunks in order

85 for (int start = 0; start != N; start += WI) {

86 // Wait for the reservation to succeed

87 while (!(r = apa.reserve(WI)))

88 ;

89 /* There was enough room for the reservation, then launch

90 the work-items in this work-group to do the reading in

91 parallel */

92 group.parallel_for_work_item([=] (cl::sycl::item<> i) {
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93 ac[start + i[0]] = r[i[0]];

94 });

95 /** Explicit commit requested here. Note that in this

96 simple example, since there is nothing useful after

97 the commit, using the default destructor at the end of

98 the work-group or inside the while would have been

99 enough */

100 r.commit();

101 }

102 });

103 });

104
105 // Display on the host the buffer content

106 for (std::size_t i = 0; i != N; ++i)

107 std::cout << c.get_access<cl::sycl::access::read>()[i] << std::endl;

108
109 return 0;

110 }

4.9.7.3 Producer-consumer example with static-scoped pipe

In this example using a static_pipe, a direct harware implementation could be statically synthesized on a device,
since the size of the pipe is known and also the interconnection of the kernels.

1 #include <CL/sycl.hpp>

2 #include <iostream>

3 #include <iterator>

4
5 constexpr size_t N = 3;

6 using Vector = float[N];

7
8 // A static-scoped pipe of 4 float elements

9 cl::sycl::static_pipe<float, 4> p;

10
11 int main() {

12 Vector va = { 1, 2, 3 };

13 Vector vb = { 5, 6, 8 };

14 Vector vc;

15
16 {

17 // Create buffers from a & b vectors

18 cl::sycl::buffer<float> ba { std::begin(va), std::end(va) };

19 cl::sycl::buffer<float> bb { std::begin(vb), std::end(vb) };

20
21 // A buffer of N float using the storage of vc

22 cl::sycl::buffer<float> bc { vc, N };

23
24 // Create a queue to launch the kernels

25 cl::sycl::queue q;

26
27 // Launch the producer to stream A to the pipe

28 q.submit([&](cl::sycl::execution_handle &cgh) {

29 // Get write access to the pipe
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30 auto kp = p.get_access<cl::sycl::access::write>(cgh);

31 // Get read access to the data

32 auto ka = ba.get_access<cl::sycl::access::read>(cgh);

33
34 cgh.single_task<class producer>([=] {

35 for (int i = 0; i != N; i++)

36 // Try to write to the pipe up to success

37 while (!(kp.write(ka[i])))

38 ;

39 });

40 });

41
42 // Launch the consumer that adds the pipe stream with B to C

43 q.submit([&](cl::sycl::execution_handle &cgh) {

44 // Get read access to the pipe

45 auto kp = p.get_access<cl::sycl::access::read>(cgh);

46
47 // Get access to the input/output buffers

48 auto kb = bb.get_access<cl::sycl::access::read>(cgh);

49 auto kc = bc.get_access<cl::sycl::access::write>(cgh);

50
51 cgh.single_task<class consumer>([=] {

52 for (int i = 0; i != N; i++) {

53 /* Declare a variable of the same type as what the pipe

54 can deal (a good example of single source advantage)

55 */

56 decltype(kp)::value_type e;

57 // Try to read from the pipe up to success

58 while (!(kp.read(e)))

59 ;

60 kc[i] = e + kb[i];

61 }

62 });

63 });

64 } //< End scope for the queue and the buffers, so wait for completion

65
66 std::cout << std::endl << "Result:" << std::endl;

67 for (auto e : vc)

68 std::cout << e << " ";

69 std::cout << std::endl;

70 }

4.10 Data types

SYCL as a C++11 programming model supports the C++11 ISO standard data types, and it also provides the
ability for all SYCL applications to be executed on SYCL compatible devices, OpenCL and host devices. The
scalar and vector data types that are supported by the SYCL system are defined below. More details about the
SYCL device compiler support for fundamental and OpenCL interoperability types are found in 9.5
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4.10.1 Scalar data types

SYCL follows the C++11 standard in terms of fundamental scalar data types. All SYCL applications match those
data types and the size of those has to be matched in the SYCL application code for all available SYCL devices;
host and OpenCL devices.

SYCL Integral Data Types Description
char a signed 8-bit integer, as defined by the

C++11 ISO Standard
unsigned char an unsigned 8-bit integer, as defined by the

C++11 ISO Standard
short int a signed integer of at least 16-bits, as de-

fined by the C++11 ISO Standard
unsigned short int an unsigned integer of at least 16-bits, as

defined by the C++11 ISO Standard
int a signed integer of at least 16-bits, as de-

fined by the C++11 ISO Standard
unsigned int an unsigned integer of at least 16-bits, as

defined by the C++11 ISO Standard
long int a signed integer of at least 32-bits, as de-

fined by the C++11 ISO Standard
unsigned long int an unsigned integer of at least 32-bits, as

defined by the C++11 ISO Standard
long long int an integer of at least 64-bits, as defined by

the C++11 ISO Standard
unsigned long long int an unsigned integer of at least 64-bits, as

defined by the C++11 ISO Standard
size_t the unsigned integer type of the result of the

sizeof operator on host.
End of table

Table 4.41: SYCL compiler fundamental integral datatypes

SYCL Floating Point Data Types Description
float a 32-bit IEEE 754 floating-point value, as

defined by the C++11 ISO Standard
double a 64-bit IEEE 754 floating-point value, as

defined by the C++11 ISO Standard
half a 16-bit IEEE 754-2008 half-precision

floating-point value
End of table

Table 4.42: SYCL compiler fundamental floating point datatypes

The OpenCL C language standardc̃ite[par. 6.11]opencl-1.2 defines its own built-in scalar types, which are sup-
ported for interoperability between SYCL and OpenCL C applications through the interoperability data types.
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SYCL Scalar Datatypes Description
cl::sycl::cl_bool A conditional data type which is either true

or false. The value true expands to the inte-
ger constant 1 and the value false expands to
the integer constant 0.

cl::sycl::cl_char a signed two’s complement 8-bit integer
cl::sycl::cl_uchar an unsigned 8-bit integer
cl::sycl::cl_short a signed two’s complement 16-bit integer
cl::sycl::cl_ushort an unsigned 16-bit integer
cl::sycl::cl_int a signed two’s complement 32-bit integer
cl::sycl::cl_uint an unsigned 32-bit integer
cl::sycl::cl_long A signed two’s complement 64-bit integer.
cl::sycl::cl_ulong An unsigned 64-bit integer.
cl::sycl::cl_float A 32-bit floating-point. The float data type

must conform to the IEEE 754 single preci-
sion storage format.

cl::sycl::cl_double A 64-bit floating-point. The double data
type must conform to the IEEE 754 double
precision storage format.

cl::sycl::cl_half A 16-bit floating-point. The half data type
must conform to the IEEE 754-2008 half
precision storage format.

End of table
Table 4.43: SYCL compiler OpenCL interoperability scalar datatypes

4.10.2 Vector types

SYCL provides a templated cross-platform vector type that works efficiently on SYCL devices as well as in host
C++ code. This type allows sharing of vectors between the host and its SYCL devices. The vector supports
methods that allow construction of a new vector from a swizzeled set of component elements. The vector are
defined in Table 4.45 and Table 4.46

An overview of the interface provided for the vec class is the following, for the full interface please refer to B.5.

1 namespace cl {

2 namespace sycl {

3 template <typename dataT, int numElements>

4 class vec {

5 public:

6 typedef dataT element_type;

7 //Underlying OpenCL type

8 typedef __undefined__ vector_t;

9
10 vec();

11
12 explicit vec(const dataT &arg);

13
14 vec(const T0 &arg0... args);
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15
16 vec(const vec<dataT, numElements> &rhs);

17
18 size_t get_count();

19
20 size_t get_size();

21
22 template <typename asDataT, int width>

23 vec<asDataT, width> as() const;

24
25 // genvector is a generic typename for describing

26 // all OpenCL/SYCL types.

27 operator __genvector__() const;

28
29 // Swizzle methods (see notes)

30 swizzled_vec<T, out_dims> swizzle<elem s1, ...>();

31
32 #ifdef SYCL_SIMPLE_SWIZZLES

33 swizzled_vec<T, 4> xyzw();

34 ...

35 #endif // #ifdef SYCL_SIMPLE_SWIZZLES

36 };

37 } // namespace sycl

38 } // namespace cl

vec<typename T, int dims> is a vector type that compiles down to the OpenCL built-in vector types on OpenCL
devices where possible and provides compatible support on the host. The vec class is templated on its number of
dimensions and its element type. The dimensions parameter, dims, can be one of: 1, 2, 3, 4, 8 or 16. Any other
value should produce a compilation failure. The element type parameter, T, must be one of the basic scalar types
supported in device code.

The SYCL library provides typedefs for: char, unsigned char, short, unsigned short, int, unsigned int, long
long, unsigned long long, float and double in all valid sizes. These vector typedefs are named TypenameSize,

for example: longlong2 is a vector of two long long integer elements, mapping to vec<long long int, 2>.

The SYCL library also provides the OpenCL interoperability types which are referred to in the document with the
generic name genvector. The following table 4.44 is showing the the types that are available and are represented
for brevity in the specification as a generic and not an actualy SYCL type genvector.

143



Generic type name Description
genvector

cl::sycl::cl_float2, cl::sycl::

cl_float3, cl::sycl::cl_float4, cl::

sycl::cl_float8, cl::sycl::cl_float16

cl::sycl::cl_double2, cl::sycl::

cl_double3, cl::sycl::cl_double4,

cl::sycl::cl_double8, cl::sycl::

cl_double16

cl::sycl::cl_char2, cl::sycl::

cl_char3, cl::sycl::cl_char4, cl::

sycl::cl_char8, cl::sycl::cl_char16

cl::sycl::cl_uchar2, cl::sycl::

cl_uchar3, cl::sycl::cl_uchar4, cl::

sycl::cl_uchar8, cl::sycl::cl_uchar16

cl::sycl::cl_short2, cl::sycl::

cl_short3, cl::sycl::cl_short4, cl::

sycl::cl_short8, cl::sycl::cl_short16

cl::sycl::cl_ushort2, cl::sycl::

cl_ushort3, cl::sycl::cl_ushort4,

cl::sycl::cl_ushort8, cl::sycl::

cl_ushort16

cl::sycl::cl_uint2, cl::sycl::

cl_uint3, cl::sycl::cl_uint4, cl::

sycl::cl_uint8, cl::sycl::cl_uint16

cl::sycl::cl_int2, cl::sycl::cl_int3,

cl::sycl::cl_int4, cl::sycl::cl_int8

, cl::sycl::cl_int16

cl::sycl::cl_ulong2, cl::sycl::

cl_ulong3, cl::sycl::cl_ulong4, cl::

sycl::cl_ulong8, cl::sycl::cl_ulong16

cl::sycl::cl_long2, cl::sycl::

cl_long3, cl::sycl::cl_long4, cl::

sycl::cl_long8, cl::sycl::cl_long16

End of table
Table 4.44: Generic type name description for genVector, which serves
as a description for all valid types of OpenCL/SYCL interoperability vec-
tors.

swizzled_vec<T, out_dims> vec<T, in_dims>::swizzle<elem s1, elem s2...> () returns a tem-
porary object representing a swizzled set of the original vector’s member elements. The number of s1, s2 param-
eters is the same as out_dims. All s1, s2 parameters must be integer constants from zero to in_dims-1. The
swizzled vector may be used as a source (r-value) and destination (l-value). In order to enable the r-value and
l-value swizzling to work, this returns an intermediate swizzled-vector class, which can be implicitly converted to
a vector (r-value evaluation) or assigned to.

If the user #defines the macro SYCL_SIMPLE_SWIZZLES before #include <cl/sycl.hpp>, then swizzle
functions are defined for every combination of swizzles for 2D, 3D and 4D vectors only. The swizzle functions
take the form:
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swizzled_vec<T, out_dims> vec<T, in_dims>::xyzw();

swizzled_vec<T, out_dims> vec<T, in_dims>::rgba();

where, as above, the number of elem::x, elem::y, elem::z, elem::w or elem::r, elem::g, elem::b,
elem::a letters is the same as out_dims. All elem::x, elem::y, elem::z, elem::w or elem::r, elem::g,
elem::b, elem::a parameters must be letters from the sets first in_dims letters in “xyzw” or “rgba”.

Swizzle letters may be repeated or re-ordered. For example, from a vector containins integers [0, 1, 2, 3], vec.
xxzy() would return a vector of [0, 0, 2, 1].

Constructors Description
vec<T, dims>() Default construct a vector with element type

T and with dims dimensions by default con-
struction of each of its elements.

explicit vec<T, dims>(const T &arg) Construct a vector of element type T and
dims dimensions by setting each value to arg
by assignment.

vec<T, dims> (

const T &element_0,

const T &element_1,

. . . ,

const T &element_dims-1)

Construct a vector with element type T and
with dims dimensions out of dims initial val-
ues.

vec<T, dims>(const &vec<T, dims>) Construct a vector of element type T and
dims dimensions by copy from another sim-
ilar vector.

End of table
Table 4.45: Constructors for the vec class

Methods Description
size_t get_count() Returns the number of elements of the vec-

tor.
size_t get_size() Returns the size of the vector.
template<typename asDataT, int width>

vec<asDataT,width> as()const

Re-interpret the vec<dataT,numElements>
to vec<asDataT,width> type.

operator genvector()const Converts a vec<dataT,numElements> to the
corresponding OpenCL vector, generically
named openclVector1 of the same type and
width.

operator vec<dataT,numElements>(genvector clVector)

const

Assignment operator that takes an OpenCL
vector instance, which one of openclVector,
and converts it to the corresponding SYCL
vec<dataT,numElements> type.

vec<dataT, numElements> operator+(

const vec<dataT, numElements> &rhs)

Construct vector from the sum of the respec-
tive elements of the current vector and rhs.

vec<dataT, numElements> operator+(

const dataT &rhs)

Construct vector by adding rhs to each ele-
ment of the current vector.

Continued on next page
Table 4.46: Methods for the vec class

1This is not actual SYCL type, the genvector type is described in table 4.44
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Methods Description
vec<dataT, numElements> operator-(

const vec<dataT, numElements> &rhs)

Construct vector by subtracting the elements
of rhs from the respective elements of the
current vector.

vec<dataT, numElements> operator-(

const dataT &rhs)

Construct vector by subtracting rhs from
each element of the current vector.

vec<dataT, numElements> operator*(

const vec<dataT, numElements> &rhs)

Construct vector from the product of the ele-
ments of the current vector by the respective
elements of rhs.

vec<dataT, numElements> operator*(

const dataT &rhs)

Construct vector by multiplying each ele-
ment of the current vector by rhs.

vec<dataT, numElements> operator/(

const vec<dataT, numElements> &rhs)

Construct vector from the division of the el-
ements of the current vector by the elements
of rhs.

vec<dataT, numElements> operator/(

const dataT &rhs)

Construct vector by dividing each element
of the current vector by rhs.

vec<dataT, numElements> operator%(

const vec<dataT, numElements> &rhs)

Construct vector from the modulo of the ele-
ments of the current vector and the elements
of rhs.

vec<dataT, numElements> operator%(

const dataT &rhs)

Construct vector by calculating the remain-
der of each element of the current vector and
rhs.

vec<dataT, numElements> operator++(); Prefix increment by one for every element
of the vector.

vec<dataT, numElements> operator++(int); Post-fix increment by one for every element
of the vector.

vec<dataT, numElements> operator--(); Prefix decrement by one for every element
of the vector.

vec<dataT, numElements> operator--(int); Post-fix decrement by one for every element
of the vector.

vec<dataT, numElements> operator|(

const vec<dataT, numElements> &rhs)

Construct vector from the bitwise OR of the
respective elements of the current vector and
rhs.

vec<dataT, numElements> operator|(

const dataT &rhs)

Construct vector by applying the bitwise OR
of each element of the current vector and rhs.

vec<dataT, numElements> operatorˆ(

const vec<dataT, numElements> &rhs)

Construct vector from the bitwise AND of
the respective elements of the current vector
and rhs.

vec<dataT, numElements> operatorˆ(

const dataT &rhs)

Construct vector by applying the bitwise
AND of each element of the current vector
and rhs.

vec<dataT, numElements> operator&&(

const vec<dataT, numElements> &rhs)

Construct vector from the logical AND of
the respective elements of the current vector
and rhs.

vec<dataT, numElements> operator&&(

const dataT &rhs)

Construct vector by applying the logical
AND of each element of the current vector
and rhs.

Continued on next page
Table 4.46: Methods for the vec class
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Methods Description
vec<dataT, numElements> operator||(

const vec<dataT, numElements> &rhs)

Construct vector from the logical OR of the
respective elements of the current vector and
rhs.

vec<dataT, numElements> operator||(

const dataT &rhs)

Construct vector by applying the logical OR
of each element of the current vector and rhs.

vec<dataT, numElements> operator>>(

const vec<dataT, numElements> &rhs)

Construct vector from the outcome of shift-
ing right the respective elements of the cur-
rent vector by rhs.

vec<dataT, numElements> operator>>(

const dataT &rhs)

Construct vector by shifting right each ele-
ment of the current vector by rhs.

vec<dataT, numElements> operator<<(

const vec<dataT, numElements> &rhs)

Construct vector from the outcome of shift-
ing left the respective elements of the current
vector by rhs.

vec<dataT, numElements> operator<<(

const dataT &rhs)

Construct vector by shifting left each ele-
ment of the current vector by rhs.

vec<dataT, numElements> operator∼() Construct vector from the outcome of ap-
plying bitwise not to the respective elements
of the current vector.

vec<dataT, numElements> operator!() Construct vector from the outcome of ap-
plying logical not to the respective elements
of the current vector.

vec<dataT, numElements> operator+=(

const vec<dataT, numElements> &rhs)

Add each element of rhs to the respective el-
ement of the current vector in-place.

vec<dataT, numElements> operator+=(

const dataT &rhs)

Add rhs in-place to each element of the cur-
rent vector.

vec<dataT, numElements> operator-=(

const vec<dataT, numElements> &rhs)

Subtract each element of rhs from the re-
spective element of the current vector in-
place.

vec<dataT, numElements> operator-=(

const dataT &rhs)

Subtract rhs in-place from each element of
the current vector.

vec<dataT, numElements> operator*=(

const vec<dataT, numElements> &rhs)

Multiple each element of the current vector
by the respective element of rhs in-place.

vec<dataT, numElements> operator*=(

const dataT &rhs)

Multiple in-place each element of the cur-
rent vector by rhs.

vec<dataT, numElements> operator/=(

const vec<dataT, numElements> &rhs)

Divide each element of the current vector in-
place by the respective element of rhs.

vec<dataT, numElements> operator/=(

const dataT &rhs)

Divide in-place each element of the current
vector by rhs.

vec<dataT, numElements> operator|=(

const vec<dataT, numElements> &rhs)

Bitwise OR of each element of the current
vector in-place by the respective element of
rhs.

vec<dataT, numElements> operator|=(

const dataT &rhs)

Bitwise OR in-place each element of the cur-
rent vector by rhs.

vec<dataT, numElements> operatorˆ=(

const vec<dataT, numElements> &rhs)

Bitwise and of each element of the current
vector in-place by the respective element of
rhs.

Continued on next page
Table 4.46: Methods for the vec class
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Methods Description
vec<dataT, numElements> operatorˆ=(

const dataT &rhs)

Bitwise AND in-place each element of the
current vector by rhs.

vec<dataT, numElements> operator<<=(

const vec<dataT, numElements> &rhs)

Shift left each element of the current vector
in-place by the respective element of rhs.

vec<dataT, numElements> operator<<=(

const dataT &rhs)

Shift left in-place each element of the cur-
rent vector by rhs.

vec<dataT, numElements> operator>>=(

const vec<dataT, numElements> &rhs)

Shift right each element of the current vector
in-place by the respective element of rhs.

vec<dataT, numElements> operator>>=(

const dataT &rhs)

Shift right in-place each element of the cur-
rent vector by rhs.

vec<dataT, numElements> operator&=(

const vec<dataT, numElements> &rhs)

Bitwise and of each element of the current
vector in-place by the respective element of
rhs.

vec<dataT, numElements> operator&=(

const dataT &rhs)

Bitwise AND in-place each element of the
current vector by rhs.

vec<dataT, numElements> operator%=(

const vec<dataT, numElements> &rhs)

Remainder of each element of the current
vector in-place by the respective element of
rhs.

vec<dataT, numElements> operator%=(

const dataT &rhs)

Remainder in-place each element of the cur-
rent vector by rhs.

vec<dataT, numElements> &operator=(

const vec<dataT, numElements> &rhs)

Update each element of the current vector
with the respective element of rhs and return
a reference to the current vector.

vec<dataT, numElements> &operator=(

const dataT &rhs)

Update each element of the current vector
with rhs and return a reference to the current
vector.

bool operator==(const vec<dataT, numElements> &rhs)

const

Return true if all elements of rhs compare
equal to the respective element of the current
vector.

bool operator!=(const vec<dataT, numElements> &rhs)

const

Return true if any one element of rhs does
not compare equal to the respective element
of the current vector.

End of table
Table 4.46: Methods for the vec class
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5. Expressing parallelism through kernels

5.1 Command group

A command group in SYCL as it is defined in Section 2.3.1 consists of a kernel and all the commands for
queued data transfers in order for the kernel’s execution to be successful. The SYCL runtime will enqueue all the
OpenCL commands that are necessary for a kernel and all its data dependencies to be enqueued on the give queue.
The commands that enqueue a kernel and issue all the relevant data transfers for it, form the command group and
are defined as a C++ functor object.

The command group functor takes as a parameter an instance of the command group execution_handle 5.3
class, which encapsulates all the methods executed in the command group scope. This abstraction of the kernel
execution unifies the data with its processing and consequently allows more abstraction and flexibility in the
parallel programming models that can be implemented on top of SYCL.

The command group functor and the execution_handle class serves as an interface for the encapsulation of
command group scope. For SYCL 2.2 the execution handle class provides access to a broad feature set and
is parameterized in order to provide access to different kinds of SVM sharing and OpenCL 2.x capabilities. A
command group handler class instance is providing the execution capabilities of OpenCL 1.2 devices and features.
The existence of a memory model in OpenCL 2.x means that synchronization and atomics may have different
behavior depending the version and thus the execution mode is defined by these classes.

A kernel is defined in a command group either as a functor object or as a lambda function. All the device
data accesses are defined inside this group and any transfers are managed by the system. The rules for the data
transfers regarding device and host data accesses are better described in the data management section (4), where
buffers (4.2) and accessor (4.7) classes are described. In the case of shared virtual memory, for coarse grained
buffer sharing allocations, buffers using svm_allocator instances are used to make sure that all the allocations
are happening in the same context and are deallocated correctly. If fine grained virtual address space is available
in the system, the command group functor executed has the additional capabilities of either allowing raw pointers
allocated in the system being passed to the kernel, if system sharing is supported, or registering access to SVM
fine grained buffer allocations, in order to make them available to the kernel and tracking dependencies among
the kernels, to insure data consistency.

The command group functor has no static state and the commands are explicitly issued by an instance of the
execution_handle with the highest capabilities required for the correct execution of the functor. For example, if
a command group functor uses images that need to follow the core capabilities of creating memory objects for
OpenCL and SYCL allocations for the host devie, which are compatible with SYCL 1.2 functionality, but is also
using system sharing virtual address spaces for buffers, then the execution_handle needs to have the highest or
the most flexible capability available, the svm_fine_grain<svm_sharing::system,svm_atomics::enabled>.

It is possible to obtain events for the start of the command group functor, the kernel starting, and the command
group completing. These events are most useful for profiling, because safe synchronization in SYCL requires
synchronization on buffer availability, not on kernel completion. This is due to the fact that the it is not rigidly
specified which memory data are stored on kernel completion if buffers are used. The events are provided at the
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submission of the command group functor at the queue to be executed on. The exception to the above rule is
when the pointers used by the kernel are mapped to the device or are virtual shared pointer allocations between
the host and device. The latter, allow explicit processing of the allocations by the SYCL kernels and the synchro-
nization is happening on the pointers given. Effectively, the map_allocator and the svm_allocator are making
the synchronization of the SYCL buffers and allocations explicit to the pointers give to them.

A command group functor may fail to be enqueued at a queue, or it may fail to execute correctly. A user can
therefore supply a secondary queue when submitting a command group to the primary queue. If the SYCL
runtime fails to enqueue or execute a command group on a primary queue, it can attempt to run the command
group on the secondary queue. The circumstances in which it is, or is not, possible for a SYCL runtime to fall-
back from primary to secondary queue are undefined in the specification. One of the most important restrictions
for fall-back, is the availability of the requirements of the kernel being accessible from host, e.g. pipes are not
accessible from the host and as a result if one of the kernels in a large sequence of kernels that use pipes, fails,
there is no way for the SYCL runtime to return back to a consistent state of the pipe objects.

A device-side command group submits a device-side kernel as part of the nested parallelism support of OpenCL
2.x systems. The device command group functors do not enqueue memory commands, instead they encapsulate
the kernel execution and its enqueue policy as well as the device-side events. The device-side command groups
can only be submitted at device queues. An overview of nested parallelism is given at 5.5 and the full interface
and description in 7.3.

5.2 Ranges and index space identifiers

The data parallelism of the OpenCL execution model and its exposure through SYCL requires instantiation of a
parallel execution over a range of iteration space coordinates. To achieve this we expose types to define the range
of execution and to identify a given execution instance’s point in the iteration space.

To achieve this we expose six types: range, nd_range, id, item, nd_item, group and sub_group.

When constructing ids or ranges from integers, the elements are written in row-major format.

5.2.1 range class

range<int dimensions> is a 1D, 2D or 3D vector that defines the iteration domain of either a single work-group
in a parallel dispatch, or the overall dimensions of the dispatch. It can be constructed from integers. Constructors
for the range class are described in Table 5.1, methods in Table 5.2 and global operators on ranges in Table 5.3.

An overview of the interface provided for the range class is the following, for the full interface please refer toB.3.

1 namespace cl {

2 namespace sycl {

3 template <size_t dimensions>

4 struct range {

5 range(const range<dimensions> &);

6
7 range(size_t x); // When dimensions==1

8 range(size_t x, size_t y); // When dimensions==2

9 range(size_t x, size_t y, size_t z); // When dimensions==3
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10
11 size_t get(int dimension) const;

12 size_t &operator[](int dimension);

13
14 range &operator=(const range &rhs);

15 range &operator+=(const range &rhs);

16 range &operator*=(const range &rhs);

17 range &operator/=(const range &rhs);

18 range &operator%=(const range &rhs);

19 range &operator>>=(const range &rhs);

20 range &operator<<=(const range &rhs);

21 range &operator&=(const range &rhs);

22 range &operatorˆ=(const range &rhs);

23 range &operator|=(const range &rhs);

24
25 size_t size() const;

26 };

27 } // sycl

28 } // cl

Constructors Description
range(const range<dimensions>&) Construct a range by deep copy from an-

other range.
range(size_t x) Construct a 1D range with value x. Only

valid when for one dimension.
range(size_t x, size_t y) Construct a 2D range with value x, y. Only

valid when dimensions is 2.
range(size_t x, size_t y, size_t z) Construct a 3D range with value x, y, z.

Only valid when dimensions is 3.
End of table

Table 5.1: Constructors for the range class.

Methods Description
size_t get(int dimension)const Return the value of the specified dimension

of the range.
size_t &operator[](int dimension) Return the l-value of the specified dimen-

sion of the range.
range &operator=(const range &rhs) Assign each element of range from its corre-

sponding element of rhs.
range &operator+=(const range &rhs) Elementwise addition of rhs to the current

range. Returns reference to updated range.
range &operator*=(const range &rhs) Elementwise multiplication of the current

range by rhs. Returns reference to updated
range.

range &operator/=(const range &rhs) Elementwise division of the current range
by rhs. Returns reference to updated range.

Continued on next page
Table 5.2: Methods for the range class.
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Methods Description
range &operator%=(const range &rhs) Elementwise division of the current range

by rhs, updating with the division remainder.
Returns reference to updated range.

range &operator>>=(const range &rhs) Elementwise arithmetic right shift of the
current range by rhs. Returns reference to
updated range.

range &operator<<=(const range &rhs) Elementwise logical left shift of the current
range by rhs. Returns reference to updated
range.

range &operator&=(const range &rhs) Elementwise bitwise AND of the current
range by rhs. Returns reference to updated
range.

range &operatorˆ=(const range &rhs) Elementwise bitwise exclusive OR of the
current range by rhs. Returns reference to
updated range.

range &operator|=(const range &rhs) Elementwise bitwise OR of the current
range by rhs. Returns reference to updated
range.

size_t size()const; Return the size of the range computed as
dimension0*...*dimensionN.

End of table
Table 5.2: Methods for the range class.

Non-member functions Description
template <size_t dimensions>

bool operator ==(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges for elementwise equal-
ity. If all dimensions are equal, the ranges
are equal.

template <size_t dimensions>

bool operator !=(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges for elementwise in-
equality. If any dimension is not equal, the
ranges are not equal.

template <size_t dimensions>

bool operator >(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges such that a is lexically
greater than b. Returns true if for any di-
mension n, a[n] > b[n] and for all m > n,
a[m] == b[m].

template <size_t dimensions>

bool operator <(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges such that a is lexically
less than b. Returns true if for any dimension
n, a[n] < b[n] and for all m > n, a[m] ==
b[m].

template <size_t dimensions>

bool operator >=(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges such that a is lexically
less than or equal to b. Returns true if a == b
or a > b.

