
SYCL™ Specification

Generic heterogeneous computing for modern C++

Version 2020 provisional

Document Revision: 1

Revision Date: June 30, 2020

Git revision: tags/SYCL-2020/provisional-rev1-0-gfaaae8e88

Khronos® SYCL™ Working Group

Editors: Ronan Keryell, Maria Rovatsou & Lee Howes

Copyright 2011-2020 The Khronos® Group, Inc. All Rights Reserved



SYCL 2020 provisional

Copyright© 2011-2020 The Khronos® Group, Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos® Group, Inc.
It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or other-
wise exploited in any manner without the express prior written permission of Khronos® Group. You may use this
specification for implementing the functionality therein, without altering or removing any trademark, copyright
or other notice from the specification, but the receipt or possession of this specification does not convey any rights
to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in
whole or in part.

Khronos® Group grants express permission to any current Promoter, Contributor or Adopter member of
Khronos® to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that
NO CHARGE is made for the specification and the latest available update of the specification for any version of
the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents
of the specification are not changed in any way. The specification may be incorporated into a product that is sold
as long as such product includes significant independent work developed by the seller. A link to the current ver-
sion of this specification on the Khronos® Group website should be included whenever possible with specification
distributions.

Khronos® Group makes no, and expressly disclaims any, representations or warranties, express or implied, re-
garding this specification, including, without limitation, any implied warranties of merchantability or fitness for
a particular purpose or non-infringement of any intellectual property. Khronos® Group makes no, and expressly
disclaims any, warranties, express or implied, regarding the correctness, accuracy, completeness, timeliness, and
reliability of the specification. Under no circumstances will the Khronos® Group, or any of its Promoters, Con-
tributors or Members or their respective partners, officers, directors, employees, agents, or representatives be
liable for any damages, whether direct, indirect, special or consequential damages for lost revenues, lost profits,
or otherwise, arising from or in connection with these materials.

Khronos® is a registered trademark and SYCL™, SPIR™, WebGL™, EGL™, COLLADA™, StreamInput™,
OpenVX™, OpenKCam™, glTF™, OpenKODE™, OpenVG™, OpenWF™, OpenSL ES™, OpenMAX™,
OpenMAX AL™, OpenMAX IL™ and OpenMAX DL™ and WebCL™ are trademarks of the Khronos® Group
Inc. OpenCL™ is a trademark of Apple Inc. and OpenGL® and OpenML® are registered trademarks and the
OpenGL ES™ and OpenGL SC™ logos are trademarks of Silicon Graphics International used under license by
Khronos®. All other product names, trademarks, and/or company names are used solely for identification and
belong to their respective owners.

2



Contents

1 Acknowledgements 25

2 Introduction 27

3 SYCL architecture 29
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Anatomy of a SYCL application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 The SYCL platform model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 The SYCL backend model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Platform mixed version support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 SYCL execution model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 SYCL application execution model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.1.1 SYCL backend resources managed by the SYCL application . . . . . . . . . . 34
3.6.1.2 SYCL command groups and execution order . . . . . . . . . . . . . . . . . . . 35

3.6.2 SYCL kernel execution model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7.1 SYCL application memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 SYCL device memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7.2.1 Access to memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7.2.2 Memory consistency inside SYCL kernels . . . . . . . . . . . . . . . . . . . . 41
3.7.2.3 Atomic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 The SYCL programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8.1 Minimum version of C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8.2 Alignment with future versions of C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8.3 Basic data parallel kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8.4 Work-group data parallel kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8.5 Hierarchical data parallel kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8.6 Kernels that are not launched over parallel instances . . . . . . . . . . . . . . . . . . . . 45
3.8.7 Pre-defined kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8.8 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8.8.1 Synchronization in the SYCL application . . . . . . . . . . . . . . . . . . . . . 45
3.8.8.2 Synchronization in SYCL kernels . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8.9 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8.10 Fallback mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8.11 Scheduling of kernels and data movement . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8.12 Managing object lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8.13 Device discovery and selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8.14 Interfacing with SYCL backend API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Memory objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 SYCL device compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10.1 Building a SYCL program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.10.2 Naming of kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



CONTENTS SYCL 2020 provisional

3.11 Language restrictions in kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.11.1 SYCL linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.11.2 Functions and data types available in kernels . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Endianness support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.13 Example SYCL application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 SYCL programming interface 55
4.1 Backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Backend macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Generic vs non-generic SYCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Header files and namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Class availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Common interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Param traits class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.2 Backend interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.2.1 Type traits backend_traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.2.2 Template function get_native . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.2.3 Template functions make_* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.3 Common reference semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.4 Common by-value semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.5.1 Properties interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 SYCL runtime classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Device selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.1.1 Device selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.2 Platform class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.2.1 Platform interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.2.2 Platform information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.3 Context class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.3.1 Context interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.3.2 Context information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6.3.3 Context properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.4 Device class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.4.1 Device interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.4.2 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6.4.3 Device aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.5 Queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.5.1 Queue interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.6.5.2 Queue information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6.5.3 Queue properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6.5.4 Queue error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6.6 Event class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6.6.1 Event information and profiling descriptors . . . . . . . . . . . . . . . . . . . . 108

4.7 Data access and storage in SYCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.7.1 Host allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7.1.1 Default allocators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.7.2 Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7.2.1 Buffer interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7.2.2 Buffer properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.7.2.3 Buffer synchronization rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7.3 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 CONTENTS



SYCL 2020 provisional CONTENTS

4.7.3.1 Unsampled image interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.7.3.2 Sampled image interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.7.3.3 Image properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.7.3.4 Image synchronization rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.7.4 Sharing host memory with the SYCL data management classes . . . . . . . . . . . . . . . 140
4.7.4.1 Default behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.7.4.2 SYCL ownership of the host memory . . . . . . . . . . . . . . . . . . . . . . . 140
4.7.4.3 Shared SYCL ownership of the host memory . . . . . . . . . . . . . . . . . . . 141

4.7.5 Synchronization primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.7.6 Accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.7.6.1 Access targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.7.6.2 Access modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.7.6.3 Access tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.7.6.4 Device and host accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.7.6.5 Placeholder accessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.7.6.6 Accessor declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.7.6.7 Constness of the accessor data type . . . . . . . . . . . . . . . . . . . . . . . . 146
4.7.6.8 Implicit accessor conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.7.6.9 Device buffer accessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.7.6.9.1 Device buffer accessor interface . . . . . . . . . . . . . . . . . . . . 149
4.7.6.9.2 Device buffer accessor properties . . . . . . . . . . . . . . . . . . . . 158

4.7.6.10 Host buffer accessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.7.6.10.1 Host buffer accessor interface . . . . . . . . . . . . . . . . . . . . . . 159
4.7.6.10.2 Host buffer accessor properties . . . . . . . . . . . . . . . . . . . . . 167

4.7.6.11 Local accessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.7.6.11.1 Local accessor interface . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.7.6.11.2 Local accessor properties . . . . . . . . . . . . . . . . . . . . . . . . 173

4.7.6.12 Image accessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.7.6.12.1 Image accessor interface . . . . . . . . . . . . . . . . . . . . . . . . 174
4.7.6.12.2 Image accessor properties . . . . . . . . . . . . . . . . . . . . . . . . 178

4.7.7 Address space classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.7.7.1 Multi-pointer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.7.7.2 Explicit pointer aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.7.8 Samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.8 Unified shared memory (USM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

4.8.1 Unified addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.8.2 Kinds of unified shared memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

4.8.2.1 Explicit USM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.8.2.2 Restricted USM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.8.2.3 Concurrent USM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.8.2.4 System USM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

4.8.3 USM allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.8.4 C++ allocator interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.8.5 Utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

4.8.5.1 Explicit USM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.8.5.1.1 malloc_device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.8.5.1.2 aligned_alloc_device . . . . . . . . . . . . . . . . . . . . . . . . . 201
4.8.5.1.3 memcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.8.5.1.4 memset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.8.5.1.5 fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

4.8.5.2 Restricted USM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

CONTENTS 5



CONTENTS SYCL 2020 provisional

4.8.5.2.1 malloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.8.5.2.2 aligned_alloc_host . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.8.5.2.3 Performance hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4.8.5.2.3.1 prefetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.8.5.3 Concurrent USM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4.8.5.3.1 Performance hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.8.5.3.1.1 prefetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.8.5.3.1.2 mem_advise . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4.8.5.4 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.8.5.4.1 malloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.8.5.4.2 aligned_alloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.8.5.4.3 free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.8.6 Unified shared memory information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.8.6.1 Pointer queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.8.6.1.1 get_pointer_type . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.8.6.1.2 get_pointer_device . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.9 SYCL scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.9.1 DAGs without accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.9.2 Coarse grain DAGs with depends_on . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

4.10 Expressing parallelism through kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.10.1 Ranges and index space identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

4.10.1.1 range class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.10.1.2 nd_range class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.10.1.3 id class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.10.1.4 item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.10.1.5 nd_item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.10.1.6 h_item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.10.1.7 group class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.10.1.8 sub_group class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

4.10.2 Reduction variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4.10.2.1 reduction interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
4.10.2.2 reducer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4.10.3 Command group scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.10.4 Command group handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.10.5 Class kernel_handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

4.10.5.1 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
4.10.5.2 Member functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

4.10.6 SYCL functions for adding requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 248
4.10.7 SYCL functions for invoking kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

4.10.7.1 single_task invoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
4.10.7.2 parallel_for invoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
4.10.7.3 Parallel for hierarchical invoke . . . . . . . . . . . . . . . . . . . . . . . . . . 257

4.10.8 SYCL functions for explicit memory operations . . . . . . . . . . . . . . . . . . . . . . . 260
4.10.9 Functions for using a module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
4.10.10 Functions for using specialization constants . . . . . . . . . . . . . . . . . . . . . . . . . 262

4.11 Host tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
4.11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
4.11.2 Class interop_handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

4.11.2.1 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
4.11.2.2 Template member functions get_native_* . . . . . . . . . . . . . . . . . . . 265

4.11.3 Additions to the handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

6 CONTENTS



SYCL 2020 provisional CONTENTS

4.12 Kernel class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
4.12.1 Kernel information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

4.13 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
4.13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
4.13.2 Specialization constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
4.13.3 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
4.13.4 Enum class module_state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
4.13.5 Class template specialization_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

4.13.5.1 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
4.13.5.2 Special member functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

4.13.6 Class template module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
4.13.6.1 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
4.13.6.2 Member functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

4.13.7 Free functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
4.13.8 Namespace this_module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

4.13.8.1 Type traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
4.13.8.2 Free functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

4.14 Defining kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
4.14.1 Defining kernels as named function objects . . . . . . . . . . . . . . . . . . . . . . . . . 281
4.14.2 Defining kernels as lambda functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
4.14.3 Defining kernels using modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
4.14.4 Rules for parameter passing to kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

4.15 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
4.15.1 Error handling rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

4.15.1.1 Asynchronous error handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
4.15.1.2 Behavior without an async_handler . . . . . . . . . . . . . . . . . . . . . . 285
4.15.1.3 Priorities of async_handlers . . . . . . . . . . . . . . . . . . . . . . . . . . 285
4.15.1.4 Asynchronous errors with a secondary queue . . . . . . . . . . . . . . . . . . . 286

4.15.2 Exception class interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
4.16 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

4.16.1 Scalar data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
4.16.2 Vector types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

4.16.2.1 Vec interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
4.16.2.2 Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
4.16.2.3 Swizzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
4.16.2.4 Swizzled vec class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
4.16.2.5 Rounding modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
4.16.2.6 Memory layout and alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
4.16.2.7 Considerations for endianness . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
4.16.2.8 Performance note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

4.16.3 Math array types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
4.16.3.1 Math array interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
4.16.3.2 Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
4.16.3.3 Memory layout and alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

4.17 Synchronization and atomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
4.17.1 Barriers and fences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
4.17.2 device_event class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
4.17.3 Atomic references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
4.17.4 Atomic types (deprecated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

4.18 Stream class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
4.18.1 Stream class interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

CONTENTS 7



CONTENTS SYCL 2020 provisional

4.18.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
4.18.3 Implicit flush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
4.18.4 Performance note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

4.19 SYCL built-in functions for SYCL host and device . . . . . . . . . . . . . . . . . . . . . . . . . 348
4.19.1 Description of the built-in types available for SYCL host and device . . . . . . . . . . . . 348
4.19.2 Work-item functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
4.19.3 Function objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
4.19.4 Algorithms library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

4.19.4.1 any_of, all_of and none_of . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
4.19.4.2 reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
4.19.4.3 exclusive_scan and inclusive_scan . . . . . . . . . . . . . . . . . . . . . . 355

4.19.5 Group functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
4.19.5.1 group_broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
4.19.5.2 group_barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
4.19.5.3 group_any_of, group_all_of and group_none_of . . . . . . . . . . . . . . . . 359
4.19.5.4 group_reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
4.19.5.5 group_exclusive_scan and group_inclusive_scan . . . . . . . . . . . . . . . 361

4.19.6 Math functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
4.19.7 Integer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
4.19.8 Common functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
4.19.9 Geometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
4.19.10 Relational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
4.19.11 Vector data load and store functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
4.19.12 Synchronization functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
4.19.13 printf function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

5 SYCL Device Compiler 375
5.1 Offline compilation of SYCL source files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
5.2 Naming of kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
5.3 Compilation of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
5.4 Language restrictions for device functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
5.5 Built-in scalar data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
5.6 Preprocessor directives and macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
5.7 Kernel attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

5.7.1 Core kernel attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
5.7.2 Example attribute syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
5.7.3 Deprecated attribute syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

5.8 Address-space deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
5.8.1 Address space assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
5.8.2 Common address space deduction rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
5.8.3 Generic as default address space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
5.8.4 Inferred address space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

5.9 SYCL offline linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
5.9.1 SYCL functions and member functions linkage . . . . . . . . . . . . . . . . . . . . . . . 384

6 SYCL Extensions 385
6.1 Definition of an extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
6.2 Predefined macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
6.3 Device aspects and conditional features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
6.4 Backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
6.5 Conditional features and compilation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

8 CONTENTS



SYCL 2020 provisional CONTENTS

A Information descriptors 391
A.1 Platform information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
A.2 Context information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
A.3 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
A.4 Queue information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
A.5 Kernel information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
A.6 Event information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

B Feature sets 397
B.1 Full feature set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
B.2 Reduced feature set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
B.3 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
B.4 Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

C Host backend specification 399
C.1 Mapping of the SYCL programming model on the host . . . . . . . . . . . . . . . . . . . . . . . 399

C.1.1 SYCL memory model on the host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
C.2 Interoperability with the host application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

D OpenCL backend specification 401
D.1 SYCL for OpenCL framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
D.2 Mapping of SYCL programming model on top of OpenCL . . . . . . . . . . . . . . . . . . . . . 401

D.2.1 Platform mixed version support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
D.2.2 OpenCL memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
D.2.3 OpenCL resources managed by SYCL application . . . . . . . . . . . . . . . . . . . . . 402

D.3 Interoperability with the OpenCL API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
D.4 Programming interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

D.4.1 Reference counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
D.4.2 Errors and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
D.4.3 Interoperability with modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

D.4.3.1 Free functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
D.4.4 Interoperability with kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
D.4.5 OpenCL kernel conventions and SYCL . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
D.4.6 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

D.5 Preprocessor directives and macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
D.5.1 Offline linking with OpenCL C libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

D.6 SYCL support of non-core OpenCL features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
D.6.1 Half precision floating-point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
D.6.2 Writing to 3D image memory objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
D.6.3 Interoperability with OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

E What has changed from previous versions 415
E.1 What has changed from SYCL 1.2.1 to SYCL 2020 . . . . . . . . . . . . . . . . . . . . . . . . . 415

References 420

Glossary 423

CONTENTS 9



CONTENTS SYCL 2020 provisional

10 CONTENTS



List of Tables

3.1 Combined requirement from two different accessor access modes within the same command
group. The rules are commutative and associative . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Common special member functions for reference semantics . . . . . . . . . . . . . . . . . . . . . 61
4.2 Common hidden friend functions for reference semantics . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Common special member functions for by-value semantics . . . . . . . . . . . . . . . . . . . . . 63
4.4 Common hidden friend functions for by-value semantics . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Traits for properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Common member functions of the SYCL property interface . . . . . . . . . . . . . . . . . . . . 66
4.7 Constructors of the SYCL property_list class . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8 Standard device selectors included with all SYCL implementations . . . . . . . . . . . . . . . . . 67
4.9 Constructors of the SYCL platform class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.9 Constructors of the SYCL platform class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.10 Member functions of the SYCL platform class . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.10 Member functions of the SYCL platform class . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.11 Static member functions of the SYCL platform class . . . . . . . . . . . . . . . . . . . . . . . . 71
4.12 Platform information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.13 Constructors of the SYCL context class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.14 Member functions of the context class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.14 Member functions of the context class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.15 Context information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.15 Context information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.16 Constructors of the SYCL device class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.17 Member functions of the SYCL device class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.17 Member functions of the SYCL device class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.17 Member functions of the SYCL device class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.18 Static member functions of the SYCL device class . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.19 Device information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.20 Device aspects defined by the core SYCL specification . . . . . . . . . . . . . . . . . . . . . . . 93
4.20 Device aspects defined by the core SYCL specification . . . . . . . . . . . . . . . . . . . . . . . 94
4.21 Constructors of the queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

11



LIST OF TABLES SYCL 2020 provisional

4.21 Constructors of the queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.21 Constructors of the queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.22 Member functions for queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.22 Member functions for queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.22 Member functions for queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.22 Member functions for queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.22 Member functions for queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.23 Queue information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.24 Properties supported by the SYCL queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.25 Constructors of the queue property classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.26 Constructors of the event class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.27 Member functions for the event class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.27 Member functions for the event class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.27 Member functions for the event class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.28 Event class information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.29 Profiling information descriptors for the SYCL event class . . . . . . . . . . . . . . . . . . . . . 109
4.30 SYCL Default Allocators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.31 Constructors of the buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.31 Constructors of the buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.31 Constructors of the buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.31 Constructors of the buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.31 Constructors of the buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.32 Member functions for the buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.32 Member functions for the buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.32 Member functions for the buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.32 Member functions for the buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.33 Properties supported by the SYCL buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.33 Properties supported by the SYCL buffer class . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.34 Constructors of the buffer property classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.35 Member functions of the buffer property classes . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.36 Constructors of the unsampled_image class template . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.36 Constructors of the unsampled_image class template . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.36 Constructors of the unsampled_image class template . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.36 Constructors of the unsampled_image class template . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.36 Constructors of the unsampled_image class template . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.36 Constructors of the unsampled_image class template . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.37 Member functions of the unsampled_image class template . . . . . . . . . . . . . . . . . . . . . . 133
4.38 Constructors of the sampled_image class template . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.38 Constructors of the sampled_image class template . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.38 Constructors of the sampled_image class template . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.39 Member functions of the sampled_image class template . . . . . . . . . . . . . . . . . . . . . . . 137
4.39 Member functions of the sampled_image class template . . . . . . . . . . . . . . . . . . . . . . . 138
4.40 Properties supported by the SYCL image classes . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.40 Properties supported by the SYCL image classes . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.41 Constructors of the image property classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.42 Member functions of the image property classes . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.43 Enumeration of access modes available to accessors . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.44 Enumeration of access modes available to accessors . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.45 Enumeration of access tags available to accessors . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.46 Description of all the device buffer accessor capabilities . . . . . . . . . . . . . . . . . . . . . 148
4.47 Member types of the accessor class template buffer specialization . . . . . . . . . . . . . . . . 152

12 LIST OF TABLES



SYCL 2020 provisional LIST OF TABLES

4.48 Constructors of the accessor class template buffer specialization . . . . . . . . . . . . . . . . . 153
4.48 Constructors of the accessor class template buffer specialization . . . . . . . . . . . . . . . . . 154
4.48 Constructors of the accessor class template buffer specialization . . . . . . . . . . . . . . . . . 155
4.49 Member functions of the accessor class template buffer specialization . . . . . . . . . . . . . . . 155
4.49 Member functions of the accessor class template buffer specialization . . . . . . . . . . . . . . . 156
4.49 Member functions of the accessor class template buffer specialization . . . . . . . . . . . . . . . 157
4.49 Member functions of the accessor class template buffer specialization . . . . . . . . . . . . . . . 158
4.50 Properties supported by the SYCL accessor class . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.51 Constructors of the accessor property classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.52 Member types of the host_accessor class template . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.53 Constructors of the host_accessor class template . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.53 Constructors of the host_accessor class template . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.53 Constructors of the host_accessor class template . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.54 Member functions of the host_accessor class template . . . . . . . . . . . . . . . . . . . . . . . 165
4.54 Member functions of the host_accessor class template . . . . . . . . . . . . . . . . . . . . . . . 166
4.54 Member functions of the host_accessor class template . . . . . . . . . . . . . . . . . . . . . . . 167
4.55 Description of all the local accessor capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.56 Member types of the accessor class template local specialization . . . . . . . . . . . . . . . . . 170
4.57 Constructors of the accessor class template local specialization . . . . . . . . . . . . . . . . . . 170
4.57 Constructors of the accessor class template local specialization . . . . . . . . . . . . . . . . . . 171
4.58 Member functions of the accessor class template local specialization . . . . . . . . . . . . . . . 171
4.58 Member functions of the accessor class template local specialization . . . . . . . . . . . . . . . 172
4.58 Member functions of the accessor class template local specialization . . . . . . . . . . . . . . . 173
4.59 Description of all the image accessor capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.60 Constructors of the accessor class template image specialization . . . . . . . . . . . . . . . . . . 176
4.61 Member functions of the accessor class template image specialization . . . . . . . . . . . . . . . 176
4.61 Member functions of the accessor class template image specialization . . . . . . . . . . . . . . . 177
4.62 Constructors of the SYCL multi_ptr class template . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.62 Constructors of the SYCL multi_ptr class template . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.63 Operators of multi_ptr class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.63 Operators of multi_ptr class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.63 Operators of multi_ptr class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.64 Member functions of multi_ptr class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.65 Hidden friend functions of the multi_ptr class . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.65 Hidden friend functions of the multi_ptr class . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.66 Addressing modes description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.67 Filtering modes description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.68 Coordinate normalization modes description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.69 Constructors the sampler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.70 Member functions for the sampler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.71 Type of USM allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.72 Characteristics of the different kinds of USM allocation . . . . . . . . . . . . . . . . . . . . . . . 198
4.73 Summary of types used to identify points in an index space, and ranges over which those points

can vary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.74 Constructors of the range class template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.75 Member functions of the range class template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.76 Hidden friend functions of the SYCL range class template . . . . . . . . . . . . . . . . . . . . . 215
4.76 Hidden friend functions of the SYCL range class template . . . . . . . . . . . . . . . . . . . . . 216
4.77 Constructors of the nd_range class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.78 Member functions for the nd_range class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.79 Constructors of the id class template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

LIST OF TABLES 13



LIST OF TABLES SYCL 2020 provisional

4.80 Member functions of the id class template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.81 Hidden friend functions of the id class template . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.81 Hidden friend functions of the id class template . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.82 Member functions for the item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.83 Member functions for the nd_item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.83 Member functions for the nd_item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.83 Member functions for the nd_item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.84 Member functions for the h_item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
4.84 Member functions for the h_item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.84 Member functions for the h_item class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.85 Member functions for the group class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
4.85 Member functions for the group class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
4.85 Member functions for the group class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
4.85 Member functions for the group class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
4.86 Member functions for the sub_group class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4.87 Overloads of the reduction interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
4.87 Overloads of the reduction interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
4.87 Overloads of the reduction interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
4.88 Constructors of the reducer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
4.88 Constructors of the reducer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
4.89 Member functions of the reducer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
4.89 Member functions of the reducer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.90 Operators of the reducer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.91 Constructors of the handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
4.92 Member functions of the handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
4.93 Member functions of the handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
4.93 Member functions of the handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
4.93 Member functions of the handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.93 Member functions of the handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.93 Member functions of the handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
4.94 Constructor of the private_memory class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
4.95 Member functions of the private_memory class . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4.96 Member functions of the handler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4.97 Member functions of the kernel class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
4.97 Member functions of the kernel class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
4.98 Kernel class information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
4.99 Device-specific kernel information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
4.100Kernel work-group information descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
4.101Member functions of the SYCL exception class . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
4.101Member functions of the SYCL exception class . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
4.102Member functions of the exception_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
4.102Member functions of the exception_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
4.103Values of the SYCL errc enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
4.104SYCL error code helper functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
4.105Additional scalar data types supported by SYCL . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
4.106Constructors of the SYCL vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
4.106Constructors of the SYCL vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.107Member functions for the SYCL vec class template . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.107Member functions for the SYCL vec class template . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.107Member functions for the SYCL vec class template . . . . . . . . . . . . . . . . . . . . . . . . . 299
4.107Member functions for the SYCL vec class template . . . . . . . . . . . . . . . . . . . . . . . . . 300

14 LIST OF TABLES



SYCL 2020 provisional LIST OF TABLES

4.107Member functions for the SYCL vec class template . . . . . . . . . . . . . . . . . . . . . . . . . 301
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 301
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 302
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 305
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 306
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 307
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 308
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 309
4.108Hidden friend functions of the vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 310
4.109Rounding modes for the SYCL vec class template . . . . . . . . . . . . . . . . . . . . . . . . . . 311
4.110Constructors of the SYCL marray class template . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
4.111Member functions for the SYCL marray class template . . . . . . . . . . . . . . . . . . . . . . . 315
4.111Member functions for the SYCL marray class template . . . . . . . . . . . . . . . . . . . . . . . 316
4.112Non-member functions of the marray class template . . . . . . . . . . . . . . . . . . . . . . . . . 316
4.112Non-member functions of the marray class template . . . . . . . . . . . . . . . . . . . . . . . . . 317
4.112Non-member functions of the marray class template . . . . . . . . . . . . . . . . . . . . . . . . . 318
4.112Non-member functions of the marray class template . . . . . . . . . . . . . . . . . . . . . . . . . 319
4.112Non-member functions of the marray class template . . . . . . . . . . . . . . . . . . . . . . . . . 320
4.112Non-member functions of the marray class template . . . . . . . . . . . . . . . . . . . . . . . . . 321
4.112Non-member functions of the marray class template . . . . . . . . . . . . . . . . . . . . . . . . . 322
4.112Non-member functions of the marray class template . . . . . . . . . . . . . . . . . . . . . . . . . 323
4.113Member functions of the SYCL device_event class . . . . . . . . . . . . . . . . . . . . . . . . . 325
4.114Constructors of the device_event class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
4.115Constructors of the SYCL atomic_ref class template . . . . . . . . . . . . . . . . . . . . . . . . 331
4.116Member functions available on any object of type atomic_ref<T> . . . . . . . . . . . . . . . . . 331
4.116Member functions available on any object of type atomic_ref<T> . . . . . . . . . . . . . . . . . 332
4.117Additional member functions available on an object of type atomic_ref<T> for integral T . . . . . 333
4.117Additional member functions available on an object of type atomic_ref<T> for integral T . . . . . 334
4.118Additional member functions available on an object of type atomic_ref<T> for floating-point T . . 334
4.118Additional member functions available on an object of type atomic_ref<T> for floating-point T . . 335
4.119Additional member functions available on an object of type atomic_ref<T*> . . . . . . . . . . . . 335
4.120Constructors of the cl::sycl::atomic class template . . . . . . . . . . . . . . . . . . . . . . . . 338
4.121Member functions available on an object of type cl::sycl::atomic<T> . . . . . . . . . . . . . . 338
4.121Member functions available on an object of type cl::sycl::atomic<T> . . . . . . . . . . . . . . 339
4.121Member functions available on an object of type cl::sycl::atomic<T> . . . . . . . . . . . . . . 340
4.121Member functions available on an object of type cl::sycl::atomic<T> . . . . . . . . . . . . . . 341
4.122Global functions available on atomic types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
4.122Global functions available on atomic types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
4.123Operand types supported by the stream class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
4.124Manipulators supported by the stream class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
4.125Constructors of the stream class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
4.126Member functions of the stream class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
4.127Global functions of the stream class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
4.128Generic type name description, which serves as a description for all valid types of parameters to

kernel functions [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
4.128Generic type name description, which serves as a description for all valid types of parameters to

kernel functions [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
4.128Generic type name description, which serves as a description for all valid types of parameters to

kernel functions [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

LIST OF TABLES 15



LIST OF TABLES SYCL 2020 provisional

4.129Member functions for the plus function object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
4.130Member functions for the multiplies function object . . . . . . . . . . . . . . . . . . . . . . . . 352
4.131Member functions for the bit_and function object . . . . . . . . . . . . . . . . . . . . . . . . . . 352
4.132Member functions for the bit_or function object . . . . . . . . . . . . . . . . . . . . . . . . . . 352
4.133Member functions for the bit_xor function object . . . . . . . . . . . . . . . . . . . . . . . . . . 352
4.134Member functions for the logical_and function object . . . . . . . . . . . . . . . . . . . . . . . 352
4.135Member functions for the logical_or function object . . . . . . . . . . . . . . . . . . . . . . . . 352
4.136Member functions for the minimum function object . . . . . . . . . . . . . . . . . . . . . . . . . . 353
4.137Member functions for the maximum function object . . . . . . . . . . . . . . . . . . . . . . . . . . 353
4.138Overloads for the any_of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
4.139Overloads for the all_of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
4.140Overloads for the none_of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
4.141Overloads of the reduce function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
4.142Overloads of the exclusive_scan function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
4.143Overloads of the inclusive_scan function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
4.144Overloads of the group_broadcast function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
4.145Overloads for the group_barrier function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
4.146Overloads for the group_any_of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
4.147Overloads for the group_all_of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
4.147Overloads for the group_all_of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
4.148Overloads for the group_none_of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
4.149Overloads of the group_reduce function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
4.150Overloads of the group_exclusive_scan function . . . . . . . . . . . . . . . . . . . . . . . . . . 361
4.151Overloads of the group_inclusive_scan function . . . . . . . . . . . . . . . . . . . . . . . . . . 362
4.152Math functions which work on SYCL host and device. They correspond to Table 6.8 of the

OpenCL 1.2 specification [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
4.152Math functions which work on SYCL host and device. They correspond to Table 6.8 of the

OpenCL 1.2 specification [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
4.152Math functions which work on SYCL host and device. They correspond to Table 6.8 of the

OpenCL 1.2 specification [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
4.152Math functions which work on SYCL host and device. They correspond to Table 6.8 of the

OpenCL 1.2 specification [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
4.153Native math functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
4.153Native math functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
4.154Half precision math functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
4.155Integer functions which work on SYCL host and device, are available in the sycl namespace . . . 368
4.155Integer functions which work on SYCL host and device, are available in the sycl namespace . . . 369
4.156Common functions which work on SYCL host and device, are available in the sycl namespace.

They correspond to Table 6.12 of the OpenCL 1.2 specification [1] . . . . . . . . . . . . . . . . . 369
4.156Common functions which work on SYCL host and device, are available in the sycl namespace.

They correspond to Table 6.12 of the OpenCL 1.2 specification [1] . . . . . . . . . . . . . . . . . 370
4.157Geometric functions which work on SYCL host and device, are available in the sycl namespace.

They correspond to Table 6.13 of the OpenCL 1.2 specification [1] . . . . . . . . . . . . . . . . . 370
4.157Geometric functions which work on SYCL host and device, are available in the sycl namespace.

They correspond to Table 6.13 of the OpenCL 1.2 specification [1] . . . . . . . . . . . . . . . . . 371
4.158Relational functions for vec template class which work on SYCL host and device, are available in

the sycl namespace. They correspond to Table 6.14 of the OpenCL 1.2 specification [1] . . . . . 372
4.158Relational functions for vec template class which work on SYCL host and device, are available in

the sycl namespace. They correspond to Table 6.14 of the OpenCL 1.2 specification [1] . . . . . 373
4.159Relational functions for scalar data types and marray template class template class which work on

SYCL host and device, are available in the sycl namespace. . . . . . . . . . . . . . . . . . . . . 373

16 LIST OF TABLES



SYCL 2020 provisional LIST OF TABLES

4.159Relational functions for scalar data types and marray template class template class which work on
SYCL host and device, are available in the sycl namespace. . . . . . . . . . . . . . . . . . . . . 374

5.1 Fundamental data types supported by SYCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
5.2 Attributes supported by the SYCL General programming interface . . . . . . . . . . . . . . . . . 380
5.2 Attributes supported by the SYCL General programming interface . . . . . . . . . . . . . . . . . 381

C.1 Mapping of SYCL memory regions into host memory regions . . . . . . . . . . . . . . . . . . . 399

D.1 Mapping of SYCL memory regions into OpenCL memory regions . . . . . . . . . . . . . . . . . 402
D.2 List of native types per SYCL object in the OpenCL backend . . . . . . . . . . . . . . . . . . . . 404
D.3 List of native types per SYCL object on kernel code . . . . . . . . . . . . . . . . . . . . . . . . . 404
D.6 Example range mapping from SYCL enqueued three dimensional global range to OpenCL and

SYCL queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
D.7 Scalar data type aliases supported by SYCL OpenCL backend . . . . . . . . . . . . . . . . . . . 411
D.8 SYCL support for OpenCL 1.2 extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

LIST OF TABLES 17



LIST OF TABLES SYCL 2020 provisional

18 LIST OF TABLES



List of Figures

3.1 Execution order of three command groups submitted to the same queue . . . . . . . . . . . . . . 36
3.2 Execution order of three command groups submitted to the different queues . . . . . . . . . . . . 36
3.3 Actions performed when three command groups are submitted to two distinct queues, and poten-

tial implementation in an OpenCL SYCL backend by a SYCL runtime. Note that in this example,
each SYCL buffer (b1, b2) is implemented as separate cl_mem objects per context . . . . . . . . . 38

3.4 Requirements on overlapping vs non-overlapping sub-buffer . . . . . . . . . . . . . . . . . . . . 40
3.5 Execution of command groups when using host accessors . . . . . . . . . . . . . . . . . . . . . . 40

19



LIST OF FIGURES SYCL 2020 provisional

20 LIST OF FIGURES



Listings

code/anatomy.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
code/largesample.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
headers/backends.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
headers/paramTraits.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
headers/interop/typeTraitsBackendTraits.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
headers/interop/templateFunctionGetNative.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
headers/interop/templateFunctionMakeX.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
headers/common–reference.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
headers/common–byval.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
code/propertyExample.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
headers/properties.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
headers/deviceSelector.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
headers/platform.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
headers/context.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
headers/device.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
headers/deviceEnumClassAspect.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
headers/deviceBackendAspect.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
headers/queue.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
headers/event.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
headers/buffer.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
code/subbuffer.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
headers/unsampledImage.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
headers/sampledImage.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
headers/imageProperties.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
headers/accessTarget.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
headers/accessMode.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
headers/accessTags.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.1 Accessor declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2 Using an accessor to access a sub-range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.3 Device accessor class for buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
headers/accessProperties.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4 Host accessor class for buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.5 Accessor class for locals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.6 Accessor interface for images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
headers/multipointer.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
headers/multipointerlegacy.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
headers/pointer.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
headers/sampler.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
headers/range.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
headers/ndRange.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
headers/id.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
headers/item.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
headers/nditem.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
headers/hitem.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

21



LISTINGS SYCL 2020 provisional

headers/group.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
headers/subgroup.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
code/reduction.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
code/parallelreduce.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
headers/reduction.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
headers/reducer.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
headers/commandGroupHandler.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
headers/expressingParallelism/classKernelHandler.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
headers/expressingParallelism/classKernelHandler/constructors.h . . . . . . . . . . . . . . . . . . . . . 247
headers/expressingParallelism/classKernelHandler/hasSpecializationConstant.h . . . . . . . . . . . . . 247
headers/expressingParallelism/classKernelHandler/getSpecializationConstant.h . . . . . . . . . . . . . 247
code/singletask.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
code/singleTaskWithKernelHandler.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
code/basicparallelfor.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
code/basicParallelForItem.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
code/basicParallelForGeneric.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
code/basicParallelForIntegral.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
code/basicParallelForNumber.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
code/parallelfor.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
code/parallelforbarrier.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
code/parallelForWithKernelHandler.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
headers/priv.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
code/parallelforworkgroup.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
code/parallelforworkgroup2.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
code/parallelForWorkGroupWithKernelHandler.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
code/explicitcopy.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
headers/handler/useModule.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
headers/handler/hasSpecializationConstant.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
headers/handler/getSpecializationConstant.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
headers/hostTask/hostTaskSynopsis.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
headers/hostTask/classInteropHandle.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
headers/hostTask/classInteropHandle/constructors.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
headers/hostTask/classInteropHandle/getnativeX.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
headers/hostTask/classHandler/hostTask.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
headers/kernelWIP.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
headers/module/modulesSynopsis.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
headers/module/enumClassModuleState.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
headers/module/classTemplateSpecializationId.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
headers/module/classTemplateSpecializationId/constructors.h . . . . . . . . . . . . . . . . . . . . . . . 275
headers/module/classTemplateSpecializationId/specialmembers.h . . . . . . . . . . . . . . . . . . . . . 275
headers/module/classTemplateModule.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
headers/module/classTemplateModule/constructors.h . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
headers/module/classTemplateModule/getContext.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
headers/module/classTemplateModule/getDevices.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
headers/module/classTemplateModule/hasKernel.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
headers/module/classTemplateModule/getKernel.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
headers/module/classTemplateModule/getKernelNames.h . . . . . . . . . . . . . . . . . . . . . . . . . 277
headers/module/classTemplateModule/isEmpty.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
headers/module/classTemplateModule/beginAndEnd.h . . . . . . . . . . . . . . . . . . . . . . . . . . 277
headers/module/classTemplateModule/containsSpecializationConstants.h . . . . . . . . . . . . . . . . 277
headers/module/classTemplateModule/nativeSpecializationConstant.h . . . . . . . . . . . . . . . . . . 277

22 LISTINGS



SYCL 2020 provisional LISTINGS

headers/module/classTemplateModule/hasSpecializationConstant.h . . . . . . . . . . . . . . . . . . . . 277
headers/module/classTemplateModule/setSpecializationConstant.h . . . . . . . . . . . . . . . . . . . . 277
headers/module/classTemplateModule/getSpecializationConstant.h . . . . . . . . . . . . . . . . . . . . 278
headers/module/freeFunctions.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
headers/module/namespaceThisModule/kernelName.h . . . . . . . . . . . . . . . . . . . . . . . . . . 280
headers/module/namespaceThisModule/freeFunctions.h . . . . . . . . . . . . . . . . . . . . . . . . . . 280
code/myfunctor.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
code/mykernel.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
code/mymodule.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
code/usingSpecConstants.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
code/handlingException.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
code/handlingErrorCode.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
code/handlingBackendErrorCode.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
headers/exception.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
headers/vec.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
headers/marray.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
headers/synchronization.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
headers/deviceEvent.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
headers/atomicref.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
headers/atomic.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
headers/atomicoperations.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
headers/stream.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
headers/functional.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
code/attributes.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
headers/extension/deviceKhr.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
headers/extension/deviceExtAcme.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
headers/extension/appMigration.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
headers/extension/aspectKhr.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
headers/extension/aspectVendor.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
headers/extension/backend.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
headers/platformInfo.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
headers/contextInfo.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
headers/deviceInfo.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
headers/queueInfo.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
headers/kernelInfo.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
headers/eventInfo.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
headers/openclBackend/openclBackendSynopsis.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
headers/openclBackend/createModuleWithSource.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
headers/openclBackend/createModuleWithBinary.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
headers/openclBackend/createModuleWithIL.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
headers/openclBackend/createModuleWithBuiltinKernels.h . . . . . . . . . . . . . . . . . . . . . . . . 409
headers/openclcInterop.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

LISTINGS 23



LISTINGS SYCL 2020 provisional

24 LISTINGS



1. Acknowledgements

Editors

• Maria Rovatsou, Codeplay

• Lee Howes, Qualcomm

• Ronan Keryell, Xilinx (current)

Contributors

• Eric Berdahl, Adobe

• Shivani Gupta, Adobe

• David Neto, Altera

• Brian Sumner, AMD

• Hal Finkel, Argonne National Laboratory

• Nevin Liber, Argonne National Laboratory

• Anastasia Stulova, ARM

• Balázs Keszthelyi, Broadcom

• Stuart Adams, Codeplay

• Gordon Brown, Codeplay

• Morris Hafner, Codeplay

• Alexander Johnston, Codeplay

• Marios Katsigiannis, Codeplay

• Paul Keir, Codeplay

• Steffen Larsen, Codeplay

• Victor Lomüller, Codeplay

• Tomas Matheson, Codeplay

• Duncan McBain, Codeplay

• Ralph Potter, Codeplay

• Ruyman Reyes, Codeplay

• Andrew Richards, Codeplay

• Maria Rovatsou, Codeplay

• Panagiotis Stratis, Codeplay

• Michael Wong, Codeplay

• Peter Žužek, Codeplay

• Matt Newport, EA

• Ruslan Arutyunyan, Intel

• Alexey Bader, Intel

• James Brodman, Intel

• Ilya Burylov, Intel

• Felipe de Azevedo Piovezan, Intel

• Allen Hux, Intel

• Michael Kinsner, Intel

• Greg Lueck, Intel

• John Pennycook, Intel

• Roland Schulz, Intel

25



SYCL 2020 provisional

• Sergey Semenov, Intel

• Jason Sewall, Intel

• Kathleen Mattson, Miller & Mattson, LLC

• Dave Miller, Miller & Mattson, LLC

• Lee Howes, Qualcomm

• Chu-Cheow Lim, Qualcomm

• Jack Liu, Qualcomm

• Ruihao Zhang, Qualcomm

• Dave Airlie, Red Hat

• Aksel Alpay, Self

• Dániel Berényi, Self

• Máté Nagy-Egri, Stream HPC

• Tom Deakin, University of Bristol

• Paul Preney, University of Windsor

• Andrew Gozillon, Xilinx

• Ronan Keryell, Xilinx

• Lin-Ya Yu, Xilinx

26 CHAPTER 1. ACKNOWLEDGEMENTS



2. Introduction

SYCL (pronounced “sickle”) is a royalty-free, cross-platform abstraction C++ programming model for heteroge-
neous computing. SYCL builds on the underlying concepts, portability and efficiency of parallel API or standards
like OpenCL while adding much of the ease of use and flexibility of single-source C++.

Developers using SYCL are able to write standard modern C++ code, with many of the techniques they are
accustomed to, such as inheritance and templates. At the same time developers have access to the full range of
capabilities of the underlying implementation (such as OpenCL) both through the features of the SYCL libraries
and, where necessary, through interoperation with code written directly using the underneath implementation, via
their APIs.

To reduce programming effort and increase the flexibility with which developers can write code, SYCL extends
the concepts found in standards like OpenCL model in two ways beyond the general use of C++ features:

• Execution of parallel kernels on a heterogeneous device is made simultaneously convenient and flexible.
Common parallel patterns are prioritised with simple syntax, which through a series C++ types allow the
programmer to express additional requirements, such as synchronization, if needed.

• Data access in SYCL is separated from data storage. By relying on the C++-style resource acquisition is
initialization (RAII) idiom to capture data dependencies between device code blocks, the runtime library
can track data movement and provide correct behavior without the complexity of manually managing event
dependencies between kernel instances and without the programming having to explicitly move data. This
approach enables the data-parallel task-graphs that might be already part of the execution model to be built
up easily and safely by SYCL programmers. To primarily assist with porting codes, SYCL provides an
alternative way to manage data using Unified Shared Memory (USM).

• The hierarchical parallelism syntax offers a way of expressing the data-parallel similar to the OpenCL de-
vice or OpenMP target device execution model in an easy-to-understand modern C++ form. It more cleanly
layers parallel loops and synchronization points to avoid fragmentation of code and to more efficiently map
to CPU-style architectures.

SYCL retains the execution model, runtime feature set and device capabilities inspired by the OpenCL standard.
This standard imposes some limitations on the full range of C++ features that SYCL is able to support. This
ensures portability of device code across as wide a range of devices as possible. As a result, while the code can be
written in standard C++ syntax with interoperability with standard C++ programs, the entire set of C++ features
is not available in SYCL device code. In particular, SYCL device code, as defined by this specification, does not
support virtual function calls, function pointers in general, exceptions, runtime type information or the full set of
C++ libraries that may depend on these features or on features of a particular host compiler. Nevertheless, these
basic restrictions can be relieved by some specific Khronos or vendor extensions.

SYCL implements a single-source multiple compiler-passes (SMCP) design which offers the power of source
integration while allowing toolchains to remain flexible. The SMCP design supports embedding of code intended
to be compiled for a device, for example a GPU, inline with host code. This embedding of code offers three
primary benefits:

27



SYCL 2020 provisional

Simplicity For novice programmers using frameworks like OpenCL, the separation of host and device source
code in OpenCL can become complicated to deal with, particularly when similar kernel code is used for
multiple different operations on different data types. A single compiler flow and integrated tool chain
combined with libraries that perform a lot of simple tasks simplifies initial OpenCL programs to a minimum
complexity. This reduces the learning curve for programmers new to heterogeneous programming and
allows them to concentrate on parallelization techniques rather than syntax.

Reuse C++’s type system allows for complex interactions between different code units and supports efficient
abstract interface design and reuse of library code. For example, a transform or map operation applied to an
array of data may allow specialization on both the operation applied to each element of the array and on the
type of the data. The SMCP design of SYCL enables this interaction to bridge the host code/device code
boundary such that the device code to be specialized on both of these factors directly from the host code.

Efficiency Tight integration with the type system and reuse of library code enables a compiler to perform inlining
of code and to produce efficient specialized device code based on decisions made in the host code without
having to generate kernel source strings dynamically.

The use of C++ features such as generic programming, templated code, functional programming and inheritance
on top of existing heterogeneous execution model opens a wide scope for innovation in software design for
heterogeneous systems. Clean integration of device and host code within a single C++ type system enables the
development of modern, templated generic and adaptable libraries that build simple, yet efficient, interfaces to
offer more developers access to heterogeneous computing capabilities and devices. SYCL is intended to serve as
a foundation for innovation in programming models for heterogeneous systems, that builds on open and widely
implemented standard foundation like OpenCL or Vulkan.

SYCL is designed to be as close to standard C++ as possible. In practice, this means that as long as no dependence
is created on SYCL’s integration with the underlying implementation, a standard C++ compiler can compile the
SYCL programs and they will run correctly on a host CPU. Any use of specialized low-level features can be
masked using the C pre-processor in the same way that compiler-specific intrinsics may be hidden to ensure
portability between different host compilers.

SYCL is designed to allow a compilation flow where the source file is passed through multiple different compilers,
including a standard C++ host compiler of the developer’s choice, and where the resulting application combines
the results of these compilation passes. This is distinct from a single-source flow that might use language exten-
sions that preclude the use of a standard host compiler. The SYCL standard does not preclude the use of a single
compiler flow, but is designed to not require it.

The advantages of this design are two-fold. First, it offers better integration with existing tool chains. An appli-
cation that already builds using a chosen compiler can continue to do so when SYCL code is added. Using the
SYCL tools on a source file within a project will both compile for a device and let the same source file be com-
piled using the same host compiler that the rest of the project is compiled with. Linking and library relationships
are unaffected. This design simplifies porting of pre-existing applications to SYCL. Second, the design allows the
optimal compiler to be chosen for each device where different vendors may provide optimized tool-chains.

To summarize, SYCL enables computational kernels to be written inside C++ source files as normal C++ code,
leading to the concept of “single-source” programming. This means that software developers can develop and
use generic algorithms and data structures using standard C++ template techniques, while still supporting multi-
platform, multi-device heterogeneous execution. Access to the low level APIs of an underlying implementation
(such as OpenCL) is also supported. The specification has been designed to enable implementation across as wide
a variety of platforms as possible as well as ease of integration with other platform-specific technologies, thereby
letting both users and implementers build on top of SYCL as an open platform for system-wide heterogeneous
processing innovation.

28 CHAPTER 2. INTRODUCTION



3. SYCL architecture

This chapter describes the structure of a SYCL application, and how the SYCL generic programming model lays
out on top of a number of SYCL backends.

3.1 Overview

SYCL is an open industry standard for programming a heterogeneous system. The design of SYCL allows stan-
dard C++ source code to be written such that it can run on either an heterogeneous device or on the host.

The terminology used for SYCL inherits historically from OpenCL with some SYCL-specific additions. However
SYCL is a generic C++ programming model that can be layed out on top of other heterogeneous APIs apart from
OpenCL. SYCL implementations can provide SYCL backends for various heterogeneous APIs, implementing the
SYCL general specification on top of them. We refer to this heterogeneous API as the SYCL backend API. The
SYCL general specification defines the behavior that all SYCL implementations must expose to SYCL users for
a SYCL application to behave as expected.

A function object that can execute on a device exposed by a SYCL backend API is called a SYCL kernel function.

To ensure maximum interoperability with different SYCL backend APIs, software developers can access the
SYCL backend API alongside the SYCL general API whenever they include the SYCL backend interoperability
headers. However, interoperability is a SYCL backend-specific feature. An application that uses interoperability
does not conform to the SYCL general application model, since it is not portable across backends.

The target users of SYCL are C++ programmers who want all the performance and portability features of OpenCL,
but with the flexibility to use higher-level C++ abstractions across the host/device code boundary. Developers can
use most of the abstraction features of C++, such as templates, classes and operator overloading.

However, some C++ language features are not permitted inside kernels, due to the limitations imposed by the
capabilities of the underlying heterogeneous platforms. These features include virtual functions, virtual inheri-
tance, throwing/catching exceptions, and run-time type-information. These features are available outside kernels
as normal. Within these constraints, developers can use abstractions defined by SYCL, or they can develop their
own on top. These capabilities make SYCL ideal for library developers, middleware providers and application
developers who want to separate low-level highly-tuned algorithms or data structures that work on heterogeneous
systems from higher-level software development. Software developers can produce templated algorithms that are
easily usable by developers in other fields.

29



3.2. ANATOMY OF A SYCL APPLICATION SYCL 2020 provisional

3.2 Anatomy of a SYCL application

Below is an example of a typical SYCL application which schedules a job to run in parallel on any heterogeneous
device available.

1 #include <SYCL/sycl.hpp>

2 #include <iostream>

3
4 int main() {

5 using namespace sycl;

6
7 int data[1024]; // Allocate data to be worked on

8
9 // By wrapping all the SYCL work in a {} block, we ensure

10 // all SYCL tasks must complete before exiting the block,

11 // because the destructor of resultBuf will wait.

12 {

13 // Create a queue to enqueue work to

14 queue myQueue;

15
16 // Wrap our data variable in a buffer

17 buffer<int, 1> resultBuf { data, range<1> { 1024 } };

18
19 // Create a command_group to issue commands to the queue

20 myQueue.submit([&](handler& cgh) {

21 // request access to the buffer

22 accessor writeResult { resultBuf, cgh, write_only, noinit };

23
24 // Enqueue a parallel_for task

25 cgh.parallel_for(1024, [=](auto idx) {

26 writeResult[idx] = idx;

27 }); // End of the kernel function

28 }); // End of our commands for this queue

29 } // End of scope, so we wait for work producing resultBuf to complete

30
31 // Print result

32 for (int i = 0; i < 1024; i++)

33 std::cout << "data[" << i << "] = " << data[i] << std::endl;

34
35 return 0;

36 }

At line 1, we “#include” the SYCL header files, which provide all of the SYCL features that will be used.

A SYCL application runs on a SYCL Platform (see Section 3.4). The application is structured in three scopes
which specify the different sections; application scope, command group scope and kernel scope. The kernel
scope specifies a single kernel function that will be, or has been, compiled by a device compiler and executed on
a device. In this example kernel scope is defined by lines 25 to 27. The command group scope specifies a unit
of work which is comprised of a SYCL kernel function and accessors. In this example command group scope is
defined by lines 20 to 28. The application scope specifies all other code outside of a command group scope. These
three scopes are used to control the application flow and the construction and lifetimes of the various objects used
within SYCL, as explained in Section 3.8.12.

30 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.3. NORMATIVE REFERENCES

A SYCL kernel function is the scoped block of code that will be compiled using a device compiler. This code may
be defined by the body of a lambda function or by the operator() function of a function object. Each instance
of the SYCL kernel function will be executed as a single, though not necessarily entirely independent, flow of
execution and has to adhere to restrictions on what operations may be allowed to enable device compilers to safely
compile it to a range of underlying devices.

The parallel_for function can be templated with a class. This class is used to manually name the kernel when
desired, such as to avoid a compiler-generated name when debugging a kernel defined through a lambda, to
provide a known name with which to apply build options to a kernel, or to ensure compatibility with multiple
compiler-pass implementations.

The parallel_for member function creates an instance of a kernel object. The kernel object is the entity that
will be enqueued within a command group. In the case of parallel_for the SYCL kernel function will be
executed over the given range from 0 to 1023. The different member functions to execute kernels can be found in
Section 4.10.7.

A command group scope is the syntactic scope wrapped by the construction of a command group function object
as seen on line 20. The command group function object may invoke only a single SYCL kernel function, and it
takes a parameter of type command group handler, which is constructed by the runtime.

All the requirements for a kernel to execute are defined in this command group scope, as described in Section 3.6.1.
In this case the constructor used for myQueue on line 14 is the default constructor, which allows the queue to select
the best underlying device to execute on, leaving the decision up to the runtime.

In SYCL, data that is required within a SYCL kernel function must be contained within a buffer or image, as
described in Section 3.7. We construct a buffer on line 17. Access to the buffer is controlled via an accessor
which is constructed on line 22 through the get_access member function of the buffer. The buffer is used to keep
track of access to the data and the accessor is used to request access to the data on a queue, as well as to track the
dependencies between SYCL kernel function. In this example the accessor is used to write to the data buffer on
line 26. All buffers must be constructed in the application-scope, whereas all accessors must be constructed in the
command group scope.

3.3 Normative references

The documents in the following list are referred to within this SYCL specification, and their content is a require-
ment for this document.

1. C++17: ISO/IEC 14882:2017 Clauses 1-19 [2], referred to in this specification as the C++ core language.

2. C++2a: Working Draft, Standard for Programming Language C++ [3], referred to in this specification as
the next C++ specification.

3.4 The SYCL platform model

The SYCL platform model is based on the OpenCL platform model. The model consists of a host connected to
one or more heterogeneous devices, called devices.

A SYCL context is constructed, either directly by the user or implicitly when creating a queue, to hold all the
runtime information required by the SYCL runtime and the SYCL backend to operate on a device, or group of
devices. When a group of devices can be grouped together on the same context, they have some visibility of each
other’s memory objects. The SYCL runtime can assume that memory is visible across all devices in the same

CHAPTER 3. SYCL ARCHITECTURE 31



3.5. THE SYCL backend MODEL SYCL 2020 provisional

context. Not all devices exposed from the same platform can be grouped together in the same context.

A SYCL application executes on the host as a standard C++ program. Devices are exposed through different
SYCL backends to the SYCL application. The SYCL application submits command group function objects to
queues. Each queue enables execution on a given device.

The SYCL runtime then extracts operations from the command group function object, e.g. an explicit copy
operation or a SYCL kernel function. When the operation is a SYCL kernel function, the SYCL runtime uses
a SYCL backend-specific mechanism to extract the device binary from the SYCL application and pass it to the
heterogeneous API for execution on the device.

A SYCL device is divided into one or more compute units (CUs) which are each divided into one or more
processing elements (PEs). Computations on a device occur within the processing elements. How computation is
mapped to PEs is SYCL backend and device specific. Two devices exposed via two different backends can map
computations differently to the same device.

When a SYCL application contains SYCL kernel function objects, the SYCL implementation must provide an
offline compilation mechanism that enables the integration of the device binaries into the SYCL application. The
output of the offline compiler can be an intermediate representation, such as SPIR-V, that will be finalized during
execution or a final device ISA.

A device may expose special purpose functionality as a built-in function. The SYCL API exposes functions to
query and dispatch said built-in functions. Some SYCL backends and devices may not support programmable
kernels, and only support built-in functions.

3.5 The SYCL backend model

SYCL is a generic programming model for the C++ language that can target multiple heterogeneous APIs, such
as OpenCL.

SYCL implementations enable these target APIs by implementing SYCL backends. For a SYCL implementation
to be conformant on said SYCL backend, it must execute the SYCL generic programming model on the backend.

All SYCL implementations must provide a host SYCL backend, which implements the SYCL API and executes
SYCL kernel functions on the host platform. Many implementations will provide additional SYCL backends that
execute SYCL kernel functions on an accelerator.

The present document covers the SYCL generic interface available to all SYCL backends. How the SYCL generic
interface maps to a particular SYCL backend is defined either by a separate SYCL backend specification docu-
ment, provided by the Khronos SYCL group, or by the SYCL implementation documentation. Whenever there is
a SYCL backend specification document, this takes precedence over SYCL implementation documentation.

When a SYCL user builds their SYCL application, she decides which of the SYCL backends will be used to
build the SYCL application. This is called the set of active backends. Implementations must ensure that the
active backends selected by the user can be used simultaneously by the SYCL implementation at runtime. If
two backends are available at compile time but will produce an invalid SYCL application at runtime, the SYCL
implementation must emit a compilation error.

A SYCL application built with a number of active backends does not necessarily guarantee that said backends
can be executed at runtime. The subset of active backends available at runtime is called available backends. A
backend is said to be available if the host platform where the SYCL application is executed exposes support for
the heterogeneous API required for the SYCL backend.

32 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.6. SYCL EXECUTION MODEL

It is implementation dependent whether certain backends require third-party libraries to be available in the system.
Building with only the host as an active backend guarantees the binary will be executed on any platform without
requiring third-party libraries. Failure to have all dependencies required for all active backends at runtime will
cause the SYCL application to not run.

Once the application is running, users can query what SYCL platforms are available. SYCL implementations
will expose the devices provided by each backend grouped into platforms. A backend must expose at least one
platform.

Under the SYCL backend model, SYCL objects can contain one or multiple references to a certain SYCL backend
native type. Not all SYCL objects will map directly to a SYCL backend native type. The mapping of SYCL
objects to SYCL backend native types is defined by the SYCL backend specification document when available,
or by the SYCL implementation otherwise.

To guarantee that multiple SYCL backend objects can interoperate with each other, SYCL memory objects are
not bound to a particular SYCL backend. SYCL memory objects can be accessed from any device exposed by an
available backend. SYCL Implementations can potentially map SYCL memory objects to multiple native types
in different SYCL backends.

Since SYCL memory objects are independent of any particular SYCL backend, SYCL command groups can
request access to memory objects allocated by any SYCL backend, and execute it on the backend associated with
the queue. This requires the SYCL implementation to be able to transfer memory objects across SYCL backends

When a SYCL application runs on any number of SYCL backends without relying on any SYCL backend-specific
behaviour or interoperability, it is said to be a SYCL general application, and it is expected to run in any SYCL-
conformant implementation that supports the required features for the application.

3.5.1 Platform mixed version support

The SYCL generic programming model exposes a number of platforms, each of them exposing a number of
devices. Each platform is bound to a certain SYCL backend. SYCL devices associated with said platform are
associated with that SYCL backend.

Although the APIs in the SYCL generic programming model are defined according to this specification and their
version is indicated by the macro SYCL_LANGUAGE_VERSION, this does not apply to APIs exposed by the SYCL
backends. Each SYCL backend provides its own document that defines its APIs, and that document tells how to
query for the device and platform versions.

3.6 SYCL execution model

As Section 3.2 describes, a SYCL application is comprised of three scopes: application scope, command group
scope, and kernel scope. Code in the application scope and command group scope runs on the host and is governed
by the SYCL application execution model. Code in the kernel scope runs on a device and is governed by the SYCL
kernel execution model.

A SYCL application can be executed on the host directly without a physical accelerator present when using the
SYCL host backend.

CHAPTER 3. SYCL ARCHITECTURE 33



3.6. SYCL EXECUTION MODEL SYCL 2020 provisional

3.6.1 SYCL application execution model

The SYCL application defines the execution order of the kernels by grouping each kernel with its requirements
into a command group function object. Command group function objects are submitted to execution via a queue
object, which defines the device where the kernel will run. The same command group object can be submitted to
different queues. When a command group is submitted to a SYCL queue, the requirements of the kernel execution
are captured. The kernels are executed as soon as their requirements have been satisfied.

3.6.1.1 SYCL backend resources managed by the SYCL application

The SYCL runtime integrated with the SYCL application will manage the resources required by the SYCL back-
end API to manage the heterogeneous devices it is providing access to. This includes, but is not limited to,
resource handlers, memory pools, dispatch queues and other temporary handler objects.

The SYCL programming interface represents the lifetime of the resources managed by the SYCL application
using RAII rules. Construction of a SYCL object will typically entail the creation of multiple SYCL backend
objects, which will be properly released on destruction of said SYCL object. The overall rules for construction
and destruction are detailed in the SYCL Programming Interface chapter 4. Those SYCL backends with a SYCL
backend document will detail how the resource management from SYCL objects map down to the SYCL backend
objects.

In SYCL, the minimum required object for submitting work to devices is the queue, which contains references to
a platform, device and a context internally.

The resources managed by SYCL are:

1. Platforms: all features of SYCL backend APIs are implemented by platforms. A platform can be viewed as
a given vendor’s runtime and the devices accessible through it. Some devices will only be accessible to one
vendor’s runtime and hence multiple platforms may be present. SYCL manages the different platforms for
the user.

2. Contexts: any SYCL backend resource that is acquired by the user is attached to a context. A context
contains a collection of devices that the host can use and manages memory objects that can be shared
between the devices. Devices belonging to the same context must be able to access each other’s global
memory using some implementation-specific mechanism. A given context can only wrap devices owned
by a single platform.

3. Devices: platforms provide one or more devices for executing SYCL kernels. In SYCL, a device is acces-
sible through a sycl::device object.

4. Kernels: the SYCL functions that run on SYCL devices are defined as C++ function objects (a named
function object type or a lambda function).

Note that some SYCL backends may expose non-programmable functionality as pre-defined kernels.

5. Modules: The SYCL backend API will expose the device binaries in some form of a program-object file or
module. This is handled by SYCL using the module objects.

6. Queues: SYCL kernels execute in command queues. The user must create a queue, which references an
associated context, platform and device. The context, platform and device may be chosen automatically, or
specified by the user. SYCL queues execute kernels on a particular device of a particular context, but can
have dependencies from any device on any available SYCL backend.

34 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.6. SYCL EXECUTION MODEL

The SYCL implementation guarantees the correct initialization and destruction of any resource handled by the
underlying SYCL backend API, except for those the user has obtained manually via the SYCL interoperability
API.

3.6.1.2 SYCL command groups and execution order

By default, SYCL queues execute kernel functions in an out-of-order fashion based on dependency information.
Developers only need to specify what data is required to execute a particular kernel. The SYCL runtime will
guarantee that kernels are executed in an order that guarantees correctness. By specifying access modes and types
of memory, a directed acyclic dependency graph (DAG) of kernels is built at runtime. This is achieved via the
usage of command group objects. A SYCL command group object defines a set of requisites (R) and a kernel
function (k). A command group is submitted to a queue when using the sycl::queue::submit member function.

A requisite (ri) is a requirement that must be fulfilled for a kernel-function (k) to be executed on a particular
device. For example, a requirement may be that certain data is available on a device, or that another command
group has finished execution. An implementation may evaluate the requirements of a command group at any point
after it has been submitted. The processing of a command group is the process by which a SYCL runtime evaluates
all the requirements in a given R. The SYCL runtime will execute k only when all ri are satisfied (i.e, when all
requirements are satisfied). To simplify the notation, in the specification we refer to the set of requirements of a
command group named foo as CG f oo = r1, . . . , rn.

The evaluation of a requisite (Satisfied(ri)) returns the status of the requisite, which can be True or False. A
satisfied requisite implies the requirement is met. Satisfied(ri) never alters the requisite, only observes the current
status. The implementation may not block to check the requisite, and the same check can be performed multiple
times.

An action (ai) is a collection of implementation-defined operations that must be performed in order to satisfy a
requisite. The set of actions for a given command group A is permitted to be empty if no operation is required to
satisfy the requirement. The notation ai represents the action required to satisfy ri. Actions of different requisites
can be satisfied in any order w.r.t each other without side effects (i.e, given two requirements r j and rk, (r j, rk) ≡
(rk, r j)). The intersection of two actions is not necessarily empty. Actions can include (but are not limited to):
memory copy operations, mapping operations, host side synchronization, or implementation-specific behavior.

Finally, Performing an action (Perform(ai)) executes the action operations required to satisfy the requisite r j. Note
that, after Perform(ai), the evaluation Satisfied(r j) will return True until the kernel is executed. After the kernel
execution, it is not defined whether a different command group with the same requirements needs to perform the
action again, where actions of different requisites inside the same command group object can be satisfied in any
order w.r.t each other without side effects: Given two requirements r j and rk, Perform(a j) followed by Perform(ak)
is equivalent to Perform(ak) followed by Perform(a j).

The requirements of different command groups submitted to the same or different queues are evaluated in the
relative order of submission. command group objects whose intersection of requirement sets is not empty are said
to depend on each other. They are executed in order of submission to the queue. If command groups are submitted
to different queues or by multiple threads, the order of execution is determined by the SYCL runtime. Note that
independent command group objects can be submitted simultaneously without affecting dependencies.

Figure 3.1 illustrates the execution order of three command group objects (CGa,CGb,CGc) with certain require-
ments submitted to the same queue. Both CGa and CGb only have one requirement, r1 and r2 respectively. CGc

requires both r1 and r2. This enables the SYCL runtime to potentially execute CGa and CGb simultaneously,
whereas CGc cannot be executed until both CGa and CGb have been completed. The SYCL runtime evaluates the
requisites and performs the actions required (if any) for the CGa and CGb. When evaluating the requisites of
CGc, they will be satisfied once the CGa and CGb have finished.

CHAPTER 3. SYCL ARCHITECTURE 35



3.6. SYCL EXECUTION MODEL SYCL 2020 provisional

SYCL Application Enqueue Order

sycl::queue syclQueue;
syclQueue.submit(CGa(r1));
syclQueue.submit(CGb(r2));
syclQueue.submit(CGc(r1, r2));

SYCL Kernel Execution Order

CGa(r1) CGb(r2)

CGc(r1, r2)

Figure 3.1: Execution order of three command groups submitted to the same queue.

Figure 3.2 uses three separate SYCL queue objects to submit the same command group objects as before. Re-
gardless of using three different queues, the execution order of the different command group objects is the same.
When different threads enqueue to different queues, the execution order of the command group will be the order
in which the submit member function is executed. In this case, since the different command group objects execute
on different devices, the actions required to satisfy the requirements may be different (e.g, the SYCL runtime
may need to copy data to a different device in a separate context).

SYCL Application Enqueue Order

sycl::queue syclQueue1; sycl::queue
syclQueue2; sycl::queue syclQueue3;
syclQueue1.submit(CGa(r1));
syclQueue2.submit(CGb(r2));
syclQueue3.submit(CGc(r1, r2));

SYCL Kernel Execution Order

CGa(r1) CGb(r2)

CGc(r1, r2)

Figure 3.2: Execution order of three command groups submitted to the different queues.

3.6.2 SYCL kernel execution model
When a kernel is submitted for execution, an index space is defined. An instance of the kernel body executes for
each point in this index space. This kernel instance is called a work-item and is identified by its point in the index
space, which provides a global id for the work-item. Each work-item executes the same code but the specific
execution pathway through the code and the data operated upon can vary by using the work-item global id to
specialize the computation.

Work-items are organized into work-groups. The work-groups provide a more coarse-grained decomposition of
the index space. Each work-group is assigned a unique work-group id with the same dimensionality as the index
space used for the work-items. Work-items are each assigned a local id, unique within the work-group, so that a
single work-item can be uniquely identified by its global id or by a combination of its local id and work-group id.
The work-items in a given work-group execute concurrently on the processing elements of a single compute unit.

The index space supported in SYCL is called an nd-range. An ND-range is an N-dimensional index space, where
N is one, two or three. In SYCL, the ND-range is represented via the nd_range<N> class. An nd_range<N> is

36 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.7. MEMORY MODEL

made up of a global range and a local range, each represented via values of type range<N> and a global offset,
represented via a value of type id<N>. The types range<N> and id<N> are each N-element arrays of integers. The
iteration space defined via an nd_range<N> is an N-dimensional index space starting at the ND-range’s global
offset whose size is its global range, split into work-groups of the size of its local range.

Each work-item in the ND-range is identified by a value of type nd_item<N>. The type nd_item<N> encapsulates
a global id, local id and work-group id, all of type id<N>, the iteration space offset also of type id<N>, as well
as global and local ranges and synchronization operations necessary to make work-groups useful. Work-groups
are assigned ids using a similar approach to that used for work-item global ids. Work-items are assigned to a
work-group and given a local id with components in the range from zero to the size of the work-group in that
dimension minus one. Hence, the combination of a work-group id and the local id within a work-group uniquely
defines a work-item.

SYCL allows a simplified execution model in which the work-group size is left unspecified. A kernel invoked
over a range<N>, instead of an nd_range<N> is executed within an iteration space of unspecified work-group size.
In this case, less information is available to each work-item through the simpler item<N> class.

SYCL allows SYCL backends to expose fixed functionality as non-programmable kernels. The behavior of these
functions are SYCL backend specific, and do not necessarily follow the SYCL kernel execution model.

3.7 Memory model

Since SYCL is a single-source programming model, the memory model affects both the application and the device
kernel parts of a program. On the SYCL application, the SYCL runtime will make sure data is available for exe-
cution of the kernels. On the SYCL device kernel, the SYCL backend rules describing how the memory behaves
on a specific device are mapped to SYCL C++ constructs. Thus it is possible to program kernels efficiently in
pure C++.

3.7.1 SYCL application memory model
The application running on the host uses SYCL buffer objects using instances of the sycl::buffer class to allocate
memory in the global address space, or can allocate specialized image memory using the sycl::unsampled_image
and sycl::sampled_image classes.

In the SYCL application, memory objects are bound to all devices in which they are used, regardless of the SYCL
context where they reside. SYCL memory objects (namely, buffer and image objects) can encapsulate multiple
underlying SYCL backend memory objects together with multiple host memory allocations to enable the same
object to be shared between devices in different contexts, platforms or backends.

The order of execution of command group objects ensures a sequentially consistent access to the memory from
the different devices to the memory objects.

To access a memory object, the user must create an accessor object which parameterizes the type of access to the
memory object that a kernel or the host requires. The accessor object defines a requirement to access a memory
object, and this requirement is defined by construction of an accessor, regardless of whether there are any uses
in a kernel or by the host. The cl::sycl::accessor object specifies whether the access is via global memory,
constant memory or image samplers and their associated access functions. The accessor also specifies whether
the access is read-only (RO), write-only (WO) or read-write (RW). An optional discard flag can be added to an
accessor to tell the system to discard any previous contents of the data the accessor refers to, e.g. discard write-only
(DW). For simplicity, when a requisite represents an accessor object in a certain access mode, we represent it as
MemoryObjectAccessMode. For example, an accessor that accesses memory object buf1 in RW mode is represented

CHAPTER 3. SYCL ARCHITECTURE 37



3.7. MEMORY MODEL SYCL 2020 provisional

as bu f 1RW . A command group object that uses such an accessor is represented as CG(bu f 1RW ). The action
required to satisfy a requisite and the location of the latest copy of a memory object will vary depending on the
implementation.

Figure 3.3 illustrates an example where command group objects are enqueued to two separate SYCL queues
executing in devices in different contexts. The requisites for the command group execution are the same, but the
actions to satisfy them are different. For example, if the data is on the host before execution, A(b1RW ) and A(b2RW )
can potentially be implemented as copy operations from the host memory to context1 or context2 respectively.
After CGa and CGb are executed, A′(b1RW ) will likely be an empty operation, since the result of the kernel can
stay on the device. On the other hand, the results of CGb are now on a different context than CGc is executing,
therefore A′(b2RW ) will need to copy data across two separate OpenCL contexts using an implementation specific
mechanism.

SYCL Application Enqueue Order

sycl::queue q1(context1);
sycl::queue q2(context2);
q1.submit(CGa(b1RW ));
q2.submit(CGb(b2RW ));
q1.submit(CGc(b1RW , b2RW ));

SYCL Kernel Execution Order

Host memory

CGa(b1RW ) CGb(b2RW )

CGc(b1RW , b2RW )

A(b1RW ) A(b2RW )

A′(b1RW ) A′(b2RW )

Possible implementation by a SYCL Runtime

Host memory (ptr)

CGa(b1RW ) CGb(b2RW )

CGc(b1RW , b2RW )

clEnqueueWriteBuffer(q1, ptr, b1 c1) clEnqueueWriteBuffer(q2, ptr, b2 c2)

clEnqueueReadBuffer(q2, b2 c2, ptr);
clEnqueueReadBuffer(q1, b2 c1, ptr)

Figure 3.3: Actions performed when three command groups are submitted to two distinct queues, and potential
implementation in an OpenCL SYCL backend by a SYCL runtime. Note that in this example, each SYCL buffer
(b1, b2) is implemented as separate cl_mem objects per context.

Note that the order of the definition of the accessors within the command group is irrelevant to the requirements
they define. All accessors always apply to the entire command group object where they are defined.

When multiple accessors in the same command group define different requisites to the same memory object these
requisites must be resolved.

Firstly, any requisites with different access modes but the same access target are resolved into a single requisite
with the union of the different access modes according to Table 3.1. The atomic access mode acts as if it was read-

38 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.7. MEMORY MODEL

write (RW) when determining the combined requirement. The rules in Table 3.1 are commutative and associative.

One access mode Other access mode Combined requirement
read (RO) write (WO) read-write (RW)
read (RO) read-write (RW) read-write (RW)
write (WO) read-write (RW) read-write (RW)
discard-write (DW) discard-read-write (DRW) discard-read-write (DRW)
discard-write (DW) write (WO) write (WO)
discard-write (DW) read (RO) read-write (RW)
discard-write (DW) read-write (RW) read-write (RW)
discard-read-write (DRW) write (WO) read-write (RW)
discard-read-write (DRW) read (RO) read-write (RW)
discard-read-write (DRW) read-write (RW) read-write (RW)

Table 3.1: Combined requirement from two different accessor access modes within the same command group.
The rules are commutative and associative.

The result of this should be that there should not be any requisites with the same access target.

Secondly, the remaining requisites must adhere to the following rule. Only one of the requisites may have write
access (W or RW), otherwise the SYCL runtime must throw an exception. All requisites create a requirement for
the data they represent to be made available in the specified access target, however only the requisite with write
access determines the side effects of the command group, i.e. only the data which that requisite represents will be
updated.

For example:

• CG(b1G
RW , b1H

R ) is permitted.

• CG(b1G
RW , b1H

RW ) is not be permitted.

• CG(b1G
W , b1C

RW ) is not be permitted.

Where G, C and H correspond to the global_buffer, constant_buffer and host_buffer respectively.

A buffer created from a range of an existing buffer is called a sub-buffer. A buffer may be overlaid with any
number of sub-buffers. Accessors can be created to operate on these sub-buffers. Refer to 4.7.2 for details on
sub-buffer creation and restrictions. A requirement to access a sub-buffer is represented by specifying its range,
e.g. CG(b1RW,[0,5)) represents the requirement of accessing the range [0, 5) buffer b1 in read write mode.

If two accessors are constructed to access the same buffer, but both are to non-overlapping sub-buffers of the
buffer, then the two accessors are said to not overlap, otherwise the accessors do overlap. Overlapping is the
test that is used to determine the scheduling order of command groups. Command-groups with non-overlapping
requirements may execute concurrently.

It is permissible for command groups that only read data to not copy that data back to the host or other devices
after reading and for the runtime to maintain multiple read-only copies of the data on multiple devices.

A special case of requirement is the one defined by a host accessor. Host accessors are represented with
H(MemoryObjectaccessMode), e.g, H(b1RW ) represents a host accessor to b1 in read-write mode. Host accessors
are a special type of accessor constructed from a memory object outside a command group, and require that the
data associated with the given memory object is available on the host in the given pointer. This causes the runtime
to block on construction of this object until the requirement has been satisfied. Host accessor objects are effec-

CHAPTER 3. SYCL ARCHITECTURE 39



3.7. MEMORY MODEL SYCL 2020 provisional

SYCL Application Enqueue Order

sycl::queue q1(context1);
q1.submit(CGa(b1RW,[0,10)));
q1.submit(CGb(b1RW,[10,20)));
q1.submit(CGc(b1RW,[5,15)));

SYCL Kernel Execution Order

CGa(b1RW,[0,10)) CGb(b1RW,[10,20))

CGc(b1RW,[5,15))

Figure 3.4: Requirements on overlapping vs non-overlapping sub-buffer.

tively barriers on all accesses to a certain memory object. Figure 3.5 shows an example of multiple command
groups enqueued to the same queue. Once the host accessor H(b1RW ) is reached, the execution cannot proceed
until CGa is finished. However, CGb does not have any requirements on b1, therefore, it can execute concurrently
with the barrier. Finally, CGc will be enqueued after H(b1RW ) is finished, but still has to wait for CGb to conclude
for all its requirements to be satisfied. See 3.8.8 for details on synchronization rules.

SYCL Application Enqueue Order

sycl::queue q1; q1.submit(CGa(b1RW ));
q1.submit(CGb(b2RW ));
H(b1RW );
q1.submit(CGc(b1RW , b2RW ));

SYCL Kernel Execution Order

CGa(b1RW )

CGb(b2RW ) H(b1RW )

CGc(b1RW , b2RW )

Figure 3.5: Execution of command groups when using host accessors.

3.7.2 SYCL device memory model
The memory model for SYCL devices is based on the OpenCL 1.2 memory model. Work-items executing in a
kernel have access to four distinct address spaces (memory regions) and a virtual address space overlapping some
concrete address spaces:

• Global memory is accessible to all work-items in all work-groups. Work-items can read from or write to
any element of a global memory object. Reads and writes to global memory may be cached depending on
the capabilities of the device. Global memory is persistent across kernel invocations, however there is no
guarantee that two concurrently executing kernels can simultaneously write to the same memory object and
expect correct results.

• Constant memory is a region of global memory that remains constant during the execution of a kernel. The
host allocates and initializes memory objects placed into constant memory.

40 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.7. MEMORY MODEL

• Local memory is accessible to all work-items in a single work-group and inaccessible to work-items in
other work-groups. This memory region can be used to allocate variables that are shared by all work-items
in a work-group. Work-group-level visibility allows local memory to be implemented as dedicated regions
of the device memory where this is appropriate.

• Private memory is a region of memory private to a work-item. Variables defined in one work-item’s private
memory are not visible to another work-item.

• Generic memory is a virtual address space which overlaps the global, local and private address spaces.

3.7.2.1 Access to memory

Accessors in the device kernels provide access to the memory objects, acting as pointers to the corresponding
address space.

It is not possible to pass a pointer into host memory directly as a kernel parameter because the devices may be
unable to support the same address space as the host.

To allocate local memory within a kernel, the user can either pass a sycl::local_accessor object to the kernel
as a parameter, or can define a variable in work-group scope inside sycl::parallel_for_work_group.

Any variable defined inside a sycl::parallel_for scope or sycl::parallel_for_work_item scope will be allo-
cated in private memory. Any variable defined inside a sycl::parallel_for_work_group scope will be allocated
in local memory.

Users can create accessors that reference sub-buffers as well as entire buffers.

Within kernels, the underlying C++ pointer types can be obtained from an accessor. The pointer types will contain
a compile-time deduced address space. So, for example, if a C++ pointer is obtained from an accessor to global
memory, the C++ pointer type will have a global address space attribute attached to it. The address space attribute
will be compile-time propagated to other pointer values when one pointer is initialized to another pointer value
using a defined algorithm.

When developers need to explicitly state the address space of a pointer value, one of the explicit pointer classes
can be used. There is a different explicit pointer class for each address space: sycl::raw_local_ptr,
sycl::raw_global_ptr, sycl::raw_private_ptr, sycl::raw_constant_ptr, sycl::raw_generic_ptr

, sycl::decorated_local_ptr, sycl::decorated_global_ptr, sycl::decorated_private_ptr, sycl::

decorated_constant_ptr, or sycl::decorated_generic_ptr. The classes with the decorated prefix expose
pointers that use an implementation defined address space decoration, while the classes with the raw prefix do
not. Accessors with an access target global_buffer, constant_buffer, or local, can be converted into explicit
pointer classes (multi_ptr). Explicit pointer class values cannot be passed as parameters to kernels or stored in
global memory.

For templates that need to adapt to different address spaces, a sycl::multi_ptr class is defined which is templated
via a compile-time constant enumerator value to specify the address space.

3.7.2.2 Memory consistency inside SYCL kernels

The SYCL memory consistency model is based upon the memory consistency model of the C++ core lan-
guage. Where SYCL offers extensions to classes and functions that may affect memory consistency (e.g. sycl
::atomic_ref), the default behavior when these extensions are not used always matches the behavior of standard
C++.

CHAPTER 3. SYCL ARCHITECTURE 41



3.7. MEMORY MODEL SYCL 2020 provisional

A SYCL implementation must guarantee that the same memory consistency model is used across host and de-
vice code. Every device compiler must support the memory model defined by the minimum version of C++
described in Section 3.8.1; SYCL implementations supporting additional versions of C++ must also support the
corresponding memory models.

The full C++ memory model is not guaranteed to be supported by every device, nor across all combinations of
devices within a context. The memory orderings supported by a specific device and context can be queried using
functionalities of the sycl::device and sycl::context classes, respectively.

Within a SYCL kernel, all memory has load/store consistency within a work-item. Ensuring memory consistency
across different work-items requires careful usage of group barrier operations, mem-fence operations and atomic
operations. On any SYCL device, local and global memory may be made consistent across work-items in a single
group through use of a group barrier operation. On SYCL devices supporting acquire-release or sequentially
consistent memory orderings, all memory visible to a set of work-items may be made consistent (with a single
happens-before relation) across the work-items in that set through the use of mem-fence and atomic operations.

The set of work-items and devices to which the memory ordering constraints of a given atomic operation apply is
controlled by a memory scope constraint, which can take one of the following values:

• memory_scope::work_item The ordering constraint applies only to the calling work-item. This is only
useful for image operations, since all other operations within a work-item are guaranteed to execute in
program order.

• memory_scope::sub_group The ordering constraint applies only to work-items in the same sub-group as the
calling work-item.

• memory_scope::work_group The ordering constraint applies only to work-items in the same work-group as
the calling work-item. This is the broadest scope that can be applied to atomic operations in work-group
local memory. Using any broader scope for atomic operations in work-group local memory is treated as
though memory_scope::work_group was specified.

• memory_scope::device The ordering constraint applies only to work-items executing on the same device
as the calling work-item.

• memory_scope::system The ordering constraint applies to any work-item or host thread in the system that
is currently permitted to access the memory allocation containing the referenced object, as defined by the
capabilities of buffers and USM.

[Note for this provisional version: The addition of memory scopes to the C++ memory model modifies the defini-
tion of some concepts from the C++ core language. For example: data races, the synchronizes-with relationship
and sequential consistency must be defined in a way that accounts for atomic operations with differing (but com-
patible) scopes, in a manner similar to the OpenCL 2.0 specification [4]. Modified definitions of these concepts
will be included in the final version of this specification. — end note]

These memory consistency guarantees are independent of any forward progress guarantees. Communication and
synchronization between work-items in different work-groups is unsafe in general, but is supported on devices
where all of the following conditions are true:

• Acquire-release or sequentially consistent memory ordering is supported at device scope

• Work-items in different work-groups make independent forward progress

42 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.8. THE SYCL PROGRAMMING MODEL

3.7.2.3 Atomic operations

Atomic operations can be performed on memory in buffers and USM. The range of atomic operations available
on a specific device is limited by the atomic capabilities of that device. The sycl::atomic_ref class must be used
to provide safe atomic access to the buffer or USM allocation from device code.