Continued on next page
Table 5.3: Non-member functions for the range class.
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Non-member functions Description
template <size_t dimensions>

bool operator <=(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges such that a is lexically
less than or equal to b. Returns true if a == b
or a < b.

template <int dimensions>

range<dimensions> operator *(

range<dimensions> a,

range<dimensions> b)

Multiply each element of a by its respective
element of b and return a range constructed
from the resulting values.

template <int dimensions>

range<dimensions> operator /(

range<dimensions> dividend,

range<dimensions> divisor)

Divide each element of dividend by its re-
spective element element in divisor and
return a range constructed of the resulting
value.

template <int dimensions>

range<dimensions> operator +(

range<dimensions> a,

range<dimensions> b)

Add each element of a to its respective el-
ement of b and return a range constructed
from the resulting values.

template <int dimensions>

range<dimensions> operator -(

range<dimensions> a,

range<dimensions> b)

Subtract each element of b from its respec-
tive element of a and return a range con-
structed from the resulting values.

template <size_t dimensions>

range<dimensions> operator %(

const range<dimensions> &a,

const range<dimensions> &b)

Divide each element of b from its respective
element of a and return a range constructed
from the remainders.

template <size_t dimensions>

range<dimensions> operator <<(

const range<dimensions> &a,

const range<dimensions> &b)

Logically shift each element of a left by its
matching element of b and return a range
constructed from the shifted values.

template <size_t dimensions>

range<dimensions> operator >>(

const range<dimensions> &a,

const range<dimensions> &b)

Arithmetically shift each element of a right
by its matching element of b and return a
range constructed from the shifted values.

template <size_t dimensions>

range<dimensions> operator &(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the bitwise AND of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

range<dimensions> operator |(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the bitwise OR of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

range<dimensions> operator &&(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the logical AND of
each element of a with the equivalent ele-
ment of b.

Continued on next page
Table 5.3: Non-member functions for the range class.
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Non-member functions Description
template <size_t dimensions>

range<dimensions> operator ||(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the logical OR of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

range<dimensions> operator ˆ(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the bitwise XOR of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

range<dimensions> operator *(

const size_t &a,

const range<dimensions> &b)

Construct a range from the multiplication of
each element of b with a.

template <size_t dimensions>

range<dimensions> operator *(

const range<dimensions> &a,

const size_t &b)

Construct a range from the multiplication of
each element of a with b.

template <size_t dimensions>

range<dimensions> operator /(

const size_t &a,

const range<dimensions> &b)

Construct a range from the division of each
element of a by b.

template <size_t dimensions>

range<dimensions> operator /(

const range<dimensions> &a,

const size_t &b)

Construct a range from the division of each
element of a with b.

template <size_t dimensions>

range<dimensions> operator +(

const size_t &a,

const range<dimensions> &b)

Construct a range from the addition of each
element of b with a.

template <size_t dimensions>

range<dimensions> operator +(

const range<dimensions> &a,

const size_t &b)

Construct a range from the addition of each
element of a with b.

template <size_t dimensions>

range<dimensions> operator -(

const size_t &a,

const range<dimensions> &b)

Construct a range from the subtraction of
each element of b with a.

template <size_t dimensions>

range<dimensions> operator -(

const range<dimensions> &a,

const size_t &b)

Construct a range from the subtraction of
each element of a with b.

template <size_t dimensions>

range<dimensions> operator %(

const size_t &a,

const range<dimensions> &b)

Construct a range from the modulo of each
element of b with a.

Continued on next page
Table 5.3: Non-member functions for the range class.
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Non-member functions Description
template <size_t dimensions>

range<dimensions> operator %(

const range<dimensions> &a,

const size_t &b)

Construct a range from the modulo of each
element of a with b.

template <size_t dimensions>

range<dimensions> operator <<(

const size_t &a,

const range<dimensions> &b)

Construct a range from shiffting left of each
element of b with a.

template <size_t dimensions>

range<dimensions> operator <<(

const range<dimensions> &a,

const size_t &b)

Construct a range from shiffting left of each
element of a with b.

template <size_t dimensions>

range<dimensions> operator >>(

const size_t &a,

const range<dimensions> &b)

Construct a range from shiffting right of
each element of b with a.

template <size_t dimensions>

range<dimensions> operator >>(

const range<dimensions> &a,

const size_t &b)

Construct a range from shiffting right of
each element of a with b.

End of table
Table 5.3: Non-member functions for the range class.

5.2.2 nd_range class

1 namespace cl {

2 namespace sycl {

3 template <int dimensions>

4 struct nd_range {

5 nd_range(const nd_range<dimensions> &);

6
7 nd_range(range<dims> globalSize, range<dims> localSize,

8 id<dims> offset = id<dims>());

9
10 range<dims> get_global() const;

11 range<dims> get_local() const;

12 range<dims> get_group() const;

13 id<dims> get_offset() const;

14 };

15 } // namespace sycl

16 } // namespace cl

nd_range<int dimensions> defines the iteration domain of both the work-groups and the overall dispatch. To
define this the nd_range comprises two ranges: the whole range over which the kernel is to be executed, and
the range of each work group. Constructors for the nd range class are described in Table 5.4 and methods in
Table 5.5.
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Constructors Description
nd_range(const nd_range<dimensions> &) Construct an nd_range by deep copy from

another ndrange.
nd_range<dimensions>(

range<dimensions> globalSize,

range<dimensions> localSize)

id<dimensions> offset = id<dimensions>())

Construct an nd_range from the local and
global constituent ranges as well as an op-
tional offset. If the offset is not provided it
will default to no offset.

End of table
Table 5.4: Constructors for the nd_range class.

Methods Description
range<dimensions> get_global()const Return the constituent global range.
range<dimensions> get_local()const Return the constituent local range.
range<dimensions> get_group()const Return a range representing the number of

groups in each dimension. This range would
result from globalSize/localSize as pro-
vided on construction.

id<dimensions> get_offset()const Return the constituent offset.
End of table

Table 5.5: Methods for the nd_range class.

5.2.3 id class

id<int dimensions> is a vector of dimensions that is used to represent an index into a global or local range.
It can be used as an index in an accessor of the same rank. The [n] operator returns the component n as an
size_t. Constructors for the id class are described in Table 5.6, methods in Table 5.7 and global operators on ids
in Table 5.8

An overview of the interface provided for the id class is the following, for the full interface please refer to B.4.

1 namespace cl {

2 namespace sycl {

3 template <size_t dimensions>

4 struct id {

5 id(size_t x); // When dimensions==1

6 id(size_t x, size_t y); // When dimensions==2

7 id(size_t x, size_t y , size_t z); // When dimensions==3

8 id(const id<dimensions> & rhs);

9 id(const range<dimensions> & rangeSize);

10 id(const item<dimensions> & rhs);

11
12 size_t get(int dimension) const;

13 size_t &operator[](int dimension);

14 operator size_t(); // When dimensions==1

15
16 id &operator=(const id & rhs);

17 id &operator+=(const id & rhs);
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18 id &operator*=(const id & rhs);

19 id &operator/=(const id & rhs);

20 id &operator%=(const id & rhs);

21 id &operator>>=(const id & rhs);

22 id &operator<<=(const id & rhs);

23 id &operator&=(const id & rhs);

24 id &operatorˆ=(const id & rhs);

25 id &operator|=(const id & rhs);

26 };

27 } // namespace sycl

28 } // namespace cl

Constructors Description
id(size_t x) Construct a 1D id with value x. Only valid

when dimensions is 1.
id(size_t x, size_t y) Construct a 1D id with value x, y. Only

valid when dimensions is 2.
id(size_t x, size_t y, size_t z) Construct a 1D id with value x, y, z. Only

valid when dimensions is 3.
id(const id &) Construct an id by deep copy.
id(const range &r) Construct an id from the dimensions of a

range.
id(const item &it) Construct an id from it.get global id().

End of table
Table 5.6: Constructors for the id class.

Methods Description
size_t get(int dimension)const Return the value of the id for dimension

dimension.
size_t &operator[](int dimension)const Return a reference to the requested dimen-

sion of the id object.
operator size_t() Conversion operator so that a id<1> can be

used as a plain size_t.
id &operator=(const id &rhs) Elementwise assignment of id rhs to current

id.
id &operator+=(const id &rhs) Elementwise addition of rhs to the current

id. Returns reference to updated id.
id &operator*=(const id &rhs) Elementwise multiplication of the current id

by rhs. Returns reference to updated id.
id &operator/=(const id &rhs) Elementwise division of the current id by

rhs. Returns reference to updated id.
id &operator%=(const id &rhs) Elementwise division of the current id by

rhs, updating with the division remainder.
Returns reference to updated id.

id &operator>>=(const id &rhs) Elementwise arithmetic right shift of the
current id by rhs. Returns reference to up-
dated id.

Continued on next page
Table 5.7: Methods for the id class.
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Methods Description
id &operator<<=(const id &rhs) Elementwise logical left shift of the current

id by rhs. Returns reference to updated id.
id &operator&=(const id &rhs) Elementwise bitwise AND of the current id

by rhs. Returns reference to updated id.
id &operatorˆ=(const id &rhs) Elementwise bitwise exclusive OR of the

current id by rhs. Returns reference to up-
dated id.

id &operator|=(const id &rhs) Elementwise bitwise OR of the current id
by rhs. Returns reference to updated id.

End of table
Table 5.7: Methods for the id class.

Non-member functions Description
template <size_t dimensions>

bool operator ==(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids for elementwise equality.
If all dimensions are equal, the ids are equal.

template <size_t dimensions>

bool operator !=(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids for elementwise inequality.
If any dimension is not equal, the ids are not
equal.

template <size_t dimensions>

bool operator >(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids such that a is lexically
greater than b. Returns true if for any di-
mension n, a[n] > b[n] and for all m > n,
a[m] == b[m].

template <size_t dimensions>

bool operator <(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids such that a is lexically less
than b. Returns true if for any dimension n,
a[n] < b[n] and for all m > n, a[m] == b[m].

template <size_t dimensions>

bool operator >=(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids such that a is lexically less
than or equal to b. Returns true if a == b or
a > b.

template <size_t dimensions>

bool operator <=(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids such that a is lexically less
than or equal to b. Returns true if a == b or
a < b.

template <size_t dimensions>

id<dimensions> operator *(

const id<dimensions> &a,

const id<dimensions> &b)

Multiply each element of a by its respective
element of b and return an id constructed
from the resulting values.

template <size_t dimensions>

id<dimensions> operator /(

const id<dimensions> &dividend,

const id<dimensions> &divisor)

Divide each element of dividend by its re-
spective element element in divisor and re-
turn an id constructed of the resulting value.

Continued on next page
Table 5.8: Non-member functions for the id class.
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Non-member functions Description
template <size_t dimensions>

id<dimensions> operator +(

const id<dimensions> &a,

const id<dimensions> &b)

Add each element of a to its respective ele-
ment of b and return an id constructed from
the resulting values.

template <size_t dimensions>

id<dimensions> operator -(

const id<dimensions> &a,

const id<dimensions> &b)

Subtract each element of b from its respec-
tive element of a and return an id constructed
from the resulting values.

template <size_t dimensions>

id<dimensions> operator %(

const id<dimensions> &a,

const id<dimensions> &b)

Divide each element of b from its respec-
tive element of a and return an id constructed
from the remainders.

template <size_t dimensions>

id<dimensions> operator <<(

const id<dimensions> &a,

const id<dimensions> &b)

Logically shift each element of a left by its
matching element of b and return an id con-
structed from the shifted values.

template <size_t dimensions>

id<dimensions> operator >>(

const id<dimensions> &a,

const id<dimensions> &b)

Arithmetically shift each element of a right
by its matching element of b and return an id
constructed from the shifted values.

template <size_t dimensions>

id<dimensions> operator &(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the bitwise AND of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

id<dimensions> operator |(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the bitwise OR of each
element of a with the equivalent element of
b.

template <size_t dimensions>

id<dimensions> operator ˆ(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the bitwise XOR of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

id<dimensions> operator &&(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the logical AND of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

id<dimensions> operator ||(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the logical OR of each
element of a with the equivalent element of
b.

template <size_t dimensions>

id<dimensions> operator *(

const size_t &a,

const id<dimensions> &b)

Construct an id from the multiplication of a
with each element of a.

Continued on next page
Table 5.8: Non-member functions for the id class.
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Non-member functions Description
template <size_t dimensions>

id<dimensions> operator *(

const id<dimensions> &a,

const size_t &b)

Construct an id from the multiplication of
each element of a with b.

template <size_t dimensions>

id<dimensions> operator +(

const size_t &a,

const id<dimensions> &b)

Construct an id from the addition of a with
each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator +(

const id<dimensions> &a,

const size_t &b)

Construct an id from the addition of each el-
ement of a with b.

template <size_t dimensions>

id<dimensions> operator -(

const size_t &a,

const id<dimensions> &b)

Construct an id from the subtraction of a
with each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator -(

const id<dimensions> &a,

const size_t &b)

Construct an id from the subtraction of each
element of a with b.

template <size_t dimensions>

id<dimensions> operator /(

const size_t &a,

const id<dimensions> &b)

Construct an id from the division of a with
each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator /(

const id<dimensions> &a,

const size_t &b)

Construct an id from the division of each el-
ement of a with b.

template <size_t dimensions>

id<dimensions> operator %(

const size_t &a,

const id<dimensions> &b)

Construct an id from the modulo of a with
each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator %(

const id<dimensions> &a,

const size_t &b)

Construct an id from the modulo of each el-
ement of a with b.

template <size_t dimensions>

id<dimensions> operator <<(

const size_t &a,

const id<dimensions> &b)

Construct an id from shifting left awith each
equivalent element of b.

template <size_t dimensions>

id<dimensions> operator <<(

const id<dimensions> &a,

const size_t &b)

Construct an id from shifting left each ele-
ment of a with b.

Continued on next page
Table 5.8: Non-member functions for the id class.
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Non-member functions Description
template <size_t dimensions>

id<dimensions> operator >>(

const size_t &a,

const id<dimensions> &b)

Construct an id from shifting right a with
each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator >>(

const id<dimensions> &a,

const size_t &b)

Construct an id from shifting right each ele-
ment of a with b.

End of table
Table 5.8: Non-member functions for the id class.

5.2.4 item class

item<int dimensions identifies an instance of the functor executing at each point in a range<> passed to a
parallel_for call, or passed to a parallel_for_work_item call. It encapsulates enough information to identify
the work-item’s global or local ID, the range of possible values, and the offset of the range, if provided to the
parallel_for. Instances of the item<> class are not user-constructible and are passed by the runtime to each
instance of the functor. Methods for the item<> class are described in Table 5.9.

1 namespace cl {

2 namespace sycl {

3 template <int dimensions>

4 struct item {

5 item() = delete;

6
7 item(const item &rhs) = default;

8
9 item(id &id);

10
11 id<dimensions> get() const;

12
13 size_t get(int dimension) const;

14
15 size_t &operator[](int dimension);

16
17 range<dimensions> get_range() const;

18
19 id<dimensions> get_offset() const;

20
21 size_t get_linear_id() const;

22
23 range<dimensions> get_enqueued_local_range() const;

24
25 size_t get_enqueued_local_range(int dimension) const;

26
27 group<dimensions> get_group() const;

28
29 size_t get_group(int) const;

30
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31 size_t get_group_linear_id() const;

32
33 id<dimensions> get_num_groups() const;

34
35 size_t get_num_groups(int) const;

36
37 sub_group get_sub_group() const;

38
39 size_t get_num_sub_groups() const;

40
41 size_t get_max_sub_group_size() const;

42
43 size_t get_enqueued_num_sub_groups() const;a

44
45
46
47 };

48 } // namespace sycl

49 } // namespace cl

Methods Description
id<dimensions> get()const Return the constituent local or global id<>

representing the work-item’s position in the
iteration space.

size_t get(int dimension)const Return the requested dimension of the con-
stituent id<> representing the work-item’s
position in the iteration space.

size_t &operator[](int dimension) Return the constituent id<> l-value repre-
senting the work-item’s position in the itera-
tion space in the given dimension.

range<dimensions> get_range()const Returns a range<> representing the dimen-
sions of the range of possible values of the
item.

id<dimensions> get_offset()const Returns an id<> representing the n-
dimensional offset provided to the
parallel_for and that is added by the
runtime to the global-ID of each work-item,
if this item represents a global range. For an
item representing a local range of where no
offset was passed this will always return an
id of all 0 values.

size_t get_linear_id()const Return the linearized ID in the item’s range.
Computed as the flatted ID after the offset is
subtracted.

group<dimensions> get_group()const Return the constituent group group repre-
senting the work-group’s position within the
overall nd_range.

Continued on next page
Table 5.9: Methods for the item class.
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Methods Description
size_t get_group(int dimension)const Return the constituent element of the group

id representing the work-group’s position
within the overall nd_range in the given
dimension.

size_t get_group_linear_id()const Return the flattened id of the current work-
group.

id<dimensions> get_num_groups()const Returns the number of groups in the
nd_range.

size_t get_num_groups(int dimension)const Return the number of groups for dimension
in the nd_range.

sub_group<dimensions> get_sub_group()const Return the sub group for the given kernel.
size_t get_num_sub_groups()const Return the number of subgroups per dimen-

sion.
range<dimensions> get_global_range()const Returns a range<> representing the dimen-

sions of the nd_range<>
range<dimensions> get_local_range()const Returns a range<> representing the dimen-

sions of the current work-group.
id<dimensions> get_offset()const Returns an id<> representing the n-

dimensional offset provided to the construc-
tor of the nd_range<> and that is added by
the runtime to the global-ID of each work-
item.

End of table
Table 5.9: Methods for the item class.

5.2.5 nd_item class

nd_item<int dimensions, opencl22> identifies an instance of the functor executing at each point in an nd_-
range<int dimensions> passed to a parallel_for_ndrange call. It encapsulates enough information to identify
the work-item’s local and global IDs, the work-groups ID and also provides barrier functionality to synchronize
work-items. Instances of the nd_item<int dimensions> class are not user-constructible and are passed by the
runtime to each instance of the functor. Methods for the nd_item<int dimensions> class are described in
Table 5.10.

The SYCL 2.2 version of the nd_item<> class has also the capability of retrieving the sub group information from
the kernel.

1 namespace cl {

2 namespace sycl {

3 template <int dimensions>

4 struct nd_item {

5 nd_item() = delete;

6
7 nd_item(const nd_item &) = default;

8
9 id<dimensions> get_global() const;

10
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11 size_t get_global(int) const;

12
13 size_t get_global_linear_id() const;

14
15 id<dimensions> get_local() const;

16
17 size_t get_local(int) const;

18
19 size_t get_local_linear_id() const;

20
21 group<dimensions> get_group() const;

22
23 size_t get_group(int) const;

24
25 size_t get_group_linear_id() const;

26
27 id<dimensions> get_num_groups() const;

28
29 size_t get_num_groups(int) const;

30
31 sub_group get_sub_group() const;

32
33 size_t get_num_sub_groups() const;

34
35 size_t get_max_sub_group_size() const;

36
37 size_t get_enqueued_num_sub_groups() const;a

38
39 range<dimensions> get_global_range() const;

40
41 range<dimensions> get_local_range() const;

42
43 id<dimensions> get_offset() const;

44
45 nd_range<dimensions> get_nd_range() const;

46
47 range<dimensions> get_enqueued_local_range() const;

48
49 size_t get_enqueued_local_range(int dimension) const;

50
51 void barrier(access::fence_space flag = access::fence_space::global_and_local) const;

52
53 void barrier(group, access::fence_space flag, access::memory_scope = access::memory_scope::

work_group ) const;

54
55 void barrier(sub_group, access::fence_space flag, access::memory_scope = access::memory_scope::

sub_group ) const;

56 };

57 } // namespace sycl

58 } // namespace cl

Methods Description
size_t get_work_dim Returns the number of dimensions in use.

Continued on next page
Table 5.10: Methods for the nd_item class.
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Methods Description
id<dimensions> get_global()const Return the constituent global id represent-

ing the work-item’s position in the global it-
eration space.

size_t get_global(int dimension)const Return the constituent element of the global
id representing the work-item’s position
in the global iteration space in the given
dimension.

size_t get_global_linear_id()const Return the flattened id of the current work-
item after subtracting the offset.

id<dimensions> get_local()const Return the constituent local id representing
the work-item’s position within the current
work-group.

size_t get_local(int dimension)const Return the constituent element of the lo-
cal id representing the work-item’s position
within the current work-group in the given
dimension.

size_t get_local_linear_id()const Return the flattened id of the current work-
item within the current work-group.

group<dimensions> get_group()const Return the constituent group group repre-
senting the work-group’s position within the
overall nd_range.

size_t get_group(int dimension)const Return the constituent element of the group
id representing the work-group’s position
within the overall nd_range in the given
dimension.

size_t get_group_linear_id()const Return the flattened id of the current work-
group.

id<dimensions> get_num_groups()cons Returns the number of groups in the
nd_range.

size_t get_num_groups(int dimension)const Return the number of groups for dimension
in the nd_range.

sub_group<dimensions> get_sub_group()const Return the sub group for the given kernel.
size_t get_num_sub_groups()const Return the number of subgroups per dimen-

sion
size_t get_max_sub_group_size()const Returns the maximum size of a subgroup

within the dispatch. This value will be in-
variant for a given set of dispatch dimen-
sions and a kernel object compiled for a
given device.

range<dimensions> get_global_range()const Returns a range representing the dimen-
sions of the nd_range.

range<dimensions> get_local_range()const Returns a range representing the dimensions
of the current work-group.

Continued on next page
Table 5.10: Methods for the nd_item class.
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Methods Description
id<dimensions> get_offset()const Returns an id<> representing the n-

dimensional offset provided to the construc-
tor of the nd_range<> and that is added by
the runtime to the global-ID of each work-
item.

nd_range<dimensions> get_nd_range()const Returns the nd_range<> of the current ex-
ecution.

void barrier(

access::fence_space flag=

access::fence_space::global_and_local)const

Executes a barrier with memory ordering on
the local address space, global address space
or both based on the value of flag. The cur-
rent work-item will wait at the barrier un-
til all work-items in the current work-group
have reached the barrier. In addition the bar-
rier performs a fence operation ensuring that
all memory accesses in the specified address
space issued before the barrier complete be-
fore those issued after the barrier.

End of table
Table 5.10: Methods for the nd_item class.

5.2.6 group class

The group<int dimensions> is passed to each instance of the functor execution a parallel_for_work_group
in a hierarchical parallel execution. The group encapsulates all functionality required to represent a particular
group within a parallel execution. It is not user-constructable. Methods for the group<> class are described in
Table 5.11.

The local range stored in the group class will be provided either by the programmer, when it is passed as an
optional parameter to parallel_for_work_group, or by the runtime system when it selects the optimal work-group
size. This allows the developer to always know how many concurrent work-items are active in each executing
work-group, even through the abstracted dimensions of the parallel_for_work_item loops.

1 namespace cl {

2 namespace sycl {

3 enum class work_group_op: unsigned int { add, min, max };

4
5
6 template <int dimensions>

7 struct group {

8 group(const group &rhs) = default;

9
10 id<dimensions> get() const;

11
12 size_t get(int dimension) const;

13
14 range<dimensions> get_global_range() const;

15
16 size_t get_global_range(int) const;
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17
18 range<dimensions> get_group_range() const;

19
20 size_t get_group_range(int) const;

21
22 size_t operator[](int) const;

23
24 size_t get_linear() const;

25
26 cl_bool all(cl_bool);

27
28 cl_bool any(cl_bool);

29
30 template<typename T, int dimensions>

31 T broadcast(T a, id<dimensions> local_id);

32
33 template<typename T, work_group_op Op>

34 T reduce(T x);

35
36 template<typename T, work_group_op Op>

37 T scan_exclusive(T x);

38
39 template<typename T, work_group_op Op>

40 T scan_inclusive(T x);

41
42 };

43 } // sycl

44 } // cl

Methods Description
id<dimensions> get() Return an id representing the index of the

group within the nd_range for every dimen-
sion.

size_t get(int dimension)const Return the index of the group in the given
dimension.

range<dimensions> get_global_range() Return the constituent global range.
size_t get_global_range(int dimension) Return element dimension from the con-

stituent global range.
range<dimensions> get_group_range() Return a range<> representing the dimen-

sions of the current group. This local range
may have been provided by the programmer,
or chosen by the runtime.

size_t get_group_range(int dimension) Return element dimension from the con-
stituent group range.

size_t operator[](int dimension)const Return the index of the group in the given
dimension within the nd_range<>.

size_t get_linear()const Get a linearized version of the group ID.
cl_bool all(cl_bool predicatel) Evaluates predicate for all work-items in

the work-group and returns true if predicate
evaluates to true for all work-items in the
work-group.

Continued on next page
Table 5.11: Methods for the group class.
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Methods Description
cl_bool any(cl_bool predicate) Evaluates predicate for all work-items in

the work-group and returns true if predicate
evaluates to true for any work-items in the
work-group.

template<typename T, int dimensions>

T broadcast(T a, id<dimensions> local_id)

Broadcast the value of a for work-item iden-
tified by local id to all work-items in the
work-group. local id must be the same value
for all work-items in the work-group.

template<typename T, work_group_op Op>

T reduce(T x)

Return result of reduction operation speci-
fied by Op for all values of x specified by
work-items in a work-group.

template<typename T, work_group_op Op>

T scan_exclusive(T x)

Do an exclusive scan operation specified by
<op> of all values specified by work-items
in the work-group. The scan results are re-
turned for each work-item.
The scan order is defined by increasing 1D
linear global ID within the work-group.

template<typename T, work_group_op Op>

T scan_inclusive(T x)

Do an inclusive scan operation specified by
Op of all values specified by work-items in
the work-group. The scan results are re-
turned for each work-item.
The scan order is defined by increasing 1D
linear global ID within the work-group.

End of table
Table 5.11: Methods for the group class.

5.2.7 sub_group class

The sub_group is a vector of work-items in a nd range parallel execution of a kernel. It is passed to each in-
stance of the functor execution a parallel_for_sub_group in a hierarchical parallel execution. The sub group
encapsulates all functionality required to represent a particular sub group within a parallel execution. It is not
user-constructable. Methods for the sub_group<> class are described in Table5.12.

The number of sub-groups are defined by the template parameter provided to the parallel_for_work_group or
the parallel_for variants that take an item or nd_item.

1 namespace cl {

2 namespace sycl {

3 struct sub_group {

4 sub_group(const sub_group &rhs) = default;

5
6 id<1> get() const;

7
8 id<1> get_local() const;

9
10 range<1> get_range() const;

11
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12 cl_bool all(cl_bool);

13
14 cl_bool any(cl_bool);

15
16 template<typename T>

17 T broadcast(T a, id<1> local_id);

18
19 template<typename T, work_group_op Operand>

20 T reduce(T x);

21
22 template<typename T, work_group_op Operand>

23 T scan_exclusive(T x);

24
25 template<typename T, work_group_op Operand>

26 T scan_inclusive(T x);

27
28
29 };

30 } // sycl

31 } // cl

Methods Description
id<1> get() Returns the sub-group id, which can be

from 0 to the number of groups.
id<1> get_local() Returns the unique work-item id within the

current sub-group.
The mapping of the local id of the work
group to the id of the sub group will be in-
variant for the lifetime of the workgroup.

range<1> get_range() Returns the number of work-items in
the sub-group. This value is no more
than the maximum sub-group size and is
implementation-defined based on a combi-
nation of the compiled kernel and the dis-
patch dimensions. This will be a constant
value for the lifetime of the sub-group.

cl_bool all(cl_bool predicate) Evaluates predicate for all work-items in the
sub-group and returns a non-zero value if
predicate evaluates to non-zero for all work-
items in the sub-group.

cl_bool any(cl_bool predicate) Evaluates predicate for all work-items in
the sub-group and returns a non-zero value
if predicate evaluates to non-zero for any
work-items in the sub-group.

template<typename T>

T broadcast(T x, id<1> local_id)

Broadcast the value of x for work-item
identified by sub_group_local_id (value
returned by get_sub_group_local_id

) to all work-items in the sub-group.
sub_group_local_id must be the same
value for all work-items in the sub-group.

Continued on next page
Table 5.12: Methods for the sub_group class.
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Methods Description
template<typename T, work_group_op Op>

T reduce(T x)

Return result of reduction operation speci-
fied by Op for all values of x specified by
work-items in a sub-group.

template<typename T, work_group_op Op>

T scan_exclusive(T x)

Do an exclusive scan operation specified by
Op of all values specified by work-items in a
sub-group. The scan results are returned for
each work-item.
The scan order is defined by increasing 1D
linear global id within the sub-group.

template<typename T, work_group_op Op>

T scan_inclusive(T x)

Do an inclusive scan operation specified by
Op of all values specified by work-items in a
sub-group. The scan results are returned for
each work-item.
The scan order is defined by increasing 1D
linear global ID within the sub-group.
The inclusive scan operation takes a bi-
nary operator Op with an identity I and
n (where n is the size of the work-
group) elements [a0, a1, ... an-1] and
returns [a0, (a0 Op a1), ... (a0 Op a1
Op ... Op an-1)]. Op can be either add,
min or max, the results for each case are:
• If Op = add, the identity matrix I is 0.
• If Op = min, the identity matrix I is

– INT MAX, for int
– UINT MAX, for unsigned int
– LONG MAX, for long long int
– ULONG MAX, for unsigned

long long int
– +INF, for floating point types.

• If Op = max, the identity matrix I is
– INT MIN, for int
– 0, for unsigned int
– LONG MIN, for long long int
– 0, for unsigned long long int
– -INF, for floating point types.

End of table
Table 5.12: Methods for the sub_group class.

5.3 execution_handle class

A SYCL command group encapsulates all the commands that will be enqueueing work on a SYCL device. SYCL
provides a variety of OpenCL platforms and allows the usage of all core and optional features from OpenCL 1.2 to
OpenCL 2.x. The developer can exploit all the different features provided in a seamless modern C++ environment
by utilizing the corresponding execution mode handler for the feature set they want to exploit per command group.
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In this way, the SYCL device compiler and runtime can have all the necessary information in order to enqueue
correctly the kernel and any memory reads and writes but also provide diagnostics for mismatching features.

The execution capabilities of the command group are exposed through the execution_handle class. The parame-
terization of this class makes it possible to overide the default behaviour of the command group functor, which for
SYCL 2.2 cover all the core features for SYCL 2.2 and targets core functionality of the OpenCL 2.2 runtime. This
class ensures backwards compatibility with SYCL 1.2, as the handler class is not an alias to execution_handle<
opencl12>. With this change there is no source or behavioural changes to the existing SYCL 1.2 applications.

The execution_handle class is passed by reference as an argument to the lambda or functor object of the submit
function, and can only be constructed by the SYCL runtime. The execution_handle object is used for memory
management but also for invoking kernels on the host or the device. An instance is given to accessors in order
to provide access to non-shared memory allocations. Alternatively, it sets arguments for a pre-compiled OpenCL
kernel. Finally, an of execution_handle is able to register access to a shared virtual memory pointer.

The parallel_for functions described in5.4.1,5.4.2 are providing the interface of the kernel invocations in the
different execution modes.

execution_handle modes supported by the system Description

using handler = execution_handle<opencl12>;

The command group handler type alias,
supports OpenCL 1.2 execution model and
the compilation flags for the kernels are go-
ing to be cl=1.2.
All the OpenCL 1.2 features, can be used
with the higher version, however, due to dif-
ferences to the memory models applied be-
tween OpenCL 1.2 and OpenCL 2.2, the be-
havior of synchronization mechanisms may
differ. In the case of using the type opencl12
and features that are only available in the

SYCL 2.2 specification, then errors may oc-
cur due to incompatibility with earlier ver-
sions of OpenCL devices.

execution_handle<opencl22> The command group execution_handle
class supports the OpenCL 2.2 core func-

tionality supported by SYCL 2.2.
The default execution mode is equivalent
to execution_handler<opencl22>. In this
case all OpenCL 2.x atomics are allowed
and the memory model is following the
OpenCL 2.0 memory model. In this case,
the hierarchical parallel for has three nested
levels, work-groups, sub-groups and work-
items.
In this command group execution mode, it
is allowed to use coarse-grain SVM (Shared
Virtual Memory) and it also compatible with
all SYCL synchronization rules. OpenCL
2.2 atomics are also allowed in this mode.
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execution_handle modes supported by the system Description
using exec_coarse = execution_handle<

svm_coarse_grain>;

In this command group execution mode, the
usage of coarse grain buffer sharing of the
shared virtual memory feature of OpenCL
2.0 platforms is defined. The user can use
SYCL buffer/accessor mechanism for mem-
ory storage and management in a shared vir-
tual memory context. In this mode, inter-
operability with different SYCL devices and
systems is ensured in the same manner as
SYCL buffers and images. The synchro-
nization methods apply as in the SYCL 2.2
memory model.
In this case the buffer constructor needs to
used an svm_allocator instance with the
context were the allocations will be done
and used.
Please note that all SVM allocations need to
be created inside the SVM context.

using exec_fg_buffer = execution_handle<

svm_fine_grain<svm_sharing::buffer,svm_atomics::none

>>;

This command group execution mode is
only available on devices with fine grain
sharing capability in buffer scope. There are
no SVM atomics available for synchroniza-
tion for this mode. All the pointers that are
allocated using the svm_allocator.
All svm memory allocations need to be reg-
istered for access in the command group so
that they can be used within a SYCL kernel.
This method is register_access(T*) and is
available only for fine grained SVM mode.
Please note that all SVM allocations need to
be in the same context and any non-SVM al-
locations still need to use the accessor ob-
jects within the kernel.

using exec_fga_buffer = execution_handle<

svm_fine_grain<svm_sharing::buffer,svm_atomics::

supported>>;

This command group execution mode is
only available on devices with fine grain
sharing capability in buffer scope and atom-
ics enabled. There are SVM atomics avail-
able for synchronization for this mode. All
the pointers that are allocated using the
svm_allocator.
All svm memory allocations need to be reg-
istered for access in the command group
so that they can be used within a SYCL
kernel. This method is register_access<
access::mode>(T*) and is available only for
fine grained SVM mode.
Please note that all SVM allocations need to
be in the same context and any non-SVM al-
locations still need to use the accessor ob-
jects within the kernel.
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execution_handle modes supported by the system Description
using exec_fg_system = execution_handle<

svm_fine_grain<svm_sharing::system,svm_atomics::none

>>;

This command group execution mode is
only available on devices with fine grain
sharing capability in host and device mem-
ory scope. There are no SVM atomics avail-
able for synchronization for this mode. All
the pointers allocated in the system using
any allocation method valid for the whole of
the host’s virtual memory can be used inside
the command group.

using exec_fga_system = execution_handle<

svm_fine_grain<svm_sharing::system,svm_atomics::

supported>>;

This command group execution mode is
only available on devices with fine grain
sharing capability in host and device mem-
ory scope. There are SVM atomics available
for synchronization for this mode. All the
pointers allocated in the system using any
allocation for the whole of the host’s virtual
memory, can be used inside the command
group.

device_handle The device_handle is used in the case of
enqueueing kernels from device kernels us-
ing device queue. This is a separate class
that is constructable on device-only and is
providing device-side scheduling function-
ality and access.

1 namespace cl {

2 namespace sycl {

3
4 enum class svm_sharing : int { buffer, system };

5 enum class svm_atomics : int { none, supported };

6
7 struct opencl12;

8 struct opencl22;

9 struct svm_coarse_grain;

10 template<svm_sharing S=svm_sharing::buffer, svm_atomics A=svm_atomics::none>

11 struct svm_fine_grain;

12
13
14 class handler_event {

15 public:

16 event get_kernel() const;

17 event get_complete() const;

18 event get_end() const;

19 }

20 /* Default execution capabilities are the core

21 * capabilities for OpenCL 2.x systems and no svm,

22 * which is defined by using the type opencl22.

23 */

24 template <typename E= opencl22>

25 class execution_handle {

26 private:
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27 // implementation defined constructor

28 execution_handle(___unespecified___);

29
30 public:

31 execution_handler(const execution_handler& rhs);

32
33 void set_arg(int arg_index, accessor acc_obj);

34
35 template <typename T>

36 void set_arg(int arg_index, T scalar_value);

37
38 // In the case of a functor with a globally visible name

39 // the template parameter:"typename kernelName" can be ommitted

40 // and the kernelType can be used instead.

41 template <typename KernelName, class KernelType>

42 void single_task(KernelType);

43
44 // In the case of a functor with a globally visible name

45 // the template parameter:"typename kernelName" can be ommitted

46 // and the kernelType can be used instead.

47 template <typename KernelName, class KernelType>

48 void parallel_for(range<dimensions> numWorkItems, KernelType);

49
50 // In the case of a functor with a globally visible name

51 // the template parameter:"typename kernelName" can be ommitted

52 // and the kernelType can be used instead.

53 template <typename KernelName, class KernelType>

54 void parallel_for(range<dimensions> numWorkItems,

55 id<dimensions> workItemOffset, KernelType);

56
57 // In the case of a functor with a globally visible name

58 // the template parameter:"typename kernelName" can be ommitted

59 // and the kernelType can be used instead.

60 template <typename KernelName, class KernelType>

61 void parallel_for(nd_range<dimensions> executionRange, KernelType);

62
63 // In the case of a functor with a globally visible name

64 // the template parameter:"typename kernelName" can be ommitted

65 // and the kernelType can be used instead.

66 template <typename KernelName, class KernelType>

67 void parallel_for(nd_range<dimensions> numWorkItems,

68 id<dimensions> workItemOffset, KernelType);

69
70 // In the case of a functor with a globally visible name

71 // the template parameter:"typename kernelName" can be ommitted

72 // and the kernelType can be used instead.

73 template <class KernelName, class WorkgroupFunctionType>

74 void parallel_for_work_group(range<dimensions> numWorkGroups,

75 WorkgroupFunctionType);

76
77 // In the case of a functor with a globally visible name

78 // the template parameter:"typename kernelName" can be ommitted

79 // and the kernelType can be used instead.

80 template <class KernelName, class WorkgroupFunctionType>

81 void parallel_for_work_group(range<dimensions> numWorkGroups,
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82 range<dimensions> workGroupSize,

83 WorkgroupFunctionType);

84
85 void single_task(kernel syclKernel);

86
87 void parallel_for(range<dimensions> numWorkItems, kernel syclKernel);

88
89 void parallel_for(nd_range<dimensions> ndRange, kernel syclKernel);

90
91
92 template <typename T, access::mode AccessMode, std::enable_if<(

93 std::is_same(E,svm_fine_grain), T>::type * = nullptr>

94 void register_access(T *);

95
96 };

97
98 } // namespace sycl

99 } // namespace cl

Constructors Description
template<typename ExecCap=opencl22core>

execution_handler(const execution_handler &rhs)

Copy constructor of a command group exe-
cution handler.

End of table
Table 5.14: Constructors for the command group execution_handler
class

Methods Description
void set_arg(int index, accessor & accObj) Set kernel args for an OpenCL kernel which

is used through the SYCL/OpenCL interop
interface. The index value specifies which
parameter of the OpenCL kernel is being
set and the accessor object, which OpenCL
buffer or image is going to be given as kernel
argument.

template <typename T>

void set_arg(int index, accessor & accObj)

Set kernel args for an OpenCL kernel which
is used through the SYCL/OpenCL interop-
erability interface. The index value speci-
fies which parameter of the OpenCL kernel
is being set and the accessor object, which
OpenCL buffer or image is going to be given
as kernel argument.

Continued on next page
Table 5.15: Methods for the execution_handle class
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Methods Description
template <typename T, std::enable_if<(

is_same(E,svm_fine_grain),

T>::type * = nullptr>

void register_access(T *)

Method for adding a fine grained buffer vir-
tual memory pointer allocation to the com-
mand group, so that it can be available for
usage by the SYCL kernel. This is only nec-
essary for fine grained buffer SVM mode,
since the arguments to the kernel have to be
explicitly set as global memory pointer allo-
cations for the OpenCL device.

template <typename KernelName, class KernelType>

void single_task(KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor. If it is a
lambda function or the functor type is glob-
ally visible there is no need for the developer
to provide a kernel name type (typename
KernelName) for it, as described in 5.4

template <typename KernelName, class KernelType>

void parallel_for(

range<dimensions> numWorkItems, KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor, for the speci-
fied range and given an id or item for index-
ing in the indexing space defined by range.
If it is a lambda function or if the functor
type is globally visible there is no need for
the developer to provide a kernel name type
(typename KernelName) for it, as described
in detail in 5.4

template <typename KernelName, class KernelType>

void parallel_for(

range<dimensions> numWorkItems,

id<dimensions> workItemOffset, KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor, for the speci-
fied range and offset and given an id or item
for indexing in the indexing space defined
by range. If it is a lambda function or the
if the functor type is globally visible there is
no need for the developer to provide a kernel
name type (typename KernelName) for it, as
described in detail in 5.4

template <typename KernelName, class KernelType>

void parallel_for(

nd_range<dimensions> executionRange, KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor, for the speci-
fied nd_range and given an nd_item for in-
dexing in the indexing space defined by the
nd_range. If it is a lambda function or the
if the functor type is globally visible there is
no need for the developer to provide a kernel
name type (typename KernelName) for it, as
described in detail in 5.4

Continued on next page
Table 5.15: Methods for the execution_handle class
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Methods Description
template <typename KernelName, class KernelType>

void parallel_for(

nd_range<dimensions> numWorkItems

id<dimensions> workItemOffset, KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor, for the speci-
fied nd_range and given an nd_item for in-
dexing in the indexing space defined by the
nd_range. If it is a lambda function or the
if the functor type is globally visible there is
no need for the developer to provide a kernel
name type (typename KernelName) for it, as
described in detail in 5.4

template <class KernelName, class

WorkgroupFunctionType>

void parallel_for_work_group(

range<dimensions> numWorkGroups,

WorkgroupFunctionType)

Hierarchical kernel invocation method of
a kernel defined as a lambda encod-
ing the body of each work-group to
launch. May contain multiple kernel built-
in parallel_for_work_item functions rep-
resenting the execution on each work-item.
Launches num_work_groups work-groups of
runtime-defined size. Described in detail
in 5.4.

template <class KernelName, class

WorkgroupFunctionType>

void parallel_for_work_group(

range<dimensions> numWorkGroups,

range<dimensions> workGroupSize,

WorkgroupFunctionType)

Hierarchical kernel invocation method of
a kernel defined as a lambda encod-
ing the body of each work-group to
launch. May contain multiple kernel built-
in parallel_for_work_item functions rep-
resenting the execution on each work-item.
Launches num_work_groups work-groups of
work_group_size work-items each. De-
scribed in detail in 5.4.

void single_task(kernel syclKernel) Kernel invocation method of a kernel de-
fined as pointer to a kernel object, described
in detail in 5.4

void parallel_for(

range<dimensions> numWorkItems,

kernel sycl_kernel)

Kernel invocation method of a kernel de-
fined as pointer to a kernel object, for the
specified range and given an id or item for
indexing in the indexing space defined by
range, described in detail in 5.4

void parallel_for(

nd_range<dimensions> ndRange,

kernel syclKernel)

Kernel invocation method of a kernel de-
fined as pointer to a kernel object, for the
specified nd_range and given an nd_item for
indexing in the indexing space defined by
the nd_range, described in detail in 5.4

End of table
Table 5.15: Methods for the execution_handle class

In the case of OpenCL/SYCL interoperability the execution_handle class provides a method for setting kernel
arguments for a kernel that is built from the OpenCL host interface or other libraries, like CLU. The developer
may have already set the kernel arguments or may choose to use this method, keeping in mind that this method is
not thread safe, as per the OpenCL specification.
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5.4 SYCL functions for invoking kernels

Kernels can be invoked as single tasks, basic data-parallel kernels, OpenCL-style NDRanges in work-groups, or
SYCL hierarchical parallelism.

Kernels can be invoked from command groups submitted on host or on device. The kernels that are submitted on
device, are using nested command groups, which can have different nd-ranges and are going to be executed after
the completion of the body of the kernel that submits them. All of the kernel invocations are allowed when nested
parallelism is used.

Each function takes a kernel name template parameter. The kernel name must be a datatype that is unique for
each kernel invocation. If a kernel is a functor, and its type is globally visible, then the kernel’s functor type will
be automatically used as the kernel name and so the user does not need to supply a name. If the kernel function is
a lambda function, then the user must manually provide a kernel name to enable linking between host and device
code to occur.

All the functions for invoking kernels are methods of the command group cl::sycl::execution_handle class 5.3,
which is used to encapsulate all the methods provided in a command group scope.

5.4.1 single_task invoke

SYCL provides a simple interface to enqueue a kernel that will be sequentially executed on an OpenCL device.
Only one instance of the kernel will be executed. This interface is useful a primitive for more complicated parallel
algorithms, as it can easily create a chain of sequential tasks on an OpenCL device with each of them managing
its own data transfers.

This function can only be called inside a command group using the command group execution_handle object
created by the runtime. Any accessors that are used in a kernel should be defined inside the same command group.

Local accessors are disallowed for single task invocations.

1 auto command_group_lambda = [&](execution_handle &cgh) {

2 auto an_accessor = a_buffer.get_access<access::mode::read_write>(cgh);

3 cgh.single_task<class kernel_name>(

4 [=] () {

5 // [kernel code]

6 an_accessor[0]++;

7 }));

8 };

9
10 class afunctor {

11 accessor<int, 1, access::mode::read_write, access::target::global_buffer> ptr;

12
13 public:

14 afunctor(accessor<int, 1, access::mode::read_write,

15 access::target::global_buffer> p)

16 : ptr(p) {}

17
18 void operator()() {

19 // [kernel code]
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20 an_accessor[0]++;

21 }

22 }; /*

**************************************************************************************************

*/

23
24 operator()() auto command_group_functor = [&](execution_handle &cgh) {

25 auto an_accessor = a_buffer.get_access<access::mode::read_write>(cgh);

26 cgh.single_task(afunctor(ptr));

27 }

For single tasks, the kernel method takes no parameters, as there is no need for indexing classes in a unary index
space.

5.4.2 parallel_for invoke

The parallel_for interface offers the ability to the SYCL users to declare a kernel and enqueue it as a parallel
execution over a range of instances. There are three variations to the parallel for interface and they depend on
the index space that the developer would like the kernels to be executed on and the feature set available in those
kernels.

In the simplest case, the developer only needs to provide the number of work-items the kernel will use in total and
the system will use the best range available to enqueue it on a device. In this case the developer, may only need
to know the index over the total range that he has provided, by providing the number of work-items that will be
executing on. This type of kernels will be using the parallel for invocation with a range type to provide the range
of the execution and an id to provide the index within that range. Whether it is a lambda function or a kernel
functor the parameter to the invocation function need to be id.

An example of a parallel for using a lambda function for a kernel invocation in this case of parallel for is the
following.

1 class MyKernel;

2
3 myQueue.submit( [&](execution_handle & cmdgroup)

4 {

5 auto acc=myBuffer.get_access<read_write>();

6
7 cmdgroup.parallel_for<class MyKernel>(range<1>(workItemNo),

8 [=] (id<1> index)

9 {

10 acc[index] = 42.0f;

11 });

12 });

Local accessors are disallowed for the basic parallel_for invocations described above.

Another case, which is based on this very basic parallel for, is the case where the developer would like to let the
runtime choose the index space that is matching best the range provided but would like to use information given
the scheduled interface instead of the general interface. This is enabled by using the class item as an indexing
class in the kernel, and of course that would mean that the kernel invocation would match the range with the item
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parameter to the kernel.

In this case, there is also the case where the developer may want to execute functions on a work-group or sub-
group level. The developer in this invocation lets the SYCL runtime decide what is the preferred work-group
range for the device the kernel is enqueued on. The functions item::get_group() and item::get_sub_group
allow the developer to get access to the group and sub-group functionality.

The kernels in this kernel invocation can only be uniform and no barrier functionality is available.

1 class MyKernel;

2
3 myQueue.submit([&](execution_handle & cmdgroup)

4 {

5 auto acc=myBuffer.get_access<read_write>();

6
7 cmdgroup.parallel_for<class MyKernel>(range<1>(workItemNo),

8 [=] (item<1> myItem)

9 {

10 size_t index = item.get_global();

11 acc[index] = 42.0f;

12 });

13 });

The following two examples show how a kernel functor can be launched over a 3D grid, 3 elements in each
dimension. In the first case work-item IDs range from 0 to 2 inclusive, in the second case work-item IDs they run
from 1 to 3.

1 auto command_group = [&](execution_handle & cgh) {

2 cgh.parallel_for<class example_kernel1>(

3 range<3>(3,3,3), // global range

4 [=] (item<3> it) {

5 //[kernel code]

6 });

7 };

8 auto command_group2 = [&](execution_handle & cgh) {

9 cgh.parallel_for<class example_kernel2>(

10 range<3>(3,3,3), // global range

11 id<3>(1,1,1), // offset

12 [=] (item<3> it) {

13 //[kernel code]

14 });

15 };

The last case of a parallel for invocation enables low-level functionality of work-items, work-groups and sub-
groups. This becomes valuable, when an execution requires groups of work-items that communicate and synchro-
nize. These are exposed in SYCL through parallel_for (nd_range,...) and the nd_item class, which provides
all the functionality of OpenCL for an NDRange. In this case, the developer needs to define the nd_range that
the kernel will execute on in order to have fine grained control of the enqueueing of the kernel. This varia-
tion of parallel for expects an nd_range, specifying both local and global ranges, defining the global number of
work-items and the number in each cooperating work-group. The resulting functor or lambda is passed an nd_-
item<i>nstance making all the information available as well as barrier primitives to synchronize the work-items
in the group or sub group.
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The following example shows how sixty-four work-items may be launched in a three-dimensional grid with four
in each dimension and divided into sixteen work-groups. Each group of work-items synchronizes with a barrier.

1 auto command_group = [&](execution_handle& cgh) {

2 cgh.parallel_for<class example_kernel>(

3 nd_range(range(4, 4, 4), range(2, 2, 2)), [=](nd_item<3> item) {

4 //[kernel code]

5 // Internal synchronization

6 item.barrier(access::fence_space::global);

7 //[kernel code]

8 });

9 };

Work-items can also be grouped in sub-groups within a work-group. In that case, a sub_group5.2.7 is a vector of
work-items and depending on the capabilities of the device, they can have independent forward progress. They
can be synchronized using barriers and also work-item functions can also be applied to them.

Optionally, in any of these variations of parallel for invocations, the developer may also pass an offset. An offset
is an instance of the id class added to the identifier for each point in the range.

In all of these case the underlying nd range will be created and the kernel defined as a lambda or as a kernel
functor will be created and enqueued as part of the command group.

Another case for the parallel_for invocation is to be used inside a device command group, where the kernel
is enqueued from a device kernel. In this case of nested parallelism, which is available from OpenCL 2.0 and
onwards, the kernels are enqueued by a parent kernel and the accessors or svm pointers can be only the ones
already defined in the main command group that was defined on host. This kernel invocation is only available
through a device_handle class which is constructed and made available from a host command group handler of
type execution_handler<opencl22>.

5.4.3 Hierarchical invoke

The hierarchical parallel kernel execution interface provides the same functionality as is available from the
nd_range interface but exposed differently. The hierarchical parallelism approach models the four levels of paral-
lelism which are available in the OpenCL execution model through three nested parallel for function scopes. The
first level of the hierarchy, or the outer parallel for is a function call to parallel_for_work_group and is within
the work-group level. This is semantically equivalent to executing the body once per work-group. The second
level of the hierarchy, which is optional, but could be useful for optimization, is the sub-group level. The function
scope of the parallel_for_sub_group function is defining what is going to be executed on a vector of work-items.
A third nested level is the parallel_for_work_item which is executing the body of the lambda or functor object
per work-item. In the case of nested parallelism, paralle_for_work_group can be called in device command
group, however, there cannot be a command group that is scheduled in any of the levels of the hierarchical. It is
undefined behavior, if a device command group is scheduled from within the hierarchical api. However, it valid
to call a the hierarchical api from a device command group.

To show the different levels of parallelism, we show the previous example, using hierarchical api. To execute
the same sixty-four work-items in sixteen work-groups that we saw in the previous example, we execute an outer
parallel_for_work_group call to create the groups. parallel_for_work_group is parameterized by the number
of work-groups, such that the size of each group is chosen by the runtime, or by the number of work-groups and
number of work-items for users who need more control.
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The body of the outer parallel_for_work_group call consists of a lambda function or function object. The body
of this function object contains code that is executed only once for the entire work-group. If the code has no
side-effects and the compiler heuristic suggests it is more efficient to do so this code will be executed for each
work-item.

Within this region any variable declared will have the semantics of local memory, shared between all work-items
in the work-group. If the compiler can prove that an array of such variables is accessed only by a single work-item
throughout the lifetime of the work-group, for example if access is directly from the id of the work-item with no
transformation, then it can allocate the data in private memory or registers instead.

To guarantee use of private per-work-item memory, the private_memory class can be used to wrap the data. This
class very simply constructs private data for a given group across the entire group. The id of the current work-item
is passed to any access to grab the correct data.

The private_memory class has the following interface:

1 template <typename T, int Dimensions>

2 class private_memory {

3 public:

4 // Construct based directly off the number of work-items

5 private_memory(const group<Dimensions> &);

6
7 // Access the instance for the current work-item

8 T &operator()(const item<Dimensions> &id);

9 };

Private memory is allocated per underlying work-item, not per iteration of the parallel_for_work_item loop.
The number of instances of a private memory object is only under direct control if a work-group size is passed
to the parallel_for_work_group call. If the underlying work-group size is chosen by the runtime the number
of private memory instances is opaque to the program. Explicit private memory declarations should therefore be
used with care and with a full understanding of which instances of a parallel_for_work_item loop will share the
same underlying variable.

Private memory will be reused modulo the underlying work-group size in each dimension. For example, a 2x2
work-group will allocate 4 private memory variables and repeat them three times horizonally and twice vertically
in a 6x4 parallel_for_work_item loop.

Also within the lambda body can be a sequence of calls to parallel_for_work_item. At the edges of these inner
parallel executions the work-group synchronizes. As a result the pair of parallel_for_work_item calls in the
code below is equivalent to the parallel execution with a barrier in the earlier example.

1 auto command_group = [&](execution_handle & cgh) {

2 // Issue 8 work-groups of 8 work-items each

3 cgh.parallel_for_work_group<class example_kernel>(

4 range<3>(2, 2, 2), range<3>(2, 2, 2), [=](group<3> myGroup) {

5
6 //[workgroup code]

7 int myLocal; // this variable shared between workitems

8 // this variable will be instantiated for each work-item separately

9 private_memory<int> myPrivate(myGroup);

10
11 // Issue parallel sets of work-items each sized using the runtime default
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12 parallel_for_work_item(myGroup, [=](item<3> myItem) {

13 //[work-item code]

14 myPrivate(myItem) = 0;

15 });

16
17 // Carry private value across loops

18 parallel_for_work_item(myGroup, [=](item<3> myItem) {

19 //[work-item code]

20 output[myGroup.get_local_range()*myGroup.get()+myItem] =

21 myPrivate(myItem);

22 });

23 //[workgroup code]

24 });

25 });

It is valid to use more flexible dimensions of the work-item loops. In the following example we issue 8 work-
groups but let the runtime choose their size, by not passing a work-group size to the parallel_for_work_group
call. The parallel_for_work_item loops may also vary in size, with their execution ranges unrelated to the
dimensions of the work-group and the compiler generating an appropriate iteration space to fill the gap.

1 auto flexible_command_group = [&](execution_handle & cgh) {

2 // Issue 1000 work-groups of 8 work-items each

3 cgh.parallel_for_work_group<class example_kernel>(

4 range<3>(2, 2, 2), [=](group<3> myGroup) {

5
6 // Launch a set of 8 work-items as requested in the parallel_for_work_group launch

7 parallel_for_work_item(myGroup, [=](item<3> myItem) {

8 //[work-item code]

9 });

10 // Launch 512 iterations that will map to the underlying 8

11 parallel_for_work_item(myGroup, range<3>(8, 8, 8), [=](item<3> myItem) {

12 //[work-item code]

13 });

14 //[workgroup code]

15 });

16 });

This interface offers a more intuitive way to tiling parallel programming paradigms. In summary, the hierarchi-
cal model allows a developer to distinguish the execution at work-group level and at work-item level using the
parallel_for_workgroup and the nested parallel_for_work_item functions. It also provides this visibility
to the compiler without the need for difficult loop fission such that a host execution may be more efficient.

5.5 Nested parallelism

Nested parallelism is a form of parallelism where more work can be sumbitted to the device, with the scope of the
submission to be the SYCL host command group. All of the subsequent device command groups that are submit-
ted from the parent command group kernel will be enqueued on a device_queue and executed asynchronously in
relation to the parent kernel. However, the parent SYCL command group kernel will not be complete until all the
child device command groups have been completed. Any errors that occur during the device command groups
will be reported back from the parent command group and the SYCL host queue that it is sumbitted to.
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The device command group, is submitted to a device_queue and enqueues commands using the device-side class
device_handle. The latter supports all the kernel invocation methods described above, however, it is not supported
by the accessor class and does not have the method register_access(), as those methods can only be called on
the host. The SYCL runtime does not schedule kernels on the device-side and as a result only the SYCL kernel
library classes and functions can be used for scheduling SYCL kernels on the device.

The SYCL kernel library classes and functionality is described in 7.3

A simple example of a nested kernel invocation is the following:

1 cl::sycl::capability_selector selectDevice(

2 cl::sycl::exec_capabilities::opencl22);

3
4 cl::sycl::queue q(selectDevice, asyncHandler);

5 cl::sycl::buffer<int, 1> aBuffer(aHostPtr, cl::sycl::range<1>(numElements));

6 cl::sycl::buffer<int, 1> anotherBuffer(aHostPtr,

7 cl::sycl::range<1>(numElements2));

8
9 q.submit([&](cl::sycl::execution_handle<opencl22>& cgh) {

10 auto anAcc = aBuffer.get_access<cl::sycl::access::mode::read_write>(cgh);

11 auto anotherAcc =

12 anotherBuffer.get_access<cl::sycl::access::mode::read_write>(cgh);

13
14 cgh.single_task<class device_side_enqueue>(

15 cl::sycl::range<1>(1), [=](cl::sycl::id<1> index) {

16 anAcc[index]++;

17
18 device_queue dq = q.get_default_queue();

19 auto event = dq.submit(

20 enqueue_policy::wait_kernel, [&](cl::sycl::device_handle& dh) {

21 int error = dh.parallel_for(

22 range<1>(numElements2),

23 [=](cl::sycl::id<1> idx) { anotherAcc[idx]--; });

24 });

25 });

26 });

5.6 Kernel class

The kernel class is an abstraction of a host kernel object in SYCL. For the most common case, the kernel object
will contain the compiled version of a kernel invoked inside a command group using one of the parallel interface
functions as described in 5.4. The SYCL runtime will create a kernel object when it needs to enqueue the kernel
on a command queue.

In the case where a developer would like to pre-compile a kernel or compile and link it with an existing program,
then the kernel object will be created and contain that kernel using the program class, as defined in 5.7. An
both the above cases, the developer cannot instantiate a kernel object but can instantiate an object a functor
class that he could use or create a functor from a kernel method using C++11 features. The kernel class object
needs a parallel_for(...) invocation or an explicit compile_and_link() call through the program class, for this
compilation of the kernel to be triggered.
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Finally, a kernel class instance may encapsulate an OpenCL kernel object that was created using the OpenCL C
interface and the arguments of the kernel already set. In this case since the developer is providing the cl kernel
object, this constructor is allowed to be used by the developer.

The kernel class also provides the interface for getting information from a kernel object on host. The kernel
information descriptor interface is described in C.5 and the description is in the table 5.18.

1 namespace cl {

2 namespace sycl {

3 class kernel {

4 private:

5 friend class program;

6
7 // The default object is not valid because there is no

8 // program or cl_kernel associated with it

9 kernel();

10
11 public:

12 kernel(const kernel& rhs);

13
14 kernel(cl_kernel openclKernelObejct);

15
16 cl_kernel get() const;

17
18 context get_context() const;

19
20 program get_program() const;

21
22 template <info::kernel param>

23 typename info::param_traits<info::kernel, param>::type

24 get_info() const;

25 };

26 } // namespace sycl

27 } // namespace cl

Constructor Description
kernel (cl_kernel openclKernelObj) Constructor for SYCL kernel class given an

OpenCL kernel object with set arguments,
valid for enqueuing. Retains a reference to
the cl_kernel object. Caller should release
the passed cl_kernel object when it is no
longer needed.

kernel (const kernel& rhs) Copy constructor for kernel class.
End of table

Table 5.16: kernel class constructors
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Methods Description
cl_kernel get() Return the OpenCL kernel object for this

kernel. Retains a reference to the returned
cl_kernel object. Caller should release it
when finished.

context get_context() Return the context that this kernel is defined
for.

program get_program() Return the program that this kernel is part
of.

template <info::kernel param>

typename info::param_traits<

info::kernel, param>::type

get_info()const

Query information from the kernel object
using the info::kernel_info descriptor.