3.8 The SYCL programming model

A SYCL program is written in standard C++. Host code and device code is written in the same C++ source
file, enabling instantiation of templated kernels from host code and also enabling kernel source code to be shared
between host and device. The device kernels are encapsulated C++ callable types (a function object with operator
() or a lambda function), which have been designated to be compiled as SYCL kernels.

SYCL programs target heterogeneous systems. The kernels may be compiled and optimized for multiple different
processor architectures with very different binary representations.

3.8.1 Minimum version of C++
The C++ features used in SYCL are based on a specific version of C++. Implementations of SYCL must support
this minimum C++ version, which defines the C++ constructs that can consequently be used by SYCL feature
definitions (for example, lambdas).

The minimum C++ version of this SYCL specification is determined by the normative C++ core language defined
in Section 3.3. All implementations of this specification must support at least this core language, and features
within this specification are defined using features of the core language. Note that not all core language con-
structs are supported within SYCL kernel functions or code invoked by a SYCL kernel function, as detailed by
Section 5.4.

Implementations may support newer C++ versions than the minimum required by SYCL. Code written using
newer features than the SYCL requirement, though, may not be portable to other implementations that don’t
support the same C++ version.

3.8.2 Alignment with future versions of C++
Some features of SYCL are aligned with the next C++ specification, as defined in Section 3.3.

The following features are pre-adopted by SYCL 2020 and made available in the sycl:: namespace: std::span,
std::bit_cast. The implementations of pre-adopted features are compliant with the next C++ specification, and
are expected to forward directly to standard C++ features in a future version of SYCL.

The following features of SYCL 2020 use syntax based on the next C++ specification: sycl::atomic_ref. These
features behave as described in the next C++ specification, barring modifications to ensure compatibility with
other SYCL 2020 features and heterogeneous programming. Any such modifications are documented in the
corresponding sections of this specification.

3.8.3 Basic data parallel kernels
Data-parallel kernels that execute as multiple work-items and where no local synchronization is required are
enqueued with the sycl::parallel_for function parameterized by a sycl::range parameter. These kernels will
execute the kernel function body once for each work-item in the range. The range passed to sycl::parallel_for

CHAPTER 3. SYCL ARCHITECTURE 43



3.8. THE SYCL PROGRAMMING MODEL SYCL 2020 provisional

represents the global size of a SYCL kernel and will be divided into work-groups whose size is chosen by the
SYCL runtime. Barrier synchronization is not valid within these work-groups.

Variables with reduction semantics can be added to basic data parallel kernels using the features described in
Section 4.10.2.

3.8.4 Work-group data parallel kernels
Data parallel kernels can also execute in a mode where the set of work-items is divided into work-groups of
user-defined dimensions. The user specifies the global range and local work-group size as parameters to the sycl
::parallel_for function with a sycl::nd_range parameter. In this mode of execution, kernels execute over the
nd range in work-groups of the specified size. It is possible to share data among work-items within the same
work-group in local or global memory and to synchronize between work-items in the same work-group by calling
the group_barrier function. All work-groups in a given parallel_for will be the same size, and the global size
defined in the nd range must be a multiple of the work-group size in each dimension.

Work-groups may be further subdivided into sub-groups. The size and number of sub-groups is implementation-
defined and may differ for each kernel, and different devices may make different guarantees with respect to how
sub-groups within a work-group are scheduled. The maximum number of work-items in any sub-group in a kernel
is based on a combination of the kernel and its dispatch dimensions. The size of any sub-group in the dispatch is
between 1 and this maximum sub-group size, and the size of an individual sub-group is invariant for the duration
of a kernel’s execution. Similarly to work-groups, the work-items within the same sub-group can be synchronized
by calling the group_barrier function.

To maximize portability across devices, developers should not assume that work-items within a sub-group execute
in any particular order, that work-groups are subdivided into sub-groups in a specific way, nor that two sub-groups
within a work-group will make independent forward progress with respect to one another.

Variables with reduction semantics can be added to work-group data parallel kernels using the features described
in Section 4.10.2.

3.8.5 Hierarchical data parallel kernels
[Note for this provisional version: Based on developer and implementation feedback, the hierarchical data par-
allel kernel feature described next is undergoing improvements to better align with the frameworks and patterns
prevalent in modern programming. As this is a key part of the SYCL API and we expect to make changes to
it, we temporarily recommend that new codes refrain from using this feature until the new API is finished in a
near-future version of the SYCL specification, when full use of the updated feature will be recommended for use
in new code. Existing codes using this feature will of course be supported by conformant implementations of this
specification. — end note]

The SYCL compiler provides a way of specifying data parallel kernels that execute within work-groups via a
different syntax which highlights the hierarchical nature of the parallelism. This mode is purely a compiler fea-
ture and does not change the execution model of the kernel. Instead of calling sycl::parallel_for the user
calls sycl::parallel_for_work_group with a sycl::range value representing the number of work-groups to
launch and optionally a second sycl::range representing the size of each work-group for performance tun-
ing. All code within the parallel_for_work_group scope effectively executes once per work-group. Within
the parallel_for_work_group scope, it is possible to call parallel_for_work_item which creates a new scope
in which all work-items within the current work-group execute. This enables a programmer to write code that
looks like there is an inner work-item loop inside an outer work-group loop, which closely matches the effect of
the execution model. All variables declared inside the parallel_for_work_group scope are allocated in work-

44 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.8. THE SYCL PROGRAMMING MODEL

group local memory, whereas all variables declared inside the parallel_for_work_item scope are declared in
private memory. All parallel_for_work_item calls within a given parallel_for_work_group execution must
have the same dimensions.

3.8.6 Kernels that are not launched over parallel instances
Simple kernels for which only a single instance of the kernel function will be executed are enqueued with the sycl
::single_task function. The kernel enqueued takes no “work-item id” parameter and will only execute once.
The behavior is logically equivalent to executing a kernel on a single compute unit with a single work-group
comprising only one work-item. Such kernels may be enqueued on multiple queues and devices and as a result
may be executed in task-parallel fashion.

3.8.7 Pre-defined kernels
Some SYCL backends may expose pre-defined functionality to users as kernels. These kernels are not pro-
grammable, hence they are not bound by the SYCL C++ programming model restrictions, and how they are
written is implementation-defined.

3.8.8 Synchronization
Synchronization of processing elements executing inside a device is handled by the SYCL device kernel following
the SYCL kernel execution model. The synchronization of the different SYCL device kernels executing with the
host memory is handled by the SYCL application via the SYCL runtime.

3.8.8.1 Synchronization in the SYCL application

Synchronization points between host and device(s) are exposed through the following operations:

• Buffer destruction: The destructors for sycl::buffer, sycl::unsampled_image and sycl::sampled_image
objects wait for all submitted work on those objects to complete and to copy the data back to host memory
before returning. These destructors only wait if the object was constructed with attached host memory and
if data needs to be copied back to the host.

More complex forms of synchronization on buffer destruction can be specified by the user by constructing
buffers with other kinds of references to memory, such as shared_ptr and unique_ptr.

• Host Accessors: The constructor for a host accessor waits for all kernels that modify the same buffer (or
image) in any queues to complete and then copies data back to host memory before the constructor returns.
Any command groups with requirements to the same memory object cannot execute until the host accessor
is destroyed (see 3.5).

• Command group enqueue: The SYCL runtime internally ensures that any command groups added to queues
have the correct event dependencies added to those queues to ensure correct operation. Adding command
groups to queues never blocks. Instead any required synchronization is added to the queue and events of
type sycl::event are returned by the queue’s submit function that contain event information related to the
specific command group.

• Queue operations: The user can manually use queue operations, such as wait to block execution of the
calling thread until all the command groups submitted to the queue have finished execution. Note that this
will also affect the dependencies of those command groups in other queues.

CHAPTER 3. SYCL ARCHITECTURE 45



3.8. THE SYCL PROGRAMMING MODEL SYCL 2020 provisional

• SYCL event objects: SYCL provides sycl::event objects which can be used for synchronization. If syn-
chronization is required across SYCL contexts from different SYCL backends, then the SYCL runtime en-
sures that extra host-based synchronization is added to enable the SYCL event objects to operate between
contexts correctly.

Note that the destructors of other SYCL objects (sycl::queue, sycl::context, . . . ) do not block. Only a sycl::
buffer, sycl::sampled_image or sycl::unsampled_image destructor might block. The rationale is that an object
without any side effect on the host does not need to block on destruction as it would impact the performance. So
it is up to the programmer to use a member function to wait for completion in some cases if this does not fit the
goal. See Section 3.8.12 for more information on object life time.

3.8.8.2 Synchronization in SYCL kernels

In SYCL, synchronization can be either global or local within a group of work-items. Synchronization between
work-items in a single group is achieved using a group barrier.

All the work-items of a group must execute the barrier before any are allowed to continue execution beyond the
barrier. Note that the group barrier must be encountered by all work-items of a group executing the kernel or by
none at all. In SYCL, work-group barrier and sub-group barrier functionality is exposed via the group_barrier
function.

There is no mechanism for synchronization between work-items of different work-groups.

3.8.9 Error handling
In SYCL, there are two types of errors: synchronous errors that can be detected immediately when an API call
is made, and asynchronous errors that can only be detected later after an API call has returned. Synchronous
errors, such as failure to construct an object, are reported immediately by the runtime throwing an exception.
Asynchronous errors, such as an error occurring during execution of a kernel on a device, are reported via an
asynchronous error-handler mechanism.

Asynchronous errors are not reported immediately as they occur. The asynchronous error handler for a context or
queue is called with a sycl::exception_list object, which contains a list of asynchronously-generated exception
objects, on the conditions described by 4.15.1.1 and 4.15.1.2.

Asynchronous errors may be generated regardless of whether the user has specified any asynchronous error han-
dler(s), as described in 4.15.1.2.

Some SYCL backends can report errors that are specific to the platform they are targeting, or that are more
concrete than the errors provided by the SYCL API. Any error reported by a SYCL backend must derive from the
base sycl::exception. When a user wishes to capture specifically an error thrown by a SYCL backend, she must
include the SYCL backend-specific headers for said SYCL backend.

3.8.10 Fallback mechanism
A command group function object can be submitted either to a single queue to be executed on, or to a secondary
queue. If a command group function object fails to be enqueued to the primary queue, then the system will
attempt to enqueue it to the secondary queue, if given as a parameter to the submit function. If the command
group function object fails to be queued to both of these queues, then a synchronous SYCL exception will be
thrown.

It is possible that a command group may be successfully enqueued, but then asynchronously fail to run, for some

46 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.8. THE SYCL PROGRAMMING MODEL

reason. In this case, it may be possible for the runtime system to execute the command group function object on
the secondary queue, instead of the primary queue. The situations where a SYCL runtime may be able to achieve
this asynchronous fall-back is implementation-defined.

3.8.11 Scheduling of kernels and data movement
A command group function object takes a reference to a command group handler as a parameter and anything
within that scope is immediately executed and takes the handler object as a parameter. The intention is that a user
will perform calls to SYCL functions, member functions, destructors and constructors inside that scope. These
calls will be non-blocking on the host, but enqueue operations to the queue that the command group is submitted
to. All user functions within the command group scope will be called on the host as the command group function
object is executed, but any device kernels it invokes will be added to the SYCL queue. All kernels added to the
queue will be executed out-of-order from each other, according to their data dependencies.

3.8.12 Managing object lifetimes
A SYCL application does not initialize any SYCL backend features until a sycl::context object is created. A
user does not need to explicitly create a sycl::context object, but they do need to explicitly create a sycl::queue
object, for which a sycl::context object will be implicitly created if not provided by the user.

All SYCL backend objects encapsulated in SYCL objects are reference-counted and will be destroyed once all
references have been released. This means that a user needs only create a SYCL queue (which will automatically
create an SYCL context) for the lifetime of their application to initialize and release any SYCL backend objects
safely.

There is no global state specified to be required in SYCL implementations. This means, for example, that if the
user creates two queues without explicitly constructing a common context, then a SYCL implementation does not
have to create a shared context for the two queues. Implementations are free to share or cache state globally for
performance, but it is not required.

Memory objects can be constructed with or without attached host memory. If no host memory is attached at the
point of construction, then destruction of that memory object is non-blocking. The user may use C++ standard
pointer classes for sharing the host data with the user application and for defining blocking, or non-blocking
behavior of the buffers and images. If host memory is attached by using a raw pointer, then the default behavior
is followed, which is that the destructor will block until any command groups operating on the memory object
have completed, then, if the contents of the memory object is modified on a device those contents are copied back
to host and only then does the destructor return. Instead of a raw pointer, a unique_ptr may be provided, which
uses move semantics for initializing and using the associated host memory. In this case, the behavior of the buffer
in relation to the user application will be non-blocking on destruction. In the case where host memory is shared
between the user application and the SYCL runtime, then the reference counter of the shared_ptr determines
whether the buffer needs to copy data back on destruction, and in that case the blocking or non-blocking behavior
depends on the user application.

As said in Section 3.8.8, the only blocking operations in SYCL (apart from explicit wait operations) are:

• host accessor constructor, which waits for any kernels enqueued before its creation that write to the corre-
sponding object to finish and be copied back to host memory before it starts processing. The host accessor
does not necessarily copy back to the same host memory as initially given by the user;

• memory object destruction, in the case where copies back to host memory have to be done or when the host
memory is used as a backing-store.

CHAPTER 3. SYCL ARCHITECTURE 47



3.9. MEMORY OBJECTS SYCL 2020 provisional

3.8.13 Device discovery and selection
A user specifies which queue to submit a command group function object and each queue is targeted to run on a
specific device (and context). A user can specify the actual device on queue creation, or they can specify a device
selector which causes the SYCL runtime to choose a device based on the user’s provided preferences. Specifying
a device selector causes the SYCL runtime to perform device discovery. No device discovery is performed until
a SYCL device selector is passed to a queue constructor. Device topology may be cached by the SYCL runtime,
but this is not required.

Device discovery will return all devices from all platforms exposed by all the supported SYCL backends, including
the host backend.

3.8.14 Interfacing with SYCL backend API
There are two styles of developing a SYCL application: (1) Writing a pure SYCL generic application or (2)
Writing a SYCL application that relies on some SYCL backend specific behavior.

When users follow (1), there is no assumption about what SYCL backend will be used during compilation or
execution of the SYCL application. Therefore, the SYCL backend API is not assumed to be available to the
developer. Only standard C++ types and interfaces are assumed to be available, as described in Section 3.8. Users
only need to include the SYCL/sycl.hpp header to write a SYCL generic application.

On the other hand, when users follow (2), they must know what SYCL backend APIs they are using. In this
case, any header required for the normal programmability of the SYCL backend API is assumed to be available
to the user. In addition to the SYCL/sycl.hpp header, users must also include the SYCL backend-specific header
as defined in Section 4.3. The SYCL backend-specific header provides the interoperability interface for the
SYCL API to interact with native backend objects. Any type or header from the underlying SYCL backend
API is included by the SYCL backend-specific header, under a namespace named after the backend name, e.g.
namespace opencl would encapsulate the OpenCL headers. This avoids accidental pollution of user space with
SYCL backend-specific types.

The interoperability API is defined in Section 4.5.2.

3.9 Memory objects

SYCL memory objects represent data that is handled by the SYCL runtime and can represent allocations in one or
multiple devices at any time. Memory objects, both buffers and images, may have one or more underlying native
backend objects to ensure that queues objects can use data in any device. A SYCL implementation may have
multiple native backend objects for the same device. The SYCL runtime is responsible for ensuring the different
copies are up-to-date whenever necessary, using whatever mechanism is available in the system to update the
copies of the underlying native backend objects.

[Implementation note: A valid mechanism for this update is to transfer the data from one SYCL backend into the
system memory using the SYCL backend-specific mechanism available, and then transfer it to a different device
using the mechanism exposed by the new SYCL backend. — end note]

Memory objects in SYCL fall into one of two categories: buffer objects and image objects. A buffer object
stores a one-, two- or three-dimensional collection of elements that are stored linearly directly back to back in
the same way C or C++ stores arrays. An image object is used to store a one-, two- or three-dimensional texture,
frame-buffer or image data that may be stored in an optimized and device-specific format in memory and must be
accessed through specialized operations.

48 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.10. SYCL DEVICE COMPILER

Elements of a buffer object can be a scalar data type (such as an int or float), vector data type, or a user-defined
structure. In SYCL, a buffer object is a templated type (sycl::buffer), parameterized by the element type and
number of dimensions. An image object is stored in one of a limited number of formats. The elements of an image
object are selected from a list of predefined image formats which are provided by an underlying SYCL backend
implementation. Images are encapsulated in the sycl::unsampled_image or sycl::sampled_image types, which
are templated by the number of dimensions in the image. The minimum number of elements in a memory object
is one.

The fundamental differences between a buffer and an image object are:

• Elements in a buffer are stored in an array of 1, 2 or 3 dimensions and can be accessed using an accessor
by a kernel executing on a device. The accessors for kernels provide a member function to get C++ pointer
types, or the sycl::global_ptr or sycl::constant_ptr classes.

• Elements of an image are stored in a format that is opaque to the user and cannot be directly accessed using
a pointer. SYCL provides image accessors and samplers to allow a kernel to read from or write to an image.

• For a buffer object the data is accessed within a kernel in the same format as it is stored in memory, but in
the case of an image object the data is not necessarily accessed within a kernel in the same format as it is
stored in memory.

• Image elements are always a 4-component vector (each component can be a float or signed/unsigned in-
teger) in a kernel. The SYCL accessor and sampler member functions to read from an image convert an
image element from the format that it is stored into a 4-component vector.

Similarly, the SYCL accessor member functions provided to write to an image convert the image element
from a 4-component vector to the appropriate image format specified such as four 8-bit elements, for ex-
ample.

Users may want fine-grained control of the synchronization, memory management and storage semantics of SYCL
image or buffer objects. For example, a user may wish to specify the host memory for a memory object to use,
but may not want the memory object to block on destruction.

Depending on the control and the use cases of the SYCL applications, well established C++ classes and patterns
can be used for reference counting and sharing data between user applications and the SYCL runtime. For control
over memory allocation on the host and mapping between host and device memory, pre-defined or user-defined
C++ std::allocator classes are used. For better control of synchronization between a SYCL and a non SYCL
application that share data, std::shared_ptr and std::mutex classes are used.

3.10 SYCL device compiler

To enable SYCL to work on a variety of platforms, with different devices, operating systems, build systems and
host compilers, SYCL provides a number of options to implementers to enable the compilation of SYCL kernels
for devices, while still providing a unified programming model to the user.

3.10.1 Building a SYCL program
A SYCL program runs on a host and one or more SYCL devices. This requires a compilation model that enables
compilation for a variety of targets. There is only ever one host for the SYCL program, so the compilation of the
source code for the host must happen once and only once. Both kernel and non-kernel source code is compiled
for the host.

CHAPTER 3. SYCL ARCHITECTURE 49



3.11. LANGUAGE RESTRICTIONS IN KERNELS SYCL 2020 provisional

The design of SYCL enables a single SYCL source file to be passed to multiple, different compilers, using the
SMCP technique. This is an implementation option and is not required. What this option enables is for an
implementer to provide a device compiler only and not have to provide a host compiler. A programmer who uses
such an implementation will compile the same source file twice: once with the host compiler of their choice and
once with a device compiler. This approach allows the advantages of having a single source file for both host code
and kernels, while still allowing users an independent choice of host and SYCL device compilers.

Only the kernels are compiled for SYCL devices. Therefore, any compiler that compiles only for one or more
devices must not compile non-kernel source code. Kernels are contained within C++ source code and may be
dependent on lambda capture and template parameters, so compilation of the non-kernel code must determine
lambda captures and template parameters, but not generate device code for non-kernel code.

Compilation of a SYCL program may follow either of the following options. The choice of option is made by the
implementer:

1. Separate compilation: One or more device compilers compile just the SYCL kernels for one or more de-
vices. The device compilers all produce header files for interfacing between the host compiler and the
SYCL runtime,which are integrated together with a tool that produces a single header file. The user com-
piles the source file with a normal C++ host compiler for their platform. The user must ensure that the host
compiler is given the correct command-line arguments to ensure that the device compiler output header file
is #included from inside the SYCL header files.

2. Single-source compiler: In this approach, a single compiler may compile an entire source file for both
host and one or more devices. It is the responsibility of the single-source compiler to enable kernels to be
compiled correctly for devices and enqueued from the host.

An implementer of SYCL may choose an implementation approach from the options above.

3.10.2 Naming of kernels
SYCL kernels are extracted from C++ source files and stored in an implementation-defined format. When the
SYCL runtime needs to enqueue a SYCL kernel, it is necessary for the SYCL runtime to load the kernel and pass
it to a SYCL backend API. This requires the kernel to have a name that is unique at enclosing namespace scope,
to enable an association between the kernel invocation and the kernel itself. The association is achieved using a
kernel name, which is a C++ type name.

For a named function object, the kernel name can be the same type as the function object itself, as long as
the function object type is unique across the enclosing namespace scopes. For a lambda function the user may
optionally provide a name for debugging or other reasons. In SYCL, this optional name is provided as a template
parameter to the kernel invocation, e.g. parallel_for<class kernelName>, and this name may optionally be
forward declared at namespace scope (but must always avoid conflict with another name at enclosing namespace
scope).

A device compiler should detect the kernel invocations (e.g. parallel_for) in the source code and compile the
enclosed kernels, storing them with their associated type name. For details please refer to 5.2.

3.11 Language restrictions in kernels

The SYCL kernels are executed on SYCL devices and all of the functions called from a SYCL kernel are going
to be compiled for the device by a SYCL device compiler. Due to restrictions of the heterogeneous devices where
the SYCL kernel will execute, there are certain restrictions on the base C++ language features that can be used

50 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.12. ENDIANNESS SUPPORT

inside kernel code. For details on language restrictions please refer to 5.4.

SYCL kernels use parameters that are captured by value in the command group scope or are passed from the host
to the device using the data management runtime classes of sycl::accessors. Sharing data structures between
host and device code imposes certain restrictions, such as use of only user defined classes that are C++ trivially
copyable classes for the data structures, and in general, no pointers initialized for the host can be used on the
device. The only way of passing pointers to a kernel is through the sycl::accessor class, which supports the
sycl::buffer, sycl::unsampled_image and sycl::sampled_image classes. No hierarchical structures of these
classes are supported and any other data containers need to be converted to the SYCL data management classes
using the SYCL interface. For more details on the rules for kernel parameter passing, please refer to 4.14.4.

3.11.1 SYCL linker
In SYCL only offline linking is supported for SYCL programs and libraries, however the mechanism is optional.
In the case of linking C++ functions to a SYCL application, where the definitions are not available in the same
translation unit of the compiler, then the macro SYCL_EXTERNAL has to be provided.

3.11.2 Functions and data types available in kernels
Inside kernels, the functions and data types available are restricted by the underlying capabilities of SYCL backend
devices.

3.12 Endianness support

SYCL supports both big-endian and little-endian systems as long as it is supported by the used SYCL backends.
However SYCL does not support mix-endian systems and does not support specifying the endianness of data
within a SYCL kernel function.

Users must be aware of the endianness of the host and the SYCL backend devices they are targeting to ensure
kernel arguments are processed correctly when applicable.

3.13 Example SYCL application

Below is a more complex example application, combining some of the features described above.

1 #include <SYCL/sycl.hpp>

2 #include <iostream>

3
4 using namespace sycl;

5
6 // Size of the matrices

7 const size_t N = 2000;

8 const size_t M = 3000;

9
10 int main() {

11 // Create a queue to work on

12 queue myQueue;

13
14 // Create some 2D buffers of float for our matrices

15 buffer<float, 2> a { range<2>{N, M} };

CHAPTER 3. SYCL ARCHITECTURE 51



3.13. EXAMPLE SYCL APPLICATION SYCL 2020 provisional

16 buffer<float, 2> b { range<2>{N, M} };

17 buffer<float, 2> c { range<2>{N, M} };

18
19 // Launch an asynchronous kernel to initialize a

20 myQueue.submit([&](handler& cgh) {

21 // The kernel writes a, so get a write accessor on it

22 accessor A { a, cgh, write_only };

23
24 // Enqueue a parallel kernel iterating on a N*M 2D iteration space

25 cgh.parallel_for(range<2> {N, M}, [=](id<2> index) {

26 A[index] = index[0] * 2 + index[1];

27 });

28 });

29
30 // Launch an asynchronous kernel to initialize b

31 myQueue.submit([&](handler& cgh) {

32 // The kernel writes b, so get a write accessor on it

33 accessor B { b, cgh, write_only };

34
35 // From the access pattern above, the SYCL runtime detects that this

36 // command_group is independent from the first one and can be

37 // scheduled independently

38
39 // Enqueue a parallel kernel iterating on a N*M 2D iteration space

40 cgh.parallel_for(range<2> {N, M}, [=](id<2> index) {

41 B[index] = index[0] * 2014 + index[1] * 42;

42 });

43 });

44
45 // Launch an asynchronous kernel to compute matrix addition c = a + b

46 myQueue.submit([&](handler& cgh) {

47 // In the kernel a and b are read, but c is written

48 accessor A { a, cgh, read_only };

49 accessor B { b, cgh, read_only };

50 accessor C { c, cgh, write_only };

51
52 // From these accessors, the SYCL runtime will ensure that when

53 // this kernel is run, the kernels computing a and b have completed

54
55 // Enqueue a parallel kernel iterating on a N*M 2D iteration space

56 cgh.parallel_for(range<2> {N, M}, [=](id<2> index) {

57 C[index] = A[index] + B[index];

58 });

59 });

60
61 // Ask for an accessor to read c from application scope. The SYCL runtime

62 // waits for c to be ready before returning from the constructor

63 host_accessor C { c, read_only };

64 std::cout << std::endl << "Result:" << std::endl;

65 for (size_t i = 0; i < N; i++) {

66 for (size_t j = 0; j < M; j++) {

67 // Compare the result to the analytic value

68 if (C[i][j] != i * (2 + 2014) + j * (1 + 42)) {

69 std::cout << "Wrong value " << C[i][j] << " on element " << i << " "

70 << j << std::endl;

52 CHAPTER 3. SYCL ARCHITECTURE



SYCL 2020 provisional 3.13. EXAMPLE SYCL APPLICATION

71 exit(-1);

72 }

73 }

74 }

75
76 std::cout << "Good computation!" << std::endl;

77 return 0;

78 }

CHAPTER 3. SYCL ARCHITECTURE 53



3.13. EXAMPLE SYCL APPLICATION SYCL 2020 provisional

54 CHAPTER 3. SYCL ARCHITECTURE



4. SYCL programming interface

The SYCL programming interface provides a common abstracted feature set to one or more SYCL backend
APIs. This section describes the C++ library interface to the SYCL runtime which executes across those SYCL
backends.

The entirety of the SYCL interface defined in this section is required to be available for any SYCL backends, with
the exception of the interoperability interface, which is described in general terms in this document, not pertaining
to any particular SYCL backend.

SYCL guarantees that all the member functions and special member functions of the SYCL classes described are
thread safe.

4.1 Backends

The SYCL backends that are available to a SYCL implementation can be identified using the enum class backend
.

1 namespace sycl {

2 enum class backend {

3 <see-below>

4 };

5 } // namespace sycl

The enum class backend is implementation defined and must be populated with a unique identifier for each
SYCL backend that the SYCL implementation supports, containing at least one SYCL backend that is a SYCL
host backend.

Each named SYCL backend enumerated in the enum class backend must be associated with a SYCL backend
specification. Many sections of this specification will refer to the associated SYCL backend specification.

4.1.1 Backend macros
As the identifiers defined in enum class backend are implementation defined a SYCL implementation must also
define a pre-processor macro for each of these identifiers. If the SYCL backend is defined by the Khronos SYCL
group, the name of the macro has the form SYCL_BACKEND_<backend_name>, where backend name is the associated
identifier from backend in all upper-case. See Chapter 6 for the name of the macro if the vendor defines the SYCL
backend outside of the Khronos SYCL group.

4.2 Generic vs non-generic SYCL

The SYCL programming API is split into two categories; generic SYCL and non-generic SYCL. Almost ev-
erything in the SYCL programming API is considered generic SYCL. However any usage of the enum class

55



4.3. HEADER FILES AND NAMESPACES SYCL 2020 provisional

backend is considered non-generic SYCL and should only be used for SYCL backend specialized code paths, as
the identifiers defined in backend are implementation defined.

In any non-generic SYCL application code where the backend enum class is used, the expression must be guarded
with a pre-process #ifdef guard using the associated pre-process macro to ensure that the SYCL application will
compile even if the SYCL implementation does not support that SYCL backend being specialized for.

4.3 Header files and namespaces

SYCL provides one standard header file: "SYCL/sycl.hpp", which needs to be included in every translation unit
which uses the SYCL programming API.

All SYCL classes, constants, types and functions defined by this specification should exist within the ::sycl
namespace.

For compatibility with SYCL 1.2.1, SYCL provides another standard header file: "CL/sycl.hpp", which can be
included in place of "SYCL/sycl.hpp".

In that case, all SYCL classes, constants, types and functions defined by this specification should exist within the
::cl::sycl C++ namespace.

For consistency, the programming API will only refer to the "sycl.hpp" header and the ::sycl namespace, but
this should be considered synonymous with the SYCL 1.2.1 header and namespace.

The sycl::detail namespace is reserved for implementation details.

When a SYCL backend is defined by the Khronos SYCL group, functionality for that SYCL backend is avail-
able via the header "SYCL/backend/<backend_name>.hpp", and all SYCL backend-specific functionality is made
available in the namespace sycl::<backend_name> where backend name is the name of the SYCL backend as
defined in the SYCL backend specification.

Chapter 6 defines the allowable header files and namespaces for any extensions that a vendor may provide, in-
cluding any SYCL backend that the vendor may define outside of the Khronos SYCL group.

4.4 Class availability

In SYCL some SYCL runtime classes are available to the SYCL application, some are available within a SYCL
kernel function and some are available on both and can be passed as parameters to a SYCL kernel function.

Each of the following SYCL runtime classes: buffer, buffer_allocator, context, device, event, exception
, handler, id, image_allocator, kernel, marray, module, nd_range, platform, queue, range, sampled_image,
sampler, stream, unsampled_image and vec must be available to the host application.

Each of the following SYCL runtime classes: accessor, atomic_ref, device_event, group, h_item, id, item,
marray, multi_ptr, nd_item, range, reducer, sampler, stream, sub_group and vec must be available within a
SYCL kernel function.

Each of the following SYCL runtime classes: accessor, id, marray, range, reducer, sampler, stream and vec
are permitted as parameters to a SYCL kernel function.

56 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.5. COMMON INTERFACE

4.5 Common interface

When a dimension template parameter is used in SYCL classes, it is defaulted as 1 in most cases.

4.5.1 Param traits class
The class param_traits is a C++ type trait for providing an alias to the return type associated with each info
parameter. An implementation must provide a specialization of the param_traits class for every info parameter
with the associated return type as defined in the info parameter tables.

1 namespace sycl {

2 namespace info {

3 template <typename T, T param>

4 class param_traits {

5 public:

6
7 using return_type = __return_type__<T, param>;

8
9 };

10 } // namespace info

11 } // namespace sycl

4.5.2 Backend interoperability
Many of the SYCL runtime classes may be implemented such that they encapsulate an object unique to the
SYCL backend that underpins the functionality of that class. Where appropriate, these classes may provide an
interface for interoperating between the SYCL runtime object and the native backend object in order to support
interoperability within an applications between SYCL and the associated SYCL backend API.

There are two forms of interoperability with SYCL runtime classes; interoperability on the SYCL application with
the SYCL backend API and interoperability within a SYCL kernel function with the equivalent kernel language
types of the SYCL backend. SYCL application interoperability and SYCL kernel function interoperability are
provided via different interfaces and may have different native backend object types.

SYCL application interoperability may be provided for buffer, context, device, event, kernel, module,
platform, queue, sampled_image, image_sampler, stream and unsampled_image.

SYCL kernel function interoperability may be provided for accessor, stream and device_event inside the SYCL
kernel function scope only. SYCL kernel function interoperability is not available inside command group scope.

Support for SYCL backend interoperability is optional and therefore not required to be provided by a SYCL im-
plementation. A SYCL application using SYCL backend interoperability is considered to be non-generic SYCL.

Details on the interoperability for a given SYCL backend are available on the SYCL backend specification docu-
ment for that SYCL backend.

4.5.2.1 Type traits backend_traits

1 namespace sycl {

2

CHAPTER 4. SYCL PROGRAMMING INTERFACE 57



4.5. COMMON INTERFACE SYCL 2020 provisional

3 template <backend Backend>

4 class backend_traits {

5 public:

6
7 template <class T>

8 using native_type = see-below;

9
10 using errc = see-below;

11
12 };

13
14 } // namespace sycl

A series of type traits are provided for SYCL backend interoperability, defined in the backend_traits class.

A specialization of backend_traits must be provided for each named SYCL backend enumerated in the enum
class backend.

• For each SYCL runtime class T which supports SYCL application interoperability with the SYCL backend,
a specialisation of native_type must be defined as the type of SYCL application interoperability native
backend object associated with T for the SYCL backend, specified in the SYCL backend specification.

• For each SYCL runtime class T which supports kernel function interoperability with the SYCL backend,
a specialisation of native_type within backend_traits must be defined as the type of the kernel function
interoperability native backend object associated with T for the SYCL backend, specified in the backend
specification.

• A specialization of errc must be defined as the SYCL backend error code type.

4.5.2.2 Template function get_native

1 namespace sycl {

2
3 template<backend Backend, class T>

4 backend_traits<Backend>::native_type<T> get_native(const T &syclObject);

5
6 } // namespace sycl

For each SYCL runtime class T which supports SYCL application interoperability, a specialisation of get_native
must be defined, which takes an instance of T and returns a SYCL application interoperability native backend
object associated with syclObject which can be used for SYCL application interoperability. The lifetime of the
object returned are backend-defined and specified in the backend specification.

For each SYCL runtime class T which supports kernel function interoperability, a specialisation of get_native
must be defined, which takes an instance of T and returns the kernel function interoperability native backend
object associated with syclObject which can be used for kernel function interoperability. The lifetime of the
object returned are backend-defined and specified in the backend specification.

4.5.2.3 Template functions make_*

1 namespace sycl {

2

58 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.5. COMMON INTERFACE

3 template<backend Backend>

4 platform make_platform(const backend_traits<Backend>::native_type<platform> &backendObject);

5
6 template<backend Backend>

7 device make_device(const backend_traits<Backend>::native_type<device> &backendObject);

8
9 template<backend Backend>

10 context make_context(const backend_traits<Backend>::native_type<context> &backendObject, const

async_handler asyncHandler = {});

11
12 template<backend Backend>

13 queue make_queue(const backend_traits<Backend>::native_type<queue> &backendObject,

14 const context &targetContext, const async_handler asyncHandler = {});

15
16 template<backend Backend>

17 event make_event(const backend_traits<Backend>::native_type<event> &backendObject,

18 const context &targetContext);

19
20 template<backend Backend>

21 buffer make_buffer(const backend_traits<Backend>::native_type<buffer> &backendObject,

22 const context &targetContext, event availableEvent = {});

23
24 template<backend Backend>

25 sampled_image make_sampled_image(

26 const backend_traits<Backend>::native_type<sampled_image> &backendObject,

27 const context &targetContext, image_sampler imageSampler, event availableEvent = {});

28
29 template<backend Backend>

30 unsampled_image make_unsampled_image(

31 const backend_traits<Backend>::native_type<unsampled_image> &backendObject,

32 const context &targetContext, event availableEvent = {});

33
34 template<backend Backend>

35 image_sampler make_image_sampler(

36 const backend_traits<Backend>::native_type<image_sampler> &backendObject,

37 const context &targetContext);

38
39 template<backend Backend>

40 stream make_stream(const backend_traits<Backend>::native_type<stream> &backendObject,

41 const context &targetContext, event availableEvent = {});

42
43 template<backend Backend>

44 kernel make_kernel(const backend_traits<Backend>::native_type<kernel> &backendObject,

45 const context &targetContext);

46
47 template<backend Backend>

48 kernel make_module(const backend_traits<Backend>::native_type<event> &backendObject,

49 const context &targetContext);

50
51 } // namespace sycl

For each SYCL runtime class T which supports SYCL application interoperability, a specialisation of the appro-
priate template function make_{sycl_class} where {sycl_class} is the class name of T, must be defined, which
takes a SYCL application interoperability native backend object and constructs and returns an instance of T. The
lifetime of the object returned is backend-defined and specified in the backend specification.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 59



4.5. COMMON INTERFACE SYCL 2020 provisional

4.5.3 Common reference semantics

Each of the following SYCL runtime classes: accessor, buffer, context, device, event, kernel, module,
platform, queue, sampled_image, sampler and unsampled_image, must obey the following statements, where
T is the runtime class type:

• Tmust be copy constructible and copy assignable on the host application and within SYCL kernel functions
in the case that T is a valid kernel argument. Any instance of T that is constructed as a copy of another
instance, via either the copy constructor or copy assignment operator, must behave as-if it were the original
instance and as-if any action performed on it were also performed on the original instance and if said
instance is not a host object must represent and continue to represent the same underlying native backend
object as the original instance where applicable.

• T must be destructible on the host application and within SYCL kernel functions in the case that T is a
valid kernel argument. When any instance of T is destroyed, including as a result of the copy assignment
operator, any behavior specific to T that is specified as performed on destruction is only performed if this
instance is the last remaining host copy, in accordance with the above definition of a copy and the destructor
requirements described in 4.5.2 where applicable.

• Tmust be move constructible and move assignable on the host application and within SYCL kernel functions
in the case that T is a valid kernel argument. Any instance of T that is constructed as a move of another
instance, via either the move constructor or move assignment operator, must replace the original instance
rendering said instance invalid and if said instance is not a host object must represent and continue to
represent the same underlying native backend object as the original instance where applicable.

• T must be equality comparable on the host application. Equality between two instances of T (i.e. a == b)
must be true if one instance is a copy of the other and non-equality between two instances of T (i.e. a
!= b) must be true if neither instance is a copy of the other, in accordance with the above definition of a
copy, unless either instance has become invalidated by a move operation. By extension of the requirements
above, equality on T must guarantee to be reflexive (i.e. a == a), symmetric (i.e. a == b implies b == a
and a != b implies b != a) and transitive (i.e. a == b && b == c implies c == a).

• A specialization of std::hash for T must exist on the host application that returns a unique value such that
if two instances of T are equal, in accordance with the above definition, then their resulting hash values are
also equal and subsequently if two hash values are not equal, then their corresponding instances are also
not equal, in accordance with the above definition.

Some SYCL runtime classes will have additional behavior associated with copy, movement, assignment or de-
struction semantics. If these are specified they are in addition to those specified above unless stated otherwise.

Each of the runtime classes mentioned above must provide a common interface of special member functions in
order to fulfill the copy, move, destruction requirements and hidden friend functions in order to fulfill the equality
requirements.

A hidden friend function is a function first declared via a friend declaration with no additional out of class or
namespace scope declarations. Hidden friend functions are only visible to ADL (Argument Dependent Lookup)
and are hidden from qualified and unqualified lookup. Hidden friend functions have the benefits of avoiding
accidental implicit conversions and faster compilation.

These common special member functions and hidden friend functions are described in Tables 4.1 and 4.2 respec-
tively.

60 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.5. COMMON INTERFACE

1 namespace sycl {

2
3 class T {

4 ...

5
6 public:

7 T(const T &rhs);

8
9 T(T &&rhs);

10
11 T &operator=(const T &rhs);

12
13 T &operator=(T &&rhs);

14
15 ∼T();

16
17 ...

18
19 friend bool operator==(const T &lhs, const T &rhs) { /* ... */ }

20
21 friend bool operator!=(const T &lhs, const T &rhs) { /* ... */ }

22
23 ...

24 };

25 } // namespace sycl

Special member function Description
T(const T &rhs) Constructs a T instance as a copy of the

RHS SYCL T in accordance with the re-
quirements set out above.

T(T &&rhs) Constructs a SYCL T instance as a move
of the RHS SYCL T in accordance with the
requirements set out above.

T &operator=(const T &rhs) Assigns this SYCL T instance with a copy
of the RHS SYCL T in accordance with the
requirements set out above.

T &operator=(T &&rhs) Assigns this SYCL T instance with a move
of the RHS SYCL T in accordance with the
requirements set out above.

∼T() Destroys this SYCL T instance in accor-
dance with the requirements set out in 4.5.3.
On destruction of the last copy, may per-
form additional lifetime related operations
required for the underlying native backend
object specified in the SYCL backend spec-
ification, if this SYCL T instance was origi-
nally constructed using one of the backend
interoperability make_* functions specified
in 4.5.2.3.

End of table

Table 4.1: Common special member functions for reference semantics.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 61



4.5. COMMON INTERFACE SYCL 2020 provisional

Hidden friend function Description
bool operator==(const T &lhs, const T &rhs) Returns true if this LHS SYCL T is equal to

the RHS SYCL T in accordance with the re-
quirements set out above, otherwise returns
false.

bool operator!=(const T &lhs, const T &rhs) Returns true if this LHS SYCL T is not
equal to the RHS SYCL T in accordance
with the requirements set out above, other-
wise returns false.

End of table

Table 4.2: Common hidden friend functions for reference semantics.

4.5.4 Common by-value semantics
Each of the following SYCL runtime classes: id, range, item, nd_item, h_item, group, sub_group and nd_range
must follow the following statements, where T is the runtime class type:

• T must be default copy constructible and copy assignable on the host application (in the case where T is
available on the host) and within SYCL kernel functions.

• T must be default destructible on the host application (in the case where T is available on the host) and
within SYCL kernel functions.

• Tmust be default move constructible and default move assignable on the host application (in the case where
T is available on the host) and within SYCL kernel functions.

• T must be equality comparable on the host application (in the case where T is available on the host) and
within SYCL kernel functions. Equality between two instances of T (i.e. a == b) must be true if the value
of all members are equal and non-equality between two instances of T (i.e. a != b) must be true if the
value of any members are not equal, unless either instance has become invalidated by a move operation. By
extension of the requirements above, equality on T must guarantee to be reflexive (i.e. a == a), symmetric
(i.e. a == b implies b == a and a != b implies b != a) and transitive (i.e. a == b && b == c implies
c == a).

Some SYCL runtime classes will have additional behavior associated with copy, movement, assignment or de-
struction semantics. If these are specified they are in addition to those specified above unless stated otherwise.

Each of the runtime classes mentioned above must provide a common interface of special member functions and
member functions in order to fulfill the copy, move, destruction and equality requirements, following the rule of
five and the rule of zero.

These common special member functions and hidden friend functions are described in Tables 4.3 and 4.4 respec-
tively.

1 namespace sycl {

2
3 class T {

4 ...

5
6 public:

62 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.5. COMMON INTERFACE

7 // If any of the following five special member functions are not

8 // public, inline or defaulted, then all five of them should be

9 // explicitly declared (see rule of five).

10 // Otherwise, none of them should be explicitly declared

11 // (see rule of zero).

12
13 // T(const T &rhs);

14
15 // T(T &&rhs);

16
17 // T &operator=(const T &rhs);

18
19 // T &operator=(T &&rhs);

20
21 // ∼T();

22
23 ...

24
25 friend bool operator==(const T &lhs, const T &rhs) { /* ... */ }

26
27 friend bool operator!=(const T &lhs, const T &rhs) { /* ... */ }

28
29 ...

30 };

31 } // namespace sycl

Special member function (see rule of five & rule of zero) Description
T(const T &rhs); Copy constructor.
T(T &&rhs); Move constructor.
T &operator=(const T &rhs); Copy assignment operator.
T &operator=(T &&rhs); Move assignment operator.
∼T(); Destructor.

End of table

Table 4.3: Common special member functions for by-value semantics.

Hidden friend function Description
bool operator==(const T &lhs, const T &rhs) Returns true if this LHS SYCL T is equal to

the RHS SYCL T in accordance with the re-
quirements set out above, otherwise returns
false.

bool operator!=(const T &lhs, const T &rhs) Returns true if this LHS SYCL T is not
equal to the RHS SYCL T in accordance
with the requirements set out above, other-
wise returns false.

End of table

Table 4.4: Common hidden friend functions for by-value semantics.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 63



4.5. COMMON INTERFACE SYCL 2020 provisional

4.5.5 Properties
Each of the following SYCL runtime classes: accessor, context, queue, buffer, unsampled_image and
sampled_image provide an optional parameter in each of their constructors to provide a property_list which
contains zero or more properties. Each of those properties augments the semantics of the class with a particular
feature. Each of those classes must also provide has_property and get_propertymember functions for querying
for a particular property.

The listing below illustrates the usage of various buffer properties, described in 4.7.2.2.

The example illustrates how using properties does not affect the type of the object, thus, does not prevent the
usage of SYCL objects in containers.

1 {

2 context myContext;

3
4 std::vector<buffer<int, 1>> bufferList {

5 buffer<int, 1>{ptr, rng},

6 buffer<int, 1>{ptr, rng, property::use_host_ptr{}},

7 buffer<int, 1>{ptr, rng, property::context_bound{myContext}}

8 };

9
10 for(auto& buf : bufferList) {

11 if (buf.has_property<property::context_bound>()) {

12 auto prop = buf.get_property<property::context_bound>();

13 assert(myContext == prop.get_context());

14 }

15 }

16 }

Each property is represented by a unique class and an instance of a property is an instance of that type. Some
properties can be default constructed while others will require an argument on construction. A property may be
applicable to more than one class, however some properties may not be compatible with each other. See the re-
quirements for the properties of the SYCL buffer class, SYCL unsampled_image class and SYCL sampled_image
class in Table 4.33 and Table 4.40 respectively.

Any property that is provided to a SYCL runtime class via an instance of the SYCL property_list class must
become encapsulated by that class and therefore shared between copies of that class. As a result properties must
inherit the copy and move semantics of that class as described in 4.5.3.

A SYCL implementation or a SYCL backend may provide additional properties other than those defined here,
provided they are defined in accordance with the requirements described in 4.3.

4.5.5.1 Properties interface

Each of the runtime classes mentioned above must provide a common interface of member functions in order to
fulfill the property interface requirements.

A synopsis of the common properties interface, the SYCL property_list class and the SYCL property classes is
provided below. The member functions of the common properties interface are listed in Table 4.6. The construc-
tors of the SYCL property_list class are listed in Table 4.7.

64 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.5. COMMON INTERFACE

1 namespace sycl {

2
3 template <typename propertyT>

4 struct is_property;

5
6 template <typename propertyT, typename syclObjectT>

7 struct is_property_of;

8
9 class T {

10 ...

11
12 template <typename propertyT>

13 bool has_property() const;

14
15 template <typename propertyT>

16 propertyT get_property() const;

17
18 ...

19 };

20
21 class property_list {

22 public:

23 template <typename... propertyTN>

24 property_list(propertyTN... props);

25 };

26 } // namespace sycl

Traits Description
template <typename propertyT>

struct is_property

An explicit specialization of is_property
that inherits from std::true_type must

be provided for each property, where
propertyT is the class defining the prop-
erty. This includes both standard properties
described in this specification and any ad-
ditional non-standard properties defined by
an implementation. All other specializa-
tions of is_property must inherit from std
::false_type.

template <typename propertyT, syclObjectT>

struct is_property_of

An explicit specialization of
is_property_of that inherits from std

::true_type must be provided for each
property that can be used in constructing a
given SYCL class, where propertyT is the
class defining the property and syclObjectT
is the SYCL class. This includes both
standard properties described in this spec-
ification and any additional non-standard
properties defined by an implementation.
All other specializations of is_property_of
must inherit from std::false_type.

End of table

Table 4.5: Traits for properties.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 65



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Member function Description
template <typename propertyT>

bool has_property()const

Returns true if T was constructed with the
property specified by propertyT. Returns
false if it was not.

template <typename propertyT>

propertyT get_property()const

Returns a copy of the property of type
propertyT that T was constructed with.
Must throw an exception with the errc::
invalid_object_error error code if T was
not constructed with the propertyT prop-
erty.

End of table

Table 4.6: Common member functions of the SYCL property interface.

Constructor Description
template <typename... propertyTN>

property_list(propertyTN... props)

Available only when: is_property<

property>::value evaluates to true where
property is each property in propertyTN.
Construct a SYCL property_list with zero
or more properties.

End of table

Table 4.7: Constructors of the SYCL property_list class.

4.6 SYCL runtime classes

4.6.1 Device selection
Since a system can have several SYCL-compatible devices attached, it is useful to have a way to select a specific
device or a set of devices to construct a specific object such as a device (see Section 4.6.4) or a queue (see
Section 4.6.5), or perform some operations on a device subset.

Device selection is done either by having already a specific instance of a device (see Section 4.6.4) or by providing
a device selector which is a ranking function that will give an integer ranking value to all the devices on the system.

4.6.1.1 Device selector

The actual interface for a device selector is a callable taking a const device reference and returning a value
implicitly convertible to a int.

At any point where the SYCL runtime needs to select a SYCL device using a device selector, the system will
query all available SYCL devices from all SYCL backends in the system including the SYCL host backend, will
call the device selector on each device and select the one which returns the highest score. If the highest value is
negative no device is selected.

In places where only one device has to be picked and the high score is obtained by more than one device, then
one of the tied devices will be returned, but which one is not defined and may depend on enumeration order, for
example, outside the control of the SYCL runtime.

66 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Some predefined device selectors are provided by the system as described on Table 4.8 in a header file with some
definition similar to the following:

SYCL device selectors Description
default_selector_v Select a SYCL device from any sup-

ported SYCL backend based on an
implementation-defined heuristic. Must
select the host device if no other suitable
device can be found.

gpu_selector_v Select a SYCL device from any sup-
ported SYCL backend for which the de-
vice type is info::device::device_type::
gpu. The SYCL class constructor using
it must throw an exception with the errc
::runtime_error error code if no device
matching this requirement can be found.

accelerator_selector_v Select a SYCL device from any sup-
ported SYCL backend for which the de-
vice type is info::device::device_type::
accelerator. The SYCL class construc-
tor using it must throw an exception with
the errc::runtime_error error code if no
device matching this requirement can be
found.

cpu_selector_v Select a SYCL device from any sup-
ported SYCL backend for which the de-
vice type is info::device::device_type::
cpu. The SYCL class constructor using
it must throw an exception with the errc
::runtime_error error code if no device
matching this requirement can be found.

host_selector_v Select the SYCL host device from the
SYCL host backend. This must always re-
turn a valid SYCL device.

End of table

Table 4.8: Standard device selectors included with all SYCL implementations.

1 namespace sycl {

2
3 // Predefined device selectors

4 __unspecified__ default_selector_v;

5 __unspecified__ host_selector_v;

6 __unspecified__ cpu_selector_v;

7 __unspecified__ gpu_selector_v;

8 __unspecified__ accelerator_selector_v;

9
10 // Predefined types for compatibility with old SYCL 1.2.1 device selectors

11 using default_selector = __unspecified__;

12 using host_selector = __unspecified__;

CHAPTER 4. SYCL PROGRAMMING INTERFACE 67



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

13 using cpu_selector = __unspecified__;

14 using gpu_selector = __unspecified__;

15 using accelerator_selector = __unspecified__;

16
17 } // namespace sycl

Typical examples of default and user-provided device selectors could be:

1 sycl::device my_gpu { sycl::gpu_selector_v };

2
3 sycl::queue my_accelerator { sycl::accelerator_selector_v };

4
5 int prefer_my_vendor(const sycl::device & d) {

6 // Return 1 if the vendor name is "MyVendor" or 0 else.

7 // 0 does not prevent another device to be picked as a second choice

8 return d.get_info<info::device::vendor>() == "MyVendor";

9 }

10
11 // Get the preferred device or another one if not available

12 sycl::device preferred_device { prefer_my_vendor };

13
14 // This throws if there is no such device in the system

15 sycl::queue half_precision_controller {

16 // Can use a lambda as a device ranking function.

17 // Returns a negative number to fail in the case there is no such device

18 [] (auto &d) { return d.has(aspect::fp16) ? 1 : -1; }

19 };

20
21 // To ease porting SYCL 1.2.1 code, there are types whose

22 // construction leads to the equivalent predefined device selector

23 sycl::queue my_old_style_gpu { sycl::gpu_selector {} };

[Note: in SYCL 1.2.1 the predefined device selectors were actually types that had to be instantiated to be used.
Now they are just instances. To simplify porting code using the old type instantiations, a backward-compatible API
is still provided, such as sycl::default_selector. The new predefined device selectors have their new names
appended with _v to avoid conflicts, thus following the naming style used by traits in the C++ standard library.
There is no requirement for the implementation to have for example sycl::gpu_selector_v being an instance of
sycl::gpu_selector. — end note]

Implementation note: the SYCL API might rely on SFINAE or C++20 concepts to resolve some ambiguity in
constructors with default parameters.

4.6.2 Platform class
The SYCL platform class encapsulates a single SYCL platform on which SYCL kernel functions may be exe-
cuted. A SYCL platform must be associated with a single SYCL backend and may encapsulate a native backend
object.

A SYCL platform is also associated with one or more SYCL devices associated with the same SYCL backend.

All member functions of the platform class are synchronous and errors are handled by throwing synchronous
SYCL exceptions.

68 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

The default constructor of the SYCL platform class will construct a platform associated with the SYCL host
backend.

The explicit constructor of the SYCL platform class which takes a device selector will construct a platform that
is associated with the SYCL backend that is associated with the device that the device selector would construct,
according to Sections 4.6.1.1 and 4.6.4.

The SYCL platform class provides the common reference semantics (see Section 4.5.3).

4.6.2.1 Platform interface

A synopsis of the SYCL platform class is provided below. The constructors, member functions and static member
functions of the SYCL platform class are listed in Tables 4.9, 4.10 and 4.11 respectively. The additional common
special member functions and common member functions are listed in 4.5.3 in Tables 4.1 and 4.2 respectively.

1 namespace sycl {

2 class platform {

3 public:

4 platform();

5
6 template <typename DeviceSelector>

7 explicit platform(const DeviceSelector &deviceSelector);

8
9 /* -- common interface members -- */

10
11 backend get_backend() const;

12
13 std::vector<device> get_devices(

14 info::device_type = info::device_type::all) const;

15
16 template <info::platform param>

17 typename info::param_traits<info::platform, param>::return_type get_info() const;

18
19 template <typename BackendEnum, BackendEnum param>

20 typename info::param_traits<BackendEnum, param>::return_type

21 get_backend_info() const;

22
23 bool has(aspect asp) const;

24
25 bool has_extension(const std::string &extension) const; // Deprecated

26
27 bool is_host() const;

28
29 static std::vector<platform> get_platforms();

30 };

31 } // namespace sycl

Constructor Description
platform() Constructs a SYCL platform instance as a host platform.

Continued on next page

Table 4.9: Constructors of the SYCL platform class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 69



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Constructor Description
template <typename DeviceSelector>

explicit platform(const DeviceSelector

&)

Constructs a SYCL platform instance using the device se-
lector parameter. One of the SYCL devices that is associ-
ated with the constructed SYCL platform instance must be
the SYCL device that is produced from the provided device
ranking function.

End of table

Table 4.9: Constructors of the SYCL platform class.

Member function Description
backend get_backend()const Returns a backend identifying the SYCL

backend associated with this platform.
template <info::platform param>

typename info::param_traits<info::platform,

param>::return_type

get_info()const

Queries this SYCL platform for infor-
mation requested by the template param-
eter param. Specializations of info::
param_traits must be defined in accor-
dance with the info parameters in Table 4.19
to facilitate returning the type associated
with the param parameter.

template <typename BackendEnum, BackendEnum param>

typename info::param_traits<BackendEnum, param>::

return_type

get_backend_info()const

Queries this SYCL platform for SYCL
backend-specific information requested by
the template parameter param. BackendEnum

can be any enum class type specified
by the SYCL backend specification of a
supported SYCL backend named accord-
ing to the convention info::<backend_name
>::platform and param must be a valid
enumeration of that enum class. Spe-
cializations of info::param_traits must
be defined for BackendEnum in accor-
dance with the SYCL backend specification.
Must throw an exception with the errc::
invalid_object_error if the SYCL back-
end that corresponds with BackendEnum is
different from the SYCL backend that is as-
sociated with this platform.

bool has(aspect asp)const Returns true if all of the SYCL devices as-
sociated with this SYCL platform have the
given aspect.

bool has_extension(const std::string & extension)

const

Deprecated, use has() instead.
Returns true if this SYCL platform supports
the extension queried by the extension pa-
rameter. A SYCL platform can only sup-
port an extension if all associated SYCL
devices support that extension.

Continued on next page

Table 4.10: Member functions of the SYCL platform class.

70 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Member function Description
bool is_host()const Returns true if the backend associated with

this SYCL platform is a SYCL host back-
end.

std::vector<device> get_devices(

info::device_type = info::device_type::all)const

Returns a std::vector containing all
SYCL devices associated with this SYCL
platform. The returned std::vector must
contain only a single SYCL device that
is a host device if this SYCL platform
is a host platform. Must return an empty
std::vector instance if there are no devices
that match the given info::device_type.

End of table

Table 4.10: Member functions of the SYCL platform class.

Static member function Description
static std::vector<platform> get_platforms() Returns a std::vector containing all

SYCL platforms from all SYCL backends
available in the system. The std::vector
returned must contain at least one SYCL
platform that is from a SYCL host backend.

End of table

Table 4.11: Static member functions of the SYCL platform class.

4.6.2.2 Platform information descriptors

A platform can be queried for information using the get_info member function of the platform class, specifying
one of the info parameters enumerated in info::platform. Every platform (including a host platform) must
produce a valid value for each info parameter. The possible values for each info parameter and any restrictions
are defined in the specification of the SYCL backend associated with the platform. All info parameters in info::
platform are specified in Table 4.12 and the synopsis for info::platform is described in appendix A.1.

Platform descriptors Return type Description
info::platform::version std::string Returns the software driver version of the device.
info::platform::name std::string Returns the name of the platform.
info::platform::vendor std::string Returns the name of the vendor providing the

platform.
info::platform::extensions std::vector<

std::string>

Deprecated, use device::get_info() with info
::device::aspects instead.
Returns the extensions supported by the platform.

End of table

Table 4.12: Platform information descriptors.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 71



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

4.6.3 Context class
The context class represents a SYCL context. A context represents the runtime data structures and state required
by a SYCL backend API to interact with a group of devices associated with a platform.

The SYCL context class provides the common reference semantics (see Section 4.5.3).

4.6.3.1 Context interface

The constructors and member functions of the SYCL context class are listed in Tables 4.13 and 4.14, respectively.
The additional common special member functions and common member functions are listed in 4.5.3 in Tables 4.1
and 4.2, respectively.

All member functions of the context class are synchronous and errors are handled by throwing synchronous SYCL
exceptions.

All constructors of the SYCL context class will construct an instance associated with a particular SYCL backend,
determined by the constructor parameters or, in the case of the default constructor, the SYCL device produced by
the default_selector_v.

A SYCL context can optionally be constructed with an async_handler parameter. In this case the async_handler
is used to report asynchronous SYCL exceptions, as described in 4.15.

Information about a SYCL context may be queried through the get_info() member function.

1 namespace sycl {

2 class context {

3 public:

4 explicit context(const property_list &propList = {});

5
6 explicit context(async_handler asyncHandler,

7 const property_list &propList = {});

8
9 explicit context(const device &dev, const property_list &propList = {});

10
11 explicit context(const device &dev, async_handler asyncHandler,

12 const property_list &propList = {});

13
14 explicit context(const std::vector<device> &deviceList,

15 const property_list &propList = {});

16
17 explicit context(const std::vector<device> &deviceList,

18 async_handler asyncHandler,

19 const property_list &propList = {});

20
21 /* -- property interface members -- */

22
23 /* -- common interface members -- */

24
25 backend get_backend() const;

26
27 bool is_host() const;

28
29 platform get_platform() const;

72 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

30
31 std::vector<device> get_devices() const;

32
33 template <info::context param>

34 typename info::param_traits<info::context, param>::return_type get_info() const;

35
36 template <typename BackendEnum, BackendEnum param>

37 typename info::param_traits<BackendEnum, param>::return_type

38 get_backend_info() const;

39 };

40 } // namespace sycl

Constructor Description
explicit context(async_handler asyncHandler = {}) Constructs a SYCL context instance using

an instance of default_selector_v to select
the associated SYCL platform and device
(s). The devices that are associated with the
constructed context are implementation de-
fined but must contain the device chosen by
the device selector. The constructed SYCL
context will use the asyncHandler parame-
ter to handle exceptions.

explicit context(const device &dev,

async_handler asyncHandler = {})

Constructs a SYCL context instance using
the dev parameter as the associated SYCL
device and the SYCL platform associated
with the dev parameter as the associated
SYCL platform. The constructed SYCL
context will use the asyncHandler param-
eter to handle exceptions.

explicit context(const std::vector<device> &

deviceList,

async_handler asyncHandler = {})

Constructs a SYCL context instance us-
ing the SYCL device(s) in the deviceList
parameter as the associated SYCL device

(s) and the SYCL platform associated with
each SYCL device in the deviceList pa-
rameter as the associated SYCL platform
. This requires that all SYCL devices in
the deviceList parameter have the same as-
sociated SYCL platform. The constructed
SYCL context will use the asyncHandler
parameter to handle exceptions.

End of table

Table 4.13: Constructors of the SYCL context class.

Member function Description
backend get_backend()const Returns a backend identifying the SYCL

backend associated with this context.
bool is_host()const Returns true if the backend associated with

this SYCL context is a SYCL host backend.
Continued on next page

Table 4.14: Member functions of the context class.
CHAPTER 4. SYCL PROGRAMMING INTERFACE 73



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Member function Description
template <info::context param> typename info::

param_traits<info::context, param>::return_type

get_info()const

Queries this SYCL context for information
requested by the template parameter param
using the param_traits class template to

facilitate returning the appropriate type as-
sociated with the param parameter.

template <typename BackendEnum, BackendEnum param>

typename info::param_traits<BackendEnum, param>::

return_type

get_backend_info()const

Queries this SYCL context for SYCL back-
end-specific information requested by the
template parameter param. BackendEnum

can be any enum class type specified
by the SYCL backend specification of a
supported SYCL backend named accord-
ing to the convention info::<backend_name
>::context and param must be a valid
enumeration of that enum class. Spe-
cializations of info::param_traits must
be defined for BackendEnum in accor-
dance with the SYCL backend specifica-
tion. Must throw an exception with the
errc::invalid_object_error error code if
the SYCL backend that corresponds with
BackendEnum is different from the SYCL
backend that is associated with this context.

platform get_platform()const Returns the SYCL platform that is asso-
ciated with this SYCL context. The value
returned must be equal to that returned by
get_info<info::context::platform>().

std::vector<device>

get_devices()const

Returns a std::vector containing all SYCL
devices that are associated with this SYCL
context. The value returned must be
equal to that returned by get_info<info::
context::devices>().

End of table

Table 4.14: Member functions of the context class.

4.6.3.2 Context information descriptors

A context can be queried for information using the get_info member function of the context class, specifying
one of the info parameters enumerated in info::context. Every context (including a host context) must produce
a valid value for each info parameter. The possible values for each info parameter and any restrictions are defined
in the specification of the SYCL backend associated with the context. All info parameters in info::context are
specified in Table 4.15 and the synopsis for info::context is described in appendix A.2.

Context Descriptors Return type Description
info::context::platform platform Returns the platform associated

with the context.
info::context::devices std::vector<device> Returns all of the devices associ-

ated with the context.
Continued on next page

Table 4.15: Context information descriptors.
74 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Context Descriptors Return type Description
info::context::

atomic_memory_order_capabilities

std::vector<memory_order> Returns the set of memory or-
derings supported by atomic oper-
ations on all devices in the con-
text, which is guaranteed to include
relaxed.
The memory ordering of the context
determines the behavior of atomic
operations applied to any memory
that can be concurrently accessed
by multiple devices in the context.

info::context::

atomic_fence_order_capabilities

std::vector<memory_order> Returns the set of memory order-
ings supported by atomic_fence on
all devices in the context, which is
guaranteed to include relaxed.
The memory ordering of the context
determines the behavior of fence
operations applied to any memory
that can be concurrently accessed
by multiple devices in the context.

info::context::

atomic_memory_scope_capabilities

std::vector<memory_scope> Returns the set of memory scopes
supported by atomic operations on
all devices in the context, which is
guaranteed to include work_group.

info::context::

atomic_fence_scope_capabilities

std::vector<memory_scope> Returns the set of memory order-
ings supported by atomic_fence on
all devices in the context, which is
guaranteed to include work_group.

End of table

Table 4.15: Context information descriptors.

4.6.3.3 Context properties

The property_list constructor parameters are present for extensibility.

4.6.4 Device class
The SYCL device class encapsulates a single SYCL device on which kernels can be executed. A SYCL device
object can map to a native backend object.

All member functions of the device class are synchronous and errors are handled by throwing synchronous SYCL
exceptions.

The default constructor of the SYCL device class will construct a host device from the host SYCL backend.

The explicit constructor of the SYCL device class which takes a device selector will construct a device selected
by the device selector according to Section 4.6.1.1.

A SYCL device can be partitioned into multiple SYCL devices, by calling the create_sub_devices() member
function template. The resulting SYCL devices are considered sub devices, and it is valid to partition these sub

CHAPTER 4. SYCL PROGRAMMING INTERFACE 75



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

devices further. The range of support for this feature is SYCL backend and device specific and can be queried for
through get_info().

The SYCL device class provides the common reference semantics (see Section 4.5.3).

4.6.4.1 Device interface

A synopsis of the SYCL device class is provided below. The constructors, member functions and static member
functions of the SYCL device class are listed in Tables 4.16, 4.17 and 4.18 respectively. The additional common
special member functions and common member functions are listed in 4.5.3 in Tables 4.1 and 4.2, respectively.

1 namespace sycl {

2
3 class device {

4 public:

5 device();

6
7 template <typename DeviceSelector>

8 explicit device(const DeviceSelector &deviceSelector);

9
10 /* -- common interface members -- */

11
12 backend get_backend() const;

13
14 bool is_host() const;

15
16 bool is_cpu() const;

17
18 bool is_gpu() const;

19
20 bool is_accelerator() const;

21
22 platform get_platform() const;

23
24 template <info::device param>

25 typename info::param_traits<info::device, param>::return_type

26 get_info() const;

27
28 template <typename BackendEnum, BackendEnum param>

29 typename info::param_traits<BackendEnum, param>::return_type

30 get_backend_info() const;

31
32 bool has(aspect asp) const;

33
34 bool has_extension(const std::string &extension) const; // Deprecated

35
36 // Available only when prop == info::partition_property::partition_equally

37 template <info::partition_property prop>

38 std::vector<device> create_sub_devices(size_t nbSubDev) const;

39
40 // Available only when prop == info::partition_property::partition_by_counts

41 template <info::partition_property prop>

42 std::vector<device> create_sub_devices(const std::vector<size_t> &counts) const;

43
44 // Available only when prop == info::partition_property::partition_by_affinity_domain

76 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

45 template <info::partition_property prop>

46 std::vector<device> create_sub_devices(info::affinity_domain affinityDomain) const;

47
48 static std::vector<device> get_devices(

49 info::device_type deviceType = info::device_type::all);

50 };

51 } // namespace sycl

Constructor Description
device() Constructs a SYCL device instance as a

host device.
template <typename DeviceSelector>

explicit device(const DeviceSelector &

deviceSelector)

Constructs a SYCL device instance using
the device selected by the device selector
provided.

End of table

Table 4.16: Constructors of the SYCL device class.

Member function Description
backend get_backend()const Returns the a backend identifying the SYCL

backend associated with this device.
platform get_platform()const Returns the associated SYCL platform

. The value returned must be equal to
that returned by get_info<info::device::
platform>().

bool is_host()const Returns the same value as has(aspect::
host). See Table 4.20.

bool is_cpu()const Returns the same value as has(aspect::cpu
). See Table 4.20.

bool is_gpu()const Returns the same value as has(aspect::gpu
). See Table 4.20.

bool is_accelerator()const Returns the same value as has(aspect::
accelerator). See Table 4.20.

template <info::device param> typename info::

param_traits<info::device, param>::return_type

get_info()const

Queries this SYCL device for information
requested by the template parameter param
. Specializations of info::param_traits
must be defined in accordance with the info
parameters in Table 4.19 to facilitate return-
ing the type associated with the param pa-
rameter.

Continued on next page

Table 4.17: Member functions of the SYCL device class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 77



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Member function Description
template <typename BackendEnum, BackendEnum param>

typename info::param_traits<BackendEnum, param>::

return_type

get_backend_info()const

Queries this SYCL device for SYCL back-
end-specific information requested by the
template parameter param. BackendEnum

can be any enum class type specified
by the SYCL backend specification of a
supported SYCL backend named accord-
ing to the convention info::<backend_name
>::device and param must be a valid
enumeration of that enum class. Spe-
cializations of info::param_traits must
be defined for BackendEnum in accor-
dance with the SYCL backend specifica-
tion. Must throw an exception with the
errc::invalid_object_error error code if
the SYCL backend that corresponds with
BackendEnum is different from the SYCL
backend that is associated with this device
.

bool has(aspect asp)const Returns true if this SYCL device has the
given aspect. SYCL applications can use
this member function to determine which
optional features this device supports (if
any).

bool has_extension (const std::string &extension)

const

Deprecated, use has() instead.
Returns true if this SYCL device supports
the extension queried by the extension pa-
rameter.

template <info::partition_property prop>

std::vector<device> create_sub_devices(

size_t nbSubDev)const

Available only when prop is info::

partition_property::partition_equally

. Returns a std::vector of sub devices
partitioned from this SYCL device

equally based on the nbSubDev param-
eter. If this SYCL device does not
support info::partition_property::

partition_equally an exception with the
errc::feature_not_supported error code
must be thrown.

template <info::partition_property prop>

std::vector<device> create_sub_devices(

const std::vector<size_t> &counts)const

Available only when prop is
info::partition_property::

partition_by_count. Returns a std::
vector of sub devices partitioned from this
SYCL device by count sizes based on the
counts parameter. If the SYCL device does
not support info::partition_property::
partition_by_count an exception with the
errc::feature_not_supported error code
must be thrown.

Continued on next page

Table 4.17: Member functions of the SYCL device class.

78 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Member function Description
template <info::partition_property prop>

std::vector<device> create_sub_devices(

info::affinity_domain affinityDomain)const

Available only when prop is
info::partition_property::

partition_by_affinity_domain. Returns
a std::vector of sub devices parti-
tioned from this SYCL device by affinity
domain based on the affinityDomain

parameter. Partitions the device into
sub devices based upon the affinity do-
main. If the SYCL device does not
support info::partition_property::

partition_by_affinity_domain or the
SYCL device does not support the info::
affinity_domain provided, an exception
with the errc::feature_not_supported

error code must be thrown.
End of table

Table 4.17: Member functions of the SYCL device class.

Static member function Description
static std::vector<device>

get_devices(

info::device_type deviceType =

info::device_type::all)

Returns a std::vector containing all SYCL
devices from all SYCL backends available
in the system of the device type specified by
the parameter deviceType. Note that when
the device_type is info::device_type::
all or info::device_type::host, the std
::vector returned must contain at least one
host device from the SYCL host backend.

End of table

Table 4.18: Static member functions of the SYCL device class.

4.6.4.2 Device information descriptors

A device can be queried for information using the get_info member function of the device class, specifying one
of the info parameters enumerated in info::device. Every device (including a host device) must produce a valid
value for each info parameter. The possible values for each info parameter and any restriction are defined in the
specification of the SYCL backend associated with the device. All info parameters in info::device are specified
in Table 4.19 and the synopsis for info::device is described in appendix A.3.

Device descriptors Return type Description
info::device::device_type info::

device_type

Returns the device type associated with the
device. May not return info::device_type::
all.

info::device::vendor_id uint32_t Returns a unique vendor device identifier.
Continued on next page

Table 4.19: Device information descriptors.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 79



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Device descriptors Return type Description
info::device::

max_compute_units

uint32_t Returns the number of parallel compute units
available to the device. The minimum value is
1.

info::device::

max_work_item_dimensions

uint32_t Returns the maximum dimensions that specify
the global and local work-item IDs used by the
data parallel execution model. The minimum
value is 3 if this SYCL device is not of device
type info::device_type::custom.

info::device::

max_work_item_sizes

id<3> Returns the maximum number of work-items
that are permitted in each dimension of the
work-group of the nd_range. The minimum
value is (1, 1, 1) for devices that are not of de-
vice type info::device_type::custom.

info::device::

max_work_group_size

size_t Returns the maximum number of work-items
that are permitted in a work-group executing a
kernel on a single compute unit. The minimum
value is 1.

info::device::

max_num_sub_groups

uint32_t Returns the maximum number of sub-groups
in a work-group for any kernel executed on the
device. The minimum value is 1.

info::device::

sub_group_independent_forward_progress

bool Returns true if the device supports indepen-
dent forward progress of sub-groups with re-
spect to other sub-groups in the same work-
group.

info::device::sub_group_sizes std::vector<

size_t>

Returns a std::vector of size_t containing
the set of sub-group sizes supported by the de-
vice.

info::device::

preferred_vector_width_char

info::device::

preferred_vector_width_short

info::device::

preferred_vector_width_int

info::device::

preferred_vector_width_long

info::device::

preferred_vector_width_float

info::device::

preferred_vector_width_double

info::device::

preferred_vector_width_half

uint32_t Returns the preferred native vector width
size for built-in scalar types that can be put
into vectors. The vector width is defined as
the number of scalar elements that can be
stored in the vector. Must return 0 for info::
device::preferred_vector_width_double if
the device does not have aspect::fp64

and must return 0 for info::device::
preferred_vector_width_half if the device
does not have aspect::fp16.

Continued on next page

Table 4.19: Device information descriptors.

80 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Device descriptors Return type Description
info::device::

native_vector_width_char

info::device::

native_vector_width_short

info::device::

native_vector_width_int

info::device::

native_vector_width_long

info::device::

native_vector_width_float

info::device::

native_vector_width_double

info::device::

native_vector_width_half

uint32_t Returns the native ISA vector width.
The vector width is defined as the num-
ber of scalar elements that can be stored
in the vector. Must return 0 for info::
device::preferred_vector_width_double if
the device does not have aspect::fp64

and must return 0 for info::device::
preferred_vector_width_half if the device
does not have aspect::fp16.

info::device::

max_clock_frequency

uint32_t Returns the maximum configured clock fre-
quency of this SYCL device in MHz.

info::device::address_bits uint32_t Returns the default compute device address
space size specified as an unsigned integer
value in bits. Must return either 32 or 64.

info::device::

max_mem_alloc_size

uint64_t Returns the maximum size of memory object
allocation in bytes. The minimum value is max
(1/4th of info::device::global_mem_size
,128*1024*1024) if this SYCL device is not
of device type info::device_type::custom.

info::device::image_support bool Deprecated.
Returns the same value as device::has(
aspect::image).

info::device::

max_read_image_args

uint32_t Returns the maximum number of simultane-
ous image objects that can be read from by
a kernel. The minimum value is 128 if the
SYCL device has aspect::image.

info::device::

max_write_image_args

uint32_t Returns the maximum number of simultane-
ous image objects that can be written to by a
kernel. The minimum value is 8 if the SYCL
device has aspect::image.

info::device::

image2d_max_width

size_t Returns the maximum width of a 2D image
or 1D image in pixels. The minimum value is
8192 if the SYCL device has aspect::image.

info::device::

image2d_max_height

size_t Returns the maximum height of a 2D image
in pixels. The minimum value is 8192 if the
SYCL device has aspect::image.

info::device::

image3d_max_width

size_t Returns the maximum width of a 3D image
in pixels. The minimum value is 2048 if the
SYCL device has aspect::image.

info::device::

image3d_max_height

size_t Returns the maximum height of a 3D image
in pixels. The minimum value is 2048 if the
SYCL device has aspect::image.

Continued on next page

Table 4.19: Device information descriptors.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 81



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Device descriptors Return type Description
info::device::

image3d_max_depth

size_t Returns the maximum depth of a 3D image
in pixels. The minimum value is 2048 if the
SYCL device has aspect::image.

info::device::

image_max_buffer_size

size_t Returns the number of pixels for a 1D im-
age created from a buffer object. The mini-
mum value is 65536 if the SYCL device has
aspect::image. Note that this information is
intended for OpenCL interoperability only as
this feature is not supported in SYCL.

info::device::

image_max_array_size

size_t Returns the maximum number of images in a
1D or 2D image array. The minimum value is
2048 if the SYCL device has aspect::image.

info::device::max_samplers uint32_t Returns the maximum number of samplers
that can be used in a kernel. The minimum
value is 16 if the SYCL device has aspect::
image.

info::device::

max_parameter_size

size_t Returns the maximum size in bytes of the ar-
guments that can be passed to a kernel. The
minimum value is 1024 if this SYCL device
is not of device type info::device_type::
custom. For this minimum value, only a maxi-
mum of 128 arguments can be passed to a ker-
nel.

info::device::

mem_base_addr_align

uint32_t Returns the minimum value in bits of the
largest supported SYCL built-in data type if
this SYCL device is not of device type info
::device_type::custom.

Continued on next page

Table 4.19: Device information descriptors.

82 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Device descriptors Return type Description
info::device::half_fp_config std::vector<

info::fp_config

>

Returns a std::vector of info::fp_config
describing the half precision floating-point

capability of this SYCL device. The std::
vector may contain zero or more of the fol-
lowing values:

• info::fp_config::denorm: denorms
are supported.

• info::fp_config::inf_nan: INF and
quiet NaNs are supported.

• info::fp_config::round_to_nearest:
round to nearest even rounding mode is
supported.

• info::fp_config::round_to_zero
: round to zero rounding mode is
supported.

• info::fp_config::round_to_inf:
round to positive and negative infinity
rounding modes are supported.

• info::fp_config::fma: IEEE754-
2008 fused multiply add is supported.

• info::fp_config::
correctly_rounded_divide_sqrt:
divide and sqrt are correctly rounded as
defined by the IEEE754 specification.

• info::fp_config::soft_float: basic
floating-point operations (such as addi-
tion, subtraction, multiplication) are im-
plemented in software.

If half precision is supported by this SYCL
device (i.e. the device has aspect::fp16)
there is no minimum floating-point capability.
If half support is not supported the returned
std::vector must be empty.

Continued on next page

Table 4.19: Device information descriptors.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 83



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Device descriptors Return type Description
info::device::single_fp_config std::vector<

info::fp_config

>

Returns a std::vector of info::fp_config
describing the single precision floating-point

capability of this SYCL device. The std::
vector must contain one or more of the fol-
lowing values:

• info::fp_config::denorm: denorms
are supported.

• info::fp_config::inf_nan: INF and
quiet NaNs are supported.

• info::fp_config::round_to_nearest:
round to nearest even rounding mode is
supported.

• info::fp_config::round_to_zero
: round to zero rounding mode is
supported.

• info::fp_config::round_to_inf:
round to positive and negative infinity
rounding modes are supported.

• info::fp_config::fma: IEEE754-
2008 fused multiply add is supported.

• info::fp_config::
correctly_rounded_divide_sqrt:
divide and sqrt are correctly rounded as
defined by the IEEE754 specification.

• info::fp_config::soft_float: basic
floating-point operations (such as addi-
tion, subtraction, multiplication) are im-
plemented in software.

If this SYCL device is not of type info
::device_type::custom then the minimum
floating-point capability must be: info::

fp_config::round_to_nearest and info::

fp_config::inf_nan.
Continued on next page

Table 4.19: Device information descriptors.

84 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Device descriptors Return type Description
info::device::double_fp_config std::vector<

info::fp_config

>

Returns a std::vector of info::fp_config
describing the double precision floating-point
capability of this SYCL device. The std::
vector may contain zero or more of the fol-
lowing values:

• info::fp_config::denorm: denorms
are supported.

• info::fp_config::inf_nan: INF and
NaNs are supported.

• info::fp_config::round_to_nearest:
round to nearest even rounding mode is
supported.

• info::fp_config::round_to_zero
: round to zero rounding mode is
supported.

• info::fp_config::round_to_inf:
round to positive and negative infinity
rounding modes are supported.

• info::fp_config::fma: IEEE754-
2008 fused multiply-add is supported.

• info::fp_config::soft_float: basic
floating-point operations (such as addi-
tion, subtraction, multiplication) are im-
plemented in software.

If double precision is supported by this
SYCL device (i.e. the device has aspect
::fp64) and this SYCL device is not of
type info::device_type::custom then the
minimum floating-point capability must be:
info::fp_config::fma, info::fp_config

::round_to_nearest, info::fp_config

::round_to_zero, info::fp_config::

round_to_inf, info::fp_config::inf_nan

and info::fp_config::denorm. If dou-
ble support is not supported the returned
std::vector must be empty.

info::device::

global_mem_cache_type

info::

global_mem_cache

-_type

Returns the type of global memory cache sup-
ported.

info::device::

global_mem_cache_line_size

uint32_t Returns the size of global memory cache line
in bytes.

info::device::

global_mem_cache_size

uint64_t Returns the size of global memory cache in
bytes.

info::device::global_mem_size uint64_t Returns the size of global device memory in
bytes.

Continued on next page

Table 4.19: Device information descriptors.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 85



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Device descriptors Return type Description
info::device::

max_constant_buffer_size

uint64_t Returns the maximum size in bytes of a con-
stant buffer allocation. The minimum value is
64 KB if this SYCL device is not of type info
::device_type::custom.

info::device::

max_constant_args

uint32_t Returns the maximum number of constant ar-
guments that can be declared in a kernel. The
minimum value is 8 if this SYCL device is not
of type info::device_type::custom.

info::device::local_mem_type info::

local_mem_type

Returns the type of local memory supported.
This can be info::local_mem_type::local

implying dedicated local memory storage
such as SRAM, or info::local_mem_type::
global. If this SYCL device is of type
info::device_type::custom this can also be
info::local_mem_type::none, indicating lo-
cal memory is not supported.

info::device::local_mem_size uint64_t Returns the size of local memory arena
in bytes. The minimum value is 32 KB
if this SYCL device is not of type info::
device_type::custom.

info::device::

error_correction_support

bool Returns true if the device implements error
correction for all accesses to compute device
memory (global and constant). Returns false if
the device does not implement such error cor-
rection.

info::device::

host_unified_memory

bool Deprecated, use device::has() with one of
the aspect::usm_* aspects instead.
Returns true if the device and the host have
a unified memory subsystem and returns false
otherwise.

info::device::

atomic_memory_order_capabilities

std::vector<

memory_order>

Returns the set of memory orderings sup-
ported by atomic operations on the device,
which is guaranteed to include relaxed.
If this device is a host device, the set must
include all values of the memory_order enum
class: relaxed, acquire, release, acq_rel
and seq_cst.

info::device::

atomic_fence_order_capabilities

std::vector<

memory_order>

Returns the set of memory orderings sup-
ported by atomic_fence on the device, which
is guaranteed to include relaxed.
If this device is a host device, the set must
include all values of the memory_order enum
class: relaxed, acquire, release, acq_rel
and seq_cst.

Continued on next page

Table 4.19: Device information descriptors.

86 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Device descriptors Return type Description
info::device::

atomic_memory_scope_capabilities

std::vector<

memory_scope>

Returns the set of memory scopes supported
by atomic operations on the device, which is
guaranteed to include work_group.
If this device is a host device, the set must
include all values of the memory_scope enum
class: work_item, sub_group, work_group,
device and system.

info::device::

atomic_fence_scope_capabilities

std::vector<

memory_scope>

Returns the set of memory scopes supported
by atomic_fence on the device, which is guar-
anteed to include work_group.
If this device is a host device, the set must
include all values of the memory_scope enum
class: work_item, sub_group, work_group,
device and system.

info::device::

profiling_timer_resolution

size_t Returns the resolution of device timer in
nanoseconds.

info::device::is_endian_little bool Returns true if this SYCL device is a little
endian device and returns false otherwise.

info::device::is_available bool Returns true if the SYCL device is available
and returns false if the device is not available.

info::device::

is_compiler_available

bool Deprecated.
Returns the same value as device::has(
aspect::online_compiler).

info::device::

is_linker_available

bool Deprecated.
Returns the same value as device::has(
aspect::online_linker).

info::device::

execution_capabilities

std::vector

<info::

execution_-

capability>

Returns a std::vector of the info::

execution_capability describing the sup-
ported execution capabilities. Note that this
information is intended for OpenCL interop-
erability only as SYCL only supports info::
execution_capability::exec_kernel.

info::device::queue_profiling bool Deprecated.
Returns the same value as device::has(
aspect::queue_profiling).

info::device::built_in_kernels std::vector<std

::string>

Returns a std::vector of built-in OpenCL ker-
nels supported by this SYCL device.

info::device::platform platform Returns the SYCL platform associated with
this SYCL device.

info::device::name std::string Returns the device name of this SYCL device.
info::device::vendor std::string Returns the vendor of this SYCL device.
info::device::driver_version std::string Returns the OpenCL software driver version

as a std::string in the form: major num-
ber.minor number, if this SYCL device is an
OpenCL device. Must return a std::string
with the value "1.2" if this SYCL device is a
host device.