End of table
Table 5.17: Methods for the kernel class.

Kernel Descriptors Return type Description
info::kernel::function_name string_class Return the kernel function name.
info::kernel::num_args cl_uint Return the number of arguments to the ex-

tracted OpenCL C kernel.
info::kernel::reference_count cl_uint Return the reference count of the kernel object.
info::kernel::attributes string_class Return any attributes specified using the

__attribute__ qualifier with the kernel func-
tion declaration in the program source.

End of table
Table 5.18: Kernel class information descriptors.

5.7 Program class

A program contains one or more kernels and any functions or libraries necessary for the program’s execution. A
program will be enqueued inside a context and each of the kernels will be enqueued on a corresponding device.
Program class can be really useful for pre-compiling kernels and enqueuing them on multiple command groups.
It also allows usage of functions define in OpenCL kernels from SYCL kernels via compiling and linking them in
the same program object.

The program class provides an interface for getting information from a program object. The program information
descriptor interface is described in C.6 and the description is in the table 5.21.

1 namespace cl {

2 namespace sycl {

3 class program {

4 public:

5 // Create an empty program object

6 explicit program(const context& context);

7
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8 // Create an empty program object

9 program(const context& context, vector_class<device> deviceList);

10
11 // Create a program object from a cl_program object

12 program(const context& context, cl_program clProgram);

13
14 // Create a program by linking a list of other programs

15 program(vector_class<program> programList, string_class linkOptions = "");

16
17 program(const program& rhs);

18
19 ∼program();

20
21 /* This obtains a SYCL program object from a SYCL kernel name

22 and compiles it ready to link */

23 template <typename kernelT>

24 void compile_from_kernel_name(string_class compileOptions = "");

25
26 /* This obtains a SYCL program object from a SYCL kernel name

27 and builds it ready-to-run */

28 template <typename kernelT>

29 void build_from_kernel_name(string_class compileOptions = "");

30
31 void link(string_class linkingOptions = "");

32
33 // Get a kernel from a given Name (Functor)

34 template <typename kernelT>

35 kernel get_kernel<kernelT>() const;

36
37 template <info::program param>

38 typename info::param_traits<info::program, param>::type

39 get_info() const;

40
41 vector_class<vector_class<char>> get_binaries() const;

42
43 vector_class<::size_t> get_binary_sizes() const;

44
45 vector_class<device> get_devices() const;

46
47 string_class get_build_options() const;

48
49 cl_program get() const;

50
51 bool is_linked() const;

52 };

53 } // namespace sycl

54 } // namespace cl

Constructors Description
explicit program (

const context & context)

Constructs an empty program object for con-
text for all associated devices with context.

Continued on next page
Table 5.19: Constructors for the program class
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Constructors Description
program (

const context & context,

vector_class<device> deviceList)

Constructs an empty program object for all
the devices of device list associated with the
context.

program (

vector_class<program> programList,

string_class linkOptions="")

Constructs a program object for a list of
programs and links them together using the
linkOptions.

program (

const context & context,

cl_program clProgram)

Constructs a program object for an OpenCL
program object. Retains a reference to the
returned cl_program object. Calling context
should release it when finished.

program(const program& rhs); Copy constructor for the program class.
End of table

Table 5.19: Constructors for the program class

Methods Description
template<typename kernelT>

void compile_from_kernel_name(

string_class compileOptions="")

Compile the kernel defined to be of type ker-
neT into the program, with compile options
given by compile options”. The kernel can
be defined either as a functor of type kerneT
or as a lambda function which is named with
the class name kernelT. The program object
will need to be linked later.

template<typename kernelT>

void build_from_kernel_name(

string_class compileOptions="")

Build the kernel defined to be of type ker-
neT into the program, with compile options
given by compile options”. The kernel can
be defined either as a functor of type kerneT
or as a lambda function which is named with
the class name kernelT.

void link(string_class linking_options = "") Link all compiled programs that are added
in the program class.

template<info::program param>

typename info::param_traits<

info::program, param>::type

get_info()

Retrieve information of the built OpenCL
program object.

vector_class<char*> get_binaries()const Return the array of compiled binaries as-
sociated with the program, as compiled for
each device.

vector_class<device> get_devices()const Return the list of devices this program was
constructed against

string_class get_build_options()const Retrieve the set of build options of the pro-
gram. A program is created with one set of
build options.

cl_program get()const Return the OpenCL program object for this
program. Retains a reference to the returned
cl_program object. Caller should release it
when finished.

End of table
Table 5.20: Methods for the program class
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Program Descriptors Return type Description
info::program::reference_count cl_uint Return the reference count of the kernel object.
info::program::context cl_context Return the context object this program is asso-

ciated with.
info::program::devices vector_class<

cl_device_id>

Return set of devices this program is built
against.

End of table
Table 5.21: Program class information descriptors.

Programs allow the developers to provide their own compilation and linking options and also compile and link on
demand one or multiple kernels. Compiler options allowed are described in the OpenCL specification [1, p. 145,
§ 5.6.4] and the linker options are described in [1, p. 148, § 5.6.5].

5.8 Defining kernels

In SYCL functions that are executed in parallel on a SYCL device are referred to as kernel functions. A kernel
containing such a kernel function is enqueued on a device queue in order to be executed on that particular device.
The return type of the kernel function is void, and all kernel accesses between host and device are defined using
the accessor class 4.7.

There are three ways of defining kernels, defining them as functors, as C++11 lambda functions or as OpenCL
cl_kernel objects. However, in the case of OpenCL kernels, the developer is expected to have created the kernel
and set the kernel arguments.

5.8.1 Defining kernels as functors

A kernel can be defined as a C++ functor. In this case, the kernel function is the function defined as operator()
in the normal C++ functor style. These functors provide the same functionality as any C++ functors, with the
restriction that they need to follow C++11 standard layout rules. The kernel function can be templated via tem-
plating the kernel functor class. The operator() function may take different parameters depending on the data
accesses that defined for the specific kernel.For details on restrictions for kernel naming issues, please refer to 9.2.

In the following example we define a trivial functor with no outputs and no accesses of host or pre-allocated
device data. The kernel is executed on a unary index space for the specific example, since its using single task at
its invocation.

1 class MyFunctor

2 {

3 float m_parameter;

4
5 public:

6 MyFunctor(float parameter):

7 m_parameter(parameter)

8 {

9 }
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10
11 void operator() ()

12 {

13 // [kernel code]

14 }

15 };

16
17 void workFunction(float scalarValue)

18 {

19 MyFunctor myKernel(scalarValue);

20
21 queue.submit([&] (execution_handle & cmdGroup) {

22 cmdgroup.single_task(myKernel);

23 });

24 }

5.8.2 Defining kernels as lambda functions

In C++11, functors can be defined using lambda functions. We allow lambda functions to define kernels in SYCL,
but we have an extra requirement to name lambda functions in order to enable the linking of the SYCL device
kernels with the host code to invoke them. The name of a lambda function in SYCL is a C++ class. If the
lambda function relies on template arguments, then the name of the lambda function must contain those template
arguments. The class used for the name of a lambda function is only used for naming purposes and is not required
to be defined.For details on restrictions for kernel naming issues, please refer to 9.2.

To invoke a C++11 lambda, the kernel name must be included explicitly by the user as a template parameter to
the kernel invoke function.

The kernel function for the lambda function is the lambda function itself. The kernel lambda must use copy for
all of its captures (i.e. [=]).

1 class MyKernel;

2
3 command_queue.submit([&](execution_handle& cmdGroup) {

4 cmdgroup.single_task<class MyKernel>([=]() {

5 // [kernel code]

6 });

7 });

5.8.3 Defining kernels using program objects

In case the developer needs to specify compiler flags or special linkage options for a kernel, then a kernel object
can be used, as described in 5.7. The kernel is defined as a functor 5.8.1 or lambda function 5.8.2. The user can
obtain a program object for the kernel with the get_kernelmethod. This method is templated by the kernel name,
so that the user can specify the kernel whose associated kernel they wish to obtain.

In the following example, the kernel is defined as a lambda function. The example obtains the program object for
the lambda function kernel and then passes it to the parallel_for.
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1 class MyKernel; // Forward declaration of the name of the lambda functor

2
3 cl::sycl::queue myQueue;

4 cl::sycl::program MyProgram(myQueue.get_context());

5
6 /* use the name of the kernel to obtain the associated program */

7 MyProgram.build_from_name<MyKernel>();

8
9 myQueue.submit([&](execution_handle& commandGroup) {

10 commandgroup.parallel_for<class MyKernel>(

11 cl::sycl::nd_range<2>(4, 4),

12 MyProgram.get_kernel<MyKernel>(), // execute the kernel as compiled in MyProgram

13 ([=](cl::sycl::nd_item<2> index) {

14 //[kernel code]

15 }));

16 });

In the above example, the kernel function is defined in the parallel_for invocation as part of a lambda functor
which is named using the type of the forward declared class “myKernel”. The type of the functor and the program
object enable the compilation and linking of the kernel in the program class, a priori of its actual invocation as a
kernel object. For more details on the SYCL device compiler please refer to chapter 9.

In the next example, a SYCL kernel is linked with an existing pre-compiled OpenCL C program object to created
a combined program object, which is then called in a parallel_for.

1 class MyKernel; // Forward declaration of the name of the lambda functor

2
3 cl::sycl::queue myQueue;

4
5 // obtain an existing OpenCL C program object

6 cl_program myClProgram = ...;

7
8 // Create a SYCL program object from a cl_program object

9 cl::sycl::program myExternProgram(myQueue.get_context(), myClProgram);

10
11 // Release the program if we no longer need it as

12 // SYCL program retained a reference to it

13 clReleaseProgram(myClProgram);

14
15 // Add in the SYCL program object for our kernel

16 cl::sycl::program mySyclProgram(myQueue.get_context());

17 mySyclProgram.compile_from_kernel_name<MyKernel>("-my-compile-options");

18
19 // Link myClProgram with the SYCL program object

20 mySyclProgram.link(myExternProgram,"-my-link-options");

21
22 myQueue.submit([&](execution_handle& commandgroup) {

23 commandgroup.parallel_for<class MyKernel>(

24 cl::sycl::nd_range<2>(4, 4),

25 myLinkedProgram.get_kernel<MyKernel>(), // execute the kernel as compiled in MyProgram

26 ([=](cl::sycl::nd_item<2> index) {

27 //[kernel code]

28 }));

29 });

191



5.8.4 Defining kernels using OpenCL C kernel objects

In OpenCL C [1] program and kernel objects can be created using the OpenCL C API, which is available in the
SYCL system. Interoperability of OpenCL C kernels and the SYCL system is achieved by allowing the creation
of a SYCL kernel object from an OpenCL kernel object.

The constructor using kernel objects from 5.16:

kernel::kernel(cl_kernel kernel)

creates a cl::sycl::kernel which can be enqueued using all the parallel_for functions which can enqueue
a kernel object. This way of defining kernels assumes the developer is using OpenCL C to create the kernel and
set the kernel arguments. The system assumes that the developer has already called set kernel arguments when
they are trying to enqueue the kernel. Buffers do give ownership to their accessors on specific contexts and the
developer can enqueue OpenCL kernels in the same way as enqueuing SYCL kernels. However, the system is
not responsible for data management at this point. Note that like all constructors from OpenCL API objects,
constructing a cl::sycl::kernel from a cl_kernel will retain a reference to the kernel and the user code should
call clReleaseKernel if the cl_kernel is no longer needed in the calling context.

5.9 Rules for parameter passing to kernels

In a case where a kernel is a C++ functor or C++11 lambda object, any values in the functor or captured in the
C++11 lambda object must be treated according to the following rules:

• Any accessor must be passed as an argument to the device kernel in a form that allows the device kernel to
access the data in the specified way. For OpenCL 1.0–1.2 class devices, this means that the argument must
be passed via clSetKernelArg and be compiled as a kernel parameter of the valid reference type. For
global shared data access, the parameter must be an OpenCL global pointer. For an accessor that specifies
OpenCL constant access, the parameter must be an OpenCL constant pointer. For images, the accessor
must be passed as an image_t and/or sampler.

• The SYCL runtime and compiler(s) must produce the necessary conversions to enable accessor arguments
from the host to be converted to the correct type of parameter on the device.

• A local accessor provides access to work-group-local memory. The accessor is not constructed with any
buffer, but instead constructed with a size and base data type. The runtime must ensure that the work-group-
local memory is allocated per work-group and available to be used by the kernel via the local accessor.

• C++ standard layout values must be passed by value to the kernel.

• C++ non-standard layout values must not be passed as arguments to a kernel that is compiled for a device.

• It is illegal to pass a buffer or image (instead of an accessor class) as an argument to a kernel. Generation
of a compiler error in this illegal case is optional.

• Sampler objects (cl::sycl::sampler) can be passed as parameters to kernels.

• For OpenCL 1.2 devices, it is illegal to pass a pointer or reference argument to a kernel. Generation of a
compiler error in this illegal case is optional.
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• Any aggregate types such as structs or classes should follow the rules above recursively. It is not necessary
to separate struct or class members into separate OpenCL kernel parameters if all members of the aggregate
type are unaffected by the rules above.

5.10 Event classes for OpenCL interoperability

An event in SYCL abstracts the cl::event objects in OpenCL. In OpenCL events’ mechanism is comprised of
low-level event objects that require from the developer to use them in order to synchronize memory transfers,
enqueuing kernels and signaling barriers.

In SYCL, events are an abstraction of the OpenCL event objects, but they retain the features and functionality of
the OpenCL event mechanism. They accommodate synchronization between different contexts, devices and plat-
forms. It is the responsibility of the SYCL implementation to ensure that when SYCL events are used in OpenCL
queues, the correct synchronization points are created to allow cross-platform or cross-device synchronization.

The device_event is a class the represents OpenCL only device events, that are created only on device and are
used as synchronization primitives when nested parallel device kernels are enqueued.

Since data management and storage is handled by the SYCL runtime, the event class is used for providing the
appropriate interface for OpenCL/SYCL interoperability. In the case where the SYCL objects contain OpenCL
memory objects created outside the SYCL mechanism then events can be used in order to provide to the SYCL
runtime the initial events it has to synchronize against. However, the events mechanism does not provide full
interoperability during the SYCL code execution with OpenCL. Interoperability is achieved by using the synchro-
nization rules with buffer and image class.

A SYCL event can be constructed from an OpenCL event or can return an OpenCL event. The constructors and
methods of the Event class are listed in Tables 5.22 and 5.23.

1 namespace cl {

2 namespace sycl {

3
4 enum class event_status {

5 submitted,

6 complete,

7 error,

8 };

9
10 class event {

11 public:

12 event() = default;

13
14 explicit event(cl_event clEvent);

15
16 event(const event &rhs);

17
18 ∼event();

19
20 cl_event get();

21
22 vector_class<event> get_wait_list();

23
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24 void wait();

25
26 static void wait(const vector_class<event> &eventList);

27
28 void wait_and_throw();

29
30 static void wait_and_throw(const vector_class<event> &eventList);

31
32 template <info::event param>

33 typename param_traits<info::event, param>::type get_info() const;

34
35 template <info::event_profiling param>

36 typename param_traits<info::event_profiling, param>::type get_profiling_info()

37 const;

38 };

39
40 } // namespace sycl

41 } // namespace cl

Constructors Description
event ()= default Default construct a null event object.
explicit event (cl_event clEvent) Construct a SYCL event from a cl_event,

only used with the SYCL/ OpenCL interop-
erability interface for buffers and images.

event (const event & rhs) Construct a copy sharing the same under-
lying event. The underlying event will be
reference counted.

End of table
Table 5.22: Constructors for the event class

Methods Description
cl_event get() Return the underlying OpenCL event ref-

erence. Retains a reference to the returned
cl_event object. Caller should release it
when finished.

vector_class<event> get_wait_list() Return the list of events that this event waits
for in the dependence graph.

void wait() Wait for the event and the command associ-
ated with it to complete.

void wait_and_throw() Wait for the event and the command associ-
ated with it to complete.
If any uncaught asynchronous errors oc-
curred on the context (or contexts) that the
event is waiting on executions from, then
will also call that context’s asynchronous er-
ror handler with those errors.

static void wait(

const vector_class<event> &eventList)

Synchronously wait on a list of events.

Continued on next page
Table 5.23: Methods for the event class
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Methods Description
static void wait_and_throw(

const vector_class<event> &eventList)

Synchronously wait on a list of events. If
any uncaught asynchronous errors occurred
on the context (or contexts) that the events
are waiting on executions from, then will
also call those contexts’ asynchronous error
handlers with those errors.

template <info::event param>

typename param_traits

<info::event, param>::type

get_info ()const

Queries OpenCL information for the under-
lying cl event.

template <info::event_profiling param>

typename param_traits

<info::event_profiling, param>::type

get_profiling_info ()const

Queries OpenCL profiling information for
the underlying cl event.

End of table
Table 5.23: Methods for the event class

The event_status enum class is providing information on the status of the commands associated to the event.

Description Description
submitted This is the initial state of a user event.
complete The event has completed
error There was an error while executing the asso-

ciated commands.
End of table

Table 5.24: Description of the different states of an OpenCL event.

5.11 Error handling

5.11.1 Error Handling Rules

Error handling in SYCL uses exceptions. If an error occurs, it can be propagated at the point of a function call.
An exception will be thrown and may be caught by the user using standard C++ exception handling mechanisms.
For example, any exception which is triggered from code executed on host is able to be propagated at the call site
and it will follow the standard C++ exception handling mechanisms.

SYCL applications are asynchronous in the sense that host and device code execution are executed asyn-
chronously. As a result of this, the errors that occur on a device cannot be propagated directly from the call
site, and they will not be detected until the error-causing task executes or tries to execute rather than been sched-
uled for execution. We refer to those errors as asynchronous errors. A good example of an asynchronous error, is
an out-of-bounds access error. In this case, if the kernel is enqueued on SYCL OpenCL device then the out-of-
bounds error is asynchronous with regards to the SYCL host application, as it is executed on the device. At the
latter, the standard exception mechanisms will not be available as this is an asynchronous error.
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SYCL queues are by default asynchronous, as they schedule tasks on SYCL devices. The queue constructor can
optionally get an asynchronous handler object async_handler, which is a function class instance. If waiting and
exception handling methods are used on queues, the async handler is receiving a list of C++ exception objects.

If an asynchronous error occurs in a queue that has no user-supplied asynchronous error handler object
async_handler, then no exception is thrown and the error is not available to the user in any specified way. Im-
plementations may provide extra debugging information to users to trap and handle asynchronous errors. If a
synchronous error occurs in a SYCL application and it is not handled, the application will exit abnormally.

If an error occurs when running or en-queuing a command group which has a secondary queue specified, then the
command group may be enqueued to the secondary queue instead of the primary queue. The error handling in
this case is also configured using the async handler provided for both queues. If there is no async handler given
on any of the queues, then no asynchronous error reporting is done and no exceptions are thrown. If the primary
queue fails and there is an async handler given at this queue’s construction, which populates the exception_list
parameter, then any errors will be added and can be thrown whenever the user chooses to handle those exceptions.
Since there were errors on the primary queue and a secondary queue was given then, the execution of the kernel
is re-scheduled to the secondary queue and any error reporting for the kernel execution on that queue, is done
through that queue, in the same way as described above. The secondary queue may fail as well, and the errors
will be thrown if there is an async handler and either wait_and_throw() or throw() are called on that queue. The
command group functor handler event returned by that function will be relevant to the queue where the kernel has
been enqueued.

5.11.2 Exception Class Interface

namespace cl {

namespace sycl {

using async_handler=function_class<void(cl::sycl::exception_list)>;

struct exception {

string_class what();

// returns associated context. nullptr if none

context get_context();

};

struct cl_exception : exception {

// thrown as a result of an OpenCL API error code

cl_int get_cl_code() const;

};

struct async_exception : exception {

// stored in an exception_list for asynchronous errors

};

class exception_list {

// Used as a container for a list of asynchronous exceptions

public:

typedef exception_ptr value_type;

typedef value_type& reference;

typedef const value_type& const_reference;
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typedef size_t size_type;

typedef /*unspecified*/ iterator;

typedef /*unspecified*/ const_iterator;

size_t size() const;

iterator begin() const; // first asynchronous exception

iterator end() const; // refer to past-the-end last asynchronous exception

};

typedef /*unspecified*/ exception_ptr;

class runtime_error : public exception;

class kernel_error : public runtime_error;

class accessor_error : public runtime_error;

class nd_range_error : public runtime_error;

class event_error : public runtime_error;

class invalid_parameter_error : public runtime_error;

class device_error : public exception;

class compile_program_error : public device_error;

class link_program_error : public device_error;

class invalid_object_error : public device_error;

class memory_allocation_error : public device_error;

class platform_error : public device_error;

class profiling_error : public device_error;

class feature_not_supported : public device_error;

} // namespace sycl

} // namespace cl

The cl_exception class is the exception thrown when the OpenCL API returns an error code. The OpenCL error
code can be queried with the get_cl_codemethod. The async_exception is stored in exception_list objects and
is generated when an asynchronous error occurs on a SYCL-managed context. The cl::sycl::exception_ptr
class is used to store cl::sycl::exception objects and allows exception objects to be transferred between threads.
It is equivalent to the std::exception_ptr class. The cl::sycl::exception_list class is also available.

The asynchronous handler object async_handler is a function_class with an exception_list as a parameter.
The asynchronous handler is an optional parameter to a constructor of the queue class and it is the only way to
handle asynchronous errors occurring on a SYCL device. The asynchronous handler may be a function class
that can be functor or lambda or function that can be given to the queue and it willbe executed on error. The
exception_list object is constructed from the SYCL runtime and is populated with the errors caught during the
execution of all the kernels running on the same queue.
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Methods Description
string_class what() Returns a descriptive string for the error, if

available.
context get_context() Returns the context that caused the error.

Returns nullptr if not a buffer error.
End of table

Table 5.25: Methods of the exception class.

Methods Description
cl_int get_cl_code() Returns the OpenCL error code encapsu-

lated in the exception. Only valid for the
cl_exception subclass.

End of table
Table 5.26: Methods of the cl_exception class.

Methods Description
size_t size()const Returns the size of the list
iterator begin()const Returns an iterator to the beginning of the

list of asynchronous exceptions.
iterator end()const Returns an iterator to the end of the list of

asynchronous exceptions.
End of table

Table 5.27: Methods of the exception_list

Runtime Error Exception Type Description
kernel_error Error that occurred before or while enqueu-

ing the SYCL kernel.
nd_range_error Error regarding the cl::sycl::nd_range

specified for the SYCL kernel
accessor_error Error regarding the cl::sycl::accessor

objects defined.
event_error Error regarding associated cl::sycl::

event objects.
invalid_parameter_error Error regarding parameters to the SYCL ker-

nel, it may apply to any captured parameters
to the kernel lambda.

End of table
Table 5.28: Exceptions types that derive from the cl::sycl::
runtime_error class
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Device Error Exception Type Description
compile_program_error Error while compiling the SYCL kernel to a

SYCL device.
link_program_error Error while linking the SYCL kernel to a

SYCL device.
invalid_object_error Error regarding any memory objects being

used inside the kernel
memory_allocation_error Error on memory allocation on the SYCL

device for a SYCL kernel.
device_error The SYCL device will trigger this exception

on error.
platform_error The SYCL platform will trigger this excep-

tion on error.
profiling_error The SYCL runtime will trigger this error if

there is an error when profiling info is en-
abled.

feature_not_supported Exception thrown when an optional feature
or extension is used in a kernel but its not
available on the device the SYCL kernel is
being enqueued on.

End of table
Table 5.29: Exception types that derive from the cl::sycl::

device_error class
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6. Shared Virtual Memory

6.1 Overview

In SYCL 1.2, host and device need to transfer memory objects in order to share data for kernel execution. In
SYCL 2.2, there is an option of having host and device share virtual memory address space and in effect avoid
memory object transfers. Shared virtual memory, a.k.a. SVM, enables using complex data classes and pointers
between host and devices, using atomics and in some cases the lifetime scope of the buffer and accessor classes
as synchronization points. There are different flavors of shared virtual memory, depending on the capabilities of
the OpenCL system to share device pointers with the host. The core capability is to have coarse-grained buffer
sharing between host and device, by making the device pointer available on the host. This mode enables buffer
objects to be allocated for host and device using the same context and in SYCL they are based on the lifetime of
the buffer and accessor class. One restriction, that has to be noted for all SVM capabilities, is that they are only
applicable to buffers, not to images or pipes.

There are different levels of sharing and the existence of atomics which are enabled for specifically this memory
model are defining the behavior of this system. The common denominator to all of these modes and the difference
of this feature with the rest of the SYCL buffer/accessor classes, is that all of the allocation need to be defined in
the same SYCL context. The SYCL runtime does not manage the allocations out of that context and inside that
context, depending on the level of sharing, it may be that any host allocation can be valid, even with using malloc
on the host. All interoperability with the buffers and accessor is based only on standard layout structs that will be
copied and the pointers are going to be invalidated due to different allocation context.

6.2 Coarse-grained shared virtual memory

Coarse-grained shared virtual memory is a core feature of SYCL and exposes the architecture capabilities for
coarse-grained shared memory objects of OpenCL 2.2 devices. A buffer in a context with devices with support
for svm_coarse_grain is able to allocate coarse-grained device pointer on the host. This is possible using the
svm_allocator. Access on host or device is requested by the creating an instance of the accessor class with
targets either access::target::host_buffer or access::target::svm_buffer.

There three differences between svm and non-svm buffer instances. Firstly, the underlying pointer is guaranteed
to be the same for host and device. Secondly, the coarsed-grained buffer allows sycl kernels on the OpenCL
devices of that context to be able to process the whole or parts of the buffer host synchronization points. Lastly,
due to the fact that the underlying pointers are shared, more complex pointer structures can be allocated using
the buffers and used by the host application and the kernels. For example, pre-allocating a list and populating the
pointers of the linked list in SYCL kernels is applicable in this case.

Nevertheless, the coarse-grained svm buffer pointers share the same data consistency restrictions with non-svm
buffers. The data consistency between host and device requires host synchronization points, which in SYCL are
managed by buffer and accessor classes. The usage of those classes with the rules that are based on the lifetime of
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the buffer and the accessor instances, can provide the SYCL runtime with enough information to guarantee data
consistency of this pointer allocation within that context. Same as in non-svm buffers, host and device accessor
instances cannot have overlappling lifetime scopes.

6.2.1 Coarse-grained buffer and and accessor interface

The buffer class as described in 4.2 is provides the above capabilities by providing providing the buffer constructor
that allocates a buffer with the size given, without a host pointer associated with it and an svm allocator; as
described in 6.4.

buffer constructor Description
template<typename T, int Dimensions, typename

SVMAllocatorT = svm_allocator<T,svm_coarse_grain>>

buffer (const range<dimensions> & bufferrange,

SVMAllocatorT svm_allocator)

Creates a new buffer of the given size with
storage managed by the sycl runtime. The
buffers is using the svm_allocator and the
context that is created with in order to al-
locate an svm pointer which is going to be
used on host and on device. Type trais can
be used at the buffer object in order to query
that the svm allocator was used for the allo-
cation of the underlying svm pointer. This
buffer cannot be used in a different context,
since the allocation is restricted in the svm -
allocator context. If the type of the buffer,
has the const qualifier, then the default allo-
cator will remove the qualifier to allow host
access to the data.

End of table
Table 6.1: Coarse-graind shared virtual memory (SVM) constructor for
the buffer class.

The SYCL interface provides helper global functions for allocating coarse-grained buffers.

Utility functions for coarse-graied svm buffers Description
template <class T>

buffer<T,1,svm_allocator<T,svm_coarse_grain>> *

make_svm_buffer(size_t size)

Creates a coarse grained svm buffer, by cre-
ating a new context using the system heuris-
tics for choosing a context based on the ca-
pabilities that are required.

template<class T>

buffer<T,1,svm_allocator<T,svm_coarse_grain>> *

make svm buffer(size t size, context & con-
textInput)

Creates a coarse grained svm buffer in the context provided.

End of table
Table 6.2: Utility functions for coarse grained svm buffers

The simple following example show the different ways that the an svm buffer can be allocated and used.
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{

cl::sycl::capability_selector selectDevice(

cl::sycl::exec_capabilities::svm_coarse_grain);

cl::sycl::queue q(selectDevice, asyncHandler);

cl::sycl::context coarseContext(selectDevice);

cl::sycl::svm_allocator<int> coarseSVMAllocator(coarseContext);

/* Allocate SVM buffer using coarse grained buffer sharing virtual memory

* address space.

*/

cl::sycl::buffer<int, 1,

cl::sycl::svm_allocator<

int, cl::sycl::exec_capabilities::svm_coarse_grain>>

svmBuffer(cl::sycl::range<1>(numElements), coarseSVMAllocator);

{

/* Access the SVM buffer on host */

auto hostSvmCoarsePointer =

svmBuffer.get_access<cl::sycl::access::mode::write,

cl::sycl::access::target::host_buffer>();

/* Within this block it is safe to use the raw SVM pointer. */

auto rawSvmCoarsePointer = hostSvmCoarsePointer.get();

*rawSvmCoarsePointer = 100;

} // The underlying SVM pointer gets updated and no access on host is

// possible when the host accessor goes out of scope

q.submit([&](cl::sycl::execution_handle<svm_coarse_grain>& cgh) {

/* Make the SVM pointer allocation available for updating on the device */

auto deviceCoarsePointer =

svmBuffer.get_access<cl::sycl::access::mode::read_write>(cgh);

cgh.single_task<class svm_sample1>(

cl::sycl::range<1>(1), [=](cl::sycl::id<1> index) {

int* rawSvmCoarsePointer = deviceCoarsePointer.get();

rawSvmCoarsePointer[index] = a + 1;

});

}); // dependency tracking should make sure no unnecessary mapping is

// happening here

q.submit([&](execution_handle<svm_coarse_grain>& cgh) {

auto deviceCoarsePointer2 = svmBuffer.get_access<access::mode::read>(cgh);

cgh.single_task<class svm_sample2>(range<1>(1), [=](id<1> index) {

int* rawSvmCoarsePointer = deviceCoarsePointer2.get();

int b = rawSvmCoarsePointer[index];

});

});

{

auto svmHostAccBack =

svmBuffer.get_access<access::mode::read, access::target::host_buffer>();

/** rawSvmCoarsePtr is the same in all cases, as the underlying SVM

* allocation pointer managed by buffer is the guaranteed to be the same. */

int* rawSvmCoarsePtr = svmHostAccBack.get();

}

/* When the svmBuffer gets out of scope then the allocation is freed. No
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* copy back is required since the SVM buffer allocation, is happening in the

* SVM virtual address space.

*/

}

6.3 Fine-grained shared virtual memory

An optional feature of OpenCL systems is to provide fine grained shared virtual memory between the host and
device for allocations in the same context. The granularity of the shared virtual address space depends on the data
consistency the system is able to provide. Depending on the sharing granularity of the virtual address space and
the support of atomics as synchronization primitives, the systems are able to provide memory consistency across
different levels of granularity and concurrent access.

6.3.1 Sharing within buffer scope

Shared virtual memory with buffer sharing support denotes the capability of being able to share memory alloca-
tions between host and device, at the granularity of each allocation. The SVM pointers that are used in this mode
need to be allocated with respect to specific cl::sycl::context and depending on the availability of atomic
operations on those pointers, the synchronization differs.

Atomic enabled fine grained buffer sharing virtual memory provides the capability of sharing SVM pointer
allocations between host and device and using the atomic primitives in order to guarantee memory consistency
across host and device for those pointers. The atomics can guarantee constistency between host and kernel up-
dates, although, standard rules for using atomics for global memory space still apply. For example, the atomics
can guarantee, that an access on host will atomically load and store a SVM pointer allocation, but they cannot
guarantee the ordering among the work-group loads and stores. The latter is defined in the rules of the memory
mode in OpenCL 2.2 specification document.

Non-atomic fine grained buffer sharing virtual memory exposes the same virtual memory address of an
SVM allocation to both host and device. Due to the lack of atomic operations on that virtual memory space, the
loads and stores of the allocations cannot be atomic. As a result, the SVM allocations can be accessed by both
host and device, but the updates have to be on non- overlapping parts of that memory allocation. The latter has to
be managed by the developer, and the system cannot make any guarantees of the memory consistency if there are
overlapping reads and writes to an SVM allocation.

In both cases of fine-grained buffer sharing SVM allocations, the allocation needs to use an instance of
the svm_allocator. The svm_allocator is following the interface of standard C++ allocators and can
be used in the same manner to STL container classes or smart pointer classes. The svm_allocator
, needs to use a context where all the devices associated with that context can support the same
SVM capabilities and all of the allocations using the same allocator instance will be using the same
context. If the user doesn’t provide a relevant context, then a context will be initialized by the
SYCL runtime using implementation defined heuristics to choose devices that support the above capabili-
ties, context(capability_selector(exec_capabilities::svm_fine_grained_buffer_atomics)) or context(
capability_selector(exec_capabilities::svm_fine_grained_buffer)). Any command group containing the
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SVM pointer allocations from the svm_allocator has to be submitted using a queue, created from the same
context.

The following code example shows how to make a fine grained buffer sharing virtual allocation.

/*Choose devices that supports fine grained capabilities*/

cl::sycl::capability_selector fineGrainSelector(

cl::sycl::exec_capabilities::svm_fine_buffer_sharing);

/*Create context with all the available devices that support fine grained buffer

* sharing SVM in a platform chosen by custom system heuristics.

*/

cl::sycl::context fineGrainedContext(fineGrainSelector);

/* Use the fine grained buffer sharing selector to choose a device that

* supports this SVM mode and create a queue using the context instance given.*/

cl::sycl::queue q(fineGrainSelector, fineGrainedContext);

/* Create an instance of the SVM fine grained buffer sharing allocator

* which is going to be used for all the allocations of the same context.

*/

cl::sycl::svm_allocator<int, cl::sycl::svm_fine_grain> fineGrainAllocator(

fineGrainedContext);

/* Use the instance of the svm_allocator with any custom container, for

* example, with std::shared_ptr.

*/

std::shared_ptr<int> svmFineBuffer =

std::allocate_shared<int>(fineGrainAllocator, numElements);

/* Initialize the pointer on the host */

*svmFineBuffer = 66;

q.submit([&](

cl::sycl::execution_handler<svm_fine_grain<

cl::sycl::svm_sharing::buffer, cl::sycl::svm_atomics::none>>& cgh) {

auto rawSvmFinePointer = svmFineBuffer.get();

/* Register access on the device in the specific command group with

* access::mode so that dependency tracking can be possible and the

* kernel can use the raw pointer. Custom containers are not working

* on the device side unless they are structs provided by the user

* and compiled for the device.

*/

cgh.register_access<cl::sycl::access::mode::read_write>(rawSvmFinePointer);

cgh.single_task<class svm_fine_grained_kernel>(

range<1>(1), [=](id<1> index) { rawSvmFinePointer[index]++; });

});

q.submit([&](

cl::sycl::execution_handle<svm_fine_grain<

cl::sycl::svm_sharing::buffer, cl::sycl::svm_atomics::none>>& cgh) {

auto rawSvmFinePointer = svmFineBuffer.get();

/* Register access on the device in the specific command group with

* access::mode so that dependency tracking can be possible and the

* kernel can use the raw pointer. Custom containers are not working

* on the device side unless they are structs provided by the user

* and compiled for the device.

*/

cgh.register_access<cl::sycl::access::mode::read_write>(rawSvmFinePointer);

cgh.single_task<class svm_fine_grained_kernel_2>(
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cl::sycl::range<1>(1),

[=](cl::sycl::id<1> index) { int val = rawSvmFinePointer[index]; });

});

int result = *svmFineBuffer;

The SVM pointer allocations returned by svm_allocator.allocate() can be used on host and in SYCL kernels
committed to a queues of the same context without any additional synchronization. This is the reason why
in this case there is no need for using the SYCL memory management classes (buffers and accessors). These
allocations also need be deallocated using the svm_allocator.deallocate() method. Depending on the rules of
the containers, these methods should be called when trying to allocate and de-allocate their internal pointers. In
the case, where the raw-pointers are used directy, then those methods need to be called explicitly.

6.3.2 Sharing across the system

System sharing virtual memory provides the capability to share the entire host’s virtual memory with the device.
In that case, any pointers allocated on the host with the standard C++ API, can be used on the device without any
additional synchronization APIs.

Atomic enabled system sharing virtual memory allows the host allocations to be concurrenly accessed by
host and device kernels, while maintaining memory consistency. The atomics can guarantee consistency between
host and kernel updates given the rules for atomics on OpenCL global memory. The system can guarantee that
with the use of atomics on the SVM pointers then the memory will be consistent for loads and stores on host and
on device.1

Non-atomic system sharing virtual memory allows the host allocations to be concurrently updated on non-
overlapping memory locations. Due to the lack of synchronization primitives for those SVM pointers there can
be no guarantees for overlapping updates. The system, however, can guarantee that the use of the same pointer
allocation can be used on both host and device kernels without the need of explicit synchronization points.

System sharing virtual memory allows all the host allocations to be made available on the device using the standard
C++ API for allocating and deallocating memory. This is the reason, why the use of the svm_allocator is
unessecary. The use of buffers and accessors are also unecessary in this case, as the system does not have to
explicitly synchronize for host and device updates.

The following code example shows how to make a fine grained system sharing virtual allocation.

/*Choose devices that supports fine grained capabilities*/

cl::sycl::capability_selector fineGrainSelector(

cl::sycl::exec_capabilities::svm_fine_buffer_sharing);

/*Create context with all the available devices that support fine grained buffer

* sharing SVM in a platform chosen by custom system heuristics.

*/

cl::sycl::context fineGrainedContext(fineGrainSelector);

1The SVM pointers on the device are in OpenCL global memory, and the rules for work-group visibility on global memory have to be
taken into consideration in terms of atomic ordering guarantees.
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/* Use the fine grained buffer sharing selector to choose a device that

* supports this SVM mode and create a queue using the context instance given.*/

cl::sycl::queue q(fineGrainSelector, fineGrainedContext);

/* Create an instance of the SVM fine grained buffer sharing allocator

* which is going to be used for all the allocations of the same context.

*/

cl::sycl::svm_allocator<int, cl::sycl::svm_fine_grain> fineGrainAllocator(

fineGrainedContext);

/* Use the instance of the svm_allocator with any custom container, for

* example, with std::shared_ptr.

*/

std::shared_ptr<int> svmFineBuffer =

std::allocate_shared<int>(fineGrainAllocator, numElements);

/* Initialize the pointer on the host */

*svmFineBuffer = 66;

q.submit([&](

cl::sycl::execution_handler<svm_fine_grain<

cl::sycl::svm_sharing::buffer, cl::sycl::svm_atomics::none>>& cgh) {

auto rawSvmFinePointer = svmFineBuffer.get();

/* Register access on the device in the specific command group with

* access::mode so that dependency tracking can be possible and the

* kernel can use the raw pointer. Custom containers are not working

* on the device side unless they are structs provided by the user

* and compiled for the device.

*/

cgh.register_access<cl::sycl::access::mode::read_write>(rawSvmFinePointer);

cgh.single_task<class svm_fine_grained_kernel>(

range<1>(1), [=](id<1> index) { rawSvmFinePointer[index]++; });

});

q.submit([&](

cl::sycl::execution_handle<svm_fine_grain<

cl::sycl::svm_sharing::buffer, cl::sycl::svm_atomics::none>>& cgh) {

auto rawSvmFinePointer = svmFineBuffer.get();

/* Register access on the device in the specific command group with

* access::mode so that dependency tracking can be possible and the

* kernel can use the raw pointer. Custom containers are not working

* on the device side unless they are structs provided by the user

* and compiled for the device.

*/

cgh.register_access<cl::sycl::access::mode::read_write>(rawSvmFinePointer);

cgh.single_task<class svm_fine_grained_kernel_2>(

cl::sycl::range<1>(1),

[=](cl::sycl::id<1> index) { int val = rawSvmFinePointer[index]; });

});

int result = *svmFineBuffer;
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6.4 svm_allocator interface

SYCL provides a standard allocator in order to allow coarse-grained and buffer sharing fine-grained allocations.
The svm_allocator provides the standard C++ interface for allocators and is compatible with any container
classes that are compatible with it. In the case wher no container or wrapper classes are used then the meth-
ods svm_allocator::allocate() and svm_allocator::deallocate() need to be called.

An important characteristic of this allocator is that it has state, since it needs to have a context as a member and
make sure all the allocations done using the allocator instance are using the same context and that the context will
not go out of scope before the pointers are deallocated.

The SVM allocations with buffer granularity are allocated and deallocated using the svm_allocator and are in
the scope of one context. All the devices in that context have to sharing the same SVM capabilities that are being
required, e.g. if fine grain buffer sharing is required, then all the associated devices to that context have to able to
provide that feature. The default svm_allocator will create a context with the corresponding required capabilities
calling the corresponding context. The context that is used for the allocations need to be the same that any queues
scheduling SYCL kernels are associated with, otherwise the system will be unable to synchronize the updates and
may result in undefined behavior. Any copies or moves from one context to another will invalidate any pointers
allocated.

All the allocations are happening on the host and the restrictions of banning dynamic allocations on the device
remain, which means that if there is usage of containers that cause resizing in the non system sharing mode, the
pointers will be invalidated. Dynamic allocation on the device is still illegal, although placement new operators
are allowed.

The interface of the svm allocator is the following:

#ifndef RUNTIME_INCLUDE_SYCL_SVM_H_

#define RUNTIME_INCLUDE_SYCL_SVM_H_

#ifdef _WIN32

#include <malloc.h>

#endif

#include <memory>

namespace cl {

namespace sycl {

/** \brief The svm_allocator provides the C++ Allocator interface for SVM

* allocations.

* The default case is the core feature of coarse grained SVM allocation,

* which is used only with conjuction to cl::sycl::buffer objects.

*

* In the case of fined grained buffer sharing SVM, this allocator can be

* used with any C++ container or wrapper class, or used directly to

* retrieve the raw allocation pointer. Care has to be taken with the reference

* counting of C++ container classes, to make sure that the deallocation is

* happening using the allocator.deallocate() method.

*

* This allocator is not applicable for fine grained system sharing allocations

* since the standard C++ allocators can be used.
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*/

template <class T, exec_capabilities E = exec_capabilities::svm_coarse_grain>

class svm_allocator {

private:

/* reference counted context for allocations */

shared_ptr<context> m_context;

public:

typedef T value_type;

typedef value_type *pointer;

typedef const value_type *const_pointer;

typedef value_type &reference;

typedef const value_type &const_reference;

typedef std::size_t size_type;

typedef std::ptrdiff_t difference_type;

template <typename U>

struct rebind {

typedef svm_allocator<U, E> other;

};

/** Default allocator constructor, creates a context implicitly, by calling

* context(capability_selector(E));

*/

svm_allocator();

/** Explicit allocator constructor with given context.

*/

explicit svm_allocator(context &openclContext);

/* Copy constructor */

svm_allocator(const svm_allocator &otherAlloc)

/* Copy constructor */

template <typename U>

svm_allocator(const svm_allocator<U, E> &otherAlloc);

/* Destructor */

∼svm_allocator();

/* Retrieve the address of the value reference */

pointer address(reference r) { return std::addressof(r); }

/* Retrieve the address of the const value reference */

const_pointer address(const_reference r) { return std::addressof(r); }

/** Allocate an SVM pointer.

* If the allocator is coarse-grained, this will take ownership to allow

* containers to correctly construct data in place.

*/

pointer allocate(size_t size,

typename svm_allocator<void, E>::const_pointer = 0);

/* Deallocate an SVM pointer. */

void deallocate(pointer p, size_t);
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/**

* Return the maximum possible allocation size.

* This is the minimum of the maximum sizes of all devices in the context.

*/

size_t max_size() const;

template <class U, class... Args>

void construct(U *p, Args &&... args) {

new (p) T(args...);

}

template <class U>

void destroy(U *p) {

p->∼U();

}

/* Returns true if the contexts match. */

inline bool operator==(svm_allocator const &rhs);

/* Returns true if the contexts match. */

inline bool operator!=(svm_allocator const &a);

}; // class svm_allocator

/* SVM Allocator providing a void pointer type in case this is needed

* for container classes or deleter classes.

*/

template <exec_capabilities E>

class svm_allocator<void, E> {

public:

typedef void value_type;

typedef value_type *pointer;

typedef const value_type *const_pointer;

template <typename U>

struct rebind {

typedef svm_allocator<U, E> other;

};

};

} // namespace svm

} // namespace sycl

} // namespace cl

#endif // RUNTIME_INCLUDE_SYCL_SVM_H_
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svm allocator constructors Description
temlate<typename T, exec_capbilities E>

svm_allocator()

Default constructor for creating an svm al-
locator instance, using a default context con-
structor.
The context constructor called
will be taking as an argument a
capability_selector with matching
cl::sycl::exec_capabilities as the
constructor. All allocations using this
constructor will be using the same reference
counted context. The SYCL kernels using
these SVM pointer allocation should be
using a queue created in the same context.
The default value of exec capabilities is
exec_capabilities::svm_coarse_grain

and in that respect if no other value is
supplied, the default svm allocator object
can be used only in conjuction with the
buffer class for SVM buffer allocations.

temlate<typename T, typename ExecCapabilities>

svm_allocator(context & contextInput)

Default constructor for creating an svm al-
locator instance, using the contextInput.
All allocations using this constructor will be
using the same reference counted context.
The SYCL kernels using these SVM pointer
allocation should be using a queue created
in the same context.
Default value ExecCapabilities =

svm_coarse_grain and the default svm -
allocator object can be used only in
conjuction with the buffer class for SVM
buffer allocations.
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7. SYCL kernel library

7.1 SYCL built-in functions for SYCL host and device

SYCL kernels may execute on any SYCL device- OpenCL device or SYCL host, which requires that the functions
used in the kernels to be compiled and linked for both device and host. In the SYCL system the OpenCL built-ins
are available for the SYCL host and device within the cl::sycl namespace, although, their semantics may be
different. This section follows the OpenCL 1.2 specification document [1, ch. 6.12] and describes the behavior of
these functions for SYCL host and device.

The SYCL built-in functions are available throughout the SYCL application, and depending where they execute,
they are either implemented using their host implementation or the device implementation. The SYCL system
guarantees that all of the built-in functions fulfill the same requirements for both host and device.

7.1.1 Description of the built-in types available for SYCL host and
device

All the OpenCL built-in types are available in the namespace cl::sycl. For the purposes of this document we use
type names for describing sets of SYCL valid types. The type names themselves are not valid SYCL types, but
they represent a set of valid types, as defined in tables 7.1.

In the OpenCL 1.2 specification document [1, ch. 6.12.1] in Table 6.7 the work-item functions are defined where
they provide the size of the enqueued kernel NDRange. These functions are available in SYCL through the item
and group classes see sections 5.2.4, 5.2.5 and 5.2.6.

Generic type name Description
floatn cl::sycl::float2, cl::sycl::float3,

cl::sycl::float4, cl::sycl::float8,

cl::sycl::float16

genfloatf float, floatn

doublen cl::sycl::double2, cl::sycl::double3

, cl::sycl::double4, cl::sycl::

double8, cl::sycl::double16

genfloatd double, doublen

genfloat float, floatn

double, doublen

sgenfloat float, double It is a scalar type that
matches the corresponding vector type
floatn or doublen.

Continued on next page
Table 7.1: Generic type name description, which serves as a description
for all valid types of parameters to kernel functions. [1]
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Generic type name Description
charn cl::sycl::char2, cl::sycl::char3, cl

::sycl::char4, cl::sycl::char8, cl::

sycl::char16

ucharn cl::sycl::uchar2, cl::sycl::uchar3,

cl::sycl::uchar4, cl::sycl::uchar8,

cl::sycl::uchar16

genchar char, charn

ugenchar unsigned char, ugenchar

shortn cl::sycl::short2, cl::sycl::short3,

cl::sycl::short4, cl::sycl::short8,

cl::sycl::shor16

genshort short, shortn

ushortn cl::sycl::ushort2, cl::sycl::ushort3

, cl::sycl::ushort4, cl::sycl::

ushort8, cl::sycl::ushor16

ugenshort unsigned short, ugenshort

uintn cl::sycl::uint2, cl::sycl::uint3, cl

::sycl::uint4, cl::sycl::uint8, cl::

sycl::uint16

ugenint int, uintn

intn cl::sycl::int2, cl::sycl::int3, cl::

sycl::int4, cl::sycl::int8, cl::sycl

::int16

genint int, intn

ulonglongn cl::sycl::ulonglong2, cl::sycl::

ulonglong3, cl::sycl::ulonglong4,

cl::sycl::ulonglong8, cl::sycl::

ulonglong16

ugenlonglong unsigned long long int, ulonglongn

longlongn cl::sycl::longlong2, cl::sycl::

longlong3, cl::sycl::longlong4, cl::

sycl::longlong8, cl::sycl::longlong16

genlonglong long long int, longlongn

geninteger genchar, ugenchar, genshort,

ugenshort, genint, ugenint,

genlonglong, ugenlonglong

sgeninteger char,short, int, long long int,

unsigned char, unsigned short,

unsigned int, unsigned long long int

ugeninteger uchar, ucharn, ushort, ushortn, uint

, uintn, ulonglong, ulonglongn

gentype char, charn, uchar, ucharn, short,

shortn, ushort, ushortn, int, intn,

uint, uintn, longlong, longlongn,

ulonglong, ulonglongn, float, floatn,

double, doublen.

End of table
Table 7.1: Generic type name description, which serves as a description
for all valid types of parameters to kernel functions. [1]
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7.1.2 Work-item functions

In the OpenCL 1.2 specification document [1, ch. 6.12.1] in Table 6.7 the work-item functions are defined where
they provide the size of the enqueued kernel NDRange. These functions are available in SYCL through the
nd_item and group classes see section 5.2.5 and 5.2.6.

7.1.3 Math functions

In SYCL the OpenCL math functions are available in the namespace cl::sycl on host and device with the same
precision guarantees as defined in the OpenCL 1.2 specification document [1, ch. 7] for host and device. For a
SYCL platform the numerical requirements for host need to match the numerical requirements of the OpenCL
math built-in functions. The built-in functions can take as input float or optionally double and their vec counter-
parts, for dimensions 2, 3, 4, 8 and 16. On the host the vector types are going to be using the vec class and on an
OpenCL device are going to be using the corresponding OpenCL vector types.

The built-in functions available for SYCL host and device with the same precision requirements for both host and
device, are described in table 7.2.

Math Function Description
genfloat acos ( genfloat x ) Inverse cosine function.
genfloat acosh ( genfloat x ) Inverse hyperbolic cosine.
genfloat acospi ( genfloat x ) Compute acosx/π
genfloat asin ( genfloat x ) Inverse sine function.
genfloat asinh ( genfloat x ) Inverse hyperbolic sine.
genfloat asinpi ( genfloat x) Compute asinx/π
genfloat atan ( genfloat y_over_x ) Inverse tangent function.
genfloat atan2 ( genfloat y, genfloat x ) Compute atan( y / x).
genfloat atanh ( genfloat x ) Hyperbolic inverse tangent.
genfloat atanpi ( genfloat x ) Compute atan (x) / π.
genfloat atan2pi ( genfloat y, genfloat x ) Compute atan2 (y, x) / π.
genfloat cbrt ( genfloat x ) Compute cube-root.
genfloat ceil ( genfloat x ) Round to integral value using the round to

positive infinity rounding mode.
genfloat copysign ( genfloat x, genfloat y ) Returns x with its sign changed to match the

sign of y.
genfloat cos ( genfloat x ) Compute cosine.
genfloat cosh ( genfloat x ) Compute hyperbolic cosine.
genfloat cospi ( genfloat x ) Compute cos (πx).
genfloat erfc ( genfloat x ) Complementary error function.
genfloat erf ( genfloat x ) Error function encountered in integrating the

normal distribution.
genfloat exp ( genfloat x ) Compute the base-e exponential of x.
genfloat exp2 ( genfloat x ) Exponential base 2 function.
genfloat exp10 ( genfloat x ) Exponential base 10 function.
genfloat expm1 ( genfloat x ) Compute exp (x) − 1.0.

Continued on next page
Table 7.2: Math functions which work on SYCL Host and device. They
correspond to Table 6.7 of the OpenCL 1.2 specification [1]
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Math Function Description
genfloat fabs ( genfloat x) Compute absolute value of a floating-point

number.
genfloat fdim ( genfloat x, genfloat y ) x − y if x > y,+0 if x is less than or equal to

y.
genfloat floor (genfloat x) Round to integral value using the round to

negative infinity rounding mode.
genfloat fma (genfloat a, genfloat b, genfloat c) Returns the correctly rounded floating-point

representation of the sum of c with the in-
finitely precise product of a and b. Round-
ing of intermediate products shall not oc-
cur. Edge case behavior is per the IEEE 754-
2008 standard.

genfloat fmax ( genfloat x, genfloat y )

genfloat fmax ( genfloat x, sgenfloat y )

Returns y if x < y, otherwise it returns x.
If one argument is a NaN, fmax() returns
the other argument. If both arguments are
NaNs, fmax() returns a NaN.

genfloat fmin ( genfloat x, genfloat y )

genfloat fmin ( genfloat x, sgenfloat y )

Returns y if y < x, otherwise it returns x.
If one argument is a NaN, fmin() returns
the other argument. If both arguments are
NaNs, fmin() returns a NaN.

genfloat fmod ( genfloat x, genfloat y ) Modulus. Returns xy ∗ trunc(x/y).
floatn fract ( floatn x, intn *iptr )

float fract ( float x, int * iptr )

Returns fmin( x − floor (x), 0x1.fffffep-1f ).
floor(x) is returned in iptr.

doublen frexp ( doublen x, intn *exp )

double frexp ( double x, int * exp )

Extract mantissa and exponent from x. For
each component the mantissa returned is a
float with magnitude in the interval [1/2, 1)
or 0. Each component of x equals mantissa
returned * 2exp.

genfloat hypot ( genfloat x, genfloat y ) Compute the value of the square root of x2+
y2 without undue overflow or underflow.

int logb ( float x )

intn ilogb ( genfloat x )

int logb ( double x )

intn logb ( doublen x )

Return the exponent as an integer value.

genfloat ldexp (genfloat x, genint k)

floatn ldexp (floatn x, int k)

doublen ldexp (doublen x, int k)

Multiply x by 2 to the power k.

genfloat lgamma ( genfloat x ) Log gamma function. Returns the natu-
ral logarithm of the absolute value of the
gamma function. The sign of the gamma
function is returned in the signp argument of
lgamma r.

genfloat lgamma_r ( genfloat x, genint *signp ) Log gamma function. Returns the natu-
ral logarithm of the absolute value of the
gamma function. The sign of the gamma
function is returned in the signp argument of
lgamma r.

Continued on next page
Table 7.2: Math functions which work on SYCL Host and device. They
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Math Function Description
genfloat log (genfloat) Compute natural logarithm.
genfloat log2 (genfloat) Compute a base 2 logarithm.
genfloat log10 (genfloat) Compute a base 10 logarithm.
genfloat log1p (genfloat x) Compute loge(1.0 + x).
genfloat logb (genfloat x) Compute the exponent of x, which is the

integral part of logr (|x|).
genfloat mad (genfloat a,genfloat b, genfloat c) mad approximates a * b + c. Whether or

how the product of a * b is rounded and
how supernormal or subnormal intermediate
products are handled is not defined. mad is
intended to be used where speed is preferred
over accuracy.

genfloat maxmag ( genfloat x, genfloat y ) Returns x if |x| > |y|, y if |y| > |x|, otherwise
fmax(x, y).

genfloat minmag (genfloat x, genfloat y) Returns x if |x| < |y|, y if |y| < |x|, otherwise
fmin(x, y).

genfloat modf (genfloat x, genfloat *iptr) Decompose a floating-point number. The
modf function breaks the argument x into in-
tegral and fractional parts, each of which has
the same sign as the argument. It stores the
integral part in the object pointed to by iptr.

floatn nan ( unintn nancode )

float nan (unsigned int nancode )

doublen nan (ulonglongn nancode )

double nan (unsigned long long int nancode )

Returns a quiet NaN. The nancode may be
placed in the significand of the resulting
NaN.

genfloat nextafter (genfloat x, genfloat y) Computes the next representable single-
precision floating-point value following x in
the direction of y. Thus, if y is less than x,
nextafter() returns the largest representable
floating-point number less than x.

genfloat pow (genfloat x, genfloat y) Compute x to the power y.
genfloat pown (genfloat x, genint y) Compute x to the power y, where y is an

integer.
genfloat powr (genfloat x, genfloat y) Compute x to the power y, where x >= 0.
genfloat remainder (genfloat x, genfloat y) Compute the value r such that r = x - n*y,

where n is the integer nearest the exact value
of x/y. If there are two integers closest to x/y,
n shall be the even one. If r is zero, it is given
the same sign as x.

Continued on next page
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Math Function Description
genfloat remquo (genfloat x, genfloat y, genint *quo

)

The remquo function computes the value r
such that r = x - k*y, where k is the inte-
ger nearest the exact value of x/y. If there
are two integers closest to x/y, k shall be the
even one. If r is zero, it is given the same
sign as x. This is the same value that is re-
turned by the remainder function. remquo
also calculates the lower seven bits of the in-
tegral quotient x/y, and gives that value the
same sign as x/y. It stores this signed value
in the object pointed to by quo.

genfloat rint (genfloat) Round to integral value (using round to
nearest even rounding mode) in floating-
point format. Refer to section 7.1 of the
OpenCL 1.2 specification document [1] for
description of rounding modes.

genfloat rootn (genfloat x, genint y) Compute x to the power 1/y.
genfloat round (genfloat x) Return the integral value nearest to x round-

ing halfway cases away from zero, regard-
less of the current rounding direction.

genfloat rsqrt (genfloat) Compute inverse square root.
genfloat sin (genfloat) Compute sine.
genfloat sincos (genfloat x, genfloat *cosval) Compute sine and cosine of x. The com-

puted sine is the return value and computed
cosine is returned in cosval.

genfloat sinh ( genfloat x ) Compute hyperbolic sine.
genfloat sinpi ( genfloat x) Compute sin (π x).
genfloat sqrt ( genfloat x ) Compute square root.
genfloat tan ( genfloat x ) Compute tangent.
genfloat tanh ( genfloat x ) Compute hyperbolic tangent.
genfloat tanpi ( genfloat x) Compute tan (π x).
genfloat tgamma ( genfloat x ) Compute the gamma function.
genfloat trunc ( genfloat x ) Round to integral value using the round to

zero rounding mode.
End of table

Table 7.2: Math functions which work on SYCL Host and device. They
correspond to Table 6.7 of the OpenCL 1.2 specification [1]

In SYCL the implementation defined precision math functions are defined in the namespace cl::sycl::native. The
functions that are available within this namespace are specified in tables 7.3.

Native Math Function Description
genfloat cos (genfloat x) Compute cosine over an implementation-

defined range. The maximum error is
implementation-defined.