Continued on next page

Table 4.19: Device information descriptors.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 87



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Device descriptors Return type Description
info::device::profile std::string Returns the OpenCL profile as a std::string

, if this SYCL device is an OpenCL device.
The value returned can be one of the following
strings:

• FULL PROFILE - if the device supports
the OpenCL specification (functionality
defined as part of the core specification
and does not require any extensions to
be supported).

• EMBEDDED PROFILE - if the device
supports the OpenCL embedded profile.

Must return a std::string with the value
”FULL PROFILE” if this is a host device.

info::device::version std::string Returns the SYCL version as a std::
string in the form: <major_version>.<

minor_version>. If this SYCL device

is a host device, the <major_version>.<
minor_version> value returned must be "1.2
".

info::device::backend_version std::string Returns a string describing the version of
the SYCL backend associated with the device.
The possible values are specified in the SYCL
backend specification of the SYCL backend
associated with the device.

info::device::aspects std::vector<

aspect>

Returns a std::vector of aspect values sup-
ported by this SYCL device.

Continued on next page

Table 4.19: Device information descriptors.

88 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Device descriptors Return type Description
info::device::extensions std::vector<std

::string>

Deprecated, use info::device::aspects in-
stead.
Returns a std::vector of extension names
(the extension names do not contain any
spaces) supported by this SYCL device. The
extension names returned can be vendor sup-
ported extension names and one or more of the
following Khronos approved extension names:

• cl_khr_int64_base_atomics
• cl_khr_int64_extended_atomics
• cl_khr_3d_image_writes
• cl_khr_fp16
• cl_khr_gl_sharing
• cl_khr_gl_event
• cl_khr_d3d10_sharing
• cl_khr_dx9_media_sharing
• cl_khr_d3d11_sharing
• cl_khr_depth_images
• cl_khr_gl_depth_images
• cl_khr_gl_msaa_sharing
• cl_khr_image2d_from_buffer
• cl_khr_initialize_memory
• cl_khr_context_abort
• cl_khr_spir

If this SYCL device is an OpenCL device then
following approved Khronos extension names
must be returned by all device that support
OpenCL C 1.2:

• cl_khr_global_int32_base_atomics
• cl_khr_global_int32_extended_atomics

• cl_khr_local_int32_base_atomics
• cl_khr_local_int32_extended_atomics

• cl_khr_byte_addressable_store
• cl_khr_fp64 (for backward compatibil-

ity if double precision is supported)
Please refer to the OpenCL 1.2 Extension
Specification for a detailed description of these
extensions.

info::device::

printf_buffer_size

size_t Returns the maximum size of the internal
buffer that holds the output of printf calls
from a kernel. The minimum value is 1 MB
if info::device::profile returns true for this
SYCL device.

Continued on next page

Table 4.19: Device information descriptors.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 89



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Device descriptors Return type Description
info::device::

preferred_interop_user_sync

bool Returns true if the preference for this SYCL
device is for the user to be responsible for
synchronization, when sharing memory ob-
jects between OpenCL and other APIs such
as DirectX, false if the device/implementation
has a performant path for performing synchro-
nization of memory object shared between
OpenCL and other APIs such as DirectX.

info::device::parent_device device Returns the parent SYCL device to which
this sub-device is a child if this is a sub-
device. Must throw an exception with the
errc::invalid_object_error error code if
this SYCL device is not a sub device.

info::device::

partition_max_sub_devices

uint32_t Returns the maximum number of sub-devices
that can be created when this SYCL device
is partitioned. The value returned cannot ex-
ceed the value returned by info::device::
device_max_compute_units.

info::device::

partition_properties

std::vector

<info::

partition_prop-

erty>

Returns the partition properties supported
by this SYCL device; a vector of info::
partition_property. If this SYCL device
cannot be partitioned into at least two sub de-
vices then the returned vector must be empty.

info::device::

partition_affinity_domains

std::vector

<info::

parition_affini

-ty_domain>

Returns a std::vector of the partition affinity
domains supported by this SYCL devicewhen
partitioning with info::partition_property
::parition_by_affinity_domain.

info::device::

partition_type_property

info::

partition_prop-

erty

Returns the partition property of this SYCL
device. If this SYCL device is not a sub de-
vice then the the return value must be info
::partition_property::no_partition, oth-
erwise it must be one of the following values:

• info::partition property::partition -
equally

• info::partition property::partition by -
counts

• info::partition property::partition by -
affinity domain

Continued on next page

Table 4.19: Device information descriptors.

90 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Device descriptors Return type Description
info::device::

partition_type_affinity_domain

info::

partition_affi-

nity_domain

Returns the partition affinity domain of
this SYCL device. If this SYCL device is
not a sub device or the sub device was not
partitioned with info::partition_type

::partition_by_affinity_domain

then the the return value must be
info::partition_affinity_domain::

not_applicable, otherwise it must be one of
the following values:

• info::partition affinity domain::numa
• info::partition affinity domain::L4 -

cache
• info::partition affinity domain::L3 -

cache
• info::partition affinity domain::L2 -

cache
• info::partition affinity domain::L1 -

cache
• info::partition affinity domain::next -

partitionable

info::device::reference_count uint32_t Returns the device reference count. If the
device is not a sub-device the value returned
must be 1.

End of table

Table 4.19: Device information descriptors.

4.6.4.3 Device aspects

Every SYCL device has an associated set of “aspects” which identify characteristics of the device. Aspects are
defined via the enum class aspect enumeration:

1 namespace sycl {

2
3 enum class aspect {

4 host,

5 cpu,

6 gpu,

7 accelerator,

8 custom,

9 fp16,

10 fp64,

11 int64_base_atomics,

12 int64_extended_atomics,

13 image,

14 online_compiler,

15 online_linker,

16 queue_profiling,

17 usm_device_allocations,

18 usm_host_allocations,

CHAPTER 4. SYCL PROGRAMMING INTERFACE 91



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

19 usm_shared_allocations,

20 usm_restricted_shared_allocations,

21 usm_system_allocator

22 };

23
24 } // namespace sycl

Table 4.20 lists the aspects that are defined in the core SYCL specification. However, a SYCL backend or exten-
sion may provide additional aspects. If so, the SYCL backend specification document or the extension document
describes them. If a SYCL backend defined by the Khronos SYCL group provides aspects, their enumerated
values are defined in the backend’s namespace. For example, an aspect specific to the OpenCL backend could be
defined like this:

1 namespace sycl {

2 namespace opencl {

3 namespace aspect {

4
5 static constexpr auto bar = static_cast<sycl::aspect>(-1);

6
7 } // namespace aspect

8 } // namespace opencl

9 } // namespace sycl

Aspects provided by an extension or a vendor’s SYCL backend are defined as described in Chapter 6.

SYCL applications can query the aspects for a device via device::has() in order to determine whether the
device supports any optional features. Table 4.20 tells which optional features are enabled by aspects in the core
SYCL specification, but backends and extensions may provide optional features also. If so, the SYCL backend
specification document or the extension document describes which features are enabled by each aspect.

A SYCL application can also use the is_aspect_active<aspect>::value trait to test whether an aspect is “active”
at compile time. An aspect is active if the compilation environment supports any device which has that aspect. For
example, if the implementation supports no devices with aspect::custom, the trait is_aspect_active<aspect::
custom>::value will be false. The set of active aspects could also be affected by command line options passed
to the compiler. For example, if an implementation provides a command line option that disables aspect::
accelerator devices, that trait will be false when the option is passed to the compiler.

[Note: Like any type trait, the value of is_aspect_active<aspect>::value has a uniform value across all
parts of a SYCL application. If an implementation uses SMCP, all compiler passes define a particular aspect’s
is_aspect_active type trait with the same value, regardless of whether that compiler pass’s device supports the
aspect. Thus, is_aspect_active cannot be used to determine whether any particular device supports an aspect.
Instead, applications must use device::has() or platform::has() for this. — end note]

The trait sycl::is_aspect_active<aspect>::value must be defined as either true or false for all the core SYCL
aspects listed in Table 4.20, all aspects from Khronos ratified extensions, and all of a vendor’s own extension
aspects.

92 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Aspect Description
aspect::host A device that runs on the host CPU and

exposes the host SYCL backend. Devices
with this aspect have device type info::
device_type::host.

aspect::cpu A device that runs on a CPU, but doesn’t
use the host SYCL backend. Devices
with this aspect have device type info::
device_type::cpu.

aspect::gpu A device that can also be used to accelerate
a 3D graphics API. Devices with this aspect
have device type info::device_type::gpu.

aspect::accelerator A dedicated accelerator device, usually us-
ing a peripheral interconnect for communi-
cation. Devices with this aspect have device
type info::device_type::accelerator.

aspect::custom A dedicated accelerator that can use the
SYCL API, but programmable kernels can-
not be dispatched to the device, only fixed
functionality is available. See Section 3.8.7.
Devices with this aspect have device type
info::device_type::custom.

aspect::fp16 Indicates that the device supports half pre-
cision floating point operations.

aspect::fp64 Indicates that the device supports 64-bit pre-
cision floating point operations.

aspect::int64_base_atomics Indicates that the device supports the
following atomic operations on 64-
bit values: atomic::load, atomic::

store, atomic::fetch_add, atomic::

fetch_sub, atomic::exchange, atomic::
compare_exchange_strong and atomic::

compare_exchange_weak.
aspect::int64_extended_atomics Indicates that the device supports the fol-

lowing atomic operations on 64-bit values:
atomic::fetch_min, atomic::fetch_max,
atomic::fetch_and, atomic::fetch_or,
and atomic::fetch_xor.

aspect::image Indicates that the device supports images
(Section 4.7.3). Devices of type info::
device_type::host always have this sup-
port.

aspect::online_compiler Indicates that the device supports on-
line compilation of device code. Devices
that have this aspect support the build()
and compile() functions defined in Sec-

tion 4.13.7.
Continued on next page

Table 4.20: Device aspects defined by the core SYCL specification.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 93



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Aspect Description
aspect::online_linker Indicates that the device supports online

linking of device code. Devices that have
this aspect support the link() functions
defined in Section 4.13.7. All devices
that have this aspect also have aspect::
online_compiler.

aspect::queue_profiling Indicates that the device supports
queue profiling via property::queue::

enable_profiling.
aspect::usm_device_allocations Indicates that the device supports explicit

USM allocations as described in Section 4.8.
aspect::usm_host_allocations Indicates that the device can access USM

memory allocated via usm::alloc::host.
(See Section 4.8.)

aspect::usm_shared_allocations Indicates that the device supports USM
memory allocated via usm::alloc::shared

as restricted USM, concurrent USM, or
both. (See Section 4.8.)

aspect::usm_restricted_shared_allocations Indicates that the device supports USM
memory allocated via usm::alloc::

shared as restricted USM. Any device
with this aspect will also have aspect
::usm_shared_allocations. (See Sec-
tion 4.8.)

aspect::usm_system_allocator Indicates that the system allocator may
be used instead of SYCL USM allocation
mechanisms for usm::alloc::shared allo-
cations on this device. (See Section 4.8.)

End of table

Table 4.20: Device aspects defined by the core SYCL specification.

4.6.5 Queue class
The SYCL queue class encapsulates a single SYCL queue which schedules kernels on a SYCL device. The SYCL
queue can encapsulate to one or multiple native backend objects.

A SYCL queue can be used to submit command groups to be executed by the SYCL runtime using the submit
member function.

All member functions of the queue class are synchronous and errors are handled by throwing synchronous SYCL
exceptions. The submit member function schedules command groups asynchronously, so any errors in the sub-
mission of a command group are handled by throwing synchronous SYCL exceptions. Any exceptions from the
command group after it has been submitted are handled by passing asynchronous errors at specific times to an
async_handler, as described in 4.15.

A SYCL queue can wait for all command groups that it has submitted by calling wait or wait_and_throw.

The default constructor of the SYCL queue class will construct a queue based on the SYCL device returned from
the default_selector_v (see Section 4.6.1.1).

94 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

All other constructors construct a host or device queue, determined by the parameters provided. All constructors
will implicitly construct a SYCL platform, device and context in order to facilitate the construction of the queue.

Each constructor takes as the last parameter an optional SYCL property_list to provide properties to the SYCL
queue.

The SYCL queue class provides the common reference semantics (see Section 4.5.3).

4.6.5.1 Queue interface

A synopsis of the SYCL queue class is provided below. The constructors and member functions of the SYCL
queue class are listed in Tables 4.21 and 4.22 respectively. The additional common special member functions and
common member functions are listed in 4.5.3 in Tables 4.1 and 4.2, respectively.

1 namespace sycl {

2 class queue {

3 public:

4 explicit queue(const property_list &propList = {});

5
6 explicit queue(const async_handler &asyncHandler,

7 const property_list &propList = {});

8
9 template <typename DeviceSelector>

10 explicit queue(const DeviceSelector &deviceSelector,

11 const property_list &propList = {});

12
13 template <typename DeviceSelector>

14 explicit queue(const DeviceSelector &deviceSelector,

15 const async_handler &asyncHandler,

16 const property_list &propList = {});

17
18 explicit queue(const device &syclDevice, const property_list &propList = {});

19
20 explicit queue(const device &syclDevice, const async_handler &asyncHandler,

21 const property_list &propList = {});

22
23 template <typename DeviceSelector>

24 explicit queue(const context &syclContext,

25 const DeviceSelector &deviceSelector,

26 const property_list &propList = {});

27
28 template <typename DeviceSelector>

29 explicit queue(const context &syclContext,

30 const DeviceSelector &deviceSelector,

31 const async_handler &asyncHandler,

32 const property_list &propList = {});

33
34 explicit queue(const context &syclContext, const device &syclDevice,

35 const property_list &propList = {});

36
37 explicit queue(const context &syclContext, const device &syclDevice,

38 const async_handler &asyncHandler,

39 const property_list &propList = {});

40

CHAPTER 4. SYCL PROGRAMMING INTERFACE 95



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

41 /* -- common interface members -- */

42
43 /* -- property interface members -- */

44
45 backend get_backend() const;

46
47 context get_context() const;

48
49 device get_device() const;

50
51 bool is_host() const;

52
53 bool is_in_order() const;

54
55 template <info::queue param>

56 typename info::param_traits<info::queue, param>::return_type get_info() const;

57
58 template <typename BackendEnum, BackendEnum param>

59 typename info::param_traits<BackendEnum, param>::return_type

60 get_backend_info() const;

61
62 template <typename T>

63 event submit(T cgf);

64
65 template <typename T>

66 event submit(T cgf, const queue &secondaryQueue);

67
68 void wait();

69
70 void wait_and_throw();

71
72 void throw_asynchronous();

73
74 /* -- convenience shortcuts -- */

75
76 template <typename KernelName, typename KernelType>

77 event single_task(const KernelType &KernelFunc);

78
79 template <typename KernelName, typename KernelType>

80 event single_task(event DepEvent, const KernelType &KernelFunc);

81
82 template <typename KernelName, typename KernelType>

83 event single_task(const std::vector<event> &DepEvents,

84 const KernelType &KernelFunc);

85
86 template <typename KernelName, typename KernelType, int Dims>

87 event parallel_for(range<Dims> NumWorkItems, const KernelType &KernelFunc);

88
89 template <typename KernelName, typename KernelType, int Dims>

90 event parallel_for(range<Dims> NumWorkItems, event DepEvent,

91 const KernelType &KernelFunc);

92
93 template <typename KernelName, typename KernelType, int Dims>

94 event parallel_for(range<Dims> NumWorkItems,

95 const std::vector<event> &DepEvents,

96 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

96 const KernelType &KernelFunc);

97
98 template <typename KernelName, typename KernelType, int Dims>

99 event parallel_for(range<Dims> NumWorkItems, id<Dims> WorkItemOffset,

100 const KernelType &KernelFunc);

101
102 template <typename KernelName, typename KernelType, int Dims>

103 event parallel_for(range<Dims> NumWorkItems, id<Dims> WorkItemOffset,

104 event DepEvent, const KernelType &KernelFunc);

105
106 template <typename KernelName, typename KernelType, int Dims>

107 event parallel_for(range<Dims> NumWorkItems, id<Dims> WorkItemOffset,

108 const std::vector<event> &DepEvents,

109 const KernelType &KernelFunc);

110
111 template <typename KernelName, typename KernelType, int Dims>

112 event parallel_for(nd_range<Dims> ExecutionRange, const KernelType &KernelFunc);

113
114 template <typename KernelName, typename KernelType, int Dims>

115 event parallel_for(nd_range<Dims> ExecutionRange, event DepEvent,

116 const KernelType &KernelFunc);

117
118 template <typename KernelName, typename KernelType, int Dims>

119 event parallel_for(nd_range<Dims> ExecutionRange,

120 const std::vector<event> &DepEvents,

121 const KernelType &KernelFunc);

122 };

123 } // namespace sycl

Constructor Description
explicit queue(const property_list &propList = {}) Constructs a SYCL queue instance

using the device constructed from the
default_selector_v. Zero or more
properties can be provided to the con-
structed SYCL queue via an instance of
property_list.

explicit queue(const async_handler &asyncHandler,

const property_list &propList = {})

Constructs a SYCL queue instance with an
async_handler using the device constructed
from the default_selector_v. Zero or
more properties can be provided to the con-
structed SYCL queue via an instance of
property_list.

template <typename DeviceSelector>

explicit queue(const DeviceSelector &

deviceSelector,

const property_list &propList = {})

Constructs a SYCL queue instance using the
device returned by the device selector pro-
vided. Zero or more properties can be pro-
vided to the constructed SYCL queue via an
instance of property_list.

Continued on next page

Table 4.21: Constructors of the queue class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 97



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Constructor Description
template <typename DeviceSelector>

explicit queue(const DeviceSelector &

deviceSelector,

const async_handler &asyncHandler,

const property_list &propList = {})

Constructs a SYCL queue instance with an
async_handler using the device returned
by the device selector provided. Zero or
more properties can be provided to the con-
structed SYCL queue via an instance of
property_list.

explicit queue(const device &syclDevice,

const property_list &propList = {})

Constructs a SYCL queue instance using
the syclDevice provided. Zero or more
properties can be provided to the con-
structed SYCL queue via an instance of
property_list.

explicit queue(const device &syclDevice,

const async_handler &asyncHandler,

const property_list &propList = {})

Constructs a SYCL queue instance with an
async_handler using the syclDevice pro-
vided. Zero or more properties can be pro-
vided to the constructed SYCL queue via an
instance of property_list.

template <typename DeviceSelector>

explicit queue(const context &syclContext,

const DeviceSelector &deviceSelector,

const property_list &propList = {})

Constructs a SYCL queue instance that is
associated with the syclContext provided,
using the device returned by the device se-
lector provided. Must throw an exception
with the errc::invalid_object_error er-
ror code if syclContext does not en-
capsulate the SYCL device returned by
deviceSelector. Zero or more properties
can be provided to the constructed SYCL
queue via an instance of property_list.

template <typename DeviceSelector>

explicit queue(const context &syclContext,

const DeviceSelector &deviceSelector,

const async_handler &asyncHandler,

const property_list &propList = {})

Constructs a SYCL queue instance with
an async_handler that is associated with
the syclContext provided, using the de-
vice returned by the device selector pro-
vided. Must throw an exception with the
errc::invalid_object_error error code
if syclContext does not encapsulate the
SYCL device returned by deviceSelector
. Zero or more properties can be provided to
the constructed SYCL queue via an instance
of property_list.

explicit queue(const context &syclContext,

const device &syclDevice,

const property_list &propList = {})

Constructs a SYCL queue instance using
the syclDevice provided, and associ-
ated with the syclContext provided.
Must throw an exception with the errc
::invalid_object_error error code if
syclContext does not encapsulate the
SYCL device syclDevice. Zero or more
properties can be provided to the con-
structed SYCL queue via an instance of
property_list.

Continued on next page

Table 4.21: Constructors of the queue class.

98 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Constructor Description
explicit queue(const context &syclContext,

const device &syclDevice,

const async_handler &asyncHandler,

const property_list &propList = {})

Constructs a SYCL queue instance with an
async_handler using the syclDevice pro-
vided, and associated with the syclContext

provided. Must throw an exception
with the errc::invalid_object_error er-
ror code if syclContext does not encapsu-
late the SYCL device syclDevice. Zero
or more properties can be provided to the
constructed SYCL queue via an instance of
property_list.

End of table

Table 4.21: Constructors of the queue class.

Member function Description
backend get_backend()const Returns the a backend identifying the SYCL

backend associated with this queue.
context get_context ()const Returns the SYCL queue’s context. Reports

errors using SYCL exception classes. The
value returned must be equal to that returned
by get_info<info::queue::context>().

device get_device ()const Returns the SYCL device the queue is as-
sociated with. Reports errors using SYCL
exception classes. The value returned must
be equal to that returned by get_info<info
::queue::devices>().

bool is_host()const Returns true if the backend associated with
this SYCL queue is a SYCL host backend.

bool is_in_order()const Returns true if the SYCL queue was cre-
ated with the in_order property. Equiv-
alent to has_property<property::queue::
in_order>().

void wait() Performs a blocking wait for the comple-
tion of all enqueued tasks in the queue.
Synchronous errors will be reported through
SYCL exceptions.

Continued on next page

Table 4.22: Member functions for queue class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 99



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Member function Description
void wait_and_throw () Performs a blocking wait for the comple-

tion of all enqueued tasks in the queue.
Synchronous errors will be reported through
SYCL exceptions. Any unconsumed asyn-
chronous errors will be passed to the
async_handler associated with the queue
or enclosing context. If no user defined
async_handler is associated with the queue
or enclosing context, then an implemen-
tation defined default async_handler is
called to handle any errors, as described in
4.15.1.2.

void throw_asynchronous () Checks to see if any unconsumed asyn-
chronous errors have been produced by the
queue and if so reports them by passing them
to the async_handler associated with the
queue or enclosing context. If no user de-
fined async_handler is associated with the
queue or enclosing context, then an imple-
mentation defined default async_handler
is called to handle any errors, as described
in 4.15.1.2.

template <info::queue param>

typename info::param_traits

<info::queue, param>::return_type

get_info ()const

Queries this SYCL queue for information
requested by the template parameter param
. Specializations of info::param_traits
must be defined in accordance with the info
parameters in Table 4.23 to facilitate return-
ing the type associated with the param pa-
rameter.

template <typename T>

event submit(T cgf)

Submit a command group function object to
the queue, in order to be scheduled for exe-
cution on the device.

template <typename T>

event submit(T cgf,

queue & secondaryQueue)

Submit a command group function object to
the queue, in order to be scheduled for ex-
ecution on the device. On a kernel error,
this command group function object, is then
scheduled for execution on the secondary
queue. Returns an event, which corresponds
to the queue the command group function
object is being enqueued on.

Continued on next page

Table 4.22: Member functions for queue class.

100 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Member function Description
template <typename BackendEnum, BackendEnum param>

typename info::param_traits<BackendEnum, param>::

return_type

get_backend_info()const

Queries this SYCL queue for SYCL back-
end-specific information requested by the
template parameter param. BackendEnum

can be any enum class type specified
by the SYCL backend specification of a
supported SYCL backend named accord-
ing to the convention info::<backend_name
>::queue and param must be a valid
enumeration of that enum class. Spe-
cializations of info::param_traits must
be defined for BackendEnum in accor-
dance with the SYCL backend specifica-
tion. Must throw an exception with the
errc::invalid_object_error error code if
the SYCL backend that corresponds with
BackendEnum is different from the SYCL
backend that is associated with this queue.

template <typename KernelName, typename KernelType>

event single_task(const KernelType &kernelFunc)

Defines and invokes a SYCL kernel function
as a lambda function or a named function
object type. The kernel function is submit-
ted to the queue, in order to be scheduled for
execution on the device.

template <typename KernelName, typename KernelType>

event single_task(

event DepEvent, const KernelType &kernelFunc)

Defines and invokes a SYCL kernel function
as a lambda function or a named function
object type. The kernel function is submit-
ted to the queue, in order to be scheduled
for execution on the device once the event
specified by DepEvent has completed.

template <typename KernelName, typename KernelType>

event single_task(

const std::vector<event> &DepEvents,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel function
as a lambda function or a named function
object type. The kernel function is submit-
ted to the queue, in order to be scheduled
for execution on the device once every event
specified by DepEvents has completed.

template <typename KernelName, typename KernelType,

int dimensions>

event parallel_for(

range<dimensions> numWorkItems,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named func-
tion object type, for the specified range and
given an id or item for indexing in the in-
dexing space defined by range. The kernel
function is submitted to the queue, in order
to be scheduled for execution on the device.

Continued on next page

Table 4.22: Member functions for queue class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 101



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Member function Description
template <typename KernelName, typename KernelType,

int dimensions>

event parallel_for(

range<dimensions> numWorkItems, event DepEvent,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named func-
tion object type, for the specified range and
given an id or item for indexing in the index-
ing space defined by range. The kernel func-
tion is submitted to the queue, in order to be
scheduled for execution on the device once
the event specified by DepEvent has com-
pleted.

template <typename KernelName, typename KernelType,

int dimensions>

event parallel_for(

range<dimensions> numWorkItems,

const std::vector<event> &DepEvents,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named func-
tion object type, for the specified range and
given an id or item for indexing in the in-
dexing space defined by range. The kernel
function is submitted to the queue, in order
to be scheduled for execution on the device
once every event specified by DepEvents
has completed.

template <typename KernelName, typename KernelType,

int dimensions>

event parallel_for(

range<dimensions> numWorkItems,

id<dimensions> workItemOffset,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named func-
tion object type, for the specified range and
given an id or item for indexing in the in-
dexing space defined by range. The kernel
function is submitted to the queue, in order
to be scheduled for execution.

template <typename KernelName, typename KernelType,

int dimensions>

event parallel_for(

range<dimensions> numWorkItems,

id<dimensions> workItemOffset,

event DepEvent,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named func-
tion object type, for the specified range and
given an id or item for indexing in the index-
ing space defined by range. The kernel func-
tion is submitted to the queue, in order to be
scheduled for execution on the device once
the event specified by DepEvent has com-
pleted.

template <typename KernelName, typename KernelType,

int dimensions>

event parallel_for(

range<dimensions> numWorkItems,

id<dimensions> workItemOffset,

const std::vector<event> &DepEvents,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named func-
tion object type, for the specified range and
given an id or item for indexing in the in-
dexing space defined by range. The kernel
function is submitted to the queue, in order
to be scheduled for execution on the device
once every event specified by DepEvents
has completed.

Continued on next page

Table 4.22: Member functions for queue class.

102 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Member function Description
template <typename KernelName, typename KernelType,

int dimensions>

event parallel_for(

nd_range<dimensions> executionRange,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel function
as a lambda function or a named function
object type, for the specified nd-range and
given an nd-item for indexing in the index-
ing space defined by the nd-range. The ker-
nel function is submitted to the queue, in or-
der to be scheduled for execution.

template <typename KernelName, typename KernelType,

int dimensions>

event parallel_for(

nd_range<dimensions> executionRange,

event DepEvent, const &KernelType kernelFunc)

Defines and invokes a SYCL kernel function
as a lambda function or a named function
object type, for the specified nd-range and
given an nd-item for indexing in the index-
ing space defined by the nd-range. The ker-
nel function is submitted to the queue, in or-
der to be scheduled for execution on the de-
vice once the event specified by DepEvent
has completed.

template <typename KernelName, typename KernelType,

int dimensions>

event parallel_for(

nd_range<dimensions> executionRange,

const std::vector<event> &DepEvents,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named func-
tion object type, for the specified nd-range
and given an nd-item for indexing in the in-
dexing space defined by the nd-range. The
kernel function is submitted to the queue,
in order to be scheduled for execution on
the device once every event specified by
DepEvents has completed.

End of table

Table 4.22: Member functions for queue class.

4.6.5.2 Queue information descriptors

A queue can be queried for information using the get_info member function of the queue class, specifying one
of the info parameters enumerated in info::queue. Every queue (including a host queue) must produce a valid
value for each info parameter. The possible values for each info parameter and any restriction are defined in the
specification of the SYCL backend associated with the queue. All info parameters in info::queue are specified
in Table 4.23 and the synopsis for info::queue is described in appendix A.4.

Queue Descriptors Return type Description
info::queue::context context Returns the SYCL context associated with

this SYCL queue.
info::queue::device device Returns the SYCL device associated with this

SYCL queue.
End of table

Table 4.23: Queue information descriptors.

4.6.5.3 Queue properties

The properties that can be provided when constructing the SYCL queue class are describe in Table 4.24.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 103



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Property Description
property::queue::enable_profiling The enable_profiling property adds the

requirement that the SYCL runtime must
capture profiling information for the com-
mand groups that are submitted from
this SYCL queue and provide said in-
formation via the SYCL event class
get_profiling_info member function, if
the associated SYCL device has aspect::
queue_profiling.

property::queue::in_order The in_order property adds the require-
ment that the SYCL queue provides in-order
semantics where tasks are executed in the or-
der in which they are submitted. Tasks sub-
mitted in this fashion can be viewed as hav-
ing an implicit dependence on the previously
submitted operation.

End of table

Table 4.24: Properties supported by the SYCL queue class.

The constructors of the queue property classes are listed in Table 4.25.

Constructor Description
property::queue::enable_profiling::enable_profiling

()

Constructs a SYCL enable_profiling

property instance.
property::queue::in_order::in_order() Constructs a SYCL in_order property in-

stance.
End of table

Table 4.25: Constructors of the queue property classes.

4.6.5.4 Queue error handling

Queue errors come in two forms:

• Synchronous Errors are those that we would expect to be reported directly at the point of waiting on an
event, and hence waiting for a queue to complete, as well as any immediate errors reported by enqueuing
work onto a queue. Such errors are reported through C++ exceptions.

• Asynchronous errors are those that are produced or detected after associated host API calls have returned
(so can’t be thrown as exceptions by the API call), and that are handled by an async_handler through
which the errors are reported. Handling of asynchronous errors from a queue occurs at specific times, as
described by 4.15.

Note that if there are asynchronous errors to be processed when a queue is destructed, the handler is called and
this might delay or block the destruction, according to the behavior of the handler.

104 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

4.6.6 Event class

An event in SYCL is an object that represents the status of an operation that is being executed by the SYCL
runtime.

Typically in SYCL, data dependency and execution order is handled implicitly by the SYCL runtime. However,
in some circumstances developers want fine grain control of the execution, or want to retrieve properties of a
command that is running.

A SYCL event maps to a single SYCL backend object when available. Note that, although an event represents
the status of a particular operation, the dependencies of a certain event can be used to keep track of multiple steps
required to synchronize said operation.

A SYCL event is returned by the submission of a command group. The dependencies of the event returned via
the submission of the command group are the implementation-defined commands associated with the command
group execution.

The SYCL event class provides the common reference semantics (see Section 4.5.3).

The constructors and member functions of the SYCL event class are listed in Tables 4.26 and 4.27, respectively.
The additional common special member functions and common member functions are listed in Tables 4.1 and
4.2, respectively.

1 namespace sycl {

2
3 class event {

4 public:

5 event();

6
7 /* -- common interface members -- */

8
9 backend get_backend() const;

10
11 bool is_host() const;

12
13 std::vector<event> get_wait_list();

14
15 void wait();

16
17 static void wait(const std::vector<event> &eventList);

18
19 void wait_and_throw();

20
21 static void wait_and_throw(const std::vector<event> &eventList);

22
23 template <info::event param>

24 typename info::param_traits<info::event, param>::return_type

25 get_info() const;

26
27 template <typename BackendEnum, BackendEnum param>

28 typename info::param_traits<BackendEnum, param>::return_type

29 get_backend_info() const;

30
31 template <info::event_profiling param>

CHAPTER 4. SYCL PROGRAMMING INTERFACE 105



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

32 typename info::param_traits<info::event_profiling, param>::return_type

33 get_profiling_info() const;

34 };

35
36 } // namespace sycl

Constructor Description
event () Constructs a host event that is immediately

ready. The event has no dependencies and
no associated commands. Waiting on this
event will return immediately.

End of table

Table 4.26: Constructors of the event class.

Member function Description
backend get_backend()const Returns the a backend identifying the SYCL

backend associated with this event.
bool is_host()const Returns true if this SYCL event is a host

event.
std::vector<event> get_wait_list() Return the list of events that this event waits

for in the dependence graph. Only direct de-
pendencies are returned, and not transitive
dependencies that direct dependencies wait
on. Whether already completed events are
included in the returned list is implementa-
tion defined.

void wait() Wait for the event and the command associ-
ated with it to complete.

void wait_and_throw() Wait for the event and the command associ-
ated with it to complete.
Any unconsumed asynchronous errors from
any context that the event was waiting
on executions from will be passed to the
async_handler associated with the con-
text. If no user defined async_handler is
associated with the context, then an imple-
mentation defined default async_handler
is called to handle any errors, as described
in 4.15.1.2.

static void wait(

const std::vector<event> &eventList)

Synchronously wait on a list of events.

Continued on next page

Table 4.27: Member functions for the event class.

106 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.6. SYCL RUNTIME CLASSES

Member function Description
static void wait_and_throw(

const std::vector<event> &eventList)

Synchronously wait on a list of events.
Any unconsumed asynchronous errors from
any context that the event was waiting
on executions from will be passed to the
async_handler associated with the con-
text. If no user defined async_handler is
associated with the context, then an imple-
mentation defined default async_handler
is called to handle any errors, as described
in 4.15.1.2.

template <info::event param>

typename info::param_traits

<info::event, param>::return_type

get_info()const

Queries this SYCL event for information
requested by the template parameter param
. Specializations of info::param_traits
must be defined in accordance with the info
parameters in Table 4.28 to facilitate return-
ing the type associated with the param pa-
rameter.

template <typename BackendEnum, BackendEnum param>

typename info::param_traits<BackendEnum, param>::

return_type

get_backend_info()const

Queries this SYCL event for SYCL back-
end-specific information requested by the
template parameter param. BackendEnum

can be any enum class type specified
by the SYCL backend specification of a
supported SYCL backend named accord-
ing to the convention info::<backend_name
>::event and param must be a valid
enumeration of that enum class. Spe-
cializations of info::param_traits must
be defined for BackendEnum in accor-
dance with the SYCL backend specifica-
tion. Must throw an exception with the
errc::invalid_object_error error code if
the SYCL backend that corresponds with
BackendEnum is different from the SYCL
backend that is associated with this event.

Continued on next page

Table 4.27: Member functions for the event class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 107



4.6. SYCL RUNTIME CLASSES SYCL 2020 provisional

Member function Description
template <info::event_profiling param>

typename info::param_traits

<info::event_profiling, param>::return_type

get_profiling_info ()const

Queries this SYCL event for profiling in-
formation requested by the parameter param
. If the requested profiling information
is unavailable when get_profiling_info
is called due to incompletion of command

groups associated with the event, then the
call to get_profiling_info will block until
the requested profiling information is avail-
able. An example is asking for info::
event_profiling::command_end when the
associated command group has yet to fin-
ish execution. Calls to get_profiling_info
must throw an exception with the errc
::invalid_object_error error code if the
SYCL queue which submitted the command
group this SYCL event is associated with
was not constructed with the property::
queue::enable_profiling property. Spe-
cializations of info::param_traitsmust be
defined in accordance with the info parame-
ters in Table 4.29 to facilitate returning the
type associated with the param parameter.

End of table

Table 4.27: Member functions for the event class.

4.6.6.1 Event information and profiling descriptors

An event can be queried for information using the get_info member function of the event class, specifying one
of the info parameters enumerated in info::event. Every event (including a host event) must produce a valid
value for each info parameter. The possible values for each info parameter and any restrictions are defined in the
specification of the SYCL backend associated with the event. All info parameters in info::event are specified in
Table 4.28 and the synopsis for info::event is described in appendix A.6.

Event Descriptors Return type Description
info::event::

command_execution_status

info::

event_command_status

Returns the event status of the command group
associated with this SYCL event.

End of table

Table 4.28: Event class information descriptors.

An event can be queried for profiling information using the get_profiling_info member function of the event
class, specifying one of the profiling info parameters enumerated in info::event_profiling. Every event (in-
cluding a host event) must produce a valid value for each info parameter. The possible values for each info param-
eter and any restrictions are defined in the specification of the SYCL backend associated with the event. All info
parameters in info::event_profiling are specified in Table 4.29 and the synopsis for info::event_profiling
is described in appendix A.6.

108 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Event information profiling descrip-
tor

Return type Description

info::event_profiling::

command_submit

uint64_t Returns an implementation defined 64-bit
value describing the time in nanoseconds when
the associated command group was submitted.

info::event_profiling::

command_start

uint64_t Returns an implementation defined 64-bit
value describing the time in nanoseconds when
the associated command group started execut-
ing.

info::event_profiling::

command_end

uint64_t Returns an implementation defined 64-bit
value describing the time in nanoseconds when
the associated command group finished execut-
ing.

End of table

Table 4.29: Profiling information descriptors for the SYCL event class.

4.7 Data access and storage in SYCL

In SYCL, data storage and access are handled by separate classes. Buffers and images handle storage and owner-
ship of the data, whereas accessors handle access to the data. Buffers and images in SYCL can be bound to more
than one device or context, including across different SYCL backends. They also handle ownership of the data,
while allowing exception handling for blocking and non-blocking data transfers. Accessors manage data transfers
between the host and all of the devices in the system, as well as tracking of data dependencies.

4.7.1 Host allocation
A SYCL runtime may need to allocate temporary objects on the host to handle some operations (such as copying
data from one context to another). Allocation on the host is managed using an allocator object, following the
standard C++ allocator class definition. The default allocator for memory objects is implementation defined, but
the user can supply their own allocator class.

1 {

2 buffer<int, 1, UserDefinedAllocator<int> > b(d);

3 }

When an allocator returns a nullptr, the runtime cannot allocate data on the host. Note that in this case the
runtime will raise an error if it requires host memory but it is not available (e.g when moving data across SYCL
backend contexts).

The definition of allocators extends the current functionality of SYCL, ensuring that users can define allocator
functions for specific hardware or certain complex shared memory mechanisms (e.g. NUMA), and improves
interoperability with STL-based libraries (e.g, Intel’s TBB provides an allocator).

4.7.1.1 Default allocators

A default allocator is always defined by the implementation, and it is guaranteed to return non-nullptr and
new memory positions every call. The default allocator for const buffers will remove the const-ness of the type
(therefore, the default allocator for a buffer of type “const int” will be an Allocator<int>). This implies that

CHAPTER 4. SYCL PROGRAMMING INTERFACE 109



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

host accessors will not synchronize with the pointer given by the user in the buffer/image constructor, but will use
the memory returned by the Allocator itself for that purpose. The user can implement an allocator that returns
the same address as the one passed in the buffer constructor, but it is the responsibility of the user to handle the
potential race conditions.

Allocators Description
buffer_allocator It is the default buffer allocator used by the

runtime, when no allocator is defined by the
user.

image_allocator It is the default allocator used by the run-
time for the SYCL unsampled_image and
sampled_image classes when no allocator is
provided by the user. The image_allocator
is required allocate in elements of std::
byte.

End of table

Table 4.30: SYCL Default Allocators.

See Section 4.7.5 for details on manual host-device synchronization.

4.7.2 Buffers
The buffer class defines a shared array of one, two or three dimensions that can be used by the SYCL kernel and
has to be accessed using accessor classes. Buffers are templated on both the type of their data, and the number of
dimensions that the data is stored and accessed through.

A buffer does not map to only one underlying backend object, and all SYCL backend memory objects may be
temporary for use within a command group on a specific device. Note that if no source data is provided for a
buffer, the buffer uses uninitialized memory for performance reasons. So it is up to the programmer to explicitly
construct the objects in this case if required.

More generally, since the value type of a buffer is required to be trivially copyable, there is no constructor or
destructor called in any case.

A SYCL buffer can construct an instance of a SYCL buffer that reinterprets the original SYCL buffer with
a different type, dimensionality and range using the member function reinterpret. The reinterpreted SYCL
buffer that is constructed must behave as though it were a copy of the SYCL buffer that constructed it (see sec
4.5.3) with the exception that the type, dimensionality and range of the reinterpreted SYCL buffer must reflect
the type, dimensionality and range specified when calling the reinterpret member function. By extension of
this, the class member types value_type, reference and const_reference, and the member functions get_range
and get_count of the reinterpreted SYCL buffer must reflect the new type, dimensionality and range. The

data that the original SYCL buffer and the reinterpreted SYCL buffer manage remains unaffected, though the
representation of the data when accessed through the reinterpreted SYCL buffermay alter to reflect the new type,
dimensionality and range. It is important to note that a reinterpreted SYCL buffer is a copy of the original SYCL
buffer only, and not a new SYCL buffer. Constructing more than one SYCL buffer managing the same host
pointer is still undefined behavior.

The SYCL buffer class template provides the common reference semantics (see Section 4.5.3).

110 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

4.7.2.1 Buffer interface

The constructors and member functions of the SYCL buffer class template are listed in Tables 4.31 and 4.32,
respectively. The additional common special member functions and common member functions are listed in
Tables 4.1 and 4.2, respectively.

Each constructor takes as the last parameter an optional SYCL property_list to provide properties to the SYCL
buffer.

The SYCL buffer class template takes a template parameter AllocatorT for specifying an allocator which is used
by the SYCL runtime when allocating temporary memory on the host. If no template argument is provided, then
the default allocator for the SYCL buffer class buffer_allocator will be used (see 4.7.1.1).

1 namespace sycl {

2 namespace property {

3 namespace buffer {

4 class use_host_ptr {

5 public:

6 use_host_ptr() = default;

7 };

8
9 class use_mutex {

10 public:

11 use_mutex(std::mutex &mutexRef);

12
13 std::mutex *get_mutex_ptr() const;

14 };

15
16 class context_bound {

17 public:

18 context_bound(context boundContext);

19
20 context get_context() const;

21 };

22 } // namespace buffer

23 } // namespace property

24
25 template <typename T, int dimensions = 1,

26 typename AllocatorT = sycl::buffer_allocator>

27 class buffer {

28 public:

29 using value_type = T;

30 using reference = value_type &;

31 using const_reference = const value_type &;

32 using allocator_type = AllocatorT;

33
34 buffer(const range<dimensions> &bufferRange,

35 const property_list &propList = {});

36
37 buffer(const range<dimensions> &bufferRange, AllocatorT allocator,

38 const property_list &propList = {});

39
40 buffer(T *hostData, const range<dimensions> &bufferRange,

41 const property_list &propList = {});

42

CHAPTER 4. SYCL PROGRAMMING INTERFACE 111



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

43 buffer(T *hostData, const range<dimensions> &bufferRange,

44 AllocatorT allocator, const property_list &propList = {});

45
46 buffer(const T *hostData, const range<dimensions> &bufferRange,

47 const property_list &propList = {});

48
49 buffer(const T *hostData, const range<dimensions> &bufferRange,

50 AllocatorT allocator, const property_list &propList = {});

51
52 buffer(const std::shared_ptr<T> &hostData,

53 const range<dimensions> &bufferRange, AllocatorT allocator,

54 const property_list &propList = {});

55
56 buffer(const std::shared_ptr<T> &hostData,

57 const range<dimensions> &bufferRange,

58 const property_list &propList = {});

59
60 template <class InputIterator>

61 buffer<T, 1>(InputIterator first, InputIterator last, AllocatorT allocator,

62 const property_list &propList = {});

63
64 template <class InputIterator>

65 buffer<T, 1>(InputIterator first, InputIterator last,

66 const property_list &propList = {});

67
68 buffer(buffer<T, dimensions, AllocatorT> b, const id<dimensions> &baseIndex,

69 const range<dimensions> &subRange);

70
71 /* -- common interface members -- */

72
73 /* -- property interface members -- */

74
75 range<dimensions> get_range() const;

76
77 size_t get_count() const;

78
79 size_t get_size() const;

80
81 AllocatorT get_allocator() const;

82
83 template <access::mode mode, access::target target = access::target::global_buffer>

84 accessor<T, dimensions, mode, target> get_access(

85 handler &commandGroupHandler);

86
87 template <access::mode mode>

88 accessor<T, dimensions, mode, access::target::host_buffer> get_access();

89
90 template <access::mode mode, access::target target = access::target::global_buffer>

91 accessor<T, dimensions, mode, target> get_access(

92 handler &commandGroupHandler, range<dimensions> accessRange,

93 id<dimensions> accessOffset = {});

94
95 template <access::mode mode>

96 accessor<T, dimensions, mode, access::target::host_buffer> get_access(

97 range<dimensions> accessRange, id<dimensions> accessOffset = {});

112 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

98
99 template<typename... Ts>

100 auto get_access(Ts...);

101
102 template<typename... Ts>

103 auto get_host_access(Ts...);

104
105 template <typename Destination = std::nullptr_t>

106 void set_final_data(Destination finalData = nullptr);

107
108 void set_write_back(bool flag = true);

109
110 bool is_sub_buffer() const;

111
112 template <typename ReinterpretT, int ReinterpretDim>

113 buffer<ReinterpretT, ReinterpretDim, AllocatorT>

114 reinterpret(range<ReinterpretDim> reinterpretRange) const;

115
116 // Only available when ReinterpretDim == 1

117 // or when (ReinterpretDim == dimensions) &&

118 // (sizeof(ReinterpretT) == sizeof(T))

119 template <typename ReinterpretT, int ReinterpretDim = dimensions>

120 buffer<ReinterpretT, ReinterpretDim, AllocatorT>

121 reinterpret() const;

122 };

123
124 // Deduction guides

125 template <class InputIterator, class AllocatorT>

126 buffer(InputIterator, InputIterator, AllocatorT, const property_list & = {})

127 -> buffer<typename std::iterator_traits<InputIterator>::value_type, 1,

128 AllocatorT>;

129 template <class InputIterator>

130 buffer(InputIterator, InputIterator, const property_list & = {})

131 -> buffer<typename std::iterator_traits<InputIterator>::value_type, 1>;

132 template <class T, int dimensions, class AllocatorT>

133 buffer(const T *, const range<dimensions> &, AllocatorT,

134 const property_list & = {})

135 -> buffer<T, dimensions, AllocatorT>;

136 template <class T, int dimensions>

137 buffer(const T *, const range<dimensions> &, const property_list & = {})

138 -> buffer<T, dimensions>;

139
140 } // namespace sycl

CHAPTER 4. SYCL PROGRAMMING INTERFACE 113



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
buffer(const range<dimensions> & bufferRange,

const property_list &propList = {})

Construct a SYCL buffer instance with
uninitialized memory. The constructed
SYCL buffer will use a default constructed
AllocatorT when allocating memory on the
host. The range of the constructed SYCL
buffer is specified by the bufferRange pa-
rameter provided. Data is not written back
to the host on destruction of the buffer

unless the buffer has a valid non-null
pointer specified via the member function
set_final_data(). Zero or more properties
can be provided to the constructed SYCL
buffer via an instance of property_list.

buffer(const range<dimensions> & bufferRange,

AllocatorT allocator,

const property_list &propList = {})

Construct a SYCL buffer instance with
uninitialized memory. The constructed
SYCL buffer will use the allocator pa-
rameter provided when allocating mem-
ory on the host. The range of the con-
structed SYCL buffer is specified by the
bufferRange parameter provided. Data is
not written back to the host on destruc-
tion of the buffer unless the buffer has
a valid non-null pointer specified via the
member function set_final_data(). Zero
or more properties can be provided to the
constructed SYCL buffer via an instance of
property_list.

buffer(T* hostData,

const range<dimensions> & bufferRange,

const property_list &propList = {})

Construct a SYCL buffer instance with the
hostData parameter provided. The buffer
is initialized with the memory specified by
hostData. The ownership of this memory is
given to the constructed SYCL buffer for
the duration of its lifetime. The constructed
SYCL buffer will use a default constructed
AllocatorT when allocating memory on the
host. The range of the constructed SYCL
buffer is specified by the bufferRange pa-
rameter provided. Zero or more properties
can be provided to the constructed SYCL
buffer via an instance of property_list.

Continued on next page

Table 4.31: Constructors of the buffer class.

114 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
buffer(T* hostData,

const range<dimensions> & bufferRange,

AllocatorT allocator,

const property_list &propList = {})

Construct a SYCL buffer instance with the
hostData parameter provided. The buffer
is initialized with the memory specified by
hostData. The ownership of this memory is
given to the constructed SYCL buffer for
the duration of its lifetime. The constructed
SYCL buffer will use the allocator pa-
rameter provided when allocating mem-
ory on the host. The range of the con-
structed SYCL buffer is specified by the
bufferRange parameter provided. Zero or
more properties can be provided to the con-
structed SYCL buffer via an instance of
property_list.

buffer(const T* hostData,

const range<dimensions> & bufferRange,

const property_list &propList = {})

Construct a SYCL buffer instance with the
hostData parameter provided. The owner-
ship of this memory is given to the con-
structed SYCL buffer for the duration of its
lifetime.
The constructed SYCL bufferwill use a de-
fault constructed AllocatorT when allocat-
ing memory on the host.
The host address is const T, so the host
accesses can be read-only. However, the
typename T is not const so the device ac-
cesses can be both read and write accesses.
Since the hostData is const, this buffer is
only initialized with this memory and there
is no write back after its destruction, unless
the buffer has another valid non-null final
data address specified via the member func-
tion set_final_data() after construction of
the buffer.
The range of the constructed SYCL buffer
is specified by the bufferRange parameter

provided.
Zero or more properties can be provided
to the constructed SYCL buffer via an in-
stance of property_list.

Continued on next page

Table 4.31: Constructors of the buffer class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 115



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
buffer(const T* hostData,

const range<dimensions> & bufferRange,

AllocatorT allocator,

const property_list &propList = {})

Construct a SYCL buffer instance with the
hostData parameter provided. The owner-
ship of this memory is given to the con-
structed SYCL buffer for the duration of its
lifetime.
The constructed SYCL buffer will use the
allocator parameter provided when allo-
cating memory on the host.
The host address is const T, so the host
accesses can be read-only. However, the
typename T is not const so the device ac-
cesses can be both read and write accesses.
Since, the hostData is const, this buffer is
only initialized with this memory and there
is no write back after its destruction, unless
the buffer has another valid non-null final
data address specified via the member func-
tion set_final_data() after construction of
the buffer.
The range of the constructed SYCL buffer
is specified by the bufferRange parameter

provided.
Zero or more properties can be provided
to the constructed SYCL buffer via an in-
stance of property_list.

buffer(const std::shared_ptr<T> &hostData,

const range<dimensions> & bufferRange,

const property_list &propList = {})

Construct a SYCL buffer instance with the
hostData parameter provided. The owner-
ship of this memory is given to the con-
structed SYCL buffer for the duration of its
lifetime. The constructed SYCL buffer will
use a default constructed AllocatorT when
allocating memory on the host. The range of
the constructed SYCL buffer is specified by
the bufferRange parameter provided. Zero
or more properties can be provided to the
constructed SYCL buffer via an instance of
property_list.

Continued on next page

Table 4.31: Constructors of the buffer class.

116 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
buffer(const std::shared_ptr<void> &hostData,

const range<dimensions> & bufferRange,

AllocatorT allocator,

const property_list &propList = {})

Construct a SYCL buffer instance with the
hostData parameter provided. The owner-
ship of this memory is given to the con-
structed SYCL buffer for the duration of its
lifetime. The constructed SYCL buffer will
use the allocator parameter provided when
allocating memory on the host. The range of
the constructed SYCL buffer is specified by
the bufferRange parameter provided. Zero
or more properties can be provided to the
constructed SYCL buffer via an instance of
property_list.

template <typename InputIterator>

buffer(InputIterator first, InputIterator last,

const property_list &propList = {})

Create a new allocated 1D buffer initialized
from the given elements ranging from first
up to one before last. The data is copied
to an intermediate memory position by the
runtime. Data is not written back to the same
iterator set provided. However, if the buffer

has a valid non-const iterator specified
via the member function set_final_data
(), data will be copied back to that iter-
ator. The constructed SYCL buffer will
use a default constructed AllocatorT when
allocating memory on the host. Zero or
more properties can be provided to the con-
structed SYCL buffer via an instance of
property_list.

template <typename InputIterator>

buffer(InputIterator first, InputIterator last,

AllocatorT allocator = {},

const property_list &propList = {})

Create a new allocated 1D buffer initial-
ized from the given elements ranging from
first up to one before last. The data
is copied to an intermediate memory po-
sition by the runtime. Data is not writ-
ten back to the same iterator set provided.
However, if the buffer has a valid non-
const iterator specified via the member func-
tion set_final_data(), data will be copied
back to that iterator. The constructed SYCL
buffer will use the allocator parameter
provided when allocating memory on the
host. Zero or more properties can be pro-
vided to the constructed SYCL buffer via
an instance of property_list.

Continued on next page

Table 4.31: Constructors of the buffer class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 117



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
buffer(buffer<T, dimensions, AllocatorT> &b,

const id<dimensions> & baseIndex,

const range<dimensions> & subRange)

Create a new sub-buffer without allocation
to have separate accessors later. b is the
buffer with the real data, which must not
be a sub-buffer. baseIndex specifies the
origin of the sub-buffer inside the buffer b
. subRange specifies the size of the sub-
buffer. The sum of baseIndex and subRange
in any dimension must not exceed the par-
ent buffer (b) size (bufferRange) in that di-
mension, and an exception with the errc::
invalid_object_error error code must be
thrown if violated.
The offset and range specified by baseIndex
and subRange together must represent a con-
tiguous region of the original SYCL buffer.
If a non-contiguous region of a buffer
is requested when constructing a sub-
buffer, then an exception with the errc::
invalid_object_error error code must be
thrown.
The origin (based on baseIndex) of the sub-
buffer being constructed must be a multi-
ple of the memory base address alignment
of each SYCL device that is executed on,
otherwise the SYCL runtime must throw an
asynchronous exception with the errc::
invalid_object_error error code.
This value is retrievable via the SYCL
device class info query info::device

::mem_base_addr_align and must
throw exception with the errc::

invalid_object_error error code if b
is already a sub-buffer.

End of table

Table 4.31: Constructors of the buffer class.

Member function Description
range<dimensions> get_range()const Return a range object representing the size

of the buffer in terms of number of elements
in each dimension as passed to the construc-
tor.

size_t get_count()const Returns the total number of elements in the
buffer. Equal to get_range()[0] * ... *
get_range()[dimensions-1].

size_t get_size()const Returns the size of the buffer storage in
bytes. Equal to get_count()*sizeof(T).

Continued on next page

Table 4.32: Member functions for the buffer class.

118 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Member function Description
AllocatorT get_allocator()const Returns the allocator provided to the buffer.
template<access::mode mode, access::target target =

access::target::global_buffer>

accessor<T, dimensions, mode, target>

get_access(handler &commandGroupHandler)

Returns a valid accessor to the buffer with
the specified access mode and target in the
command group buffer. The value of target
can be access::target::global_buffer or
access::constant_buffer.

template<access::mode mode>

accessor<T, dimensions, mode, access::target::

host_buffer>

get_access()

Returns a valid host accessor to the buffer
with the specified access mode and target.

template<access::mode mode, access::target target=

access::target::global_buffer>

accessor<T, dimensions, mode, target>

get_access(handler &commandGroupHandler, range<

dimensions> accessRange, id<dimensions> accessOffset

= {})

Returns a valid accessor to the buffer
with the specified access mode and tar-
get in the command group buffer. Only
the values starting from the given offset
and up to the given range are guaran-
teed to be updated. The value of target
can be access::target::global_buffer or
access::constant_buffer.

template<access::mode mode>

accessor<T, dimensions, mode, access::target::

host_buffer>

get_access(range<dimensions> accessRange, id<

dimensions> accessOffset = {})

Returns a valid host accessor to the buffer
with the specified access mode and target.
Only the values starting from the given off-
set and up to the given range are guaranteed
to be updated. The value of target can only
be access::target::host_buffer.

template<typename... Ts>

auto get_access(Ts... args)

Returns a valid accessor as if constructed
via passing the buffer and all provided
arguments to the SYCL accessor.

Possible implementation:
return accessor { *this, args... };

template<typename... Ts>

auto get_host_access(Ts... args)

Returns a valid host_accessor as if
constructed via passing the buffer and
all provided arguments to the SYCL
host_accessor.

Possible implementation:
return host_accessor { *this, args...

};

Continued on next page

Table 4.32: Member functions for the buffer class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 119



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Member function Description
template <typename Destination = std::nullptr_t>

void set_final_data(Destination finalData =

nullptr)

The finalData points to where the outcome
of all the buffer processing is going to be
copied to at destruction time, if the buffer
was involved with a write accessor.
Destination can be either an output iterator
or a std::weak_ptr<T>.
Note that a raw pointer is a special case
of output iterator and thus defines the host
memory to which the result is to be copied.
In the case of a weak pointer, the output is
not updated if the weak pointer has expired.
If Destination is std::nullptr_t, then the
copy back will not happen.

void set_write_back(bool flag = true) This member function allows dynamically
forcing or canceling the write-back of the
data of a buffer on destruction according to
the value of flag.
Forcing the write-back is similar to what
happens during a normal write-back as de-
scribed in Section 4.7.2.3 and 4.7.4.
If there is nowhere to write-back, using this
function does not have any effect.

bool is_sub_buffer()const Returns true if this SYCL buffer is a sub-
buffer, otherwise returns false.

template <typename ReinterpretT, int ReinterpretDim>

buffer<ReinterpretT, ReinterpretDim, AllocatorT>

reinterpret(range<ReinterpretDim>

reinterpretRange)const

Creates and returns a reinterpreted
SYCL buffer with the type specified
by ReinterpretT, dimensions specified by
ReinterpretDim and range specified by
reinterpretRange. The buffer object being
reinterpreted can be a SYCL sub-buffer
that was created from a SYCL buffer and
must throw exception with the errc::
invalid_object_error error code if the
total size in bytes represented by the type
and range of the reinterpreted SYCL buffer
(or sub-buffer) does not equal the total
size in bytes represented by the type and
range of this SYCL buffer (or sub-buffer).
Reinterpreting a sub-buffer provides a
reinterpreted view of the sub-buffer only,
and does not change the offset or size of
the sub-buffer view (in bytes) relative to the
parent buffer.

Continued on next page

Table 4.32: Member functions for the buffer class.

120 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Member function Description
template <typename ReinterpretT, int ReinterpretDim

= dimensions>

buffer<ReinterpretT, ReinterpretDim, AllocatorT>

reinterpret()const

Creates and returns a reinterpreted
SYCL buffer with the type specified
by ReinterpretT and dimensions spec-
ified by ReinterpretDim. Only valid
when (ReinterpretDim == 1) or when
((ReinterpretDim == dimensions)&& (

sizeof(ReinterpretT)== sizeof(T))).
The buffer object being reinterpreted can be
a SYCL sub-buffer that was created from a
SYCL buffer and must throw an exception
with the errc::invalid_object_error er-
ror code if the total size in bytes represented
by the type and range of the reinterpreted
SYCL buffer (or sub-buffer) does not equal
the total size in bytes represented by the
type and range of this SYCL buffer (or
sub-buffer). Reinterpreting a sub-buffer
provides a reinterpreted view of the sub-
buffer only, and does not change the offset
or size of the sub-buffer view (in bytes)
relative to the parent buffer.

End of table

Table 4.32: Member functions for the buffer class.

4.7.2.2 Buffer properties

The properties that can be provided when constructing the SYCL buffer class are describe in Table 4.33.

Property Description
property::buffer::use_host_ptr The use_host_ptr property adds the re-

quirement that the SYCL runtime must not
allocate any memory for the SYCL buffer
and instead uses the provided host pointer

directly. This prevents the SYCL runtime
from allocating additional temporary stor-
age on the host.

property::buffer::use_mutex The use_mutex property is valid for
the SYCL buffer, unsampled_image and
sampled_image classes. The property adds
the requirement that the memory which is
owned by the SYCL buffer can be shared
with the application via a std::mutex pro-
vided to the property. The mutex m is locked
by the runtime whenever the data is in use
and unlocked otherwise. Data is synchro-
nized with hostData, when the mutex is un-
locked by the runtime.

Continued on next page

Table 4.33: Properties supported by the SYCL buffer class.
CHAPTER 4. SYCL PROGRAMMING INTERFACE 121



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Property Description
property::buffer::context_bound The context_bound property adds the re-

quirement that the SYCL buffer can only
be associated with a single SYCL context
that is provided to the property.

End of table

Table 4.33: Properties supported by the SYCL buffer class.

The constructors and special member functions of the buffer property classes are listed in Tables 4.34 and 4.35
respectively.

Constructor Description
property::buffer::use_host_ptr::use_host_ptr() Constructs a SYCL use_host_ptr property

instance.
property::buffer::use_mutex::use_mutex(std::mutex &

mutexRef)

Constructs a SYCL use_mutex property in-
stance with a reference to mutexRef param-
eter provided.

property::buffer::context_bound::context_bound(

context boundContext)

Constructs a SYCL context_bound prop-
erty instance with a copy of a SYCL
context.

End of table

Table 4.34: Constructors of the buffer property classes.

Member function Description
std::mutex *property::buffer::use_mutex::

get_mutex_ptr()const

Returns the std::mutex which was
specified when constructing this SYCL
use_mutex property.

context property::buffer::context_bound::get_context

()const

Returns the context which was spec-
ified when constructing this SYCL
context_bound property.

End of table

Table 4.35: Member functions of the buffer property classes.

4.7.2.3 Buffer synchronization rules

Buffers are reference-counted. When a buffer value is constructed from another buffer, the two values reference
the same buffer and a reference count is incremented. When a buffer value is destroyed, the reference count
is decremented. Only when there are no more buffer values that reference a specific buffer is the actual buffer
destroyed and the buffer destruction behavior defined below is followed.

If any error occurs on buffer destruction, it is reported via the associated queue’s asynchronous error handling
mechanism.

The basic rule for the blocking behavior of a buffer destructor is that it blocks if there is some data to write back
because a write accessor on it has been created, or if the buffer was constructed with attached host memory and is
still in use.

122 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

More precisely:

1. A buffer can be constructed with just a size and using the default buffer allocator. The memory management
for this type of buffer is entirely handled by the SYCL system. The destructor for this type of buffer does not
need to block, even if work on the buffer has not completed. Instead, the SYCL system frees any storage
required for the buffer asynchronously when it is no longer in use in queues. The initial contents of the
buffer are unspecified.

2. A buffer can be constructed with associated host memory and a default buffer allocator. The buffer will use
this host memory for its full lifetime, but the contents of this host memory are unspecified for the lifetime
of the buffer. If the host memory is modified by the host, or mapped to another buffer or image during the
lifetime of this buffer, then the results are undefined. The initial contents of the buffer will be the contents
of the host memory at the time of construction.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have completed,
then copy the contents of the buffer back to the host memory (if required) and then return.

(a) If the type of the host data is const, then the buffer is read-only; only read accessors are allowed on
the buffer and no-copy-back to host memory is performed (although the host memory must still be
kept available for use by SYCL). When using the default buffer allocator, the const-ness of the type
will be removed in order to allow host allocation of memory, which will allow temporary host copies
of the data by the SYCL runtime, for example for speeding up host accesses.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have
completed and then return, as there is no copy of data back to host.

(b) If the type of the host data is not const but the pointer to host data is const, then the read-only
restriction applies only on host and not on device accesses.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have
completed.

3. A buffer can be constructed using a shared_ptr to host data. This pointer is shared between the SYCL
application and the runtime. In order to allow synchronization between the application and the runtime a
mutex is used which will be locked by the runtime whenever the data is in use, and unlocked when it is no
longer needed.

The shared_ptr reference counting is used in order to prevent destroying the buffer host data prematurely.
If the shared_ptr is deleted from the user application before buffer destruction, the buffer can continue
securely because the pointer hasn’t been destroyed yet. It will not copy data back to the host before destruc-
tion, however, as the application side has already deleted its copy.

Note that since there is an implicit conversion of a std::unique_ptr to a std::shared_ptr, a std::
unique_ptr can also be used to pass the ownership to the SYCL runtime.

4. A buffer can be constructed from a pair of iterator values. In this case, the buffer construction will copy the
data from the data range defined by the iterator pair. The destructor will not copy back any data and does
not need to block.

If set_final_data() is used to change where to write the data back to, then the destructor of the buffer will block
if a write accessor on it has been created.

A sub-buffer object can be created which is a sub-range reference to a base buffer. This sub-buffer can be used

CHAPTER 4. SYCL PROGRAMMING INTERFACE 123



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

to create accessors to the base buffer, which have access to the range specified at time of construction of the
sub-buffer. Sub-buffers cannot be created from sub-buffers, but only from a base buffer which is not already a
sub-buffer.

Sub-buffers must be constructed from a contiguous region of memory in a buffer. This requirement is potentially
non-intuitive when working with buffers that have dimensionality larger than one, but maps to one-dimensional
SYCL backend native allocations without performance cost due to index mapping computation. For example:

1 buffer<int,2> parent_buffer { range<2>{ 8,8 } }; // Create 2-d buffer with 8x8 ints

2
3 // OK: Contiguous region from middle of buffer

4 buffer<int,2> sub_buf1 { parent_buffer, /*offset*/ range<2>{ 2,0 }, /*size*/ range<2>{ 2,8 } };

5
6 // invalid_object_error exception: Non-contiguous regions of 2-d buffer

7 buffer<int,2> sub_buf2 { parent_buffer, /*offset*/ range<2>{ 2,0 }, /*size*/ range<2>{ 2,2 } };

8 buffer<int,2> sub_buf3 { parent_buffer, /*offset*/ range<2>{ 2,2 }, /*size*/ range<2>{ 2,6 } };

9
10 // invalid_object_error exception: Out-of-bounds size

11 buffer<int,2> sub_buf4 { parent_buffer, /*offset*/ range<2>{ 2,2 }, /*size*/ range<2>{ 2,8 } };

4.7.3 Images
The classes unsampled_image (Table 4.36) and sampled_image (Table 4.38) define shared image data of one, two
or three dimensions, that can be used by kernels in queues and have to be accessed using accessor classes with
image accessor modes.

The constructors and member functions of the SYCL unsampled_image and sampled_image class templates are
listed in Tables 4.36, 4.37, 4.38 and 4.39, respectively. The additional common special member functions and
common member functions are listed in Tables 4.1 and 4.2, respectively.

Where relevant, it is the responsibility of the user to ensure that the format of the data matches the format described
by image_format.

The allocator template parameter of the SYCL unsampled_image and sampled_image classes can be any allocator
type including a custom allocator, however it must allocate in units of std::byte.

For any image that is constructed with the range (r1, r2, r3) with an element type size in bytes of s, the image row
pitch and image slice pitch should be calculated as follows:

r1 · s (4.1)

r1 · r2 · s (4.2)

The SYCL unsampled_image and sampled_image class templates provide the common reference semantics (see
Section 4.5.3).

4.7.3.1 Unsampled image interface

Each constructor of the unsampled_image takes an image_format to describe the data layout of the image data.

124 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Each constructor additionally takes as the last parameter an optional SYCL property_list to provide properties
to the SYCL unsampled_image.

The SYCL unsampled_image class template takes a template parameter AllocatorT for specifying an alloca-
tor which is used by the SYCL runtime when allocating temporary memory on the host. If no template ar-
gument is provided, the default allocator for the SYCL unsampled_image class image_allocator is used (see
Section 4.7.1.1).

1 namespace sycl {

2 enum class image_format : unsigned int {

3 r8g8b8a8_unorm,

4 r16g16b16a16_unorm,

5 r8g8b8a8_sint,

6 r16g16b16a16_sint,

7 r32b32g32a32_sint,

8 r8g8b8a8_uint,

9 r16g16b16a16_uint,

10 r32b32g32a32_uint,

11 r16b16g16a16_sfloat,

12 r32g32b32a32_sfloat,

13 b8g8r8a8_unorm,

14 };

15
16 template <int dimensions = 1, typename AllocatorT = sycl::image_allocator>

17 class unsampled_image {

18 public:

19 unsampled_image(image_format format, const range<dimensions> &rangeRef,

20 const property_list &propList = {});

21
22 unsampled_image(image_format format, const range<dimensions> &rangeRef,

23 AllocatorT allocator, const property_list &propList = {});

24
25 /* Available only when: dimensions > 1 */

26 unsampled_image(image_format format, const range<dimensions> &rangeRef,

27 const range<dimensions -1> &pitch,

28 const property_list &propList = {});

29
30 /* Available only when: dimensions > 1 */

31 unsampled_image(image_format format, const range<dimensions> &rangeRef,

32 const range<dimensions -1> &pitch, AllocatorT allocator,

33 const property_list &propList = {});

34
35 unsampled_image(void *hostPointer, image_format format,

36 const range<dimensions> &rangeRef,

37 const property_list &propList = {});

38
39 unsampled_image(void *hostPointer, image_format format,

40 const range<dimensions> &rangeRef, AllocatorT allocator,

41 const property_list &propList = {});

42
43 /* Available only when: dimensions > 1 */

44 unsampled_image(void *hostPointer, image_format format,

45 const range<dimensions> &rangeRef,

46 const range<dimensions -1> &pitch,

CHAPTER 4. SYCL PROGRAMMING INTERFACE 125



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

47 const property_list &propList = {});

48
49 /* Available only when: dimensions > 1 */

50 unsampled_image(void *hostPointer, image_format format,

51 const range<dimensions> &rangeRef,

52 const range<dimensions -1> &pitch, AllocatorT allocator,

53 const property_list &propList = {});

54
55 unsampled_image(std::shared_ptr<void> &hostPointer, image_format format,

56 const range<dimensions> &rangeRef,

57 const property_list &propList = {});

58
59 unsampled_image(std::shared_ptr<void> &hostPointer, image_format format,

60 const range<dimensions> &rangeRef, AllocatorT allocator,

61 const property_list &propList = {});

62
63 /* Available only when: dimensions > 1 */

64 unsampled_image(std::shared_ptr<void> &hostPointer, image_format format,

65 const range<dimensions> &rangeRef,

66 const range<dimensions -1> &pitch,

67 const property_list &propList = {});

68
69 /* Available only when: dimensions > 1 */

70 unsampled_image(std::shared_ptr<void> &hostPointer, image_format format,

71 const range<dimensions> &rangeRef,

72 const range<dimensions -1> &pitch, AllocatorT allocator,

73 const property_list &propList = {});

74
75 /* -- common interface members -- */

76
77 /* -- property interface members -- */

78
79 range<dimensions> get_range() const;

80
81 /* Available only when: dimensions > 1 */

82 range<dimensions - 1> get_pitch() const;

83
84 size_t get_count() const;

85
86 size_t get_size() const;

87
88 AllocatorT get_allocator() const;

89
90 template <typename dataT, access::mode accessMode>

91 accessor<dataT, dimensions, accessMode, access::target::unsampled_image>

92 get_access(handler & commandGroupHandler);

93
94 template <typename dataT, access::mode accessMode>

95 accessor<dataT, dimensions, accessMode, access::target::host_unsampled_image>

96 get_access();

97
98 template <typename Destination = std::nullptr_t>

99 void set_final_data(Destination finalData = std::nullptr);

100
101 void set_write_back(bool flag = true);

126 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

102 };

103 } // namespace sycl

Constructor Description
unsampled_image(image_format format,

const range<dimensions> &rangeRef,

const property_list &propList = {})

Construct a SYCL unsampled_image in-
stance with uninitialized memory. The con-
structed SYCL unsampled_image will use a
default constructed AllocatorT when allo-
cating memory on the host. The element size
of the constructed SYCL unsampled_image

will be derived from the format pa-
rameter. The range of the constructed
SYCL unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the default size determined by the

SYCL runtime. Unless the member func-
tion set_final_data() is called with a valid
non-null pointer, there will be no write
back on destruction. Zero or more prop-
erties can be provided to the constructed
SYCL unsampled_image via an instance of
property_list.

unsampled_image(image_format format,

const range<dimensions> &rangeRef,

AllocatorT allocator,

const property_list &propList = {})

Construct a SYCL unsampled_image in-
stance with uninitialized memory. The con-
structed SYCL unsampled_image will use
the allocator parameter provided when
allocating memory on the host. The
element size of the constructed SYCL
unsampled_image will be derived from
the format parameter. The range of
the constructed SYCL unsampled_image is
specified by the rangeRef parameter pro-
vided. The pitch of the constructed SYCL
unsampled_image will be the default size
determined by the SYCL runtime. Unless
the member function set_final_data() is
called with a valid non-null pointer, there
will be no write back on destruction. Zero
or more properties can be provided to the
constructed SYCL unsampled_image via an
instance of property_list.

Continued on next page

Table 4.36: Constructors of the unsampled_image class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 127



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
unsampled_image(image_format format,

const range<dimensions> &rangeRef,

const range<dimensions-1> &pitch,

const property_list &propList = {})

Available only when: dimensions > 1.
Construct a SYCL unsampled_image in-
stance with uninitialized memory. The con-
structed SYCL unsampled_image will use a
default constructed AllocatorT when allo-
cating memory on the host. The element size
of the constructed SYCL unsampled_image

will be derived from the format pa-
rameter. The range of the constructed
SYCL unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the pitch parameter provided. Un-
less the member function set_final_data
() is called with a valid non-null pointer,
there will be no write back on destruction.
Zero or more properties can be provided to
the constructed SYCL unsampled_image via
an instance of property_list.

unsampled_image(image_format format,

const range<dimensions> &rangeRef,

const range<dimensions-1> &pitch,

AllocatorT allocator,

const property_list &propList = {})

Available only when: dimensions > 1.
Construct a SYCL unsampled_image in-
stance with uninitialized memory. The con-
structed SYCL unsampled_image will use
the allocator parameter provided when
allocating memory on the host. The
element size of the constructed SYCL
unsampled_image will be derived from
the format parameter. The range of
the constructed SYCL unsampled_image is
specified by the rangeRef parameter pro-
vided. The pitch of the constructed SYCL
unsampled_image will be the pitch param-
eter provided. Unless the member func-
tion set_final_data() is called with a valid
non-null pointer, there will be no write
back on destruction. Zero or more prop-
erties can be provided to the constructed
SYCL unsampled_image via an instance of
property_list.

Continued on next page

Table 4.36: Constructors of the unsampled_image class template.

128 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
unsampled_image(void *hostPointer,

image_format format,

const range<dimensions> &rangeRef,

const property_list &propList = {})

Construct a SYCL unsampled_image in-
stance with the hostPointer parameter
provided. The ownership of this mem-
ory is given to the constructed SYCL
unsampled_image for the duration of
its lifetime. The constructed SYCL
unsampled_image will use a default con-
structed AllocatorT when allocating
memory on the host. The element size of
the constructed SYCL unsampled_image

will be derived from the format parame-
ter. The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the default size determined by
the SYCL runtime. Unless the member
function set_final_data() is called with
a valid non-null pointer, any memory
allocated by the SYCL runtime is written
back to hostPointer. Zero or more prop-
erties can be provided to the constructed
SYCL unsampled_image via an instance of
property_list.

unsampled_image(void *hostPointer,

image_format format,

const range<dimensions> &rangeRef,

AllocatorT allocator,

const property_list &propList = {})

Construct a SYCL unsampled_image in-
stance with the hostPointer parameter
provided. The ownership of this mem-
ory is given to the constructed SYCL
unsampled_image for the duration of
its lifetime. The constructed SYCL
unsampled_image will use the allocator
parameter provided when allocating mem-
ory on the host. The element size of
the constructed SYCL unsampled_image

will be derived from the format parame-
ter. The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the default size determined by
the SYCL runtime. Unless the member
function set_final_data() is called with
a valid non-null pointer, any memory
allocated by the SYCL runtime is written
back to hostPointer. Zero or more prop-
erties can be provided to the constructed
SYCL unsampled_image via an instance of
property_list.

Continued on next page

Table 4.36: Constructors of the unsampled_image class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 129



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
unsampled_image(void *hostPointer,

image_format format,

const range<dimensions> &rangeRef,

const range<dimensions-1> &pitch,

const property_list &propList = {})

Available only when: dimensions > 1
Construct a SYCL unsampled_image in-
stance with the hostPointer parameter
provided. The ownership of this mem-
ory is given to the constructed SYCL
unsampled_image for the duration of
its lifetime. The constructed SYCL
unsampled_image will use a default con-
structed AllocatorT when allocating
memory on the host. The element size of
the constructed SYCL unsampled_image

will be derived from the format parame-
ter. The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the pitch parameter provided. Un-
less the member function set_final_data
() is called with a valid non-null pointer,
any memory allocated by the SYCL runtime
is written back to hostPointer. Zero or
more properties can be provided to the
constructed SYCL unsampled_image via an
instance of property_list.

unsampled_image(void *hostPointer,

image_format format,

const range<dimensions> &rangeRef,

const range<dimensions-1> &pitch,

AllocatorT allocator,

const property_list &propList = {})

Available only when: dimensions > 1.
Construct a SYCL unsampled_image in-
stance with the hostPointer parameter
provided. The ownership of this mem-
ory is given to the constructed SYCL
unsampled_image for the duration of
its lifetime. The constructed SYCL
unsampled_image will use the allocator
parameter provided when allocating mem-
ory on the host. The element size of
the constructed SYCL unsampled_image

will be derived from the format parame-
ter. The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the pitch parameter provided. Un-
less the member function set_final_data
() is called with a valid non-null pointer,
any memory allocated by the SYCL runtime
is written back to hostPointer. Zero or
more properties can be provided to the
constructed SYCL unsampled_image via an
instance of property_list.

Continued on next page

Table 4.36: Constructors of the unsampled_image class template.

130 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
unsampled_image(std::shared_ptr<void>& hostPointer,

image_format format,

const range<dimensions> &rangeRef,

const property_list &propList = {})

Construct a SYCL unsampled_image in-
stance with the hostPointer parameter
provided. The ownership of this mem-
ory is given to the constructed SYCL
unsampled_image for the duration of
its lifetime. The constructed SYCL
unsampled_image will use a default con-
structed AllocatorT when allocating
memory on the host. The element size of
the constructed SYCL unsampled_image

will be derived from the format parame-
ter. The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the default size determined by
the SYCL runtime. Unless the member
function set_final_data() is called with
a valid non-null pointer, any memory
allocated by the SYCL runtime is written
back to hostPointer. Zero or more prop-
erties can be provided to the constructed
SYCL unsampled_image via an instance of
property_list.

unsampled_image(std::shared_ptr<void>& hostPointer,

image_format format,

const range<dimensions> &rangeRef,

AllocatorT allocator,

const property_list &propList = {})

Construct a SYCL unsampled_image in-
stance with the hostPointer parameter
provided. The ownership of this mem-
ory is given to the constructed SYCL
unsampled_image for the duration of
its lifetime. The constructed SYCL
unsampled_image will use the allocator
parameter provided when allocating mem-
ory on the host. The element size of
the constructed SYCL unsampled_image

will be derived from the format parame-
ter. The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the default size determined by
the SYCL runtime. Unless the member
function set_final_data() is called with
a valid non-null pointer, any memory
allocated by the SYCL runtime is written
back to hostPointer. Zero or more prop-
erties can be provided to the constructed
SYCL unsampled_image via an instance of
property_list.

Continued on next page

Table 4.36: Constructors of the unsampled_image class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 131



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
unsampled_image(std::shared_ptr<void>& hostPointer,

image_format format,

const range<dimensions> &rangeRef,

const range<dimensions-1> & pitch,

const property_list &propList = {})

Construct a SYCL unsampled_image in-
stance with the hostPointer parameter
provided. The ownership of this mem-
ory is given to the constructed SYCL
unsampled_image for the duration of
its lifetime. The constructed SYCL
unsampled_image will use a default con-
structed AllocatorT when allocating
memory on the host. The element size of
the constructed SYCL unsampled_image

will be derived from the format parame-
ter. The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the pitch parameter provided. Un-
less the member function set_final_data
() is called with a valid non-null pointer,
any memory allocated by the SYCL runtime
is written back to hostPointer. Zero or
more properties can be provided to the
constructed SYCL unsampled_image via an
instance of property_list.

unsampled_image(std::shared_ptr<void>& hostPointer,

image_format format,

const range<dimensions> &rangeRef,

const range<dimensions-1> & pitch,

AllocatorT allocator,

const property_list &propList = {})

Construct a SYCL unsampled_image in-
stance with the hostPointer parameter
provided. The ownership of this mem-
ory is given to the constructed SYCL
unsampled_image for the duration of
its lifetime. The constructed SYCL
unsampled_image will use the allocator
parameter provided when allocating mem-
ory on the host. The element size of
the constructed SYCL unsampled_image

will be derived from the format parame-
ter. The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The pitch
of the constructed SYCL unsampled_image
will be the pitch parameter provided. Un-
less the member function set_final_data
() is called with a valid non-null pointer,
any memory allocated by the SYCL runtime
is written back to hostPointer. Zero or
more properties can be provided to the
constructed SYCL unsampled_image via an
instance of property_list.

End of table

Table 4.36: Constructors of the unsampled_image class template.

132 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Member function Description
range<dimensions> get_range()const Return a range object representing the size

of the image in terms of the number of el-
ements in each dimension as passed to the
constructor.

range<dimensions-1> get_pitch()const Available only when: dimensions > 1.
Return a range object representing the pitch
of the image in bytes.

size_t get_count()const Returns the total number of elements in the
image. Equal to get_range()[0] * ... *
get_range()[dimensions-1].

size_t get_size()const Returns the size of the image storage
in bytes. The number of bytes may
be greater than get_count()*element size
due to padding of elements, rows and slices
of the image for efficient access.

AllocatorT get_allocator()const Returns the allocator provided to the image.
template<typename dataT, access::mode accessMode>

accessor<dataT, dimensions, accessMode, access::

target::unsampled_image>

get_access(handler & commandGroupHandler)

Returns a valid accessor to the image with
the specified access mode and target. The
only valid types for dataT are int4, uint4,
float4 and half4.

template<typename dataT, access::mode accessMode>

accessor<dataT, dimensions, accessMode, access::

target::host_unsampled_image>

get_access()

Returns a valid accessor to the image with
the specified access mode and target. The
only valid types for dataT are int4, uint4,
float4 and half4.

template <typename Destination = std::nullptr_t>

void set_final_data(Destination finalData =

nullptr)

The finalData point to where the output
of all the image processing is going to be
copied to at destruction time, if the image
was involved with a write accessor.
Destination can be either an output iterator,
a std::weak_ptr<T>.
Note that a raw pointer is a special case
of output iterator and thus defines the host
memory to which the result is to be copied.
In the case of a weak pointer, the output is
not copied if the weak pointer has expired.
If Destination is std::nullptr_t, then the
copy back will not happen.

void set_write_back(bool flag = true) This member function allows dynamically
forcing or canceling the write-back of the
data of an image on destruction according
to the value of flag.
Forcing the write-back is similar to what
happens during a normal write-back as de-
scribed in Section 4.7.3.4 and 4.7.4.
If there is nowhere to write-back, using this
function does not have any effect.

End of table

Table 4.37: Member functions of the unsampled_image class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 133



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

4.7.3.2 Sampled image interface

Each constructor of the sampled_image class requires a pointer to the host data the image will sample, an
image_format to describe the data layout and an image_sampler (Section 4.7.8) to describe how to sample the
image data.

Each constructor additionally takes as the last parameter an optional SYCL property_list to provide properties
to the SYCL sampled_image.