Continued on next page
Table 7.3: Native functions which work on SYCL Host and device, are
available in the cl::sycl::native namespace. They correspond to Table 6.9
of the OpenCL 1.2 specification [1]
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Native Math Function Description
genfloat divide (genfloat x, genfloat y) Compute x / y over an implementation-

defined range. The maximum error is
implementation-defined.

genfloat exp (genfloat x) Compute the base- e exponential of x over
an implementation-defined range. The max-
imum error is implementation-defined.

genfloat exp2 (genfloat x) Compute the base- 2 exponential of x over
an implementation-defined range. The max-
imum error is implementation-defined.

genfloat exp10 (genfloat x) Compute the base- 10 exponential of x over
an implementation-defined range. The max-
imum error is implementation-defined.

genfloat log (genfloat x) Compute natural logarithm over an imple-
mentation defined range. The maximum er-
ror is implementation-defined.

genfloat log2 (genfloat x) Compute a base 2 logarithm over an
implementation-defined range. The maxi-
mum error is implementation-defined.

genfloat log10 (genfloat x) Compute a base 10 logarithm over an
implementation-defined range. The maxi-
mum error is implementation-defined.

genfloat powr (genfloat x, genfloat y) Compute x to the power y, where
x >= 0. The range of x and y are
implementation-defined. The maximum er-
ror is implementation-defined.

genfloat recip (genfloat x) Compute reciprocal over an
implementation-defined range. The
maximum error is implementation-defined.

genfloat rsqrt (genfloat x) Compute inverse square root over an
implementation-defined range. The maxi-
mum error is implementation-defined.

genfloat sin ( genfloat x) Compute sine over an implementation-
defined range. The maximum error is
implementation-defined.

genfloat sqrt ( genfloat x ) Compute square root over an
implementation-defined range. The
maximum error is implementation-defined.

genfloat tan ( genfloat x) Compute tangent over an implementation-
defined range. The maximum error is
implementation-defined.

End of table
Table 7.3: Native functions which work on SYCL Host and device, are
available in the cl::sycl::native namespace. They correspond to Table 6.9
of the OpenCL 1.2 specification [1]
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7.1.4 Integer functions

In SYCL the OpenCL integer math functions are available in the namespace cl::sycl on host and device as defined
in the OpenCL 1.2 specification document [1, par. 6.12.3]. The built-in functions can take as input char, unsigned
char, short, unsigned short, int, unsigned int, long long int, unsigned long long int and their vec counterparts, for
dimensions 2, 3, 4, 8 and 16. On the host the vector types are going to be using the vec class and on an OpenCL
device are going to be using the corresponding OpenCL vector types. The supported integer math functions are
described in tables 7.4.

Integer Function Description
ugeninteger abs (geninteger x) Returns |x|.
ugeninteger abs_diff (geninteger x, geninteger y) Returns |x − y| without modulo overflow.
geninteger add_sat (geninteger x, geninteger y) Returns x + y and saturates the result.
geninteger hadd (geninteger x, geninteger y) Returns (x+ y) >> 1. The intermediate sum

does not modulo overflow.
geninteger rhadd (geninteger x, geninteger y) Returns (x + y + 1) >> 1. The intermediate

sum does not modulo overflow.
geninteger clamp (geninteger x,

sgeninteger minval, sgeninteger maxval)

Returns min(max(x, minval), maxval). Re-
sults are undefined if minval > maxval.

geninteger clz (geninteger x) Returns the number of leading 0-bits in x,
starting at the most significant bit position.

geninteger clamp (geninteger x,

geninteger minval, geninteger maxval)

Returns min(max(x, minval), maxval). Re-
sults are undefined if minval > maxval.

geninteger mad_hi (

geninteger a, geninteger b, geninteger c)

Returns mul hi(a, b) + c.

geninteger mad_sat (geninteger a,

geninteger b, geninteger c)

Returns a * b + c and saturates the result.

geninteger max (geninteger x, geninteger y)

geninteger max (geninteger x, sgeninteger y)

Returns y if x < y, otherwise it returns x.

geninteger min (geninteger x, geninteger y)

geninteger min (geninteger x, sgeninteger y)

Returns y if y < x, otherwise it returns x.

geninteger mul_hi (geninteger x, geninteger y) Computes x * y and returns the high half of
the product of x and y.

geninteger rotate (geninteger v, geninteger i) For each element in v, the bits are shifted
left by the number of bits given by the corre-
sponding element in i (subject to usual shift
modulo rules described in section 6.3). Bits
shifted off the left side of the element are
shifted back in from the right.

geninteger sub_sat (geninteger x, geninteger y) Returns x − y and saturates the result.
shortn upsample (charn hi, ucharn lo) result[i] = ((short)hi[i] << 8)|lo[i]
ushortn upsample (ucharn hi, ucharn lo) result[i] = ((ushort)hi[i] << 8)|lo[i]
intn upsample (shortn hi, ushortn lo) result[i] = ((int)hi[i] << 16)|lo[i]
uintn upsample (ushortn hi, ushortn lo) result[i] = ((uint)hi[i] << 16)|lo[i]
longlongn upsample (intn hi, uintn lo) result[i] = ((long)hi[i] << 32)|lo[i]
ulonglongn upsample (uintn hi, uintn lo) result[i] = ((ulong)hi[i] << 32)|lo[i]
geninteger popcount (geninteger x) Returns the number of non-zero bits in x.

Continued on next page
Table 7.4: Integer functions which work on SYCL Host and device, are
available in the cl::sycl namespace. They correspond to Table 6.10 of the
OpenCL 1.2 specification [1]
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Integer Function Description
intn mad24 (intn x, intn y, intn z)

uintn mad24 (uintn x, uintn y, uintn z)

Multipy two 24-bit integer values x and y
and add the 32-bit integer result to the 32-
bit integer z. Refer to definition of mul24 to
see how the 24-bit integer multiplication is
performed.

intn mul24 ( intn x, intn y )

uintn mul24 ( uintn x, uintn y )

Multiply two 24-bit integer values x and y. x
and y are 32-bit integers but only the low 24-
bits are used to perform the multiplication.
mul24 should only be used when values in
x and y are in the range [- 223, 223-1] if x
and y are signed integers and in the range [0,
224-1] if x and y are unsigned integers. If x
and y are not in this range, the multiplication
result is implementation-defined.

End of table
Table 7.4: Integer functions which work on SYCL Host and device, are
available in the cl::sycl namespace. They correspond to Table 6.10 of the
OpenCL 1.2 specification [1]

7.1.5 Common functions

In SYCL the OpenCL common functions are available in the namespace cl::sycl on host and device as defined in
the OpenCL 1.2 specification document [1, par. 6.12.4]. Description is in table 7.5. The built-in functions can
take as input float or optionally double and their vec counterparts, for dimensions 2, 3, 4, 8 and 16. On the host the
vector types are going to be using the vec class and on an OpenCL device are going to be using the corresponding
OpenCL vector types.

Common Function Description
genfloat clamp ( genfloat x, genfloat minval,

genfloat maxval )

floatn clamp ( floatn x, float minval, float maxval

)

doublen clamp ( doublen x, double minval, double

maxval )

Returns fmin(fmax(x, minval), maxval). Re-
sults are undefined if minval > maxval.

genfloat degrees (genfloat radians) Converts radians to degrees, i.e.(180/π) ∗
radians.

genfloat max ( genfloat x, genfloat y)

genfloatf max (genfloatf x, float y)

genfloatd max ( genfloatd x, double y )

Returns y if x < y, otherwise it returns x. If
x or y are infinite or NaN, the return values
are undefined.

genfloat min ( genfloat x, genfloat y )

genfloatf min ( genfloatf x, float y )

genfloatd min ( genfloatd x, double y )

Returns y if y < x, otherwise it returns x. If
x or y are infinite or NaN, the return values
are undefined.

Continued on next page
Table 7.5: Common functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.12
of the OpenCL 1.2 specification [1]
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Common Function Description
genfloat mix ( genfloat x, genfloat y, genfloat a )

genfloatf mix ( genfloatf x, genfloatf y, float a )

genfloatd mix ( genfloatd x, genfloatd y, double

a )

Returns the linear blend of x&y imple-
mented as: x+(y−x)∗a. a must be a value in
the range 0.0 ... 1.0. If a is not in the range
0.0 ... 1.0, the return values are undefined.

genfloat radians (genfloat degrees) Converts degrees to radians, i.e. (π/180) ∗
degrees.

genfloat step (genfloat edge, genfloat x)

genfloatf step (float edge, genfloatf x)

genfloatd step (double edge, genfloatd x)

Returns 0.0 if x < edge, otherwise it returns
1.0.

genfloat smoothstep (genfloat edge0, genfloat edge1,

genfloat x)

genfloatf smoothstep (float edge0, float edge1,

genfloatf x)

genfloatd smoothstep (double edge0, double edge1

, genfloatd x)

Returns 0.0 if x <= edge0 and 1.0 if x >=
edge1 and performs smooth Hermite inter-
polation between 0 and 1 when edge0 <
x < edge1. This is useful in cases where
you would want a threshold function with a
smooth transition.
This is equivalent to:
gentype t;

t = clamp ((x <= edge0)/ (edge1 >=

edge0), 0, 1);

return t * t * (3 - 2 * t);

Results are undefined if edge0 >= edge1 or
if x, edge0 or edge1 is a NaN.

genfloat sign (genfloat x) Returns 1.0 if x > 0, −0.0 if x = −0.0, +0.0
if x = +0.0, or −1.0 if x < 0. Returns 0.0 if
x is a NaN.

End of table
Table 7.5: Common functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.12
of the OpenCL 1.2 specification [1]

7.1.6 Geometric Functions

In SYCL the OpenCL geometric functions are available in the namespace cl::sycl on host and device as defined in
the OpenCL 1.2 specification document [1, par. 6.12.5]. The built-in functions can take as input float or optionally
double and their vec counterparts, for dimensions 2, 3, 4, 8 and 16. On the host the vector types are going to be
using the vec class and on an OpenCL device are going to be using the corresponding OpenCL vector types. All
of the geometric functions are using round-to-nearest-even rounding mode. Tables 7.6 contain all the definitions
of supported geometric functions.

Geometric Function Description
float4 cross (float4 p0, float4 p1)

float3 cross (float3 p0, float3 p1)

double4 cross (double4 p0, double4 p1)

double3 cross (double3 p0, double3 p1)

Returns the cross product of p0.xyz and
p1.xyz. The w component of float4 result
returned will be 0.0.

Continued on next page
Table 7.6: Geometric functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.13
of the OpenCL 1.2 specification [1]220



Geometric Function Description
float dot (floatn p0, floatn p1)

double dot (doublen p0, doublen p1)

Compute dot product.

float distance (floatn p0, floatn p1)

double distance (doublen p0, doublen p1)

Returns the distance between p0 and p1.
This is calculated as length(p0 − p1).

float length (floatn p)

double length (doublen p)

Return the length of vector p, i.e.,√
p.x2 + p.y2 + ...

floatn normalize (floatn p)

doublen normalize (doublen p)

Returns a vector in the same direction as p
but with a length of 1.

float fast_distance (floatn p0, floatn p1) Returns f astlength(p0 − p1).
float fast_length (floatn p) Returns the length of vector p computed

as: sqrt((half)(pow(p.x,2)+ pow(p.y,2)
+ ...))

floatn fast_normalize (floatn p) Returns a vector in the same direction as
p but with a length of 1. fast normalize is
computed as: p * rsqrt((half)(pow(p.x
,2)+ pow(p.y,2)+ ... ))

The result shall be within 8192 ulps error
from the infinitely precise result of if (all
(p == 0.0f))

result = p;

else

result = p / sqrt (pow(p.x,2)+ pow(p.

y,2)+ ... );

with the following exceptions:
1. If the sum of squares is greater

than FLT MAX then the value of the
floating-point values in the result vec-
tor are undefined.

2. If the sum of squares is less than
FLT MIN then the implementation
may return back p.

3. If the device is in “denorms are
flushed to zero” mode, individual
operand elements with magnitude less
than sqrt(FLTM IN) may be flushed to
zero before proceeding with the calcu-
lation.

End of table
Table 7.6: Geometric functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.13
of the OpenCL 1.2 specification [1]
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7.1.7 Relational functions

In SYCL the OpenCL relational functions are available in the namespace cl::sycl on host and device as defined
in the OpenCL 1.2 specification document [1, par. 6.12.6]. The built-in functions can take as input char, unsigned
char, short, unsigned short, int, unsigned int, long, unsigned long, float or optionally double and their vec coun-
terparts, for dimensions 2,3,4,8, and 16. On the host the vector types are going to be using the vec class and on
an OpenCL device are going to be using the corresponding OpenCL vector types. The relational operators are
available in both host and device, these relational functions are provided in addition to the the operators and will
return 0 if the conditional is false and 1 otherwise. The available built-in functions are described in tables 7.7

Relational Function Description
int isequal (float x, float y)

intn isequal (floatn x, floatn y)

longlong isequal (double x, double y)

longlongn isequal (doublen x, doublen y)

Returns the component-wise compare of
x == y.

int isnotequal (float x, float y)

intn isnotequal (floatn x, floatn y)

longlong isnotequal (double x, double y)

longlongn isnotequal (doublen x, doublen y)

Returns the component-wise compare of
x! = y.

int isgreater (float x, float y)

intn isgreater (floatn x, floatn y)

longlong isgreater (double x, double y)

longlongn isgreater (doublen x, doublen y)

Returns the component-wise compare of x >
y.

int isgreaterequal (float x, float y)

intn isgreaterequal (floatn x, floatn y)

longlong isgreaterequal (double x, double y)

longlongn isgreaterequal (doublen x, doublen y)

Returns the component-wise compare of
x >= y.

int isless (float x, float y)

intn isless (floatn x, floatn y)

longlong isless (double x, double y)

longlongn isless (doublen x, doublen y)

Returns the component-wise compare of x <
y.

int islessequal (float x, float y)

intn islessequal (floatn x, floatn y)

longlong islessequal (double x, double y)

longlongn islessequal (doublen x, doublen y)

Returns the component-wise compare of
x <= y.

int islessgreater (float x, float y)

intn islessgreater (floatn x, floatn y)

longlong islessgreater (double x, double y)

longlongn islessgreater (doublen x, doublen y)

Returns the component-wise compare of
(x < y)||(x > y).

int isfinite (float)

intn isfinite (floatn)

longlong isfinite (double)

longlongn isfinite (doublen)

Test for finite value.

int isinf (float)

intn isinf (floatn)

longlong isinf (double)

longlongn isinf (doublen)

Test for infinity value (positive or negative) .

Continued on next page
Table 7.7: Relational functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.14
of the OpenCL 1.2 specification [1]
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Relational Function Description
int isnan (float)

intn isnan (floatn)

longlong isnan (double)

longlongn isnan (doublen)

Test for a NaN.

int isnormal (float)

intn isnormal (floatn)

longlong isnormal (double)

longlongn isnormal (doublen)

Test for a normal value.

int isordered (float x, float y)

intn isordered (floatn x, floatn y)

longlong isordered (double x, double y)

longlongn isordered (doublen x, doublen y)

Test if arguments are ordered. isordered()
takes arguments x and y, and returns the re-
sult isequal(x, x) && isequal(y, y).

int isunordered (float x, float y)

intn isunordered (floatn x, floatn y)

longlong isunordered (double x, double y)

longlongn isunordered (doublen x, doublen y)

Test if arguments are unordered.
isunordered() takes arguments x and y,
returning non-zero if x or y is NaN, and
zero otherwise.

int signbit (float)

intn signbit (floatn)

longlong signbit (double)

longlongn signbit (doublen)

Test for sign bit. The scalar version of the
function returns a 1 if the sign bit in the float
is set else returns 0.
The vector version of the function returns
the following for each component in floatn:
-1 (i.e all bits set) if the sign bit in the float
is set else returns 0.

int any (geninteger x) Returns 1 if the most significant bit in any
component of x is set; otherwise returns 0.

int all (ugeninteger x) Returns 1 if the most significant bit in all
components of x is set; otherwise returns 0.

gentype bitselect (gentype a, gentype b, gentype c) Each bit of the result is the corresponding
bit of a if the corresponding bit of c is 0.
Otherwise it is the corresponding bit of b.

gentype select (gentype a, gentype b, geninteger c) For each component of a vector type:
result[i] = (MSB of c[i] is set)? b[i

] : a[i].

For a scalar type:
result = c ? b : a.
geninteger must have the same number of
elements and bits as gentype.

End of table
Table 7.7: Relational functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.14
of the OpenCL 1.2 specification [1]

7.1.8 Vector data and store functions

The functionality from the OpenCL functions as defined in in the OpenCL 1.2 specification document [1, par.
6.12.7] is available in SYCL through the vec class in section 4.10.2.
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7.1.9 Synchronization Functions

In SYCL the OpenCL synchronization functions are available through the item class 5.2.4, as they are applied to
work-item for local or global address spaces. Please see 5.9.

7.1.10 printf function

The functionality of the printf function is covered by the cl::cycle::stream class 7.4, which has the capability
to print to standard output all the SYCL classes and primitives and covers the capabilities defined in the OpenCL
1.2 specification document [1, par. 6.12.13].

7.2 Synchronization and atomics

The SYCL specification offers the same set of synchronization operations that are available to OpenCL C pro-
grams, for compatibility and portability across OpenCL devices. The available features are:

• Accessor classes: Accessor classes specify acquisition and release of buffer and image data structures to
provide points at which underlying queue synchronization primitives must be generated.

• Atomic operations: OpenCL 1.2 devices only support the equivalent of relaxed C++ atomics and SYCL
uses the C++11 library syntax to make this available. This is provided for forward compatibility with future
SYCL versions.

• Barriers: Barrier primitives are made available to synchronize sets of work-items within individual work-
groups. They are exposed through the nd_item class that abstracts the current point in the overall iteration
space.

• Hierarchical parallel dispatch: In the hierarchical parallelism model of describing computations, synchro-
nization within the work-group is made explicit through multiple instances of the parallel_for_work_item
function call, rather than through the use of explicit barrier operations.

Barriers may provide ordering semantics over the local address space, global address space or both. All memory
operations initiated before the barrier in the specified address space(s) will be completed before any memory
operation after the barrier. Address spaces are described using the fence_space enum class:

namespace cl {

namespace sycl {

namespace access {

enum class fence_space : char {

local_space,

global_space,

global_and_local

}; // enum class address_space

} // namepaces access

} // namespace sycl

} // namespace cl
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The SYCL specification provides atomic operations based on the C++11 library syntax. The only available
ordering, due to constraints of the OpenCL 1.2 memory model, is memory_order_relaxed. No default order
is supported because a default order would imply sequential consistency. The SYCL atomic library may map
directly to the underlying C++11 library in host code, and must interact safely with the host C++11 atomic library
when used in host code. The SYCL library must be used in device code to ensure that only the limited subset of
functionality is available. SYCL 1.2 device compilers should give a compilation error on use of the std::atomic
classes and functions in device code. Only atomic<int>, atomic<unsigned int> and atomic<float> types are
available in SYCL 1.2. Only the exchange operation is available for float atomics.

No construction of atomic objects is possible in SYCL 1.2. All atomic objects must be obtained by-reference
from an accessor (see Section 4.7.0.3).

The atomic types are defined as follows, and methods are listed in Table 7.8:

namespace cl {

namespace sycl {

template <typename T>

class atomic<T> {

public:

// Constructors

atomic() = delete;

// Methods

// Only memory_order_relaxed is supported in SYCL 1.2

void store(T operand, std::memory_order = std::memory_order_relaxed);

void store(T operand, std::memory_order = std::memory_order_relaxed) volatile;

T load(memory_order = std::memory_order_relaxed) const;

T load(memory_order = std::memory_order_relaxed) const volatile;

T exchange(T operand, std::memory_order = std::memory_order_relaxed);

T exchange(T operand, std::memory_order = std::memory_order_relaxed) volatile;

T compare_exchange_strong(T* expected, T desired, std::memory_order success,

std::memory_order fail);

T compare_exchange_strong(T* expected, T desired, std::memory_order success,

std::memory_order fail) volatile;

T fetch_add(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_add(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

T fetch_sub(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_sub(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

T fetch_and(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_and(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

T fetch_or(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_or(T operand, std::memory_order = std::memory_order_relaxed) volatile;

T fetch_xor(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_xor(T operand,
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std::memory_order = std::memory_order_relaxed) volatile;

// Additional functionality provided beyond that of C++11

T fetch_min(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_min(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

T fetch_max(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_max(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

};

typedef atomic<int> atomic_int;

typedef atomic<unsigned int> atomic_uint;

typedef atomic<float> atomic_float;

} // namespace sycl

} // namespace cl

As well as the methods, a matching set of operations on atomic types is provided by the SYCL library. As in the
previous case, the only available memory order in SYCL 1.2 is memory_order_relaxed. The global functions are
as follows and described in Table 7.9.

namespace cl {

namespace sycl {

template <class T>

T atomic_load_explicit(atomic<T>* object,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_load_explicit(volatile atomic<T>* object,

std::memory_order = std::memory_order_relaxed);

template <class T>

void atomic_store_explicit(atomic<T>* object, T,

std::memory_order = std::memory_order_relaxed);

template <class T>

void atomic_store_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_exchange_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_exchange_explicit(volatile atomic<T>* object, T,

std::memory_order = std::memory_order_relaxed);

template <class T>

bool atomic_compare_exchange_strong_explicit(atomic<T>* object, T* expected,

T desired,

std::memory_order success,

std::memory_order fail);

template <class T>

bool atomic_compare_exchange_strong_explicit(volatile atomic<T>*, T*, T,

std::memory_order success,

std::memory_order fail);
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template <class T>

T atomic_fetch_add_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_add_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_sub_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_sub_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_and_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_and_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_or_explicit(atomic<T>*, T, std::memory_order);

template <class T>

T atomic_fetch_or_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_xor_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_xor_explicit(volatile atomic<T>*, T,

std::memory_order = std::memory_order_relaxed);

// Additional functionality beyond that provided by C++11

template <class T>

T atomic_fetch_min_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_min_explicit(volatile atomic<T>* object, T,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_max_explicit(atomic<T>* object, T operand, std::memory_order);

template <class T>

T atomic_fetch_max_explicit(volatile atomic<T>* object, T operand,

std::memory_order);

} // namespace sycl

} // namespace cl

The atomic operations and methods behave as described in the C++11 specification, barring the restrictions dis-
cussed above. Note that car must be taken when using compare_exchange_strong to perform many of the opera-
tions that would be expected of it in standard CPU code due to the lack of forward progress guarantees between
work-items in SYCL. No work-item may be dependent on another work-item to make progress if the code is to
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be portable.

Methods Description
void store( T operand, std::memory_order = std::

memory_order_relaxed );

Atomically store operand in *this.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

T load( memory_order = std::memory_order_relaxed )

const;

Atomically load the current value of *this
and return the value before the call.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

T exchange( T operand, std::memory_order = std::

memory_order_relaxed );

Atomically replace *this with operand.
Return the original value of object.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

T compare_exchange_strong(

T& expected,

T desired,

std::memory_order success,

std::memory_order fail );

Atomically compare the value of *this
against expected. If equal replace *this
with desired otherwise store the original

value of *this in *expected. Returns true if
the comparison succeeded.
Both memory orders must be
memory_order_relaxed. T must be int
or unsigned int.

T fetch_add( T operand, std::memory_order = std::

memory_order_relaxed );

Atomically add operand to *this. Store the
result in *this and return the value before
the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

T fetch_sub( T operand, std::memory_order order ); Atomically subtract operand from *this

. Store the result in *this and return
the value before the call. order must be
memory_order_relaxed. T must be int or
unsigned int.

T fetch_and( T operand, std::memory_order order ); Atomically perform a bitwise and of
operand and *this. Store the result in *this
and return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

T fetch_or( T operand, std::memory_order order ); Atomically perform a bitwise or of operand
and *this. Store the result in *this and

return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

T fetch_xor( T operand, std::memory_order order ); Atomically perform a bitwise exclusive-or
of operand and *this. Store the result in *
this and return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

Continued on next page
Table 7.8: Methods available on an object of type atomic<T>.
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Methods Description
T fetch_min( T operand, std::memory_order order ); Atomically compute the minimum of

operand and *this. Store the result in *this
and return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

T fetch_max( T operand, std::memory_order order ); Atomically compute the maximum of
operand and *this. Store the result in *this
and return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

End of table
Table 7.8: Methods available on an object of type atomic<T>.

Functions Description
template<class T> T atomic_load_explicit(

atomic<T>* object,

std::memory_order order);

Atomically load the current value of object
and return that value.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

template<class T> void atomic_store_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically store operand in object.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

template<class T>

T atomic_exchange_explicit(

atomic<T>* object, T operand,

std::memory_order order);

Atomically replace object with operand.
Return the original value of object.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

template<class T>

bool atomic_compare_exchange_strong_explicit(

atomic<T>* object,

T* expected,

T desired,

std::memory_order success,

std::memory_order fail);

Atomically compare the value of object
against expected. If equal replace object

with desired. Otherwise store the original
value of object in expected. Returns true if
the comparison succeeded.
Both memory orders must be
memory_order_relaxed. T must be int
or unsigned int.

template<class T> T atomic_fetch_add_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically add operand to object. Store
the result in object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_sub_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically subtract operand from object.
Store the result in object.
order must be memory_order_relaxed. T
must be int or unsigned int.

Continued on next page
Table 7.9: Global functions available on atomic types.
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Functions Description
template<class T> T atomic_fetch_and_explicit(

atomic<T>* operand,

T object,

std::memory_order order);

Atomically perform a bitwise and of
operand and object. Store the result in
object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_or_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically perform a bitwise or of operand
and object. Store the result in object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_xor_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically perform a bitwise exclusive-or
of operand and object. Store the result in
object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_min_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically compute the minimum of
operand and object. Store the result in
object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_max_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically compute the maximum
of operand and object. Store the
result in object. order must be
memory_order_relaxed. T must be int
or unsigned int.

End of table
Table 7.9: Global functions available on atomic types.

7.3 Device-side enqueue Interface

Device-side enqueue is supported for OpenCL 2.2 systems and supports a mode which in OpenCL terms is
called nested parallelism. This mode allows kernels to be sumbitted from other kernels without the need of host
synchronization. The capabilities of device-enqueue matches the capabilities of host-enqueue, with the difference
that on the device, some SYCL runtime features for enqueuing kernels are not available. Those features are:
defining accessors within the device command group; being able to track dependencies among the submitted
kernels, and C++ exceptions for reporting errors from the queue.

Execution of kernels on the device in SYCL is done using a device_queue. The device_queue can submit device
command groups, i.e. command group functors instantiated on the device. There can be no exceptions thrown
from the device_queue and as a result there are no wait_and_throw() or throw()methods available for that class,
as described in 7.3.1.

All device command groups can only be called with an instance of a device_handle. The device_handle supports
all the SYCL kernel invocations (such as parallel_for) with both C++ lambdas and functors being usable to
define the kernels. The device-enqueued kernels must be defined in the same C++ translation unit as the kernels
enqueued from host so that the device compiler can construct the kernel instances for the SYCL device. The
device_handle does not provide support for constructing new accessors, as the methods for providing access or
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registering access to host memory are only available in command groups executed on the host. However, accessors
constructed on the host can be captured as parameters to the device enqueued kernel. The device_handle class is
described in detail in 7.3.2.

In order to provide scheduling information for the device kernels, an enqueue policy is defined, which defines
whether the nested command groups will not start until: the parent command group kernel has finished execution;
the work-group that enqueued the device-kernel has finished execution, or there will be no wait at all. Along with
this information, device_event is a class that provides event sychronisation on the device between the parent and
the children command group functor submissions. Even in the case of no wait being requested, there is never a
guarantee that child kernels will run in parallel with parent kernels, i.e. serialization of kernel execution is always
valid for an implementation.

7.3.1 device_queue interface

The constructors and methods of the device_queue class are listed in Tables 7.10 and 7.11.

namespace cl {

namespace sycl {

enum enqueue_status {

success,

failure,

invalid_queue,

invalid_ndrange,

invalid_event_wait_list,

queue_full,

invalid_arg_size,

event_allocation_failure,

out_of_resources

};

enum class enqueue_policy { no_wait, wait_kernel, wait_work_group };

struct event {

event();

event(const event&) = default;

event(event&) = default;

event& operator=(const event&) = default;

event& operator=(event&&) = default;

event* operator&() = delete;

bool is_valid() const noexcept;

void retain() noexcept;

void release() noexcept;

void set_status(event_status status) noexcept;

template <class T>

void profiling_info(event_profiling_info name, global_ptr<T> value) noexcept;

};

event make_user_event();

class device_queue {

public:
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device_queue();

device_queue(const device_queue&) = default;

device_queue(device_queue&) = default;

device_queue& operator=(const device_queue&) = default;

device_queue& operator=(device_queue&&) = default;

device_queue* operator&() = delete;

∼device_queue();

bool is_host() const;

bool is_valid() const noexcept;

template <typename T>

event submit(T cgf);

};

} // namespace sycl

} // namespace cl

Constructors Description
device_queue () Creates a device queue using the default

device queue provided by the OpenCL run-
time.

device_queue (device_queue &) Copy constructor
End of table

Table 7.10: Constructors of the device_queue class.

Methods Description
bool is_host ()const Returns whether the queue is executing on

a SYCL host device.
template <typename T>

event submit(enqueue_policy flag, T cgf)

Submit a command group functor to the
queue, in order to be scheduled for ex-
ecution on the device according to the
enqueue_policy given.