1 namespace sycl {

2 enum class image_format : unsigned int {

3 r8g8b8a8_unorm,

4 r16g16b16a16_unorm,

5 r8g8b8a8_sint,

6 r16g16b16a16_sint,

7 r32b32g32a32_sint,

8 r8g8b8a8_uint,

9 r16g16b16a16_uint,

10 r32b32g32a32_uint,

11 r16b16g16a16_sfloat,

12 r32g32b32a32_sfloat,

13 b8g8r8a8_unorm,

14 };

15
16 template <int dimensions = 1, typename AllocatorT = sycl::image_allocator>

17 class sampled_image {

18 public:

19 sampled_image(const void *hostPointer, image_format format,

20 image_sampler sampler, const range<dimensions> &rangeRef,

21 const property_list &propList = {});

22
23 /* Available only when: dimensions > 1 */

24 sampled_image(const void *hostPointer, image_format format,

25 image_sampler sampler, const range<dimensions> &rangeRef,

26 const range<dimensions -1> &pitch,

27 const property_list &propList = {});

28
29 sampled_image(std::shared_ptr<const void> &hostPointer, image_format format,

30 image_sampler sampler, const range<dimensions> &rangeRef,

31 const property_list &propList = {});

32
33 /* Available only when: dimensions > 1 */

34 sampled_image(std::shared_ptr<const void> &hostPointer, image_format format,

35 image_sampler sampler, const range<dimensions> &rangeRef,

36 const range<dimensions -1> &pitch,

37 const property_list &propList = {});

38
39 /* -- common interface members -- */

40
41 /* -- property interface members -- */

42
43 range<dimensions> get_range() const;

44
45 /* Available only when: dimensions > 1 */

46 range<dimensions - 1> get_pitch() const;

134 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

47
48 size_t get_count() const;

49
50 size_t get_size() const;

51
52 template <typename dataT, access::mode accessMode>

53 accessor<dataT, dimensions, accessMode, access::target::sampled_image>

54 get_access(handler & commandGroupHandler);

55
56 template <typename dataT, access::mode accessMode>

57 accessor<dataT, dimensions, accessMode, access::target::host_sampled_image>

58 get_access();

59 };

60 } // namespace sycl

Constructor Description
sampled_image(const void *hostPointer,

image_format format,

image_sampler sampler,

const range<dimensions> &rangeRef,

const property_list &propList = {})

Construct a SYCL sampled_image instance
with the hostPointer parameter provided.
The ownership of this memory is given to
the constructed SYCL sampled_image for
the duration of its lifetime. The host ad-
dress is const, so the host accesses must
be read-only. Since, the hostPointer is
const, this image is only initialized with
this memory and there is no write after its
destruction. The element size of the con-
structed SYCL sampled_image will be de-
rived from the format parameter. The sam-
pling member function of the constructed
SYCL sampled_image will be derived from
the sampler parameter. The range of
the constructed SYCL sampled_image is
specified by the rangeRef parameter pro-
vided. The pitch of the constructed SYCL
sampled_image will be the default size de-
termined by the SYCL runtime. Zero or
more properties can be provided to the con-
structed SYCL sampled_image via an in-
stance of property_list.

Continued on next page

Table 4.38: Constructors of the sampled_image class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 135



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
sampled_image(const void *hostPointer,

image_format format,

image_sampler sampler,

const range<dimensions> &rangeRef,

const range<dimensions-1> &pitch,

const property_list &propList = {})

Available only when: dimensions > 1.
Construct a SYCL sampled_image instance
with the hostPointer parameter provided.
The ownership of this memory is given to
the constructed SYCL sampled_image for
the duration of its lifetime. The host ad-
dress is const, so the host accesses must
be read-only. Since, the hostPointer is
const, this image is only initialized with
this memory and there is no write after de-
struction. The element size of the con-
structed SYCL sampled_image will be de-
rived from the format parameter. The sam-
pling member function of the constructed
SYCL sampled_image will be derived from
the sampler parameter. The range of
the constructed SYCL sampled_image is
specified by the rangeRef parameter pro-
vided. The pitch of the constructed SYCL
sampled_image will be the pitch param-
eter provided. Zero or more proper-
ties can be provided to the constructed
SYCL sampled_image via an instance of
property_list.

sampled_image(std::shared_ptr<const void>&

hostPointer,

image_format format,

image_sampler sampler,

const range<dimensions> &rangeRef,

const property_list &propList = {})

Construct a SYCL sampled_image instance
with the hostPointer parameter provided.
The ownership of this memory is given to
the constructed SYCL sampled_image for
the duration of its lifetime. The host ad-
dress is const, so the host accesses must
be read-only. Since, the hostPointer is
const, this image is only initialized with
this memory and there is no write after its
destruction. The element size of the con-
structed SYCL sampled_image will be de-
rived from the format parameter. The sam-
pling member function of the constructed
SYCL sampled_image will be derived from
the sampler parameter. The range of
the constructed SYCL sampled_image is
specified by the rangeRef parameter pro-
vided. The pitch of the constructed SYCL
sampled_image will be the default size de-
termined by the SYCL runtime. Zero or
more properties can be provided to the con-
structed SYCL sampled_image via an in-
stance of property_list.

Continued on next page

Table 4.38: Constructors of the sampled_image class template.

136 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
sampled_image(std::shared_ptr<const void>&

hostPointer,

image_format format,

image_sampler sampler,

const range<dimensions> &rangeRef,

const range<dimensions-1> & pitch,

const property_list &propList = {})

Construct a SYCL sampled_image instance
with the hostPointer parameter provided.
The ownership of this memory is given
to the constructed SYCL sampled_image

for the duration of its lifetime. The
host address is const, so the host accesses
can be read-only. Since, the hostPointer

is const, this image is only initialized
with this memory and there is no write
after its destruction. The element size
of the constructed SYCL sampled_image

will be derived from the format pa-
rameter. The sampling member function
of the constructed SYCL sampled_image
will be derived from the sampler param-

eter. The range of the constructed SYCL
sampled_image is specified by the rangeRef
parameter provided. The pitch of the con-
structed SYCL sampled_image will be the
pitch parameter provided. Zero or more
properties can be provided to the constructed
SYCL sampled_image via an instance of
property_list.

End of table

Table 4.38: Constructors of the sampled_image class template.

Member function Description
range<dimensions> get_range()const Return a range object representing the size

of the image in terms of the number of el-
ements in each dimension as passed to the
constructor.

range<dimensions-1> get_pitch()const Available only when: dimensions > 1.
Return a range object representing the pitch
of the image in bytes.

size_t get_count()const Returns the total number of elements in the
image. Equal to get_range()[0] * ... *
get_range()[dimensions-1].

size_t get_size()const Returns the size of the image storage
in bytes. The number of bytes may
be greater than get_count()*element size
due to padding of elements, rows and slices
of the image for efficient access.

template<typename dataT, access::mode accessMode>

accessor<dataT, dimensions, accessMode, access::

target::sampled_image>

get_access(handler & commandGroupHandler)

Returns a valid accessor to the image with
the specified access mode and target. The
only valid types for dataT are int4, uint4,
float4 and half4.

Continued on next page

Table 4.39: Member functions of the sampled_image class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 137



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Member function Description
template<typename dataT, access::mode accessMode>

accessor<dataT, dimensions, accessMode, access::

target::host_sampled_image>

get_access()

Returns a valid accessor to the image with
the specified access mode and target. The
only valid types for dataT are int4, uint4,
float4 and half4.

End of table

Table 4.39: Member functions of the sampled_image class template.

4.7.3.3 Image properties

The properties that can be provided when constructing the SYCL unsampled_image and sampled_image classes
are describe in Table 4.40.

1 namespace sycl {

2 namespace property {

3 namespace image {

4 class use_host_ptr {

5 public:

6 use_host_ptr() = default;

7 };

8
9 class use_mutex {

10 public:

11 use_mutex(std::mutex &mutexRef);

12
13 std::mutex *get_mutex_ptr() const;

14 };

15
16 class context_bound {

17 public:

18 context_bound(context boundContext);

19
20 context get_context() const;

21 };

22 } // namespace image

23 } // namespace property

24 } // namespace sycl

Property Description
property::image::use_host_ptr The use_host_ptr property adds the re-

quirement that the SYCL runtime must not
allocate any memory for the image and in-
stead uses the provided host pointer directly.
This prevents the SYCL runtime from allo-
cating additional temporary storage on the
host.

Continued on next page

Table 4.40: Properties supported by the SYCL image classes.

138 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Property Description
property::image::use_mutex The property adds the requirement that the

memory which is owned by the SYCL image
can be shared with the application via a std
::mutex provided to the property. The std
::mutex is locked by the runtime whenever
the data is in use and unlocked otherwise.
Data is synchronized with hostData, when
the std::mutex is unlocked by the runtime.

property::image::context_bound The context_bound property adds the re-
quirement that the SYCL image can only be
associated with a single SYCL context that
is provided to the property.

End of table

Table 4.40: Properties supported by the SYCL image classes.

The constructors and member functions of the image property classes are listed in Tables 4.41 and 4.42

Constructor Description
property::image::use_host_ptr::use_host_ptr() Constructs a SYCL use_host_ptr property

instance.
property::image::use_mutex::use_mutex(std::mutex &

mutexRef)

Constructs a SYCL use_mutex property in-
stance with a reference to mutexRef param-
eter provided.

property::image::context_bound::context_bound(

context boundContext)

Constructs a SYCL context_bound prop-
erty instance with a copy of a SYCL
context.

End of table

Table 4.41: Constructors of the image property classes.

Member function Description
std::mutex *property::image::use_mutex::

get_mutex_ptr()const

Returns the std::mutex which was
specified when constructing this SYCL
use_mutex property.

context property::image::context_bound::get_context

()const

Returns the context which was spec-
ified when constructing this SYCL
context_bound property.

End of table

Table 4.42: Member functions of the image property classes.

4.7.3.4 Image synchronization rules

The rules are similar to those described in Section 4.7.2.3.

For the lifetime of the image object, the associated host memory must be left available to the SYCL runtime and

CHAPTER 4. SYCL PROGRAMMING INTERFACE 139



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

the contents of the associated host memory is unspecified until the image object is destroyed. If an image object
value is copied, then only a reference to the underlying image object is copied. The underlying image object is
reference-counted. Only after all image value references to the underlying image object have been destroyed is
the actual image object itself destroyed.

If an image object is constructed with associated host memory, then its destructor blocks until all operations in all
SYCL queues on that image object have completed. Any modifications to the image data will be copied back, if
necessary, to the associated host memory. Any errors occurring during destruction are reported to any associated
context’s asynchronous error handler. If an image object is constructed with a storage object, then the storage
object defines what synchronization or copying behavior occurs on image object destruction.

4.7.4 Sharing host memory with the SYCL data management
classes

In order to allow the SYCL runtime to do memory management and allow for data dependencies, there are two
classes defined, buffer and image. The default behavior for them is that a “raw” pointer is given during the
construction of the data management class, with full ownership to use it until the destruction of the SYCL object.

In this section we go in greater detail on sharing or explicitly not sharing host memory with the SYCL data classes,
and we will use the buffer class as an example. The same rules will apply to images as well.

4.7.4.1 Default behavior

When using a SYCL buffer, the ownership of the pointer passed to the constructor of the class is, by default,
passed to SYCL runtime, and that pointer cannot be used on the host side until the buffer or image is destroyed. A
SYCL application can use memory managed by a SYCL buffer within the buffer scope by using a host accessor
as defined in 4.7.6. However, there is no guarantee that the host accessor synchronizes with the original host
address used in its constructor.

The pointer passed in is the one used to copy data back to the host, if needed, before buffer destruction. The
memory pointed by host pointer will not be de-allocated by the runtime, and the data is copied back from the
device if there is a need for it.

4.7.4.2 SYCL ownership of the host memory

In the case where there is host memory to be used for initialization of data but there is no intention of using that
host memory after the buffer is destroyed, then the buffer can take full ownership of that host memory.

When a buffer owns the host pointer there is no copy back, by default. In this situation, the SYCL application
may pass a unique pointer to the host data, which will be then used by the runtime internally to initialize the data
in the device.

For example, the following could be used:

1 {

2 auto ptr = std::make_unique<int>(-1234);

3 buffer<int, 1> b { std::move(ptr), range { 1 } };

4 // ptr is not valid anymore.

5 // There is nowhere to copy data back

6 }

140 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

However, optionally the buffer::set_final_data() can be set to a std::weak_ptr to enable copying data back,
to another host memory address that is going to be valid after buffer construction.

1 {

2 auto ptr = std::make_unique<int>(-42);

3 buffer<int, 1> b { std::move(ptr), range { 1 } };

4 // ptr is not valid anymore.

5 // There is nowhere to copy data back.

6 // To get copy back, a location can be specified:

7 b.set_final_data(std::weak_ptr<int> { .... })

8 }

4.7.4.3 Shared SYCL ownership of the host memory

When an instance of std::shared_ptr is passed to the buffer constructor, then the buffer object and the devel-
oper’s application share the memory region. If the shared pointer is still used on the application’s side then the
data will be copied back from the buffer or image and will be available to the application after the buffer or image
is destroyed.

If the shared_ptr is not empty, the contents of the referenced memory are used to initialize the buffer. If the
shared_ptr is empty, then the buffer is created with uninitialized memory.

When the buffer is destroyed and the data have potentially been updated, if the number of copies of the shared
pointer outside the runtime is 0, there is no user-side shared pointer to read the data. Therefore the data is not
copied out, and the buffer destructor does not need to wait for the data processes to be finished from OpenCL, as
the outcome is not needed on the application’s side.

This behavior can be overridden using the set_final_data() member function of the buffer class, which will by
any means force the buffer destructor to wait until the data is copied to wherever the set_final_data() member
function has put the data (or not wait nor copy if set final data is nullptr).

1 {

2 std::shared_ptr<int> ptr { data };

3 {

4 buffer<int, 1> b { ptr, range<2>{ 10, 10 } };

5 // update the data

6 [...]

7 } // Data is copied back because there is an user side shared_ptr

8 }

1 {

2 std::shared_ptr<int> ptr { data };

3 {

4 buffer<int, 1> b { ptr, range<2>{ 10, 10 } };

5 // update the data

6 [...]

7 ptr.reset();

8 } // Data is not copied back, there is no user side shared_ptr.

9 }

CHAPTER 4. SYCL PROGRAMMING INTERFACE 141



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

4.7.5 Synchronization primitives
When the user wants to use the buffer simultaneously in the SYCL runtime and their own code (e.g. a multi-
threaded mechanism) and wants to use manual synchronization without host accessors, a std::mutex can be
passed to the buffer constructor via the right property.

The runtime promises to lock the mutex whenever the data is in use and unlock it when it no longer needs it.

1 {

2 std::mutex m;

3 auto shD = std::make_shared<int>(42)

4 sycl::buffer b { shD, { sycl::property::buffer::use_mutex { m } } };

5 {

6 std::lock_guard lck { m };

7 // User accesses the data

8 do_something(shD);

9 /* m is unlocked when lck goes out of scope, by normal end of this

10 block but also if an exception is thrown for example */

11 }

12 }

When the runtime releases the mutex the user is guaranteed that the data was copied back on the shared pointer
— unless the final data destination has been changed using the member function set_final_data().

4.7.6 Accessors
Accessors provide access to the data managed by a buffer or image, or to local memory allocated by the runtime.
Accessors allow users to define requirements to memory objects (see Section 3.7.1). Note that construction of an
accessor is what defines a memory object requirement, and these requirements are independent of whether there
are any uses of an accessor.

The SYCL accessor class template takes the following template parameters:

• A typename specifying the data type that the accessor is providing access to.

• An integer specifying the dimensionality of the accessor.

• A value of access_mode specifying the mode of access the accessor is providing.

• A value of target specifying the target of access the accessor is providing.

The SYCL host_accessor class template takes the following template parameters:

• A typename specifying the data type that the host_accessor is providing access to.

• An integer specifying the dimensionality of the accessor.

• A value of access_mode specifying the mode of access the host_accessor is providing.

The parameters described above determine the data an accessor provides access to and the way in which that
access is provided. This separation allows a SYCL runtime implementation to choose an efficient way to provide
access to the data within an execution schedule.

142 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Because of this the interfaces of the accessor and the host_accessor will be different depending on the possible
combinations of those parameters.

There are four categories of accessor; buffer device accesors (see Section 4.7.6.9), buffer host accesors (see
Section 4.7.6.10), local accessors (see Section 4.7.6.11) and image accessors (see Section 4.7.6.12).

4.7.6.1 Access targets

The access target of an accessor specifies what the accessor is providing access to.

The target enumeration, shown in Table 4.43, describes the potential targets of an accessor.

1 namespace sycl {

2 enum class target {

3 global_buffer,

4 constant_buffer,

5 local,

6 unsampled_image,

7 sampled_image,

8 host_buffer,

9 host_unsampled_image,

10 host_sampled_image

11 };

12
13 namespace access {

14 using sycl::target;

15 } // namespace access

16 } // namespace sycl

target Description
target::global_buffer Access buffer via global memory.
target::constant_buffer Access buffer via constant memory.
target::local Access work-group local memory.
target::unsampled_image Access an unsampled_image.
target::sampled_image Access a sampled_image.
target::host_buffer Access a buffer immediately in host code.
target::host_unsampled_image Access an unsampled_image immediately in

host code.
target::host_sampled_image Access a sampled_image immediately in

host code.
End of table

Table 4.43: Enumeration of access modes available to accessors.

4.7.6.2 Access modes

The access mode of an accessor specifies the kind of access that is being provided. This information is used by
the runtime to ensure that any data dependencies are resolved by enqueuing any data transfers before or after the
execution of a kernel. If a user wants to modify only certain parts of a buffer, preserving other parts of the buffer,
then the user should specify the exact sub-range of modification of the buffer.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 143



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

The access_mode enumeration, shown in Table 4.44, describes the potential modes of an accessor.

1 namespace sycl {

2 enum class access_mode {

3 read,

4 write,

5 read_write,

6 discard_write, // Deprecated in SYCL 2020

7 discard_read_write, // Deprecated in SYCL 2020

8 atomic // Deprecated in SYCL 2020

9 };

10
11 namespace access {

12 using sycl::access_mode;

13 }

14 } // namespace sycl

access mode Description
access_mode::read Read-only access.
access_mode::write Write-only access. Previous contents not

discarded.
access_mode::read_write Read and write access.
access_mode::discard_write Deprecated in SYCL 2020. Write-only ac-

cess. Previous contents discarded.
access_mode::discard_read_write Deprecated in SYCL 2020. Read and write

access. Previous contents discarded.
access_mode::atomic Read and write atomic access. Deprecated

in SYCL 2020.
End of table

Table 4.44: Enumeration of access modes available to accessors.

4.7.6.3 Access tags

The access mode and access target can be specified via passing tag types to an accessor or host_accessor
constructor. This type is used to deduce template arguments of a class.

The Table 4.45, describes the potential tag types and values modes.

SYCL implementations shall provide sufficient list of deduction guides for all template arguments to be deduced
for all accessor constructors except for the default constructor and dimension = 0. If accessor template arguments
are specified by user, but constructor is called with non-matching tag, the SYCL implementation must emit a
compilation error. If a const data type is specified as an accessor template argument and constructor is called
with write_only tag, the SYCL implementation must emit a compilation error.

1 namespace sycl {

2 template <access_mode>

3 struct mode_tag_t {

4 explicit mode_tag_t() = default;

5 };

6

144 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

7 inline constexpr mode_tag_t<access_mode::read> read_only{};

8 inline constexpr mode_tag_t<access_mode::read_write> read_write{};

9 inline constexpr mode_tag_t<access_mode::write> write_only{};

10
11 template <access_mode, target>

12 struct mode_target_tag_t {

13 explicit mode_target_tag_t() = default;

14 };

15
16 inline constexpr mode_target_tag_t<access_mode::read, target::constant_buffer> read_constant{};

17 } // namespace sycl

Tag type Tag value Access modes Accessor target

mode_tag_t read_write access_mode::read_write default

mode_tag_t read_only access_mode::read default

mode_tag_t write_only access_mode::write default

mode_target_tag_t read_constant access_mode::read target::
constant_buffer

Table 4.45: Enumeration of access tags available to accessors.

4.7.6.4 Device and host accessors

There are two types that SYCL applications can use to access data: accessor and host_accessor. Some forms of
accessor provide access to data from device kernels while other forms provide immediate access to data from the
host. All forms of host_accessor provide access to data from the host, though some forms provide immediate
access while other forms provide access to host data from host tasks.

If an accessor has the access target target::global_buffer, target::constant_buffer, target::local,
target::unsampled_image or target::sampled_image then it is considered a device accessor, and therefore can
only be used within a SYCL kernel function and must be associated with a command group. Creating a device
accessor is a non-blocking operation which defines a requirement on the device and adds the requirement to the
queue.

Some forms of host_accessor provide immediate access to data from the host, as does accessor when used with
access target target::host_unsampled_image, target::host_sampled_image or target::host_buffer. These
accessors can only be used from the host and their constructors block until their data is available on the host.

4.7.6.5 Placeholder accessor

Certain accessor types are allowed to be placeholder accessors. A placeholder accessor defines an accessor
instance that is not bound to a specific command group. The accessor defines only the type of the accessor (target
memory, access mode, base type, . . . ). When associated with a command group using the handler::require()
function, it defines a requirement for the command group. The same placeholder accessor can be required by
multiple command groups.

Only the following access targets are allowed in placeholder accessors:

• target::global_buffer

• target::constant_buffer

CHAPTER 4. SYCL PROGRAMMING INTERFACE 145



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

The enum class placeholder shown below can be used as an accessor template parameter isPlaceholder. This
accessor template parameter has been deprecated in SYCL 2020 and placeholder semantics apply regardless of
the value isPlaceholder.

1 namespace sycl {

2 enum class placeholder { // Deprecated in SYCL 2020

3 false_t,

4 true_t,

5 };

6 } // namespace sycl

4.7.6.6 Accessor declaration

The declaration for the accessor and the host_accessor classes is provided in Listing 4.1.

1 namespace sycl {

2 template <typename dataT,

3 int dimensions = 1,

4 access_mode accessmode =

5 (std::is_const_v<dataT> ? access_mode::read

6 : access_mode::read_write),

7 target accessTarget = target::global_buffer,

8 access::placeholder isPlaceholder = access::placeholder::false_t // Deprecated in SYCL

2020

9 >

10 class accessor;

11
12 template <typename dataT,

13 int dimensions = 1,

14 access_mode accessmode =

15 (std::is_const_v<dataT> ? access_mode::read

16 : access_mode::read_write)

17 >

18 class host_accessor;

19 } // namespace sycl

Listing 4.1: Accessor declaration.

4.7.6.7 Constness of the accessor data type

An accessor or host_accessor can be constructed with the underlying data type being const, resulting in an
accessor of const dataT. Having an accessor of const dataT is semantically equivalent to having an accessor of
access_mode::read: they are both read-only accessors.

Some access modes contradict the constness of the data. An underlying data type const dataT is only valid with
the following access modes:

• access_mode::read

• access_mode::read_write

Even when the access mode for an accessor is access_mode::read_write, adding const to dataT makes it a
read-only accessor. This ensures, among other things, that the read-only accessor will not trigger a copy-back that

146 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

access_mode::read_write normally would require.

Using const dataT makes the accessor read-only by default, as shown in the following example:

1 accessor<const int> acc;

2 static_assert(std::is_same_v<

3 decltype(acc),

4 accessor<const int, 1, access_mode::read, target::global_buffer>

5 >);

4.7.6.8 Implicit accessor conversions

It is valid to implicitly convert a writable accessor to a read-only one by doing at least one of the following:

• Converting data type from non-const dataT to const dataT

• Converting access mode from access_mode::read_write to access_mode::read

Because of the semantic equivalence defined in 4.7.6.7, the following accessor types can be implicitly converted
to one another:

• accessor<dataT, dimensions, access_mode::read, accessTarget>

• accessor<const dataT, dimensions, access_mode::read, accessTarget>

• accessor<const dataT, dimensions, access_mode::read_write, accessTarget>

And the following host_accessor types can be implicitly converted to one another:

• host_accessor<dataT, dimensions, access_mode::read, accessTarget>

• host_accessor<const dataT, dimensions, access_mode::read, accessTarget>

• host_accessor<const dataT, dimensions, access_mode::read_write, accessTarget>

4.7.6.9 Device buffer accessor

A device buffer accessor provides access to a SYCL buffer instance on a device. A SYCL accessor is considered
a device buffer accessor if it has the access target target::global_buffer, or target::constant_buffer.

A device buffer accessor can provide access to memory managed by a SYCL buffer class via either global
memory or constant memory, corresponding to the access targets target::global_buffer and target::
constant_buffer respectively. A device buffer accessor accessing a SYCL buffer via constant memory is re-
stricted by the available constant memory available on the SYCL device being executed on.

The data type of an accessor must match that of the SYCL buffer which it is accessing.

The dimensionality of a buffer accessor must match that of the SYCL buffer which it is accessing, with the
exception of 0 in which case the dimensionality of the SYCL buffer must be 1.

There are three ways a SYCL accessor can provide access to the elements of a SYCL buffer. Firstly by passing
a SYCL id instance of the same dimensionality as the SYCL accessor subscript operator. Secondly by passing a
single size_t value to multiple consecutive subscript operators (one for each dimension of the SYCL accessor,
for example acc[id0][id1][id2]). Finally, in the case of the SYCL accessor being 0 dimensions, by triggering

CHAPTER 4. SYCL PROGRAMMING INTERFACE 147



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

the implicit conversion operator. Whenever a multi-dimensional index is passed to a SYCL accessor the linear
index is calculated based on the index {id0, id1, id2} provided and the range of the SYCL accessor {r0, r1,
r2} according to row-major ordering as follows:

id2 + (id1 · r2) + (id0 · r2 · r1) (4.3)

An accessor can optionally provide access to a sub range of a SYCL buffer by providing a range and offset
on construction. In this case the SYCL runtime will only guarantee the latest copy of the data is available in
that given range and any modifications outside that range are considered undefined behavior. This allows the
SYCL runtime to perform optimizations such as reducing copies between devices. The indexing performed when
a SYCL accessor provides access to the elements of a SYCL buffer is unaffected, i.e, the accessor will continue
to index from {0,0,0}. This allows the offset to be provided either manually or via the parallel_for as shown
in Listing 4.2.

1 myQueue.submit([&](handler &cgh) {

2 auto singleRange = range<3>(8, 16, 16);

3 auto offset = id<3>(8, 0, 0);

4 // We define the subset of the accessor we require for the kernel

5 accessor ptr(syclBuffer, cgh, singleRange, offset);

6 // We offset the kernel by the same value to match indexes

7 cgh.parallel_for(singleRange, offset, [=](item<3> itemID) {

8 ptr[itemID.get_linear_id()] = 2;

9 });

10 });

Listing 4.2: Using an accessor to access a sub-range.

An accessorwith access target target::global_buffer can optionally provide atomic access to a SYCL buffer,
using the access mode access_mode::atomic, in which case all operators which return an element of the SYCL
buffer return an instance of the deprecated cl::sycl::atomic class. This functionality is provided for backwards
compatibility and will be removed in a future version of SYCL.

A device buffer accessor meets the C++ requirement of ContiguousContainer and ReversibleContainer. The
exception to this is that the device buffer accessor destructor doesn’t destroy any elements or free the memory,
because an accessor doesn’t own the underlying data. The iterator for the container interface is the same pointer
type as obtained by calling get_multi_ptr<access::decorated::no>(). For multidimensional accessors the
iterator linearizes the data according to 4.3.

The full list of capabilities that device buffer accessors can support is described in 4.46.

Access target Access modes Data types Dimensionalities

global_buffer read
write
read_write
atomic

The data type of the SYCL buffer be-
ing accessed.

Between 0 and 3 (inclusive).

constant_buffer read The data type of the SYCL buffer be-
ing accessed.

Between 0 and 3 (inclusive).

Table 4.46: Description of all the device buffer accessor capabilities.

148 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

4.7.6.9.1 Device buffer accessor interface

A synopsis of the SYCL accessor class template buffer specialization is provided below. The member types for
this accessor specialization are listed in Tables 4.47. The constructors for this accessor specialization are listed
in Tables 4.48. The member functions for this accessor specialization are listed in Tables 4.49. The additional
common special member functions and common member functions are listed in 4.5.3 in Tables 4.1 and 4.2,
respectively. For valid implicit conversions between accessor types please refer to 4.7.6.8. Additionally, accessors
of the same type must be equality comparable not only on the host application, but also within SYCL kernel
functions.

1 namespace sycl {

2 template <typename dataT,

3 int dimensions,

4 access::mode accessmode,

5 access::target accessTarget,

6 access::placeholder isPlaceholder>

7 class accessor {

8 public:

9 template <access::decorated IsDecorated>

10 using accessor_ptr = // Corresponds to the target address space,

11 __pointer_class__; // is pointer-to-const

12 // when (accessmode == access::mode::read);

13 using value_type = // const dataT when (accessmode == access::mode::read),

14 __value_type__; // dataT otherwise

15 using reference = // const dataT& when (accessmode == access::mode::read),

16 __reference_type__; // dataT& otherwise

17 using const_reference = const dataT &;

18 using iterator = // Corresponds to the target address space,

19 __pointer_type__; // is pointer-to-const

20 // when (accessmode == access::mode::read)

21 using const_iterator =

22 __pointer_to_const_type__; // Corresponds to the target address space

23 using reverse_iterator = std::reverse_iterator<iterator>;

24 using const_reverse_iterator = std::reverse_iterator<const_iterator>;

25 using difference_type =

26 typename std::iterator_traits<iterator>::difference_type;

27 using size_type = size_t;

28
29 accessor();

30
31 /* Available only when: (dimensions == 0) */

32 template <typename AllocatorT>

33 accessor(buffer<dataT, 1, AllocatorT> &bufferRef,

34 const property_list &propList = {});

35
36 /* Available only when: (dimensions == 0) */

37 template <typename AllocatorT>

38 accessor(buffer<dataT, 1, AllocatorT> &bufferRef,

39 handler &commandGroupHandlerRef, const property_list &propList = {});

40
41 /* Available only when: (dimensions > 0) */

42 template <typename AllocatorT>

43 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

44 const property_list &propList = {});

CHAPTER 4. SYCL PROGRAMMING INTERFACE 149



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

45
46 /* Available only when: (dimensions > 0) */

47 template <typename AllocatorT, typename TagT>

48 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef, TagT tag,

49 const property_list &propList = {});

50
51 /* Available only when: (dimensions > 0) */

52 template <typename AllocatorT>

53 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

54 handler &commandGroupHandlerRef, const property_list &propList = {});

55
56 /* Available only when: (dimensions > 0) */

57 template <typename AllocatorT, typename TagT>

58 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

59 handler &commandGroupHandlerRef, TagT tag,

60 const property_list &propList = {});

61
62 /* Available only when: (dimensions > 0) */

63 template <typename AllocatorT>

64 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

65 range<dimensions> accessRange, const property_list &propList = {});

66
67 /* Available only when: (dimensions > 0) */

68 template <typename AllocatorT, typename TagT>

69 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

70 range<dimensions> accessRange, TagT tag,

71 const property_list &propList = {});

72
73 /* Available only when: (dimensions > 0) */

74 template <typename AllocatorT>

75 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

76 range<dimensions> accessRange, id<dimensions> accessOffset,

77 const property_list &propList = {});

78
79 /* Available only when: (dimensions > 0) */

80 template <typename AllocatorT, typename TagT>

81 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

82 range<dimensions> accessRange, id<dimensions> accessOffset,

83 TagT tag, const property_list &propList = {});

84
85 /* Available only when: (dimensions > 0) */

86 template <typename AllocatorT>

87 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

88 handler &commandGroupHandlerRef, range<dimensions> accessRange,

89 const property_list &propList = {});

90
91 /* Available only when: (dimensions > 0) */

92 template <typename AllocatorT, typename TagT>

93 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

94 handler &commandGroupHandlerRef, range<dimensions> accessRange,

95 TagT tag, const property_list &propList = {});

96
97 /* Available only when: (dimensions > 0) */

98 template <typename AllocatorT>

99 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

150 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

100 handler &commandGroupHandlerRef, range<dimensions> accessRange,

101 id<dimensions> accessOffset, const property_list &propList = {});

102
103 /* Available only when: (dimensions > 0) */

104 template <typename AllocatorT, typename TagT>

105 accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

106 handler &commandGroupHandlerRef, range<dimensions> accessRange,

107 id<dimensions> accessOffset, TagT tag,

108 const property_list &propList = {});

109
110 /* -- common interface members -- */

111
112 void swap(accessor &other);

113
114 bool is_placeholder() const;

115
116 size_type byte_size() const noexcept;

117
118 size_type size() const noexcept;

119
120 size_type max_size() const noexcept;

121
122 size_type get_count() const noexcept;

123
124 bool empty() const noexcept;

125
126 /* Available only when: dimensions > 0 */

127 range<dimensions> get_range() const;

128
129 /* Available only when: dimensions > 0 */

130 id<dimensions> get_offset() const;

131
132 /* Available only when: (dimensions == 0) */

133 operator reference() const;

134
135 /* Available only when: (dimensions > 0) */

136 reference operator[](id<dimensions> index) const;

137
138 /* Deprecated in SYCL 2020

139 Available only when: accessMode == access::mode::atomic && dimensions == 0 */

140 operator cl::sycl::atomic<dataT, access::address_space::global_space> () const;

141
142 /* Deprecated in SYCL 2020

143 Available only when: accessMode == access::mode::atomic && dimensions > 0 */

144 cl::sycl::atomic<dataT, access::address_space::global_space> operator[](

145 id<dimensions> index) const;

146
147 /* Available only when: dimensions > 1 */

148 __unspecified__ &operator[](size_t index) const;

149
150 std::add_pointer_t<value_type> get_pointer() const noexcept;

151
152 template <access::decorated IsDecorated>

153 accessor_ptr<IsDecorated> get_multi_ptr() const noexcept;

154

CHAPTER 4. SYCL PROGRAMMING INTERFACE 151



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

155 iterator data() const noexcept;

156
157 iterator begin() const noexcept;

158
159 iterator end() const noexcept;

160
161 const_iterator cbegin() const noexcept;

162
163 const_iterator cend() const noexcept;

164 };

165
166 } // namespace sycl

Listing 4.3: Device accessor class for buffers.

Member types Description
value_type If (accessmode == access_mode::read),

equal to const dataT. In other cases equal
to dataT.

template <access::decorated IsDecorated>

accessor_ptr

If (accessTarget == access::target::

global_buffer): multi_ptr<value_type,
access::address_space::global_space,

IsDecorated>.
If (accessTarget == access::target

::constant_buffer): multi_ptr<

value_type, access::address_space

::constant_space, IsDecorated>.
reference If (accessmode == access_mode::read),

equal to const dataT&. In other cases equal
to dataT&.

const_reference const dataT&

iterator If (accessTarget == access::target

::global_buffer): raw_global_ptr<

value_type>.
If (accessTarget == access::target::

constant_buffer): raw_constant_ptr<

value_type>.
const_iterator If (accessTarget == access::target::

global_buffer): raw_global_ptr<const
value_type>.
If (accessTarget == access::target::

constant_buffer): raw_constant_ptr<

const value_type>.
reverse_iterator Iterator adaptor that reverses the direction of

iterator.
const_reverse_iterator Iterator adaptor that reverses the direction of

const_iterator.
difference_type typename std::iterator_traits<

iterator>::difference_type

size_type size_t

End of table

Table 4.47: Member types of the accessor class template buffer specialization.
152 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
accessor() Constructs an empty accessor. Fulfills the

following post-conditions:
• (empty()== true)
• All size queries return 0.
• The only iterator that can be obtained

is nullptr.
• Trying to access the underlying mem-

ory is undefined behavior.
A default constructed placeholder accessor
can be passed to a SYCL kernel, but it is not
valid to register it with the command group
handler.

accessor(buffer<dataT, 1, AllocatorT> &bufferRef,

const property_list &propList = {})

Available only when: (dimensions == 0).
Constructs a placeholder accessor instance
for accessing the first element of a SYCL
buffer. The optional property_list pro-
vides properties for the constructed SYCL
accessor object.

accessor(buffer<dataT, 1, AllocatorT> &bufferRef,

handler &commandGroupHandlerRef,

const property_list &propList = {})

Available only when: (dimensions == 0).
Constructs a SYCL accessor instance
for accessing the first element of a SYCL
buffer within a SYCL kernel function
on the SYCL queue associated with
commandGroupHandlerRef. The optional
property_list provides properties for the
constructed SYCL accessor object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a placeholder accessor for ac-
cessing a SYCL buffer. The optional
property_list provides properties for the
constructed SYCL accessor object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a placeholder accessor for ac-
cessing a SYCL buffer. The tag is used to
deduce template arguments of the accessor
as described in Section 4.7.6.3. The optional
property_list provides properties for the
constructed SYCL accessor object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

handler &commandGroupHandlerRef,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a SYCL accessor instance for
accessing a SYCL buffer within a SYCL
kernel function on the SYCL queue asso-
ciated with commandGroupHandlerRef. The
optional property_list provides properties
for the constructed SYCL accessor object.

Continued on next page

Table 4.48: Constructors of the accessor class template buffer specialization.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 153



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

handler &commandGroupHandlerRef,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a SYCL accessor instance for
accessing a SYCL buffer within a SYCL
kernel function on the SYCL queue asso-
ciated with commandGroupHandlerRef. The
tag is used to deduce template arguments of
the accessor as described in Section 4.7.6.3.
The optional property_list provides prop-
erties for the constructed SYCL accessor
object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

range<dimensions> accessRange,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a placeholder accessor for ac-
cessing a range of a SYCL buffer. The
optional property_list provides properties
for the constructed SYCL accessor object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

range<dimensions> accessRange,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a placeholder accessor for ac-
cessing a range of a SYCL buffer. The
tag is used to deduce template arguments of
the accessor as described in Section 4.7.6.3.
The optional property_list provides prop-
erties for the constructed SYCL accessor
object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

range<dimensions> accessRange,

id<dimensions> accessOffset,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a placeholder accessor for ac-
cessing a range of a SYCL buffer. The
optional property_list provides properties
for the constructed SYCL accessor object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

range<dimensions> accessRange,

id<dimensions> accessOffset,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a placeholder accessor for ac-
cessing a range of a SYCL buffer. The
tag is used to deduce template arguments of
the accessor as described in Section 4.7.6.3.
The optional property_list provides prop-
erties for the constructed SYCL accessor
object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

handler &commandGroupHandlerRef,

range<dimensions> accessRange,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a SYCL accessor instance for
accessing a range of SYCL buffer within
a SYCL kernel function on the SYCL queue
associated with commandGroupHandlerRef,

specified by accessRange. The optional
property_list provides properties for the
constructed SYCL accessor object.

Continued on next page

Table 4.48: Constructors of the accessor class template buffer specialization.

154 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

handler &commandGroupHandlerRef,

range<dimensions> accessRange,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a SYCL accessor instance for
accessing a range of SYCL buffer within
a SYCL kernel function on the SYCL queue
associated with commandGroupHandlerRef,

specified by accessRange. The tag is
used to deduce template arguments of the
accessor as described in Section 4.7.6.3.
The optional property_list provides prop-
erties for the constructed SYCL accessor
object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

handler &commandGroupHandlerRef,

range<dimensions> accessRange,

id<dimensions> accessOffset,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a SYCL accessor in-
stance for accessing a range of SYCL
buffer within a SYCL kernel function
on the SYCL queue associated with
commandGroupHandlerRef, specified by
accessRange and accessOffset. The
optional property_list provides properties
for the constructed SYCL accessor object.

accessor(buffer<dataT, dimensions, AllocatorT> &

bufferRef,

handler &commandGroupHandlerRef,

range<dimensions> accessRange,

id<dimensions> accessOffset,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a SYCL accessor in-
stance for accessing a range of SYCL
buffer within a SYCL kernel function
on the SYCL queue associated with
commandGroupHandlerRef, specified by
accessRange and accessOffset. The tag is
used to deduce template arguments of the
accessor as described in Section 4.7.6.3.
The optional property_list provides prop-
erties for the constructed SYCL accessor
object.

End of table

Table 4.48: Constructors of the accessor class template buffer specialization.

Member function Description
void swap(accessor &other); Swaps the contents of the current accessor

with the contents of other.
bool is_placeholder()const Returns true if (accessTarget != target

::host_buffer) and the accessor has been
constructed without a handler. Otherwise re-
turns false.

size_type byte_size()const noexcept Returns the size in bytes of the region of a
SYCL buffer that this SYCL accessor is
accessing.

Continued on next page

Table 4.49: Member functions of the accessor class template buffer specialization.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 155



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Member function Description
size_type size()const noexcept Returns the number of elements in the re-

gion of a SYCL buffer that this SYCL
accessor is accessing.

size_type max_size()const noexcept Returns the maximum number of elements
any accessor of this type would be able to
access.

size_type get_count()const noexcept Returns the same as size().
bool empty()const noexcept Returns true iff (size()== 0).
range<dimensions> get_range()const Available only when: dimensions > 0.

Returns a range object which represents the
number of elements of dataT per dimension
that this accessor may access.
The range object returned must equal to the
range of the buffer this accessor is associ-
ated with, unless a range was explicitly spec-
ified when this accessor was constructed.

id<dimensions> get_offset()const Available only when: dimensions > 0.
Returns an id object which represents the
starting point in number of elements of
dataT for the range that this accessor may
access.
The id object returned must equal to id{0,
0, 0}, unless an offset was explicitly speci-
fied when this accessor was constructed.

operator reference()const Available only when: (dimensions == 0).
Returns a reference to the element stored
within the SYCL buffer this SYCL
accessor is accessing.

reference operator[](id<dimensions> index)const Available only when: (dimensions > 0).
Returns a reference to the element stored
within the SYCL buffer this SYCL
accessor is accessing at the index specified
by index.

operator const dataT &()const Available only when: accessMode ==

access_mode::read && dimensions == 0)

.
Returns a const reference to the element
stored within the SYCL buffer this SYCL
accessor is accessing.

const_reference operator[](id<dimensions> index)

const

Available only when: accessMode ==

access_mode::read && dimensions > 0).
Returns a const reference to the element
stored within the SYCL buffer this SYCL
accessor is accessing at the index specified
by index.

Continued on next page

Table 4.49: Member functions of the accessor class template buffer specialization.

156 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Member function Description
operator cl::sycl::atomic<dataT,

access::address_space::global_space> ()const

Deprecated in SYCL 2020.
Available only when: accessMode ==

access_mode::atomic && dimensions ==

0).
Returns an instance of cl::sycl::atomic
of type dataT providing atomic access to
the element stored within the SYCL buffer
this SYCL accessor is accessing.

cl::sycl::atomic<dataT, access::address_space::

global_space>

operator[](id<dimensions> index)const

Deprecated in SYCL 2020.
Available only when: accessMode ==

access_mode::atomic && dimensions >

0).
Returns an instance of cl::sycl::atomic
of type dataT providing atomic access to the
element stored within the SYCL buffer this
SYCL accessor is accessing at the index
specified by index.

__unspecified__ &operator[](size_t index)const Available only when: dimensions > 1.
Returns an instance of an undefined inter-
mediate type representing a SYCL accessor
of the same type as this SYCL accessor,

with the dimensionality dimensions-1 and
containing an implicit SYCL id with index
dimensions set to index. The intermedi-
ate type returned must provide all available
subscript operators which take a size_t pa-
rameter defined by the SYCL accessor class
that are appropriate for the type it represents
(including this subscript operator).

std::add_pointer_t<value_type> get_pointer()const

noexcept

Returns a pointer to the memory this SYCL
accessor memory is accessing.

template <access::decorated IsDecorated>

accessor_ptr<IsDecorated> get_multi_ptr()const

noexcept

Returns a multi_ptr to the memory this
SYCL accessor memory is accessing.

iterator data()const noexcept Returns a pointer to the memory this SYCL
accessor memory is accessing.

iterator begin()const noexcept Returns an iterator to the first element of the
memory within the access range.

iterator end()const noexcept Returns an iterator that points past the last
element of the memory within the access
range.

const_iterator cbegin()const noexcept Returns a const iterator to the first element
of the memory within the access range.

const_iterator cend()const noexcept Returns a const iterator that points past the
last element of the memory within the access
range.

Continued on next page

Table 4.49: Member functions of the accessor class template buffer specialization.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 157



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Member function Description
reverse_iterator rbegin()const noexcept Returns an iterator adaptor to the last ele-

ment of the memory within the access range.
reverse_iterator rend()const noexcept Returns an iterator adaptor that points before

the first element of the memory within the
access range.

const_reverse_iterator crbegin()const noexcept Returns a const iterator adaptor to the last
element of the memory within the access
range.

const_reverse_iterator crend()const noexcept Returns a const iterator adaptor that points
before the first element of the memory
within the access range.

End of table

Table 4.49: Member functions of the accessor class template buffer specialization.

4.7.6.9.2 Device buffer accessor properties

The properties that can be provided when constructing the SYCL accessor class are describe in Table 4.50.

1 namespace sycl {

2 namespace property {

3 struct noinit {};

4 } // namespace property

5
6 inline constexpr property::noinit noinit;

7 } // namespace sycl

Property Description
property::noinit The noinit property notifies the SYCL run-

time that previous contents of a buffer can be
discarded.
Replaces deprecated discard_write and
discard_read_write access modes.

End of table

Table 4.50: Properties supported by the SYCL accessor class.

The constructors of the accessor property classes are listed in Table 4.51.

Constructor Description
property::noinit::noinit() Constructs a SYCL noinit property in-

stance.
End of table

Table 4.51: Constructors of the accessor property classes.

158 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

4.7.6.10 Host buffer accessor

A SYCL host_accessor is a host buffer accessor, which provides access to a SYCL buffer instance on a host.

A host_accessor can be used in either of two ways. If the accessor is used from application scope, it must be
constructed without a command group handler object. In this case, the constructor blocks until the requested
memory is copied to the host, and the accessor provides immediate access to that memory.

A host_accessor can also be used inside command group scope for a host task (see Section 4.11). In this case,
it must be constructed with the command group handler for the host task. The constructor does not block in this
case. Instead, the accessor provides a requisite for scheduling the host task.

If the SYCL buffer this SYCL host_accessor is accessing was constructed with the property property::buffer
::use_host_ptr the address of the memory accessed on the host must be the address the SYCL buffer was
constructed with, otherwise the SYCL runtime is free to allocate temporary memory to provide access on the
host.

The data type of a host buffer accessor must match that of the SYCL buffer which it is accessing.

The dimensionality of a buffer accessor must match that of the SYCL buffer which it is accessing, with the
exception of 0 in which case the dimensionality of the SYCL buffer must be 1.

There are three ways a SYCL host_accessor can provide access to the elements of a SYCL buffer. Firstly by
passing a SYCL id instance of the same dimensionality as the SYCL host_accessor subscript operator. Secondly
by passing a single size_t value to multiple consecutive subscript operators (one for each dimension of the SYCL
host_accessor, for example acc[id0][id1][id2]). Finally, in the case of the SYCL host_accessor being 0
dimensions, by triggering the implicit conversion operator. Whenever a multi-dimensional index is passed to a
SYCL host_accessor the linear index is calculated based on the index {id0, id1, id2} provided and the range
of the SYCL host_accessor {r0, r1, r2} according to row-major ordering as follows:

id2 + (id1 · r2) + (id0 · r2 · r1) (4.4)

A host buffer accessor can optionally provide access to a sub range of a SYCL buffer by providing a range and
offset on construction. In this case the SYCL runtime will only guarantee the latest copy of the data is available
in that given range and any modifications outside that range are considered undefined behavior. The indexing
performed when a SYCL host_accessor provides access to the elements of a SYCL buffer is unaffected, i.e, the
accessor will continue to index from {0,0,0}.

A host buffer accessor meets the C++ requirement of ContiguousContainer and ReversibleContainer. The
exception to this is that the device buffer accessor destructor doesn’t destroy any elements or free the memory,
because a host buffer accessor doesn’t own the underlying data. For multidimensional accessors the iterator
linearizes the data according to 4.3.

4.7.6.10.1 Host buffer accessor interface

A synopsis of the SYCL host_accessor class template buffer specialization is provided below. The member
types for this host_accessor specialization are listed in Tables 4.52. The constructors for this host_accessor
specialization are listed in Tables 4.53. The member functions for this host_accessor specialization are listed in
Tables 4.54. The additional common special member functions and common member functions are listed in 4.5.3
in Tables 4.1 and 4.2, respectively. For valid implicit conversions between accessor types please refer to 4.7.6.8.
Additionally, accessors of the same type must be equality comparable.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 159



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

1 namespace sycl {

2 template <typename dataT,

3 int dimensions,

4 access::mode accessmode>

5 class host_accessor {

6 public:

7 using value_type = // const dataT when (accessmode == access::mode::read),

8 __value_type__; // dataT otherwise

9 using reference = // const dataT& when (accessmode == access::mode::read),

10 __reference_type__; // dataT& otherwise

11 using const_reference = const dataT &;

12 using iterator = // const dataT* when (accessmode == access::mode::read),

13 __pointer_type__; // dataT* otherwise

14 using const_iterator = const dataT *;

15 using difference_type =

16 typename std::iterator_traits<iterator>::difference_type;

17 using size_type = size_t;

18
19 host_accessor();

20
21 /* Available only when: (dimensions == 0) */

22 template <typename AllocatorT>

23 host_accessor(buffer<dataT, 1, AllocatorT> &bufferRef,

24 const property_list &propList = {});

25
26 /* Available only when: (dimensions == 0) */

27 template <typename AllocatorT>

28 host_accessor(buffer<dataT, 1, AllocatorT> &bufferRef,

29 handler &commandGroupHandlerRef, const property_list &propList = {});

30
31 /* Available only when: (dimensions > 0) */

32 template <typename AllocatorT>

33 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

34 const property_list &propList = {});

35
36 /* Available only when: (dimensions > 0) */

37 template <typename AllocatorT, typename TagT>

38 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef, TagT tag,

39 const property_list &propList = {});

40
41 /* Available only when: (dimensions > 0) */

42 template <typename AllocatorT>

43 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

44 handler &commandGroupHandlerRef, const property_list &propList = {});

45
46 /* Available only when: (dimensions > 0) */

47 template <typename AllocatorT, typename TagT>

48 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

49 handler &commandGroupHandlerRef, TagT tag,

50 const property_list &propList = {});

51
52 /* Available only when: (dimensions > 0) */

53 template <typename AllocatorT>

54 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

55 range<dimensions> accessRange, const property_list &propList = {});

160 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

56
57 /* Available only when: (dimensions > 0) */

58 template <typename AllocatorT, typename TagT>

59 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

60 range<dimensions> accessRange, TagT tag,

61 const property_list &propList = {});

62
63 /* Available only when: (dimensions > 0) */

64 template <typename AllocatorT>

65 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

66 range<dimensions> accessRange, id<dimensions> accessOffset,

67 const property_list &propList = {});

68
69 /* Available only when: (dimensions > 0) */

70 template <typename AllocatorT, typename TagT>

71 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

72 range<dimensions> accessRange, id<dimensions> accessOffset,

73 TagT tag, const property_list &propList = {});

74
75 /* Available only when: (dimensions > 0) */

76 template <typename AllocatorT>

77 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

78 handler &commandGroupHandlerRef, range<dimensions> accessRange,

79 const property_list &propList = {});

80
81 /* Available only when: (dimensions > 0) */

82 template <typename AllocatorT, typename TagT>

83 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

84 handler &commandGroupHandlerRef, range<dimensions> accessRange,

85 TagT tag, const property_list &propList = {});

86
87 /* Available only when: (dimensions > 0) */

88 template <typename AllocatorT>

89 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

90 handler &commandGroupHandlerRef, range<dimensions> accessRange,

91 id<dimensions> accessOffset, const property_list &propList = {});

92
93 /* Available only when: (dimensions > 0) */

94 template <typename AllocatorT, typename TagT>

95 host_accessor(buffer<dataT, dimensions, AllocatorT> &bufferRef,

96 handler &commandGroupHandlerRef, range<dimensions> accessRange,

97 id<dimensions> accessOffset, TagT tag,

98 const property_list &propList = {});

99
100 /* -- common interface members -- */

101
102 void swap(host_accessor &other);

103
104 size_type byte_size() const noexcept;

105
106 size_type size() const noexcept;

107
108 size_type max_size() const noexcept;

109
110 bool empty() const noexcept;

CHAPTER 4. SYCL PROGRAMMING INTERFACE 161



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

111
112 /* Available only when: dimensions > 0 */

113 range<dimensions> get_range() const;

114
115 /* Available only when: dimensions > 0 */

116 id<dimensions> get_offset() const;

117
118 /* Available only when: (dimensions == 0) */

119 operator reference() const;

120
121 /* Available only when: (dimensions > 0) */

122 reference operator[](id<dimensions> index) const;

123
124 /* Available only when: dimensions > 1 */

125 __unspecified__ &operator[](size_t index) const;

126
127 iterator data() const noexcept;

128
129 iterator begin() const noexcept;

130
131 iterator end() const noexcept;

132
133 const_iterator cbegin() const noexcept;

134
135 const_iterator cend() const noexcept;

136 };

137 } // namespace sycl

Listing 4.4: Host accessor class for buffers.

Member types Description
value_type If (accessmode == access_mode::read),

equal to const dataT. In other cases equal
to dataT.

reference If (accessmode == access_mode::read),
equal to const dataT&. In other cases equal
to dataT&.

const_reference const dataT&

iterator If (accessmode == access_mode::read),
equal to const dataT*. In other cases equal
to dataT*.

const_iterator const dataT*

difference_type typename std::iterator_traits<

iterator>::difference_type

size_type size_t

End of table

Table 4.52: Member types of the host_accessor class template .

162 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
host_accessor() Constructs an empty accessor. Fulfills the

following post-conditions:
• (empty()== true)
• All size queries return 0.
• The only iterator that can be obtained

is nullptr.
• Trying to access the underlying mem-

ory is undefined behavior.

host_accessor(buffer<dataT, 1, AllocatorT> &

bufferRef,

const property_list &propList = {})

Available only when: (dimensions == 0).
Constructs a host_accessor instance for ac-
cessing the first element of a SYCL buffer

immediately on the host. The optional
property_list provides properties for the
constructed SYCL host_accessor object.

host_accessor(buffer<dataT, 1, AllocatorT> &

bufferRef,

handler &commandGroupHandlerRef,

const property_list &propList = {})

Available only when: (dimensions == 0).
Constructs a host_accessor for accessing
the first element of a SYCL buffer inside a
host task. The optional property_list pro-
vides properties for the constructed SYCL
host_accessor object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing a
SYCL buffer immediately on the host. The
optional property_list provides properties
for the constructed SYCL host_accessor
object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing a
SYCL buffer immediately on the host. The
tag is used to deduce template arguments
of the host_accessor as described in Sec-
tion 4.7.6.3. The optional property_list

provides properties for the constructed
SYCL host_accessor object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

handler &commandGroupHandlerRef,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing
a SYCL buffer inside a host task. The
optional property_list provides properties
for the constructed SYCL host_accessor
object.

Continued on next page

Table 4.53: Constructors of the host_accessor class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 163



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

handler &commandGroupHandlerRef,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing
a SYCL buffer inside a host task. The
tag is used to deduce template arguments
of the host_accessor as described in Sec-
tion 4.7.6.3. The optional property_list

provides properties for the constructed
SYCL host_accessor object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

range<dimensions> accessRange,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing
a range of a SYCL buffer immediately on
the host. The optional property_list pro-
vides properties for the constructed SYCL
host_accessor object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

range<dimensions> accessRange,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing
a range of a SYCL buffer immediately on
the host. The tag is used to deduce tem-
plate arguments of the host_accessor as
described in Section 4.7.6.3. The optional
property_list provides properties for the
constructed SYCL host_accessor object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

range<dimensions> accessRange,

id<dimensions> accessOffset,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing
a range of a SYCL buffer immediately
on the host. The range is specified by
accessRange and accessOffset. The op-
tional property_list provides properties
for the constructed SYCL host_accessor
object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

range<dimensions> accessRange,

id<dimensions> accessOffset,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing
a range of a SYCL buffer immediately
on the host. The range is specified by
accessRange and accessOffset. The tag
is used to deduce template arguments of

the host_accessor as described in Sec-
tion 4.7.6.3. The optional property_list

provides properties for the constructed
SYCL host_accessor object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

handler &commandGroupHandlerRef,

range<dimensions> accessRange,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing
a range of a SYCL buffer inside a host
task. The optional property_list pro-
vides properties for the constructed SYCL
host_accessor object.

Continued on next page

Table 4.53: Constructors of the host_accessor class template.

164 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

handler &commandGroupHandlerRef,

range<dimensions> accessRange,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing
a range of a SYCL buffer inside a host
task. The tag is used to deduce tem-
plate arguments of the host_accessor as
described in Section 4.7.6.3. The optional
property_list provides properties for the
constructed SYCL host_accessor object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

handler &commandGroupHandlerRef,

range<dimensions> accessRange,

id<dimensions> accessOffset,

const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing a
range of a SYCL buffer inside a host task.
The range is specified by accessRange and
accessOffset. The optional property_list

provides properties for the constructed
SYCL host_accessor object.

host_accessor(buffer<dataT, dimensions, AllocatorT>

&bufferRef,

handler &commandGroupHandlerRef,

range<dimensions> accessRange,

id<dimensions> accessOffset,

TagT tag, const property_list &propList = {})

Available only when: (dimensions > 0).
Constructs a host_accessor for accessing a
range of a SYCL buffer inside a host task.
The range is specified by accessRange and
accessOffset. The tag is used to deduce
template arguments of the host_accessor as
described in Section 4.7.6.3. The optional
property_list provides properties for the
constructed SYCL host_accessor object.

End of table

Table 4.53: Constructors of the host_accessor class template.

Member function Description
void swap(host_accessor &other); Swaps the contents of the current accessor

with the contents of other.
size_type byte_size()const noexcept Returns the size in bytes of the re-

gion of a SYCL buffer that this SYCL
host_accessor is accessing.

size_type size()const noexcept Returns the number of elements in the re-
gion of a SYCL buffer that this SYCL
host_accessor is accessing.

size_type max_size()const noexcept Returns the maximum number of elements
any accessor of this type would be able to
access.

bool empty()const noexcept Returns true iff (size()== 0).
Continued on next page

Table 4.54: Member functions of the host_accessor class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 165



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Member function Description
range<dimensions> get_range()const Available only when: dimensions > 0.

Returns a range object which represents the
number of elements of dataT per dimension
that this host_accessor may access.
The range object returned must equal to the
range of the buffer this host_accessor is
associated with, unless a range was explic-
itly specified when this host_accessor was
constructed.

id<dimensions> get_offset()const Available only when: dimensions > 0.
Returns an id object which represents the
starting point in number of elements of
dataT for the range that this host_accessor
may access.
The id object returned must equal to id
{0, 0, 0}, unless an offset was explicitly
specified when this host_accessorwas con-
structed.

operator reference()const Available only when: (dimensions == 0).
Returns a reference to the element stored
within the SYCL buffer this SYCL
host_accessor is accessing.

reference operator[](id<dimensions> index)const Available only when: (dimensions > 0).
Returns a reference to the element stored
within the SYCL buffer this SYCL
host_accessor is accessing at the index
specified by index.

__unspecified__ &operator[](size_t index)const Available only when: dimensions > 1.
Returns an instance of an undefined in-
termediate type representing a SYCL
host_accessor of the same type as this
SYCL host_accessor, with the dimen-
sionality dimensions-1 and containing an
implicit SYCL id with index dimensions
set to index. The intermediate type re-
turned must provide all available subscript
operators which take a size_t parameter
defined by the SYCL host_accessor class
that are appropriate for the type it represents
(including this subscript operator).

iterator data()const noexcept Returns a pointer to the memory this SYCL
host_accessor memory is accessing.

iterator begin()const noexcept Returns an iterator to the first element of the
memory within the access range.

iterator end()const noexcept Returns an iterator that points past the last
element of the memory within the access
range.

Continued on next page

Table 4.54: Member functions of the host_accessor class template.

166 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Member function Description
const_iterator cbegin()const noexcept Returns a const iterator to the first element

of the memory within the access range.
const_iterator cend()const noexcept Returns a const iterator that points past the

last element of the memory within the access
range.

End of table

Table 4.54: Member functions of the host_accessor class template.

4.7.6.10.2 Host buffer accessor properties

The host_accessor supports the same list of properties as a device buffer accessor listed in 4.7.6.9.2.

4.7.6.11 Local accessor

A local accessor provides access to SYCL runtime allocated shared memory via local memory. A SYCL accessor
is considered a local accessor if it has the access target target::local. The memory allocated by a local accessor
is non-initialised so it is the user’s responsibility to construct and destroy objects explicitly if required. The local
memory that is allocated is shared between all work-items of a work-group.

A local accessor does not provide access on the host and the memory can not be copied back to the host.

The data type of a local accessor can be any valid SYCL kernel argument (see Section 4.14.4).

Unless the dimensionality of the local accessor is 0, the size of memory allocated by the SYCL runtime is
specified by a range provided on construction. The dimensionality of this range must match the dimensionality
of the local accessor.

There are three ways that a SYCL accessor can provide access to the elements of the allocated memory. Firstly
by passing a SYCL id instance of the same dimensionality as the SYCL accessor subscript operator. Secondly
by passing a single size_t value to multiple consecutive subscript operators (one for each dimension of the
SYCL accessor, for example acc[z][y][x]). Finally, in the case of the SYCL accessor having 0 dimensions, by
triggering the implicit conversion operator. Whenever a multi-dimensional index is passed to a SYCL accessor,
the linear index is calculated based on the index {id0, id1, id2} provided and the range of the SYCL accessor
{r0, r1, r2} according to row-major ordering as follows:

id2 + (id1 · r2) + (id0 · r2 · r1) (4.5)

A local accessor can optionally provide atomic access to allocated memory, using the access mode access_mode
::atomic, in which case all operators which return an element of the allocated memory return an instance of the
SYCL atomic class. This is deprecated in SYCL 2020.

Local accessors are not valid in the single_task or basic parallel_for SYCL kernel function invocations, due
the fact that local work-groups are implicitly created, and the implementation is free to choose any size.

A local accessor meets the C++ requirement of ContiguousContainer. The iterator for this container is multi_ptr
<dataT, access::address_space::local_space, access::decorated::no>. For multidimensional accessors
the iterator linearizes the data according to 4.3.

The full list of capabilities that local accessors can support is described in 4.55.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 167



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Access target Accessor
type

Access modes Data types Dimensionalities Placeholder

local device read_write
atomic

All available data types supported in
a SYCL kernel function.

Between 0 and 3 (in-
clusive).

No

Table 4.55: Description of all the local accessor capabilities.

4.7.6.11.1 Local accessor interface

A synopsis of the SYCL accessor class template local specialization is provided below. The member types for
this accessor specialization are listed in Tables 4.56. The constructors for this accessor specialization are listed
in Tables 4.57. The member functions for this accessor specialization are listed in Tables 4.58. The additional
common special member functions and common member functions are listed in 4.5.3 in Tables 4.1 and 4.2,
respectively. For valid implicit conversions between accessor types please refer to 4.7.6.8. Additionally, local
accessors of the same type must be equality comparable.

1 namespace sycl {

2 template <typename dataT,

3 int dimensions,

4 access::mode accessmode,

5 access::target accessTarget,

6 access::placeholder isPlaceholder>

7 class accessor {

8 public:

9 template <typename value_type, access::decorated IsDecorated>

10 using accessor_ptr = multi_ptr<value_type, access::address_space::local_space, IsDecorated>;

11 using value_type = dataT;

12 using reference = dataT &;

13 using const_reference = const dataT &;

14 using iterator = accessor_ptr<dataT, access::decorated::no>;

15 using const_iterator = accessor_ptr<const dataT, access::decorated::no>;

16 using reverse_iterator = std::reverse_iterator<iterator>;

17 using const_reverse_iterator = std::reverse_iterator<const_iterator>;

18 using difference_type =

19 typename std::iterator_traits<iterator>::difference_type;

20 using size_type = size_t;

21
22 accessor();

23
24 /* Available only when: dimensions == 0 */

25 accessor(handler &commandGroupHandlerRef,

26 const property_list &propList = {});

27
28 /* Available only when: dimensions > 0 */

29 accessor(range<dimensions> allocationSize, handler &commandGroupHandlerRef,

30 const property_list &propList = {});

31
32 /* -- common interface members -- */

33
34 void swap(accessor &other);

35
36 size_type byte_size() const noexcept;

37

168 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

38 size_type size() const noexcept;

39
40 size_type max_size() const noexcept;

41
42 size_type get_count() const noexcept;

43
44 bool empty() const noexcept;

45
46 range<dimensions> get_range() const;

47
48 /* Available only when: (dimensions == 0) */

49 operator reference() const;

50
51 /* Available only when: (dimensions > 0) */

52 reference operator[](id<dimensions> index) const;

53
54 /* Deprecated in SYCL 2020

55 Available only when: accessMode == access::mode::atomic && dimensions == 0 */

56 operator cl::sycl::atomic<dataT,access::address_space::local_space> () const;

57
58 /* Deprecated in SYCL 2020

59 Available only when: accessMode == access::mode::atomic && dimensions > 0 */

60 cl::sycl::atomic<dataT, access::address_space::local_space> operator[](

61 id<dimensions> index) const;

62
63 /* Available only when: dimensions > 1 */

64 __unspecified__ &operator[](size_t index) const;

65
66 std::add_pointer_t<value_type> get_pointer() const noexcept;

67
68 template <access::decorated IsDecorated>

69 accessor_ptr<value_type, IsDecorated> get_multi_ptr() const noexcept;

70
71 iterator data() const noexcept;

72
73 iterator begin() const noexcept;

74
75 iterator end() const noexcept;

76
77 const_iterator cbegin() const noexcept;

78
79 const_iterator cend() const noexcept;

80
81 reverse_iterator rbegin() const noexcept;

82
83 reverse_iterator rend() const noexcept;

84
85 const_reverse_iterator crbegin() const noexcept;

86
87 const_reverse_iterator crend() const noexcept;

88 };

89 } // namespace sycl

Listing 4.5: Accessor class for locals.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 169



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Member types Description
template <access::decorated IsDecorated>

accessor_ptr

multi_ptr<value_type, access::

address_space::local_space,

IsDecorated>.
value_type dataT

reference dataT&

const_reference const dataT&

iterator raw_local_ptr<value_type>

const_iterator raw_local_ptr<const value_type>

reverse_iterator Iterator adaptor that reverses the direction
of iterator.

const_reverse_iterator Iterator adaptor that reverses the direction
of const_iterator.

difference_type typename std::iterator_traits<

iterator>::difference_type

size_type size_t

End of table

Table 4.56: Member types of the accessor class template local specialization .

Constructor Description
accessor() Constructs an empty accessor. Fulfills the

following post-conditions:
• (empty()== true)
• All size queries return 0.
• The only iterator that can be obtained

is nullptr.
• Trying to access the underlying mem-

ory is undefined behavior.

accessor(handler &commandGroupHandlerRef,

const property_list &propList = {})

Available only when: dimensions == 0.
Constructs a SYCL accessor instance for
accessing runtime allocated local memory of
a single element (of type dataT) within a
SYCL kernel function on the SYCL queue
associated with commandGroupHandlerRef.

The allocation is per work-group. The
optional property_list provides properties
for the constructed SYCL accessor object.

Continued on next page

Table 4.57: Constructors of the accessor class template local specialization.

170 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
accessor(range<dimensions> allocationSize,

handler &commandGroupHandlerRef,

const property_list &propList = {})

Available only when: dimensions > 0.
Constructs a SYCL accessor instance for
accessing runtime allocated local memory of
size specified by allocationSize within a
SYCL kernel function on the SYCL queue
associated with commandGroupHandlerRef.
allocationSize defines the number of ele-
ments of type dataT to be allocated. The al-
location is per work-group, and if multiple
work-groups execute simultaneously in an
implementation, each work-group will re-
ceive its own functionally independent allo-
cation of size allocationSize elements of
type dataT. The optional property_list

provides properties for the constructed
SYCL accessor object.

End of table

Table 4.57: Constructors of the accessor class template local specialization.

Member function Description
void swap(accessor &other); Swaps the contents of the current accessor

with the contents of other.
size_type byte_size()const noexcept Returns the size in bytes of the local mem-

ory allocation, per work-group, that this
SYCL accessor is accessing.

size_type size()const noexcept Returns the number of dataT elements
in the local memory allocation, per work-
group, that this SYCL accessor is access-
ing.

size_type max_size()const noexcept Returns the maximum number of elements
any accessor of this type would be able to
access.

size_type get_count()const noexcept Returns the same as size().
bool empty()const noexcept Returns true iff (size()== 0).
range<dimensions> get_range()const Available only when: dimensions > 0.

Returns a range object which represents the
number of elements of dataT per dimension
that this accessor may access, per work-
group.

operator reference()const Available only when: (dimensions == 0).
Returns a reference to the single element
stored within the work-group’s local mem-
ory allocation that this accessor is access-
ing.

Continued on next page

Table 4.58: Member functions of the accessor class template local specialization.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 171



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Member function Description
reference operator[](id<dimensions> index)const Available only when: (dimensions > 0).

Returns a reference to the element stored
within the work-group’s local memory allo-
cation that this SYCL accessor is accessing,
at the index specified by index.

operator cl::sycl::atomic<dataT,

access::address_space::local_space> &()const

Deprecated in SYCL 2020.
Available only when: accessMode ==

access_mode::atomic && dimensions ==

0).
Returns a reference to an instance of cl
::sycl::atomic of type dataT providing
atomic access to the element stored within
the work-group’s local memory allocation
that this SYCL accessor is accessing.

cl::sycl::atomic<dataT, access::address_space::

local_space> &

operator[](id<dimensions> index)const

Deprecated in SYCL 2020.
Available only when: accessMode ==

access_mode::atomic && dimensions >

0).
Returns a reference to an instance of cl
::sycl::atomic of type dataT providing
atomic access to the element stored within
the work-group’s local memory allocation
that this SYCL accessor is accessing, at the
index specified by index.

__unspecified__ &operator[](size_t index)const Available only when: dimensions > 1.
Returns an instance of an undefined inter-
mediate type representing a SYCL accessor
of the same type as this SYCL accessor,

with the dimensionality dimensions-1 and
containing an implicit SYCL id with index
dimensions set to index. The intermedi-
ate type returned must provide all available
subscript operators which take a size_t pa-
rameter defined by the SYCL accessor class
that are appropriate for the type it represents
(including this subscript operator).

std::add_pointer_t<value_type> get_pointer()const

noexcept

Returns a pointer to the work-group’s local
memory allocation that this SYCL accessor
is accessing.

template <access::decorated IsDecorated>

accessor_ptr<IsDecorated> get_multi_ptr()const

noexcept

Returns a multi_ptr to the work-group’s
local memory allocation that this SYCL
accessor is accessing.

iterator data()const noexcept Returns a pointer to the work-group’s local
memory allocation that this SYCL accessor
is accessing.

iterator begin()const noexcept Returns an iterator to the first element of
allocated local memory.

Continued on next page

Table 4.58: Member functions of the accessor class template local specialization.

172 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Member function Description
iterator end()const noexcept Returns an iterator that points past the last

element of allocated local memory.
const_iterator cbegin()const noexcept Returns a const iterator to the first element

of allocated local memory.
const_iterator cend()const noexcept Returns a const iterator that points past the

last element of allocated local memory.
reverse_iterator rbegin()const noexcept Returns an iterator adaptor to the last ele-

ment of the memory of allocated local mem-
ory.

reverse_iterator rend()const noexcept Returns an iterator adaptor that points be-
fore the first element of the memory of allo-
cated local memory.

const_reverse_iterator crbegin()const noexcept Returns a const iterator adaptor to the last
element of the memory of allocated local
memory.

const_reverse_iterator crend()const noexcept Returns a const iterator adaptor that points
before the first element of the memory of al-
located local memory.

End of table

Table 4.58: Member functions of the accessor class template local specialization.

4.7.6.11.2 Local accessor properties

The property_list constructor parameters are present for extensibility.

4.7.6.12 Image accessor

An image accessor provides access to either an instance of a SYCL unsampled_image or sampled_image. A
SYCL accessor is considered an image accessor if it has the access target target::unsampled_image, target::
sampled_image, target::host_unsampled_image or target::host_sampled_image.

An image accessor can provide access to memory managed by a SYCL unsampled_image or sampled_image class,
using the access target target::unsampled_image or target::sampled_image.

Alternatively an image accessor can provide access to memory managed by a SYCL unsampled_image or
sampled_image immediately on the host, using the access target target::host_unsampled_image or target::
host_sampled_image, respectively. If the SYCL image this SYCL accessor is accessing was constructed with
the property property::image::use_host_ptr the address of the memory accessed on the host must be the ad-
dress the SYCL image was constructed with, otherwise the SYCL runtime is free to allocate temporary memory
to provide access on the host.

The data type of an image accessor must be either int4, uint4, float4 or half4.

The dimensionality of an image accessor must match that of the SYCL image which it is providing access to, with
the exception of when the access target is target::image_array, in which case the dimensionality of the SYCL
accessor must be 1 less.

An image accessor with the access target target::image or target::host_image can provide access to the ele-
ments of a SYCL image by passing a SYCL int4 or float4 instance to the read or write member functions.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 173



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

An image accessor with the access target target::image_array can provide access to a slice of an image array
by passing a size_t value to the subscript operator. This returns an instance of __image_array_slice__, an
unspecified type providing the interface of accessor<dataT, dimensions, mode, target::image> which will
provide access to a slice of the image array specified by index. The __image_array_slice__ returned can then
provide access via the read or write member functions as described above. For example acc[arrayIndex].read
(coords).

The full list of capabilities that image accessors can support is described in 4.59.

Access target Accessor
type

Access modes Data types Dimensionalities Placeholder

unsampled_image device read
write
discard_write

int4
uint4
float4
half4

Between 1 and 3 (in-
clusive).

No

sampled_image device read int4
uint4
float4
half4

Between 1 and 3 (in-
clusive).

No

host_-
unsampled_image

host read
write
discard_write

int4
uint4
float4
half4

Between 1 and 3 (in-
clusive).

No

host_sampled_-
image

host read int4
uint4
float4
half4

Between 1 and 3 (in-
clusive).

No

Table 4.59: Description of all the image accessor capabilities.

4.7.6.12.1 Image accessor interface

A synopsis of the SYCL accessor class template image specialization is provided below. The constructors and
member functions of the SYCL accessor class template image specialization are listed in Tables 4.60 and 4.61
respectively. The additional common special member functions and common member functions are listed in 4.5.3
in Tables 4.1 and 4.2, respectively. For valid implicit conversions between accessor types please refer to 4.7.6.8.

1 namespace sycl {

2
3 template <typename dataT,

4 int dimensions,

5 access::mode accessMode,

6 access::target accessTarget>

7 class accessor {

8 public:

9 using value_type = dataT;

10 using reference = dataT &;

11 using const_reference = const dataT &;

12
13 /* Available only when: accessTarget == access::target::host_unsampled_image */

14 template <typename AllocatorT>

15 accessor(unsampled_image<dimensions, AllocatorT> &imageRef);

16

174 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

17 /* Available only when: accessTarget == access::target::host_sampled_image */

18 template <typename AllocatorT>

19 accessor(sampled_image<dimensions, AllocatorT> &imageRef);

20
21 /* Available only when: accessTarget == access::target::unsampled_image */

22 template <typename AllocatorT>

23 accessor(unsampled_image<dimensions, AllocatorT> &imageRef,

24 handler &commandGroupHandlerRef);

25
26 /* Available only when: accessTarget == access::target::sampled_image */

27 template <typename AllocatorT>

28 accessor(sampled_image<dimensions, AllocatorT> &imageRef,

29 handler &commandGroupHandlerRef);

30
31 /* -- common interface members -- */

32
33 /* -- property interface members -- */

34
35 size_t get_count() const;

36
37 /* Available only when: (accessTarget == access::target::unsampled_image &&

38 accessMode == access::mode::read) || (accessTarget ==

39 access::target::host_unsampled_image && accessMode == access::mode::read)

40 if dimensions == 1, coordT = int

41 if dimensions == 2, coordT = int2

42 if dimensions == 4, coordT = int4 */

43 template <typename coordT>

44 dataT read(const coordT &coords) const noexcept;

45
46 /* Available only when: (accessTarget == access::target::sampled_image &&

47 accessMode == access::mode::read) || (accessTarget ==

48 access::target::host_sampled_image && accessMode == access::mode::read)

49 if dimensions == 1, coordT = float

50 if dimensions == 2, coordT = float2

51 if dimensions == 3, coordT = float4 */

52 template <typename coordT>

53 dataT read(const coordT &coords) const noexcept;

54
55 /* Available only when: (accessTarget == access::target::unsampled_image &&

56 (accessMode == access::mode::write || accessMode == access::mode::discard_write)) ||

57 (accessTarget == access::target::host_unsampled_image && (accessMode == access::mode::write ||

58 accessMode == access::mode::discard_write))

59 if dimensions == 1, coordT = int

60 if dimensions == 2, coordT = int2

61 if dimensions == 3, coordT = int4 */

62 template <typename coordT>

63 void write(const coordT &coords, const dataT &color) const;

64 };

65 } // namespace sycl

Listing 4.6: Accessor interface for images.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 175



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Constructor Description
template <typename AllocatorT>

accessor(unsampled_image<dimensions, AllocatorT

>,

&imageRef, const property_list &propList = {})

Available only when: accessTarget ==

target::host_unsampled_image.
Constructs a SYCL accessor instance for
accessing a SYCL unsampled_image im-
mediately on the host. The optional
property_list provides properties for the
constructed SYCL accessor object.

template <typename AllocatorT>

accessor(sampled_image<dimensions, AllocatorT>,

&imageRef, const property_list &propList = {})

Available only when: accessTarget ==

target::host_sampled_image.
Constructs a SYCL accessor instance for
accessing a SYCL sampled_image im-
mediately on the host. The optional
property_list provides properties for the
constructed SYCL accessor object.

template <typename AllocatorT>

accessor(unsampled_image<dimensions, AllocatorT

>,

&imageRef, handler &commandGroupHandlerRef,

const property_list &propList = {})

Available only when: accessTarget ==

target::unsampled_image.
Constructs a SYCL accessor instance for
accessing a SYCL unsampled_image within
a SYCL kernel function on the SYCL queue
associated with commandGroupHandlerRef.

The optional property_list provides prop-
erties for the constructed SYCL accessor
object.

template <typename AllocatorT>

accessor(sampled_image<dimensions, AllocatorT>,

&imageRef, handler &commandGroupHandlerRef,

const property_list &propList = {})

Available only when: accessTarget ==

target::sampled_image.
Constructs a SYCL accessor instance for
accessing a SYCL sampled_image within a
SYCL kernel function on the SYCL queue
associated with commandGroupHandlerRef.

The optional property_list provides prop-
erties for the constructed SYCL accessor
object.

End of table

Table 4.60: Constructors of the accessor class template image specialization.

Member function Description
size_t get_size()const Returns the size in bytes of the SYCL

unsampled_image or sampled_image this
SYCL accessor is accessing.

size_t get_count()const Returns the number of elements of the
SYCL unsampled_image or sampled_image
this SYCL accessor is accessing.

Continued on next page

Table 4.61: Member functions of the accessor class template image specialization.

176 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Member function Description
template <typename coordT>

dataT read(const coordT &coords)const

Available only when: (accessTarget

== target::unsampled_image &&

accessMode == access_mode::read

)|| (accessTarget == target::

host_unsampled_image && accessMode

== access_mode::read).
Reads and returns an element of the
unsampled_image at the coordinates speci-
fied by coords. Permitted types for coordT
are int when dimensions == 1, int2

when dimensions == 2 and int4 when
dimensions == 3.

template <typename coordT>

dataT read(const coordT &coords)const

Available only when: (accessTarget ==
target::sampled_image && accessMode

== access_mode::read)|| (accessTarget

== target::host_sampled_image &&

accessMode == access_mode::read).
Reads and returns a sampled element of the
sampled_image at the coordinates specified
by coords. Permitted types for coordT
are float when dimensions == 1, float2
when dimensions == 2 and float4 when
dimensions == 3.

template <typename coordT>

void write(const coordT &coords, const dataT &color)

const

Available only when: (accessTarget

== target::unsampled_image && (

accessMode == access_mode::write

|| accessMode == access_mode::

discard_write))|| (accessTarget ==

target::host_unsampled_image &&

(accessMode == access_mode::write

|| accessMode == access_mode::

discard_write)).
Writes the value specified by color to the
element of the image at the coordinates
specified by coords. Permitted type for
coordT are int when dimensions == 1,
int2 when dimensions == 2 and int4

when dimensions == 3.
__image_array_slice__

operator[](size_t index)const

Available only when: accessTarget ==

target::image_array && dimensions < 3

.
Returns an instance of
__image_array_slice__, an unspeci-
fied type which provides the interface of
accessor< dataT, dimensions, mode,

target::image> which will provide access
to a slice of the image array specified by
index.

End of table

Table 4.61: Member functions of the accessor class template image specialization.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 177



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

4.7.6.12.2 Image accessor properties

The property_list constructor parameters are present for extensibility.

4.7.7 Address space classes
In SYCL, there are five different address spaces: global, local, constant, private and generic. In a SYCL generic
implementation, types are not affected by the address spaces. However, there are situations where users need to
explicitly carry address spaces in the type. For example:

• For performance tuning and genericity. Even if the platform supports the representation of the generic
address space, this may come at some performance sacrifice. In order to help the target compiler, it can be
useful to track specifically which address space a pointer is addressing.

• When linking SYCL kernels with SYCL backend-specific functions. In this case, it might be necessary to
specify the address space for any pointer parameters.

Direct declaration of pointers with address spaces is discouraged as the definition is implementation defined.
Users must rely on the multi_ptr class to handle address space boundaries and interoperability.

4.7.7.1 Multi-pointer class

The multi-pointer class is the common interface for the explicit pointer classes, defined in 4.7.7.2.

There are situations where a user may want to make their type address space dependent. This allows performing
generic programming that depends on the address space associated with their data. An example might be wrapping
a pointer inside a class, where a user may need to template the class according to the address space of the pointer
the class is initialized with. In this case, the multi_ptr class enables users to do this in a portable and stable way.

The multi_ptr class exposes 3 flavors of the same interface. If the value of access::decorated is access::
decorated::no, the interface exposes pointers and references type that are not decorated by an address space. If
the value of access::decorated is access::decorated::yes, the interface exposes pointers and references type
that are decorated by an address space. The decoration is implementation dependent and relies on device compiler
extensions. The decorated type may be distinct from the non-decorated one. For interoperability with the SYCL
backend, users should rely on types exposed by the decorated version. If the value of access::decorated is
access::decorated::legacy, the 1.2.1 interface is exposed. This interface is deprecated.

The template traits remove_decoration and type alias remove_decoration_t retrieve the non-decorated pointer
or reference from a decorated one. Using this template trait with a non-decorated type is safe and returns the same
type.

It is possible to use the void type for the multi_ptr class, but in that case some functionality is disabled.
multi_ptr<void> does not provide the reference or const_reference types, the access operators (operator
*(), operator->()), the arithmetic operators or prefetch member function. Conversions from multi_ptr to
multi_ptr<void> of the same address space are allowed, and will occur implicitly. Conversions from multi_ptr
<void> to any other multi_ptr type of the same address space are allowed, but must be explicit. The same rules
apply to multi_ptr<const void>.

An overview of the interface provided for the multi_ptr class follows.