End of table
Table 7.11: Methods for class device queue

7.3.2 device_handle interface

namespace cl {

namespace sycl {
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class device_handle {

private:

// implementation defined constructor

device_handle(___unespecified___);

public:

device_handle(const device_handler& rhs);

// In the case of a functor with a globally visible name

// the template parameter:"typename kernelName" can be ommitted

// and the kernelType can be used instead.

template <typename KernelName, class KernelType, class... Args>

int single_task(KernelType, Args... args);

// In the case of a functor with a globally visible name

// the template parameter:"typename kernelName" can be ommitted

// and the kernelType can be used instead.

template <typename KernelName, class KernelType, class... Args>

int parallel_for(range<dimensions> numWorkItems, KernelType, Args... args);

// In the case of a functor with a globally visible name

// the template parameter:"typename kernelName" can be ommitted

// and the kernelType can be used instead.

template <typename KernelName, class KernelType, class... Args>

int parallel_for(range<dimensions> numWorkItems,

id<dimensions> workItemOffset, KernelType, Args... args);

// In the case of a functor with a globally visible name

// the template parameter:"typename kernelName" can be ommitted

// and the kernelType can be used instead.

template <typename KernelName, class KernelType, class... Args>

int parallel_for(nd_range<dimensions> executionRange, KernelType, Args... args);

// In the case of a functor with a globally visible name

// the template parameter:"typename kernelName" can be ommitted

// and the kernelType can be used instead.

template <typename KernelName, class KernelType, work_group_exec Workgroup, Args... args>

int parallel_for(nd_range<dimensions> numWorkItems,

id<dimensions> workItemOffset, KernelType, Args... args);

int single_task(kernel syclKernel);

int parallel_for(range<dimensions> numWorkItems, kernel syclKernel);

int parallel_for(nd_range<dimensions> ndRange, kernel syclKernel);

// In the case of a functor with a globally visible name

// the template parameter:"typename kernelName" can be ommitted

// and the kernelType can be used instead.

template <class KernelName, class WorkgroupFunctionType>

int parallel_for_work_group(range<dimensions> numWorkGroups,

WorkgroupFunctionType);

// In the case of a functor with a globally visible name

// the template parameter:"typename kernelName" can be ommitted
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// and the kernelType can be used instead.

template <class KernelName, class WorkgroupFunctionType>

int parallel_for_work_group(range<dimensions> numWorkGroups,

range<dimensions> workGroupSize,

WorkgroupFunctionType);

};

} // namespace sycl

} // namespace cl

7.3.3 device_event interface

The device event class is only available on an device and does not support any interoperability with host, only
using the events which are bound to the parent kernel, which was used to enqueue kernels on device.

namespace cl {

namespace sycl {

class device_event {

public:

event() = default;

event(const event &rhs);

∼event();

cl::event get() noexcept;

bool is_valid() const noexcept;

void retain() noexcept;

void release() noexcept;

void set_status(event_status status) noexcept;

template <info::event_profiling param>

typename param_traits<info::event_profiling, param>::type get_profiling_info()

const noexcept;

};

} // namespace sycl

} // namespace cl

Constructors Description
device_event ()= default Default construct a null event object.
event (const device_event & rhs) Construct a copy sharing the same under-

lying event. The underlying event will be
reference counted.

End of table
Table 7.12: Constructors for the device_event class
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Methods Description
cl::event get() Return the underlying OpenCL event ref-

erence. Retains a reference to the returned
cl_event object. Caller should release it
when finished.

is_valid() Returns true if event is a valid event. Oth-
erwise returns false. No exceptions are al-
lowed.

void retain()noexcept Increments the event reference count. No
exceptions are allowed.

void release()noexcept Decrements the event reference count. The
event object is deleted once the event ref-
erence count is zero, the specific command
identified by this event has completed (or
terminated) and there are no commands in
any device command queue that require a
wait for this event to complete.

template <info::event_profiling param>

typename param_traits

<info::event_profiling, param>::type

get_profiling_info ()const

Queries OpenCL profiling information for
the underlying cl event.

End of table
Table 7.13: Methods for the device_event class

7.4 Stream class

SYCL stream class is available in SYCL instead of the printf() function in order to support C++ classes and
structs and some commonly used stream output manipulators used in C++.

The cl::sycl::stream object can be used in order to output a sequence of characters on standard output. The
stream object can be default constructed inside a command group scope and it can also have implementation
defined constructors for output size and width.

Stream Operators Description
cl::sycl::stream= operator for assigning a stream to another.
cl::sycl::operator<< operator for outputting a sequence of charac-

ter or structs on standard output. All SYCL
vector classes and id structs can be passed in
this operator.

cl::sycl::endl method that adds an end of line character to
the output

cl::sycl::hex Display the output in hexadecimal base
cl::sycl::oct Display the output in octal base
cl::sycl::setw Sets the field width of the output
cl::sycl::precision Sets the decimal precision for the output
cl::sycl::scientific Set the notation of the floating-point values

as the C++ scientific notation
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Stream Operators Description
cl::sycl::fixed Set the notation of the floating-point values

as the C++ fixed notation
cl::sycl::hexfloat Displays the floating point values in hex-

adecimal format
cl::sycl::defaultfloat Displays the floating point values in the de-

fault notation.

The usage of the cl::sycl::stream object is not recommend for performance critical applications, as optimiza-
tion levels for streaming operations are implementation defined, and the corresponding implementation documen-
tation should be consulted.
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8. SYCL Support of Non-Core OpenCL Features

OpenCL apart from core features that are supported in every platform, has optional features as well as extensions
that are only supported in some platforms. The optional features, as described in the specification [1], and the
OpenCL “khr” extensions, as described in the extension specification [2], are supported by the SYCL framework,
but the ability to use them is completely dependent on the underlying OpenCL platforms. A SYCL implementation
may support some vendor extensions in order to enable optimizations on certain platforms.

All OpenCL extensions are available through SYCL interoperability with OpenCL C, so all the extensions can be
used through the OpenCL API as described in the extensions specification [2].

When running command groups on the host device, not all extensions are required to be available. The extensions
available for the host are available to query in the same way as for SYCL devices, see Table 3.5.

8.1 Enable extensions in a SYCL kernel

In order to enable extensions in an OpenCL kernel the following compiler directive is used:

#pragma OPENCL EXTENSION <extension_name> : <behaviour>

The keyword extension name can be:

• all, which refers to all the extensions available on a platform

• an extension name from the available extensions on a platform.

They keyword behaviour can be:

• enable: it will enable the extension specified by extension name if it is available on the platform or other-
wise it triggers a compiler warning. If all is specified in the extension name then it will enable all extensions
available.

• disable: it will disable all or any extension provided in the extension name.

The following table 8.1 summarizes the levels of SYCL support to the API extensions for OpenCL 1.2 [2]. These
extensions can be supported using OpenCL/SYCL interoperability API or by the extended SYCL API calls. This
only applies for using them in the framework and only for devices that are supporting these extensions.

Continued on next page
Table 8.1: SYCL support for OpenCL 1.2 API extensions.
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Extension Support using
SYCL/OpenCL
API

Support using
SYCL API

Extension Support using
SYCL/OpenCL
API

Support using
SYCL API

cl_khr_int64_base_atomics Yes Yes
cl_khr_int64_extended_atomics Yes Yes
cl_khr_fp16 Yes Yes
cl_khr_3d_image_writes Yes Yes
cl_khr_gl_sharing Yes Yes
cl_apple_gl_sharing Yes Yes
cl_khr_d3d10_sharing Yes No
cl_khr_d3d11_sharing Yes No
cl_khr_dx9_media_sharing Yes No

End of table
Table 8.1: SYCL support for OpenCL 1.2 API extensions.

8.2 Half Precision Floating-Point

The half precision floating-point data scalar and vector types are supported in the SYCL system. The SYCL host
device supports those types, however they are optional on an OpenCL device and the developer always needs to
check whether the device the kernel is going to run on has the corresponding extension.

The extension name is cl_khr_fp16 and it needs to be used in order to enable the usage of the half data type on
an SYCL OpenCL device.

The half type class, along with any OpenCL macros and definitions, is defined in the namespace cl::sycl as
half. The vector type of half is supported sizes 2, 3, 4, 8 and 16 using the SYCL vectors (§ 4.10.2) along with all
the methods supported for vectors.

The conversion rules follows the same rules as in the OpenCL 1.2 extensions specification [2, par. 9.5.1].

The math, common, geometric and relational functions can take cl::SYCL ::opencl::half as a type as they are
defined in [2, par. 9.5.2, 9.5.3, 9.5.4, 9.5.5]. The valid type for the functions defined for half is described by the
generic type name genhalf is described in table 8.2.

Generic type name Description
genhalf cl::sycl::half, cl::sycl::half2, cl

::sycl::half3, cl::sycl::half4, cl::

sycl::half8, cl::sycl::half16

End of table
Table 8.2: Generic type name description for all valid types of kernel
function parameters. [1]
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The elementary floating-point functions available for SYCL host and device is extended to allow half as input. If
the half type is given as a parameter then the allowed error in ULP(Unit in the Last Place) is less than 8192. They
correspond to Table 6.9 of the OpenCL 1.2 specification [1]

Math function Description
genhalf cos (genhalf x) Compute cosine. x must be in the range -

216 to +216.
genhalf divide (genhalf x, genhalf y) Compute x / y.
genhalf exp (genhalf x) Compute the base- e exponential of x.
genhalf exp2 (genhalf x) Compute the base- 2 exponential of x.
genhalf exp10 (genhalf x) Compute the base- 10 exponential of x.
genhalf log (genhalf x) Compute natural logarithm.
genhalf log2 (genhalf x) Compute a base 2 logarithm.
genhalf log10 (genhalf x) Compute a base 10 logarithm.
genhalf powr (genhalf x, genhalf y) Compute x to the power y, where x >= 0.
genhalf recip (genhalf x) Compute reciprocal.
genhalf rsqrt (genhalf x) Compute inverse square root.
genhalf sin (genhalf x) Compute sine. x must be in the range -216

to +216.
genhalf sqrt (genhalf x) Compute square root.
genhalf tan (genhalf x) Compute tangent. x must be in the range -

216 to +216.
End of table

Table 8.3: Extended elementary functions which work on SYCL host
and device.

8.3 Writing to 3D image memory objects

The accessor class for target access::target::image in SYCL support methods for writing 3D image mem-
ory objects, but this functionality is only allowed on a device if the extension cl_khr_3d_image_writes is
supported on that device.

8.4 Interoperability with OpenGL

OpenCL has a standard extension that allows interoperability with OpenGL objects. The features described in this
section are only defined within SYCL if the underlying OpenCL implementation supports the OpenCL/OpenGL
interoperability extension (cl_khr_gl_sharing).

8.4.1 OpenCL/OpenGL extensions to the context class

If the cl_khr_gl_sharing extension is present then the developer can create an OpenCL context from an
OpenGL context by providing the corresponding attribute names and values to properties for the devices cho-
sen by device selector. Table 3.8 has the additions shown on Table 8.5.
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cl context properties flag Description
CL_GL_CONTEXT_KHR OpenGL context handle (default: 0)
CL_EGL_DISPLAY_KHR CGL share group handle (default: 0)
CL_GLX_DISPLAY_KHR EGLDisplay handle (default: EGL_NO_-

DISPLAY)
CL_WGL_HDC_KHR X handle (default: None)
CL_CGL_SHAREGROUP_KHR HDC handle (default: 0)

End of table
Table 8.4: Additional optional properties for creating context for
SYCL/OpenGL sharing.

The following table 8.5 describes the additional methods of the context class defined for the OpenCL/OpenGL
interop that are also available for SYCL/OpenGL interop. If the OpenGL extensions are not available then their
behavior is implementation defined.

Methods Description
device get_gl_current_device () Returns the OpenGL enabled device in the

current context.
vector_class<device> get_gl_context_devices () Returns the OpenGL supported devices in

this context.
End of table

Table 8.5: Extended context class interface.

The SYCL extension for creating OpenCL context from an OpenGL context is based on the OpenCL extension
specification and all the capabilities and restrictions are based on it and developers and implementers are advised
to refer to [2, sec. 9.6].

8.4.2 Sharing SYCL/OpenGL memory objects

It is possible to share objects between SYCL and OpenGL, if the corresponding OpenCL platform extensions for
these are available on available platforms. OpenCL memory objects based on OpenGL objects can only be created
only if the OpenCL context is created from an OpenGL share group object or context. As the latter are OS specific,
the OpenCL extensions are platform specific as well. In MacOS X the extension cl_apple_gl_sharing needs
to be available for this functionality. If it is Windows/Linux/Unix, then the extension cl_khr_gl_sharing needs
to be available. All the OpenGL objects within the shared group used for the creation of the context can be used
apart from the default OpenGL objects.

Any of the buffers or images created through SYCL using the shared group objects for OpenGL are invalid if the
corresponding OpenGL context is destroyed through usage of the OpenGL API. If buffers or images are used after
the destruction of the corresponding OpenGL context then the behaviour of the system is undefined.
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8.4.2.1 SYCL/OpenGL extensions to SYCL buffer

A SYCL buffer can be created from an OpenGL buffer object but the lifetime of the SYCL buffer is bound to
the lifetime of the OpenCL context given in order to create the buffer. The GL buffer has to be created a priori
using the OpenGL API, although it doesn’t need to be initialized. If the OpenGL buffer object is destroyed or
otherwise manipulated through the OpenGL API, before its usage through SYCL is completed, then the behaviour
is undefined.

The functionality of the buffer and the accessor class is retained as for any other SYCL buffer defined in this
system.

Constructor Description
template <typename T, int dimensions = 1>

buffer(context &clGlContext, GLuint glBufferObj)

Constructs a buffer from a Open-
CL/OpenGL interop context and a
gl_buffer object.

End of table
Table 8.6: Extended constructors for the buffer class.

The extended methods of the buffer class, which have defined only when behavior when the OpenGL extensions
are available on device, otherwise its undefined.

Method Description
cl_gl_object_type get_gl_info ( GLuint glBufferObj ) Returns the cl gl object type of the under-

lying OpenGL buffer.
End of table

Table 8.7: Extended buffer class interface

8.4.2.2 SYCL/OpenGL extensions to SYCL image

A SYCL image can be created from an OpenGL buffer, from an OpenGL texture or from an OpenGL renderbuffer.
However, the lifetime of the SYCL image is bound to the lifetime of the OpenCL/OpenGL context given in order
to create the image and the OpenGL object’s lifetime. The GL buffer, texture or renderbuffer has to be created
a priori via the OpenGL API, although it doesn’t need to be initialized. If the OpenGL object is destroyed or
otherwise manipulated through the OpenGL API before its usage through SYCL is completed, then the behaviour
is undefined.

Constructor Description
template<int dimensions = 1>

image(context &clGlContext, GLuint glBufferObj)

Creates an 1-D Image from an OpenGL
buffer object.

template<int dimensions = 2>

image( context &clGlContext, GLuint

glRenderbufferObj)

Create a 2-D image from an OpenGL ren-
derbuffer object.

Continued on next page
Table 8.8: Additional optional image class constructors.
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Constructor Description
template<int dimensions = 1>

image(context &clGlContext, GLenum textureTarget

, GLuint glTexture, GLint glMiplevel)

Creates a 1-D image from an OpenGL tex-
ture object with given textureTarget and
mipmap level. The textureTarget can be one
of the following:
• GL_TEXTURE_1D
• GL_TEXTURE_1D_ARRAY
• GL_TEXTURE_BUFFER

template<int dimensions = 2>

image(context &clGlContext, GLenum textureTarget

, GLuint glTexture, GLint glMiplevel)

Creates a 2-D image from an OpenGL tex-
ture object with given textureTarget and
mipmap level. The textureTarget can be one
of the following:
• GL_TEXTURE_2D
• GL_TEXTURE_2D_ARRAY
• GL_TEXTURE_CUBE_MAP_-
POSITIVE_X

• GL_TEXTURE_CUBE_MAP_-
POSITIVE_Y

• GL_TEXTURE_CUBE_MAP_-
POSITIVE_Z

• GL_TEXTURE_CUBE_MAP_-
NEGATIVE_X

• GL_TEXTURE_CUBE_MAP_-
NEGATIVE_Y

• GL_TEXTURE_CUBE_MAP_-
NEGATIVE_Z

• GL_TEXTURE_RECTANGLE

template<int dimensions = 3>

image(context &clGlContext, GLenum textureTarget

, GLuint glTexture, GLint glMiplevel)

Creates a 3-D image from an OpenGL tex-
ture object with given textureTarget and
mipmap level. The textureTarget can be one
of the following:
• GL_TEXTURE_3D

End of table
Table 8.8: Additional optional image class constructors.

Method Description
GLenum get_gl_texture_target () Returns the OpenGL texture target corre-

sponding to the underlying texture which the
context was created with.

GLint get_gl_mipmap_level () Returns the mipmap level of the underlying
texture.

End of table
Table 8.9: Additional optional image class method.
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The texture provided has to be an OpenGL texture created through the OpenGL API and has to be a valid 1D,
2D, 3D texture or 1D array, 2D array texture or a cubemap, rectangle or buffer texture object. The format and the
dimensions provided for the miplevel of the texture are used to create the OpenCL image object. The format of the
OpenGL texture or renderbuffer object needs to match the format of the OpenCL image format. The compatible
formats are specified in Table 9.4 of the OpenCL 1.2 extensions document [2, par. 9.7.3.1] and are also included in
Table 8.10. If the texture or renderbuffer has a different format than the ones specified in 8.10, it is not guaranteed
that the image created will be mapped to the the original texture.

OpenGL internal format Corresponding OpenCL image format
(channel order, channel data type)

GL_RGBA8 CL_RGBA, CL_UNORM_INT8,
CL_BGRA, CL_UNORM_INT8

GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV CL_RGBA, CL_UNORM_INT8
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV CL_BGRA, CL_UNORM_INT8
GL_RGBA16 CL_RGBA, CL_UNORM_INT16
GL_RGBA8I, GL_RGBA8I_EXT CL_RGBA, CL_SIGNED_INT8
GL_RGBA16I, GL_RGBA16I_EXT CL_RGBA, CL_SIGNED_INT16
GL_RGBA32I, GL_RGBA32I_EXT CL_RGBA, CL_SIGNED_INT32
GL_RGBA8UI, GL_RGBA8UI_EXT CL_RGBA, CL_UNSIGNED_INT8
GL_RGBA16UI, GL_RGBA16UI_EXT CL_RGBA, CL_UNSIGNED_INT16
GL_RGBA32UI, GL_RGBA32UI_EXT CL_RGBA, CL_UNSIGNED_INT32
GL_RGBA16F, GL_RGBA16F_ARB CL_RGBA, CL_HALF_FLOAT
GL_RGBA32F, GL_RGBA32F_ARB CL_RGBA, CL_FLOAT

End of table
Table 8.10: Mapping of GL internal format to CL image format (refer-
ence: [2, table 9.4])

8.4.2.3 SYCL/OpenGL extensions to SYCL accessors

In order for SYCL to support the OpenCL/OpenGL interoperability, the classes for buffers and images have to
be extended so that the OpenCL memory objects to be created from OpenGL objects. This extension, apart from
restrictions on the creation and the life-time of the OpenCL objects, also requires that before the usage of any
of these objects in an OpenCL command queue an acquire command has to be enqueued first. In SYCL, the
accessor classes make sure that the data are made available on a device. For this extension the SYCL kernel has
to capture and through the accessor classes acquire any targets that are declared as interoperability targets.

The required extension for the accessor class are shown on Table 8.11.

Enumerator access::target values Description
acces::target::cl_gl_buffer access buffer which is created from an

OpenGL buffer
access::target::cl_gl_image access an image or that is created from an

OpenGL shared object
End of table

Table 8.11: Enumerator description for access::target
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The SYCL system is responsible for synchronizing the OpenCL and OpenGL objects in use inside a command_-
group when the SYCL API is used and given that all the accessors for the buffers and images are marked as the
interoperability targets.

8.4.2.4 SYCL/OpenGL extensions to SYCL events

In the case where the extension cl_khr_gl_event is available on a platform, the functionality for creating
synchronizing OpenCL events with OpenGL events is available and the event class is extended to include them.

A SYCL event can be constructed from an OpenGL sync object with the extensions to the event class shown on
Table 8.12.

Constructor Description
event(context &clGlContext, GL_sync syncObj) Creates an event which enables waiting on

events to also include synchronization with
OpenGL objects that are shared using the
OpenCL/OpenGL context

End of table
Table 8.12: Additional optional class constructors for event class.

Method Description
GL_sync get_gl_info () Returns GL sync object.

End of table
Table 8.13: Additional optional class method for event class.

The specification of the underlying OpenCL/OpenGL interoperability system for synchronizing OpenCL event
with OpenGL sync objects is in the OpenCL extensions specification [2, sec. 9.8].

8.4.2.5 Extension for depth and depth-stencil images

The extension cl_khr_depth_images adds support for depth images and the extension cl_khr_gl_depth_-
images allows sharing between OpenCL depth images and OpenGL depth or depth-stencil textures. The SYCL
system doesn’t add any additional functionality towards this extension and follows the OpenCL 1.2 Specification
[2, sec. 9.12] for depth and depth-Stencil images extension. All the image class constructors and methods of the
SYCL API as described in Table 4.4 and 4.5 on page 89 are extended to enable the use of the same API when
this extension is present. The API is able to support the type image2d_depth_t and image2d_array_depth_t.
The OpenCL C API defined in [2, sec. 9.12] can be used as well with all the rules that apply for SYCL/OpenCL
C interoperability.
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9. SYCL Device Compiler

This section specifies the requirements of the SYCL device compiler. Most features described in this section
relate to underlying OpenCL capabilities of target devices and limiting the requirements of device code to ensure
portability.

9.1 Offline compilation of SYCL source files

There are two alternatives for a SYCL device compiler: a shared source device compiler and a single-source
device compiler.

A SYCL shared source device compiler takes in a C++ source file, extracts only the SYCL kernels and outputs
the device code in a form that can be enqueued from host code by the associated SYCL runtime. How the SYCL
runtime invokes the kernels is implementation defined, but a typical approach is for a device compiler to produce
a header file with the compiled kernel contained within it. By providing a command-line option to the host
compiler, it would cause the implementation’s SYCL header files to #include the generated header file. The
SYCL specification has been written to allow this as an implementation approach in order to allow shared-source
compilation. However, any of the mechanisms needed from the SYCL compiler, the SYCL runtime and build
system are implementation defined, as they can vary depending on the platform and approach.

A SYCL single-source device compiler takes in a C++ source file and compiles both host and device code at the
same time. This specification specifies how a SYCL single-source device compiler parses and outputs device code
for kernels, but does not specify the host compilation.

9.2 Naming of kernels

SYCL kernels are extracted from C++ source files and stored in an implementation- defined format. In the case of
the shared-source compilation model, the kernels have to be uniquely identified by both host and device compiler.
This is required in order for the host runtime to be able to load the kernel by using the OpenCL host runtime
interface.

From this requirement the following rules apply for naming the kernels:

• The kernel name is a C++ typename.

• The kernel needs to have a globally-visible name. In the case of a functor, the name can be the typename
of the functor, as long as it is globally-visible. In the case where it isn’t, a globally-visible name has to be
provided, as template parameter to the kernel invoking interface, as described in 5.4. In C++11, lambdas1 do
not have a globally-visible name, so a globally-visible typename has to be provided in the kernel invoking

1C++14 lambdas have the same naming rules as C++11 lambdas.
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interface, as described in 5.4.

• The kernel name has to be a unique identifier in the program.

In both single-source and shared-source implementations, a device compiler should detect the kernel invocations
(e.g. parallel_for<kernelname>) in the source code and compile the enclosed kernels, storing them with their
associated type name.

The format of the kernel and the compilation techniques are implementation defined. The interface between the
compiler and the runtime for extracting and executing SYCL kernels on the device is implementation defined.

9.3 Language restrictions for kernels

The extracted SYCL kernels need to be compiled by an OpenCL online or offline compiler and be executed by
the OpenCL 1.2 runtime. The extracted kernels need to be OpenCL 1.2 compliant kernels and as such there are
certain restrictions that apply to them.

The following restrictions are applied to device functions and kernels:

• Structures containing pointers may be shared but the value of any pointer passed between SYCL devices or
between the host and a SYCL device is undefined.

• Memory storage allocation is not allowed in kernels, all memory allocation for the device is done on host,
using accessor classes. Consequently, the default allocation operator new overloads that allocate storage
are disallowed in a SYCL kernel. The placement new operator and any user-defined overloads that do not
allocate storage are permitted.

• No virtual methods are allowed to be called in a SYCL kernel or any functions called by the kernel.

• No function pointers are allowed to be called in a SYCL kernel or any functions called by the kernel.

• No class with a vtable can be used in a SYCL kernel or any code included in the kernel.

• RTTI is disabled inside kernels.

• Exception-handling cannot be used inside a SYCL kernel or any code called from the kernel.

• Recursion is not allowed in a SYCL kernel or any code called from the kernel.

• Global variables are not allowed to be used in kernel code.

• Non-const static member variables are not allowed to be used in kernel code.

• The rules for kernels apply to both the kernel functors themselves and all functions, operators, methods,
constructors and destructors called by the kernel. This means that kernels can only use library functions that
have been adapted to work with SYCL. Implementations are not required to support any library routines in
kernels beyond those explicitly mentioned as usable in kernels in this spec. Developers should refer to the
SYCL built-in functions in 7.1 to find functions that are specified to be usable in kernels.
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9.4 Compilation of functions

The SYCL device compiler parses an entire C++ source file supplied by the user. This also includes C++ header
files, using #include directives. From this source file, the SYCL device compiler must compile kernels for the
device, as well as any functions that the kernels call.

In SYCL, kernels are invoked using a kernel invoke function (e.g. parallel_for). The kernel invoke functions
are templated by their kernel parameter, which is a function object (either a functor or a lambda). The code inside
the function object that is invoked as a kernel is called the “kernel function”. The “kernel function” must always
return void. Any function called by the kernel function is compiled for device and called a “device function”.
Recursively, any function called by a device function is itself compiled as a device function.

For example, this source code shows three functions and a kernel invoke with comments explaining which func-
tions need to be compiled for device.

void f ()

{

// function "f" is not compiled for device

single_task<class kernel_name>([=] ()

{

// This code compiled for device

g (); // this line forces "g" to be compiled for device

});

}

void g ()

{

// called from kernel, so "g" is compiled for device

}

void h ()

{

// not called from a device function, so not compiled for device

}

In order for the SYCL device compiler to correctly compile device functions, all functions in the source file,
whether device functions or not, must be syntactically correct functions according to this specification. A syntac-
tically correct function is a function that matches at least the C++11 specification, plus any extensions from the
C++14 specification.

9.5 Built-in scalar data types

In a SYCL device compiler, the standard C++ fundamental types, including int, short, long, long long int
need to be configured so that the device definitions of those types match the host definitions of those types. A
device compiler may have this preconfigured so that it can match them based on the definitions of those types on
the platform. Or there may be a necessity for a device compiler command-line option to ensure the types are the
same.
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The standard C++ fixed width types, e.g. int8_t, int16_t, int32_t,int64_t, should have the same size as defined
by the C++ standard for host and device.

SYCL Scalar Datatypes Description
char a signed 8-bit integer.
unsigned char an unsigned 8-bit integer.
short int a signed integer of at least 16 bits and whose

size must match the definition on the host.
unsigned short int an unsigned integer of at least 16 bits and

whose size must match the definition on the
host.

int a signed integer of at least 16 bits and whose
size must match the definition on the host.

unsigned int an unsigned integer of at least 16 bits and
whose size must match the definition on the
host.

long int a signed integer of at least 32 bits and whose
size must match the definition on the host.

unsigned long int an unsigned integer of at least 32 bits and
whose size must match the definition on the
host.

long long int an integer of at least 64 bits and whose size
must match the definition on the host.

unsigned long long int an unsigned integer of at least 64 bits and
whose size must match the definition on the
host.

float a 32-bit IEEE 754 floating-point value.
double a 64-bit IEEE 754 floating-point value.
half a 16-bit IEEE 754-2008 half-precision

floating-point value.
size_t the unsigned integer type of the result of the

sizeof operator on host.
End of table

Table 9.1: SYCL compiler fundamental scalar datatypes

The SYCL device compiler also supports the OpenCL C scalar types which map to the OpenCL C language
fundamental scalar datatypes 4.43.

9.6 Preprocessor directives and macros

The standard C++ preprocessing directives and macros are supported.

• CL_SYCL_LANGUAGE_VERSION substitutes an integer reflecting the version number of the SYCL language
being supported by the device compiler. The version of SYCL defined in this document will have CL_-
SYCL_LANGUAGE_VERSION substitute the integer 120;
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• __FAST_RELAXED_MATH__ is used to determine if the -cl-fast-relaxed-math optimization option is
specified in the build options given to the SYCL device compiler. This is an integer constant of 1 if the
option is specified and undefined otherwise;

• __SYCL_DEVICE_ONLY__ is defined to 1 if the source file is being compiled with a SYCL device compiler
which does not produce host binary;

• __SYCL_SINGLE_SOURCE__ is defined to 1 if the source file is being compiled with a SYCL single-source
compiler which produces host as well as device binary;

• __SYCL_TARGET_SPIR__ is defined to 1 if the source file is being compiled with a SYCL compiler which
is producing OpenCL SPIR binary.

• SYCL_EXTERNAL is a macro which enables external linkage of SYCL functions and methods to be included
in a SYCL kernel. For more details see 9.9.1

9.7 Attributes

The attribute syntax defined in the OpenCL C specification is supported in SYCL.

The vec_type_hint, work_group_size_hint and reqd_work_group_size kernel attributes in OpenCL C
apply to kernel functions, but this is not syntactically possible in SYCL. In SYCL, these attributes are legal on
device functions and their specification is propagated down to any caller of those device functions, such that the
kernel attributes are the sum of all the kernel attributes of all device functions called. If there are any conflicts
between different kernel attributes, then the behaviour is undefined.

9.8 Address-space deduction

In SYCL, there are several different types of pointer, or reference:

• Accessors give access to shared data. They can be bound to a memory object in a command group and
passed into a kernel. Accessors are used in scheduling of kernels to define ordering. Accessors to buffers
have a compile-time OpenCL address space based on their access mode.

• Explicit pointer classes (e.g. global_ptr) contain an OpenCL address space. This allows the compiler to
determine whether the pointer references global, local, constant or private memory.

• C++ pointer and reference types (e.g. int*) are allowed within SYCL kernels. They can be constructed
from the address of local variables, from explicit pointer classes, or from accessors. In all cases, a SYCL
device compiler will need to auto-deduce the address space.

Inside kernels, conversions between accessors to buffers, explicit pointer classes and C++ pointers are allowed as
long as they reference the same datatype and have compatible qualifiers and address spaces.