1 namespace sycl {

2 namespace access {

178 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

3 enum class address_space : int {

4 global_space,

5 local_space,

6 constant_space,

7 private_space,

8 generic_space,

9 };

10
11 enum class decorated : int {

12 no,

13 yes,

14 legacy,

15 };

16
17 } // namespace access

18
19 template<typename T> struct remove_decoration {

20 using type = /* ... */;

21 };

22
23 template<typename T>

24 using remove_decoration_t = remove_decoration::type;

25
26 template <typename ElementType, access::address_space Space, access::decorated DecorateAddress>

27 class multi_ptr {

28 public:

29 static constexpr bool is_decorated = DecorateAddress == access::decorated::yes;

30 static constexpr access::address_space address_space = Space;

31
32 using value_type = ElementType;

33 using pointer = std::conditional<is_decorated, __unspecified__ *,

34 std::add_pointer_t<value_type>>;

35 using reference = std::conditional<is_decorated, __unspecified__ &,

36 std::add_lvalue_reference_t<value_type>>;

37 using iterator_category = std::random_access_iterator_tag;

38 using difference_type = std::ptrdiff_t;

39
40 static_assert(std::is_same_v<remove_decoration_t<pointer>, std::add_pointer_t<value_type>>);

41 static_assert(std::is_same_v<remove_decoration_t<reference>, std::add_lvalue_reference_t<

value_type>>);

42 // Legacy has a different interface.

43 static_assert(DecorateAddress != access::decorated::legacy);

44
45 // Constructors

46 multi_ptr();

47 multi_ptr(const multi_ptr&);

48 multi_ptr(multi_ptr&&);

49 explicit multi_ptr(multi_ptr<ElementType, Space, yes>::pointer);

50 multi_ptr(std::nullptr_t);

51
52 // Only if Space == global_space or generic_space

53 template <int dimensions, access::mode Mode, access::placeholder isPlaceholder>

54 multi_ptr(accessor<value_type, dimensions, Mode, access::target::global_buffer, isPlaceholder>);

55
56 // Only if Space == local_space or generic_space

CHAPTER 4. SYCL PROGRAMMING INTERFACE 179



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

57 template <int dimensions, access::mode Mode, access::placeholder isPlaceholder>

58 multi_ptr(accessor<value_type, dimensions, Mode, access::target::local, isPlaceholder>);

59
60 // Only if Space == constant_space

61 template <int dimensions, access::mode Mode, access::placeholder isPlaceholder>

62 multi_ptr(accessor<value_type, dimensions, Mode, access::target::constant_buffer, isPlaceholder

>);

63
64 // Assignment and access operators

65 multi_ptr &operator=(const multi_ptr&);

66 multi_ptr &operator=(multi_ptr&&);

67 multi_ptr &operator=(std::nullptr_t);

68
69 // Only if Space == address_space::generic_space

70 // and ASP != access::address_space::constant_space

71 template<access::address_space ASP, access::decorated IsDecorated>

72 multi_ptr &operator=(const multi_ptr<value_type, ASP, IsDecorated>&);

73 // Only if Space == address_space::generic_space

74 // and ASP != access::address_space::constant_space

75 template<access::address_space ASP, access::decorated IsDecorated>

76 multi_ptr &operator=(multi_ptr<value_type, ASP, IsDecorated>&&);

77
78 reference operator*() const;

79 pointer operator->() const;

80
81 pointer get() const;

82 std::add_pointer_t<value_type> get_raw() const;

83 __unspecified__ * get_decorated() const;

84
85 // Conversion to the underlying pointer type

86 // Deprecated, get() should be used instead.

87 operator pointer() const;

88
89 // Only if Space == address_space::generic_space

90 // Cast to private_ptr

91 explicit operator multi_ptr<value_type, access::address_space::private_space,

92 DecorateAddress>();

93 // Only if Space == address_space::generic_space

94 // Cast to private_ptr

95 explicit

96 operator multi_ptr<const value_type, access::address_space::private_space,

97 DecorateAddress>() const;

98 // Only if Space == address_space::generic_space

99 // Cast to global_ptr

100 explicit operator multi_ptr<value_type, access::address_space::global_space,

101 DecorateAddress>();

102 // Only if Space == address_space::generic_space

103 // Cast to global_ptr

104 explicit

105 operator multi_ptr<const value_type, access::address_space::global_space,

106 DecorateAddress>() const;

107 // Only if Space == address_space::generic_space

108 // Cast to local_ptr

109 explicit operator multi_ptr<value_type, access::address_space::local_space,

110 DecorateAddress>();

180 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

111 // Only if Space == address_space::generic_space

112 // Cast to local_ptr

113 explicit

114 operator multi_ptr<const value_type, access::address_space::local_space,

115 DecorateAddress>() const;

116
117 // Implicit conversion to a multi_ptr<void>.

118 // Only available when value_type is not const-qualified.

119 template<access::decorated DecorateAddress>

120 operator multi_ptr<void, Space, DecorateAddress>() const;

121
122 // Implicit conversion to a multi_ptr<const void>.

123 // Only available when value_type is const-qualified.

124 template<access::decorated DecorateAddress>

125 operator multi_ptr<const void, Space, DecorateAddress>() const;

126
127 // Implicit conversion to multi_ptr<const value_type, Space>.

128 template<access::decorated DecorateAddress>

129 operator multi_ptr<const value_type, Space, DecorateAddress>() const;

130
131 // Implicit conversion to the non-decorated version of multi_ptr.

132 // Only available when is_decorated is true.

133 operator multi_ptr<value_type, Space, access::decorated::no>() const;

134
135 // Implicit conversion to the decorated version of multi_ptr.

136 // Only available when is_decorated is false.

137 operator multi_ptr<value_type, Space, access::decorated::yes>() const;

138
139 void prefetch(size_t numElements) const;

140
141 // Arithmetic operators

142 friend multi_ptr& operator++(multi_ptr& mp) { /* ... */ }

143 friend multi_ptr operator++(multi_ptr& mp, int) { /* ... */ }

144 friend multi_ptr& operator--(multi_ptr& mp) { /* ... */ }

145 friend multi_ptr operator--(multi_ptr& mp, int) { /* ... */ }

146 friend multi_ptr& operator+=(multi_ptr& lhs, difference_type r) { /* ... */ }

147 friend multi_ptr& operator-=(multi_ptr& lhs, difference_type r) { /* ... */ }

148 friend multi_ptr operator+(const multi_ptr& lhs, difference_type r) { /* ... */ }

149 friend multi_ptr operator-(const multi_ptr& lhs, difference_type r) { /* ... */ }

150 friend reference operator*(const multi_ptr& lhs) { /* ... */ }

151
152 friend bool operator==(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

153 friend bool operator!=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

154 friend bool operator<(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

155 friend bool operator>(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

156 friend bool operator<=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

157 friend bool operator>=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

158
159 friend bool operator==(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

160 friend bool operator!=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

161 friend bool operator<(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

162 friend bool operator>(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

163 friend bool operator<=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

164 friend bool operator>=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

165

CHAPTER 4. SYCL PROGRAMMING INTERFACE 181



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

166 friend bool operator==(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

167 friend bool operator!=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

168 friend bool operator<(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

169 friend bool operator>(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

170 friend bool operator<=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

171 friend bool operator>=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

172
173 };

174
175 // Specialization of multi_ptr for void and const void

176 // VoidType can be either void or const void

177 template <access::address_space Space, access::decorated DecorateAddress>

178 class multi_ptr<VoidType, Space, DecorateAddress> {

179 public:

180 static constexpr bool is_decorated = DecorateAddress == access::decorated::yes;

181 static constexpr access::address_space address_space = Space;

182
183 using value_type = VoidType;

184 using pointer = std::conditional<is_decorated, __unspecified__ value_type *,

185 std::add_pointer_t<value_type>>;

186 using difference_type = std::ptrdiff_t;

187
188 static_assert(std::is_same_v<remove_decoration_t<pointer>, std::add_pointer_t<value_type>>);

189 // Legacy has a different interface.

190 static_assert(DecorateAddress != access::decorated::legacy);

191
192 // Constructors

193 multi_ptr();

194 multi_ptr(const multi_ptr&);

195 multi_ptr(multi_ptr&&);

196 explicit multi_ptr(multi_ptr<VoidType, Space, yes>::pointer);

197 multi_ptr(std::nullptr_t);

198
199 // Only if Space == global_space

200 template <typename ElementType, int dimensions, access::mode Mode,

201 access::placeholder isPlaceholder>

202 multi_ptr(accessor<ElementType, dimensions, Mode,

203 access::target::global_buffer, isPlaceholder>);

204
205 // Only if Space == local_space

206 template <typename ElementType, int dimensions, access::mode Mode,

207 access::placeholder isPlaceholder>

208 multi_ptr(accessor<ElementType, dimensions, Mode, access::target::local,

209 isPlaceholder>);

210
211 // Only if Space == constant_space

212 template <typename ElementType, int dimensions, access::mode Mode,

213 access::placeholder isPlaceholder>

214 multi_ptr(accessor<ElementType, dimensions, Mode,

215 access::target::constant_buffer, isPlaceholder>);

216
217 // Assignment operators

218 multi_ptr &operator=(const multi_ptr&);

219 multi_ptr &operator=(multi_ptr&&);

220 multi_ptr &operator=(std::nullptr_t);

182 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

221
222 pointer get() const;

223
224 // Conversion to the underlying pointer type

225 explicit operator pointer() const;

226
227 // Explicit conversion to a multi_ptr<ElementType>

228 // If VoidType is const, ElementType must be as well

229 template <typename ElementType>

230 explicit operator multi_ptr<ElementType, Space, DecorateAddress>() const;

231
232 // Implicit conversion to the non-decorated version of multi_ptr.

233 // Only available when is_decorated is true.

234 operator multi_ptr<value_type, Space, access::decorated::no>() const;

235
236 // Implicit conversion to the decorated version of multi_ptr.

237 // Only available when is_decorated is false.

238 operator multi_ptr<value_type, Space, access::decorated::yes>() const;

239
240 // Implicit conversion to multi_ptr<const void, Space>

241 operator multi_ptr<const void, Space, DecorateAddress>() const;

242
243 friend bool operator==(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

244 friend bool operator!=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

245 friend bool operator<(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

246 friend bool operator>(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

247 friend bool operator<=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

248 friend bool operator>=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

249
250 friend bool operator==(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

251 friend bool operator!=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

252 friend bool operator<(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

253 friend bool operator>(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

254 friend bool operator<=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

255 friend bool operator>=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

256
257 friend bool operator==(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

258 friend bool operator!=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

259 friend bool operator<(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

260 friend bool operator>(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

261 friend bool operator<=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

262 friend bool operator>=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

263
264 };

265
266 // Deprecated, address_space_cast should be used instead.

267 template <typename ElementType, access::address_space Space, access::decorated DecorateAddress>

268 multi_ptr<ElementType, Space, DecorateAddress> make_ptr(ElementType *);

269
270 template <access::address_space Space, access::decorated DecorateAddress,

271 typename ElementType>

272 multi_ptr<ElementType, Space, DecorateAddress> address_space_cast(ElementType *);

273
274 // Deduction guides

275 template <int dimensions, access::mode Mode, access::placeholder isPlaceholder,

CHAPTER 4. SYCL PROGRAMMING INTERFACE 183



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

276 class T>

277 multi_ptr(

278 accessor<T, dimensions, Mode, access::target::global_buffer, isPlaceholder>)

279 -> multi_ptr<T, access::address_space::global_space>;

280 template <int dimensions, access::mode Mode, access::placeholder isPlaceholder,

281 class T>

282 multi_ptr(accessor<T, dimensions, Mode, access::target::constant_buffer,

283 isPlaceholder>)

284 -> multi_ptr<T, access::address_space::constant_space>;

285 template <int dimensions, access::mode Mode, access::placeholder isPlaceholder,

286 class T>

287 multi_ptr(accessor<T, dimensions, Mode, access::target::local, isPlaceholder>)

288 -> multi_ptr<T, access::address_space::local_space>;

289
290 } // namespace sycl

Constructor Description
template <typename ElementType, access::

address_space Space, access::decorated

DecorateAddress>

multi_ptr()

Default constructor.

template <typename ElementType, access::

address_space Space, access::decorated

DecorateAddress>

multi_ptr(const multi_ptr &)

Copy constructor.

template <typename ElementType, access::

address_space Space, access::decorated

DecorateAddress>

multi_ptr(multi_ptr&&)

Move constructor.

template <typename ElementType, access::

address_space Space, access::decorated

DecorateAddress>

multi_ptr(multi_ptr<ElementType, Space, yes>::

pointer)

Constructor that takes as an argument a dec-
orated pointer.

template <typename ElementType, access::

address_space Space, access::decorated

DecorateAddress>

multi_ptr(std::nullptr_t)

Constructor from a nullptr.

template <typename ElementType, access::

address_space Space = access::address_space::

global_space>

template <int dimensions, access::mode Mode>

multi_ptr(

accessor<ElementType, dimensions, Mode, access::

target::global_buffer>)

Available only when: Space == access::
address_space::global_space.
Constructs a multi_ptr<ElementType,

access::address_space::global_space>

from an accessor of access::target::
global_buffer.

Continued on next page

Table 4.62: Constructors of the SYCL multi_ptr class template.

184 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Constructor Description
template <typename ElementType, access::

address_space Space = access::address_space::

local_space>

template <int dimensions, access::mode Mode>

multi_ptr(

accessor<ElementType, dimensions, Mode, access::

target::local>)

Available only when: Space == access::
address_space::local_space.
Constructs a multi_ptr<ElementType,

access::address_space::local_space>

from an accessor of access::target::
local.

template <typename ElementType, access::

address_space Space = access::address_space::

constant_space>

template <int dimensions, access::mode Mode>

multi_ptr(

accessor<ElementType, dimensions, Mode, access::

target::constant_buffer>)

Available only when: Space == access::
address_space::constant_space.
Constructs a multi_ptr<ElementType,

access::address_space::constant_space

> from an accessor of access::target::
constant_buffer.

template <typename ElementType, access::

address_space Space, access::decorated

DecorateAddress>

multi_ptr<ElementType, Space, DecorateAddress>

make_ptr(ElementType*)

Global function to create a multi_ptr in-
stance depending on the address space of
the pointer type. An implementation must
reject an argument if the deduced address
space is not compatible with Space.

End of table

Table 4.62: Constructors of the SYCL multi_ptr class template.

Operators Description
template <typename value_type, access::address_space

Space, access::decorated DecorateAddress>

multi_ptr &operator=(const multi_ptr&)

Copy assignment operator.

template <typename value_type, access::address_space

Space, access::decorated DecorateAddress>

multi_ptr &operator=(multi_ptr&&)

Move assignment operator.

template <typename value_type, access::address_space

Space, access::decorated DecorateAddress>

multi_ptr &operator=(std::nullptr_t)

Assigns nullptr to the multi_ptr.

template<access::address_space ASP, access::

decorated IsDecorated>

multi_ptr &operator=(const multi_ptr<value_type,

ASP, IsDecorated>&)

Available only when: Space == access

::address_space::generic_space &&

ASP != access::address_space::

constant_space.
Assigns the value of the left hand side
multi_ptr into the generic_ptr.

template<access::address_space ASP, access::

decorated IsDecorated>

multi_ptr &operator=(multi_ptr<value_type, ASP,

IsDecorated>&&

Available only when: Space == access

::address_space::generic_space &&

ASP != access::address_space::

constant_space.
Move the value of the left hand side
multi_ptr into the generic_ptr.

Continued on next page

Table 4.63: Operators of multi_ptr class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 185



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Operators Description
template <typename value_type, access::address_space

Space, access::decorated DecorateAddress>

pointer operator->()const

Available only when: !std::is_void<

value_type>::value.
Returns the underlying pointer.

template <typename value_type, access::address_space

Space, access::decorated DecorateAddress>

reference operator*()const

Available only when: !std::is_void<

value_type>::value.
Returns a reference to the pointed value.

template <typename value_type, access::address_space

Space, access::decorated DecorateAddress>

operator pointer()const

Implicit conversion to the underlying pointer
type. Deprecated: The member function
get should be used instead

template <access::decorated IsDecorated>

operator multi_ptr<value_type, access::

address_space::private_space, IsDecorated>()const

Available only when: Space == access::
address_space::generic_space.
Conversion from generic_ptr to
private_ptr. The result is undefined
if the pointer does not address the private
address space.

template <access::decorated IsDecorated>

operator multi_ptr<const value_type, access::

address_space::private_space, IsDecorated>()const

Available only when: Space == access::
address_space::generic_space.
Conversion from generic_ptr to
private_ptr. The result is undefined
if the pointer does not address the private
address space.

template <access::decorated IsDecorated>

operator multi_ptr<value_type, access::

address_space::global_space, IsDecorated>()const

Available only when: Space == access::
address_space::generic_space.
Conversion from generic_ptr to
global_ptr. The result is undefined if
the pointer does not address the global
address space.

template <access::decorated IsDecorated>

operator multi_ptr<const value_type, access::

address_space::global_space, IsDecorated>()const

Available only when: Space == access::
address_space::generic_space.
Conversion from generic_ptr to
global_ptr. The result is undefined if
the pointer does not address the global
address space.

template <access::decorated IsDecorated>

operator multi_ptr<value_type, access::

address_space::local_space, IsDecorated>()const

Available only when: Space == access::
address_space::generic_space.
Conversion from generic_ptr to
local_ptr. The result is undefined if
the pointer does not address the local
address space.

template <access::decorated IsDecorated>

operator multi_ptr<const value_type, access::

address_space::local_space, IsDecorated>()const

Available only when: Space == access::
address_space::generic_space.
Conversion from generic_ptr to
local_ptr. The result is undefined if
the pointer does not address the local
address space.

Continued on next page

Table 4.63: Operators of multi_ptr class.

186 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Operators Description
template <access::decorated IsDecorated>

operator multi_ptr<void, Space, IsDecorated>()

const

Available only when: !std::is_void<

value_type>::value && !std::is_const<

value_type>::value.
Implicit conversion to a multi_ptr of type
void.

template <access::decorated IsDecorated>

operator multi_ptr<const void, Space,

IsDecorated>()const

Available only when: !std::is_void<

value_type>::value && std::is_const<

value_type>::value.
Implicit conversion to a multi_ptr of type
const void.

template <access::decorated IsDecorated>

operator multi_ptr<const value_type, Space,

IsDecorated>()const

Implicit conversion to a multi_ptr of type
const value_type.

operator multi_ptr<const value_type, Space,

access::decorated::no>()const

Available only when: is_decorated ==

true.
Implicit conversion to the equivalent
multi_ptr object that does not expose
decorated pointers or references.

operator multi_ptr<const value_type, Space,

access::decorated::yes>()const

Available only when: is_decorated ==

false.
Implicit conversion to the equivalent
multi_ptr object that exposes decorated
pointers and references.

End of table

Table 4.63: Operators of multi_ptr class.

Member function Description
pointer get()const Returns the underlying pointer. Whether the

pointer is decorated depends on the value of
DecorateAddress.

__unspecified__ * get_decorated()const Returns the underlying pointer decorated by
the address space that it addressed. Note that
the support involves implementation defined
device compiler extensions.

std::add_pointer_t<value_type> get_raw()const Returns the underlying pointer, always un-
decorated.

void prefetch(size_t numElements)const Available only when: Space == access::
address_space::global_space.
Prefetches a number of elements specified
by numElements into the global memory
cache. This operation is an implementa-
tion defined optimization and does not effect
the functional behavior of the SYCL kernel
function.

End of table

Table 4.64: Member functions of multi_ptr class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 187



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

Hidden friend function Description
reference operator*(const multi_ptr& mp) Available only when: !std::is_void<

ElementType>::value.
Operator that returns a reference to the
value_type of mp.

multi_ptr& operator++(multi_ptr& mp) Available only when: !std::is_void<

ElementType>::value.
Increments mp by 1 and returns mp.

multi_ptr operator++(multi_ptr& mp, int) Available only when: !std::is_void<

ElementType>::value.
Increments mp by 1 and returns a new
multi_ptr with the value of the original mp.

multi_ptr& operator--(multi_ptr& mp) Available only when: !std::is_void<

ElementType>::value.
Decrements mp by 1 and returns mp.

multi_ptr operator--(multi_ptr& mp, int) Available only when: !std::is_void<

ElementType>::value.
Decrements mp by 1 and returns a new
multi_ptr with the value of the original mp.

multi_ptr& operator+=(multi_ptr& lhs,

difference_type r)

Available only when: !std::is_void<

ElementType>::value.
Moves mp forward by r and returns lhs.

multi_ptr& operator-=(multi_ptr& lhs,

difference_type r)

Available only when: !std::is_void<

ElementType>::value.
Moves mp backward by r and returns lhs.

multi_ptr operator+(const multi_ptr& lhs,

difference_type r)

Available only when: !std::is_void<

ElementType>::value.
Creates a new multi_ptr that points r for-
ward compared to lhs.

multi_ptr operator-(const multi_ptr& lhs,

difference_type r)

Available only when: !std::is_void<

ElementType>::value.
Creates a new multi_ptr that points r back-
ward compared to lhs.

bool operator==(const multi_ptr& lhs, const

multi_ptr& rhs)

Comparison operator == for multi_ptr
class.

bool operator!=(const multi_ptr& lhs, const

multi_ptr& rhs)

Comparison operator != for multi_ptr
class.

bool operator<(const multi_ptr& lhs, const multi_ptr

& rhs)

Comparison operator < for multi_ptr class.

bool operator>(const multi_ptr& lhs, const multi_ptr

& rhs)

Comparison operator > for multi_ptr class.

bool operator<=(const multi_ptr& lhs, const

multi_ptr& rhs)

Comparison operator <= for multi_ptr
class.

bool operator>=(const multi_ptr& lhs, const

multi_ptr& rhs)

Comparison operator >= for multi_ptr
class.

bool operator==(const multi_ptr& lhs, std::nullptr_t

)

Comparison operator == for multi_ptr class
with a std::nullptr_t.

Continued on next page

Table 4.65: Hidden friend functions of the multi_ptr class.

188 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

Hidden friend function Description
bool operator!=(const multi_ptr& lhs, std::nullptr_t

)

Comparison operator != for multi_ptr class
with a std::nullptr_t.

bool operator<(const multi_ptr& lhs, std::nullptr_t) Comparison operator < for multi_ptr class
with a std::nullptr_t.

bool operator>(const multi_ptr& lhs, std::nullptr_t) Comparison operator > for multi_ptr class
with a std::nullptr_t.

bool operator<=(const multi_ptr& lhs, std::nullptr_t

)

Comparison operator <= for multi_ptr class
with a std::nullptr_t.

bool operator>=(const multi_ptr& lhs, std::nullptr_t

)

Comparison operator >= for multi_ptr class
with a std::nullptr_t.

bool operator==(std::nullptr_t, const multi_ptr& rhs

)

Comparison operator == for multi_ptr class
with a std::nullptr_t.

bool operator!=(std::nullptr_t, const multi_ptr& rhs

)

Comparison operator != for multi_ptr class
with a std::nullptr_t.

bool operator<(std::nullptr_t, const multi_ptr& rhs) Comparison operator < for multi_ptr class
with a std::nullptr_t.

bool operator>(std::nullptr_t, const multi_ptr& rhs) Comparison operator > for multi_ptr class
with a std::nullptr_t.

bool operator<=(std::nullptr_t, const multi_ptr& rhs

)

Comparison operator <= for multi_ptr class
with a std::nullptr_t.

bool operator>=(std::nullptr_t, const multi_ptr& rhs

)

Comparison operator >= for multi_ptr class
with a std::nullptr_t.

End of table

Table 4.65: Hidden friend functions of the multi_ptr class.

The following is the overview of the legacy interface from 1.2.1 provided for the multi_ptr class.

1 namespace sycl {

2
3 // Legacy interface, inherited from 1.2.1.

4 // Deprecated.

5 template <typename ElementType, access::address_space Space>

6 class [[deprecated]] multi_ptr<ElementType, Space, access::decorated::legacy> {

7 public:

8 using element_type = ElementType;

9 using difference_type = std::ptrdiff_t;

10
11 // Implementation defined pointer and reference types that correspond to

12 // SYCL/OpenCL interoperability types for OpenCL C functions.

13 using pointer_t = multi_ptr<ElementType, Space, access::decorated::yes>::pointer;

14 using const_pointer_t = multi_ptr<const ElementType, Space, access::decorated::yes>::pointer;

15 using reference_t = multi_ptr<ElementType, Space, access::decorated::yes>::reference;

16 using const_reference_t = multi_ptr<const ElementType, Space, access::decorated::yes>::reference

;

17
18 static constexpr access::address_space address_space = Space;

19
20 // Constructors

21 multi_ptr();

CHAPTER 4. SYCL PROGRAMMING INTERFACE 189



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

22 multi_ptr(const multi_ptr&);

23 multi_ptr(multi_ptr&&);

24 multi_ptr(pointer_t);

25 multi_ptr(ElementType*);

26 multi_ptr(std::nullptr_t);

27 ∼multi_ptr();

28
29 // Assignment and access operators

30 multi_ptr &operator=(const multi_ptr&);

31 multi_ptr &operator=(multi_ptr&&);

32 multi_ptr &operator=(pointer_t);

33 multi_ptr &operator=(ElementType*);

34 multi_ptr &operator=(std::nullptr_t);

35 friend ElementType& operator*(const multi_ptr& mp) { /* ... */ }

36 ElementType* operator->() const;

37
38 // Only if Space == global_space

39 template <int dimensions, access::mode Mode, access::placeholder isPlaceholder>

40 multi_ptr(accessor<ElementType, dimensions, Mode, access::target::global_buffer, isPlaceholder>)

;

41
42 // Only if Space == local_space

43 template <int dimensions, access::mode Mode, access::placeholder isPlaceholder>

44 multi_ptr(accessor<ElementType, dimensions, Mode, access::target::local, isPlaceholder>);

45
46 // Only if Space == constant_space

47 template <int dimensions, access::mode Mode, access::placeholder isPlaceholder>

48 multi_ptr(accessor<ElementType, dimensions, Mode, access::target::constant_buffer, isPlaceholder

>);

49
50 // Returns the underlying OpenCL C pointer

51 pointer_t get() const;

52
53 // Implicit conversion to the underlying pointer type

54 operator ElementType*() const;

55
56 // Implicit conversion to a multi_ptr<void>

57 // Only available when ElementType is not const-qualified

58 operator multi_ptr<void, Space>() const;

59
60 // Implicit conversion to a multi_ptr<const void>

61 // Only available when ElementType is const-qualified

62 operator multi_ptr<const void, Space>() const;

63
64 // Implicit conversion to multi_ptr<const ElementType, Space>

65 operator multi_ptr<const ElementType, Space>() const;

66
67 // Arithmetic operators

68 friend multi_ptr& operator++(multi_ptr& mp) { /* ... */ }

69 friend multi_ptr operator++(multi_ptr& mp, int) { /* ... */ }

70 friend multi_ptr& operator--(multi_ptr& mp) { /* ... */ }

71 friend multi_ptr operator--(multi_ptr& mp, int) { /* ... */ }

72 friend multi_ptr& operator+=(multi_ptr& lhs, difference_type r) { /* ... */ }

73 friend multi_ptr& operator-=(multi_ptr& lhs, difference_type r) { /* ... */ }

74 friend multi_ptr operator+(const multi_ptr& lhs, difference_type r) { /* ... */ }

190 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

75 friend multi_ptr operator-(const multi_ptr& lhs, difference_type r) { /* ... */ }

76
77 void prefetch(size_t numElements) const;

78
79 friend bool operator==(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

80 friend bool operator!=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

81 friend bool operator<(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

82 friend bool operator>(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

83 friend bool operator<=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

84 friend bool operator>=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

85
86 friend bool operator==(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

87 friend bool operator!=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

88 friend bool operator<(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

89 friend bool operator>(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

90 friend bool operator<=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

91 friend bool operator>=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

92
93 friend bool operator==(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

94 friend bool operator!=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

95 friend bool operator<(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

96 friend bool operator>(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

97 friend bool operator<=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

98 friend bool operator>=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

99
100 };

101
102 // Legacy interface, inherited from 1.2.1.

103 // Deprecated.

104 // Specialization of multi_ptr for void and const void

105 // VoidType can be either void or const void

106 template <access::address_space Space>

107 class [[deprecated]] multi_ptr<VoidType, Space, access::decorated::legacy> {

108 public:

109 using element_type = VoidType;

110 using difference_type = std::ptrdiff_t;

111
112 // Implementation defined pointer types that correspond to

113 // SYCL/OpenCL interoperability types for OpenCL C functions

114 using pointer_t = multi_ptr<VoidType, Space, access::decorated::yes>::pointer;

115 using const_pointer_t = multi_ptr<const VoidType, Space, access::decorated::yes>::pointer;

116
117 static constexpr access::address_space address_space = Space;

118
119 // Constructors

120 multi_ptr();

121 multi_ptr(const multi_ptr&);

122 multi_ptr(multi_ptr&&);

123 multi_ptr(pointer_t);

124 multi_ptr(VoidType*);

125 multi_ptr(std::nullptr_t);

126 ∼multi_ptr();

127
128 // Assignment operators

129 multi_ptr &operator=(const multi_ptr&);

CHAPTER 4. SYCL PROGRAMMING INTERFACE 191



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

130 multi_ptr &operator=(multi_ptr&&);

131 multi_ptr &operator=(pointer_t);

132 multi_ptr &operator=(VoidType*);

133 multi_ptr &operator=(std::nullptr_t);

134
135 // Only if Space == global_space

136 template <typename ElementType, int dimensions, access::mode Mode>

137 multi_ptr(accessor<ElementType, dimensions, Mode, access::target::global_buffer>);

138
139 // Only if Space == local_space

140 template <typename ElementType, int dimensions, access::mode Mode>

141 multi_ptr(accessor<ElementType, dimensions, Mode, access::target::local>);

142
143 // Only if Space == constant_space

144 template <typename ElementType, int dimensions, access::mode Mode>

145 multi_ptr(accessor<ElementType, dimensions, Mode, access::target::constant_buffer>);

146
147 // Returns the underlying OpenCL C pointer

148 pointer_t get() const;

149
150 // Implicit conversion to the underlying pointer type

151 operator VoidType*() const;

152
153 // Explicit conversion to a multi_ptr<ElementType>

154 // If VoidType is const, ElementType must be as well

155 template <typename ElementType>

156 explicit operator multi_ptr<ElementType, Space>() const;

157
158 // Implicit conversion to multi_ptr<const void, Space>

159 operator multi_ptr<const void, Space>() const;

160
161 friend bool operator==(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

162 friend bool operator!=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

163 friend bool operator<(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

164 friend bool operator>(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

165 friend bool operator<=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

166 friend bool operator>=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */ }

167
168 friend bool operator==(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

169 friend bool operator!=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

170 friend bool operator<(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

171 friend bool operator>(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

172 friend bool operator<=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

173 friend bool operator>=(const multi_ptr& lhs, std::nullptr_t) { /* ... */ }

174
175 friend bool operator==(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

176 friend bool operator!=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

177 friend bool operator<(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

178 friend bool operator>(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

179 friend bool operator<=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

180 friend bool operator>=(std::nullptr_t, const multi_ptr& rhs) { /* ... */ }

181
182 };

183
184 } // namespace sycl

192 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

4.7.7.2 Explicit pointer aliases

SYCL provides aliases to the multi_ptr class template (see Section 4.7.7.1) for each specialization of access::
address_space.

A synopsis of the SYCL multi_ptr class template aliases is provided below.

1 namespace sycl {

2
3 template <typename ElementType, access::address_space Space, access::decorated IsDecorated>

4 class multi_ptr;

5
6 // Template specialization aliases for different pointer address spaces

7
8 template <typename ElementType, access::decorated IsDecorated = access::decorated::legacy>

9 using global_ptr = multi_ptr<ElementType, access::address_space::global_space,

10 IsDecorated>;

11
12 template <typename ElementType, access::decorated IsDecorated = access::decorated::legacy>

13 using local_ptr = multi_ptr<ElementType, access::address_space::local_space,

14 IsDecorated>;

15
16 template <typename ElementType, access::decorated IsDecorated = access::decorated::legacy>

17 using constant_ptr = multi_ptr<ElementType, access::address_space::constant_space,

18 IsDecorated>;

19
20 template <typename ElementType, access::decorated IsDecorated = access::decorated::legacy>

21 using private_ptr = multi_ptr<ElementType, access::address_space::private_space,

22 IsDecorated>;

23
24 // Template specialization aliases for different pointer address spaces.

25 // The interface exposes non-decorated pointer while keeping the

26 // address space information internally.

27
28 template <typename ElementType>

29 using raw_global_ptr = multi_ptr<ElementType, access::address_space::global_space,

30 access::decorated::no>;

31
32 template <typename ElementType>

33 using raw_local_ptr = multi_ptr<ElementType, access::address_space::local_space,

34 access::decorated::no>;

35
36 template <typename ElementType>

37 using raw_constant_ptr = multi_ptr<ElementType, access::address_space::constant_space,

38 access::decorated::no>;

39
40 template <typename ElementType>

41 using raw_private_ptr = multi_ptr<ElementType, access::address_space::private_space,

42 access::decorated::no>;

43
44 // Template specialization aliases for different pointer address spaces.

45 // The interface exposes decorated pointer.

46
47 template <typename ElementType>

48 using decorated_global_ptr = multi_ptr<ElementType, access::address_space::global_space,

CHAPTER 4. SYCL PROGRAMMING INTERFACE 193



4.7. DATA ACCESS AND STORAGE IN SYCL SYCL 2020 provisional

49 access::decorated::yes>;

50
51 template <typename ElementType>

52 using decorated_local_ptr = multi_ptr<ElementType, access::address_space::local_space,

53 access::decorated::yes>;

54
55 template <typename ElementType>

56 using decorated_constant_ptr = multi_ptr<ElementType, access::address_space::constant_space,

57 access::decorated::yes>;

58
59 template <typename ElementType>

60 using decorated_private_ptr = multi_ptr<ElementType, access::address_space::private_space,

61 access::decorated::yes>;

62
63 } // namespace sycl

Note that using global_ptr, local_ptr, constant_ptr or private_ptr without specifying the decoration is dep-
recated. The default argument is provided for compatibility with 1.2.1.

4.7.8 Samplers
The SYCL sampler struct encapsulates a configuration for sampling a sampled_image. A SYCL sampler can map
to one native backend object.

1 namespace sycl {

2 enum class addressing_mode: unsigned int {

3 mirrored_repeat,

4 repeat,

5 clamp_to_edge,

6 clamp,

7 none

8 };

9
10 enum class filtering_mode: unsigned int {

11 nearest,

12 linear

13 };

14
15 enum class coordinate_normalization_mode : unsigned int {

16 normalized,

17 unnormalized

18 };

19
20 struct image_sampler {

21 addressing_mode addressing;

22 coordinate_mode coordinate;

23 filtering_mode filtering;

24 };

25 } // namespace sycl

194 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.7. DATA ACCESS AND STORAGE IN SYCL

addressing mode Description
mirrored_repeat Out of range coordinates will be flipped

at every integer junction. This addressing
mode can only be used with normalized co-
ordinates. If normalized coordinates are not
used, this addressing mode may generate
image coordinates that are undefined.

repeat Out of range image coordinates are wrapped
to the valid range. This addressing mode can
only be used with normalized coordinates.
If normalized coordinates are not used, this
addressing mode may generate image coor-
dinates that are undefined.

clamp_to_edge Out of range image coordinates are clamped
to the extent.

clamp Out of range image coordinates will return
a border color.

none For this addressing mode the programmer
guarantees that the image coordinates used
to sample elements of the image refer to a
location inside the image; otherwise the re-
sults are undefined.

End of table

Table 4.66: Addressing modes description.

filtering mode Description
nearest Chooses a color of nearest pixel.
linear Performs a linear sampling of adjacent pix-

els.
End of table

Table 4.67: Filtering modes description.

coordinate normalization mode Description
normalized Normalizes image coordinates.
unnormalized Does not normalize image coordinates.

End of table

Table 4.68: Coordinate normalization modes description.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 195



4.8. UNIFIED SHARED MEMORY (USM) SYCL 2020 provisional

Constructor Description
sampler(

coordinate_normalization_mode normalizationMode,

addressing_mode addressingMode,

filtering_mode filteringMode,

const property_list &propList = {})

Constructs a SYCL sampler instance with
address mode, filtering mode and coordinate
normalization mode specified by the respec-
tive parameters. It is not valid to construct
a SYCL sampler within a SYCL kernel
function. The optional property_list pro-
vides properties for the constructed SYCL
sampler object.

End of table

Table 4.69: Constructors the sampler class.

Member function Description
addressing_mode get_addressing_mode()const Return the addressing mode used to con-

struct this SYCL sampler.
filtering_mode get_filtering_mode()const Return the filtering mode used to construct

this SYCL sampler.
coordinate_normalization_mode

get_coordinate_normalization_mode()const

Return the coordinate normalization mode
used to construct this SYCL sampler.

End of table

Table 4.70: Member functions for the sampler class.

4.8 Unified shared memory (USM)

This section describes new properties and routines for pointer-based memory management interfaces in SYCL.
These routines augment, rather than replace, the existing buffer-based interfaces in SYCL.

Unified Shared Memory (USM) provides a pointer-based alternative to the buffer programming model. USM
enables:

• Easier integration into existing code bases by representing allocations as pointers rather than buffers, with
full support for pointer arithmetic into allocations.

• Fine-grain control over ownership and accessibility of allocations, to optimally choose between perfor-
mance and programmer convenience.

• A simpler programming model, by automatically migrating some allocations between SYCL devices and
the host.

4.8.1 Unified addressing
Unified Addressing guarantees that all devices will use a unified address space. Pointer values in the unified
address space will always refer to the same location in memory. The unified address space encompasses the host
and one or more devices. Note that this does not require addresses in the unified address space to be accessible on
all devices, just that pointer values will be consistent.

196 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.8. UNIFIED SHARED MEMORY (USM)

4.8.2 Kinds of unified shared memory
USM is a capability that, when available, provides the ability to create allocations that are visible to both host
and device(s). USM builds upon Unified Addressing to define a shared address space where pointer values in this
space always refer to the same location in memory. USM defines multiple tiers of increasing capability described
in the following sections:

• Explicit USM

• Restricted USM

• Concurrent USM

• System USM

USM is an optional feature which may not be supported by all devices, and devices that support USM may only
support some of these tiers. A SYCL application can use the device::has() function to determine the level of
USM support for a device. See Table 4.20 in Section 4.6.4.3 for more details.

4.8.2.1 Explicit USM

Explicit USM defines capabilities for explicitly managing device memory. Programmers directly allocate device
memory, and data must be explicitly copied between the host and a device. Device allocations are obtained
through SYCL USM device allocation routines instead of system allocation routines like std::malloc or C++
new. Device allocations are not accessible on the host, but the pointer values remain consistent on account of
Unified Addressing. Greater detail about how allocations are used is described by the following tables.

4.8.2.2 Restricted USM

Restricted USM defines capabilities for implicitly sharing data between host and devices. However, Restricted
USM, as the name implies, is limited in that host and device may not concurrently compute on memory in the
shared address space. Restricted USM builds upon Explicit USM by adding two new types of allocations, host
and shared. Allocations are obtained through SYCL allocator instead of the system allocator. shared allocations
may be limited by device memory. Greater detail about the allocation types defined in Restricted USM and their
usage is described by the following tables.

4.8.2.3 Concurrent USM

Concurrent USM builds upon Restricted USM by enabling concurrent access to shared allocations between host
and devices. Additionally, some implementations may support a working set of shared allocations larger than
device memory.

4.8.2.4 System USM

System USM extends upon the previous tiers by performing all shared allocations with the normal system memory
allocation routines. In particular, programmers may now use std::malloc or C++ new instead of USM allocation
routines to create shared allocations. Likewise, std::free and delete are used instead of sycl::free. Note that
host and device allocations are unaffected by this change and must still be allocated using their respective USM
functions in order to guarantee their behavior.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 197



4.8. UNIFIED SHARED MEMORY (USM) SYCL 2020 provisional

USM allocation type Description
host Allocations in host memory that are accessible by a device
device Allocations in device memory that are not accessible by the host
shared Allocations in shared memory that are accessible by both host and device

Table 4.71: Type of USM allocations.

Allocation Type Initial Location Accessible By Migratable To

device device

host No host No
device Yes device N/A

Another device Optional (P2P) Another device No

host host
host Yes host N/A

Any device Yes device No

shared Unspecified
host Yes host Yes
device Yes device Yes

Another device Optional (P2P) Another device Optional

Table 4.72: Characteristics of the different kinds of USM allocation.

4.8.3 USM allocations
There are different types of allocation described on Table 4.71 with different characteristics exposed on Table 4.72
which can be referred using the following enum:

1 namespace sycl {

2 namespace usm {

3 enum class alloc {

4 host,

5 device,

6 shared,

7 unknown

8 };

9 }

10 }

4.8.4 C++ allocator interface

1 template <typename T, usm::alloc AllocKind, size_t Alignment = 0>

2 class usm_allocator {

3 public:

4 using value_type = T;

5
6 public:

7 template <typename U> struct rebind {

8 typedef usm_allocator<U, AllocKind, Alignment> other;

9 };

10
11 usm_allocator() noexcept = delete;

12 usm_allocator(const context &ctxt, const device &dev) noexcept;

13 usm_allocator(const queue &q) noexcept;

198 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.8. UNIFIED SHARED MEMORY (USM)

14 usm_allocator(const usm_allocator &other) noexcept;

15
16 template <class U> usm_allocator(usm_allocator<U, AllocKind, Alignment> const &) noexcept;

17
18 /// Allocate memory

19 T *allocate(size_t Size);

20
21 /// Deallocate memory

22 void deallocate(T *Ptr, size_t size);

23
24 /// Constructs an object on memory pointed by Ptr.

25 ///

26 /// Note: AllocKind == alloc::device is not allowed.

27 template <

28 usm::alloc AllocT = AllocKind,

29 typename std::enable_if<AllocT != usm::alloc::device, int>::type = 0,

30 class U, class... ArgTs>

31 void construct(U *Ptr, ArgTs &&... Args);

32
33 /// Throws an error when trying to construct a device allocation

34 /// on the host

35 template <

36 usm::alloc AllocT = AllocKind,

37 typename std::enable_if<AllocT == usm::alloc::device, int>::type = 0,

38 class U, class... ArgTs>

39 void construct(U *Ptr, ArgTs &&... Args);

40
41 /// Destroys an object.

42 ///

43 /// Note:: AllocKind == alloc::device is not allowed

44 template <

45 usm::alloc AllocT = AllocKind,

46 typename std::enable_if<AllocT != usm::alloc::device, int>::type = 0>

47 void destroy(T *Ptr);

48
49 /// Throws an error when trying to destroy a device allocation

50 /// on the host

51 template <

52 usm::alloc AllocT = AllocKind,

53 typename std::enable_if<AllocT == usm::alloc::device, int>::type = 0>

54 void destroy(T *Ptr);

55 };

56
57 /// Equality Comparison

58 ///

59 /// Allocators only compare equal if they are of the same USM kind, alignment,

60 /// context, and device (when kind is not host)

61 template <class T, usm::alloc AllocKindT, size_t AlignmentT, class U,

62 usm::alloc AllocKindU, size_t AlignmentU>

63 bool operator==(const usm_allocator<T, AllocKindT, AlignmentT> &,

64 const usm_allocator<U, AllocKindU, AlignmentU> &) noexcept;

65
66 /// Inequality Comparison

67 ///

68 /// Allocators only compare unequal if they are not of the same USM kind, alignment,

CHAPTER 4. SYCL PROGRAMMING INTERFACE 199



4.8. UNIFIED SHARED MEMORY (USM) SYCL 2020 provisional

69 /// context, or device (when kind is not host)

70 template <class T, class U, usm::alloc AllocKind, size_t Alignment = 0>

71 bool operator!=(const usm_allocator<T, AllocKind, Alignment> &allocT,

72 const usm_allocator<U, AllocKind, Alignment> &allocU) noexcept;

4.8.5 Utility functions
While the modern C++ usm_allocator interface is sufficient for specifying USM allocations and deallocations,
many programmers may prefer C-style malloc-influenced APIs. As a convenience to programmers, malloc-style
APIs are also defined. Additionally, other utility functions are specified in the following sections to perform
various operations such as memory copies and initializations as well as to provide performance hints.

4.8.5.1 Explicit USM

4.8.5.1.1 malloc_device

1 (1)

2 void* sycl::malloc_device(size_t num_bytes,

3 const sycl::device& dev,

4 const sycl::context& ctxt);

5
6 (2)

7 template <typename T>

8 T* sycl::malloc_device(size_t count,

9 const sycl::device& dev,

10 const sycl::context& ctxt);

Parameters

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::device& dev - the SYCL device to allocate on

• const sycl::context& ctxt - the SYCL context to which device belongs

Return value Returns a pointer to the newly allocated memory on the specified device on success. This memory
is not accessible on the host. Memory allocated by sycl::malloc_device must be deallocated with sycl
::free to avoid memory leaks. If ctxt is a host context, it should behave as if calling malloc_host. On
failure, returns nullptr.

1 (1)

2 void* sycl::malloc_device(size_t num_bytes,

3 const sycl::queue& q);

4
5 (2)

6 template <typename T>

7 T* sycl::malloc_device(size_t count,

8 const sycl::queue& q);

Parameters

200 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.8. UNIFIED SHARED MEMORY (USM)

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::queue& q - the SYCL q that provides the device and context to allocate against

Return value Returns a pointer to the newly allocated memory on the device associated with q on success. This
memory is not accessible on the host. Memory allocated by sycl::malloc_device must be deallocated
with sycl::free to avoid memory leaks. If q is a host queue, it should behave as if calling malloc_host.
On failure, returns nullptr.

4.8.5.1.2 aligned_alloc_device

1 (1)

2 void* sycl::aligned_alloc_device(size_t alignment,

3 size_t num_bytes,

4 const sycl::device& dev,

5 const sycl::context& ctxt);

6
7 (2)

8 template <typename T>

9 T* sycl::aligned_alloc_device(size_t alignment,

10 size_t count,

11 const sycl::device& dev,

12 const sycl::context& ctxt);

Parameters

• size_t alignment - specifies the byte alignment. Must be a valid alignment supported by the imple-
mentation.

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::device& dev - the device to allocate on

• const sycl::context& ctxt - the SYCL context to which device belongs

Return value Returns a pointer to the newly allocated memory on the specified device on success. This mem-
ory is not accessible on the host. Memory allocated by sycl::aligned_alloc_device must be deallo-
cated with sycl::free to avoid memory leaks. If ctxt is a host context, it should behave as if calling
aligned_alloc_host. On failure, returns nullptr.

1 (1)

2 void* sycl::aligned_alloc_device(size_t alignment,

3 size_t size,

4 const sycl::queue& q);

5
6 (2)

7 template <typename T>

8 T* sycl::aligned_alloc_device(size_t alignment,

9 size_t count,

CHAPTER 4. SYCL PROGRAMMING INTERFACE 201



4.8. UNIFIED SHARED MEMORY (USM) SYCL 2020 provisional

10 const sycl::queue& q);

Parameters

• size_t alignment - specifies the byte alignment. Must be a valid alignment supported by the imple-
mentation.

• (1) size_t size - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::queue& q - the SYCL q that provides the device and context to allocate against

Return value Returns a pointer to the newly allocated memory on the device associated with q on success.
This memory is not accessible on the host. Memory allocated by sycl::aligned_alloc_device must be
deallocated with sycl::free to avoid memory leaks. If q is a host queue, it should behave as if calling
aligned_alloc_host. On failure, returns nullptr.

4.8.5.1.3 memcpy

1 class handler {

2 ...

3 public:

4 ...

5 void memcpy(void* dest, const void* src, size_t num_bytes);

6 };

7
8 class queue {

9 ...

10 public:

11 ...

12 event memcpy(void* dest, const void* src, size_t num_bytes);

13 };

Parameters

• void* dest - pointer to the destination memory

• const void* src - pointer to the source memory

• size_t num_bytes - number of bytes to copy

Return value Returns an event representing the copy operation.

4.8.5.1.4 memset

1 class handler {

2 ...

3 public:

4 ...

5 void memset(void* ptr, int value, size_t num_bytes);

6 };

202 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.8. UNIFIED SHARED MEMORY (USM)

7
8 class queue {

9 ...

10 public:

11 ...

12 event memset(void* ptr, int value, size_t num_bytes);

13 };

Parameters

• void* ptr - pointer to the memory to fill

• int value - value to be set. Value is interpreted as an unsigned char

• size_t num_bytes - number of bytes to fill

Return value Returns an event representing the fill operation.

4.8.5.1.5 fill

1 class handler {

2 ...

3 public:

4 ...

5 template <typename T>

6 void fill(void* ptr, const T& pattern, size_t count)

7 };

8
9 class queue {

10 ...

11 public:

12 ...

13 template <typename T>

14 event fill(void* ptr, const T& pattern, size_t count);

15 };

Parameters

• void* ptr - pointer to the memory to fill

• const T& pattern - pattern to be filled. T should be trivially copyable.

• size_t count - number of times to fill pattern into ptr

Return value Returns an event representing the fill operation or void if on the handler.

4.8.5.2 Restricted USM

Restricted USM includes all of the Utility Functions of Explicit USM. It additionally introduces new functions to
support host and shared allocations.

4.8.5.2.1 malloc

CHAPTER 4. SYCL PROGRAMMING INTERFACE 203



4.8. UNIFIED SHARED MEMORY (USM) SYCL 2020 provisional

1 (1)

2 void* sycl::malloc_host(size_t num_bytes, const sycl::context& ctxt);

3 (2)

4 template <typename T>

5 T* sycl::malloc_host(size_t count, const sycl::context& ctxt);

Parameters

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::context& ctxt - the SYCL context that contains the devices that will access the host
allocation

Return value Returns a pointer to the newly allocated host memory on success. Memory allocated by sycl::
malloc_host must be deallocated with sycl::free to avoid memory leaks. On failure, returns nullptr.

1 (1)

2 void* sycl::malloc_host(size_t num_bytes, const sycl::queue& q);

3 (2)

4 template <typename T>

5 T* sycl::malloc_host(size_t count, const sycl::queue& q);

Parameters

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::queue& q - the SYCL queue whose context contains the devices that will access the
host allocation

Return value Returns a pointer to the newly allocated host memory on success. Memory allocated by sycl::
malloc_host must be deallocated with sycl::free to avoid memory leaks. On failure, returns nullptr.

1 (1)

2 void* sycl::malloc_shared(size_t num_bytes,

3 const sycl::device& dev,

4 const sycl::context& ctxt);

5 (2)

6 template <typename T>

7 T* sycl::malloc_shared(size_t count,

8 const sycl::device& dev,

9 const sycl::context& ctxt);

Parameters

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::device& dev - the SYCL device which shares access to this memory with the host. The

204 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.8. UNIFIED SHARED MEMORY (USM)

requested memory is allocated on this device.

• const sycl::context& ctxt - defines the set of devices that may also share access to this memory, if
supported. The dev device must be contained within this context.

Return value Returns a pointer to the newly allocated sharedmemory on the specified device on success. Mem-
ory allocated by sycl::malloc_shared must be deallocated with sycl::free to avoid memory leaks. If
ctxt is a host context, should behave as if calling malloc_host. On failure, returns nullptr.

1 (1)

2 void* sycl::malloc_shared(size_t num_bytes,

3 const sycl::queue& q);

4 (2)

5 template <typename T>

6 T* sycl::malloc_shared(size_t count,

7 const sycl::queue& q);

Parameters

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::queue& q - the SYCL q that provides the device and context to allocate against

Return value Returns a pointer to the newly allocated shared memory on the device associated with q on suc-
cess. Memory allocated by sycl::malloc_shared must be deallocated with sycl::free to avoid memory
leaks. On failure, returns nullptr.

4.8.5.2.2 aligned_alloc_host

1 (1)

2 void* sycl::aligned_alloc_host(size_t alignment, size_t num_bytes, const sycl::context& ctxt);

3 (2)

4 template <typename T>

5 T* sycl::aligned_alloc_host(size_t alignment, size_t count, const sycl::context& ctxt);

Parameters

• size_t alignment - specifies the byte alignment. Must be a valid alignment supported by the imple-
mentation.

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::context& ctxt - the SYCL context that contains the devices that will access the host
allocation

Return value Returns a pointer to the newly allocated host memory on success. Memory allocated by sycl
::aligned_alloc_host must be deallocated with sycl::free to avoid memory leaks. On failure, returns
nullptr.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 205



4.8. UNIFIED SHARED MEMORY (USM) SYCL 2020 provisional

1 (1)

2 void* sycl::aligned_alloc_host(size_t alignment, size_t num_bytes, const sycl::queue& q);

3 (2)

4 template <typename T>

5 void* sycl::aligned_alloc_host(size_t alignment, size_t count, const sycl::queue& q);

Parameters

• size_t alignment - specifies the byte alignment. Must be a valid alignment supported by the imple-
mentation.

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::queue& q - the SYCL q whose context contains the devices that will access the host
allocation

Return value Returns a pointer to the newly allocated host memory on success. Memory allocated by sycl
::aligned_alloc_host must be deallocated with sycl::free to avoid memory leaks. On failure, returns
nullptr.

1 (1)

2 void* sycl::aligned_alloc_shared(size_t alignment,

3 size_t num_bytes,

4 const sycl::device& dev,

5 const sycl::context& ctxt);

6 (2)

7 template <typename T>

8 T* sycl::aligned_alloc_shared(size_t alignment,

9 size_t count,

10 const sycl::device& dev,

11 const sycl::context& ctxt);

Parameters

• size_t alignment - specifies the byte alignment. Must be a valid alignment supported by the imple-
mentation.

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::device& dev - the SYCL device which shares access to this memory with the host. The
requested memory is allocated on this device.

• const sycl::context& ctxt - defines the set of devices that may also share access to this memory, if
supported. The dev device must be contained within this context.

Return value Returns a pointer to the newly allocated sharedmemory on the specified device on success. Mem-
ory allocated by sycl::aligned_alloc_shared must be deallocated with sycl::free to avoid memory
leaks. If ctxt is a host context, should behave as if calling aligned_alloc_host. On failure, returns
nullptr.

206 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.8. UNIFIED SHARED MEMORY (USM)

1 (1)

2 void* sycl::aligned_alloc_shared(size_t alignment,

3 size_t num_bytes,

4 const sycl::queue& q);

5 (2)

6 template <typename T>

7 T* sycl::aligned_alloc_shared(size_t alignment,

8 size_t count,

9 const sycl::queue& q);

Parameters

• size_t alignment - specifies the byte alignment. Must be a valid alignment supported by the imple-
mentation.

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::queue& q - the SYCL q that provides the device and context to allocate against

Return value Returns a pointer to the newly allocated shared memory on the device associated with q on suc-
cess. Memory allocated by sycl::aligned_alloc_shared must be deallocated with sycl::free to avoid
memory leaks. If ctxt is a host context, should behave as if calling aligned_alloc_host. On failure,
returns nullptr.

4.8.5.2.3 Performance hints

Programmers may provide hints to the runtime that data should be made available on a device earlier than Unified
Shared Memory would normally require it to be available. This can be accomplished through enqueueing prefetch
commands. Prefetch commands may not be overlapped with kernel execution in Restricted USM.

4.8.5.2.3.1 prefetch

1 class handler {

2 ...

3 public:

4 ...

5 void prefetch(const void* ptr, size_t num_bytes);

6 };

7
8 class queue {

9 ...

10 public:

11 ...

12 event prefetch(const void* ptr, size_t num_bytes);

13 };

Parameters

• const void* ptr - pointer to the memory to be prefetched to the device

• size_t num_bytes - number of bytes requested to be prefetched

CHAPTER 4. SYCL PROGRAMMING INTERFACE 207



4.8. UNIFIED SHARED MEMORY (USM) SYCL 2020 provisional

Return value Returns an event representing the prefetch operation.

4.8.5.3 Concurrent USM

Concurrent USM contains all the utility functions of Explicit USM and Restricted USM. It introduces a new
function, sycl::queue::mem_advise, that allows programmers to provide additional information to the underlying
runtime about how different allocations are used.

4.8.5.3.1 Performance hints

4.8.5.3.1.1 prefetch

In Concurrent USM, prefetch commands may be overlapped with kernel execution.

4.8.5.3.1.2 mem_advise

1 class handler {

2 ...

3 public:

4 ...

5 void mem_advise(const void *addr, size_t num_bytes, int advice);

6 };

7
8 class queue {

9 ...

10 public:

11 ...

12 event mem_advise(const void *addr, size_t num_bytes, int advice);

13 };

Parameters

• void* addr - address of allocation

• size_t num_bytes - number of bytes in the allocation

• int advice - device-defined advice for the specified allocation. A value of 0 reverts the advice for
addr to the default behavior.

Return Value Returns an event representing the operation.

4.8.5.4 General

4.8.5.4.1 malloc

1 (1)

2 void *sycl::malloc(size_t num_bytes,

3 const sycl::device& dev,

4 const sycl::context& ctxt,

5 usm::alloc kind);

6 (2)

7 template <typename T>

8 T *sycl::malloc(size_t count,

208 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.8. UNIFIED SHARED MEMORY (USM)

9 const sycl::device& dev,

10 const sycl::context& ctxt,

11 usm::alloc kind);

Parameters

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::device& dev - the SYCL device to allocate on (if applicable)

• const sycl::context& ctxt - the SYCL context to which device belongs

• usm::alloc kind - the type of allocation to perform

Return value Returns a pointer to the newly allocated kind memory on the specified device on success. If kind
is alloc::host, dev is ignored. Memory allocated by sycl::malloc must be deallocated with sycl::free
to avoid memory leaks. On failure, returns nullptr.

1 (1)

2 void *sycl::malloc(size_t num_bytes,

3 const sycl::queue& q,

4 usm::alloc kind);

5 (2)

6 template <typename T>

7 T *sycl::malloc(size_t count,

8 const sycl::queue& q,

9 usm::alloc kind);

Parameters

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::queue& q - the SYCL q that provides the device (if applicable) and context to allocate
against

• usm::alloc kind - the type of allocation to perform

Return value Returns a pointer to the newly allocated kind memory on success. Memory allocated by sycl::
malloc must be deallocated with sycl::free to avoid memory leaks. On failure, returns nullptr.

4.8.5.4.2 aligned_alloc

1 (1)

2 void *sycl::aligned_alloc(size_t alignment,

3 size_t num_bytes,

4 const sycl::device& dev,

5 const sycl::context& ctxt,

6 usm::alloc kind);

7 (2)

CHAPTER 4. SYCL PROGRAMMING INTERFACE 209



4.8. UNIFIED SHARED MEMORY (USM) SYCL 2020 provisional

8 template <typename T>

9 T* sycl::aligned_alloc(size_t alignment,

10 size_t count,

11 const sycl::device& dev,

12 const sycl::context& ctxt,

13 usm::alloc kind);

Parameters

• size_t alignment - specifies the byte alignment. Must be a valid alignment supported by the imple-
mentation.

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::device& dev - the SYCL device to allocate on (if applicable)

• const sycl::context& ctxt - the SYCL context to which device belongs

• usm::alloc kind - the type of allocation to perform

Return value Returns a pointer to the newly allocated kind memory on the specified device on success. If kind
is alloc::host, dev is ignored. Memory allocated by sycl::aligned_alloc must be deallocated with
sycl::free to avoid memory leaks. On failure, returns nullptr.

1 (1)

2 void *sycl::aligned_alloc(size_t alignment,

3 size_t num_bytes,

4 const sycl::queue& q,

5 usm::alloc kind);

6 (2)

7 template <typename T>

8 T* sycl::aligned_alloc(size_t alignment,

9 size_t count,

10 const sycl::queue& q,

11 usm::alloc kind);

Parameters

• size_t alignment - specifies the byte alignment. Must be a valid alignment supported by the imple-
mentation.

• (1) size_t num_bytes - number of bytes to allocate

• (2) size_t count - number of elements of type T to allocate

• const sycl::queue& q - the SYCL q that provides the device (if applicable) and context to allocate
against.

• usm::alloc kind - the type of allocation to perform

Return value Returns a pointer to the newly allocated kind memory on success. Memory allocated by sycl::
aligned_alloc must be deallocated with sycl::free to avoid memory leaks. On failure, returns nullptr.

210 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.8. UNIFIED SHARED MEMORY (USM)

4.8.5.4.3 free

1 void sycl::free(void* ptr, sycl::context& context);

Parameters

• void* ptr - pointer to the memory to deallocate. Must have been allocated by a SYCL malloc or
aligned_alloc function.

• const sycl::context& ctxt - the SYCL context in which ptr was allocated

Return value none

1 void sycl::free(void* ptr, sycl::queue& q);

Parameters

• void* ptr - pointer to the memory to deallocate. Must have been allocated by a SYCL malloc or
aligned_alloc function.

• const sycl::queue& q - the SYCL queue that provides the context in which ptr was allocated

Return value none

4.8.6 Unified shared memory information
4.8.6.1 Pointer queries

4.8.6.1.1 get_pointer_type

1 usm::alloc get_pointer_type(const void *ptr, const context &ctxt);

Parameters

• const void* ptr - the pointer to query.

• const sycl::context& ctxt - the SYCL context to which the USM allocation belongs

Return value Returns the USM allocation type for ptr if ptr falls inside a valid USM allocation. If ctxt is a host
context, returns usm::alloc::host. Returns usm::alloc::unknown if ptr is not a valid USM allocation.

4.8.6.1.2 get_pointer_device

1 sycl::device get_pointer_device(const void *ptr, const context &ctxt);

Parameters

• const void* ptr - the pointer to query

• const sycl::context& ctxt - the SYCL context to which the USM allocation belongs

CHAPTER 4. SYCL PROGRAMMING INTERFACE 211



4.9. SYCL SCHEDULING SYCL 2020 provisional

Return value Returns the device associated with the USM allocation. If ctxt is a host context, returns the host
device in ctxt. If ptr is an allocation of type usm::alloc::host, returns the first device in ctxt. Throws
an error if ptr is not a valid USM allocation.

4.9 SYCL scheduling

SYCL 1.2.1 defines an execution model based on tasks submitted to Out-of-Order queues. Dependences between
these tasks are constructed from the data they read and write. The data usage of a task is conveyed to the runtime
by constructing accessors on buffer objects that specify their intent. Pointers obtained from using explicit memory
management interfaces in SYCL cannot create accessors, so dependence graphs cannot be constructed in the same
fashion. New member functions are required to specify dependences between tasks.

4.9.1 DAGs without accessors
Unified Shared Memory changes how the SYCL runtime manages data movement. Since the runtime might no
longer be responsible for orchestrating data movement, it makes sense to enable a way to build dependence graphs
based on ordering computations rather than accesses to data inside them. Conveniently, a SYCL queue already
returns an event upon calls to submit. These events can be used by the programmer to wait for the submitted task
to complete.

1 queue q;

2 auto dev = q.get_device();

3 auto ctxt = q.get_context();

4 float* a = static_cast<float*>(malloc_shared(10*sizeof(float), dev, ctxt));

5 float* b = static_cast<float*>(malloc_shared(10*sizeof(float), dev, ctxt));

6 float* c = static_cast<float*>(malloc_shared(10*sizeof(float), dev, ctxt));

7
8 auto e = q.submit([&](handler& cgh) {

9 cgh.parallel_for(range<1> {10}, [=](id<1> ID) {

10 size_t i = ID[0];

11 c[i] = a[i] + b[i];

12 });

13 });

14 e.wait();

4.9.2 Coarse grain DAGs with depends_on
While SYCL already defines the capability to wait on specific tasks, programmers should still be able to easily
define relationships between tasks.

1 class handler {

2 ...

3 public:

4 ...

5 void depends_on(event e);

6 void depends_on(const std::vector<event> &e);

7 };

Parameters e - event or vector of events representing task(s) required to complete before this task may begin

212 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Return value none

4.10 Expressing parallelism through kernels

4.10.1 Ranges and index space identifiers
The data parallelism of the SYCL kernel execution model requires instantiation of a parallel execution over a
range of iteration space coordinates. To achieve this, SYCL exposes types to define the range of execution and to
identify a given execution instance’s point in the iteration space.

The following types are defined: range, nd_range, id, item, h_item, nd_item and group.

When constructing ids or ranges from integers, the elements are written in row-major format.

Type Description
id A point within a range
range Bounds over which an id may vary
item Pairing of an id (specific point) and the

range that it is bounded by
nd_range Encapsules both global and local (work-

group size) ranges over which work-item
ids will vary

nd_item Encapsulates two items, one for global id
and range, and one for local id and range

h_item Index point queries within hierarchical par-
allelism (parallel_for_work_item). En-
capsulates physical global and local ids and
ranges, as well as a logical local id and
range defined by hierarchical parallelism

group Work-group queries within hierarchical par-
allelism (parallel_for_work_group), and
exposes the parallel_for_work_item con-
struct that identifies code to be executed by
each work-item. Encapsulates work-group
ids and ranges

End of table

Table 4.73: Summary of types used to identify points in an index space, and ranges over which those points can
vary.

4.10.1.1 range class

range<int dimensions> is a 1D, 2D or 3D vector that defines the iteration domain of either a single work-group
in a parallel dispatch, or the overall dimensions of the dispatch. It can be constructed from integers.

The SYCL range class template provides the common by-value semantics (see Section 4.5.4).

A synopsis of the SYCL range class is provided below. The constructors, member functions and non-member
functions of the SYCL range class are listed in Tables 4.74, 4.75 and 4.76 respectively. The additional common
special member functions and common member functions are listed in 4.5.4 in Tables 4.3 and 4.4 respectively.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 213



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

1 namespace sycl {

2 template <int dimensions = 1>

3 class range {

4 public:

5 /* The following constructor is only available in the range class specialization where:

dimensions==1 */

6 range(size_t dim0);

7 /* The following constructor is only available in the range class specialization where:

dimensions==2 */

8 range(size_t dim0, size_t dim1);

9 /* The following constructor is only available in the range class specialization where:

dimensions==3 */

10 range(size_t dim0, size_t dim1, size_t dim2);

11
12 /* -- common interface members -- */

13
14 size_t get(int dimension) const;

15 size_t &operator[](int dimension);

16 size_t operator[](int dimension) const;

17
18 size_t size() const;

19
20 // OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&, ||, <, >, <=, >=

21 friend range operatorOP(const range &lhs, const range &rhs) { /* ... */ }

22 friend range operatorOP(const range &lhs, const size_t &rhs) { /* ... */ }

23
24 // OP is: +=, -=, *=, /=, %=, <<=, >>=, &=, |=, ˆ=

25 friend range & operatorOP(range &lhs, const range &rhs) { /* ... */ }

26 friend range & operatorOP(range &lhs, const size_t &rhs) { /* ... */ }

27
28 // OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&, ||, <, >, <=, >=

29 friend range operatorOP(const size_t &lhs, const range &rhs) { /* ... */ }

30
31 };

32
33 // Deduction guides

34 range(size_t) -> range<1>;

35 range(size_t, size_t) -> range<2>;

36 range(size_t, size_t, size_t) -> range<3>;

37
38 } // sycl

Constructor Description
range(size_t dim0) Construct a 1D range with value dim0.

Only valid when the template parameter
dimensions is equal to 1.

range(size_t dim0, size_t dim1) Construct a 2D range with values dim0 and
dim1. Only valid when the template param-
eter dimensions is equal to 2.

range(size_t dim0, size_t dim1, size_t dim2) Construct a 3D range with values dim0,
dim1 and dim2. Only valid when the tem-
plate parameter dimensions is equal to 3.

End of table

Table 4.74: Constructors of the range class template.

214 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
size_t get(int dimension)const Return the value of the specified dimension

of the range.
size_t &operator[](int dimension) Return the l-value of the specified dimen-

sion of the range.
size_t operator[](int dimension)const Return the value of the specified dimension

of the range.
size_t size()const Return the size of the range computed as

dimension0*...*dimensionN.
End of table

Table 4.75: Member functions of the range class template.

Hidden friend function Description
range operatorOP(const range &lhs, const range &rhs) Where OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&,

||, <, >, <=, >=.
Constructs and returns a new instance of the
SYCL range class template with the same
dimensionality as lhs range, where each el-
ement of the new SYCL range instance is
the result of an element-wise OP operator be-
tween each element of lhs range and each
element of the rhs range. If the operator re-
turns a bool the result is the cast to size_t.

range operatorOP(const range &lhs, const size_t &rhs

)

Where OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&,
||, <, >, <=, >=.
Constructs and returns a new instance of the
SYCL range class template with the same
dimensionality as lhs range, where each el-
ement of the new SYCL range instance is
the result of an element-wise OP operator be-
tween each element of this SYCL range and
the rhs size_t. If the operator returns a
bool the result is the cast to size_t.

range &operatorOP(range &lhs, const range &rhs) Where OP is: +=, -=,*=, /=, %=, <<=, >>=, &=,
|=, ˆ=.
Assigns each element of lhs range instance
with the result of an element-wise OP opera-
tor between each element of lhs range and
each element of the rhs range and returns
lhs range. If the operator returns a bool the
result is the cast to size_t.

Continued on next page

Table 4.76: Hidden friend functions of the SYCL range class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 215



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Hidden friend function Description
range &operatorOP(range &lhs, const size_t &rhs) Where OP is: +=, -=,*=, /=, %=, <<=, >>=, &=,

|=, ˆ=.
Assigns each element of lhs range instance
with the result of an element-wise OP opera-
tor between each element of lhs range and
the rhs size_t and returns lhs range. If the
operator returns a bool the result is the cast
to size_t.

range operatorOP(const size_t &lhs, const range &rhs

)

Where OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&,
||, <, >, <=, >=.
Constructs and returns a new instance of
the SYCL range class template with the
same dimensionality as the rhs SYCL range
, where each element of the new SYCL
range instance is the result of an element-
wise OP operator between the lhs size_t
and each element of the rhs SYCL range. If
the operator returns a bool the result is the
cast to size_t.

End of table

Table 4.76: Hidden friend functions of the SYCL range class template.

4.10.1.2 nd_range class

1 namespace sycl {

2 template <int dimensions = 1>

3 class nd_range {

4 public:

5
6 /* -- common interface members -- */

7
8 nd_range(range<dimensions> globalSize, range<dimensions> localSize,

9 id<dimensions> offset = id<dimensions>());

10
11 range<dimensions> get_global_range() const;

12 range<dimensions> get_local_range() const;

13 range<dimensions> get_group_range() const;

14 id<dimensions> get_offset() const;

15 };

16 } // namespace sycl

nd_range<int dimensions> defines the iteration domain of both the work-groups and the overall dispatch. To
define this the nd_range comprises two ranges: the whole range over which the kernel is to be executed, and the
range of each work group.

The SYCL nd_range class template provides the common by-value semantics (see Section 4.5.4).

A synopsis of the SYCL nd_range class is provided below. The constructors and member functions of the SYCL
nd_range class are listed in Tables 4.77 and 4.78 respectively. The additional common special member functions

216 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

and common member functions are listed in 4.5.4 in Tables 4.3 and 4.4 respectively.

Constructor Description
nd_range<dimensions>(

range<dimensions> globalSize,

range<dimensions> localSize)

id<dimensions> offset = id<dimensions>())

Construct an nd_range from the local and
global constituent ranges as well as an op-
tional offset. If the offset is not provided it
will default to no offset.

End of table

Table 4.77: Constructors of the nd_range class.

Member function Description
range<dimensions> get_global_range()const Return the constituent global range.
range<dimensions> get_local_range()const Return the constituent local range.
range<dimensions> get_group_range()const Return a range representing the number of

groups in each dimension. This range would
result from globalSize/localSize as pro-
vided on construction.

id<dimensions> get_offset()const Return the constituent offset.
End of table

Table 4.78: Member functions for the nd_range class.

4.10.1.3 id class

id<int dimensions> is a vector of dimensions that is used to represent an id into a global or local range. It can
be used as an index in an accessor of the same rank. The [n] operator returns the component n as an size_t.

The SYCL id class template provides the common by-value semantics (see Section 4.5.4).

A synopsis of the SYCL id class is provided below. The constructors, member functions and non-member func-
tions of the SYCL id class are listed in Tables 4.79, 4.80 and 4.81 respectively. The additional common special
member functions and common member functions are listed in 4.5.4 in Tables 4.3 and 4.4 respectively.

1 namespace sycl {

2 template <int dimensions = 1>

3 class id {

4 public:

5 id();

6
7 /* The following constructor is only available in the id class

8 * specialization where: dimensions==1 */

9 id(size_t dim0);

10 /* The following constructor is only available in the id class

11 * specialization where: dimensions==2 */

12 id(size_t dim0, size_t dim1);

13 /* The following constructor is only available in the id class

14 * specialization where: dimensions==3 */

15 id(size_t dim0, size_t dim1, size_t dim2);

16
17 /* -- common interface members -- */

CHAPTER 4. SYCL PROGRAMMING INTERFACE 217



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

18
19 id(const range<dimensions> &range);

20 id(const item<dimensions> &item);

21
22 size_t get(int dimension) const;

23 size_t &operator[](int dimension);

24 size_t operator[](int dimension) const;

25
26 // OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&, ||, <, >, <=, >=

27 friend id operatorOP(const id &lhs, const id &rhs) { /* ... */ }

28 friend id operatorOP(const id &lhs, const size_t &rhs) { /* ... */ }

29
30 // OP is: +=, -=, *=, /=, %=, <<=, >>=, &=, |=, ˆ=

31 friend id &operatorOP(id &lhs, const id &rhs) { /* ... */ }

32 friend id &operatorOP(id &lhs, const size_t &rhs) { /* ... */ }

33
34 // OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&, ||, <, >, <=, >=

35 friend id operatorOP(const size_t &lhs, const id &rhs) { /* ... */ }

36
37 };

38
39 // Deduction guides

40 id(size_t) -> id<1>;

41 id(size_t, size_t) -> id<2>;

42 id(size_t, size_t, size_t) -> id<3>;

43
44 } // namespace sycl

Constructor Description
id() Construct a SYCL id with the value 0 for

each dimension.
id(size_t dim0) Construct a 1D id with value dim0.

Only valid when the template parameter
dimensions is equal to 1.

id(size_t dim0, size_t dim1) Construct a 2D id with values dim0, dim1.
Only valid when the template parameter
dimensions is equal to 2.

id(size_t dim0, size_t dim1, size_t dim2) Construct a 3D id with values dim0, dim1,
dim2. Only valid when the template param-
eter dimensions is equal to 3.

id(const range<dimensions> &range) Construct an id from the dimensions of
range.

id(const item<dimensions> &item) Construct an id from item.get_id().
End of table

Table 4.79: Constructors of the id class template.

218 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
size_t get(int dimension)const Return the value of the id for dimension

dimension.
size_t &operator[](int dimension) Return a reference to the requested dimen-

sion of the id object.
size_t operator[](int dimension)const Return the value of the requested dimension

of the id object.
End of table

Table 4.80: Member functions of the id class template.

Hidden friend function Description
id operatorOP(const id &lhs, const id &rhs) Where OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&,

||, <, >, <=, >=.
Constructs and returns a new instance of the
SYCL id class template with the same di-
mensionality as lhs id, where each element
of the new SYCL id instance is the result of
an element-wise OP operator between each
element of lhs id and each element of the
rhs id. If the operator returns a bool, the
result is the cast to size_t.

id operatorOP(const id &lhs, const size_t &rhs) Where OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&,
||, <, >, <=, >=.
Constructs and returns a new instance of the
SYCL id class template with the same di-
mensionality as lhs id, where each element
of the new SYCL id instance is the result of
an element-wise OP operator between each
element of lhs id and the rhs size_t. If the
operator returns a bool, the result is the cast
to size_t.

id &operatorOP(id &lhs, const id &rhs) Where OP is: +=, -=,*=, /=, %=, <<=, >>=, &=,
|=, ˆ=.
Assigns each element of lhs id instance
with the result of an element-wise OP opera-
tor between each element of lhs id and each
element of the rhs id and returns lhs id. If
the operator returns a bool, the result is the
cast to size_t.

id &operatorOP(id &lhs, const size_t &rhs) Where OP is: +=, -=,*=, /=, %=, <<=, >>=, &=,
|=, ˆ=.
Assigns each element of lhs id instance
with the result of an element-wise OP opera-
tor between each element of lhs id and the
rhs size_t and returns lhs id. If the oper-
ator returns a bool, the result is the cast to
size_t.

Continued on next page

Table 4.81: Hidden friend functions of the id class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 219



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Hidden friend function Description
id operatorOP(const size_t &lhs, const id &rhs) Where OP is: +, -, *, /, %, <<, >>, &, |, ˆ, &&,

||, <, >, <=, >=.
Constructs and returns a new instance of the
SYCL id class template with the same di-
mensionality as the rhs SYCL id, where
each element of the new SYCL id instance
is the result of an element-wise OP operator
between the lhs size_t and each element of
the rhs SYCL id. If the operator returns a
bool, the result is the cast to size_t.

End of table

Table 4.81: Hidden friend functions of the id class template.

4.10.1.4 item class

item identifies an instance of the function object executing at each point in a range. It is passed to a parallel_for
call or returned by member functions of h_item. It encapsulates enough information to identify the work-item’s
range of possible values and its ID in that range. It can optionally carry the offset of the range if provided to
the parallel_for. Instances of the item class are not user-constructible and are passed by the runtime to each
instance of the function object.

The SYCL item class template provides the common by-value semantics (see Section 4.5.4).

A synopsis of the SYCL item class is provided below. The member functions of the SYCL item class are listed in
Table 4.80. The additional common special member functions and common member functions are listed in 4.5.4
in Tables 4.3 and 4.4 respectively.

1 namespace sycl {

2 template <int dimensions = 1, bool with_offset = true>

3 class item {

4 public:

5 item() = delete;

6
7 /* -- common interface members -- */

8
9 id<dimensions> get_id() const;

10
11 size_t get_id(int dimension) const;

12
13 size_t operator[](int dimension) const;

14
15 range<dimensions> get_range() const;

16
17 size_t get_range(int dimension) const;

18
19 // only available if with_offset is true

20 id<dimensions> get_offset() const;

21
22 // only available if with_offset is false

23 operator item<dimensions, true>() const;

220 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

24
25 // only available if dimensions == 1

26 operator size_t() const;

27
28 size_t get_linear_id() const;

29 };

30 } // namespace sycl

Member function Description
id<dimensions> get_id()const Return the constituent id representing the

work-item’s position in the iteration space.
size_t get_id(int dimension)const Return the same value as get_id()[

dimension].
size_t operator[](int dimension)const Return the same value as get_id(

dimension).
range<dimensions> get_range()const Returns a range representing the dimen-

sions of the range of possible values of the
item.

size_t get_range(int dimension)const Return the same value as get_range().get
(dimension).

id<dimensions> get_offset()const Returns an id representing the n-
dimensional offset provided to the
parallel_for and that is added by the
runtime to the global-ID of each work-item,
if this item represents a global range. For an
item converted from an item with no offset
this will always return an id of all 0 values.
This member function is only available if
with_offset is true.

operator item<dimensions, true>()const Available only when: with_offset ==
false

Returns an item representing the same in-
formation as the object holds but also in-
cludes the offset set to 0. This conversion
allow users to seamlessly write code that as-
sumes an offset and still provides an offset-
less item.

operator size_t()const Available only when: dimensions == 1
Returns the index representing the work-
item position in the iteration space.

size_t get_linear_id()const Return the id as a linear index value. Cal-
culating a linear address from the multi-
dimensional index follow the equation 4.3.

End of table

Table 4.82: Member functions for the item class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 221



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

4.10.1.5 nd_item class

nd_item<int dimensions> identifies an instance of the function object executing at each point in an nd_range<
int dimensions> passed to a parallel_for call. It encapsulates enough information to identify the work-item’s
local and global ids, the work-group id and also provides access to the group and sub_group classes. Instances of
the nd_item<int dimensions> class are not user-constructible and are passed by the runtime to each instance of
the function object.

The SYCL nd_item class template provides the common by-value semantics (see Section 4.5.4).

A synopsis of the SYCL nd_item class is provided below. The member functions of the SYCL nd_item class are
listed in Table 4.83. The additional common special member functions and common member functions are listed
in 4.5.4 in Tables 4.3 and 4.4 respectively.

1 namespace sycl {

2 template <int dimensions = 1>

3 class nd_item {

4 public:

5 nd_item() = delete;

6
7 /* -- common interface members -- */

8
9 id<dimensions> get_global_id() const;

10
11 size_t get_global_id(int dimension) const;

12
13 size_t get_global_linear_id() const;

14
15 id<dimensions> get_local_id() const;

16
17 size_t get_local_id(int dimension) const;

18
19 size_t get_local_linear_id() const;

20
21 group<dimensions> get_group() const;

22
23 size_t get_group(int dimension) const;

24
25 size_t get_group_linear_id() const;

26
27 range<dimensions> get_group_range() const;

28
29 size_t get_group_range(int dimension) const;

30
31 range<dimensions> get_global_range() const;

32
33 size_t get_global_range(int dimension) const;

34
35 range<dimensions> get_local_range() const;

36
37 size_t get_local_range(int dimension) const;

38
39 id<dimensions> get_offset() const;

40
41 nd_range<dimensions> get_nd_range() const;

222 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

42
43 template <typename dataT>

44 device_event async_work_group_copy(decorated_local_ptr<dataT> dest,

45 decorated_global_ptr<dataT> src, size_t numElements) const;

46
47 template <typename dataT>

48 device_event async_work_group_copy(decorated_global_ptr<dataT> dest,

49 decorated_local_ptr<dataT> src, size_t numElements) const;

50
51 template <typename dataT>

52 device_event async_work_group_copy(decorated_local_ptr<dataT> dest,

53 decorated_global_ptr<dataT> src, size_t numElements, size_t srcStride) const;

54
55 template <typename dataT>

56 device_event async_work_group_copy(decorated_global_ptr<dataT> dest,

57 decorated_local_ptr<dataT> src, size_t numElements, size_t destStride) const;

58
59 template <typename... eventTN>

60 void wait_for(eventTN... events) const;

61 };

62 } // namespace sycl

Member function Description
id<dimensions> get_global_id()const Return the constituent global id represent-

ing the work-item’s position in the global it-
eration space.

size_t get_global_id(int dimension)const Return the constituent element of the global
id representing the work-item’s position in
the nd-range in the given dimension.

size_t get_global_linear_id()const Return the flattened id of the current work-
item after subtracting the offset. Calculating
a linear id from a multi-dimensional index
follows the equation 4.3.

id<dimensions> get_local_id()const Return the constituent local id representing
the work-item’s position within the current
work-group.

size_t get_local_id(int dimension)const Return the constituent element of the lo-
cal id representing the work-item’s position
within the current work-group in the given
dimension.

size_t get_local_linear_id()const Return the flattened id of the current work-
item within the current work-group. Cal-
culating a linear address from a multi-
dimensional index follows the equation 4.3.

group<dimensions> get_group()const Return the constituent work-group, group
representing the work-group’s position

within the overall nd-range.
sub_group get_sub_group()const Return a sub_group representing the sub-

group to which the work-item belongs.
Continued on next page

Table 4.83: Member functions for the nd_item class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 223



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Member function Description
size_t get_group(int dimension)const Return the constituent element of the group

id representing the work-group’s position
within the overall nd_range in the given
dimension.

size_t get_group_linear_id()const Return the group id as a linear index value.
Calculating a linear address from a multi-
dimensional index follows the equation 4.3.

range<dimensions> get_group_range()const Returns the number of work-groups in the
iteration space.

size_t get_group_range(int dimension)const Return the number of work-groups for
dimension in the iteration space.

range<dimensions> get_global_range()const Returns a range representing the dimen-
sions of the global iteration space.

size_t get_global_range(int dimension)const Return the same value as get global -
range().get(dimension)

range<dimensions> get_local_range()const Returns a range representing the dimen-
sions of the current work-group.

size_t get_local_range(int dimension)const Return the same value as get local -
range().get(dimension)

id<dimensions> get_offset()const Returns an id representing the n-
dimensional offset provided to the con-
structor of the nd_range and that is added
by the runtime to the global id of each
work-item.

nd_range<dimensions> get_nd_range()const Returns the nd_range of the current execu-
tion.

template <typename dataT>

device_event async_work_group_copy(

decorated_local_ptr<dataT> dest,

decorated_global_ptr<dataT> src,

size_t numElements)const

Permitted types for dataT are all scalar and
vector types. Asynchronously copies a num-
ber of elements specified by numElements

from the source pointer src to desti-
nation pointer dest and returns a SYCL
device_event which can be used to wait on
the completion of the copy.

template <typename dataT>

device_event async_work_group_copy(

decorated_global_ptr<dataT> dest,

decorated_local_ptr<dataT> src,

size_t numElements)const

Permitted types for dataT are all scalar and
vector types. Asynchronously copies a num-
ber of elements specified by numElements

from the source pointer src to desti-
nation pointer dest and returns a SYCL
device_event which can be used to wait on
the completion of the copy.