If a kernel function or device function contains a pointer or reference type, then address-space deduction must be
attempted using the following rules:

• If a an explicit pointer class is converted into a C++ pointer value, then the C++ pointer value will have the
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address space of the explicit pointer class.

• If a variable is declared as a pointer type, but initialized in its declaration to a pointer value with an already-
deduced address space, then that variable will have the same address space as its initializer.

• If a function parameter is declared as a pointer type, and the argument is a pointer value with a deduced
address space, then the function will be compiled as if the parameter had the same address space as its
argument. It is legal for a function to be called in different places with different address spaces for its
arguments: in this case the function is said to be “duplicated” and compiled multiple times. Each duplicated
instance of the function must compile legally in order to have defined behavior.

• The rules for pointer types also apply to reference types. i.e. a reference variable takes its address space
from its initializer. A function with a reference parameter takes its address space from its argument.

• If no other rule above can be applied to a declaration of a pointer, then (for SYCL 1.2) it is assumed to be in
the private address space. When compiling for SYCL 1.2, the default address space is the new generic
address space for OpenCL v2.x devices.

It is illegal to assign a pointer value of one address space to a pointer variable of a different address space, except
in the case of SYCL 2.2, where assigning pointers of the private, global or local address space can be assigned
to pointers in the generic address space.

9.9 SYCL offline linking

9.9.1 SYCL functions and methods linkage

The default behavior in SYCL applications is that all the definitions and declarations of the functions and methods
are available to the SYCL compiler, in the same translation unit. When this is not the case, all the symbols that
need to be exported to a SYCL library or from a C++ library to a SYCL application need to be defined using the
macro: SYCL_EXTERNAL.

The SYCL_EXTERNAL macro is implementation defined. It is the only requirement in the SYCL system for any
function or method to be able to be linked against a SYCL application or library. The SYCL linkage mechanism
is implementation defined, but the existence of the macro is required across all implementations.

9.9.2 Offline linking with OpenCL C libraries

The SYCL system supports external offline linking of OpenCL C libraries with a SYCL application. An OpenCL
C function can be included and used in a SYCL program by defining it as an extern "C" function and adding
the OpenCL library to the SYCL program. Any kernel which uses the external function needs to be included in a
SYCL program which is linked against the OpenCL C library.

The data types for SYCL/OpenCL C interoperability are defined in 4.43. Only those data types can be used in
the extern "C" declaration. These data types are invalid in an OpenCL C kernel, but these should be used in case
of interop with a SYCL kernel and can be converted to and from the C++ fundamental types that are the default
types in SYCL. The underlying OpenCL built-in types for pointers and vectors are defined as typedefs within the
SYCL vec and explicit pointer types. The vec class contains a vector_t typedef for the underlying OpenCL
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C data type, while the explicit pointer classes contain a pointer_t typedef for the underling OpenCL C pointer
type.
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A. Glossary

The purpose of this glossary is to define the key concepts involved in specifying OpenCL SYCL. This section
includes definitions of terminology used throughout the specification document.

Accessor: An accessor is an interface which allows a kernel function to access data maintained by a buffer.

Application scope: The application scope is the normal C++ source code in the application, outside of command
groups and kernels.

async handler: An asynchronous error handler object which is defined as a function class instance encapsulating
the code for receiving all the asynchronous exceptions triggered by the commands of the SYCL command
queue or context.

Buffer: A buffer is an interface which maintains an area of memory which is to be accessed by a kernel function.
It represents storage of data only, with access to that data achieved via accessors. The storage is managed
by the SYCL runtime, but may involve OpenCL buffers.

Barrier: SYCL barriers are the same as OpenCL barriers. In SYCL, OpenCL’s command-queue-barriers are
created automatically on demand by the SYCL runtime to ensure kernels are executed in a semantically-
correct order across multiple OpenCL contexts and queues. OpenCL’s work-group barriers are available as
an intrinsic function (same as in OpenCL) or generated automatically by SYCL’s hierarchical parallel-for
loops.

Command Group: All of the OpenCL commands, memory object creation, copying, mapping and synchroniza-
tion operations to correctly execute a kernel on a device are defined in a functor and called a command
group. Command groups, which are functor objects are executed in different threads are added to queues
atomically, so it is safe to submit command group functors operating on shared queues, buffers and images.

Command Group Scope: The command group scope is the scope defined by the command group functor.

Command Queue: SYCL’s command queues abstrac the OpenCL command queue functionality and add a
SYCL-specific host command queue, which executes SYCL kernels on the host.

Constant Memory: “ A region of global memory that remains constant during the execution of a kernel. The
host allocates and initializes memory objects placed into constant memory.” As defined in [1, p.15]

Device: SYCL’s devices encapsulate OpenCL devices and add support for executing SYCL kernels on host.

Device Compiler: A SYCL device compiler is a compiler that is capable of taking in C++ source code containing
SYCL kernels and outputting a binary object suitable for executing on an OpenCL device.

Functor: Functors are a concept from C++. An alternative name for functions in C++ is “function object”. A
functor is a C++ class with an operator() method that enables the object to be executed in a way that looks
like a function call, but where the object itself is also passed in as a parameter.

Global ID: As in OpenCL, a global ID is used to uniquely identify a work-item and is derived from the number
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of global work-items specified when executing a kernel. A global ID is an N-dimensional value that starts
at (0, 0, ...0).

Global Memory: As in OpenCL, global memory is a memory region accessible to all work-items executing in a
context. Buffers are mapped or copied into global memory for individual contexts inside the SYCL runtime
in order to enable accessors within command groups to give access to buffers from kernels.

Group ID: As in OpenCL, SYCL kernels execute in work groups. The group ID is the ID of the work group that
a work item is executing within.

Group Range: A group range is the range specifying the size of the work group.

Host: As in OpenCL, the host is the system that executes the SYCL API and the rest of the application.

Host pointer: A pointer to memory that is in the virtual address space on the host.

ID: An id is a one, two or three dimensional vector of integers. There are several different types of ID in SYCL:
global ID, local ID, group ID. These different IDs are used to define work items

Image: Images in SYCL, like buffers, are abstractions of the OpenCL equivalent. As in OpenCL, an image stores
a two- or three-dimensional structured array. The SYCL runtime will map or copy images to OpenCL
images in OpenCL contexts in order to execute semantically correct kernels in different OpenCL contexts.
Images are also accessible on the host via the various SYCL accessors available.

Implementation defined: Behavior that is explicitly allowed to vary between conforming implementations of
SYCL. A SYCL implementer is required to document the implementation defined behavior.

Item ID: An item id is an interface used to retrieve the global id, group id and local id of a work item.

Kernel: A SYCL kernel is a C++ functor or lambda function that is compiled to execute on a device. There are
several ways to define SYCL kernels defined in the SYCL specification. It is also possible in SYCL to use
OpenCL kernels as specified in the OpenCL specification. Kernels can execute on either an OpenCL device
or on the host.

Kernel Name: A kernel name is a class type that is used to assign a name to the kernel function, used to link the
host system with the kernel object output by the device compiler.

Kernel Scope: The scope inside the kernel functor or lambda is called kernel scope. Also, any function or method
called from the kernel is also compiled in kernel scope. The kernel scope allows C++ language extensions
as well as restrictions to reflect the capabilities of OpenCL devices. The extensions and restrictions are
defined in the SYCL device compiler specification.

Local ID: A local id is an id which specifies a work items location within a group range.

Local Memory: As in OpenCL, local memory is a memory region associated with a work-group and accessible
only by work-items in that work-group.

NDRange: An NDRange consists of two vectors of integers of one, two or three-dimensions that define the total
number of work items to execute as well as the size of the work groups that the work items are to be
executed within.

Platform: A platform in SYCL is encapsulates an OpenCL platform as defined in the OpenCL specification.

Private Memory: As in OpenCL, private memory is a region of memory private to a work-item. Variables
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defined in one work-items private memory are not visible to another work-item.

Program Object: A program object in SYCL is an OpenCL program object encapsulated in A SYCL class. It
contains OpenCL kernels and functions compiled to execute on OpenCL devices. A program object can be
generated from SYCL C++ kernels by the SYCL runtime, or obtained from an OpenCL implementation.

Shared Source Build System: A shared source build system means that a single source file passed through both
a host compiler and one or more device compilers. This enables multiple devices, instruction sets and binary
formats to be produced from the same source code and integrated into the same piece of software.

SYCL Runtime: A SYCL runtime is an implementation of the SYCL runtime specification. The SYCL runtime
manages the different OpenCL platforms, devices, contexts as well as the mapping or copying of data
between host and OpenCL contexts to enable semantically correct execution of SYCL kernels.

Work-Group: A work group is an OpenCL work group, defined in OpenCL as a collection of related work-items
that execute on a single compute unit. The work-items in the group execute the same kernel and share local
memory and work-group barriers.

Work-Item: A work item is an OpenCL work item, defined in OpenCL as one of a collection of parallel execu-
tions of a kernel invoked on a device by a command. A work-item is execute by one or more processing
elements as part of a work-group executing on a compute unit. A work-item is distinguished from other
executions within the collection by its global ID and local ID.
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B. Interface of SYCL Classes in Full

B.1 Explicit pointer classes

The explicit pointer classes global_ptr, local_ptr, private_ptr and constant_ptr are defined in 4.8.1. The
available functions for these classes in full are the following:

namespace cl {

namespace sycl {

template <typename ElementType>

class global_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions

typedef __undefined__ pointer;

typedef ElementType element_type;

typedef ptrdiff_t difference_type;

typedef __undefined__ ElementType& reference;

typedef const __undefined__ ElementType& const_reference;

typedef const __undefined__ const_pointer;

constexpr global_ptr();

global_ptr(pointer);

template <access::mode Mode>

global_ptr(accessor<ElementType, 1, Mode, global_buffer>);

global_ptr(const global_ptr&);

global_ptr &operator=(global_ptr &&r);

constexpr global_ptr(nullptr);

∼global_ptr();

global_ptr &operator=(pointer r);

global_ptr &operator=(nullptr_t);

reference operator*();

reference operator[](size_t i);

pointer release();

void reset(pointer p = pointer());

void swap(global_ptr& r);

global_ptr &operator++();

global_ptr operator++(int);

global_ptr &operator--();

global_ptr operator--(int);

global_ptr &operator+=(difference_type r);

global_ptr &operator-=(difference_type r);

global_ptr operator+(difference_type r);
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global_ptr operator-(difference_type r);

// implementation defined implicit conversion

// to OpenCL C pointer types.

operator pointer();

};

template <typename ElementType>

class constant_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions

typedef __undefined__ pointer;

typedef ElementType element_type;

typedef ptrdiff_t difference_type;

typedef __undefined__ ElementType& reference;

typedef const __undefined__ ElementType& const_reference;

typedef const __undefined__ const_pointer;

constexpr constant_ptr();

constant_ptr(pointer);

template <access::mode Mode>

constant_ptr(accessor<ElementType, 1, Mode, global_buffer>);

constant_ptr(const constant_ptr&);

constant_ptr &operator=(constant_ptr &&r);

constexpr constant_ptr(nullptr);

∼constant_ptr();

constant_ptr &operator=(pointer r);

constant_ptr &operator=(nullptr_t);

reference operator*();

reference operator[](size_t i);

pointer release();

void reset(pointer p = pointer());

void swap(constant_ptr& r);

constant_ptr &operator++();

constant_ptr operator++(int);

constant_ptr &operator--();

constant_ptr operator--(int);

constant_ptr &operator+=(difference_type r);

constant_ptr &operator-=(difference_type r);

constant_ptr operator+(difference_type r);

constant_ptr operator-(difference_type r);

// implementation defined implicit conversion

// to OpenCL C pointer types.

operator pointer();

};

template <typename ElementType>

class local_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions
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typedef __undefined__ pointer;

typedef ElementType element_type;

typedef ptrdiff_t difference_type;

typedef __undefined__ ElementType& reference;

typedef const __undefined__ ElementType& const_reference;

typedef const __undefined__ const_pointer;

constexpr local_ptr();

local_ptr(pointer);

template <access::mode Mode>

local_ptr(accessor<ElementType, 1, Mode, global_buffer>);

local_ptr(const local_ptr&);

local_ptr &operator=(local_ptr &&r);

constexpr local_ptr(nullptr);

∼local_ptr();

local_ptr &operator=(pointer r);

local_ptr &operator=(nullptr_t);

reference operator*();

reference operator[](size_t i);

pointer release();

void reset(pointer p = pointer());

void swap(local_ptr& r);

local_ptr &operator++();

local_ptr operator++(int);

local_ptr &operator--();

local_ptr operator--(int);

local_ptr &operator+=(difference_type r);

local_ptr &operator-=(difference_type r);

local_ptr operator+(difference_type r);

local_ptr operator-(difference_type r);

// implementation defined implicit conversion

// to OpenCL C pointer types.

operator pointer();

};

template <typename ElementType>

class private_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions

typedef __undefined__ pointer;

typedef ElementType element_type;

typedef ptrdiff_t difference_type;

typedef __undefined__ ElementType& reference;

typedef const __undefined__ ElementType& const_reference;

typedef const __undefined__ const_pointer;

constexpr private_ptr();

private_ptr(pointer);

template <access::mode Mode>

private_ptr(accessor<ElementType, 1, Mode, global_buffer>);

private_ptr(const private_ptr&);

private_ptr &operator=(private_ptr &&r);
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constexpr private_ptr(nullptr);

∼private_ptr();

private_ptr &operator=(pointer r);

private_ptr &operator=(nullptr_t);

reference operator*();

reference operator[](size_t i);

pointer release();

void reset(pointer p = pointer());

void swap(private_ptr& r);

private_ptr &operator++();

private_ptr operator++(int);

private_ptr &operator--();

private_ptr operator--(int);

private_ptr &operator+=(difference_type r);

private_ptr &operator-=(difference_type r);

private_ptr operator+(difference_type r);

private_ptr operator-(difference_type r);

// implementation defined implicit conversion

// to OpenCL C pointer types.

operator pointer();

};

template <typename ElementType>

class generic_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// default generic space and forces disabling the address-space deduction

typedef __undefined__ pointer;

typedef ElementType element_type;

typedef ptrdiff_t difference_type;

typedef __undefined__ ElementType& reference;

typedef const __undefined__ ElementType& const_reference;

typedef const __undefined__ const_pointer;

constexpr generic_ptr();

generic_ptr(pointer);

template <access::mode Mode>

generic_ptr(accessor<ElementType, 1, Mode, global_buffer>);

generic_ptr(const generic_ptr&);

generic_ptr &operator=(generic_ptr &&r);

constexpr generic_ptr(nullptr);

∼generic_ptr();

generic_ptr &operator=(pointer r);

generic_ptr &operator=(nullptr_t);

reference operator*();

reference operator[](size_t i);

pointer release();

void reset(pointer p = pointer());

void swap(generic_ptr& r);

generic_ptr &operator++();

generic_ptr operator++(int);

258



generic_ptr &operator--();

generic_ptr operator--(int);

generic_ptr &operator+=(difference_type r);

generic_ptr &operator-=(difference_type r);

generic_ptr operator+(difference_type r);

generic_ptr operator-(difference_type r);

// implementation defined implicit conversion

// to OpenCL C pointer types.

operator pointer();

};

} // namespace sycl

} // namespace cl

template <typename ElementType>

bool operator==(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator!=(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator==(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>=(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>
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bool operator<=(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator!=(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator==(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>=(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<=(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);
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template <typename ElementType>

bool operator>(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator!=(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator==(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>=(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<=(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>
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bool operator!=(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator!=(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator==(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>=(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<=(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const generic_ptr<ElementType>& lhs,

const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const generic_ptr<ElementType>& lhs,

const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const generic_ptr<ElementType>& lhs,

const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const generic_ptr<ElementType>& lhs,

const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const generic_ptr<ElementType>& lhs,

const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const generic_ptr<ElementType>& lhs,

const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const generic_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator!=(nullptr_t lhs, const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const generic_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator==(nullptr_t lhs, const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const generic_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>(nullptr_t lhs, const generic_ptr<ElementType>& rhs);
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template <typename ElementType>

bool operator<(const generic_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<(nullptr_t lhs, const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const generic_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>=(nullptr_t lhs, const generic_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const generic_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<=(nullptr_t lhs, const generic_ptr<ElementType>& rhs);

B.2 Multi pointer pointer class

The multi_ptr class is defined in 4.8.1.1. The available functions for this class in full is the following:

namespace cl {

namespace sycl {

namespace access {

enum class address_space : int {

global_space,

local_space,

constant_space,

private_space,

generic_space

};

} // namespace access

template <typename ElementType, access::address_space Space>

class multi_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions

typedef __undefined__ pointer;

typedef ptrdiff_t difference_type;

typedef __undefined__ T& reference;

typedef __undefined__ const T& const_reference;

typedef __undefined__ T* pointer;

typedef __undefined__ const T* const_pointer;

const address_space space;

constexpr multi_ptr();

multi_ptr(pointer);

multi_ptr(const multi_ptr&);

multi_ptr(multi_ptr&& r);

constexpr multi_ptr(nullptr_t);

∼multi_ptr();

reference operator*();
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// Only if Space == global_space

operator global_ptr<ElementType>();

global_ptr<ElementType> pointer();

// Only if Space == local_space

operator local_ptr<ElementType>();

local_ptr<ElementType> pointer();

// Only if Space == constant_space

operator constant_ptr<ElementType>();

constant_ptr<ElementType> pointer();

// Only if Space == private_space

operator private_ptr<ElementType>();

private_ptr<ElementType> pointer();

// Only if Space == generic

operator generic_ptr<ElementType>();

generic_ptr<ElementType> pointer();

pointer release();

void reset(pointer p = pointer());

void swap(multi_ptr& r);

multi_ptr& operator++();

multi_ptr operator++(int);

multi_ptr& operator--();

multi_ptr operator--(int);

multi_ptr& operator+=(difference_type r);

multi_ptr& operator-=(difference_type r);

multi_ptr operator+(difference_type r);

multi_ptr operator-(difference_type r);

};

template <typename ElementType, access::address_space Space>

multi_ptr<ElementType, Space> make_ptr(pointer);

} // namespace sycl

} // namespace cl

template <typename ElementType, access::address_space Space>

bool operator==(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator!=(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator<(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator>(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator<=(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>
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bool operator>=(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator!=(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator!=(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator==(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator==(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator>(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator>(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator<(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator<(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator>=(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator>=(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator<=(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator<=(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

B.3 range class

The range class is defined in 5.2.1. The available functions for this class in full is the following:

namespace cl {

namespace sycl {

template <size_t dimensions>

struct range {

range(const range<dimensions> &);

range(size_t x); // When dimensions==1

range(size_t x, size_t y); // When dimensions==2

range(size_t x, size_t y, size_t z); // When dimensions==3

size_t get(int dimension) const;

size_t &operator[](int dimension);

range &operator=(const range &rhs);

range &operator+=(const range &rhs);

range &operator*=(const range &rhs);

range &operator/=(const range &rhs);

range &operator%=(const range &rhs);

range &operator>>=(const range &rhs);

range &operator<<=(const range &rhs);
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range &operator&=(const range &rhs);

range &operatorˆ=(const range &rhs);

range &operator|=(const range &rhs);

size_t size() const;

};

template <size_t dimensions>

bool operator==(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator!=(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator>(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator<(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator<=(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator>=(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator*(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator/(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator+(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator-(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator%(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator<<(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator>>(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator&(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator|(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator||(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator&&(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operatorˆ(const range<dimensions> &a,

const range<dimensions> &b);
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template <size_t dimensions>

range<dimensions> operator*(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator*(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator/(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator/(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator+(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator+(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator-(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator-(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator%(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator%(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator<<(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator<<(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator>>(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator>>(const range<dimensions> &a, const size_t &b);

} // sycl

} // cl

B.4 id class

The id class is defined in 5.2.3. The available functions for this class in full is the following:

namespace cl {

namespace sycl {

template <size_t dimensions>

struct id {

id(size_t x); // When dimensions==1

id(size_t x, size_t y); // When dimensions==2

id(size_t x, size_t y , size_t z); // When dimensions==3

id(const id<dimensions> & rhs);

id(const range<dimensions> & rangeSize);

id(const item<dimensions> & rhs);

size_t get(int dimension) const;

size_t &operator[](int dimension);

operator size_t(); // When dimensions==1

id &operator=(const id & rhs);
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id &operator+=(const id & rhs);

id &operator*=(const id & rhs);

id &operator/=(const id & rhs);

id &operator%=(const id & rhs);

id &operator>>=(const id & rhs);

id &operator<<=(const id & rhs);

id &operator&=(const id & rhs);

id &operatorˆ=(const id & rhs);

id &operator|=(const id & rhs);

};

template <size_t dimensions>

bool operator==(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator!=(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator>(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator<(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator<=(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator>=(const id<dimensions> &a, const id<dimensions> &)b;

template <size_t dimensions>

id<dimensions> operator*(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator/(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator+(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator-(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator%(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator<<(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator>>(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator&(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator|(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operatorˆ(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator&&(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator||(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator*(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator*(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator/(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator/(const id<dimensions> &a, const size_t &b);
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template <size_t dimensions>

id<dimensions> operator+(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator+(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator-(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator-(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator%(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator%(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator<<(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator<<(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator>>(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator>>(const id<dimensions> &a, const size_t &b);

} // namespace sycl

} // namespace cl

B.5 vec class

The vec class is defined in 4.10.2. The available functions for this class in full is the following:

namespace cl {

namespace sycl {

template <typename dataT, int numElements>

class vec {

public:

typedef dataT element_type;

//Underlying OpenCL type

typedef __undefined__ vector_t;

vec();

explicit vec(const dataT &arg);

vec(const T0 &arg0... args);

vec(const vec<dataT, numElements> &rhs);

size_t get_count();

size_t get_size();

template <typename asDataT, int width>

vec<asDataT, width> as() const;
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// genvector is a generic typename for describing

// all OpenCL/SYCL types.

operator __genvector__() const;

// arithmetic operators

vec operator+(const vec &rhs) const;

vec operator-(const vec &rhs) const;

vec operator*(const vec &rhs) const;

vec operator/(const vec &rhs) const;

vec operator%(const vec &rhs) const;

vec operator++(const vec &rhs) const;

vec operator++();

vec operator++(int);

vec operator--();

vec operator--(int);

vec operator+(const dataT &rhs) const;

vec operator-(const dataT &rhs) const;

vec operator*(const dataT &rhs) const;

vec operator/(const dataT &rhs) const;

vec operator%(const dataT &rhs) const;

// bitwise and logical operators

vec operator|(const vec &rhs) const;

vec operator|(const dataT &rhs) const;

vec operatorˆ(const vec &rhs) const;

vec operatorˆ(const dataT &rhs) const;

vec operator&&(const vec<dataT, numElements> &rhs) const;

vec operator&&(const dataT &rhs) const;

vec operator||(const vec<dataT, numElements> &rhs) const;

vec operator||(const dataT &rhs) const;

vec operator>>(const vec<dataT, numElements> &rhs) const;

vec operator>>(const dataT &rhs) const;

vec operator<<(const vec &rhs) const;

vec operator<<(const dataT &rhs) const;

vec operator∼();

vec operator!();

// assignment operators

vec operator+=(const vec &rhs);

vec operator+=(const dataT &rhs);

vec operator-=(const vec &rhs);

vec operator-=(const dataT &rhs);

vec operator*=(const vec &rhs);

vec operator*=(const dataT &rhs);

vec operator/=(const vec &rhs);

vec operator/=(const dataT rhs);

vec operator|=(const vec &rhs);

vec operator|=(const dataT &rhs);

vec operatorˆ=(const vec &rhs);

vec operatorˆ=(const dataT &rhs);

vec operator<<=(const vec &rhs);

vec operator<<=(const dataT &rhs);

vec operator>>=(const vec &rhs);

vec operator>>=(const dataT &rhs);

vec operator&=(const vec &rhs);
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vec operator&=(const dataT &rhs);

vec &operator=(const vec &rhs);

vec &operator=(const dataT &rhs);

vec &operator%=(const vec &rhs);

vec &operator%=(const dataT &rhs);

// relational operators

vec<int, numElements> operator==(const vec &rhs) const;

vec<int, numElements> operator!=(const vec &rhs) const;

vec<int, numElements> operator<=(const vec &rhs) const;

vec<int, numElements> operator>=(const vec &rhs) const;

vec<int, numElements> operator>(const vec &rhs) const;

vec<int, numElements> operator<(const vec &rhs) const;

// Swizzle methods (see notes)

swizzled_vec<T, out_dims> swizzle<elem s1, ...>();

#ifdef SYCL_SIMPLE_SWIZZLES

swizzled_vec<T, 4> xyzw();

...

#endif // #ifdef SYCL_SIMPLE_SWIZZLES

};

} // namespace sycl

} // namespace cl
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C. Interface of Memory Object Information Descriptors

C.1 Platform Information Descriptors

The following interface includes all the information descriptors for the platform class as described in table 3.6.

namespace cl {

namespace sycl {

namespace info {

enum class platform : unsigned int {

profile,

version,

name,

vendor,

extensions,

host_timer_resolution

};

}

C.2 Context Information Descriptors

The following interface includes all the information descriptors for the context class as described in table 3.9.

namespace cl {

namespace sycl {

namespace info {

bool gl_context_interop;

enum class context : int {

reference_count,

num_devices,

gl_interop

};

} // info

} // sycl

} // cl

C.3 Device Information Descriptors

The following interface includes all the information descriptors for the device class as described in table 3.12.
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namespace cl {

namespace sycl {

namespace info {

enum class device_type : unsigned int {

cpu,

gpu,

accelerator,

custom,

defaults,

host,

all

};

enum class device : int {

type,

vendor_id,

max_compute_units,

max_work_item_dimensions,

max_work_item_sizes,

max_work_group_size,

preferred_vector_width_char,

preferred_vector_width_short,

preferred_vector_width_int,

preferred_vector_width_long_long,

preferred_vector_width_float,

preferred_vector_width_double,

preferred_vector_width_half,

native_vector_witdth_char,

native_vector_witdth_short,

native_vector_witdth_int,

native_vector_witdth_long_long,

native_vector_witdth_float,

native_vector_witdth_double,

native_vector_witdth_half,

max_clock_frequency,

address_bits,

max_mem_alloc_size,

IL_version

image_support,

max_read_image_args,

max_write_image_args,

max_read_write_image_args,

image2d_max_height,

image2d_max_width,

image3d_max_height,

image3d_max_width,

image3d_mas_depth,

image_max_buffer_size,

image_max_array_size,

max_samplers,

image_pitch_alignment,

max_pipe_args,

pipe_max_active_reservations,

max_packet_size,

max_parameter_size,
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mem_base_addr_align,

single_fp_config,

double_fp_config,

global_mem_cache_type,

global_mem_cache_line_size,

global_mem_cache_size,

global_mem_size,

max_constant_buffer_size,

max_constant_args,

max_global_variable_size,

global_variable_preferred_total_size,

local_mem_type,

local_mem_size,

error_correction_support,

host_unified_memory,

profiling_timer_resolution,

is_endian_little,

is_available,

is_compiler_available,

is_linker_available,

execution_capabilities,

opencl_queue_out_of_order_exec,

queue_profiling_enabled,

device_queue_out_of_order_exec,

device_queue_profiling_enabled,

device_queue_preferred_size,

device_queue_max_size,

max_device_queues,

max_device_events,

built_in_kernels,

platform,

name,

vendor,

driver_version,

profile,

version,

opencl_version,

extensions,

printf_buffer_size,

preferred_interop_user_sync,

parent_device,

partition_max_sub_devices,

partition_properties,

partition_affinity_domain,

partition_type,

reference_count,

svm_capabilities,

preferred_platform_atomic_alignment,

preferred_global_atomic_alignment,

preferred_local_atomic_alignment,

max_num_sub_groups,

sub_group_independent_forward_progress

};

enum class partition_property : int {
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unsupported,

partition_equally,

partition_by_counts,

partition_by_affinity_domain,

partition_affinity_domain_next_partitionable

};

enum class affinity_domain : int {

unsupported,

numa,

L4_cache,

L3_cache,

L2_cache,

next_partitionable

};

enum class partition_type : int {

no_partition,

numa,

L4_cache,

L3_cache,

L2_cache,

L1_cache

};

enum class local_mem_type : int { none, local, global };

enum class fp_config : int {

denorm,

inf_nan,

round_to_nearest,

round_to_zero,

round_to_inf,

fma,

correctly_rounded_divide_sqrt,

soft_float

};

enum class global_mem_cache_type : int { none, read_only, write_only };

enum class execution_capabilities : unsigned int {

exec_kernel,

exec_native_kernel

};

enum class queue_properties : int { profiling_enable };

} // namespace info

} // namespace sycl

} // namespace cl
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C.4 Queue Information Descriptors

The following interface includes all the information descriptors for the queue class as described in table 3.15.

namespace cl {

namespace sycl {

namespace info {

bool queue_profiling;

enum class queue : int {

context,

device,

reference_count,

properties

};

} // namespace info

} // namespace sycl

} // namespace cl

C.5 Kernel Information Descriptors

The following interface includes all the information descriptors for the kernel class as described in table 5.18.

namespace cl {

namespace sycl {

namespace info {

enum class kernel: int {

function_name,

num_args,

reference_count,

attributes

};

} // namespace info

} // namespace sycl

} // namespace cl

C.6 Program Information Descriptors

The following interface includes all the information descriptors for the program class as described in table 5.21.

namespace cl {

namespace sycl {

namespace info {

enum class program: int {

reference_count,

context,
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devices

};

} // namespace info

} // namespace sycl

} // namespace cl

C.7 Event Information Descriptors

The following interface includes all the information descriptors for the event class as described in table 5.18.

namespace cl {

namespace sycl {

namespace info {

enum class event: int {

command_type,

command_execution_status,

reference_count

};

enum class event_profiling : int {

command_queued,

command_submit,

command_start,

command_end

};

} // namespace info

} // namespace sycl

} // namespace cl
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