Continued on next page

Table 4.83: Member functions for the nd_item class.

224 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
template <typename dataT>

device_event async_work_group_copy(

decorated_local_ptr<dataT> dest,

decorated_global_ptr<dataT> src,

size_t numElements, size_t srcStride)const

Permitted types for dataT are all scalar and
vector types. Asynchronously copies a num-
ber of elements specified by numElements

from the source pointer src to destina-
tion pointer dest with a source stride spec-
ified by srcStride and returns a SYCL
device_event which can be used to wait on
the completion of the copy.

template <typename dataT>

device_event async_work_group_copy(

decorated_global_ptr<dataT> dest,

decorated_local_ptr<dataT> src,

size_t numElements, size_t destStride)const

Permitted types for dataT are all scalar and
vector types. Asynchronously copies a num-
ber of elements specified by numElements
from the source pointer src to destination

pointer dest with a destination stride spec-
ified by destStride and returns a SYCL
device_event which can be used to wait on
the completion of the copy.

template <typename... eventTN>

void wait_for(eventTN... events)const

Permitted type for eventTN is device_event.
Waits for the asynchronous operations asso-
ciated with each device_event to complete.

End of table

Table 4.83: Member functions for the nd_item class.

4.10.1.6 h_item class

h_item<int dimensions> identifies an instance of a group::parallel_for_work_item function object execut-
ing at each point in a local range<int dimensions> passed to a parallel_for_work_item call or to the cor-
responding parallel_for_work_group call if no range is passed to the parallel_for_work_item call. It en-
capsulates enough information to identify the work-item’s local and global items according to the information
given to parallel_for_work_group (physical ids) as well as the work-item’s logical local items in the logical
local range. All returned items objects are offset-less. Instances of the h_item<int dimensions> class are not
user-constructible and are passed by the runtime to each instance of the function object.

The SYCL h_item class template provides the common by-value semantics (see Section 4.5.4).

A synopsis of the SYCL h_item class is provided below. The member functions of the SYCL h_item class are
listed in Table 4.84. The additional common special member functions and common member functions are listed
in 4.5.4 in Tables 4.3 and 4.4 respectively.

1 namespace sycl {

2 template <int dimensions>

3 class h_item {

4 public:

5 h_item() = delete;

6
7 /* -- common interface members -- */

8
9 item<dimensions, false> get_global() const;

10
11 item<dimensions, false> get_local() const;

CHAPTER 4. SYCL PROGRAMMING INTERFACE 225



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

12
13 item<dimensions, false> get_logical_local() const;

14
15 item<dimensions, false> get_physical_local() const;

16
17 range<dimensions> get_global_range() const;

18
19 size_t get_global_range(int dimension) const;

20
21 id<dimensions> get_global_id() const;

22
23 size_t get_global_id(int dimension) const;

24
25 range<dimensions> get_local_range() const;

26
27 size_t get_local_range(int dimension) const;

28
29 id<dimensions> get_local_id() const;

30
31 size_t get_local_id(int dimension) const;

32
33 range<dimensions> get_logical_local_range() const;

34
35 size_t get_logical_local_range(int dimension) const;

36
37 id<dimensions> get_logical_local_id() const;

38
39 size_t get_logical_local_id(int dimension) const;

40
41 range<dimensions> get_physical_local_range() const;

42
43 size_t get_physical_local_range(int dimension) const;

44
45 id<dimensions> get_physical_local_id() const;

46
47 size_t get_physical_local_id(int dimension) const;

48
49 };

50 } // namespace sycl

Member function Description
item<dimensions, false> get_global()const Return the constituent global item rep-

resenting the work-item’s position in the
global iteration space as provided upon ker-
nel invocation.

item<dimensions, false> get_local()const Return the same value as
get_logical_local().

Continued on next page

Table 4.84: Member functions for the h_item class.

226 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
item<dimensions, false> get_logical_local()const Return the constituent element of the

logical local item work-item’s position
in the local iteration space as provided
upon the invocation of the group::

parallel_for_work_item.
If the group::parallel_for_work_item

was called without any logical local range
then the member function returns the
physical local item.
A physical id can be computed from a
logical id by getting the remainder of the
integer division of the logical id and the
physical range: get_logical_local().get
()% get_physical_local.get_range()==

get_physical_local().get().
item<dimensions, false> get_physical_local()const Return the constituent element of the physi-

cal local item work-item’s position in the lo-
cal iteration space as provided (by the user
or the runtime) upon the kernel invocation.

range<dimensions> get_global_range()const Return the same value as get_global().
get_range()

size_t get_global_range(int dimension)const Return the same value as get_global().
get_range(dimension)

id<dimensions> get_global_id()const Return the same value as get_global().
get_id()

size_t get_global_id(int dimension)const Return the same value as get_global().
get_id(dimension)

range<dimensions> get_local_range()const Return the same value as get_local().
get_range()

size_t get_local_range(int dimension)const Return the same value as get_local().
get_range(dimension)

id<dimensions> get_local_id()const Return the same value as get_local().
get_id()

size_t get_local_id(int dimension)const Return the same value as get_local().
get_id(dimension)

range<dimensions> get_logical_local_range()const Return the same value as
get_logical_local().get_range()

size_t get_logical_local_range(int dimension)const Return the same value as
get_logical_local().get_range(

dimension)

id<dimensions> get_logical_local_id()const Return the same value as
get_logical_local().get_id()

size_t get_logical_local_id(int dimension)const Return the same value as
get_logical_local().get_id(dimension)

range<dimensions> get_physical_local_range()const Return the same value as
get_physical_local().get_range()

Continued on next page

Table 4.84: Member functions for the h_item class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 227



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Member function Description
size_t get_physical_local_range(int dimension)const Return the same value as

get_physical_local().get_range(

dimension)

id<dimensions> get_physical_local_id()const Return the same value as
get_physical_local().get_id()

size_t get_physical_local_id(int dimension)const Return the same value as
get_physical_local().get_id(dimension

)

End of table

Table 4.84: Member functions for the h_item class.

4.10.1.7 group class

The group<int dimensions> encapsulates all functionality required to represent a particular work-group within
a parallel execution. It is not user-constructable.

The local range stored in the group class is provided either by the programmer, when it is passed as an optional
parameter to parallel_for_work_group, or by the runtime system when it selects the optimal work-group size.
This allows the developer to always know how many concurrent work-items are active in each executing work-
group, even through the abstracted iteration range of the parallel_for_work_item loops.

The SYCL group class template provides the common by-value semantics (see Section 4.5.4).

A synopsis of the SYCL group class is provided below. The member functions of the SYCL group class are listed
in Table 4.85. The additional common special member functions and common member functions are listed in
4.5.4 in Tables 4.3 and 4.4 respectively.

1 namespace sycl {

2 template <int Dimensions = 1>

3 class group {

4 public:

5
6 using id_type = id<Dimensions>;

7 using range_type = range<Dimensions>;

8 using linear_id_type = size_t;

9 static constexpr int dimensions = Dimensions;

10 static constexpr memory_scope fence_scope = memory_scope::work_group;

11
12 /* -- common interface members -- */

13
14 id<Dimensions> get_group_id() const;

15
16 size_t get_group_id(int dimension) const;

17
18 id<Dimensions> get_local_id() const;

19
20 size_t get_local_id(int dimension) const;

21
22 range<Dimensions> get_local_range() const;

23
24 size_t get_local_range(int dimension) const;

228 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

25
26 range<Dimensions> get_group_range() const;

27
28 size_t get_group_range(int dimension) const;

29
30 range<Dimensions> get_max_local_range() const;

31
32 range<Dimensions> get_uniform_group_range() const;

33
34 size_t operator[](int dimension) const;

35
36 size_t get_group_linear_id() const;

37
38 size_t get_local_linear_id() const;

39
40 size_t get_group_linear_range() const;

41
42 size_t get_local_linear_range() const;

43
44 bool leader() const;

45
46 template<typename workItemFunctionT>

47 void parallel_for_work_item(const workItemFunctionT &func) const;

48
49 template<typename workItemFunctionT>

50 void parallel_for_work_item(range<dimensions> logicalRange,

51 const workItemFunctionT &func) const;

52
53 template <typename dataT>

54 device_event async_work_group_copy(decorated_local_ptr<dataT> dest,

55 decorated_global_ptr<dataT> src, size_t numElements) const;

56
57 template <typename dataT>

58 device_event async_work_group_copy(decorated_global_ptr<dataT> dest,

59 decorated_local_ptr<dataT> src, size_t numElements) const;

60
61 template <typename dataT>

62 device_event async_work_group_copy(decorated_local_ptr<dataT> dest,

63 decorated_global_ptr<dataT> src, size_t numElements, size_t srcStride) const;

64
65 template <typename dataT>

66 device_event async_work_group_copy(decorated_global_ptr<dataT> dest,

67 decorated_local_ptr<dataT> src, size_t numElements, size_t destStride) const;

68
69 template <typename... eventTN>

70 void wait_for(eventTN... events) const;

71 };

72 } // sycl

CHAPTER 4. SYCL PROGRAMMING INTERFACE 229



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Member function Description
id<dimensions> get_group_id()const Return an id representing the index of the

work-group within the nd-range for every
dimension.

size_t get_group_id(int dimension)const Return the same value as get_id()[
dimension].

id<dimensions> get_local_id()const Return a SYCL id representing the calling
work-item’s position within the work-group.
It is undefined behavior for this mem-
ber function to be invoked from within a
parallel_for_work_item context.

size_t get_local_id(int dimension)const Return the calling work-item’s position
within the work-group in the specified di-
mension.
It is undefined behavior for this mem-
ber function to be invoked from within a
parallel_for_work_item context.

range<dimensions> get_local_range()const Return a SYCL range representing all di-
mensions of the local range. This local range
may have been provided by the programmer,
or chosen by the SYCL runtime.

size_t get_local_range(int dimension)const Return the dimension of the local range
specified by the dimension parameter.

range<dimensions> get_group_range()const Return a range representing the number of
work-groups in the nd_range.

size_t get_group_range(int dimension)const Return element dimension from the con-
stituent group range.

size_t operator[](int dimension)const Return the same value as get_id(

dimension).
range<dimensions> get_max_local_range()const Return a range representing the maximum

number of work-items in any work-group in
the nd_range.

range<dimensions> get_uniform_group_range()const Return a range representing the number of
work-groups in the uniform region of the
nd_range.

size_t get_group_linear_id()const Get a linearized version of the work-group
id. Calculating a linear work-group id from
a multi-dimensional index follows the equa-
tion 4.3.

size_t get_group_linear_range()const Return the total number of work-groups in
the nd_range.

size_t get_local_linear_id()const Get a linearized version of the calling work-
item’s local id. Calculating a linear local id
from a multi-dimensional index follows the
equation 4.3.
It is undefined behavior for this mem-
ber function to be invoked from within a
parallel_for_work_item context.

Continued on next page

Table 4.85: Member functions for the group class.

230 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
size_t get_local_linear_range()const Return the total number of work-items in

the work-group.
bool leader()const Return true for exactly one work-item in the

work-group, if the calling work-item is the
leader of the work-group, and false for all
other work-items in the work-group.
The leader of the work-group is determined
during construction of the work-group, and
is invariant for the lifetime of the work-
group. The leader of the work-group is guar-
anteed to be the work-item with a local id of
0.

template <typename workItemFunctionT>

void parallel_for_work_item(const

workItemFunctionT &func)const

Launch the work-items for this work-group.
func is a function object type with a
public member function void F::operator
()(h_item<dimensions>) representing the
work-item computation.
This member function can only be invoked
within a parallel_for_work_group context.
It is undefined behavior for this member
function to be invoked from within the
parallel_for_work_group form that does
not define work-group size, because then the
number of work-items that should execute
the code is not defined. It is expected that
this form of parallel_for_work_item is in-
voked within the parallel_for_work_group
form that specifies the size of a work-group.

Continued on next page

Table 4.85: Member functions for the group class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 231



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Member function Description
template <typename workItemFunctionT>

void parallel_for_work_item(range<dimensions>

logicalRange, const workItemFunctionT &func)

const

Launch the work-items for this work-group
using a logical local range. The function ob-
ject func is executed as if the kernel were in-
voked with logicalRange as the local range.
This new local range is emulated and may
not map one-to-one with the physical range.
logicalRange is the new local range to be
used. This range can be smaller or larger
than the one used to invoke the kernel. func
is a function object type with a public mem-
ber function void F::operator()(h_item<
dimensions>) representing the work-item
computation.
Note that the logical range does not need to
be uniform across all work-groups in a ker-
nel. For example the logical range may de-
pend on a work-group varying query (e.g.
group::get_linear_id), such that different
work-groups in the same kernel invocation
execute different logical range sizes.
This member function can only be invoked
within a parallel_for_work_group context.

template <typename dataT>

device_event async_work_group_copy(

decorated_local_ptr<dataT> dest,

decorated_global_ptr<dataT> src,

size_t numElements)const

Permitted types for dataT are all scalar and
vector types. Asynchronously copies a num-
ber of elements specified by numElements

from the source pointer src to desti-
nation pointer dest and returns a SYCL
device_event which can be used to wait on
the completion of the copy.

template <typename dataT>

device_event async_work_group_copy(

decorated_global_ptr<dataT> dest,

decorated_local_ptr<dataT> src,

size_t numElements)const

Permitted types for dataT are all scalar and
vector types. Asynchronously copies a num-
ber of elements specified by numElements

from the source pointer src to desti-
nation pointer dest and returns a SYCL
device_event which can be used to wait on
the completion of the copy.

template <typename dataT>

device_event async_work_group_copy(

decorated_local_ptr<dataT> dest,

decorated_global_ptr<dataT> src,

size_t numElements, size_t srcStride)const

Permitted types for dataT are all scalar and
vector types. Asynchronously copies a num-
ber of elements specified by numElements

from the source pointer src to destina-
tion pointer dest with a source stride spec-
ified by srcStride and returns a SYCL
device_event which can be used to wait on
the completion of the copy.

Continued on next page

Table 4.85: Member functions for the group class.

232 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
template <typename dataT>

device_event async_work_group_copy(

decorated_global_ptr<dataT> dest,

decorated_local_ptr<dataT> src,

size_t numElements, size_t destStride)const

Permitted types for dataT are all scalar and
vector types. Asynchronously copies a num-
ber of elements specified by numElements
from the source pointer src to destination

pointer dest with a destination stride spec-
ified by destStride and returns a SYCL
device_event which can be used to wait on
the completion of the copy.

template <typename... eventTN>

void wait_for(eventTN... events)const

Permitted type for eventTN is device_event.
Waits for the asynchronous operations asso-
ciated with each device_event to complete.

End of table

Table 4.85: Member functions for the group class.

4.10.1.8 sub_group class

The sub_group class encapsulates all functionality required to represent a particular sub-group within a parallel
execution. It is not user-constructible.

The SYCL sub_group class provides the common by-value semantics (see Section 4.5.4).

A synopsis of the SYCL sub_group class is provided below. The member functions of the SYCL sub_group class
are listed in Table 4.86. The additional common special member functions and common member functions are
listed in 4.5.4 in Tables 4.3 and 4.4 respectively.

1 namespace sycl {

2 class sub_group {

3 public:

4
5 using id_type = id<1>;

6 using range_type = range<1>;

7 using linear_id_type = uint32_t;

8 static constexpr int dimensions = 1;

9 static constexpr memory_scope fence_scope = memory_scope::sub_group;

10
11 /* -- common interface members -- */

12
13 id<1> get_group_id() const;

14
15 id<1> get_local_id() const;

16
17 range<1> get_local_range() const;

18
19 range<1> get_group_range() const;

20
21 range<1> get_max_local_range() const;

22
23 uint32_t get_group_linear_id() const;

24
25 uint32_t get_local_linear_id() const;

26

CHAPTER 4. SYCL PROGRAMMING INTERFACE 233



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

27 uint32_t get_group_linear_range() const;

28
29 uint32_t get_local_linear_range() const;

30
31 bool leader() const;

32
33 };

34 } // sycl

Member function Description
id<1> get_group_id()const Return an id representing the index of the

sub-group within the work-group.
id<1> get_local_id()const Return a SYCL id representing the calling

work-item’s position within the sub-group.
range<1> get_local_range()const Return a SYCL range representing the size

of the sub-group. This size may have been
chosen by the programmer via an attribute,
or chosen by the device compiler.

range<1> get_group_range()const Return a range representing the number of
sub-groups in the work-group.

range<1> get_max_local_range()const Return a range representing the maximum
number of work-items in any sub-group in
the work-group.

uint32_t get_group_linear_id()const Equivalent to get_group_id().
uint32_t get_group_linear_range()const Equivalent to get_group_range().
uint32_t get_local_linear_id()const Equivalent to get_local_id().
uint32_t get_local_linear_range()const Equivalent to get_local_range().
bool leader()const Return true for exactly one work-item in

the sub-group, if the calling work-item is
the leader of the sub-group, and false for all
other work-items in the sub-group.
The leader of the sub-group is determined
during construction of the sub-group, and is
invariant for the lifetime of the sub-group.
The leader of the sub-group is guaranteed to
be the work-item with a local id of 0.

End of table

Table 4.86: Member functions for the sub_group class.

4.10.2 Reduction variables
[Note for this provisional version: The reduction features described in this section support two alternative
approaches for creating reducer objects and launching reduction kernels. Both alternatives are shown here
to encourage feedback from implementers and developers, and it is expected that the final version of the SYCL
specification will include only one approach. Please provide feedback on your preference or issues with either ap-
proach, by creating a new issue at https://github.com/KhronosGroup/SYCL-Docs/issues or extending
an existing one. — end note]

All functionality related to reductions is captured by the reducer class, the reduction function, and the

234 CHAPTER 4. SYCL PROGRAMMING INTERFACE

https://github.com/KhronosGroup/SYCL-Docs/issues


SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

parallel_reduce function.

The examples below demonstrate how to write a reduction kernel that performs two reductions simultaneously on
the same input values, computing both the sum of all values in a buffer and the maximum value in the buffer.

In the first example, a reducer is created explicitly for each reduction variable and captured by the lambda passed
to parallel_for.

1 buffer<int> valuesBuf { 1024 };

2 {

3 // Initialize buffer on the host with 0, 1, 2, 3, ..., 1023

4 host_accessor a { valuesBuf };

5 std::iota(a.begin(), a.end(), 0);

6 }

7
8 // Buffers with just 1 element to get the reduction results

9 int sumResult = 0;

10 buffer<int> sumBuf { &sumResult, 1 };

11 int maxResult = 0;

12 buffer<int> maxBuf { &maxResult, 1 };

13
14 myQueue.submit([&](handler& cgh) {

15
16 // Input values to reductions are standard accessors

17 auto inputValues = valuesBuf.get_access<access::mode::read>(cgh);

18
19 // Create a reducer explicitly for each variable with reduction semantics

20 auto sum = reducer(sumBuf.get_access<access::mode::read_write>(cgh), plus<>());

21 auto max = reducer(maxBuf.get_access<access::mode::read_write>(cgh), maximum<>());

22
23 // parallel_for operates on two reducers captured directly by the lambda

24 cgh.parallel_for(range<1>{1024},

25 [=](id<1> idx) {

26 // plus<>() corresponds to += operator, so sum can be updated via += or combine()

27 sum += inputValues[idx];

28
29 // maximum<>() has no shorthand operator, so max can only be updated via combine()

30 max.combine(inputValues[idx]);

31 });

32 });

33
34 // sumBuf and maxBuf contain the reduction results once the kernel completes

35 assert(maxBuf.get_host_access()[0] == 1023 && sumBuf.get_host_access()[0] == 523776);

In the second example, one reducer is created explicitly and captured by the kernel lambda, and the other is
created using the reduction function and passed to parallel_reduce as an argument.

1 buffer<int> valuesBuf { 1024 };

2 {

3 // Initialize buffer on the host with 0, 1, 2, 3, ..., 1023

4 host_accessor a { valuesBuf };

5 std::iota(a.begin(), a.end(), 0);

6 }

7

CHAPTER 4. SYCL PROGRAMMING INTERFACE 235



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

8 // Buffers with just 1 element to get the reduction results

9 int sumResult = 0;

10 buffer<int> sumBuf { &sumResult, 1 };

11 int maxResult = 0;

12 buffer<int> maxBuf { &maxResult, 1 };

13
14 myQueue.submit([&](handler& cgh) {

15
16 // Input values to reductions are standard accessors

17 auto inputValues = valuesBuf.get_access<access::mode::read>(cgh);

18
19 // Create a reducer explicitly for a variable with reduction semantics

20 auto sum = reducer(sumBuf.get_access<access::mode::read_write>(cgh), plus<>());

21
22 // Create a temporary object describing a variable with reduction semantics

23 auto maxReduction = reduction(maxBuf.get_access<access::mode::read_write>(cgh), maximum<>());

24
25 // parallel_reduce operates on two reducers:

26 // - sum is captured directly by the lambda

27 // - max is created from maxReduction and passed to the lambda call operator

28 cgh.parallel_reduce(range<1>{1024},

29 maxReduction,

30 [=](id<1> idx, auto& max) {

31 // plus<>() corresponds to += operator, so sum can be updated via += or combine()

32 sum += inputValues[idx];

33
34 // maximum<>() has no shorthand operator, so max can only be updated via combine()

35 max.combine(inputValues[idx]);

36 });

37 });

38
39 // sumBuf and maxBuf contain the reduction results once the kernel completes

40 assert(maxBuf.get_host_access()[0] == 1023 && sumBuf.get_host_access()[0] == 523776);

Reductions are supported for all trivially copyable types. If the reduction operator is non-associative or non-
commutative, the behavior of a reduction may be non-deterministic. If multiple reductions reference the same
reduction variable, or a reduction variable is accessed directly during the lifetime of a reduction (e.g. via an
accessor or USM pointer), the behavior is undefined.

For user-defined reduction operators, an implementation should issue a compile-time warning if the functor
does not contain a static constexpr member called identity_value, an identity is not specified in the call to
reduction, and this is known to negatively impact performance (e.g. as a result of the implementation choosing a
different reduction algorithm). For standard binary operations (e.g. plus) on arithmetic types, the implementation
must determine the correct identity automatically in order to avoid performance penalties.

A reduction operation associated with a multi-dimensional accessor or a span represents an array reduction. An
array reduction of size N is functionally equivalent to specifying N independent scalar reductions. The combina-
tion operations performed by an array reduction are limited to the accessible region of a buffer described by an
accessor or the extent of a USM allocation described by a span, and access to elements outside of these regions
results in undefined behavior.

236 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

4.10.2.1 reduction interface

The reduction interface is used to attach reduction semantics to a variable, by specifying: the reduction variable,
the reduction operator and an optional identity value associated with the operator. The overloads of the interface
are described in Table 4.87. The return value of the reduction interface is an implementation-defined object of
unspecified type, which is interpreted by parallel_reduce to construct an appropriate reducer type as detailed
in Section 4.10.2.2.

1 template <typename AccessorT, typename BinaryOperation>

2 __unspecified__ reduction(AccessorT vars, BinaryOperation combiner);

3
4 template <typename AccessorT, typename BinaryOperation>

5 __unspecified__ reduction(AccessorT vars, const T& identity, BinaryOperation combiner);

6
7 template <typename T, typename BinaryOperation>

8 __unspecified__ reduction(T* var, BinaryOperation combiner);

9
10 template <typename T, typename BinaryOperation>

11 __unspecified__ reduction(T* var, T& identity, BinaryOperation combiner);

12
13 template <typename T, typename Extent, typename BinaryOperation>

14 __unspecified__ reduction(span<T, Extent> vars, BinaryOperation combiner);

15
16 template <typename T, typename Extent, typename BinaryOperation>

17 __unspecified__ reduction(span<T, Extent> vars, const T& identity, BinaryOperation combiner);

Function Description
reduction<AccessorT, BinaryOperation>(AccessorT vars

, BinaryOperation combiner)

Construct an unspecified object represent-
ing a reduction of the variable(s) described
by vars using the combination operation
specified by combiner. If the access mode
of vars is access::mode::read_write

then the reduction operation includes the
original value(s) of the variable(s) described
by vars. vars must not be a placeholder
accessor.

Available only when: (accessMode

== access::mode::read_write

|| accessMode == access::mode::

discard_write)&& accessTarget ==

access::target::global_buffer

Continued on next page

Table 4.87: Overloads of the reduction interface.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 237



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Function Description
reduction<AccessorT, BinaryOperation>(AccessorT vars

, AccessorT::value_type identity, BinaryOperation

combiner)

Construct an unspecified object represent-
ing a reduction of the variable(s) described
by vars using the combination operation
specified by combiner. The value of
identity may be used by the implemen-
tation to initialize temporary accumulation
variables; using an identity value that is
not the identity value of the combination
operation specified by combiner results in
undefined behavior. If the access mode
of vars is access::mode::read_write

then the reduction operation includes the
original value(s) of the variable(s) described
by vars. vars must not be a placeholder
accessor.

Available only when: (accessMode

== access::mode::read_write

|| accessMode == access::mode::

discard_write)&& accessTarget ==

access::target::global_buffer

reduction<T, BinaryOperation>(T* var,

BinaryOperation combiner)

Construct an unspecified object represent-
ing a reduction of the variable described by
var using the combination operation speci-
fied by combiner. The reduction operation
includes the original value of the variable
described by var.

reduction<T, BinaryOperation>(T* var, T identity,

BinaryOperation combiner)

Construct an unspecified object represent-
ing a reduction of the variable described by
var using the combination operation spec-
ified by combiner. The value of identity

may be used by the implementation to
initialize temporary accumulation variables;
using an identity value that is not the iden-
tity value of the combination operation spec-
ified by combiner results in undefined be-
havior. The reduction operation includes the
original value of the variable described by
var.

reduction<T, BinaryOperation>(span<T, Extent> vars,

BinaryOperation combiner)

Construct an unspecified object represent-
ing a reduction of the variable(s) described
by vars using the combination operation
specified by combiner. The reduction op-
eration includes the original value(s) of the
variable described by vars.

Continued on next page

Table 4.87: Overloads of the reduction interface.

238 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Function Description
reduction<T, BinaryOperation>(span<T, Extent> vars,

T identity, BinaryOperation combiner)

Construct an unspecified object repre-
senting a reduction of the variable(s) de-
scribed by vars using the combination op-
eration specified by combiner. The value
of identity may be used by the implemen-
tation to initialize temporary accumulation
variables; using an identity value that is
not the identity value of the combination op-
eration specified by combiner results in un-
defined behavior. The reduction operation
includes the original value(s) of the vari-
able(s) described by vars.

End of table

Table 4.87: Overloads of the reduction interface.

4.10.2.2 reducer class

The reducer class defines the interface between a work-item and a reduction variable during the execution of
a SYCL kernel, restricting access to the underlying reduction variable. The intermediate values of a reduction
variable cannot be inspected during kernel execution, and the variable cannot be updated using anything other
than the reduction’s specified combination operation. The combination order of different reducers is unspecified,
as are when and how the value of each reducer is combined with the original reduction variable.

A reducer can be constructed explicitly by a user and bound to a command group handler, or constructed by an
implementation of parallel_reduce given the return value of a call to the reduction function. To enable compile-
time specialization of reduction algorithms, the implementation of the reducer class is unspecified, except for the
functions and operators defined in Tables 4.88, 4.89 and 4.90. It is recommended that developers use auto in
place of specifying the template arguments of a reducer directly.

An implementation must guarantee that it is safe for each concurrently executing work-item in a kernel to call
the combine function of a reducer in parallel. An implementation is free to re-use reducer variables (e.g. across
work-groups scheduled to the same compute unit) if it can guarantee that it is safe to do so.

The member functions of the reducer class are listed in Table 4.89. Additional shorthand operators may be
made available for certain combinations of reduction variable type and combination operation, as described in
Table 4.90.

1 // Exposition only

2 template <typename T, typename BinaryOperation, int Dimensions>

3 class reducer {

4
5 template <access_mode Mode>

6 reducer(accessor<T, Dimensions, Mode> vars, BinaryOperation combiner);

7
8 template <access_mode Mode>

9 reducer(accessor<T, Dimensions, Mode> vars, const T& identity, BinaryOperation combiner);

10
11 reducer(T* var, BinaryOperation combiner, handler& cgh);

12
13 reducer(T* var, const T& identity, BinaryOperation combiner, handler& cgh);

CHAPTER 4. SYCL PROGRAMMING INTERFACE 239



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

14
15 template <typename Extent>

16 reducer(span<T, Extent> vars, BinaryOperation combiner, handler& cgh);

17
18 template <typename Extent>

19 reducer(span<T, Extent> vars, const T& identity, BinaryOperation combiner, handler& cgh);

20
21 reducer(const reducer<T,BinaryOperation,Dimensions>&) = delete;

22 reducer<T,BinaryOperation,Dimensions>& operator(const reducer<T,BinaryOperation,Dimensions>&) =

delete;

23
24 /* Only available if Dimensions == 0 */

25 void combine(const T& partial);

26
27 /* Only available if Dimensions > 1 */

28 __unspecified__ &operator[](size_t index) const;

29
30 /* Only available if identity value is known */

31 T identity() const;

32
33 };

34
35 template <typename T>

36 void operator+=(reducer<T,plus<T>,0>&, const T&);

37
38 template <typename T>

39 void operator*=(reducer<T,multiplies<T>,0>&, const T&);

40
41 /* Only available for integral types */

42 template <typename T>

43 void operator&=(reducer<T,bit_and<T>,0>&, const T&);

44
45 /* Only available for integral types */

46 template <typename T>

47 void operator|=(reducer<T,bit_or<T>,0>&, const T&);

48
49 /* Only available for integral types */

50 template <typename T>

51 void operatorˆ=(reducer<T,bit_xor<T>,0>&, const T&);

52
53 /* Only available for integral types */

54 template <typename T>

55 void operator++(reducer<T,plus<T>,0>&);

240 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Constructor Description
reducer<access_mode Mode>(accessor<T, Dimensions,

Mode> vars, BinaryOperation combiner)

Construct a reducer representing a reduc-
tion of the variable(s) described by vars
using the combination operation specified
by combiner. If the access mode of vars is
access::mode::read_write then the reduc-
tion operation includes the original value(s)
of the variable(s) described by vars. vars
must not be a placeholder accessor.

Available only when: (accessMode

== access::mode::read_write

|| accessMode == access::mode::

discard_write)&& accessTarget ==

access::target::global_buffer

reducer<access_mode Mode>(accessor<T, Dimensions,

Mode> vars, const T& identity, BinaryOperation

combiner)

Construct a reducer representing a reduc-
tion of the variable(s) described by vars
using the combination operation specified
by combiner. The value of identity may
be used by the implementation to initialize
temporary accumulation variables; using an
identity value that is not the identity value
of the combination operation specified by
combiner results in undefined behavior. If
the access mode of vars is access::mode
::read_write then the reduction operation
includes the original value(s) of the vari-
able(s) described by vars. vars must not be
a placeholder accessor.

Available only when: (accessMode

== access::mode::read_write

|| accessMode == access::mode::

discard_write)&& accessTarget ==

access::target::global_buffer

reducer(T* var, BinaryOperation combiner, handler&

cgh)

Construct a reducer representing a reduc-
tion of the variable described by var us-
ing the combination operation specified by
combiner. The reduction operation includes
the original value of the variable described
by var.

Continued on next page

Table 4.88: Constructors of the reducer class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 241



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Constructor Description
reducer(T* var, const T& identity, BinaryOperation

combiner, handler& cgh)

Construct a reducer representing a reduc-
tion of the variable described by var us-
ing the combination operation specified by
combiner. The value of identity may
be used by the implementation to initial-
ize temporary accumulation variables; using
an identity value that is not the identity
value of the combination operation specified
by combiner results in undefined behavior.
The reduction operation includes the origi-
nal value of the variable described by var.

reducer<Extent>(span<T, Extent> vars,

BinaryOperation combine, handler& cgh)

Construct a reducer representing a reduc-
tion of the variable(s) described by vars
using the combination operation specified

by combiner. The reduction operation in-
cludes the original value(s) of the variable
described by vars.

reducer<Extent>(span<T, Extent> vars, const T&

identity, BinaryOperation combiner, handler& cgh)

Construct a reducer representing a reduc-
tion of the variable(s) described by vars
using the combination operation specified

by combiner. The value of identity may
be used by the implementation to initial-
ize temporary accumulation variables; using
an identity value that is not the identity
value of the combination operation specified
by combiner results in undefined behavior.
The reduction operation includes the origi-
nal value(s) of the variable(s) described by
vars.

End of table

Table 4.88: Constructors of the reducer class.

Member function Description
void combine(const T& partial)const Combine the value of partial with

the reduction variable associated with this
reducer.

Continued on next page

Table 4.89: Member functions of the reducer class.

242 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
__unspecified__ &operator[](size_t index)const Available only when: Dimensions > 1. Re-

turns an instance of an undefined intermedi-
ate type representing a reducer of the same
type as this reducer, with the dimension-
ality Dimensions-1 and containing an im-
plicit SYCL idwith index Dimensions set to
index. The intermediate type returned must
provide all member functions and operators
defined by the reducer class that are appro-
priate for the type it represents (including
this subscript operator).

T identity()const Return the identity value of the combina-
tion operation associated with this reducer.
Only available if the identity value is known
to the implementation, or was specified ex-
plicitly in the call to reduction that returned
this reducer.

End of table

Table 4.89: Member functions of the reducer class.

Operator Description
template <typename T>

void operator+=(reducer<T,plus<T>,0>& accum,

const T& partial)

Equivalent to calling accum.combine(

partial).

template <typename T>

void operator*=(reducer<T,multiplies<T>,0>&

accum, const T& partial)

Equivalent to calling accum.combine(

partial).

template <typename T>

void operator|=(reducer<T,bit_or<T>,0>& accum,

const T& partial)

Equivalent to calling accum.combine(

partial). Only available for integral
types.

template <typename T>

void operator&=(reducer<T,bit_and<T>,0>& accum,

const T& partial)

Equivalent to calling accum.combine(

partial). Only available for integral
types.

template <typename T>

void operatorˆ=(reducer<T,bit_xor<T>,0>& accum,

const T& partial)

Equivalent to calling accum.combine(

partial). Only available for integral
types.

template <typename T>

void operator++(reducer<T,plus<T>,0>& accum)

Equivalent to calling accum.combine(1).
Only available for integral types.

End of table

Table 4.90: Operators of the reducer class.

4.10.3 Command group scope
A command group scope, as defined in Section 3.6.1, may execute a single command such as invoking a kernel,
copying memory, or executing a host task. It is legal for a command group scope to statically contain more than
one call to a command function, but any single execution of the command group function object may execute

CHAPTER 4. SYCL PROGRAMMING INTERFACE 243



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

no more than one command. The statements that call commands together with the statements that define the
requirements for a kernel form the command group function object. The command group function object takes
as a parameter an instance of the command group handler class which encapsulates all the member functions
executed in the command group scope. The member functions and objects defined in this scope will define the
requirements for the kernel execution or explicit memory operation, and will be used by the SYCL runtime to
evaluate if the operation is ready for execution. Host code within a command group function object (typically
setting up requirements) is executed once, before the command group submit call returns. This abstraction of the
kernel execution unifies the data with its processing, and consequently allows more abstraction and flexibility in
the parallel programming models that can be implemented on top of SYCL.

The command group function object and the handler class serve as an interface for the encapsulation of command
group scope. A SYCL kernel function is defined as a function object. All the device data accesses are defined
inside this group and any transfers are managed by the SYCL runtime. The rules for the data transfers regarding
device and host data accesses are better described in the data management section (4.7), where buffers (4.7.2)
and accessor (4.7.6) classes are described. The overall memory model of the SYCL application is described in
Section 3.7.1.

It is possible to obtain events for the start of the command group function object, the kernel starting, and the
command group completing. These events are most useful for profiling, because safe synchronization in SYCL
requires synchronization on buffer availability, not on kernel completion. This is because the memory that data
is stored in upon kernel completion is not rigidly specified. The events are provided at the submission of the
command group function object to the queue to be executed on.

It is possible for a command group function object to fail to enqueue to a queue, or for it to fail to execute
correctly. A user can therefore supply a secondary queue when submitting a command group to the primary
queue. If the SYCL runtime fails to enqueue or execute a command group on a primary queue, it can attempt to
run the command group on the secondary queue. The circumstances in which it is, or is not, possible for a SYCL
runtime to fall-back from primary to secondary queue are unspecified in the specification. Even if a command
group is run on the secondary queue, the requirement that host code within the command group is executed exactly
once remains, regardless of whether the fallback queue is used for execution.

The command group handler class provides the interface for all of the member functions that are able to be
executed inside the command group scope, and it is also provided as a scoped object to all of the data access
requests. The command group handler class provides the interface in which every command in the command
group scope will be submitted to a queue.

4.10.4 Command group handler class
A command group handler object can only be constructed by the SYCL runtime. All of the accessors defined in
command group scope take as a parameter an instance of the command group handler, and all the kernel invocation
functions are member functions of this class.

The constructors of the SYCL handler class are described in Table 4.91.

It is disallowed for an instance of the SYCL handler class to be moved or copied.

1 namespace sycl {

2
3 class handler {

4 private:

5
6 // implementation defined constructor

244 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

7 handler(___unspecified___);

8
9 public:

10
11 template <typename dataT, int dimensions, access::mode accessMode,

12 access::target accessTarget, access::placeholder isPlaceholder>

13 void require(accessor<dataT, dimensions, accessMode, accessTarget,

14 isPlaceholder> acc);

15
16 //----- Backend interoperability interface

17 //

18 template <typename T>

19 void set_arg(int argIndex, T && arg);

20
21 template <typename... Ts>

22 void set_args(Ts &&... args);

23
24 //------ Kernel dispatch API

25 //

26 // Note: In all kernel dispatch functions, the template parameter

27 // "typename kernelName" is optional.

28 //

29 template <typename KernelName, typename KernelType>

30 void single_task(const KernelType &kernelFunc);

31
32 template <typename KernelName, typename KernelType, int dimensions>

33 void parallel_for(range<dimensions> numWorkItems, const KernelType &kernelFunc);

34
35 template <typename KernelName, typename KernelType, int dimensions>

36 void parallel_for(range<dimensions> numWorkItems,

37 id<dimensions> workItemOffset, const KernelType &kernelFunc);

38
39 template <typename KernelName, typename KernelType, int dimensions>

40 void parallel_for(nd_range<dimensions> executionRange, const KernelType &kernelFunc);

41
42 template <typename KernelName, typename WorkgroupFunctionType, int dimensions>

43 void parallel_for_work_group(range<dimensions> numWorkGroups,

44 const WorkgroupFunctionType &kernelFunc);

45
46 template <typename KernelName, typename WorkgroupFunctionType, int dimensions>

47 void parallel_for_work_group(range<dimensions> numWorkGroups,

48 range<dimensions> workGroupSize,

49 const WorkgroupFunctionType &kernelFunc);

50
51 void single_task(kernel syclKernel);

52
53 template <int dimensions>

54 void parallel_for(range<dimensions> numWorkItems, kernel syclKernel);

55
56 template <int dimensions>

57 void parallel_for(range<dimensions> numWorkItems,

58 id<dimensions> workItemOffset, kernel syclKernel);

59
60 template <int dimensions>

61 void parallel_for(nd_range<dimensions> ndRange, kernel syclKernel);

CHAPTER 4. SYCL PROGRAMMING INTERFACE 245



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

62
63 //------ Explicit memory operation APIs

64 //

65 template <typename T_src, int dim_src, access::mode mode_src, access::target tgt_src, access::

placeholder isPlaceholder,

66 typename T_dest>

67 void copy(accessor<T_src, dim_src, mode_src, tgt_src, isPlaceholder> src,

68 std::shared_ptr<T_dest> dest);

69
70 template <typename T_src,

71 typename T_dest, int dim_dest, access::mode mode_dest, access::target tgt_dest, access

::placeholder isPlaceholder>

72 void copy(std::shared_ptr<T_src> src,

73 accessor<T_dest, dim_dest, mode_dest, tgt_dest, isPlaceholder> dest);

74
75 template <typename T_src, int dim_src, access::mode mode_src, access::target tgt_src, access::

placeholder isPlaceholder,

76 typename T_dest>

77 void copy(accessor<T_src, dim_src, mode_src, tgt_src, isPlaceholder> src,

78 T_dest *dest);

79
80 template <typename T_src,

81 typename T_dest, int dim_dest, access::mode mode_dest, access::target tgt_dest, access

::placeholder isPlaceholder>

82 void copy(const T_src *src,

83 accessor<T_dest, dim_dest, mode_dest, tgt_dest, isPlaceholder> dest);

84
85 template <typename T_src, int dim_src, access::mode mode_src, access::target tgt_src, access::

placeholder isPlaceholder_src,

86 typename T_dest, int dim_dest, access::mode mode_dest, access::target tgt_dest, access

::placeholder isPlaceholder_dest>

87 void copy(accessor<T_src, dim_src, mode_src, tgt_src, isPlaceholder_src> src,

88 accessor<T_dest, dim_dest, mode_dest, tgt_dest, isPlaceholder_dest> dest);

89
90 template <typename T, int dim, access::mode mode, access::target tgt, access::placeholder

isPlaceholder>

91 void update_host(accessor<T, dim, mode, tgt, isPlaceholder> acc);

92
93 template <typename T, int dim, access::mode mode, access::target tgt, access::placeholder

isPlaceholder>

94 void fill(accessor<T, dim, mode, tgt, isPlaceholder> dest, const T& src);

95
96 void use_module(const module<module_state::executable> &execModule);

97
98 template <typename T>

99 void use_module(const module<module_state::executable> &execModule

100 T deviceImageSelector);

101
102 template<auto& S>

103 bool has_specialization_constant() const noexcept;

104
105 template<auto& S>

106 typename std::remove_reference_t<decltype(S)>::type get_specialization_constant();

107
108 };

246 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

109 } // namespace sycl

Constructor Description
handler(___unspecified___) Unspecified implementation defined con-

structor.
End of table

Table 4.91: Constructors of the handler class.

4.10.5 Class kernel_handler
Functionality and queries that are unique to the invocation of a SYCL kernel function are made available at the
kernel scope via a kernel handler. A kernel handler is associated with the SYCL kernel function that is being
invoked and the module and device image used by the SYCL runtime. A kernel handler is represented by the
class kernel_handler.

The kernel handler is optional, and is only used if the SYCL kernel function has a kernel_handler as an additional
parameter, in which case the SYCL runtime will construct an instance of kernel_handler and pass it to the SYCL
kernel function as an argument. A kernel_handler is not user constructible and can only be constructed by the
SYCL runtime.

1 class kernel_handler;

4.10.5.1 Constructors

1 kernel_handler(__unspecified__); // (1)

1. Effects: Unspecified private constructor for the SYCL runtime to use to construct a kernel handler.

4.10.5.2 Member functions

1 template<auto& S>

2 bool has_specialization_constant() const noexcept; // (1)

1. Returns: true if any of the SYCL kernel functions represented by the associated module contains the
specialization constant represented by the specialization_id at the address S, otherwise returns false.

1 template<auto& S>

2 typename std::remove_reference_t<decltype(S)>::type get_specialization_constant(); // (1)

1. Returns: The value of the specialization constant associated with the specialization_id at the address S,
from the associated module, if the specialization constant has been set, otherwise returns the default value.

Effects: If the associated module is associated with a host context or this->has_specialization_constant
<S>() evaluates to false this member function is undefined.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 247



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

4.10.6 SYCL functions for adding requirements
When an accessor is created from a command group handler, a requirement is implicitly added to the command
group for the accessor’s data. However, this does not happen when creating a placeholder accessor. In order to
create a requirement for a placeholder accessor, code must call the handler::require() member function.

Member function Description
template <typename dataT, int dimensions,

access::mode accessMode, access::target accessTarget

, access::placeholder isPlaceholder>

void require(accessor<dataT, dimensions,

accessMode, accessTarget, isPlaceholder>

acc)

Requires access to the memory object asso-
ciated with the accessor.
The command group now has a require-
ment to gain access to the given memory
object before executing the kernel. If the ac-
cessor has already been registered with the
command group, calling this function has no
effect.
Throws exception with the errc::

accessor_error error code if (acc.empty
()== true).

End of table

Table 4.92: Member functions of the handler class.

4.10.7 SYCL functions for invoking kernels
Kernels can be invoked as single tasks, basic data-parallel kernels, nd-range in work-groups, or hierarchical
parallelism.

Each function takes an optional kernel name template parameter. The user may optionally provide a kernel name,
otherwise an implementation defined name will be generated for the kernel.

All the functions for invoking kernels are member functions of the command group handler class 4.10.4, which
is used to encapsulate all the member functions provided in a command group scope. Table 4.93 lists all the
members of the handler class related to the kernel invocation.

Member function Description
template <typename T>

void set_arg(int argIndex, T &&arg)

Set a kernel argument for a kernel through
the SYCL backend interoperability inter-
face. The index value specifies which pa-
rameter of the low-level kernel is being set
and arg specifies the kernel argument.
Index 0 is the first parameter.
The argument can be either a SYCL acces-
sor, a SYCL sampler or a trivially copyable
C++ type.
Note it is invalid to set arguments to SYCL
kernel function objects.

Continued on next page

Table 4.93: Member functions of the handler class.

248 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
template <typename... Ts>

void set_args(Ts &&... args)

Set all the given kernel args arguments for
an kernel through the SYCL backend inter-
operability interface, as if set_arg() was
used with each of them in the same order
and increasing index always starting at 0.

template <typename KernelName, typename KernelType>

void single_task(const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named
function object type. Specification of
a kernel name (typename KernelName), as
described in Section 4.10.7, is optional.
The callable KernelType can optionally
take a kernel_handler in which case the
SYCL runtime will construct an instance of
kernel_handler and pass it to KernelType.

template <typename KernelName, typename KernelType,

int dimensions>

void parallel_for(

range<dimensions> numWorkItems,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel function
as a lambda function or a named function
object type, for the specified range and given
an item or integral type (e.g int, size_t), if
range is 1-dimensional, for indexing in the
indexing space defined by range. Generic
kernel functions are permitted, in that case
the argument type is an item. Specification
of a kernel name (typename KernelName),
as described in Section 4.10.7, is optional.
The callable KernelType can optionally take
a kernel_handler as it’s last parameter, in
which case the SYCL runtime will construct
an instance of kernel_handler and pass it to
KernelType.

template <typename KernelName, typename KernelType,

int dimensions>

void parallel_for(

range<dimensions> numWorkItems,

id<dimensions> workItemOffset,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named func-
tion object type, for the specified range and
offset and given an item or integral type
(e.g int, size_t), if range is 1-dimensional,
for indexing in the indexing space de-
fined by range. Generic kernel functions
are permitted, in that case the argument
type is an item. Specification of a ker-
nel name (typename KernelName), as de-
scribed in Section 4.10.7, is optional. The
callable KernelType can optionally take a
kernel_handler as it’s last parameter, in
which case the SYCL runtime will construct
an instance of kernel_handler and pass it to
KernelType.

Continued on next page

Table 4.93: Member functions of the handler class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 249



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Member function Description
template <typename KernelName, typename KernelType,

int dimensions>

void parallel_for(

nd_range<dimensions> executionRange,

const KernelType &kernelFunc)

Defines and invokes a SYCL kernel func-
tion as a lambda function or a named
function object type, for the specified nd-
range and given an nd-item for indexing
in the indexing space defined by the nd-
range. Generic kernel functions are per-
mitted, in that case the argument type
is an nd-item. Specification of a ker-
nel name (typename KernelName), as de-
scribed in Section 4.10.7, is optional. The
callable KernelType can optionally take a
kernel_handler as it’s last parameter, in
which case the SYCL runtime will construct
an instance of kernel_handler and pass it to
KernelType.

template <typename KernelName, typename

WorkgroupFunctionType, int dimensions>

void parallel_for_work_group(

range<dimensions> numWorkGroups,

const WorkgroupFunctionType &kernelFunc)

Defines and invokes a hierarchical kernel as
a lambda function encoding the body of each
work-group to launch. Generic kernel func-
tions are permitted, in that case the argument
type is a group. May contain multiple calls
to parallel_for_work_item(..) member
functions representing the execution on each
work-item. Launches num_work_groups
work-groups of runtime-defined size. De-

scribed in detail in 4.10.7. The callable
WorkgroupFunctionType can optionally take
a kernel_handler as it’s last parameter, in
which case the SYCL runtime will construct
an instance of kernel_handler and pass it to
WorkgroupFunctionType.

template <typename KernelName, typename

WorkgroupFunctionType, int dimensions>

void parallel_for_work_group(

range<dimensions> numWorkGroups,

range<dimensions> workGroupSize,

const WorkgroupFunctionType &kernelFunc)

Defines and invokes a hierarchical kernel as
a lambda function encoding the body of each
work-group to launch. Generic kernel func-
tions are permitted, in that case the argument
type is a group. May contain multiple calls
to parallel_for_work_item member func-
tions representing the execution on each
work-item. Launches num_work_groups
work-groups of work_group_size work-
items each. Described in detail in 4.10.7.
The callable WorkgroupFunctionType

can optionally take a kernel_handler

as it’s last parameter, in which case
the SYCL runtime will construct an in-
stance of kernel_handler and pass it to
WorkgroupFunctionType.

Continued on next page

Table 4.93: Member functions of the handler class.

250 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
template <typename KernelName, typename KernelType,

int dimensions, typename... Reductions>

void parallel_reduce(

range<dimensions> numWorkItems, Reductions...

reductions, const KernelType &kernelFunc)

Defines and invokes a SYCL kernel function
as a lambda function or a named function
object type, for the specified range and given
an id or item for indexing in the indexing
space defined by range. Specification of
a kernel name (typename KernelName), as
described in Section 4.10.7, is optional. The
callable KernelType can optionally take a
kernel_handler as it’s last parameter, in
which case the SYCL runtime will construct
an instance of kernel_handler and pass it
to KernelType.

The reductions parameter pack con-
sists of 1 or more objects created by the
reduction function. For each object in
reductions, the kernel functor should take
an additional parameter corresponding to
that object’s reducer type.

template <typename KernelName, typename KernelType,

int dimensions, typename... Reductions>

void parallel_reduce(

range<dimensions> numWorkItems,

id<dimensions> workItemOffset, Reductions...

reductions, const KernelType &kernelFunc)

Defines and invokes a SYCL kernel function
as a lambda function or a named function
object type, for the specified range and
offset and given an id or item for indexing
in the indexing space defined by range.
Specification of a kernel name (typename
KernelName), as described in Section 4.10.7,
is optional. The callable KernelType can
optionally take a kernel_handler as it’s
last parameter, in which case the SYCL
runtime will construct an instance of
kernel_handler and pass it to KernelType.

The reductions parameter pack con-
sists of 1 or more objects created by the
reduction function. For each object in
reductions, the kernel functor should take
an additional parameter corresponding to
that object’s reducer type.

Continued on next page

Table 4.93: Member functions of the handler class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 251



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Member function Description
template <typename KernelName, typename KernelType,

int dimensions, typename... Reductions>

void parallel_reduce(

nd_range<dimensions> executionRange, Reductions

... reductions, const KernelType &kernelFunc)

Defines and invokes a SYCL kernel function
as a lambda function or a named function
object type, for the specified nd-range
and given an nd-item for indexing in the
indexing space defined by the nd-range.
Specification of a kernel name (typename
KernelName), as described in Section 4.10.7,
is optional. The callable KernelType can
optionally take a kernel_handler as it’s
last parameter, in which case the SYCL
runtime will construct an instance of
kernel_handler and pass it to KernelType.
as described in 4.10.7.

The reductions parameter pack con-
sists of 1 or more objects created by the
reduction function. For each object in
reductions, the kernel functor should take
an additional parameter corresponding to
that object’s reducer type.

void single_task(kernel syclKernel) Invokes a pre-compiled kernel which exe-
cutes exactly once.

template <int dimensions> void parallel_for(

range<dimensions> numWorkItems,

kernel syclKernel)

Invokes a pre-compiled kernel for the speci-
fied range and given an item or integral type
(e.g int, size_t), if range is 1-dimensional,
for indexing in the indexing space defined
by range. Generic kernel functions are per-
mitted, in that case the argument type is an
item. Described in detail in 4.10.7.

template <int dimensions> void parallel_for(

range<dimensions> numWorkItems,

id<dimensions> workItemOffset, kernel syclKernel

)

Invokes a pre-compiled kernel for the spec-
ified range and offset and given an item or
integral type (e.g int, size_t), if range is
1-dimensional, for indexing in the indexing
space defined by range. Generic kernel func-
tions are permitted, in that case the argu-
ment type is an item. Described in detail
in 4.10.7.

template <int dimensions> void parallel_for(

nd_range<dimensions> ndRange,

kernel syclKernel)

Invokes a pre-compiled kernel for the spec-
ified ndrange and given an nd_item for in-
dexing in the indexing space defined by the
nd_range. Generic kernel functions are per-
mitted, in that case the argument type is an
nd_item. Described in detail in 4.10.7.

End of table

Table 4.93: Member functions of the handler class.

252 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

4.10.7.1 single_task invoke

SYCL provides a simple interface to enqueue a kernel that will be sequentially executed on a device. Only one
instance of the kernel will be executed. This interface is useful as a primitive for more complicated parallel
algorithms, as it can easily create a chain of sequential tasks on a SYCL device with each of them managing its
own data transfers.

This function can only be called inside a command group using the handler object created by the runtime. Any
accessors that are used in a kernel should be defined inside the same command group.

Local accessors are disallowed for single task invocations.

1 myQueue.submit([&](handler & cgh) {

2 cgh.single_task(

3 [=] () {

4 // [kernel code]

5 }));

6 });

For single tasks, the kernel member function takes no parameters, as there is no need for index space classes in a
unary index space.

A kernel_handler can optionally be passed as a parameter to the SYCL kernel function that is invoked by
single_task for the purpose explained in Section 4.10.5.

1 myQueue.submit([&](handler & cgh) {

2 cgh.single_task(

3 [=] (kernel_handler kh) {

4 // [kernel code]

5 }));

6 });

4.10.7.2 parallel_for invoke

The parallel_for member function of the SYCL handler class provides an interface to define and invoke a
SYCL kernel function in a command group, to execute in parallel execution over a 3 dimensional index space.
There are three overloads of the parallel_for member function which provide variations of this interface, each
with a different level of complexity and providing a different set of features.

For the simplest case, users need only provide the global range (the total number of work-items in the index space)
via a SYCL range parameter, and the SYCL runtime will select a local range (the number of work-items in each
work-group). The local range chosen by the SYCL runtime is entirely implementation defined. In this case the
function object that represents the SYCL kernel function must take one of: 1) a single SYCL item parameter, 2)
single generic parameter (template parameter or auto), 3) any other type implicitly converted from SYCL item,
representing the currently executing work-item within the range specified by the range parameter.

The execution of the kernel function is the same whether the parameter to the SYCL kernel function is a SYCL id
or a SYCL item. What differs is the functionality that is available to the SYCL kernel function via the respective
interfaces.

Below is an example of invoking a SYCL kernel function with parallel_for using a lambda function, and passing
a SYCL id parameter. In this case only the global id is available. This variant of parallel_for is designed for

CHAPTER 4. SYCL PROGRAMMING INTERFACE 253



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

when it is not necessary to query the global range of the index space being executed across, or the local (work-
group) size chosen by the implementation.

1 myQueue.submit([&](handler & cgh) {

2 accessor acc { myBuffer, cgh, write_only };

3
4 cgh.parallel_for(range<1>(numWorkItems),

5 [=] (id<1> index) {

6 acc[index] = 42.0f;

7 });

8 });

Below is an example of invoking a SYCL kernel function with parallel_for using a lambda function and pass-
ing a SYCL item parameter. In this case both the global id and global range are queryable. This variant of
parallel_for is designed for when it is necessary to query the global range within which the global id will vary.
No information is queryable on the local (work-group) size chosen by the implementation.

1 myQueue.submit([&](handler & cgh) {

2 accessor acc { myBuffer, cgh, write_only };

3
4 cgh.parallel_for(range<1>(numWorkItems),

5 [=] (item<1> item) {

6 // kernel argument type is item

7 size_t index = item.get_linear_id();

8 acc[index] = index;

9 });

10 });

Below is an example of invoking a SYCL kernel function with parallel_for using a lambda function and passing
auto parameter, treated as item. In this case both the global id and global range are queryable. The same effect
can be achieved using class with templatized operator(). This variant of parallel_for is designed for when it
is necessary to query the global range within which the global id will vary. No information is queryable on the
local (work-group) size chosen by the implementation.

1 myQueue.submit([&](handler & cgh) {

2 auto acc = myBuffer.get_access<access::mode::write>(cgh);

3
4 cgh.parallel_for(range<1>(numWorkItems),

5 [=] (auto item) {

6 // kernel agrument type is auto treated as an item

7 size_t index = item.get_linear_id();

8 acc[index] = index;

9 });

10 });

Below is an example of invoking a SYCL kernel function with parallel_for using a lambda function and passing
integral type (e.g. int, size_t) parameter. This example is only valid when calling parallel_for with range<1>.
In this case, only the global id is available. This variant of parallel_for is designed for when it is not necessary
to query the global range of the index space being executed across, or the local (workgroup) size chosen by the
implementation.

254 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

1 myQueue.submit([&](handler & cgh) {

2 auto acc = myBuffer.get_access<access::mode::write>(cgh);

3
4 cgh.parallel_for(range<1>(numWorkItems),

5 [=] (size_t index) {

6 // kernel argument type is size_t

7 acc[index] = index;

8 });

9 });

The parallel_for overload without an offset can be called with either a number or a braced-init-list with 1-3
elements. In that case the following calls are equivalent:

• parallel_for(N, some_kernel) has same effect as parallel_for(range<1>(N), some_kernel)

• parallel_for({N}, some_kernel) has same effect as parallel_for(range<1>(N), some_kernel)

• parallel_for({N1, N2}, some_kernel) has same effect as parallel_for(range<2>(N1, N2),

some_kernel)

• parallel_for({N1, N2, N3}, some_kernel) has same effect as parallel_for(range<3>(N1, N2, N3),
some_kernel)

Below is an example of invoking parallel_for with a number instead of an explicit range object.

1 myQueue.submit([&](handler & cgh) {

2 auto acc = myBuffer.get_access<access::mode::write>(cgh);

3
4 // parallel_for may be called with number (with numWorkItems)

5 cgh.parallel_for(numWorkItems,

6 [=] (auto item) {

7 size_t index = item.get_linear_id();

8 acc[index] = index;

9 });

10 });

For SYCL kernel functions invoked via the above described overload of the parallel_for member function, it is
disallowed to use local accessors or to use a work-group barrier.

The following two examples show how a kernel function object can be launched over a 3D grid, with 3 elements
in each dimension. In the first case work-item ids range from 0 to 2 inclusive, and in the second case work-item
ids run from 1 to 3.

1 myQueue.submit([&](handler & cgh) {

2 cgh.parallel_for(

3 range<3>(3,3,3), // global range

4 [=] (item<3> it) {

5 //[kernel code]

6 });

7 });

8 myQueue.submit([&](handler & cgh) {

9 cgh.parallel_for(

10 range<3>(3,3,3), // global range

CHAPTER 4. SYCL PROGRAMMING INTERFACE 255



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

11 id<3>(1,1,1), // offset

12 [=] (item<3> it) {

13 //[kernel code]

14 });

15 });

The last case of a parallel for invocation enables low-level functionality of work-items and work-groups. This
becomes valuable when an execution requires groups of work-items that communicate and synchronize. These
are exposed in SYCL through parallel_for (nd_range,...) and the nd_item class. In this case, the developer
needs to define the nd_range that the kernel will execute on in order to have fine grained control of the enqueuing
of the kernel. This variation of parallel for expects an nd_range, specifying both local and global ranges, defining
the global number of work-items and the number in each cooperating work-group. The resulting function object
is passed an nd_item instance making all the information available, as well as work-group barrier to synchronize
between the work-items in the work-group.

The following example shows how sixty-four work-items may be launched in a three-dimensional grid with four in
each dimension, and divided into eight work-groups. Each group of work-items synchronizes with a work-group
barrier.

1 myQueue.submit([&](handler & cgh) {

2 cgh.parallel_for(

3 nd_range<3>(range<3>(4, 4, 4), range<3>(2, 2, 2)), [=](nd_item<3> item) {

4 //[kernel code]

5 // Internal synchronization

6 group_barrier(item.get_group());

7 //[kernel code]

8 });

9 });

In all of these cases the underlying nd-range will be created and the kernel defined as a function object will be
created and enqueued as part of the command group scope.

A kernel_handler can optionally be passed as a parameter to the SYCL kernel function that is invoked by both
variants of parallel_for.

1 myQueue.submit([&](handler & cgh) {

2 cgh.parallel_for(

3 range<3>(3,3,3), // global range

4 [=] (item<3> it, kernel_handler kh) {

5 //[kernel code]

6 });

7 });

8 myQueue.submit([&](handler & cgh) {

9 cgh.parallel_for(

10 range<3>(3,3,3), // global range

11 id<3>(1,1,1), // offset

12 [=] (item<3> it, kernel_handler kh) {

13 //[kernel code]

14 });

15 });

256 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

4.10.7.3 Parallel for hierarchical invoke

The hierarchical parallel kernel execution interface provides the same functionality as is available from the nd-
range interface, but exposed differently. To execute the same sixty-four work-items in sixteen work-groups that
we saw in the previous example, we execute an outer parallel_for_work_group call to create the groups. The
member function handler::parallel_for_work_group is parameterized by the number of work-groups, such that
the size of each group is chosen by the runtime, or by the number of work-groups and number of work-items for
users who need more control.

The body of the outer parallel_for_work_group call consists of a lambda function or function object. The body
of this function object contains code that is executed only once for the entire work-group. If the code has no
side-effects and the compiler heuristic suggests that it is more efficient to do so, this code will be executed for
each work-item.

Within this region any variable declared will have the semantics of local memory, shared between all work-items
in the work-group. If the device compiler can prove that an array of such variables is accessed only by a single
work-item throughout the lifetime of the work-group, for example if access is derived from the id of the work-item
with no transformation, then it can allocate the data in private memory or registers instead.

To guarantee use of private per-work-item memory, the private_memory class can be used to wrap the data. This
class simply constructs private data for a given group across the entire group. The id of the current work-item is
passed to any access to grab the correct data.

The private_memory class has the following interface:

1 namespace sycl {

2 template <typename T, int Dimensions = 1>

3 class private_memory {

4 public:

5 // Construct based directly off the number of work-items

6 private_memory(const group<Dimensions> &);

7
8 // Access the instance for the current work-item

9 T &operator()(const h_item<Dimensions> &id);

10 };

11 }

Constructor Description
private_memory(const group<Dimensions> &) Place an object of type T in the underly-

ing private memory of each work-items. The
type Tmust be default constructible. The un-
derlying constructor will be called for each
work-item.

End of table

Table 4.94: Constructor of the private_memory class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 257



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

Member functions Description
T &operator()(const h_item<Dimensions> &id) Retrieve a reference to the object for the

work-items.
End of table

Table 4.95: Member functions of the private_memory class.

Private memory is allocated per underlying work-item, not per iteration of the parallel_for_work_item loop.
The number of instances of a private memory object is only under direct control if a work-group size is passed
to the parallel_for_work_group call. If the underlying work-group size is chosen by the runtime, the number
of private memory instances is opaque to the program. Explicit private memory declarations should therefore be
used with care and with a full understanding of which instances of a parallel_for_work_item loop will share the
same underlying variable.

Also within the lambda body can be a sequence of calls to parallel_for_work_item. At the edges of these inner
parallel executions the work-group synchronizes. As a result the pair of parallel_for_work_item calls in the
code below is equivalent to the parallel execution with a work-group barrier in the earlier example.

1 myQueue.submit([&](handler & cgh) {

2 // Issue 8 work-groups of 8 work-items each

3 cgh.parallel_for_work_group(

4 range<3>(2, 2, 2), range<3>(2, 2, 2), [=](group<3> myGroup) {

5
6 //[workgroup code]

7 int myLocal; // this variable is shared between workitems

8 // this variable will be instantiated for each work-item separately

9 private_memory<int> myPrivate(myGroup);

10
11 // Issue parallel work-items. The number issued per work-group is determined

12 // by the work-group size range of parallel_for_work_group. In this case,

13 // 8 work-items will execute the parallel_for_work_item body for each of the

14 // 8 work-groups, resulting in 64 executions globally/total.

15 myGroup.parallel_for_work_item([&](h_item<3> myItem) {

16 //[work-item code]

17 myPrivate(myItem) = 0;

18 });

19
20 // Implicit work-group barrier

21
22 // Carry private value across loops

23 myGroup.parallel_for_work_item([&](h_item<3> myItem) {

24 //[work-item code]

25 output[myItem.get_global_id()] = myPrivate(myItem);

26 });

27 //[workgroup code]

28 });

29 });

It is valid to use more flexible dimensions of the work-item loops. In the following example we issue 8 work-
groups but let the runtime choose their size, by not passing a work-group size to the parallel_for_work_group
call. The parallel_for_work_item loops may also vary in size, with their execution ranges unrelated to the
dimensions of the work-group, and the compiler generating an appropriate iteration space to fill the gap. In this

258 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

case, the h_item provides access to local ids and ranges that reflect both kernel and parallel_for_work_item
invocation ranges.

1 myQueue.submit([&](handler & cgh) {

2 // Issue 8 work-groups. The work-group size is chosen by the runtime because unspecified

3 cgh.parallel_for_work_group(

4 range<3>(2, 2, 2), [=](group<3> myGroup) {

5
6 // Launch a set of work-items for each work-group. The number of work-items is chosen

7 // by the runtime because the work-group size was not specified to parallel_for_work_group

8 // and a logical range is not specified to parallel_for_work_item.

9 myGroup.parallel_for_work_item([=](h_item<3> myItem) {

10 //[work-item code]

11 });

12
13 // Implicit work-group barrier

14
15 // Launch 512 logical work-items that will be executed by the underlying work-group size

16 // chosen by the runtime. myItem allows the logical and physical work-item IDs to be

17 // queried. 512 logical work-items will execute for each work-group, and the parallel_for

18 // body will therefore be executed 8*512 = 4096 times globally/total.

19 myGroup.parallel_for_work_item(range<3>(8, 8, 8), [=](h_item<3> myItem) {

20 //[work-item code]

21 });

22 //[workgroup code]

23 });

24 });

This interface offers a more intuitive way for tiling parallel programming paradigms. In summary, the hierarchi-
cal model allows a developer to distinguish the execution at work-group level and at work-item level using the
parallel_for_work_group and the nested parallel_for_work_item functions. It also provides this visibility to
the compiler without the need for difficult loop fission such that host execution may be more efficient.

A kernel_handler can optionally be passed as a parameter to the SYCL kernel function that is invoked by any
variant of parallel_for_work_group.

1 myQueue.submit([&](handler & cgh) {

2 // Issue 8 work-groups of 8 work-items each

3 cgh.parallel_for_work_group(

4 range<3>(2, 2, 2), range<3>(2, 2, 2), [=](group<3> myGroup,

5 kernel_handler kh) {

6
7 //[workgroup code]

8 int myLocal; // this variable is shared between workitems

9 // this variable will be instantiated for each work-item separately

10 private_memory<int> myPrivate(myGroup);

11
12 // Issue parallel work-items. The number issued per work-group is determined

13 // by the work-group size range of parallel_for_work_group. In this case,

14 // 8 work-items will execute the parallel_for_work_item body for each of the

15 // 8 work-groups, resulting in 64 executions globally/total.

16 myGroup.parallel_for_work_item([&](h_item<3> myItem) {

17 //[work-item code]

CHAPTER 4. SYCL PROGRAMMING INTERFACE 259



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

18 myPrivate(myItem) = 0;

19 });

20
21 // Implicit work-group barrier

22
23 // Carry private value across loops

24 myGroup.parallel_for_work_item([&](h_item<3> myItem) {

25 //[work-item code]

26 output[myItem.get_global_id()] = myPrivate(myItem);

27 });

28 //[workgroup code]

29 });

30 });

4.10.8 SYCL functions for explicit memory operations
In addition to kernels, command group objects can also be used to perform manual operations on host and device
memory by using the copy API of the command group handler. Manual copy operations can be seen as specialized
kernels executing on the device, except that typically this operations will be implemented using the OpenCL host
API (e.g, enqueue copy operations).

The SYCL memory objects involved in a copy operation are specified using accessors. Explicit copy operations
have a source and a destination. When an accessor is the source of the operation, the destination can be a host
pointer or another accessor. The source accessor can have either read or read_write access mode.

When an accessor is the destination of the explicit copy operation, the source can be a host pointer or another
accessor. The destination accessor can have either write, read_write, discard_write, discard_read_write
access modes.

When accessors are both the origin and the destination, the operation is executed on objects controlled by the
SYCL runtime. The SYCL runtime is allowed to not perfom an explicit in-copy operation if a different path to
update the data is available according to the SYCL application memory model.

The most recent copy of the memory object may reside on any context controlled by the SYCL runtime, or on
the host in a pointer controlled by the SYCL runtime. The SYCL runtime will ensure that data is copied to the
destination once the command group has completed execution.

Whenever a host pointer is used as either the host or the destination of these explicit memory operations, it is
the responsibility of the user for that pointer to have at least as much memory allocated as the accessor is giving
access to, e.g: if an accessor accesses a range of 10 elements of int type, the host pointer must at least have
10 * sizeof(int) bytes of memory allocated.

A special case is the update_hostmember function. This member function only requires an accessor, and instructs
the runtime to update the internal copy of the data in the host, if any. This is particularly useful when users use
manual synchronization with host pointers, e.g. via mutex objects on the buffer constructors.

Table 4.96 describes the interface for the explicit copy operations.

260 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.10. EXPRESSING PARALLELISM THROUGH KERNELS

Member function Description
template <typename T_src, int dim_src, access::mode

mode_src, access::target tgt_src, typename T_dest,

access::placeholder isPlaceholder>

void copy(accessor<T_src, dim_src, mode_src,

tgt_src, isPlaceholder> src, std::shared_ptr<T_dest>

dest)

Copies the contents of the memory object
accessed by src into the memory pointed to
by dest. dest must have at least as many
bytes as the range accessed by src.

template <typename T_src, typename T_dest, int

dim_dest, access::mode mode_dest, access::target

tgt_dest, access::placeholder isPlaceholder>

void copy(std::shared_ptr<T_src> src, accessor<

T_dest, dim_dest, mode_dest, tgt_dest, isPlaceholder

> dest)

Copies the contents of the memory pointed
to by src into the memory object accessed
by dest. src must have at least as many
bytes as the range accessed by dest.

template <typename T_src, int dim_src, access::mode

mode_src, access::target tgt_src, typename T_dest,

access::placeholder isPlaceholder>

void copy(accessor<T_src, dim_src, mode_src,

tgt_src, isPlaceholder> src, T_dest * dest)

Copies the contents of the memory object
accessed by src into the memory pointed to
by dest. dest must have at least as many
bytes as the range accessed by src.

template <typename T_src, typename T_dest, int

dim_dest, access::mode mode_dest, access::target

tgt_dest, access::placeholder isPlaceholder>

void copy(const T_src * src, accessor<T_dest,

dim_dest, mode_dest, tgt_dest, isPlaceholder> dest)

Copies the contents of the memory pointed
to by src into the memory object accessed
by dest. src must have at least as many
bytes as the range accessed by dest.

template <typename T_src, int dim_src, access::mode

mode_src, access::target tgt_src, access::

placeholder isPlaceholder_src, typename T_dest, int

dim_dest, access::mode mode_dest, access::target

tgt_dest, access::placeholder isPlaceholder_dest>

void copy(accessor<T_src, dim_src, mode_src,

tgt_src, isPlaceholder_src> src, accessor<T_dest,

dim_dest, mode_dest, tgt_dest, isPlaceholder_dest>

dest)

Copies the contents of the memory object
accessed by src into the memory object ac-
cessed by dest. src must have at least as
many bytes as the range accessed by dest.

template <typename T, int dim, access::mode mode,

access::target tgt, access::placeholder

isPlaceholder>

void update_host(accessor<T, dim, mode, tgt,

isPlaceholder> acc)

The contents of the memory object accessed
via acc on the host are guaranteed to be up-
to-date after this command group object ex-
ecution is complete.

template <typename T, int dim, access::mode mode,

access::target tgt, access::placeholder

isPlaceholder>

void fill(accessor<T, dim, mode, tgt,

isPlaceholder> dest,

const T& src)

Replicates the value of src into the memory
object accessed by dest. T must be a scalar
value or a SYCL vector type.

End of table

Table 4.96: Member functions of the handler class.

The listing below illustrates how to use explicit copy operations in SYCL. The example copies half of the contents
of a std::vector into the device, leaving the rest of the contents of the buffer on the device unchanged.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 261



4.10. EXPRESSING PARALLELISM THROUGH KERNELS SYCL 2020 provisional

1 const size_t nElems = 10u;

2
3 // Create a vector and fill it with values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

4 std::vector<int> v { nElems };

5 std::iota(std::begin(v), std::end(v), 0);

6
7 // Create a buffer with no associated user storage

8 sycl::buffer<int, 1> b { range<1>(nElems) };

9
10 // Create a queue

11 queue myQueue;

12
13 myQueue.submit([&](handler &cgh) {

14 // Retrieve a ranged write accessor to a global buffer with access to the

15 // first half of the buffer

16 accessor acc { b, cgh, range<1>(nElems / 2), id<1>(0), write_only };

17 // Copy the first five elements of the vector into the buffer associated with

18 // the accessor

19 cgh.copy(v.data(), acc);

20 });

4.10.9 Functions for using a module

1 void use_module(const module<module_state::executable> &execModule); // (1)

2
3 template <typename T>

4 void use_module(const module<module_state::executable> &execModule // (2)

5 T deviceImageSelector);

1. Effects: The command group associated with the handler will use device images of the module execModule
in any kernel invocation commands for all SYCL kernel functions represented by the module. If the module
contains multiple device images that are compatible with the device associated with handler, then the

device image chosen is implementation defined.

Throws: errc::invalid_object_error if the context associated with the command group handler via its
associated queue is different from the context associated with the module specified by execModule.

2. Effects: The command group associated with the handler will use device images of the module execModule
in any kernel invocation commands for all SYCL kernel functions represented by the module. All device
images in the module which are compatible with the device associated with handler will be passed to the
device image selection function. The device image with the highest score will be chosen.

Throws: errc::invalid_object_error if the context associated with the command group handler via its
associated queue is different from the context associated with the module specified by execModule.

Throws: errc::device_image_selection_error if no device image could be selected.

4.10.10 Functions for using specialization constants

1 template<auto& S>

2 bool has_specialization_constant() const noexcept; // (1)

262 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.11. HOST TASKS

1. Returns: true if any of the SYCL kernel functions represented by the module associated with the command
group handler contain the specialization constant represented by the specialization_id at the address S,
otherwise returns false.

1 template<auto& S>

2 typename std::remove_reference_t<decltype(S)>::type get_specialization_constant(); // (1)

1. Returns: From the module associated with the command group handler, the value of the specialization
constant associated with the specialization_id at the address S if the specialization constant has been set,
otherwise returns the default value.

Throws: errc::invalid_object_error if this->has_specialization_constant<S>() evaluates to false.

4.11 Host tasks

4.11.1 Overview
A host task is a native C++ callable which is scheduled by the SYCL runtime. A host task is submitted to a queue
via a command group by a host task command.

When a host task command is submitted to a queue it is scheduled based on its data dependencies with other
commands including kernel invocation commands and asynchronous copies, resolving any requisites created by
accessors attached to the command group as defined in Section 3.7.1.

Since a host task is invoked directly by the SYCL runtime rather than being compiled as a SYCL kernel function,
it does not have the same restrictions as a SYCL kernel function, and can therefore contain any arbitrary C++
code. However, capturing or using any SYCL class with reference semantics (see Section 4.5.3) is undefined
behaviour.

A host task can be enqueued on any queue including a host queue and the callable will be invoked directly by the
SYCL runtime, regardless of which device the queue is associated with.

A host task is enqueued on a queue via the host_task member function of the handler class.

A host task can optionally be used to interoperate with the native backend objects associated with the queue
executing the host task, the context that the queue is associated with, the device that the queue is associated with
and the accessors that have been captured in the callable, via an optional interop_handle parameter.

This allows host task to be used for two purposes: either as a task which can perform arbitrary C++ code within the
scheduling of the SYCL runtime or as a task which can perform interoperability at a point within the scheduling
of the SYCL runtime.

For the former use case host accessors should be used to request that a buffer or image be made available on the
host so that it can be accessed directly via the accessor.

For the later use case device accessors should be used to request that a buffer or image be made available on
the device associated with the queue used to submit the host task so that it can be accessed via interoperability
member functions provided by the interop_handle class.

Local accessors cannot be used within a host task.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 263



4.11. HOST TASKS SYCL 2020 provisional

1 namespace sycl {

2
3 class interop_handle {

4 private:

5
6 interop_handle(__unspecified__);

7
8 public:

9
10 interop_handle() = delete;

11
12 template <backend Backend, typename dataT, int dims, access::mode accessMode,

13 access::target accessTarget, access::placeholder isPlaceholder>

14 backend_traits<Backend>::native_type<buffer>

15 get_native_mem(const accessor<dataT, dims, accessMode, accessTarget,

16 isPlaceholder> &bufferAccessor) const;

17
18 template <backend Backend, typename dataT, int dims, access::mode accessMode,

19 access::target accessTarget, access::placeholder isPlaceholder>

20 backend_traits<Backend>::native_type<image>

21 get_native_mem(const accessor<dataT, dims, accessMode, accessTarget,

22 isPlaceholder> &imageAccessor) const;

23
24 template <backend Backend>

25 backend_traits<Backend>::native_type<queue> get_native_queue() const noexcept;

26
27 template <backend Backend>

28 backend_traits<Backend>::native_type<device> get_native_device() const noexcept;

29
30 template <backend Backend>

31 backend_traits<Backend>::native_type<context> get_native_context() const noexcept;

32
33 };

34
35 class handler {

36 ...

37
38 public:

39
40 template <typename T>

41 void host_task(T &&hostTaskCallable);

42
43 ...

44 };

45
46 } // namespace sycl

4.11.2 Class interop_handle
The interop_handle class is an abstraction over the queue which is being used to invoke the host task and its
associated device and context. It also represents the state of the SYCL runtime dependency model at the point the
host task is invoked.

The interop_handle class provides access to the native backend object associated with the queue, device, context

264 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.11. HOST TASKS

and any buffers or images that are captured in the callable being invoked in order to allow a host task to be used
for interoperability purposes.

An interop_handle cannot be constructed by user-code, only by the SYCL runtime.

1 class interop_handle;

4.11.2.1 Constructors

1 private:

2
3 interop_handle(__unspecified__); // (1)

4
5 public:

6
7 interop_handle() = delete; // (2)

1. Private implementation defined constructor with unspecified arguments so that the SYCL runtime can con-
struct a interop_handle.

2. Explicitly deleted default constructor.

4.11.2.2 Template member functions get_native_*

1 template <backend Backend, typename dataT, int dims, access::mode accMode,

2 access::target accTarget, access::placeholder isPlaceholder>

3 backend_traits<Backend>::native_type<buffer>

4 get_native_mem(const accessor<dataT, dims, accMode, accTarget, // (1)

5 isPlaceholder> &bufferAccessor) const;

6
7 template <backend Backend, typename dataT, int dims, access::mode accMode,

8 access::target accTarget, access::placeholder isPlaceholder>

9 backend_traits<Backend>::native_type<image>

10 get_native_mem(const accessor<dataT, dims, accMode, accTarget, // (2)

11 isPlaceholder> &imageAccessor) const;

12
13 template <backend Backend>

14 backend_traits<Backend>::native_type<queue> get_native_queue() const noexcept; // (3)

15
16 template <backend Backend>

17 backend_traits<Backend>::native_type<device> get_native_device() const noexcept; // (4)

18
19 template <backend Backend>

20 backend_traits<Backend>::native_type<context> get_native_context() const noexcept; // (5)

1. Constraints: Available only if the optional interoperability function get_native taking a buffer is available
and if accTarget is access::target::global_buffer or access::target::constant_buffer.

Returns: The SYCL application interoperability native backend object associated with the accessor
bufferAccessor. The native backend object returned must be in a state where it represents the memory
in its current state within the SYCL runtime dependency model be capable of being used in a way appro-

CHAPTER 4. SYCL PROGRAMMING INTERFACE 265



4.11. HOST TASKS SYCL 2020 provisional

priate for the associated SYCL backend. It is undefined behaviour to use the native backend object outside
of the scope of the host task.

Throws: errc::invalid_object_error if the accessor bufferAccessor was not registered with the com-
mand group which contained the host task.

2. Constraints: Available only if the optional interoperability function get_native taking an unsampled_image
or sampled_image is available and if accTarget is access::target::unsampled_image or access::target
::sampled_image.

Returns: The SYCL application interoperability native backend object associated with the accessor
imageAccessor. The native backend object returned must be in a state where it represents the memory
in its current state within the SYCL runtime dependency model and is capable of being used in a way
appropriate for the associated SYCL backend. It is undefined behaviour to use the native backend object
outside of the scope of the host task.

Throws: errc::invalid_object_error if the accessor imageAccessor was not registered with the com-
mand group which contained the host task.

3. Constraints: Available only if the optional interoperability function get_native taking a queue is available.

Returns: The SYCL application interoperability native backend object associated with the queue that the
host task was submitted to. If the command group was submitted with a secondary queue and the fall-back
was triggered, the queue that is associated with the interop_handlemust be the fall-back queue. The native
backend object returned must be in a state where it is capable of being used in a way appropriate for the
associated SYCL backend. It is undefined behaviour to use the native backend object outside of the scope
of the host task.

4. Constraints: Available only if the optional interoperability function get_native taking a device is avail-
able.

Returns: The SYCL application interoperability native backend object associated with the device that is
associated with the queue that the host task was submitted to. The native backend object returned must be
in a state where it is capable of being used in a way appropriate for the associated SYCL backend. It is
undefined behaviour to use the native backend object outside of the scope of the host task.

5. Constraints: Available only if the optional interoperability function get_native taking a context is avail-
able.

Returns: The SYCL application interoperability native backend object associated with the context that is
associated with the queue that the host task was submitted to. The native backend object returned must be
in a state where it is capable of being used in a way appropriate for the associated SYCL backend. It is
undefined behaviour to use the native backend object outside of the scope of the host task.

4.11.3 Additions to the handler class
This section describes member functions in the command group handler class that are used with host tasks.

1 class handler {

2 ...

3
4 public:

266 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.12. KERNEL CLASS

5 template <typename T>

6 void host_task(T &&hostTaskCallable); // (1)

7
8 ...

9 };

1. Effects: Enqueues an implementation defined command to the SYCL runtime to invoke hostTaskCallable
exactly once. The scheduling of the invocation of hostTaskCallable in relation to other commands

enqueued to the SYCL runtime must be in accordance with the dependency model described in Sec-
tion 3.7.1. Initialises an interop_handle object and passes it to hostTaskCallablewhen it is invoked if std
::is_invocable_v<T, interop_handle> evaluates to true, otherwise invokes invokes hostTaskCallable
as a nullary function.

4.12 Kernel class

The kernel class is an abstraction of a kernel object in SYCL. In the most common case the kernel object will
contain the compiled version of a kernel invoked inside a command group using one of the parallel interface
functions as described in 4.10.7. The SYCL runtime will create a kernel object, when it needs to enqueue the
kernel on a command queue.

In the case where a developer would like to pre-compile a kernel or compile and link it with an existing program,
then the kernel object will be created and contain that kernel using the module class, as defined in 4.13.6. In both
of the above cases, the developer cannot instantiate a kernel object but can instantiate a named function object
type that they could use, or create a function object from a kernel member function using C++ features. The
kernel class object needs a parallel_for(...) invocation or an explicitly built SYCL kernel instance, for this
compilation of the kernel to be triggered.

The SYCL kernel class provides the common reference semantics (see Section 4.5.3).

The member functions of the SYCL kernel class are listed in Table 4.97. The additional common special member
functions and common member functions are listed in Tables 4.1 and 4.2, respectively.

1 namespace sycl {

2 class kernel {

3 private:

4 kernel();

5
6 public:

7
8 /* -- common interface members -- */

9
10 backend get_backend() const;

11
12 bool is_host() const;

13
14 context get_context() const;

15
16 module<module_state::executable> get_module() const;

17
18 template <info::kernel param>

19 typename info::param_traits<info::kernel, param>::return_type

20 get_info() const;

CHAPTER 4. SYCL PROGRAMMING INTERFACE 267



4.12. KERNEL CLASS SYCL 2020 provisional

21
22 template <info::kernel_device_specific param>

23 typename info::param_traits<info::kernel_device_specific, param>::return_type

24 get_info(const device &dev) const;

25
26 template <typename BackendEnum, BackendEnum param>

27 typename info::param_traits<BackendEnum, param>::return_type

28 get_backend_info() const;

29
30 template <info::kernel_work_group param>

31 typename info::param_traits<info::kernel_work_group, param>::return_type

32 get_work_group_info(const device &dev) const;

33 };

34 } // namespace sycl

Member functions Description
backend get_backend()const Returns the backend identifying the SYCL

backend associated with this kernel.
bool is_host()const Returns true if this SYCL kernel is a host

kernel.
context get_context()const Return the context that this kernel is de-

fined for. The value returned must be equal
to that returned by get_info<info::kernel
::context>().

module<module_state::executable> get_module()const Returns the module that this kernel is part of.
The value returned must be equal to that re-
turned by get_info<info::kernel::module
>().

template <info::kernel param>

typename info::param_traits<

info::kernel, param>::return_type

get_info()const

Query information from the kernel object
using the info::kernel descriptor.

template <info::kernel_device_specific param>

typename info::param_traits<

info::kernel_device_specific, param>::

return_type

get_info(const device &dev)const

Query information from a kernel using the
info::kernel_device_specific descriptor
for a specific device.

Continued on next page

Table 4.97: Member functions of the kernel class.

268 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.12. KERNEL CLASS

Member functions Description
template <typename BackendEnum, BackendEnum param>

typename info::param_traits<BackendEnum, param>::

return_type

get_backend_info()const

Queries this SYCL kernel for SYCL back-
end-specific information requested by the
template parameter param. BackendEnum

can be any enum class type specified
by the SYCL backend specification of a
supported SYCL backend named accord-
ing to the convention info::<backend_name
>::kernel and param must be a valid
enumeration of that enum class. Spe-
cializations of info::param_traits must
be defined for BackendEnum in accor-
dance with the SYCL backend specifica-
tion. Must throw an exception with the
errc::invalid_object_error error code if
the SYCL backend that corresponds with
BackendEnum is different from the SYCL
backend that is associated with this kernel
.

template <info::kernel_work_group param>

typename info::param_traits<

info::kernel_work_group, param>::return_type

get_work_group_info(const device &dev)const

Query information from the work-
group from a kernel using the info::
kernel_work_group descriptor for a specific
device. This query has been deprecated in
SYCL 2020 and will likely be removed in a
future version of SYCL.

End of table

Table 4.97: Member functions of the kernel class.

4.12.1 Kernel information descriptors
A kernel can be queried for information using the get_info member function of the kernel class, specifying one
of the info parameters enumerated in info::kernel. Every kernel (including a host kernel) must produce a valid
value for each info parameter. The possible values for each info parameter and any restriction are defined in the
specification of the SYCL backend associated with the kernel. All info parameters in info::kernel are specified
in Table 4.98 and the synopsis for info::kernel is described in appendix A.5.

Kernel Descriptors Return type Description
info::kernel::function_name std::string Return the kernel function name.
info::kernel::num_args uint32_t Return the number of arguments of the ex-

tracted kernel.
info::kernel::context context Return the SYCL context associated with this

SYCL kernel.
info::kernel::module module<

module_state::

executable>

Return the SYCL module associated with this
SYCL kernel.

info::kernel::attributes std::string Return any attributes specified on a kernel
function (as defined in Section 5.7).

End of table

Table 4.98: Kernel class information descriptors.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 269



4.12. KERNEL CLASS SYCL 2020 provisional

A kernel can also be queried for device-specific information using the get_info member function of the kernel
class, specifying one of the info parameters enumerated in info::kernel_device_specific. Every kernel (in-
cluding a host kernel) must produce a valid value for each info parameter. The possible values for each info
parameter and any restriction are defined in the specification of the SYCL backend associated with the kernel.
All info parameters in info::kernel_device_specific are specified in Table 4.99. The synopsis for info::
kernel_device_specific is described in appendix A.5.

Device-specific Kernel Information
Descriptors

Return type Description

info::kernel_device_specific::

global_work_size

range<3> Returns the maximum global work size. Only
valid if device is of device type custom or the
kernel is a built-in kernel.

info::kernel_device_specific::

work_group_size

size_t Returns the maximum work-group size that can
be used to execute a kernel on a specific device.

info::kernel_device_specific::

compile_work_group_size

range<3> Returns the work-group size specified by the
device compiler if applicable, otherwise returns
(0, 0, 0)

info::kernel_device_specific::

preferred_work_group_size_multiple

size_t Returns a value, of which work-group size
is preferred to be a multiple, for execut-
ing a kernel on a particular device. This
is a performance hint. The value must be
less than or equal to that returned by info::
kernel_device_specific::work_group_size.

info::kernel_device_specific::

private_mem_size

size_t Returns the minimum amount of private mem-
ory, in bytes, used by each work-item in the
kernel. This value may include any private
memory needed by an implementation to ex-
ecute the kernel, including that used by the lan-
guage built-ins and variables declared inside
the kernel in the private address space.

info::kernel_device_specific::

max_num_sub_groups

uint32_t Returns the maximum number of sub-groups
for this kernel.

info::kernel_device_specific::

compile_num_sub_groups

uint32_t Returns the number of sub-groups specified by
the kernel, or 0 (if not specified).

info::kernel_device_specific::

max_sub_group_size

uint32_t Returns the maximum sub-group size for this
kernel.

info::kernel_device_specific::

compile_sub_group_size

uint32_t Returns the required sub-group size specified
by the kernel, or 0 (if not specified).

End of table

Table 4.99: Device-specific kernel information descriptors.

Alternatively, a kernel can be queried for work-group information using the get_work_group_info member func-
tions of the kernel class, specifying one of the info parameters enumerated in info::kernel_work_group. This
query has been deprecated in SYCL 2020, and will likely be removed in a future version of SYCL.

270 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.13. MODULES

Kernel Work-group Information De-
scriptors

Return type Description

info::kernel_work_group::

global_work_size

range<3> Returns the maximum global work size. Only
valid if device is of device type custom or the
kernel is a built-in kernel.

info::kernel_work_group::

work_group_size

size_t Returns the maximum work-group size that can
be used to execute a kernel on a specific device.

info::kernel_work_group::

compile_work_group_size

range<3> Returns the work-group size specified by the
device compiler if applicable, otherwise returns
(0, 0, 0)

info::kernel_work_group::

preferred_work_group_size_multiple

size_t Returns a value, of which work-group size
is preferred to be a multiple, for execut-
ing a kernel on a particular device. This
is a performance hint. The value must be
less than or equal to that returned by info::
kernel_work_group::work_group_size.

info::kernel_work_group::

private_mem_size

size_t Returns the minimum amount of private mem-
ory, in bytes, used by each work-item in the
kernel. This value may include any private
memory needed by an implementation to ex-
ecute the kernel, including that used by the lan-
guage built-ins and variables declared inside
the kernel in the private address space.

End of table

Table 4.100: Kernel work-group information descriptors.

4.13 Modules

4.13.1 Overview

A module is a high-level abstraction which represents a set of SYCL kernel functions which are associated with a
context and can be executed on a number of devices, where each device is associated with that same context.

The SYCL kernel functions represented by a module can exist within one or more device images of implementa-
tion defined file formats. Each device image within a module must contain the necessary symbols and meta-data
for each SYCL kernel function that the containing module represents.

[Note: For example, a module associated with a context of an OpenCL SYCL backend, that represents the SYCL
kernel function foo could contain two modules; one of SPIR-V and one of a vendor specific ISA, both containing
foo in the relevant file format. — end note]

Modules are used to express the explicit compilation of SYCL kernel functions in order to then be invoked via
a kernel invocation command such as parallel_for. Normally this compilation is done implicitly by the kernel
invocation command, however it can be useful to perform the compilation manually in order to add custom
properties to the compilation or to link SYCL kernel functions with other libraries.

A module can be obtained either by requesting the module associated with the current translation unit or via some
SYCL backend-specific operation.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 271



4.13. MODULES SYCL 2020 provisional

Once a module has been obtained there are a number of free functions for performing compilation, linking and
joining.

A module can then be bound to a command group so that the SYCL kernel functions represented by the module
are used in any kernel invocation commands. See Section 4.10.9 for more details.

4.13.2 Specialization constants
A SYCL kernel function can contain specialization constants which represent a constant variable where the value
is not known until compilation of the SYCL kernel function. Any specialization constants of a given SYCL
kernel function are exposed via an input module representing that SYCL kernel function, where the value of the
specialization constants can be set. However, once a module has been compiled, resulting in an object module or
executable module the value of specialization constants can no longer be changed.

Any specialization constants in a SYCL kernel function which are not set before that function is invoked will
take a default value. This includes invoking a kernel invocation command such as parallel_for or retrieving an
object module or executable module directly triggering implicit compilation.

As a module may contain more than one device image, some of these may natively support specialization constants
and some may not, however all device images must set the value of specialization constants.

[Note: It is expected that a specialization constant is implemented either via an implementation-defined mech-
anism available to the file format of that device image such as SPIR-V specialization constants or by passing
the value as an additional kernel argument to the SYCL kernel function via the SYCL runtime when it’s invoked.
— end note]

A specialization id is an identifier which represents a reference to a specialization constant both in the SYCL
application for setting the value prior to the compilation of an input module and in a SYCL kernel function for
retrieving the value during invocation.

A module that is associated with a host context may not contain native-specialization constants, though it must
still emulate all specialization constants the SYCL kernel functions contains.

4.13.3 Synopsis

1 namespace sycl {

2
3 template <typename T>

4 class specialization_id {

5 private:

6
7 specialization_id(const specialization_id& rhs) = delete;

8
9 specialization_id(specialization_id&& rhs) = delete;

10
11 specialization_id &operator=(const specialization_id& rhs) = delete;

12
13 specialization_id &operator=(specialization_id&& rhs) = delete;

14
15 public:

16
17 using value_type = T;

272 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.13. MODULES

18
19 template<class... Args >

20 explicit constexpr specialization_id(Args&&... args);

21 };

22
23 enum class module_state {

24 input,

25 object,

26 executable

27 };

28
29 template<module_state State>

30 class module {

31 private:

32
33 module(__unspecified__);

34
35 public:

36
37 using device_image_type = __unspecified__;

38
39 using device_image_iterator = __unspecified__;

40
41 module() = delete;

42
43 context get_context() const noexcept;

44
45 std::vector<device> get_devices() const noexcept;

46
47 bool has_kernel(std::string kernelName) const noexcept;

48
49 kernel get_kernel(std::string kernelName) const;

50
51 std::vector<std::string> get_kernel_names() const;

52
53 bool is_empty() const noexcept;

54
55 device_image_iterator begin() const;

56
57 device_image_iterator end() const;

58
59 bool contains_specialization_constants() const noexcept;

60
61 bool native_specialization_constant() const noexcept;

62
63 template<auto& S>

64 bool has_specialization_constant() const noexcept;

65
66 template<auto& S>

67 void set_specialization_constant(

68 typename std::remove_reference_t<decltype(S)>::type value);

69
70 template<auto& S>

71 typename std::remove_reference_t<decltype(S)>::type get_specialization_constant() const;

72 };

CHAPTER 4. SYCL PROGRAMMING INTERFACE 273



4.13. MODULES SYCL 2020 provisional

73
74 module<module_state::executable>

75 build(const module<module_state::input> &inputModule,

76 const property_list &propList = {});

77
78 module<module_state::object>

79 compile(const module<module_state::input> &inputModule,

80 const property_list &propList = {});

81
82 module<module_state::executable>

83 link(const module<module_state::object> &objModule,

84 const property_list &propList = {});

85
86 module<module_state::executable>

87 link(const std::vector<module<module_state::object>> &objModules,

88 const property_list &propList = {});

89
90 template<module_state T>

91 module<T> join(const std::vector<module<T>> &modules);

92
93 namespace this_module {

94
95 template <typename T>

96 std::string kernel_name_v;

97
98 bool has_any_module(context ctxt);

99
100 template<module_state S>

101 bool has_module_in(context ctxt);

102
103 template<module_state S>

104 module<T> get(context ctxt);

105
106 } // this_module

107
108 } // namespace sycl

4.13.4 Enum class module_state
A module can be in one of three different module states; input, object and executable. The module states reflect
the current state of the device images and subsequently the SYCL kernel functions. The module states also alters
the capabilities of the module.

The three module states are represented by an enum class called module_state.

1 enum class module_state {

2 input,

3 object,

4 executable

5 };

The values of each enumeration of module_state are implementation defined.

274 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.13. MODULES

4.13.5 Class template specialization_id
A specialization id is represented by the class template specialization_id with a single template parameter T
which specifies the unique name used to identify the associated specialization constant.

The template parameter T must be a forward-declarable type and specialization_id objects must be declared
with automatic or static storage duration within a namespace or class scope.

1 template <typename T>

2 class specialization_id;

4.13.5.1 Constructors

1 template<class... Args>

2 explicit constexpr specialization_id(Args&&... args);

1. Constraints: Available only when std::is_constructible_v<T, Args...> evaluates to true.

Effects: Constructs a specialization_id containing an instance of T initialized with args..., which rep-
resents the default value of the specialization constant.

4.13.5.2 Special member functions

1 specialization_id(const specialization_id& rhs) = delete; // (1)

2
3 specialization_id(specialization_id&& rhs) = delete; // (2)

4
5 specialization_id &operator=(const specialization_id& rhs) = delete; // (3)

6
7 specialization_id &operator=(specialization_id&& rhs) = delete; // (4)

1. Deleted copy constructor.

2. Deleted move constructor.

3. Deleted copy assignment operator.

4. Deleted move assignment operator.

4.13.6 Class template module
A module is represented by the class template module with the single template parameter State of type
module_state which specifies its module state.

There are three different module types, to reflect the three module states:

• An input module is a module of the input module state and represents SYCL kernel functions which are yet
to be compiled such as a source or intermediate representation.

• A object module is a module of the object module state and represents SYCL kernel functions which have
been compiled but are yet to be linked such as an intermediate object of the ISAs of the associated devices.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 275



4.13. MODULES SYCL 2020 provisional

• A executable module is a module of the executable module state and represents SYCL kernel functions
which have been compiled and linked such as an executable of the ISAs of the associated devices.

A module cannot be constructed by user-code, only by the SYCL runtime.

A module is permitted to be empty in which case it contains no device images and represents no SYCL kernel
functions.

A module is considered to have reference semantics as specified in Section 4.5.3, therefore any module constructed
as a copy of another and the module that was copied from are considered to be equal. Furthermore, two modules
of the same module state are considered to be equal if they are associated with the same context and devices and
contain the same device images and subsequently the same SYCL kernel function.

A module must contain a copy of the context and devices that are associated with it for the duration of its lifetime.
This means that the destructor of the associated context or devices will not be invoked if the module is still alive
in accordance with Section 4.5.3.

1 template<module_state State>

2 class module;

4.13.6.1 Constructors

1 private:

2
3 module(___unspecified___); // (1)

4
5 public:

6
7 module() = delete; // (2)

1. Private implementation defined constructor with unspecified arguments so that the SYCL runtime can con-
struct a module.

2. Explicitly deleted default constructor.

4.13.6.2 Member functions

1 context get_context() const noexcept; // (1)

1. Returns: A context object representing the associated context.

1 std::vector<device> get_devices() const noexcept; // (1)

1. Returns: A std::vector of device objects representing the associated devices.

1 bool has_kernel(std::string kernelName) const noexcept; // (1)

1. Constraints: Available only when State == module_state::executable.

276 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.13. MODULES

Returns: true if the module represents a SYCL kernel function with the value of string kernel name
kernelName, otherwise returns false. Only available when the module is a executable module.

1 kernel get_kernel(std::string kernelName) const; // (1)

1. Constraints: Available only when State == module_state::executable.

Returns: a kernel object representing the SYCL kernel function with the string kernel name with the value
of kernelName if this->has_kernel(kernelName) evaluates to true, otherwise throws exception with the
errc::invalid_object error code.

1 std::vector<std::string> get_kernel_names() const; // (1)

1. Returns: A std::vector of std::string objects representing each of the SYCL kernel functions repre-
sented by the module.

1 bool is_empty() const noexcept; // (1)

1. Returns: true if the module contains no device images, otherwise returns false.

1 device_image_iterator begin() const; // (1)

2
3 device_image_iterator end() const; // (2)

1. Returns: An iterator of type device_image_iterator pointing to the beginning of a sequence of device
images of type std::iterator_traits<device_image_iterator>::value_type.

2. Returns: An iterator of type device_image_iterator pointing to the end of a sequence of device images of
type std::iterator_traits<device_image_iterator>::value_type.

1 bool contains_specialization_constants() const noexcept; // (1)

1. Returns: true if any SYCL kernel function represented by the module contains a specialization constant,
otherwise returns false.

1 bool native_specialization_constant() const noexcept; // (1)

1. Returns: true if all of the specialization constants contained in the module support are native-specialization
constants for all device images.

1 template<auto& S>

2 bool has_specialization_constant() const noexcept; // (1)

1. Returns: true if any of the SYCL kernel functions represented by the module contains the specialization
constant represented by the specialization_id at the address S, otherwise returns false.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 277



4.13. MODULES SYCL 2020 provisional

1 template<auto& S>

2 void set_specialization_constant(

3 typename std::remove_reference_t<decltype(S)>::type value); // (1)

1. Constraints: Available only when State == module_state::input.

Effects: Sets the value of the specialization constant represented by the specialization_id at the address
S in all SYCL kernel functions which contain that specialization constant and for all device images. If the
specialization constant was already set, then the previous value is overwritten. If two or more SYCL kernel
functions contain the same specialization constant they are assumed to be the same and will have the same
value.

Throws: errc::invalid_object_error if this->has_specialization_constant<S>() evaluates to false.

1 template<auto& S>

2 typename std::remove_reference_t<decltype(S)>::type get_specialization_constant() const; // (1)

1. Returns: the value of the specialization constant associated with the specialization_id at the address S if
the specialization constant has been set, otherwise returns the default value.

Throws: errc::invalid_object_error if this->has_specialization_constant<S>() evaluates to false.

4.13.7 Free functions
Modules can be compiled, linked, built or joined together using free functions which operate on modules of
different module states.

When a module is being created as a results of one of these operations it is permitted to perform ad-hoc
implementation-defined operations such as just-in-time compilation or translations to alter the file format of the
device image in order to create a module of a resulting module state, however this is not required.

[Note: For example, if a SYCL kernel function was compiled by a device compiler to generate the file format
SPIR-V, a module associated with a context of an OpenCL SYCL backend could be created as an input module
using the SPIR-V file format directly or it could be created as a executable module implicitly triggering online
compilation via the OpenCL runtime. — end note]

1 namespace sycl {

2
3 module<module_state::executable>

4 build(const module<module_state::input> &inputModule,

5 const property_list &propList = {}); // (1)

6
7 module<module_state::object>

8 compile(const module<module_state::input> &inputModule,

9 const property_list &propList = {}); // (2)

10
11 module<module_state::executable>

12 link(const module<module_state::object> &objModule,

13 const property_list &propList = {}); // (3)

14
15 module<module_state::executable>

16 link(const std::vector<module<module_state::object>> &objModules,

278 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.13. MODULES

17 const property_list &propList = {}); // (4)

18
19 template<module_state T>

20 module<T> join(const std::vector<module<T>> &modules); // (5)

21
22 } // namespace sycl

1. Effects: Performs implementation defined build operation(s), including compilation and linking, on the
input module input, applying any properties provided via propList.

Returns: A module<module_state::executable> object containing the result of the build operation(s) per-
formed. The module returned must represent the same SYCL kernel functions and be associated with the
same context and devices as that of inputModule, however the device images may differ.

Throws: errc::build_error if none of the devices associated with the module have aspect::
online_compiler.

Throws: errc::build_error if the build operation(s) fail.

2. Effects: Performs implementation defined compilation operation(s) on the input module inputModule, ap-
plying any properties provided via propList.

Returns: A module<module_state::object> object containing the result of the compilation operation(s)
performed. The module returned must represent the same SYCL kernel functions and be associated with
the same context and devices as that of inputModule, however the device images may differ.

Throws: errc::compile_error if none of the devices associated with the module have aspect::
online_compiler.

Throws: errc::compile_error if the compilation operation(s) fail.

3. Effects: Performs implementation defined linking operation(s) on the input module objModule, applying
any properties provided via propList. If two or more modules contain the same SYCL kernel functions it
is assumed that they are the same so one of them is selected and the rest are discarded. The one which is
selected is implementation defined.

Returns: A module<module_state::executable> object containing the result of the linking operation(s)
performed. The module returned must represent the same SYCL kernel functions and be associated with
the same context and devices as that of objModule, however the device images may differ.

Throws: errc::link_error if none of the devices associated with the module have aspect::
online_linker.

Throws: errc::link_error if the compilation operation(s) fail.

4. Preconditions: Each module in moduleObjects must be associated with the same context and devices.

Effects: Performs implementation defined linking operation(s) on the input modules in moduleObjects,
applying any properties provided via propList. If two or more modules contain the same SYCL kernel
functions it is assumed that they are the same so one of them is selected and the rest are discarded. The one
which is selected is implementation defined.

Returns: A module<module_state::executable> object containing the result of the linking operation(s)

CHAPTER 4. SYCL PROGRAMMING INTERFACE 279



4.13. MODULES SYCL 2020 provisional

performed. The module returned must represent the same SYCL kernel functions and be associated with
the same context and devices as that of objModules, however the device images may differ.

Throws: errc::link_error if none of the devices associated with the module have aspect::
online_linker.

Throws: errc::link_error if the compilation operation(s) fail.

Throws: errc::invalid_object_error if objModules.empty() evaluates to true or any module in
objModules is associated with a different context or devices than another module in objModules.

5. Preconditions: Each module in modules must be associated with the same context and devices.

Effects: Performs implementation defined joining operation(s) on the modules in modules, applying any
properties provided via propList. If two or more modules contain the same SYCL kernel functions it is
assumed that they are the same so one of them is selected and the rest are discarded. The one which is
selected is implementation defined.

Returns: A module object of module_state T, containing the result of the linking operation(s) performed.
The module returned must represent all of the combined SYCL kernel functions associated with each module
in modules and must be associated with the same context and devices as that of modules, however the device
images may differ.

Throws: errc::link_error if the joining operation(s) fail.

Throws: errc::invalid_object_error if modules.empty() evaluates to true or any module in modules is
associated with a different context or devices than another module in modules.

4.13.8 Namespace this_module
The namespace this_module provides additional free functions which can be used for querying and retrieving
modules available to the current translation unit.

4.13.8.1 Type traits

1 template <typename T>

2 std::string kernel_name_v; // (1)

1. Template variable that takes a type T specifying the type kernel name of a SYCL kernel function in the
current translation unit and whose value is the corresponding string kernel name.

4.13.8.2 Free functions

1 bool has_any_module(context ctxt); // (1)

2
3 template<module_state S> // (2)

4 bool has_module_in(context ctxt);

5
6 template<module_state S> // (3)

7 module<T> get(context ctxt);

280 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.14. DEFINING KERNELS

1. Returns: true if there is a module of any module state, available within the current translation unit that
is compatible with the context ctxt, otherwise returns false. Must not perform any compilation, linking,
building or joining operation(s).

2. Returns: true if there is a module of the module state specified by the module_state value S, available
or retrievable within the current translation unit that is compatible with the context ctxt, otherwise returns
false. Must not perform any compilation, linking, building or joining operation(s).

3. Effects: May perform implementation defined compilation, linking or building operations in order to trans-
form a module that is available in another module state into the module state specified by the module_state
value S

Returns: A module of module_state S representing a module associated with the current translation unit and
the context ctxt if this_module::has_module_in<S>() evaluates to true, otherwise returns a module that
is empty. If the returned module is not empty, it must represent the set of SYCL kernel functions available
to the current translation unit and may also contain a further implementation defined set of SYCL kernel
functions.

[Note: A module returned from module<State>::get may contain additional SYCL kernel functions to those
available in the current translation unit in order to facilitate different single-source compilation methods. This
does not impact user code as link and join are required to assume any duplicate SYCL kernel functions are the
same. — end note]

4.14 Defining kernels

In SYCL, functions that are executed on a SYCL device are referred to as SYCL kernel functions. A kernel
containing such a SYCL kernel function is enqueued on a device queue in order to be executed on that particular
device.

The return type of the SYCL kernel function is void, and all memory accesses between host and device are
through the accessor class (Section 4.7.6) or through USM pointers (Section 4.8).

There are three ways of defining kernels: as named function objects, as lambda functions, or through backend-
specific interoperability interfaces for modules and kernels, where available.

4.14.1 Defining kernels as named function objects
A kernel can be defined as a named function object type. These function objects provide the same functionality
as any C++ function object, with the restriction that they need to follow C++ rules to be trivially copyable. The
kernel function can be templated via templating the kernel function object type. For details on restrictions for
kernel naming, please refer to Section 5.2.

The operator()member function must be const-qualified, and it may take different parameters depending on the
data accesses defined for the specific kernel. If the operator() function writes to any of the member variables,
the behavior is undefined.

The following example defines a SYCL kernel function, RandomFiller, which initializes a buffer with a random
number. The random number is generated during the construction of the function object while processing the
command group. The operator() member function of the function object receives an item object. This member
function will be called for each work item of the execution range. The value of the random number will be
assigned to each element of the buffer. In this case, the accessor and the scalar random number are members of

CHAPTER 4. SYCL PROGRAMMING INTERFACE 281



4.14. DEFINING KERNELS SYCL 2020 provisional

the function object and therefore will be parameters to the device kernel. Usual restrictions of passing parameters
to kernels apply.

1 class RandomFiller {

2 public:

3 RandomFiller(accessor<int> ptr)

4 : ptr_ { ptr } {

5 std::random_device hwRand;

6 std::uniform_int_distribution<> r { 1, 100 };

7 randomNum_ = r(hwRand);

8 }

9 void operator()(item<1> item) const { ptr_[item.get_id()] = get_random(); }

10 int get_random() { return randomNum_; }

11
12 private:

13 accessor<int> ptr_;

14 int randomNum_;

15 };

16
17 void workFunction(buffer<int, 1>& b, queue& q, const range<1> r) {

18 myQueue.submit([&](handler& cgh) {

19 accessor ptr { buf, cgh };

20 RandomFiller filler { ptr };

21
22 cgh.parallel_for(r, filler);

23 });

24 }

4.14.2 Defining kernels as lambda functions

In C++, function objects can be defined using lambda functions. Kernels may be defined as lambda functions in
SYCL. The name of a lambda function in SYCL may optionally be specified by passing it as a template parameter
to the invoking member function, and in that case, the lambda name is a C++ typename. If the lambda function
relies on template arguments, then if specified, the name of the lambda function must contain those template
arguments. The class used for the name of a lambda function is only used for naming purposes and is not required
to be defined. For details on restrictions for kernel naming, please refer to 5.2.

The kernel function for the lambda function is the lambda function itself. The kernel lambda must use copy for
all of its captures (i.e. [=]), and the lambda must not use the mutable specifier.

1 class MyKernel;

2
3 myQueue.submit([&](handler& cmdGroup) {

4 cmdgroup.single_task<class MyKernel>([=]() {

5 // [kernel code]

6 });

7 });

282 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.14. DEFINING KERNELS

4.14.3 Defining kernels using modules
In case the developer needs to specify compiler flags or special linkage options for a kernel, then a kernel object
can be used, as described in 4.13.6.2. The SYCL kernel function is defined as a named function object 4.14.1 or
lambda function 4.14.2. The user can obtain a module object for the kernel with the get_kernelmember function.
This member function is templated by the kernel name, so that the user can specify the kernel whose associated
kernel they wish to obtain.

The following example illustrates how an application can pre-compile a kernel. The code defines the kernel
as a lambda function, and pre-compiles it by creating a module object for all the kernels defined in the current
translation unit. This ensures that the kernel is compiled a priori of its invocation via parallel_for. For more
details on the module object and its related APIs, see Section 4.13.

1 sycl::queue myQueue;

2 auto myContext = myQueue.get_context();

3
4 // Calling the get() function will pre-compile all kernels in this translation

5 // unit for the device in "myContext".

6 auto myModule = sycl::this_module::get<sycl::module_state::executable>(myContext);

7
8 auto myRange = sycl::nd_range<2>(range<2>(1024, 1024),range<2>(64, 64));

9
10 myQueue.submit([&](sycl::handler& cgh) {

11 // Calling use_module() causes the parallel_for() below to use the pre-compiled

12 // kernel from "myModule".

13 cgh.use_module(myModule);

14
15 cgh.parallel_for(myRange, ([=](sycl::nd_item<2> index) {

16 // kernel code

17 }));

18 });

In the following example, the SYCL kernel function performs a convolution and uses specialization constants to
set the values of the coefficients.

1 #include <CL/sycl.hpp>

2
3 using namespace sycl;

4
5 using coeff_t = std::array<std::array<float, 3>, 3>;

6
7 // Read coefficients from somewhere.

8 coeff_t get_coefficients();

9
10 // Identify the specialization constant.

11 specialization_id<coeff_t> coeff_id;

12
13 void do_conv(buffer<float, 2> in, buffer<float, 2> out) {

14 queue myQueue;

15
16 myQueue.submit([&](handler &cgh) {

17 accessor in_acc { in, cgh, read_only };

18 accessor out_acc { out, cgh, write_only };

CHAPTER 4. SYCL PROGRAMMING INTERFACE 283



4.14. DEFINING KERNELS SYCL 2020 provisional

19
20 // Set the coefficient of the convolution as constant.

21 // This will build a specific kernel the coefficient available as literals.

22 cgh.set_specialization_constant<coeff_id>(get_coefficients());

23
24 cgh.parallel_for<class Convolution>(

25 in.get_range(), [=](item<2> item_id, kernel_handler h) {

26 float acc = 0;

27 coeff_t coeff = h.get_specialization_constant<coeff_id>();

28 for (int i = -1; i <= 1; i++) {

29 if (item_id[0] + i < 0 || item_id[0] + i >= in_acc.get_range()[0])

30 continue;

31 for (int j = -1; j <= 1; j++) {

32 if (item_id[1] + j < 0 || item_id[1] + j >= in_acc.get_range()[1])

33 continue;

34 // the underlying JIT can see all the values of the array returned by coeff.get().

35 acc += coeff[i + 1][j + 1] *

36 in_acc[item_id[0] + i][item_id[1] + j];

37 }

38 }

39 out_acc[item_id] = acc;

40 });

41 });

42
43 myQueue.wait();

44 }

4.14.4 Rules for parameter passing to kernels
In a case where a kernel is a named function object or a lambda function, any member variables encapsulated
within the function object or variables captured by the lambda function must be treated according to the following
rules:

• Any accessor must be passed as an argument to the device kernel in a form that allows the device kernel to
access the data in the specified way.

• The SYCL runtime and compiler(s) must produce the necessary conversions to enable accessor arguments
from the host to be converted to the correct type of parameter on the device.

• The device compiler(s) must validate that the layout of any data shared between the host and the device(s)
(e.g. value kernel arguments or data accessed through an accessor or USM) is compatible with the layout
of that data on the host. If there is a layout mismatch that the implementation cannot or will not correct for
(to make the layouts compatible), then the device compiler must issue an error and compilation must fail.

• A local accessor provides access to work-group-local memory. The accessor is not constructed with any
buffer, but instead constructed with a size and base data type. The runtime must ensure that the work-group-
local memory is allocated per work-group and available to be used by the kernel via the local accessor.

• C++ trivially copyable types must be passed by value to the kernel.

• C++ non-trivially copyable types must not be passed as arguments to a kernel that is compiled for a device.

• It is illegal to pass a buffer or image (instead of an accessor class) as an argument to a kernel. Generation
of a compiler error in this illegal case is optional.

284 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.15. ERROR HANDLING

• Sampler objects (sampler) can be passed as parameters to kernels.

• It is illegal to pass a pointer or reference argument to a kernel. Generation of a compiler error in this illegal
case is optional.

• Any aggregate types such as structs or classes should follow the rules above recursively. It is not necessary
to separate struct or class members into separate kernel parameters if all members of the aggregate type are
unaffected by the rules above.

4.15 Error handling

4.15.1 Error handling rules
Error handling in a SYCL application (host code) uses C++ exceptions. If an error occurs, it will be thrown by
the API function call and may be caught by the user through standard C++ exception handling mechanisms.

SYCL applications are asynchronous in the sense that host and device code executions are decoupled from one
another except at specific points. For example, device code executions often begin when dependencies in the
SYCL task graph are satisfied, which occurs asynchronously from host code execution. As a result of this the
errors that occur on a device cannot be thrown directly from a host API call, because the call enqueueing a device
action has typically already returned by the time that the error occurs. Such errors are not detected until the
error-causing task executes or tries to execute, and we refer to these as asynchronous errors.

4.15.1.1 Asynchronous error handler

The queue and context classes can optionally take an asynchronous handler object async_handler on construc-
tion, which is a callable such as a function class or lambda, with an exception_list as a parameter. Invocation
of an async_handler may be triggered by the queue member functions queue::wait_and_throw() or queue::
throw_asynchronous(), by the event member function event::wait_and_throw(), or automatically on destruc-
tion of a queue or context that contains unconsumed asynchronous errors. When invoked, an async_handler is
called and receives an exception_list argument containing a list of exception objects representing any uncon-
sumed asynchronous errors associated with the queue or context.

When an asynchronous error instance has been passed to an async_handler, then that instance of the error has
been consumed for handling and is not reported on any subsequent invocations of the async_handler.

The async_handler may be a named function object type, a lambda function or a std::function. The
exception_list object passed to the async_handler is constructed by the SYCL runtime.

4.15.1.2 Behavior without an async_handler

If an asynchronous error occurs in a queue or context that has no user-supplied asynchronous error handler object
async_handler, then an implementation defined default async_handler is called to handle the error in the same
situations that a user-supplied async_handler would be, as defined in 4.15.1.1. The default async_handler
must in some way report all errors passed to it, when possible, and must then invoke std::terminate or equiva-
lent.

4.15.1.3 Priorities of async_handlers

If the SYCL runtime can associate an asynchronous error with a specific queue, then:

• If the queue was constructed with an async_handler, that handler is invoked to handle the error.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 285



4.15. ERROR HANDLING SYCL 2020 provisional

• Otherwise if the context enclosed by the queue was constructed with an async_handler, that handler is
invoked to handle the error.

• Otherwise when no handler was passed to either queue or context on construction, then a default handler is
invoked to handle the error, as described by 4.15.1.2.

• All handler invocations in this list occur at times as defined by 4.15.1.1.

If the SYCL runtime cannot associate an asynchronous error with a specific queue, then:

• If the context in which the error occurred was constructed with an async_handler, then that handler is
invoked to handle the error.

• Otherwise when no handler was passed to the associated context on construction, then a default handler is
invoked to handle the error, as described by 4.15.1.2.

• All handler invocations in this paragraph occur at times as defined by 4.15.1.1.

4.15.1.4 Asynchronous errors with a secondary queue

If an asynchronous error occurs when running or enqueuing a command group which has a secondary queue
specified, then the command group may be enqueued to the secondary queue instead of the primary queue. The
error handling in this case is also configured using the async_handler provided for both queues. If there is no
async_handler given on any of the queues, then no asynchronous error reporting is done and no exceptions
are thrown. If the primary queue fails and there is an async_handler given at this queue’s construction, which
populates the exception_list parameter, then any errors will be added and can be thrown whenever the user
chooses to handle those exceptions. Since there were errors on the primary queue and a secondary queue was
given, then the execution of the kernel is re-scheduled to the secondary queue and any error reporting for the
kernel execution on that queue is done through that queue, in the same way as described above. The secondary
queue may fail as well, and the errors will be thrown if there is an async_handler and either wait_and_throw()
or throw() are called on that queue. The command group function object event returned by that function will be
relevant to the queue where the kernel has been enqueued.

Below is an example of catching a SYCL exception and printing out the error message.

1 void catch_any_errors(sycl::context const& ctx) {

2 try {

3 do_something_to_invoke_error(ctx);

4 }

5 catch(sycl::exception const& e) {

6 std::cerr << e.what();

7 }

8 }

Below is an example of catching a SYCL exception with the invalid_object error code and printing out the
error message.

1 void catch_invalid_object_errors(sycl::context const& ctx) {

2 try {

3 do_something_to_invoke_error(ctx);

4 }

5 catch(sycl::exception const& e) {

286 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.15. ERROR HANDLING

6 if(e.code() == sycl::errc::invalid_object) {

7 std::cerr << "Invalid object error: " << e.what();

8 }

9 else {

10 throw;

11 }

12 }

13 }

Below is an example of catching a SYCL exception, checking for the SYCL backend by inspecting the category
and handling the OpenCL SYCL backend error codes if the category is that of the OpenCL SYCL backend
otherwise checking the standard error code.

1 void catch_backend_errors(sycl::context const& ctx) {

2 try {

3 do_something_to_invoke_error(ctx);

4 }

5 catch(sycl::exception const& e) {

6 if(e.category() == sycl::error_category_for<sycl::backend::opencl>()) {

7 switch(e.code().value()) {

8 case CL_INVALID_PROGRAM:

9 std::cerr << "OpenCL invalid program error: " << e.what();

10 /* ...*/

11 }

12 else {

13 throw;

14 }

15 }

16 else {

17 if(e.code() == sycl::errc::invalid_object) {

18 std::cerr << "Invalid object error: " << e.what();

19 }

20 else {

21 throw;

22 }

23 }

24 }

25 }

4.15.2 Exception class interface

1 namespace sycl {

2
3 using async_handler = std::function<void(sycl::exception_list)>;

4
5 class exception : public virtual std::exception {

6 public:

7 exception(std::error_code ec, const std::string& what_arg);

8 exception(std::error_code ec, const char * what_arg);

9 exception(std::error_code ec);

10 exception(int ev, const std::error_category& ecat, const std::string& what_arg);

11 exception(int ev, const std::error_category& ecat, const char* what_arg);

CHAPTER 4. SYCL PROGRAMMING INTERFACE 287



4.15. ERROR HANDLING SYCL 2020 provisional

12 exception(int ev, const std::error_category& ecat);

13
14 exception(context ctx, std::error_code ec, const std::string& what_arg);

15 exception(context ctx, std::error_code ec, const char* what_arg);

16 exception(context ctx, std::error_code ec);

17 exception(context ctx, int ev, const std::error_category& ecat, const std::string& what_arg);

18 exception(context ctx, int ev, const std::error_category& ecat, const char* what_arg);

19 exception(context ctx, int ev, const std::error_category& ecat);

20
21 const std::error_code& code() const noexcept;

22 const std::error_category& category() const noexcept;

23
24 bool has_context() const noexcept;

25 context get_context() const;

26 };

27
28 class exception_list {

29 // Used as a container for a list of asynchronous exceptions

30 public:

31 using value_type = std::exception_ptr;

32 using reference = value_type&;

33 using const_reference = const value_type&;

34 using size_type = std::size_t;

35 using iterator = /*unspecified*/;

36 using const_iterator = /*unspecified*/;

37
38 size_type size() const;

39 iterator begin() const; // first asynchronous exception

40 iterator end() const; // refer to past-the-end last asynchronous exception

41 };

42
43 enum class errc {

44 runtime_error = /* implementation-defined */,

45 kernel = /* implementation-defined */,

46 accessor = /* implementation-defined */,

47 nd_range = /* implementation-defined */,

48 event = /* implementation-defined */,

49 invalid_parameter = /* implementation-defined */,

50 compile_program = /* implementation-defined */,

51 link_program = /* implementation-defined */,

52 invalid_object = /* implementation-defined */,

53 memory_allocation = /* implementation-defined */,

54 platform = /* implementation-defined */,

55 profiling = /* implementation-defined */,

56 feature_not_supported = /* implementation-defined */

57 };

58
59 template<backend b>

60 using errc_for = typename backend_traits<b>::errc;

61
62 std::error_condition make_error_condition(errc e) noexcept;

63 std::error_code make_error_code(errc e) noexcept;

64
65 const std::error_category& sycl_category() noexcept;

66

288 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.15. ERROR HANDLING

67 template<backend b>

68 const std::error_category& error_category_for() noexcept;

69
70 } // namespace sycl

71
72 namespace std {

73
74 template <>

75 struct is_error_condition_enum<sycl::errc> : true_type {};

76
77 template <>

78 struct is_error_code_enum<see-below> : true_type {};

79
80 } // namespace std

The SYCL exception_list class is also available in order to provide a list of synchronous and asynchronous
exceptions.

Errors can occur both in the SYCL library and SYCL host side, or may come directly from a SYCL backend.
The member functions on these exceptions provide the corresponding information. SYCL backends can provide
additional exception class objects as long as they derive from sycl::exception object, or any of its derived
classes.

A specialization of std::is_error_condition_enum must be defined for sycl::errc inheriting from std::

true_type.

A specialization of std::is_error_code_enummust be defined for sycl::errc and backend_traits<Backend>::
errc inheriting from std::true_type for each Backend, where backend is each enumeration of the enum class
backend.

Member function Description
exception(std::error_code ec, const std::string&

what_arg)

Constructs an exception. The string re-
turned by what() is guaranteed to contain
what_arg as a substring.

exception(std::error_code ec, const char* what_arg) Constructs an exception. The string re-
turned by what() is guaranteed to contain
what_arg as a substring.

exception(std::error_code ec) Constructs an exception.
exception(int ev, const std::error_category& ecat,

const std::string& what_arg)

Constructs an exception with the error code
ev and the underlying error category ecat.
The string returned by what() is guaranteed
to contain what_arg as a substring.

exception(int ev, const std::error_category& ecat,

const char* what_arg)

Constructs an exception with the error code
ev and the underlying error category ecat.
The string returned by what() is guaranteed
to contain what_arg as a substring.

exception(int ev, const std::error_category& ecat) Constructs an exception with the error code
ev and the underlying error category ecat.

Continued on next page

Table 4.101: Member functions of the SYCL exception class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 289



4.15. ERROR HANDLING SYCL 2020 provisional

Member function Description
exception(context ctx, std::error_code ec, const std

::string& what_arg)

Constructs an exception with an associated
SYCL context ctx. The string returned by
what() is guaranteed to contain what_arg as
a substring.

exception(context ctx, std::error_code ec, const

char* what_arg)

Constructs an exception with an associated
SYCL context ctx. The string returned by
what() is guaranteed to contain what_arg as
a substring.

exception(context ctx, std::error_code ec) Constructs an exception with an associated
SYCL context ctx.

exception(context ctx, int ev, const std::

error_category& ecat, const std::string& what_arg)

Constructs an exception with an associated
SYCL context ctx, the error code ev and the
underlying error category ecat. The string
returned by what() is guaranteed to contain
what_arg as a substring.

exception(context ctx, int ev, const std::

error_category& ecat, const char* what_arg)

Constructs an exception with an associated
SYCL context ctx, the error code ev and the
underlying error category ecat. The string
returned by what() is guaranteed to contain
what_arg as a substring.

exception(context ctx, int ev, const std::

error_category& ecat)

Constructs an exception with an associated
SYCL context ctx, the error code ev and the
underlying error category ecat.

const std::error_code& code()const noexcept Returns the error code stored inside the ex-
ception.

const std::error_categeory& category()const noexcept Returns the error category of the error code
stored inside the exception.

const char *what()const Returns an implementation defined non-null
constant C-style string that describes the er-
ror that triggered the exception.

bool has_context()const Returns true if this SYCL exception has
an associated SYCL context and false if
it does not.

context get_context()const Returns the SYCL context that is associated
with this SYCL exception if one is avail-
able. Must throw an exception with the
errc::invalid_object_error error code if
this SYCL exception does not have a SYCL
context.

End of table

Table 4.101: Member functions of the SYCL exception class.

Member function Description
size_t size()const Returns the size of the list
iterator begin()const Returns an iterator to the beginning of the

list of asynchronous exceptions.
Continued on next page

Table 4.102: Member functions of the exception_list.
290 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.15. ERROR HANDLING

Member function Description
iterator end()const Returns an iterator to the end of the list of

asynchronous exceptions.
End of table

Table 4.102: Member functions of the exception_list.

Standard SYCL Error Codes Description
runtime_error Generic runtime error.
kernel_error Error that occurred before or while enqueu-

ing the SYCL kernel.
nd_range_error Error regarding the SYCL nd_range speci-

fied for the SYCL kernel
accessor_error Error regarding the SYCL accessor objects

defined.
event_error Error regarding associated SYCL event ob-

jects.
invalid_parameter_error Error regarding parameters to the SYCL ker-

nel, it may apply to any captured parameters
to the kernel lambda.

compile_program_error Error while compiling the SYCL kernel to a
SYCL device.

link_program_error Error while linking the SYCL kernel to a
SYCL device.

invalid_object_error Error regarding any memory objects being
used inside the kernel

memory_allocation_error Error on memory allocation on the SYCL
device for a SYCL kernel.

platform_error The SYCL platform will trigger this excep-
tion on error.

profiling_error The SYCL runtime will trigger this error if
there is an error when profiling info is en-
abled.

feature_not_supported Exception thrown when an optional feature
or extension is used in a kernel but it’s not
available on the device the SYCL kernel is
being enqueued on.

End of table

Table 4.103: Values of the SYCL errc enum.

SYCL Error Code Helpers Description
std::error_condition make_error_condition(errc e)

noexcept;

Constructs an error condition using e and
sycl_category().

std::error_code make_error_code(errc e)noexcept; Constructs an error code using e and
sycl_category().

End of table

Table 4.104: SYCL error code helper functions.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 291



4.16. DATA TYPES SYCL 2020 provisional

4.16 Data types

SYCL as a C++ programming model supports the C++ core language data types, and it also provides the ability
for all SYCL applications to be executed on SYCL compatible devices. The scalar and vector data types that
are supported by the SYCL system are defined below. More details about the SYCL device compiler support for
fundamental and OpenCL interoperability types are found in 5.5.

4.16.1 Scalar data types
The fundamental C++ data types which are supported in SYCL are described in Table 5.1. Note these types are
fundamental and therefore do not exist within the sycl namespace.

Additional scalar data types which are supported by SYCL within the sycl namespace are described in Ta-
ble 4.105.

Scalar data type Description
byte An unsigned 8-bit integer. This is depre-

cated in SYCL 2020 since C++17 std::
byte can be used instead.

half A 16-bit floating-point. The half data
type must conform to the IEEE 754-2008
half precision storage format. A SYCL
feature_not_supported exception must be
thrown if the half type is used in a SYCL
kernel function which executes on a SYCL
device that does not have aspect::fp16.

End of table

Table 4.105: Additional scalar data types supported by SYCL.

4.16.2 Vector types

SYCL provides a cross-platform class template that works efficiently on SYCL devices as well as in host C++
code. This type allows sharing of vectors between the host and its SYCL devices. The vector supports member
functions that allow construction of a new vector from a swizzled set of component elements.

vec<typename dataT, int numElements> is a vector type that compiles down to a SYCL backend built-in vector
types on SYCL devices, where possible, and provides compatible support on the host or when it is not possible.
The vec class is templated on its number of elements and its element type. The number of elements parameter,
numElements, can be one of: 1, 2, 3, 4, 8 or 16. Any other value shall produce a compilation failure. The element
type parameter, dataT, must be one of the basic scalar types supported in device code.

The SYCL vec class template provides interoperability with the underlying vector type defined by vector_t
which is available only when compiled for the device. The SYCL vec class can be constructed from an instance
of vector_t and can implicitly convert to an instance of vector_t in order to support interoperability with native
SYCL backend functions from a SYCL kernel function.

An instance of the SYCL vec class template can also be implicitly converted to an instance of the data type when
the number of elements is 1 in order to allow single element vectors and scalars to be convertible with each other.

292 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

4.16.2.1 Vec interface

The constructors, member functions and non-member functions of the SYCL vec class template are listed in
Tables 4.106, 4.107 and 4.108 respectively.

1 namespace sycl {

2
3 enum class rounding_mode {

4 automatic,

5 rte,

6 rtz,

7 rtp,

8 rtn

9 };

10
11 struct elem {

12 static constexpr int x = 0;

13 static constexpr int y = 1;

14 static constexpr int z = 2;

15 static constexpr int w = 3;

16 static constexpr int r = 0;

17 static constexpr int g = 1;

18 static constexpr int b = 2;

19 static constexpr int a = 3;

20 static constexpr int s0 = 0;

21 static constexpr int s1 = 1;

22 static constexpr int s2 = 2;

23 static constexpr int s3 = 3;

24 static constexpr int s4 = 4;

25 static constexpr int s5 = 5;

26 static constexpr int s6 = 6;

27 static constexpr int s7 = 7;

28 static constexpr int s8 = 8;

29 static constexpr int s9 = 9;

30 static constexpr int sA = 10;

31 static constexpr int sB = 11;

32 static constexpr int sC = 12;

33 static constexpr int sD = 13;

34 static constexpr int sE = 14;

35 static constexpr int sF = 15;

36 };

37
38 template <typename dataT, int numElements>

39 class vec {

40 public:

41 using element_type = dataT;

42
43 #ifdef __SYCL_DEVICE_ONLY__

44 using vector_t = __unspecified__;

45 #endif

46
47 vec();

48
49 explicit vec(const dataT &arg);

50

CHAPTER 4. SYCL PROGRAMMING INTERFACE 293



4.16. DATA TYPES SYCL 2020 provisional

51 template <typename... argTN>

52 vec(const argTN&... args);

53
54 vec(const vec<dataT, numElements> &rhs);

55
56 #ifdef __SYCL_DEVICE_ONLY__

57 vec(vector_t openclVector);

58
59 operator vector_t() const;

60 #endif

61
62 // Available only when: numElements == 1

63 operator dataT() const;

64
65 static constexpr int get_count();

66
67 static constexpr size_t get_size();

68
69 template <typename convertT, rounding_mode roundingMode = rounding_mode::automatic>

70 vec<convertT, numElements> convert() const;

71
72 template <typename asT>

73 asT as() const;

74
75 template<int... swizzleIndexes>

76 __swizzled_vec__ swizzle() const;

77
78 // Available only when numElements <= 4.

79 // XYZW_ACCESS is: x, y, z, w, subject to numElements.

80 __swizzled_vec__ XYZW_ACCESS() const;

81
82 // Available only numElements == 4.

83 // RGBA_ACCESS is: r, g, b, a.

84 __swizzled_vec__ RGBA_ACCESS() const;

85
86 // INDEX_ACCESS is: s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA, sB, sC, sD,

87 // sE, sF, subject to numElements.

88 __swizzled_vec__ INDEX_ACCESS() const;

89
90 #ifdef SYCL_SIMPLE_SWIZZLES

91 // Available only when numElements <= 4.

92 // XYZW_SWIZZLE is all permutations with repetition of: x, y, z, w, subject to

93 // numElements.

94 __swizzled_vec__ XYZW_SWIZZLE() const;

95
96 // Available only when numElements == 4.

97 // RGBA_SWIZZLE is all permutations with repetition of: r, g, b, a.

98 __swizzled_vec__ RGBA_SWIZZLE() const;

99
100 #endif // #ifdef SYCL_SIMPLE_SWIZZLES

101
102 // Available only when: numElements > 1.

103 __swizzled_vec__ lo() const;

104 __swizzled_vec__ hi() const;

105 __swizzled_vec__ odd() const;

294 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

106 __swizzled_vec__ even() const;

107
108 // load and store member functions

109 template <access::address_space addressSpace, access::decorated IsDecorated>

110 void load(size_t offset, multi_ptr<const dataT, addressSpace, IsDecorated> ptr);

111 template <access::address_space addressSpace, access::decorated IsDecorated>

112 void store(size_t offset, multi_ptr<dataT, addressSpace, IsDecorated> ptr) const;

113
114 // subscript operator

115 dataT &operator[](int index);

116 const dataT &operator[](int index) const;

117
118 // OP is: +, -, *, /, %

119 /* If OP is % available, only when: dataT != float && dataT != double

120 && dataT != half. */

121 friend vec operatorOP(const vec &lhs, const vec &rhs) { /* ... */ }

122 friend vec operatorOP(const vec &lhs, const dataT &rhs) { /* ... */ }

123
124 // OP is: +=, -=, *=, /=, %=

125 /* If OP is %= available, only when: dataT != float && dataT != double

126 && dataT != half. */

127 friend vec &operatorOP(vec &lhs, const vec &rhs) { /* ... */ }

128 friend vec &operatorOP(vec &lhs, const dataT &rhs) { /* ... */ }

129
130 // OP is: ++, --

131 friend vec &operatorOP(vec &lhs) { /* ... */ }

132 friend vec operatorOP(vec& lhs, int) { /* ... */ }

133
134 // OP is: +, -

135 friend vec operatorOP(vec &lhs) const { /* ... */ }

136
137 // OP is: &, |, ˆ

138 /* Available only when: dataT != float && dataT != double

139 && dataT != half. */

140 friend vec operatorOP(const vec &lhs, const vec &rhs) { /* ... */ }

141 friend vec operatorOP(const vec &lhs, const dataT &rhs) { /* ... */ }

142
143 // OP is: &=, |=, ˆ=

144 /* Available only when: dataT != float && dataT != double

145 && dataT != half. */

146 friend vec &operatorOP(vec &lhs, const vec &rhs) { /* ... */ }

147 friend vec &operatorOP(vec &lhs, const dataT &rhs) { /* ... */ }

148
149 // OP is: &&, ||

150 friend vec<RET, numElements> operatorOP(const vec &lhs, const vec &rhs) { /* ... */ }

151 friend vec<RET, numElements> operatorOP(const vec& lhs, const dataT &rhs) { /* ... */ }

152
153 // OP is: <<, >>

154 /* Available only when: dataT != float && dataT != double

155 && dataT != half. */

156 friend vec operatorOP(const vec &lhs, const vec &rhs) { /* ... */ }

157 friend vec operatorOP(const vec &lhs, const dataT &rhs) { /* ... */ }

158
159 // OP is: <<=, >>=

160 /* Available only when: dataT != float && dataT != double

CHAPTER 4. SYCL PROGRAMMING INTERFACE 295



4.16. DATA TYPES SYCL 2020 provisional

161 && dataT != half. */

162 friend vec &operatorOP(vec &lhs, const vec &rhs) { /* ... */ }

163 friend vec &operatorOP(vec &lhs, const dataT &rhs) { /* ... */ }

164
165 // OP is: ==, !=, <, >, <=, >=

166 friend vec<RET, numElements> operatorOP(const vec &lhs, const vec &rhs) { /* ... */ }

167 friend vec<RET, numElements> operatorOP(const vec &lhs, const dataT &rhs) { /* ... */ }

168
169 vec &operator=(const vec<dataT, numElements> &rhs);

170 vec &operator=(const dataT &rhs);

171
172 /* Available only when: dataT != float && dataT != double

173 && dataT != half. */

174 friend vec operator∼(const vec &v) { /* ... */ }

175 friend vec<RET, numElements> operator!(const vec &v) { /* ... */ }

176
177 // OP is: +, -, *, /, %

178 /* operator% is only available when: dataT != float && dataT != double &&

179 dataT != half. */

180 friend vec operatorOP(const dataT &lhs, const vec &rhs) { /* ... */ }

181
182 // OP is: &, |, ˆ

183 /* Available only when: dataT != float && dataT != double

184 && dataT != half. */

185 friend vec operatorOP(const dataT &lhs, const vec &rhs) { /* ... */ }

186
187 // OP is: &&, ||

188 friend vec<RET, numElements> operatorOP(const dataT &lhs, const vec &rhs) { /* ... */ }

189
190 // OP is: <<, >>

191 /* Available only when: dataT != float && dataT != double

192 && dataT != half. */

193 friend vec operatorOP(const dataT &lhs, const vec &rhs) { /* ... */ }

194
195 // OP is: ==, !=, <, >, <=, >=

196 friend vec<RET, numElements> operatorOP(const dataT &lhs, const vec &rhs) { /* ... */ }

197
198 };

199
200 // Deduction guides

201 // Available only when: (std::is_same_v<T, U> && ...)

202 template <class T, class... U>

203 vec(T, U...) -> vec<T, sizeof...(U) + 1>;

204
205 } // namespace sycl

Constructor Description
vec() Default construct a vector with element type

dataT and with numElements dimensions by
default construction of each of its elements.

Continued on next page

Table 4.106: Constructors of the SYCL vec class template.

296 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Constructor Description
explicit vec(const dataT &arg) Construct a vector of element type dataT

and numElements dimensions by setting
each value to arg by assignment.

template <typename... argTN>

vec(const argTN&... args)

Construct a SYCL vec instance from any
combination of scalar and SYCL vec param-
eters of the same element type, providing the
total number of elements for all parameters
sum to numElements of this vec specializa-
tion.

vec(const vec<dataT, numElements> &rhs) Construct a vector of element type dataT
and number of elements numElements by

copy from another similar vector.
vec(vector_t openclVector) Available only when: compiled for the de-

vice.
Constructs a SYCL vec instance from an
instance of the underlying OpenCL vector
type defined by vector_t.

End of table

Table 4.106: Constructors of the SYCL vec class template.

Member function Description
operator vector_t()const Available only when: compiled for the de-

vice.
Converts this SYCL vec instance to the un-
derlying OpenCL vector type defined by
vector_t.

operator dataT()const Available only when: numElements == 1.
Converts this SYCL vec instance to an in-
stance of dataT with the value of the single
element in this SYCL vec instance.
The SYCL vec instance shall be implicitly
convertible to the same data types, to which
dataT is implicitly convertible. Note that
conversion operator shall not be templated to
allow standard conversion sequence for im-
plicit conversion.

static constexpr int get_count() Returns the number of elements of this
SYCL vec.

static constexpr size_t get_size() Returns the size of this SYCL vec in bytes.
3-element vector size matches 4-element
vector size to provide interoperability with
OpenCL vector types. The same rule applies
to vector alignment as described in 4.16.2.6.

Continued on next page

Table 4.107: Member functions for the SYCL vec class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 297



4.16. DATA TYPES SYCL 2020 provisional

Member function Description
template<typename convertT, rounding_mode

roundingMode = rounding_mode::automatic>

vec<convertT, numElements> convert()const

Converts this SYCL vec to a SYCL vec
of a different element type specified by
convertT using the rounding mode speci-
fied by roundingMode. The new SYCL vec
type must have the same number of elements
as this SYCL vec. The different rounding
modes are described in Table 4.109.

template<typename asT>

asT as()const

Bitwise reinterprets this SYCL vec as a
SYCL vec of a different element type and
number of elements specified by asT. The
new SYCL vec type must have the same
storage size in bytes as this SYCL vec.

template<int... swizzleIndexes>

__swizzled_vec__ swizzle()const

Return an instance of the implementa-
tion defined intermediate class template
__swizzled_vec__ representing an index se-
quence which can be used to apply the swiz-
zle in a valid expression as described in
4.16.2.4.

__swizzled_vec__ XYZW_ACCESS()const Available only when: numElements <= 4.
Returns an instance of the implementa-
tion defined intermediate class template
__swizzled_vec__ representing an index
sequence which can be used to apply the
swizzle in a valid expression as described in
4.16.2.4.

Where XYZW_ACCESS is: x for numElements
== 1, x, y for numElements == 2, x, y, z
for numElements == 3 and x, y, z, w for
numElements == 4.

__swizzled_vec__ RGBA_ACCESS()const Available only when: numElements == 4.
Returns an instance of the implementa-
tion defined intermediate class template
__swizzled_vec__ representing an index
sequence which can be used to apply the
swizzle in a valid expression as described in
4.16.2.4.

Where RGBA_ACCESS is: r, g, b, a.
Continued on next page

Table 4.107: Member functions for the SYCL vec class template.

298 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Member function Description
__swizzled_vec__ INDEX_ACCESS()const Returns an instance of the implementa-

tion defined intermediate class template
__swizzled_vec__ representing an index
sequence which can be used to apply the
swizzle in a valid expression as described
in 4.16.2.4.

Where INDEX_ACCESS is: s0 for numElements
== 1, s0, s1 for numElements == 2,
s0, s1, s2 for numElements == 3, s0

, s1, s2, s3 for numElements == 4,
s0, s1, s2, s3, s4, s5, s6, s7, s8 for
numElements == 8 and s0, s1, s2, s3,
s4, s5, s6, s7, s8, s9, sA, sB, sC,

sD, sE, sF for numElements == 16.
__swizzled_vec__ XYZW_SWIZZLE()const Available only when numElements <= 4,

and when the macro SYCL_SIMPLE_SWIZZLES
is defined before including sycl.hpp.
Returns an instance of the implementa-
tion defined intermediate class template
__swizzled_vec__ representing an index
sequence which can be used to apply the
swizzle in a valid expression as described
in 4.16.2.4.

Where XYZW SWIZZLE is all per-
mutations with repetition, of any subset
with length greater than 1, of x, y

for numElements == 2, x, y, z for
numElements == 3 and x, y, z, w for
numElements == 4. For example a four el-
ement vec provides permutations including
xzyw, xyyy and xz.

__swizzled_vec__ RGBA_SWIZZLE()const Available only when numElements == 4,
and when the macro SYCL_SIMPLE_SWIZZLES
is defined before including sycl.hpp.
Returns an instance of the implementa-
tion defined intermediate class template
__swizzled_vec__ representing an index
sequence which can be used to apply the
swizzle in a valid expression as described in
4.16.2.4.

Where RGBA SWIZZLE is all permu-
tations with repetition, of any subset with
length greater than 1, of r, g, b, a.
For example a four element vec provides
permutations including rbga, rggg and rb.

Continued on next page

Table 4.107: Member functions for the SYCL vec class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 299



4.16. DATA TYPES SYCL 2020 provisional

Member function Description
__swizzled_vec__ lo()const Available only when: numElements > 1.

Return an instance of the implementa-
tion defined intermediate class template
__swizzled_vec__ representing an index se-
quence made up of the lower half of this
SYCL vec which can be used to apply the
swizzle in a valid expression as described
in 4.16.2.4. When numElements == 3, this
SYCL vec is treated as though numElements
== 4 with the fourth element undefined.

__swizzled_vec__ hi()const Available only when: numElements > 1.
Return an instance of the implementa-
tion defined intermediate class template
__swizzled_vec__ representing an index se-
quence made up of the upper half of this
SYCL vec which can be used to apply the
swizzle in a valid expression as described
in 4.16.2.4. When numElements == 3, this
SYCL vec is treated as though numElements
== 4 with the fourth element undefined.

__swizzled_vec__ odd()const Available only when: numElements > 1.
Return an instance of the implementa-
tion defined intermediate class template
__swizzled_vec__ representing an index se-
quence made up of the odd indexes of this
SYCL vec which can be used to apply the
swizzle in a valid expression as described
in 4.16.2.4. When numElements == 3, this
SYCL vec is treated as though numElements
== 4 with the fourth element undefined.

__swizzled_vec__ even()const Available only when: numElements > 1.
Return an instance of the implementa-
tion defined intermediate class template
__swizzled_vec__ representing an index se-
quence made up of the even indexes of this
SYCL vec which can be used to apply the
swizzle in a valid expression as described
in 4.16.2.4. When numElements == 3, this
SYCL vec is treated as though numElements
== 4 with the fourth element undefined.

template <access::address_space addressSpace, access

::decorated IsDecorated>

void load(size_t offset, multi_ptr<const dataT,

addressSpace, IsDecorated> ptr)

Loads the values at the address of ptr offset
in elements of type dataT by numElements *
offset, into the components of this SYCL
vec.

template <access::address_space addressSpace, access

::decorated IsDecorated>

void store(size_t offset, multi_ptr<dataT,

addressSpace, IsDecorated> ptr)const

Stores the components of this SYCL vec
into the values at the address of ptr offset
in elements of type dataT by numElements
* offset.

Continued on next page

Table 4.107: Member functions for the SYCL vec class template.

300 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Member function Description
dataT &operator[](int index) Returns a reference to the element stored

within this SYCL vec at the index specified
by index.

const dataT &operator[](int index)const Returns a const reference to the element
stored within this SYCL vec at the index
specified by index.

vec &operator=(const vec &rhs) Assign each element of the rhs SYCL vec
to each element of this SYCL vec and return
a reference to this SYCL vec.

vec &operator=(const dataT &rhs) Assign each element of the rhs scalar to
each element of this SYCL vec and return
a reference to this SYCL vec.

End of table

Table 4.107: Member functions for the SYCL vec class template.

Hidden friend function Description
vec operatorOP(const vec &lhs, const vec &rhs) If OP is % available, only when: dataT !=

float && dataT != double && dataT !=

half.
Construct a new instance of the SYCL
vec class template with the same template
parameters as lhs vec with each element
of the new SYCL vec instance the result
of an element-wise OP arithmetic operation
between each element of lhs vec and each
element of the rhs SYCL vec.

Where OP is: +, -, *, /, %.
vec operatorOP(const vec &lhs, const dataT &rhs) If OP is % available, only when: dataT !=

float && dataT != double && dataT !=

half.
Construct a new instance of the SYCL
vec class template with the same template
parameters as lhs vec with each element
of the new SYCL vec instance the result
of an element-wise OP arithmetic operation
between each element of lhs vec and the
rhs scalar.

Where OP is: +, -, *, /, %.
Continued on next page

Table 4.108: Hidden friend functions of the vec class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 301



4.16. DATA TYPES SYCL 2020 provisional

Hidden friend function Description
vec &operatorOP(vec &lhs, const vec &rhs) If OP is %= available, only when: dataT !=

float && dataT != double && dataT !=

half.
Perform an in-place element-wise OP arith-
metic operation between each element of
lhs vec and each element of the rhs SYCL
vec and return lhs vec.

Where OP is: +=, -=, *=, /=, %=.
vec &operatorOP(vec &lhs, const dataT &rhs) If OP is %= available, only when: dataT !=

float && dataT != double && dataT !=

half.
Perform an in-place element-wise OP

arithmetic operation between each element
of lhs vec and rhs scalar and return lhs vec.

Where OP is: +=, -=, *=, /=, %=.
vec &operatorOP(vec &v) Perform an in-place element-wise OP prefix

arithmetic operation on each element of lhs
vec, assigning the result of each element to
the corresponding element of lhs vec and
return lhs vec.

Where OP is: ++, --.
vec operatorOP(vec &v, int) Perform an in-place element-wise OP post-

fix arithmetic operation on each element
of lhs vec, assigning the result of each
element to the corresponding element of lhs
vec and returns a copy of lhs vec before the
operation is performed.

Where OP is: ++, --.
vec operatorOP(vec &v) Construct a new instance of the SYCL

vec class template with the same template
parameters as this SYCL vec with each
element of the new SYCL vec instance
the result of an element-wise OP unary
arithmetic operation on each element of this
SYCL vec.

Where OP is: +, -.
Continued on next page

Table 4.108: Hidden friend functions of the vec class template.

302 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Hidden friend function Description
vec operatorOP(const vec &lhs, const vec &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Construct a new instance of the SYCL
vec class template with the same template
parameters as lhs vec with each element of
the new SYCL vec instance the result of an
element-wise OP bitwise operation between
each element of lhs vec and each element
of the rhs SYCL vec.

Where OP is: &, |, ˆ.
vec operatorOP(const vec &lhs, const dataT &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Construct a new instance of the SYCL
vec class template with the same template
parameters as lhs vec with each element of
the new SYCL vec instance the result of an
element-wise OP bitwise operation between
each element of lhs vec and the rhs scalar.

Where OP is: &, |, ˆ.
vec &operatorOP(vec &lhs, const vec &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Perform an in-place element-wise OP bitwise
operation between each element of lhs vec
and the rhs SYCL vec and return lhs vec.

Where OP is: &=, |=, ˆ=.
vec &operatorOP(vec &lhs, const dataT &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Perform an in-place element-wise OP bitwise
operation between each element of lhs vec
and the rhs scalar and return a lhs vec.

Where OP is: &=, |=, ˆ=.
Continued on next page

Table 4.108: Hidden friend functions of the vec class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 303



4.16. DATA TYPES SYCL 2020 provisional

Hidden friend function Description
vec<RET, numElements> operatorOP(const vec &lhs,

const vec &rhs)

Construct a new instance of the SYCL
vec class template with the same template
parameters as lhs vec with each element of
the new SYCL vec instance the result of an
element-wise OP logical operation between
each element of lhs vec and each element
of the rhs SYCL vec.

The dataT template parameter of the
constructed SYCL vec, RET, varies depend-
ing on the dataT template parameter of this
SYCL vec. For a SYCL vec with dataT
of type int8_t or uint8_t RET must be
int8_t. For a SYCL vec with dataT of
type int16_t, uint16_t or half RET must
be int16_t. For a SYCL vec with dataT of
type int32_t, uint32_t or float RET must
be int32_t. For a SYCL vec with dataT of
type int64_t, uint64_t or double RET must
be int64_t.

Where OP is: &&, ||.
vec<RET, numElements> operatorOP(const vec &lhs,

const dataT &rhs)

Construct a new instance of the SYCL
vec class template with the same template
parameters as this SYCL vec with each
element of the new SYCL vec instance
the result of an element-wise OP logical
operation between each element of lhs vec
and the rhs scalar.

The dataT template parameter of the
constructed SYCL vec, RET, varies depend-
ing on the dataT template parameter of this
SYCL vec. For a SYCL vec with dataT
of type int8_t or uint8_t RET must be
int8_t. For a SYCL vec with dataT of
type int16_t, uint16_t or half RET must
be int16_t. For a SYCL vec with dataT of
type int32_t, uint32_t or float RET must
be int32_t. For a SYCL vec with dataT of
type int64_t, uint64_t or double RET must
be uint64_t.

Where OP is: &&, ||.
Continued on next page

Table 4.108: Hidden friend functions of the vec class template.

304 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Hidden friend function Description
vec operatorOP(const vec &lhs, const vec &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Construct a new instance of the SYCL
vec class template with the same template
parameters as lhs vec with each element
of the new SYCL vec instance the result
of an element-wise OP bitshift operation
between each element of lhs vec and each
element of the rhs SYCL vec. If OP is >>,
dataT is a signed type and lhs vec has a
negative value any vacated bits viewed as an
unsigned integer must be assigned the value
1, otherwise any vacated bits viewed as an
unsigned integer must be assigned the value
0.

Where OP is: <<, >>.
vec operatorOP(const vec &lhs, const dataT &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Construct a new instance of the SYCL
vec class template with the same template
parameters as lhs vec with each element
of the new SYCL vec instance the result
of an element-wise OP bitshift operation
between each element of lhs vec and the
rhs scalar. If OP is >>, dataT is a signed
type and lhs vec has a negative value any
vacated bits viewed as an unsigned integer
must be assigned the value 1, otherwise any
vacated bits viewed as an unsigned integer
must be assigned the value 0.

Where OP is: <<, >>.
vec &operatorOP(vec &lhs, const vec &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Perform an in-place element-wise OP bitshift
operation between each element of lhs vec
and the rhs SYCL vec and returns lhs vec.
If OP is >>=, dataT is a signed type and
lhs vec has a negative value any vacated
bits viewed as an unsigned integer must be
assigned the value 1, otherwise any vacated
bits viewed as an unsigned integer must be
assigned the value 0.

Where OP is: <<=, >>=.
Continued on next page

Table 4.108: Hidden friend functions of the vec class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 305



4.16. DATA TYPES SYCL 2020 provisional

Hidden friend function Description
vec &operatorOP(vec &lhs, const dataT &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Perform an in-place element-wise OP bit-
shift operation between each element of
lhs vec and the rhs scalar and returns a
reference to this SYCL vec. If OP is >>=,
dataT is a signed type and lhs vec has a
negative value any vacated bits viewed as an
unsigned integer must be assigned the value
1, otherwise any vacated bits viewed as an
unsigned integer must be assigned the value
0.

Where OP is: <<=, >>=.
vec<RET, numElements> operatorOP(const vec& lhs,

const vec &rhs)

Construct a new instance of the SYCL vec
class template with the element type RET
with each element of the new SYCL vec
instance the result of an element-wise OP
relational operation between each element
of lhs vec and each element of the rhs
SYCL vec. Each element of the SYCL vec
that is returned must be -1 if the operation
results in true and 0 if the operation results
in false or either this SYCL vec or the rhs
SYCL vec is a NaN.

The dataT template parameter of the
constructed SYCL vec, RET, varies depend-
ing on the dataT template parameter of this
SYCL vec. For a SYCL vec with dataT
of type int8_t or uint8_t RET must be
int8_t. For a SYCL vec with dataT of
type int16_t, uint16_t or half RET must
be int16_t. For a SYCL vec with dataT of
type int32_t, uint32_t or float RET must
be int32_t. For a SYCL vec with dataT of
type int64_t, uint64_t or double RET must
be uint64_t.

Where OP is: ==, !=, <, >, <=, >=.
Continued on next page

Table 4.108: Hidden friend functions of the vec class template.

306 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Hidden friend function Description
vec<RET, numElements> operatorOP(const vec &lhs,

const dataT &rhs)

Construct a new instance of the SYCL vec
class template with the dataT parameter of
RET with each element of the new SYCL vec
instance the result of an element-wise OP
relational operation between each element
of lhs vec and the rhs scalar. Each element
of the SYCL vec that is returned must be -1
if the operation results in true and 0 if the
operation results in false or either lhs vec
or the rhs SYCL vec is a NaN.

The dataT template parameter of the
constructed SYCL vec, RET, varies depend-
ing on the dataT template parameter of this
SYCL vec. For a SYCL vec with dataT
of type int8_t or uint8_t RET must be
int8_t. For a SYCL vec with dataT of
type int16_t, uint16_t or half RET must
be int16_t. For a SYCL vec with dataT of
type int32_t, uint32_t or float RET must
be int32_t. For a SYCL vec with dataT of
type int64_t, uint64_t or double RET must
be uint64_t.

Where OP is: ==, !=, <, >, <=, >=.
vec operatorOP(const dataT &lhs, const vec &rhs) If OP is % available, only when: dataT !=

float && dataT != double && dataT !=

half.
Construct a new instance of the SYCL
vec class template with the same template
parameters as the rhs SYCL vec with each
element of the new SYCL vec instance
the result of an element-wise OP arithmetic
operation between the lhs scalar and each
element of the rhs SYCL vec.

Where OP is: +, -, *, /, %.
vec operatorOP(const dataT &lhs, const vec &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Construct a new instance of the SYCL
vec class template with the same template
parameters as the rhs SYCL vec with each
element of the new SYCL vec instance
the result of an element-wise OP bitwise
operation between the lhs scalar and each
element of the rhs SYCL vec.

Where OP is: &, |, ˆ.
Continued on next page

Table 4.108: Hidden friend functions of the vec class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 307



4.16. DATA TYPES SYCL 2020 provisional

Hidden friend function Description
vec<RET, numElements> operatorOP(const dataT &lhs,

const vec &rhs)

Available only when: dataT != float &&
dataT != double && dataT != half.
Construct a new instance of the SYCL
vec class template with the same template
parameters as the rhs SYCL vec with each
element of the new SYCL vec instance
the result of an element-wise OP logical
operation between the lhs scalar and each
element of the rhs SYCL vec.

The dataT template parameter of the
constructed SYCL vec, RET, varies depend-
ing on the dataT template parameter of this
SYCL vec. For a SYCL vec with dataT
of type int8_t or uint8_t RET must be
int8_t. For a SYCL vec with dataT of
type int16_t, uint16_t or half RET must
be int16_t. For a SYCL vec with dataT of
type int32_t, uint32_t or float RET must
be int32_t. For a SYCL vec with dataT of
type int64_t, uint64_t or double RET must
be int64_t.

Where OP is: &&, ||.
vec operatorOP(const dataT &lhs, const vec &rhs) Construct a new instance of the SYCL

vec class template with the same template
parameters as the rhs SYCL vec with each
element of the new SYCL vec instance
the result of an element-wise OP bitshift
operation between the lhs scalar and each
element of the rhs SYCL vec. If OP is >>,
dataT is a signed type and this SYCL vec
has a negative value any vacated bits viewed
as an unsigned integer must be assigned the
value 1, otherwise any vacated bits viewed
as an unsigned integer must be assigned the
value 0.

Where OP is: <<, >>.
Continued on next page

Table 4.108: Hidden friend functions of the vec class template.

308 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Hidden friend function Description
vec<RET, numElements> operatorOP(const dataT &lhs,

const vec &rhs)

Available only when: dataT != float &&
dataT != double && dataT != half.
Construct a new instance of the SYCL
vec class template with the element type
RET with each element of the new SYCL
vec instance the result of an element-wise
OP relational operation between the lhs
scalar and each element of the rhs SYCL
vec. Each element of the SYCL vec that is
returned must be -1 if the operation results
in true and 0 if the operation results in
false or either this SYCL vec or the rhs
SYCL vec is a NaN.

The dataT template parameter of the
constructed SYCL vec, RET, varies depend-
ing on the dataT template parameter of this
SYCL vec. For a SYCL vec with dataT
of type int8_t or uint8_t RET must be
int8_t. For a SYCL vec with dataT of
type int16_t, uint16_t or half RET must
be int16_t. For a SYCL vec with dataT of
type int32_t, uint32_t or float RET must
be int32_t. For a SYCL vec with dataT of
type int64_t, uint64_t or double RET must
be int64_t.

Where OP is: ==, !=, <, >, <=, >=.
vec &operator∼(const vec &v) Available only when: dataT != float &&

dataT != double && dataT != half.
Construct a new instance of the SYCL vec
class template with the same template pa-

rameters as v vec with each element of the
new SYCL vec instance the result of an
element-wise OP bitwise operation on each
element of v vec.

Continued on next page

Table 4.108: Hidden friend functions of the vec class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 309



4.16. DATA TYPES SYCL 2020 provisional

Hidden friend function Description
vec<RET, numElements> operator!(const vec &v) Construct a new instance of the SYCL

vec class template with the same template
parameters as v vec with each element of
the new SYCL vec instance the result of
an element-wise OP logical operation on
each element of v vec. Each element of
the SYCL vec that is returned must be -1
if the operation results in true and 0 if the
operation results in false or this SYCL vec
is a NaN.

The dataT template parameter of the
constructed SYCL vec, RET, varies depend-
ing on the dataT template parameter of this
SYCL vec. For a SYCL vec with dataT
of type int8_t or uint8_t RET must be
int8_t. For a SYCL vec with dataT of
type int16_t, uint16_t or half RET must
be int16_t. For a SYCL vec with dataT of
type int32_t, uint32_t or float RET must
be int32_t. For a SYCL vec with dataT of
type int64_t, uint64_t or double RET must
be int64_t.

End of table

Table 4.108: Hidden friend functions of the vec class template.

4.16.2.2 Aliases

The SYCL programming API provides all permutations of the type alias:

using <type><elems> = vec<<storage-type>, <elems>>

where <elems> is 2, 3, 4, 8 and 16, and pairings of <type> and <storage-type> for integral types are char and
int8_t, uchar and uint8_t, short and int16_t, ushort and uint16_t, int and int32_t, uint and uint32_t,
long and int64_t, ulong and uint64_t, and for floating point types are both half, float and double.

For example uint4 is the alias to vec<uint64_t, 4> and float16 is the alias to vec<float, 16>.

4.16.2.3 Swizzles

Swizzle operations can be performed in two ways. Firstly by calling the swizzle member function template,
which takes a variadic number of integer template arguments between 0 and numElements-1, specifying swizzle
indexes. Secondly by calling one of the simple swizzle member functions defined in 4.107 as XYZW_SWIZZLE and
RGBA_SWIZZLE. Note that the simple swizzle functions are only available for up to 4 element vectors and are only
available when the macro SYCL_SIMPLE_SWIZZLES is defined before including sycl.hpp.

In both cases the return type is always an instance of __swizzled_vec__, an implementation defined temporary
class representing a swizzle of the original SYCL vec instance. Both kinds of swizzle member functions must
not perform the swizzle operation themselves, instead the swizzle operation must be performed by the returned

310 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

instance of __swizzled_vec__ when used within an expression, meaning if the returned __swizzled_vec__ is
never used in an expression no swizzle operation is performed.

Both the swizzle member function template and the simple swizzle member functions allow swizzle indexes to
be repeated.

A series of static constexpr values are provided within the elem struct to allow specifying named swizzle indexes
when calling the swizzle member function template.

4.16.2.4 Swizzled vec class

The __swizzled_vec__ class must define an unspecified temporary which provides the entire interface of the
SYCL vec class template, including swizzled member functions, with the additions and alterations described
below:

• The __swizzled_vec__ class template must be readable as an r-value reference on the RHS of an expression.
In this case the swizzle operation is performed on the RHS of the expression and then the result is applied
to the LHS of the expression.

• The __swizzled_vec__ class template must be assignable as an l-value reference on the LHS of an
expression. In this case the RHS of the expression is applied to the original SYCL vec which the
__swizzled_vec__ represents via the swizzle operation. Note that a __swizzled_vec__ that is used in
an l-value expression may not contain any repeated element indexes.
For example: f4.xxxx()= fx.wzyx() would not be valid.

• The __swizzled_vec__ class template must be convertible to an instance of SYCL vec with the type dataT
and number of elements specified by the swizzle member function, if numElements > 1, and must be

convertible to an instance of type dataT, if numElements == 1.

• The __swizzled_vec__ class template must be non-copyable, non-moveable, non-user constructible and
may not be bound to a l-value or escape the expression it was constructed in. For example auto x = f4.x
() would not be valid.

• The __swizzled_vec__ class template should return __swizzled_vec__ & for each operator inhetired from
the vec class template interface which would return vec<dataT, numElements> &.

4.16.2.5 Rounding modes

The various rounding modes that can be used in the as member function template are described in Table 4.109.

Rounding mode Description
automatic Default rounding mode for the SYCL vec

class element type. rtz (round toward zero)
for integer types and rte (round to nearest
even) for floating-point types.

rte Round to nearest even.
rtz Round toward zero.
rtp Round toward positive infinity.
rtn Round toward negative infinity.

End of table

Table 4.109: Rounding modes for the SYCL vec class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 311



4.16. DATA TYPES SYCL 2020 provisional

4.16.2.6 Memory layout and alignment

The elements of an instance of the SYCL vec class template are stored in memory sequentially and contiguously
and are aligned to the size of the element type in bytes multiplied by the number of elements:

sizeof(dataT) · numElements (4.6)

The exception to this is when the number of element is three in which case the SYCL vec is aligned to the size of
the element type in bytes multiplied by four:

sizeof(dataT) · 4 (4.7)

This is true for both host and device code in order to allow for instances of the vec class template to be passed to
SYCL kernel functions.

4.16.2.7 Considerations for endianness

As SYCL supports both big-endian and little-endian on OpenCL devices, users must take care to ensure kernel
arguments are processed correctly. This is particularly true for SYCL vec arguments as the order in which a SYCL
vec is loaded differs between big-endian and little-endian.

Users should consult vendor documentation for guidance on how to handle kernel arguments in these situations.

4.16.2.8 Performance note

The usage of the subscript operator[] may not be efficient on some devices.

4.16.3 Math array types
SYCL provides a marray<typename dataT, std::size_t numElements> class template to represent a contigu-
ous fixed-size container. This type allows sharing of containers between the host and its SYCL devices.

The marray class is templated on its element type and number of elements. The number of elements parameter,
numElements, is a positive value of the std::size_t type. The element type parameter, dataT, must be a
Numeric type as it is defined by C++ standard.

An instance of the marray class template can also be implicitly converted to an instance of the data type when the
number of elements is 1 in order to allow single element arrays and scalars to be convertible with each other.

Logical and comparison operators for marray class template return marray<bool, numElements>.

4.16.3.1 Math array interface

The constructors, member functions and non-member functions of the SYCL marray class template are listed in
Tables 4.110, 4.111 and 4.112 respectively.

1 namespace sycl {

2
3 template <typename dataT, std::size_t numElements>

4 class marray {

312 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

5 public:

6 using value_type = dataT;

7 using reference = dataT&;

8 using const_reference = const dataT&;

9 using iterator = dataT*;

10 using const_iterator = const dataT*;

11
12 marray();

13
14 explicit marray(const dataT &arg);

15
16 template <typename... argTN>

17 marray(const argTN&... args);

18
19 marray(const marray<dataT, numElements> &rhs);

20 marray(marray<dataT, numElements> &&rhs);

21
22 // Available only when: numElements == 1

23 operator dataT() const;

24
25 static constexpr std::size_t size();

26
27 // subscript operator

28 reference operator[](std::size_t index);

29 const_reference operator[](std::size_t index) const;

30
31 marray &operator=(const marray<dataT, numElements> &rhs);

32 marray &operator=(const dataT &rhs);

33 };

34
35 // iterator functions

36 iterator begin(marray &v);

37 const_iterator begin(const marray &v);

38
39 iterator end(marray &v);

40 const_iterator end(const marray &v);

41
42 // OP is: +, -, *, /, %

43 /* If OP is % available, only when: dataT != float && dataT != double && dataT != half. */

44 marray operatorOP(const marray &lhs, const marray &rhs) { /* ... */ }

45 marray operatorOP(const marray &lhs, const dataT &rhs) { /* ... */ }

46
47 // OP is: +=, -=, *=, /=, %=

48 /* If OP is %= available, only when: dataT != float && dataT != double && dataT != half. */

49 marray &operatorOP(marray &lhs, const marray &rhs) { /* ... */ }

50 marray &operatorOP(marray &lhs, const dataT &rhs) { /* ... */ }

51
52 // OP is: ++, --

53 marray &operatorOP(marray &lhs) { /* ... */ }

54 marray operatorOP(marray& lhs, int) { /* ... */ }

55
56 // OP is: +, -

57 marray operatorOP(marray &lhs) const { /* ... */ }

58
59 // OP is: &, |, ˆ

CHAPTER 4. SYCL PROGRAMMING INTERFACE 313



4.16. DATA TYPES SYCL 2020 provisional

60 /* Available only when: dataT != float && dataT != double && dataT != half. */

61 marray operatorOP(const marray &lhs, const marray &rhs) { /* ... */ }

62 marray operatorOP(const marray &lhs, const dataT &rhs) { /* ... */ }

63
64 // OP is: &=, |=, ˆ=

65 /* Available only when: dataT != float && dataT != double && dataT != half. */

66 marray &operatorOP(marray &lhs, const marray &rhs) { /* ... */ }

67 marray &operatorOP(marray &lhs, const dataT &rhs) { /* ... */ }

68
69 // OP is: &&, ||

70 marray<bool, numElements> operatorOP(const marray &lhs, const marray &rhs) { /* ... */ }

71 marray<bool, numElements> operatorOP(const marray& lhs, const dataT &rhs) { /* ... */ }

72
73 // OP is: <<, >>

74 /* Available only when: dataT != float && dataT != double && dataT != half. */

75 marray operatorOP(const marray &lhs, const marray &rhs) { /* ... */ }

76 marray operatorOP(const marray &lhs, const dataT &rhs) { /* ... */ }

77
78 // OP is: <<=, >>=

79 /* Available only when: dataT != float && dataT != double && dataT != half. */

80 marray &operatorOP(marray &lhs, const marray &rhs) { /* ... */ }

81 marray &operatorOP(marray &lhs, const dataT &rhs) { /* ... */ }

82
83 // OP is: ==, !=, <, >, <=, >=

84 marray<bool, numElements> operatorOP(const marray &lhs, const marray &rhs) { /* ... */ }

85 marray<bool, numElements> operatorOP(const marray &lhs, const dataT &rhs) { /* ... */ }

86
87 /* Available only when: dataT != float && dataT != double && dataT != half. */

88 marray operator∼(const marray &v) { /* ... */ }

89 marray<bool, numElements> operator!(const marray &v) { /* ... */ }

90
91 // OP is: +, -, *, /, %

92 /* operator% is only available when: dataT != float && dataT != double && dataT != half. */

93 marray operatorOP(const dataT &lhs, const marray &rhs) { /* ... */ }

94
95 // OP is: &, |, ˆ

96 /* Available only when: dataT != float && dataT != double

97 && dataT != half. */

98 marray operatorOP(const dataT &lhs, const marray &rhs) { /* ... */ }

99
100 // OP is: &&, ||

101 marray<bool, numElements> operatorOP(const dataT &lhs, const marray &rhs) { /* ... */ }

102
103 // OP is: <<, >>

104 /* Available only when: dataT != float && dataT != double && dataT != half. */

105 marray operatorOP(const dataT &lhs, const marray &rhs) { /* ... */ }

106
107 // OP is: ==, !=, <, >, <=, >=

108 marray<bool, numElements> operatorOP(const dataT &lhs, const marray &rhs) { /* ... */ }

109
110 marray operator∼(const marray &v) const { /* ... */ }

111
112 marray<bool, numElements> operator!(const marray &v) const { /* ... */ }

113
114 } // namespace sycl

314 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Constructor Description
marray() Default construct an array with element

type dataT and with numElements dimen-
sions by default construction of each of its
elements.

explicit marray(const dataT &arg) Construct an array of element type dataT
and numElements dimensions by setting

each value to arg by assignment.
template <typename... argTN>

marray(const argTN&... args)

Construct a SYCL marray instance from any
combination of scalar and SYCL marray pa-
rameters of the same element type, provid-
ing the total number of elements for all pa-
rameters sum to numElements of this marray
specialization.

marray(const marray<dataT, numElements> &rhs) Construct an array of element type dataT
and number of elements numElements by

copy from another similar vector.
End of table

Table 4.110: Constructors of the SYCL marray class template.

Member function Description
operator dataT()const Available only when: numElements == 1.

Converts this SYCL marray instance to an
instance of dataT with the value of the sin-
gle element in this SYCL marray instance.
The SYCL marray instance shall be im-
plicitly convertible to the same data types,
to which dataT is implicitly convertible.
Note that conversion operator shall not be
templated to allow standard conversion se-
quence for implicit conversion.

static constexpr std::size_t size() Returns the size of this SYCL marray in
bytes.
3-element vector size matches 4-element
vector size to provide interoperability with
OpenCL vector types. The same rule applies
to vector alignment as described in 4.16.2.6.

dataT &operator[](std::size_t index) Returns a reference to the element stored
within this SYCL marray at the index speci-
fied by index.

const dataT &operator[](std::size_t index)const Returns a const reference to the element
stored within this SYCL marray at the index
specified by index.

marray &operator=(const marray &rhs) Assign each element of the rhs SYCL
marray to each element of this SYCL marray
and return a reference to this SYCL marray.

Continued on next page

Table 4.111: Member functions for the SYCL marray class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 315



4.16. DATA TYPES SYCL 2020 provisional

Member function Description
marray &operator=(const dataT &rhs) Assign each element of the rhs scalar to

each element of this SYCL marray and re-
turn a reference to this SYCL marray.

End of table

Table 4.111: Member functions for the SYCL marray class template.

Non-member function Description
iterator begin(marray &v) Returns an iterator referring to the first ele-

ment stored within the v marray.
const_iterator begin(const marray &v) Returns a const iterator referring to the first

element stored within the v marray.
iterator end(marray &v) Returns an iterator referring to the one past

the last element stored within the v marray.
const_iterator end(const marray &v) Returns a const iterator referring to the one

past the last element stored within the v
marray.

marray operatorOP(const marray &lhs, const marray &

rhs)

If OP is % available, only when: dataT !=
float && dataT != double && dataT !=

half.
Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as lhs marray with each
element of the new SYCL marray instance
the result of an element-wise OP arithmetic
operation between each element of lhs
marray and each element of the rhs SYCL
marray.

Where OP is: +, -, *, /, %.
marray operatorOP(const marray &lhs, const dataT &

rhs)

If OP is % available, only when: dataT !=
float && dataT != double && dataT !=

half.
Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as lhs marray with each
element of the new SYCL marray instance
the result of an element-wise OP arithmetic
operation between each element of lhs
marray and the rhs scalar.

Where OP is: +, -, *, /, %.
Continued on next page

Table 4.112: Non-member functions of the marray class template.

316 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Non-member function Description
marray &operatorOP(marray &lhs, const marray &rhs) If OP is %= available, only when: dataT !=

float && dataT != double && dataT !=

half.
Perform an in-place element-wise OP arith-
metic operation between each element of
lhs marray and each element of the rhs
SYCL marray and return lhs marray.

Where OP is: +=, -=, *=, /=, %=.
marray &operatorOP(marray &lhs, const dataT &rhs) If OP is %= available, only when: dataT !=

float && dataT != double && dataT !=

half.
Perform an in-place element-wise OP arith-
metic operation between each element of
lhs marray and rhs scalar and return lhs
marray.

Where OP is: +=, -=, *=, /=, %=.
marray &operatorOP(marray &v) Perform an in-place element-wise OP prefix

arithmetic operation on each element of lhs
marray, assigning the result of each element
to the corresponding element of lhs marray
and return lhs marray.

Where OP is: ++, --.
marray operatorOP(marray &v, int) Perform an in-place element-wise OP post-

fix arithmetic operation on each element
of lhs marray, assigning the result of each
element to the corresponding element of lhs
marray and returns a copy of lhs marray
before the operation is performed.

Where OP is: ++, --.
marray operatorOP(marray &v) Construct a new instance of the SYCL

marray class template with the same tem-
plate parameters as this SYCL marray with
each element of the new SYCL marray

instance the result of an element-wise OP
unary arithmetic operation on each element
of this SYCL marray.

Where OP is: +, -.
Continued on next page

Table 4.112: Non-member functions of the marray class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 317



4.16. DATA TYPES SYCL 2020 provisional

Non-member function Description
marray operatorOP(const marray &lhs, const marray &

rhs)

Available only when: dataT != float &&
dataT != double && dataT != half.
Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as lhs marray with each
element of the new SYCL marray instance
the result of an element-wise OP bitwise
operation between each element of lhs
marray and each element of the rhs SYCL
marray.

Where OP is: &, |, ˆ.
marray operatorOP(const marray &lhs, const dataT &

rhs)

Available only when: dataT != float &&
dataT != double && dataT != half.
Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as lhs marray with each
element of the new SYCL marray instance
the result of an element-wise OP bitwise
operation between each element of lhs
marray and the rhs scalar.

Where OP is: &, |, ˆ.
marray &operatorOP(marray &lhs, const marray &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Perform an in-place element-wise OP bit-
wise operation between each element of
lhs marray and the rhs SYCL marray and
return lhs marray.

Where OP is: &=, |=, ˆ=.
marray &operatorOP(marray &lhs, const dataT &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Perform an in-place element-wise OP bit-
wise operation between each element of lhs
marray and the rhs scalar and return a lhs
marray.

Where OP is: &=, |=, ˆ=.
marray<bool, numElements> operatorOP(const marray &

lhs, const marray &rhs)

Construct a new instance of the marray
class template with dataT = bool and
same numElements as lhs marray with
each element of the new marray instance
the result of an element-wise OP logical
operation between each element of lhs
marray and each element of the rhs marray.

Where OP is: &&, ||.
Continued on next page

Table 4.112: Non-member functions of the marray class template.

318 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Non-member function Description
marray<bool, numElements> operatorOP(const marray &

lhs, const dataT &rhs)

Construct a new instance of the marray
class template with dataT = bool and
same numElements as lhs marray with
each element of the new marray instance
the result of an element-wise OP logical
operation between each element of lhs
marray and the rhs scalar.

Where OP is: &&, ||.
marray operatorOP(const marray &lhs, const marray &

rhs)

Available only when: dataT != float &&
dataT != double && dataT != half.
Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as lhs marray with each
element of the new SYCL marray instance
the result of an element-wise OP bitshift
operation between each element of lhs
marray and each element of the rhs SYCL
marray. If OP is >>, dataT is a signed type
and lhs marray has a negative value any
vacated bits viewed as an unsigned integer
must be assigned the value 1, otherwise any
vacated bits viewed as an unsigned integer
must be assigned the value 0.

Where OP is: <<, >>.
marray operatorOP(const marray &lhs, const dataT &

rhs)

Available only when: dataT != float &&
dataT != double && dataT != half.
Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as lhs marray with each
element of the new SYCL marray instance
the result of an element-wise OP bitshift
operation between each element of lhs
marray and the rhs scalar. If OP is >>,
dataT is a signed type and lhs marray has a
negative value any vacated bits viewed as an
unsigned integer must be assigned the value
1, otherwise any vacated bits viewed as an
unsigned integer must be assigned the value
0.

Where OP is: <<, >>.
Continued on next page

Table 4.112: Non-member functions of the marray class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 319



4.16. DATA TYPES SYCL 2020 provisional

Non-member function Description
marray &operatorOP(marray &lhs, const marray &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Perform an in-place element-wise OP bit-
shift operation between each element of
lhs marray and the rhs SYCL marray and
returns lhs marray. If OP is >>=, dataT
is a signed type and lhs marray has a
negative value any vacated bits viewed as an
unsigned integer must be assigned the value
1, otherwise any vacated bits viewed as an
unsigned integer must be assigned the value
0.

Where OP is: <<=, >>=.
marray &operatorOP(marray &lhs, const dataT &rhs) Available only when: dataT != float &&

dataT != double && dataT != half.
Perform an in-place element-wise OP bit-
shift operation between each element of
lhs marray and the rhs scalar and returns a
reference to this SYCL marray. If OP is >>=,
dataT is a signed type and lhs marray has a
negative value any vacated bits viewed as an
unsigned integer must be assigned the value
1, otherwise any vacated bits viewed as an
unsigned integer must be assigned the value
0.

Where OP is: <<=, >>=.
marray<bool, numElements> operatorOP(const marray&

lhs, const marray &rhs)

Construct a new instance of the marray
class template with dataT = bool and
same numElements as lhs marray with
each element of the new marray instance
the result of an element-wise OP relational
operation between each element of lhs
marray and each element of the rhs marray.
Corresponding element of the marray that
is returned must be false if the operation
results is a NaN.

Where OP is: ==, !=, <, >, <=, >=.
Continued on next page

Table 4.112: Non-member functions of the marray class template.

320 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.16. DATA TYPES

Non-member function Description
marray<bool, numElements> operatorOP(const marray &

lhs, const dataT &rhs)

Construct a new instance of the marray
class template with dataT = bool and
same numElements as lhs marray with
each element of the new marray instance
the result of an element-wise OP relational
operation between each element of lhs
marray and the rhs scalar. Corresponding
element of the marray that is returned must
be false if the operation results is a NaN.

Where OP is: ==, !=, <, >, <=, >=.
marray operatorOP(const dataT &lhs, const marray &

rhs)

If OP is % available, only when: dataT !=
float && dataT != double && dataT !=

half.
Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as the rhs SYCL marray
with each element of the new SYCL marray
instance the result of an element-wise OP
arithmetic operation between the lhs scalar
and each element of the rhs SYCL marray.

Where OP is: +, -, *, /, %.
marray operatorOP(const dataT &lhs, const marray &

rhs)

Available only when: dataT != float &&
dataT != double && dataT != half.
Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as the rhs SYCL marray
with each element of the new SYCL marray
instance the result of an element-wise OP
bitwise operation between the lhs scalar
and each element of the rhs SYCL marray.

Where OP is: &, |, ˆ.
marray<RET, numElements> operatorOP(const dataT &lhs

, const marray &rhs)

Available only when: dataT != float &&
dataT != double && dataT != half.
Construct a new instance of the marray
class template with dataT = bool and
same numElements as lhs marray with
each element of the new marray instance
the result of an element-wise OP logical
operation between the lhs scalar and each
element of the rhs marray.

Where OP is: &&, ||.
Continued on next page

Table 4.112: Non-member functions of the marray class template.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 321



4.16. DATA TYPES SYCL 2020 provisional

Non-member function Description
marray operatorOP(const dataT &lhs, const marray &

rhs)

Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as the rhs SYCL marray
with each element of the new SYCL marray
instance the result of an element-wise OP
bitshift operation between the lhs scalar
and each element of the rhs SYCL marray.
If OP is >>, dataT is a signed type and this
SYCL marray has a negative value any
vacated bits viewed as an unsigned integer
must be assigned the value 1, otherwise any
vacated bits viewed as an unsigned integer
must be assigned the value 0.

Where OP is: <<, >>.
marray<bool, numElements> operatorOP(const dataT &

lhs, const marray &rhs)

Available only when: dataT != float &&
dataT != double && dataT != half.
Construct a new instance of the marray
class template with dataT = bool and same
numElements as lhs marray with each
element of the new SYCL marray instance
the result of an element-wise OP relational
operation between the lhs scalar and each
element of the rhs marray. Corresponding
element of the marray that is returned must
be false if the operation results is a NaN.

Where OP is: ==, !=, <, >, <=, >=.
marray &operator∼(const marray &v) Available only when: dataT != float &&

dataT != double && dataT != half.
Construct a new instance of the SYCL
marray class template with the same tem-
plate parameters as v marray with each el-
ement of the new SYCL marray instance the
result of an element-wise OP bitwise opera-
tion on each element of v marray.

Continued on next page

Table 4.112: Non-member functions of the marray class template.

322 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

Non-member function Description
marray<bool, numElements> operator!(const marray &v) Construct a new instance of the marray

class template with dataT = bool and
same numElements as v marray with each
element of the new marray instance the
result of an element-wise logical ! operation
on each element of v marray.

The dataT template parameter of the
constructed SYCL marray, RET, varies de-
pending on the dataT template parameter of
this SYCL marray. For a SYCL marraywith
dataT of type int8_t or uint8_t RET must
be int8_t. For a SYCL marray with dataT
of type int16_t, uint16_t or half RET must
be int16_t. For a SYCL marray with dataT
of type int32_t, uint32_t or float RET
must be int32_t. For a SYCL marray with
dataT of type int64_t, uint64_t or double
RET must be int64_t.

End of table

Table 4.112: Non-member functions of the marray class template.

4.16.3.2 Aliases

The SYCL programming API provides all permutations of the type alias:

using m<type><elems> = marray<<storage-type>, <elems>>

where <elems> is 2, 3, 4, 8 and 16, and pairings of <type> and <storage-type> for integral types are char and
int8_t, uchar and uint8_t, short and int16_t, ushort and uint16_t, int and int32_t, uint and uint32_t,
long and int64_t, ulong and uint64_t, for floating point types are both half, float and double, and for boolean
type bool.

For example muint4 is the alias to marray<uint64_t, 4> and mfloat16 is the alias to marray<float, 16>.

4.16.3.3 Memory layout and alignment

The elements of an instance of the marray class template as if stored in std::array<dataT, numElements>.

4.17 Synchronization and atomics

The available features are:

• Accessor classes: Accessor classes specify acquisition and release of buffer and image data structures to
provide points at which underlying queue synchronization primitives must be generated.

• Atomic operations: SYCL devices support a restricted subset of C++ atomics and SYCL uses the library
syntax from the next C++ specification to make this available.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 323



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

• Fences: Fence primitives are made available to order loads and stores. They are exposed through the
atomic_fence function. Fences can have acquire semantics, release semantics or both.

• Barriers: Barrier primitives are made available to synchronize sets of work-items within individual groups.
They are exposed through the group_barrier function.

• Hierarchical parallel dispatch: In the hierarchical parallelism model of describing computations, synchro-
nization within the work-group is made explicit through multiple instances of the parallel_for_work_item
function call, rather than through the use of explicit work-group barrier operations.

• Device event: they are used inside SYCL kernel functions to wait for asynchronous operations within a
SYCL kernel function to complete.

4.17.1 Barriers and fences
A group barrier or mem-fence provides memory ordering semantics over both the local address space and global
address space. All memory operations initiated before the group barrier or mem-fence operation will be completed
before any memory operation after the group barrier or mem-fence.

1 namespace sycl {

2
3 void atomic_fence(memory_order order, memory_scope scope);

4
5 } // namespace sycl

The effects of a call to atomic_fence depend on the value of the order parameter:

• memory_order::relaxed: No effect

• memory_order::acquire: Acquire fence

• memory_order::release: Release fence

• memory_order::acq_rel: Both an acquire fence and a release fence

• memory_order::seq_cst: A sequentially consistent acquire and release fence

A group barrier acts as both an acquire fence and a release fence: all work-items in the group execute a release
fence prior to synchronizing at the barrier, and all work-items in the group execute an acquire fence afterwards.

4.17.2 device_event class
The SYCL device_event class encapsulates a single SYCL device event which is available only within SYCL
kernel functions and can be used to wait for asynchronous operations within a SYCL kernel function to complete.
A SYCL device event can map to a SYCL backend event or just be a host event for a kernel running on the SYCL
host device.

All member functions of the device_event class must not throw a SYCL exception.

A synopsis of the SYCL device_event class is provided below. The constructors and member functions of the
SYCL device_event class are listed in Table 4.114 and 4.113 respectively.

324 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

1 namespace sycl {

2 class device_event {

3
4 device_event(__unspecified__);

5
6 public:

7 void wait() noexcept;

8 };

9 } // namespace sycl

Member function Description
void wait()noexcept Waits for the asynchronous operation as-

sociated with this SYCL device_event to
complete.

End of table

Table 4.113: Member functions of the SYCL device_event class.

Constructor Description
device_event(___unspecified___) Unspecified implementation defined con-

structor.
End of table

Table 4.114: Constructors of the device_event class.

4.17.3 Atomic references
The SYCL specification provides atomic operations based on the library syntax from the next C++ specifica-
tion. The set of supported orderings is specific to a device, but every device is guaranteed to support at least
memory_order::relaxed. Since different devices have different capabilities, there is no default ordering in SYCL
and the default order used by each instance of sycl::atomic_ref is set by a template argument. If the de-
fault order is set to memory_order::relaxed, all memory order arguments default to memory_order::relaxed. If
the default order is set to memory_order::acq_rel, memory order arguments default to memory_order::acquire
for load operations, memory_order::release for store operations and memory_order::acq_rel for read-modify-
write operations. If the default order is set to memory_order::seq_cst, all memory order arguments default to
memory_order::seq_cst.

The SYCL atomic library may map directly to the underlying C++ library in SYCL application code, and must
interact safely with the host C++ atomic library when used in host code. The SYCL library must be used in device
code to ensure that only the limited subset of functionality is available. SYCL device compilers should give a
compilation error on use of the std::atomic and std::atomic_ref classes and functions in device code.

The template parameter addressSpace is permitted to be access::address_space::generic_space, access::
address_space::global_space or access::address_space::local_space.

The data type T is permitted to be int, unsigned int, long, unsigned long, long long, unsigned long long
, float or double. For floating-point types, the member functions of the atomic_ref class may be emulated,
and may use a different floating-point environment to those defined by info::device::single_fp_config and
info::device::double_fp_config (i.e. floating-point atomics may use different rounding modes and may have

CHAPTER 4. SYCL PROGRAMMING INTERFACE 325



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

different exception behavior).

As detailed in Tables 4.116, 4.117, 4.118 and 4.119, not all devices support atomic operations for 64-bit data
types. The member functions of the atomic_ref class are required to compile even if the device does not support
64-bit data types, however they are only guaranteed to execute if the device has that support. If a member function
is called with a 64-bit data type and the device does not have the necessary support, the SYCL runtime must throw
an exception with the errc::feature_not_supported error code.

The atomic types are defined as follows.

1 namespace sycl {

2 enum class memory_order : /* unspecified */ {

3 relaxed, acquire, release, acq_rel, seq_cst

4 };

5 inline constexpr memory_order memory_order_relaxed = memory_order::relaxed;

6 inline constexpr memory_order memory_order_acquire = memory_order::acquire;

7 inline constexpr memory_order memory_order_release = memory_order::release;

8 inline constexpr memory_order memory_order_acq_rel = memory_order::acq_rel;

9 inline constexpr memory_order memory_order_seq_cst = memory_order::seq_cst;

10
11 enum class memory_scope : /* unspecified */ {

12 work_item, sub_group, work_group, device, system

13 };

14 inline constexpr memory_scope memory_scope_work_item = memory_scope::work_item;

15 inline constexpr memory_scope memory_scope_sub_group = memory_scope::sub_group;

16 inline constexpr memory_scope memory_scope_work_group = memory_scope::work_group;

17 inline constexpr memory_scope memory_scope_device = memory_scope::device;

18 inline constexpr memory_scope memory_scope_system = memory_scope::system;

19
20 // Exposition only

21 template <memory_order ReadModifyWriteOrder>

22 struct memory_order_traits;

23
24 template <>

25 struct memory_order_traits<memory_order::relaxed> {

26 static constexpr memory_order read_order = memory_order::relaxed;

27 static constexpr memory_order write_order = memory_order::relaxed;

28 };

29
30 template <>

31 struct memory_order_traits<memory_order::acq_rel> {

32 static constexpr memory_order read_order = memory_order::acquire;

33 static constexpr memory_order write_order = memory_order::release;

34 };

35
36 template <>

37 struct memory_order_traits<memory_order::seq_cst> {

38 static constexpr memory_order read_order = memory_order::seq_cst;

39 static constexpr memory_order write_order = memory_order::seq_cst;

40 };

41
42 template <typename T, memory_order DefaultOrder, memory_scope DefaultScope, access::address_space

Space = access::address_space::generic_space>

43 class atomic_ref {

326 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

44 public:

45
46 using value_type = T;

47 static constexpr size_t required_alignment = /* implementation-defined */;

48 static constexpr bool is_always_lock_free = /* implementation-defined */;

49 static constexpr memory_order default_read_order = memory_order_traits<DefaultOrder>::read_order

;

50 static constexpr memory_order default_write_order = memory_order_traits<DefaultOrder>::

write_order;

51 static constexpr memory_order default_read_modify_write_order = DefaultOrder;

52 static constexpr memory_scope default_scope = DefaultScope;

53
54 bool is_lock_free() const noexcept;

55
56 explicit atomic_ref(T&);

57 atomic_ref(const atomic_ref&) noexcept;

58 atomic_ref& operator=(const atomic_ref&) = delete;

59
60 void store(T operand,

61 memory_order order = default_write_order,

62 memory_scope scope = default_scope) const noexcept;

63
64 T operator=(T desired) const noexcept;

65
66 T load(memory_order order = default_read_order,

67 memory_scope scope = default_scope) const noexcept;

68
69 operator T() const noexcept;

70
71 T exchange(T operand,

72 memory_order order = default_read_modify_write_order,

73 memory_scope scope = default_scope) const noexcept;

74
75 bool compare_exchange_weak(T &expected, T desired,

76 memory_order success,

77 memory_order failure,

78 memory_scope scope = default_scope) const noexcept;

79
80 bool compare_exchange_weak(T &expected, T desired,

81 memory_order order = default_read_modify_write_order,

82 memory_scope scope = default_scope) const noexcept;

83
84 bool compare_exchange_strong(T &expected, T desired,

85 memory_order success,

86 memory_order failure,

87 memory_scope scope = default_scope) const noexcept;

88
89 bool compare_exchange_strong(T &expected, T desired,

90 memory_order order = default_read_modify_write_order,

91 memory_scope scope = default_scope) const noexcept;

92 };

93
94 // Partial specialization for integral types

95 template <memory_order DefaultOrder, memory_scope DefaultScope, access::address_space Space =

access::address_space::generic_space>

CHAPTER 4. SYCL PROGRAMMING INTERFACE 327



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

96 class atomic_ref<Integral, DefaultOrder, DefaultScope, Space> {

97
98 /* All other members from atomic_ref<T> are available */

99
100 using difference_type = value_type;

101
102 Integral fetch_add(Integral operand,

103 memory_order order = default_read_modify_write_order,

104 memory_scope scope = default_scope) const noexcept;

105
106 Integral fetch_sub(Integral operand,

107 memory_order order = default_read_modify_write_order,

108 memory_scope scope = default_scope) const noexcept;

109
110 Integral fetch_and(Integral operand,

111 memory_order order = default_read_modify_write_order,

112 memory_scope scope = default_scope) const noexcept;

113
114 Integral fetch_or(Integral operand,

115 memory_order order = default_read_modify_write_order,

116 memory_scope scope = default_scope) const noexcept;

117
118 Integral fetch_min(Integral operand,

119 memory_order order = default_read_modify_write_order,

120 memory_scope scope = default_scope) const noexcept;

121
122 Integral fetch_max(Integral operand,

123 memory_order order = default_read_modify_write_order,

124 memory_scope scope = default_scope) const noexcept;

125
126 Integral operator++(int) const noexcept;

127 Integral operator--(int) const noexcept;

128 Integral operator++() const noexcept;

129 Integral operator--() const noexcept;

130 Integral operator+=(Integral) const noexcept;

131 Integral operator-=(Integral) const noexcept;

132 Integral operator&=(Integral) const noexcept;

133 Integral operator|=(Integral) const noexcept;

134 Integral operatorˆ=(Integral) const noexcept;

135
136 };

137
138 // Partial specialization for floating-point types

139 template <memory_order DefaultOrder, memory_scope DefaultScope, access::address_space Space =

access::address_space::generic_space>

140 class atomic_ref<Floating, DefaultOrder, DefaultScope, Space> {

141
142 /* All other members from atomic_ref<T> are available */

143
144 using difference_type = value_type;

145
146 Floating fetch_add(Floating operand,

147 memory_order order = default_read_modify_write_order,

148 memory_scope scope = default_scope) const noexcept;

149

328 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

150 Floating fetch_sub(Floating operand,

151 memory_order order = default_read_modify_write_order,

152 memory_scope scope = default_scope) const noexcept;

153
154 Floating fetch_min(Floating operand,

155 memory_order order = default_read_modify_write_order,

156 memory_scope scope = default_scope) const noexcept;

157
158 Floating fetch_max(Floating operand,

159 memory_order order = default_read_modify_write_order,

160 memory_scope scope = default_scope) const noexcept;

161
162 Floating operator+=(Floating) const noexcept;

163 Floating operator-=(Floating) const noexcept;

164
165 };

166
167 // Partial specialization for pointers

168 template <typename T, memory_order DefaultOrder, memory_scope DefaultScope, access::address_space

Space = access::address_space::generic_space>

169 class atomic_ref<T*, DefaultOrder, DefaultScope, Space> {

170
171 using value_type = T*;

172 using difference_type = ptrdiff_t;

173 static constexpr size_t required_alignment = /* implementation-defined */;

174 static constexpr bool is_always_lock_free = /* implementation-defined */;

175 static constexpr memory_order default_read_order = memory_order_traits<DefaultOrder>::read_order

;

176 static constexpr memory_order default_write_order = memory_order_traits<DefaultOrder>::

write_order;

177 static constexpr memory_order default_read_modify_write_order = DefaultOrder;

178 static constexpr memory_scope default_scope = DefaultScope;

179
180 bool is_lock_free() const noexcept;

181
182 explicit atomic_ref(T*&);

183 atomic_ref(const atomic_ref&) noexcept;

184 atomic_ref& operator=(const atomic_ref&) = delete;

185
186 void store(T* operand,

187 memory_order order = default_write_order,

188 memory_scope scope = default_scope) const noexcept;

189
190 T* operator=(T* desired) const noexcept;

191
192 T* load(memory_order order = default_read_order,

193 memory_scope scope = default_scope) const noexcept;

194
195 operator T*() const noexcept;

196
197 T* exchange(T* operand,

198 memory_order order = default_read_modify_write_order,

199 memory_scope scope = default_scope) const noexcept;

200
201 bool compare_exchange_weak(T* &expected, T* desired,

CHAPTER 4. SYCL PROGRAMMING INTERFACE 329



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

202 memory_order success,

203 memory_order failure,

204 memory_scope scope = default_scope) const noexcept;

205
206 bool compare_exchange_weak(T* &expected, T* desired,

207 memory_order order = default_read_modify_write_order,

208 memory_scope scope = default_scope) const noexcept;

209
210 bool compare_exchange_strong(T* &expected, T* desired,

211 memory_order success,

212 memory_order failure,

213 memory_scope scope = default_scope) const noexcept;

214
215 bool compare_exchange_strong(T* &expected, T* desired,

216 memory_order order = default_read_modify_write_order,

217 memory_scope scope = default_scope) const noexcept;

218
219 T* fetch_add(difference_type,

220 memory_order order = default_read_modify_write_order,

221 memory_scope scope = default_scope) const noexcept;

222
223 T* fetch_sub(difference_type,

224 memory_order order = default_read_modify_write_order,

225 memory_scope scope = default_scope) const noexcept;

226
227 T* operator++(int) const noexcept;

228 T* operator--(int) const noexcept;

229 T* operator++() const noexcept;

230 T* operator--() const noexcept;

231 T* operator+=(difference_type) const noexcept;

232 T* operator-=(difference_type) const noexcept;

233
234 };

235
236 } // namespace sycl

The constructors and member functions for instances of the SYCL atomic_ref class using any compatible type
are listed in Tables 4.115 and 4.116 respectively. Additional member functions for integral, floating-point and
pointer types are listed in Tables 4.117, 4.118 and 4.119 respectively.

The static member required_alignment describes the minimum required alignment in bytes of an object that can
be referenced by an atomic_ref<T>, which must be at least alignof(T).

The static member is_always_lock_free is true if all atomic operations for type T are always lock-free. A SYCL
implementation is not guaranteed to support atomic operations that are not lock-free.

The static members default_read_order, default_write_order and default_read_modify_write_order reflect
the default memory order values for each type of atomic operation, consistent with the DefaultOrder template.

The atomic operations and member functions behave as described in the C++ specification, barring the restrictions
discussed above. Note that care must be taken when using atomics to implement synchronization routines due
to the lack of forward progress guarantees between work-items in SYCL. No work-item may be dependent on
another work-item to make progress if the code is to be portable.

330 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

Constructor Description
atomic_ref(T& ref) Constructs an instance of SYCL

atomic_ref which is associated with
the reference ref.

End of table

Table 4.115: Constructors of the SYCL atomic_ref class template.

Member function Description
bool is_lock_free()const Return true if the atomic operations pro-

vided by this atomic_ref are lock-free.
void store(T operand,

memory_order order = default_write_order,

memory_scope scope = default_scope)const

Atomically stores operand to the object ref-
erenced by this atomic_ref. The mem-
ory order of this atomic operation must be
memory_order::relaxed, memory_order::
release or memory_order::seq_cst. This
function is only supported for 64-bit
data types on devices that have aspect::
int64_base_atomics.

T operator=(T desired)const Equivalent to store(desired). Returns
desired.

T load(

memory_order order = default_read_order

memory_odrer scope = default_scope)const

Atomically loads the value of the object ref-
erenced by this atomic_ref. The mem-
ory order of this atomic operation must be
memory_order::relaxed, memory_order::
acquire, or memory_order::seq_cst. This
function is only supported for 64-bit
data types on devices that have aspect::
int64_base_atomics.

operator T()const Equivalent to load().
T exchange(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically replaces the value of the object
referenced by this atomic_ref with value
operand and returns the original value of the
referenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_base_atomics.

Continued on next page

Table 4.116: Member functions available on any object of type atomic_ref<T>.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 331



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

Member function Description
bool compare_exchange_weak(T &expected, T desired,

memory_order success,

memory_order failure,

memory_scope scope = default_scope)const

Atomically compares the value of the object
referenced by this atomic_ref against the
value of expected. If the values are equal,
attempts to replace the value of the refer-
enced object with the value of desired; oth-
erwise assigns the original value of the ref-
erenced object to expected.
Returns true if the comparison operation
and replacement operation were successful.
The failure memory order of this atomic
operation must be memory_order::relaxed
, memory_order::acquire or memory_order
::seq_cst.
This function is only supported for 64-bit
data types on devices that have aspect::
int64_base_atomics.

bool compare_exchange_weak(T &expected, T desired,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Equivalent to compare_exchange_weak

(expected, desired, order, order,

scope).

bool compare_exchange_strong(T &expected, T desired,

memory_order success,

memory_order failure,

memory_scope scope = default_scope)const

Atomically compares the value of the object
referenced by this atomic_ref against the
value of expected. If the values are equal,
replaces the value of the referenced object
with the value of desired; otherwise assigns
the original value of the referenced object to
expected.
Returns true if the comparison opera-
tion was successful. The failure mem-
ory order of this atomic operation must
be memory_order::relaxed, memory_order
::acquire or memory_order::seq_cst.
This function is only supported for 64-bit
data types on devices that have aspect::
int64_base_atomics.

bool compare_exchange_strong(T &expected, T desired,

memory_order order =

default_read_modify_write_order)const

Equivalent to compare_exchange_strong

(expected, desired, order, order,

scope).
End of table

Table 4.116: Member functions available on any object of type atomic_ref<T>.

332 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

Member function Description
T fetch_add(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically adds operand to the value of the
object referenced by this atomic_ref and as-
signs the result to the value of the referenced
object. Returns the original value of the ref-
erenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_base_atomics.

T operator+=(T operand)const Equivalent to fetch_add(operand).
T operator++(int)const Equivalent to fetch_add(1).
T operator++()const Equivalent to fetch_add(1)+ 1.
T fetch_sub(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically subtracts operand from the value
of the object referenced by this atomic_ref
and assigns the result to the value of the ref-
erenced object. Returns the original value of
the referenced object. This function is only
supported for 64-bit data types on devices
that have aspect::int64_base_atomics.

T operator-=(T operand)const Equivalent to fetch_sub(operand).
T operator--(int)const Equivalent to fetch_sub(1).
T operator--()const Equivalent to fetch_sub(1)- 1.
T fetch_and(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically performs a bitwise AND be-
tween operand and the value of the object
referenced by this atomic_ref, and assigns
the result to the value of the referenced ob-
ject. Returns the original value of the ref-
erenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_extended_atomics.

T operator&=(T operand)const Equivalent to fetch_and(operand).
T fetch_or(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically performs a bitwise OR between
operand and the value of the object refer-
enced by this atomic_ref, and assigns the
result to the value of the referenced ob-
ject. Returns the original value of the ref-
erenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_extended_atomics.

T operator|=(T operand)const Equivalent to fetch_or(operand).
T fetch_xor(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically performs a bitwise XOR be-
tween operand and the value of the object
referenced by this atomic_ref, and assigns
the result to the value of the referenced ob-
ject. Returns the original value of the ref-
erenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_extended_atomics.

T operatorˆ=(T operand)const Equivalent to fetch_xor(operand).
Continued on next page

Table 4.117: Additional member functions available on an object of type atomic_ref<T> for integral T.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 333



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

Member function Description
T fetch_min(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically computes the minimum of
operand and the value of the object refer-
enced by this atomic_ref, and assigns the
result to the value of the referenced ob-
ject. Returns the original value of the ref-
erenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_extended_atomics.

T fetch_max(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically computes the maximum of
operand and the value of the object refer-
enced by this atomic_ref, and assigns the
result to the value of the referenced ob-
ject. Returns the original value of the ref-
erenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_extended_atomics.

End of table

Table 4.117: Additional member functions available on an object of type atomic_ref<T> for integral T.

Member function Description
T fetch_add(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically adds operand to the value of the
object referenced by this atomic_ref and as-
signs the result to the value of the referenced
object. Returns the original value of the ref-
erenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_base_atomics.

T operator+=(T operand)const Equivalent to fetch_add(operand).
T fetch_sub(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically subtracts operand from the value
of the object referenced by this atomic_ref
and assigns the result to the value of the ref-
erenced object. Returns the original value of
the referenced object. This function is only
supported for 64-bit data types on devices
that have aspect::int64_base_atomics.

T operator-=(T operand)const Equivalent to fetch_sub(operand).
T fetch_min(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically computes the minimum of
operand and the value of the object refer-
enced by this atomic_ref, and assigns the
result to the value of the referenced ob-
ject. Returns the original value of the ref-
erenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_extended_atomics.

Continued on next page

Table 4.118: Additional member functions available on an object of type atomic_ref<T> for floating-point T.

334 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

Member function Description
T fetch_max(T operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically computes the maximum of
operand and the value of the object refer-
enced by this atomic_ref, and assigns the
result to the value of the referenced ob-
ject. Returns the original value of the ref-
erenced object. This function is only sup-
ported for 64-bit data types on devices that
have aspect::int64_extended_atomics.

End of table

Table 4.118: Additional member functions available on an object of type atomic_ref<T> for floating-point T.

Member function Description
T* fetch_add(ptrdiff_t operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically adds operand to the value of the
object referenced by this atomic_ref and
assigns the result to the value of the refer-
enced object. Returns the original value of
the referenced object. This function is only
supported for 64-bit pointers on devices that
have aspect::int64_base_atomics.

T* operator+=(ptrdiff_t operand)const Equivalent to fetch_add(operand).
T* operator++(int)const Equivalent to fetch_add(1).
T* operator++()const Equivalent to fetch_add(1)+ 1.
T* fetch_sub(ptrdiff_t operand,

memory_order order =

default_read_modify_write_order,

memory_scope scope = default_scope)const

Atomically subtracts operand from the value
of the object referenced by this atomic_ref
and assigns the result to the value of the ref-
erenced object. Returns the original value of
the referenced object. This function is only
supported for 64-bit pointers on devices that
have aspect::int64_base_atomics.

T* operator-=(ptrdiff_t operand)const Equivalent to fetch_sub(operand).
T* operator--(int)const Equivalent to fetch_sub(1).
T* operator--()const Equivalent to fetch_sub(1)- 1.

End of table

Table 4.119: Additional member functions available on an object of type atomic_ref<T*>.

4.17.4 Atomic types (deprecated)
The atomic types and operations on atomic types provided by SYCL 1.2.1 are deprecated in SYCL 2020, and
will be removed in a future version of SYCL. The types and operations are made available in the cl::sycl::
namespace for backwards compatibility.

The constructors and member functions for the cl::sycl::atomic class are listed in Tables 4.120 and 4.121
respectively.

1 namespace cl {

CHAPTER 4. SYCL PROGRAMMING INTERFACE 335



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

2 namespace sycl {

3 /* Deprecated in SYCL 2020 */

4 enum class memory_order : int {

5 relaxed

6 };

7
8 /* Deprecated in SYCL 2020 */

9 template <typename T, access::address_space addressSpace =

10 access::address_space::global_space>

11 class atomic {

12 public:

13 template <typename pointerT, access::decorated IsDecorated>

14 atomic(multi_ptr<pointerT, addressSpace, IsDecorated> ptr);

15
16 void store(T operand, memory_order memoryOrder =

17 memory_order::relaxed);

18
19 T load(memory_order memoryOrder = memory_order::relaxed) const;

20
21 T exchange(T operand, memory_order memoryOrder =

22 memory_order::relaxed);

23
24 /* Available only when: T != float */

25 bool compare_exchange_strong(T &expected, T desired,

26 memory_order successMemoryOrder = memory_order::relaxed,

27 memory_order failMemoryOrder = memory_order::relaxed);

28
29 /* Available only when: T != float */

30 T fetch_add(T operand, memory_order memoryOrder =

31 memory_order::relaxed);

32
33 /* Available only when: T != float */

34 T fetch_sub(T operand, memory_order memoryOrder =

35 memory_order::relaxed);

36
37 /* Available only when: T != float */

38 T fetch_and(T operand, memory_order memoryOrder =

39 memory_order::relaxed);

40
41 /* Available only when: T != float */

42 T fetch_or(T operand, memory_order memoryOrder =

43 memory_order::relaxed);

44
45 /* Available only when: T != float */

46 T fetch_xor(T operand, memory_order memoryOrder =

47 memory_order::relaxed);

48
49 /* Available only when: T != float */

50 T fetch_min(T operand, memory_order memoryOrder =

51 memory_order::relaxed);

52
53 /* Available only when: T != float */

54 T fetch_max(T operand, memory_order memoryOrder =

55 memory_order::relaxed);

56 };

336 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

57 } // namespace sycl

58 } // namespace cl

The global functions are as follows and described in Table 4.122.

1 namespace cl {

2 namespace sycl {

3 /* Deprecated in SYCL 2020 */

4 template <typename T, access::address_space addressSpace>

5 void atomic_store(atomic<T, addressSpace> object, T operand, memory_order memoryOrder =

6 memory_order::relaxed);

7
8 /* Deprecated in SYCL 2020 */

9 template <typename T, access::address_space addressSpace>

10 T atomic_load(atomic<T, addressSpace> object, memory_order memoryOrder =

11 memory_order::relaxed);

12
13 /* Deprecated in SYCL 2020 */

14 template <typename T, access::address_space addressSpace>

15 T atomic_exchange(atomic<T, addressSpace> object, T operand, memory_order memoryOrder =

16 memory_order::relaxed);

17
18 /* Deprecated in SYCL 2020 */

19 template <typename T, access::address_space addressSpace>

20 bool atomic_compare_exchange_strong(atomic<T, addressSpace> object, T &expected, T desired,

21 memory_order successMemoryOrder = memory_order::relaxed,

22 memory_order failMemoryOrder = memory_order::relaxed);

23
24 /* Deprecated in SYCL 2020 */

25 template <typename T, access::address_space addressSpace>

26 T atomic_fetch_add(atomic<T, addressSpace> object, T operand, memory_order memoryOrder =

27 memory_order::relaxed);

28
29 /* Deprecated in SYCL 2020 */

30 template <typename T, access::address_space addressSpace>

31 T atomic_fetch_sub(atomic<T, addressSpace> object, T operand, memory_order memoryOrder =

32 memory_order::relaxed);

33
34 /* Deprecated in SYCL 2020 */

35 template <typename T, access::address_space addressSpace>

36 T atomic_fetch_and(atomic<T, addressSpace> object, T operand, memory_order memoryOrder =

37 memory_order::relaxed);

38
39 /* Deprecated in SYCL 2020 */

40 template <typename T, access::address_space addressSpace>

41 T atomic_fetch_or(atomic<T, addressSpace> object, T operand, memory_order memoryOrder =

42 memory_order::relaxed);

43
44 /* Deprecated in SYCL 2020 */

45 template <typename T, access::address_space addressSpace>

46 T atomic_fetch_xor(atomic<T, addressSpace> object, T operand, memory_order memoryOrder =

47 memory_order::relaxed);

48
49 /* Deprecated in SYCL 2020 */

CHAPTER 4. SYCL PROGRAMMING INTERFACE 337



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

50 template <typename T, access::address_space addressSpace>

51 T atomic_fetch_min(atomic<T, addressSpace> object, T operand, memory_order memoryOrder =

52 memory_order::relaxed);

53
54 /* Deprecated in SYCL 2020 */

55 template <typename T, access::address_space addressSpace>

56 T atomic_fetch_max(atomic<T, addressSpace> object, T operand, memory_order memoryOrder =

57 memory_order::relaxed);

58 } // namespace sycl

59 } // namespace cl

Constructor Description
template <typename pointerT>

atomic(multi_ptr<pointerT, addressSpace> ptr)

Deprecated in SYCL 2020.
Permitted data types for pointerT are any
valid scalar data type which is the same size
in bytes as T. Constructs an instance of
SYCL atomic which is associated with the
pointer ptr, converted to a pointer of data
type T.

End of table

Table 4.120: Constructors of the cl::sycl::atomic class template.

Member function Description
void store(T operand, memory_order memoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Atomically stores the value operand at the
address of the multi_ptr associated with
this SYCL atomic. The memory order of
this atomic operation must be memory_order
::relaxed. This function is only supported
for 64-bit data types on devices that have
aspect::int64_base_atomics.

T load(memory_order memoryOrder =

memory_order::relaxed)const

Deprecated in SYCL 2020.
Atomically loads the value at the address of
the multi_ptr associated with this SYCL
atomic. Returns the value at the address
of the multi_ptr associated with this SYCL
atomic before the call. The memory order of
this atomic operation must be memory_order
::relaxed. This function is only supported
for 64-bit data types on devices that have
aspect::int64_base_atomics.

Continued on next page

Table 4.121: Member functions available on an object of type cl::sycl::atomic<T>.

338 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

Member function Description
T exchange(T operand, memory_order memoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Atomically replaces the value at the address
of the multi_ptr associated with this SYCL
atomic with value operand and returns the
value at the address of the multi_ptr as-
sociated with this SYCL atomic before the
call. The memory order of this atomic
operation must be memory_order::relaxed
. This function is only supported for 64-
bit data types on devices that have aspect
::int64_base_atomics.

bool compare_exchange_strong(T &expected, T desired,

memory_order successMemoryOrder =

memory_order::relaxed,

memory_order failMemoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Available only when: T != float.
Atomically compares the value at the ad-
dress of the multi_ptr associated with
this SYCL atomic against the value of
expected. If the values are equal, replaces
value at address of the multi_ptr associ-
ated with this SYCL atomic with the value
of desired; otherwise assigns the origi-
nal value at the address of the multi_ptr

associated with this SYCL atomic to
expected. Returns true if the compari-
son operation was successful. The mem-
ory order of this atomic operation must
be memory_order::relaxed for both success
and fail. This function is only supported
for 64-bit data types on devices that have
aspect::int64_base_atomics.

T fetch_add(T operand, memory_order memoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Available only when: T != float.
Atomically adds the value operand to the
value at the address of the multi_ptr as-
sociated with this SYCL atomic and as-
signs the result to the value at the address
of the multi_ptr associated with this SYCL
atomic. Returns the value at the address
of the multi_ptr associated with this SYCL
atomic before the call. The memory order of
this atomic operation must be memory_order
::relaxed. This function is only supported
for 64-bit data types on devices that have
aspect::int64_base_atomics.

Continued on next page

Table 4.121: Member functions available on an object of type cl::sycl::atomic<T>.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 339



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

Member function Description
T fetch_sub(T operand, memory_order memoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Available only when: T != float.
Atomically subtracts the value operand to
the value at the address of the multi_ptr
associated with this SYCL atomic and as-
signs the result to the value at the address
of the multi_ptr associated with this SYCL
atomic. Returns the value at the address
of the multi_ptr associated with this SYCL
atomic before the call. The memory order of
this atomic operation must be memory_order
::relaxed. This function is only supported
for 64-bit data types on devices that have
aspect::int64_base_atomics.

T fetch_and(T operand, memory_order memoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Available only when: T != float.
Atomically performs a bitwise AND be-
tween the value operand and the value at
the address of the multi_ptr associated with
this SYCL atomic and assigns the result to
the value at the address of the multi_ptr as-
sociated with this SYCL atomic. Returns
the value at the address of the multi_ptr
associated with this SYCL atomic before

the call. The memory order of this atomic
operation must be memory_order::relaxed
. This function is only supported for 64-
bit data types on devices that have aspect
::int64_extended_atomics.

T fetch_or(T operand, memory_order memoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Available only when: T != float.
Atomically performs a bitwise OR between
the value operand and the value at the ad-
dress of the multi_ptr associated with this
SYCL atomic and assigns the result to the
value at the address of the multi_ptr as-
sociated with this SYCL atomic. Returns
the value at the address of the multi_ptr
associated with this SYCL atomic before

the call. The memory order of this atomic
operation must be memory_order::relaxed
. This function is only supported for 64-
bit data types on devices that have aspect
::int64_extended_atomics.

Continued on next page

Table 4.121: Member functions available on an object of type cl::sycl::atomic<T>.

340 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.17. SYNCHRONIZATION AND ATOMICS

Member function Description
T fetch_xor(T operand, memory_order memoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Available only when: T != float.
Atomically performs a bitwise XOR be-
tween the value operand and the value at
the address of the multi_ptr associated with
this SYCL atomic and assigns the result to
the value at the address of the multi_ptr as-
sociated with this SYCL atomic. Returns
the value at the address of the multi_ptr
associated with this SYCL atomic before

the call. The memory order of this atomic
operation must be memory_order::relaxed
. This function is only supported for 64-
bit data types on devices that have aspect
::int64_extended_atomics.

T fetch_min(T operand, memory_order memoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Atomically computes the minimum of the
value operand and the value at the ad-
dress of the multi_ptr associated with this
SYCL atomic and assigns the result to the
value at the address of the multi_ptr as-
sociated with this SYCL atomic. Returns
the value at the address of the multi_ptr
associated with this SYCL atomic before

the call. The memory order of this atomic
operation must be memory_order::relaxed
. This function is only supported for 64-
bit data types on devices that have aspect
::int64_extended_atomics.

T fetch_max(T operand, memory_order memoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Available only when: T != float.
Atomically computes the maximum of the
value operand and the value at the ad-
dress of the multi_ptr associated with this
SYCL atomic and assigns the result to the
value at the address of the multi_ptr as-
sociated with this SYCL atomic. Returns
the value at the address of the multi_ptr
associated with this SYCL atomic before

the call. The memory order of this atomic
operation must be memory_order::relaxed
. This function is only supported for 64-
bit data types on devices that have aspect
::int64_extended_atomics.

End of table

Table 4.121: Member functions available on an object of type cl::sycl::atomic<T>.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 341



4.17. SYNCHRONIZATION AND ATOMICS SYCL 2020 provisional

Functions Description
template <typename T, access::address_space

addressSpace>

T atomic_load(atomic<T, addressSpace> object,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.load(

memoryOrder).

template <typename T, access::address_space

addressSpace>

void atomic_store(atomic<T, addressSpace> object, T

operand,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.store(

operand, memoryOrder).

template <typename T, access::address_space

addressSpace>

T atomic_exchange(atomic<T, addressSpace> object, T

operand,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.exchange(

operand, memoryOrder).

template <typename T, access::address_space

addressSpace>

bool atomic_compare_exchange_strong(

atomic<T, addressSpace> object, T &expected, T

desired,

memory_order successMemoryOrder =

memory_order::relaxed

memory_order failMemoryOrder =

memory_order::relaxed)

Deprecated in SYCL 2020.
Equivalent to calling object.

compare_exchange_strong(expected

, desired, successMemoryOrder,

failMemoryOrders).

template <typename T, access::address_space

addressSpace>

T atomic_fetch_add(atomic<T, addressSpace> object, T

operand,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.fetch_add(
operand, memoryOrder).

template <typename T, access::address_space

addressSpace>

T atomic_fetch_sub(atomic<T, addressSpace> object, T

operand,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.fetch_sub(
operand, memoryOrder).

template <typename T, access::address_space

addressSpace>

T atomic_fetch_and(atomic<T> operand, T object,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.fetch_add(
operand, memoryOrder).

Continued on next page

Table 4.122: Global functions available on atomic types.

342 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.18. STREAM CLASS

Functions Description
template <typename T, access::address_space

addressSpace>

T atomic_fetch_or(atomic<T, addressSpace> object, T

operand,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.fetch_or(

operand, memoryOrder).

template <typename T, access::address_space

addressSpace>

T atomic_fetch_xor(atomic<T, addressSpace> object, T

operand,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.fetch_xor(
operand, memoryOrder).

template <typename T, access::address_space

addressSpace>

T atomic_fetch_min(atomic<T, addressSpace> object, T

operand,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.fetch_min(
operand, memoryOrder).

template <typename T, access::address_space

addressSpace>

T atomic_fetch_max(atomic<T, addressSpace> object, T

operand,

memory_order memoryOrder = memory_order::relaxed

)

Deprecated in SYCL 2020.
Equivalent to calling object.fetch_max(
operand, memoryOrder).

End of table

Table 4.122: Global functions available on atomic types.

4.18 Stream class

The SYCL stream class is a buffered output stream that allows outputting the values of built-in, vector and SYCL
types to the console. The implementation of how values are streamed to the console is left as an implementation
detail.

The way in which values are output by an instance of the SYCL stream class can also be altered using a range of
manipulators.

There are two limits that are relevant for the stream class. The totalBufferSize limit specifies the maximum
size of the overall character stream that can be output during a kernel invocation, and the workItemBufferSize
limit specifies the maximum size of the character stream that can be output within a work item before a flush must
be performed. Both of these limits are specified in bytes. The totalBufferSize limit must be sufficient to contain
the characters output by all stream statements during execution of a kernel invocation (the aggregate of outputs
from all work items), and the workItemBufferSize limit must be sufficient to contain the characters output within
a work item between stream flush operations.

If the totalBufferSize or workItemBufferSize limits are exceeded, it is implementation defined whether the
streamed characters exceeding the limit are output, or silently ignored/discarded, and if output it is imple-
mentation defined whether those extra characters exceeding the workItemBufferSize limit count toward the
totalBufferSize limit. Regardless of this implementation defined behavior of output exceeding the limits, no

CHAPTER 4. SYCL PROGRAMMING INTERFACE 343



4.18. STREAM CLASS SYCL 2020 provisional

undefined or erroneous behavior is permitted of an implementation when the limits are exceeded. Unused char-
acters within workItemBufferSize (any portion of the workItemBufferSize capacity that has not been used at
the time of a stream flush) do not count toward the totalBufferSize limit, in that only characters flushed count
toward the totalBufferSize limit.

The SYCL stream class provides the common reference semantics (see Section 4.5.3).

4.18.1 Stream class interface
The constructors and member functions of the SYCL stream class are listed in Tables 4.125, 4.126, and 4.127
respectively. The additional common special member functions and common member functions are listed in
Tables 4.1 and 4.2, respectively.

The operand types that are supported by the SYCL stream class operator<<() operator are listed in Table 4.123.

The manipulators that are supported by the SYCL stream class operator<<() operator are listed in Table 4.124.

1 namespace sycl {

2
3 enum class stream_manipulator {

4 flush,

5 dec,

6 hex,

7 oct,

8 noshowbase,

9 showbase,

10 noshowpos,

11 showpos,

12 endl,

13 fixed,

14 scientific,

15 hexfloat,

16 defaultfloat

17 };

18
19
20 const stream_manipulator flush = stream_manipulator::flush;

21
22 const stream_manipulator dec = stream_manipulator::dec;

23
24 const stream_manipulator hex = stream_manipulator::hex;

25
26 const stream_manipulator oct = stream_manipulator::oct;

27
28 const stream_manipulator noshowbase = stream_manipulator::noshowbase;

29
30 const stream_manipulator showbase = stream_manipulator::showbase;

31
32 const stream_manipulator noshowpos = stream_manipulator::noshowpos;

33
34 const stream_manipulator showpos = stream_manipulator::showpos;

35
36 const stream_manipulator endl = stream_manipulator::endl;

37

344 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.18. STREAM CLASS

38 const stream_manipulator fixed = stream_manipulator::fixed;

39
40 const stream_manipulator scientific = stream_manipulator::scientific;

41
42 const stream_manipulator hexfloat = stream_manipulator::hexfloat;

43
44 const stream_manipulator defaultfloat = stream_manipulator::defaultfloat;

45
46 __precision_manipulator__ setprecision(int precision);

47
48 __width_manipulator__ setw(int width);

49
50 class stream {

51 public:

52
53 stream(size_t totalBufferSize, size_t workItemBufferSize, handler& cgh);

54
55 /* -- common interface members -- */

56
57 size_t get_size() const;

58
59 size_t get_work_item_buffer_size() const;

60
61 /* get_max_statement_size() has the same functionality as get_work_item_buffer_size(),

62 and is provided for backward compatibility. get_max_statement_size() is a deprecated

63 query. */

64 size_t get_max_statement_size() const;

65 };

66
67 template <typename T>

68 const stream& operator<<(const stream& os, const T &rhs);

69
70 } // namespace sycl

Stream operand type Description
char, signed char, unsigned char, int, unsigned int,

short, unsigned short, long int, unsigned long int,

long long int, unsigned long long int

Outputs the value as a stream of characters.

float, double, half Outputs the value according to the precision
of the current statement as a stream of char-
acters.

char *, const char * Outputs the string.
T *, const T *, multi_ptr Outputs the address of the pointer as a

stream of characters.
vec Outputs the value of each component of the

vector as a stream of characters.
id, range, item, nd_item, group, nd_range, h_item Outputs the value of each component of

each id or range as a stream of characters.
End of table

Table 4.123: Operand types supported by the stream class.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 345



4.18. STREAM CLASS SYCL 2020 provisional

Stream manipulator Description
flush Triggers a flush operation, which synchro-

nizes the work item stream buffer with the
global stream buffer, and then empties the
work item stream buffer. After a flush, the
full workItemBufferSize is available again
for subsequent streaming within the work
item.

endl Outputs a new-line character and then trig-
gers a flush operation.

dec Outputs any subsequent values in the cur-
rent statement in decimal base.

hex Outputs any subsequent values in the cur-
rent statement in hexadecimal base.

oct Outputs any subsequent values in the cur-
rent statement in octal base.

noshowbase Outputs any subsequent values without the
base prefix.

showbase Outputs any subsequent values with the
base prefix.

noshowpos Outputs any subsequent values without a
plus sign if the value is positive.

showpos Outputs any subsequent values with a plus
sign if the value is positive.

setw(int) Sets the field width of any subsequent val-
ues in the current statement.

setprecision(int) Sets the precision of any subsequent values
in the current statement.

fixed Outputs any subsequent floating-point val-
ues in the current statement in fixed notation.

scientific Outputs any subsequent floating-point val-
ues in the current statement in scientific no-
tation.

hexfloat Outputs any subsequent floating-point val-
ues in the current statement in hexadecimal
notation.

defaultfloat Outputs any subsequent floating-point val-
ues in the current statement in the default no-
tation.

End of table

Table 4.124: Manipulators supported by the stream class.

346 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.18. STREAM CLASS

Constructor Description
stream(size_t totalBufferSize, size_t

workItemBufferSize, handler& cgh)

Constructs a SYCL stream instance asso-
ciated with the command group specified by
cgh, with a maximum buffer size in bytes per
kernel invocation specified by the parameter
totalBufferSize, and a maximum stream
size that can be buffered by a work item be-
tween stream flushes specified by the param-
eter workItemBufferSize.

End of table

Table 4.125: Constructors of the stream class.

Member function Description
size_t get_size()const Returns the total buffer size, in bytes.
size_t get_work_item_buffer_size()const Returns the buffer size per work item, in

bytes.
size_t get_max_statement_size()const Deprecated query with same functionality

as get_work_item_buffer_size().
End of table

Table 4.126: Member functions of the stream class.

Global function Description
template <typename T> const stream& operator<<(const

stream& os, const T &rhs)

Outputs any valid values (see 4.123) as
a stream of characters and applies any
valid manipulator (see 4.124) to the current
stream.

End of table

Table 4.127: Global functions of the stream class.

4.18.2 Synchronization

An instance of the SYCL stream class is required to synchronize with the host, and must output every-
thing that is streamed to it via the operator<<() operator before a flush operation (that doesn’t exceed the
workItemBufferSize or totalBufferSize limits) within a SYCL kernel function by the time that the event as-
sociated with a command group submission enters the completed state. The point at which this synchronization
occurs and the member function by which this synchronization is performed are implementation defined. For
example it is valid for an implementation to use printf().

The SYCL stream class is required to output the content of each stream, between flushes (up to
workItemBufferSize), without mixing with content from the same stream in other work items. There are no
other output order guarantees between work items or between streams. The stream flush operation therefore de-
limits the unit of output that is guaranteed to be displayed without mixing with other work items, with respect to
a single stream.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 347



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

4.18.3 Implicit flush
There is guaranteed to be an implicit flush of each stream used by a kernel, at the end of kernel execution, from
the perspective of each work item. There is also an implicit flush when the endl stream manipulator is executed.
No other implicit flushes are permitted in an implementation.

4.18.4 Performance note
The usage of the stream class is designed for debugging purposes and is therefore not recommended for perfor-
mance critical applications.

4.19 SYCL built-in functions for SYCL host and device

SYCL kernels may execute on any SYCL device, which requires the functions used in the kernels to be compiled
and linked for both device and host. In the SYCL programming model, the built-ins are available for the entire
SYCL application within the sycl namespace, although their semantics may be different. This section follows the
OpenCL 1.2 specification document [1, ch. 6.12] - except that for SYCL, all functions are located within the sycl
namespace - and describes the behavior of these functions for SYCL host and device. The expected precision and
any other semantic requirements are defined in the backend specification.

The SYCL built-in functions are available throughout the SYCL application, and depending on where they ex-
ecute, they are either implemented using their host implementation or the device implementation. The SYCL
system guarantees that all of the built-in functions fulfill the same requirements for both host and device.

4.19.1 Description of the built-in types available for SYCL host
and device

All of the OpenCL built-in types are available in the namespace sycl. For the purposes of this document we use
generic type names for describing sets of valid SYCL types. The generic type names themselves are not valid
SYCL types, but they represent a set of valid types, as defined in Tables 4.128. Each generic type within a section
is comprised of a combination of scalar, SYCL vec and/or marray class specializations. The letters n and N define
valid sizes for class specializations, where n means 2,3,4,8,16 and N means any positive value of size t type. Note
that any reference to the base type refers to the type of a scalar or the element type of a SYCL vec or marray
specialization.

Generic type name Description
floatn floatn, mfloatn, marray<N,float>

genfloatf float, floatn

doublen doublen, mdoublen, marray<N,double>

genfloatd double, doublen

halfn halfn, mhalfn, marray<N,half>

genfloath half, halfn

genfloat genfloatf, genfloatd, genfloath

sgenfloat float, double, half

gengeofloat float, float2, float3, float4,

mfloat2, mfloat3, mfloat4

Continued on next page

Table 4.128: Generic type name description, which serves as a description for all valid types of parameters to
kernel functions [1].

348 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Generic type name Description
gengeodouble double, double2, double3, double4,

mdouble2, mdouble3, mdouble4

charn charn, mcharn, marray<N,char>

scharn scharn, mscharn, marray<N,signed char

>

ucharn ucharn, mucharn, marray<N,unsigned

char>

igenchar signed char, scharn

ugenchar unsigned char, ucharn

genchar char, charn, igenchar, ugenchar

shortn shortn, mshortn, marray<N,short>

genshort short, shortn

ushortn ushortn, mushortn, marray<N,unsigned

short>

ugenshort unsigned short, ushortn

uintn uintn, muintn, marray<N,unsigned int>

ugenint unsigned int, uintn

intn intn, mintn, marray<N,int>

genint int, intn

ulongn ulongn, mulongn, marray<N,unsigned

long int>

ugenlong unsigned long int, ulongn

longn longn, mlongn, marray<N,long int>

genlong long int, longn

ulonglongn ulonglongn, mulonglongn, marray<N,

unsigned long long int>

ugenlonglong unsigned long long int, ulonglongn

longlongn longlongn, mlonglongn, marray<N,long

long int>

genlonglong long long int, longlongn

igenlonginteger genlong, genlonglong

ugenlonginteger ugenlong, ugenlonglong

geninteger genchar, genshort, ugenshort,

genint, ugenint, igenlonginteger,

ugenlonginteger

genintegerNbit All types within geninteger whose

base type are N bits in size, where N

= 8, 16, 32, 64.

igeninteger igenchar, genshort, genint,

igenlonginteger

igenintegerNbit All types within igeninteger whose

base type are N bits in size, where N

= 8, 16, 32, 64.

ugeninteger ugenchar, ugenshort, ugenint,

ugenlonginteger

Continued on next page

Table 4.128: Generic type name description, which serves as a description for all valid types of parameters to
kernel functions [1].

CHAPTER 4. SYCL PROGRAMMING INTERFACE 349



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Generic type name Description
ugenintegerNbit All types within ugeninteger whose

base type are N bits in size, where N

= 8, 16, 32, 64.

sgeninteger char, signed char, unsigned char,

short, unsigned short, int, unsigned

int, long int, unsigned long int,

long long int, unsigned long long int

gentype genfloat, geninteger

genfloatptr All permutations of multi_ptr<dataT
, addressSpace, IsDecorated> where
dataT is all types within genfloat,
addressSpace is access::address_space::
global_space, access::address_space::
local_space and access::address_space
::private_space and IsDecorated is
access::decorated::yes and access::

decorated::no.
genintptr All permutations of multi_ptr<dataT

, addressSpace, IsDecorated> where
dataT is all types within genint,
addressSpace is access::address_space::
global_space, access::address_space::
local_space and access::address_space
::private_space and IsDecorated is
access::decorated::yes and access::

decorated::no.
booln marray<N,bool>

genbool bool, booln

End of table

Table 4.128: Generic type name description, which serves as a description for all valid types of parameters to
kernel functions [1].

4.19.2 Work-item functions
In the OpenCL 1.2 specification document [1, ch. 6.12.1] in Table 6.7 the work-item functions are defined where
they provide the size of the enqueued kernel NDRange. These functions are available in SYCL through the item
and group classes see sections 4.10.1.4, 4.10.1.5 and 4.10.1.7.

4.19.3 Function objects
SYCL provides a number of function objects in the sycl namespace on host and device. All function objects obey
C++ conversion and promotion rules. Each function object is additionally specialized for void as a transparent
function object that deduces its parameter types and return type.

SYCL function objects can be identified using the sycl::is_native_function_object and sycl::

is_native_function_object_v traits classes.

350 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

1 namespace sycl {

2
3 template <typename T=void>

4 struct plus {

5 T operator()(const T& x, const T& y) const;

6 };

7
8 template <typename T=void>

9 struct multiplies {

10 T operator()(const T& x, const T& y) const;

11 };

12
13 template <typename T=void>

14 struct bit_and {

15 T operator()(const T& x, const T& y) const;

16 };

17
18 template <typename T=void>

19 struct bit_or {

20 T operator()(const T& x, const T& y) const;

21 };

22
23 template <typename T=void>

24 struct bit_xor {

25 T operator()(const T& x, const T& y) const;

26 };

27
28 template <typename T=void>

29 struct logical_and {

30 T operator()(const T& x, const T& y) const;

31 };

32
33 template <typename T=void>

34 struct logical_or {

35 T operator()(const T& x, const T& y) const;

36 };

37
38 template <typename T=void>

39 struct minimum {

40 T operator()(const T& x, const T& y) const;

41 };

42
43 template <typename T=void>

44 struct maximum {

45 T operator()(const T& x, const T& y) const;

46 };

47
48 } // namespace sycl

Member function Description
T operator()(const T& x, const T& y)const Returns the sum of its arguments, equivalent

to x + y.
End of table

Table 4.129: Member functions for the plus function object.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 351



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Member function Description
T operator()(const T& x, const T& y)const Returns the product of its arguments, equiv-

alent to x * y.
End of table

Table 4.130: Member functions for the multiplies function object.

Member function Description
T operator()(const T& x, const T& y)const Returns the bitwise AND of its arguments,

equivalent to x & y.
End of table

Table 4.131: Member functions for the bit_and function object.

Member function Description
T operator()(const T& x, const T& y)const Returns the bitwise OR of its arguments,

equivalent to x | y.
End of table

Table 4.132: Member functions for the bit_or function object.

Member function Description
T operator()(const T& x, const T& y)const Returns the bitwise XOR of its arguments,

equivalent to x ˆ y.
End of table

Table 4.133: Member functions for the bit_xor function object.

Member function Description
T operator()(const T& x, const T& y)const Returns the logical AND of its arguments,

equivalent to x && y.
End of table

Table 4.134: Member functions for the logical_and function object.

Member function Description
T operator()(const T& x, const T& y)const Returns the logical OR of its arguments,

equivalent to x || y.
End of table

Table 4.135: Member functions for the logical_or function object.

352 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Member function Description
T operator()(const T& x, const T& y)const Applies std::less to its arguments, in the

same order, then returns the lesser argument
unchanged.

End of table

Table 4.136: Member functions for the minimum function object.

Member function Description
T operator()(const T& x, const T& y)const Applies std::greater to its arguments, in

the same order, then returns the greater ar-
gument unchanged.

End of table

Table 4.137: Member functions for the maximum function object.

4.19.4 Algorithms library
SYCL provides an algorithms library based on the functions described in Section 28 of the C++17 specification.
The first argument to each function is an execution policy, and data ranges are described using instances of
multi_ptr (in place of more general iterators) in order to guarantee that address space information is visible to
the compiler. The functions defined in this section are free functions available in the sycl namespace.

Any restrictions from the standard algorithms library apply. Some of the functions in the SYCL algorithms
library introduce additional restrictions in order to maximize portability across different devices and to minimize
the chances of encountering unexpected behavior.

All algorithms are supported for the fundamental scalar types supported by SYCL (see Table 5.1) and instances
of the SYCL vec and marray classes. Functions with arguments of type vec<T,N> or marray<T,N> are applied
component-wise and are semantically equivalent to N calls to a scalar algorithm with type T.

The execution policy sycl::execution::group denotes that an algorithm should be performed collaboratively by
the work-items in the specified group. All algorithms using this execution policy therefore act as group functions
(as defined in Section 4.19.5), inheriting all restrictions of group functions. Unless the description of a function
says otherwise, how the elements of a range are processed by the work-items in a group is undefined.

4.19.4.1 any_of, all_of and none_of

The any_of, all_of and none_of functions test whether Boolean conditions hold for any of, all of or none of the
values in a range, respectively.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 353



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Function Description
template <typename ExecutionPolicy, typename Ptr,

typename Predicate>

bool any_of(ExecutionPolicy&& policy, Ptr first,

Ptr last, Predicate pred)

Return true if pred returns true for any
element in the range [ f irst, last).

If policy is sycl::execution::group,
first and last must be the same for all
work-items in the group; and pred must be
an immutable callable with the same type
and state for all work-items in the group.

End of table

Table 4.138: Overloads for the any_of function.

Function Description
template <typename ExecutionPolicy, typename Ptr,

typename Predicate>

bool all_of(ExecutionPolicy&& policy, Ptr first,

Ptr last, Predicate pred)

Return true if pred returns true for all
elements in the range [ f irst, last).

If policy is sycl::execution::group,
first and last must be the same for all
work-items in the group; and pred must be
an immutable callable with the same type
and state for all work-items in the group.

End of table

Table 4.139: Overloads for the all_of function.

Function Description
template <typename ExecutionPolicy, typename Ptr,

typename Predicate>

bool none_of(ExecutionPolicy&& policy, Ptr first

, Ptr last, Predicate pred)

Return true if pred returns true for no
elements in the range [ f irst, last).

If policy is sycl::execution::group,
first and last must be the same for all
work-items in the group; and pred must be
an immutable callable with the same type
and state for all work-items in the group.

End of table

Table 4.140: Overloads for the none_of function.

4.19.4.2 reduce

The reduce function combines values in an unspecified order using a binary operator. The result of a call to
reduce is non-deterministic if the binary operator is not commutative and associative. Only the binary operators
defined in Section 4.19.3 are supported by reduce in SYCL 2020, but the standard C++ syntax is used for forward
compatibility with future SYCL versions.

354 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Function Description
template <typename ExecutionPolicy, typename Ptr,

typename BinaryOperation>

Ptr::value_type reduce(ExecutionPolicy&& policy,

Ptr first, Ptr last, BinaryOperation binary_op)

Combine the values in the range [ f irst, last)
using the operator binary_op, which must
be an instance of a SYCL function object.
binary_op(*first, *first) must return a
value of type Ptr::value_type.

If policy is sycl::execution::group,
first, last and the type of binary_op must
be the same for all work-items in the group.

template <typename ExecutionPolicy, typename Ptr,

typename T, typename BinaryOperation>

T reduce(ExecutionPolicy&& policy, Ptr first,

Ptr last, T init, BinaryOperation binary_op)

Combine the values in the range [ f irst, last)
using an initial value of init and the opera-
tor binary_op, which must be an instance of
a SYCL function object. binary_op(init,
*first) must return a value of type T.

If policy is sycl::execution::group,
first, last, init and the type of binary_op
must be the same for all work-items in the
group.

End of table

Table 4.141: Overloads of the reduce function.

4.19.4.3 exclusive_scan and inclusive_scan

The scan functions compute a generalized prefix sum using a binary operator. The result of a call to a scan is
non-deterministic if the binary operator is not associative. Only the binary operators defined in Section 4.19.3 are
supported by the scan functions in SYCL 2020, but the standard C++ syntax is used for forward compatibility
with future SYCL versions.

A scan operation can be exclusive or inclusive. For a scan of elements [x0, ..., xn], the ith result in an exclusive
scan excludes xi, whereas the ith result in an inclusive scan includes xi.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 355



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Function Description
template <typename ExecutionPolicy, typename InPtr,

typename OutPtr, typename BinaryOperation>

OutPtr exclusive_scan(ExecutionPolicy&& policy,

InPtr first, InPtr last, OutPtr result,

BinaryOperation binary_op)

Perform an exclusive scan over the values
in the range [ f irst, last) using the operator
binary_op, which must be an instance of
a SYCL function object. binary_op(*

first, *first) must return a value of type
OutPtr::value_type.

The value written to result + i is the
exclusive scan of the first i values in the
range and the identity value of binary_op.
Returns a pointer to the end of the output
range.

If policy is sycl::execution::group,
first, last, result and the type of
binary_op must be the same for all
work-items in the group.

template <typename ExecutionPolicy, typename InPtr,

typename OutPtr, typename T, typename

BinaryOperation>

OutPtr exclusive_scan(ExecutionPolicy&& policy,

InPtr first, InPtr last, OutPtr result, T init,

BinaryOperation binary_op)

Perform an exclusive scan over the values
in the range [ f irst, last) using the operator
binary_op, which must be an instance of a
SYCL function object. binary_op(init, *
first) must return a value of type T.

The value written to result + i is the
exclusive scan of the first i values in the
range and an initial value specified by init.
Returns a pointer to the end of the output
range.

If policy is sycl::execution::group,
first, last, result, init and the type
of binary_op must be the same for all
work-items in the group.

End of table

Table 4.142: Overloads of the exclusive_scan function.

356 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Function Description
template <typename ExecutionPolicy, typename InPtr,

typename OutPtr, typename BinaryOperation>

OutPtr inclusive_scan(ExecutionPolicy&& policy,

InPtr first, InPtr last, OutPtr result,

BinaryOperation binary_op)

Perform an inclusive scan over the values
in the range [ f irst, last) using the operator
binary_op, which must be an instance of
a SYCL function object. binary_op(*

first, *first) must return a value of type
OutPtr::value_type.

The value written to result + i is the
inclusive scan of the first i values in the
range. Returns a pointer to the end of the
output range.

If policy is sycl::execution::group,
first, last, result and the type of
binary_op must be the same for all
work-items in the group.

template <typename ExecutionPolicy, typename InPtr,

typename OutPtr, typename BinaryOperation, typename

T>

OutPtr inclusive_scan(ExecutionPolicy&& policy,

InPtr first, InPtr last, OutPtr result,

BinaryOperation binary_op, T init)

Perform an inclusive scan over the values
in the range [ f irst, last) using the operator
binary_op, which must be an instance of a
SYCL function object. binary_op(init, *
first) must return a value of type T.

The value written to result + i is the
inclusive scan of the first i values in the
range and an initial value specified by init.
Returns a pointer to the end of the output
range.

If policy is sycl::execution::group,
first, last, result, init and the type
of binary_op must be the same for all
work-items in the group.

End of table

Table 4.143: Overloads of the inclusive_scan function.

4.19.5 Group functions
SYCL provides a number of functions that expose functionality tied to groups of work-items (such as group bar-
riers and collective operations). These group functions act as synchronization points and must be encountered in
converged control flow by all work-items in the group — if one work-item in the group reaches the function, then
all work-items in the group must reach the function. Additionally, restrictions may be placed on the arguments
passed to each function in order to ensure that all work-items in the group agree on the operation that is being
performed. Any such restrictions on the arguments passed to a function are defined within the descriptions of
those functions. Violating these restrictions results in undefined behavior.

The functions defined in this section are free functions available in the sycl namespace, and they all accept a
templated parameter of type Group. It is valid to pass an argument of type group or of type sub_group for this
parameter.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 357



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

All group functions are supported for the fundamental scalar types supported by SYCL (see Table 5.1) and in-
stances of the SYCL vec and marray classes. Functions with arguments of type vec<T,N> or marray<T,N> are
applied component-wise and are semantically equivalent to N calls to a scalar function with type T.

Using a group function inside of a kernel may introduce additional limits on the resources available to user code
inside the same kernel. The behavior of these limits is implementation-defined, but must be reflected by calls to
kernel querying functions (such as kernel::get_info) as described in Section 4.12.

It is undefined behavior for any group function to be invoked within a parallel_for_work_group or
parallel_for_work_item context.

4.19.5.1 group_broadcast

The group_broadcast function communicates a value held by one work-item to all other work-items in the group.

Function Description
template <typename Group, typename T>

T group_broadcast(Group g, T x)

Broadcast the value of x from the work-item
with the smallest linear id to all work-items
within the group.

template <typename Group, typename T>

T group_broadcast(Group g, T x, Group::

linear_id_type local_linear_id)

Broadcast the value of x from the work-item
with the specified linear id to all work-items
within the group.

The value of local_linear_id must be
the same for all work-items in the group.

template <typename Group, typename T>

T group_broadcast(Group g, T x, Group::id_type

local_id)

Broadcast the value of x from the work-item
with the specified id to all work-items
within the group.

The value of local_id must be the
same for all work-items in the group,
and its dimensionality must match the
dimensionality of the group.

End of table

Table 4.144: Overloads of the group_broadcast function.

4.19.5.2 group_barrier

The group_barrier function synchronizes all work-items in a group, using a group barrier.

358 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Function Description
template <typename Group>

void group_barrier(Group g, memory_scope

fence_scope = Group::fence_scope)

Synchronizes all work-items in the group.
The current work-item will wait at the
barrier until all work-items in the group
have reached the barrier. In addition,
the barrier performs a group mem-fence
operation ensuring that all memory accesses
issued before the barrier complete before
those issued after the barrier: all work-items
in the group execute a release fence prior
to synchronizing at the barrier, and all
work-items in the group execute an acquire
fence afterwards.

By default, the scope of these fences is
set to the narrowest scope including all
work-items in the group (as reported by
Group::fence_scope). This scope may be
optionally overridden with a broader scope,
specified by the fence_scope argument.

End of table

Table 4.145: Overloads for the group_barrier function.

4.19.5.3 group_any_of, group_all_of and group_none_of

The group_any_of, group_all_of and group_none_of functions correspond to the any_of, all_of and none_of
functions from the algorithm library in Section 4.19.4, respectively. The group_ variants of the functions perform
the same operations, but apply directly to values supplied by the work-items in a group instead of a range of values
stored in memory.

Function Description
template <typename Group>

bool group_any_of(Group g, bool pred)

Return true if pred is true for any work-item
in the group.

template <typename Group, typename T, typename

Predicate>

bool group_any_of(Group g, T x, Predicate pred)

Return true if pred(x) is true for any
work-item in the group.

pred must be an immutable callable with
the same type and state for all work-items
in the group.

End of table

Table 4.146: Overloads for the group_any_of function.

Function Description
template <typename Group>

bool group_all_of(Group g, bool pred)

Return true if pred is true for all work-items
in the group.

Continued on next page

Table 4.147: Overloads for the group_all_of function.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 359



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Function Description
template <typename Group, typename T, typename

Predicate>

bool group_all_of(Group g, T x, Predicate pred)

Return true if pred(x) is true for all work-
items in the group.

pred must be an immutable callable with
the same type and state for all work-items
in the group.

End of table

Table 4.147: Overloads for the group_all_of function.

Function Description
template <typename Group>

bool group_none_of(Group g, bool pred)

Return true if pred is true for no work-item
in the group.

template <typename Group, typename T, typename

Predicate>

bool group_none_of(Group g, T x, Predicate pred)

Return true if pred(x) is true for no work-
item in the group.

pred must be an immutable callable with
the same type and state for all work-items
in the group.

End of table

Table 4.148: Overloads for the group_none_of function.

4.19.5.4 group_reduce

The group_reduce function corresponds to the reduce function from the algorithms library in Section 4.19.4.
The group_ variant of the function performs the same operation, but applies directly to values supplied by the
work-items in a group instead of a range of values stored in memory.

Function Description
template <typename Group, typename T, typename

BinaryOperation>

T group_reduce(Group g, T x, BinaryOperation

binary_op)

Combine the values of x from all work-items
in the group using the operator binary_op,
which must be an instance of a SYCL
function object. binary_op(x, x) must
return a value of type T.

The type of binary_op must be the
same for all work-items in the group.

template <typename Group, typename V, typename T,

typename BinaryOperation>

T group_reduce(Group g, V x, T init,

BinaryOperation binary_op)

Combine the values of x from all work-items
in the group using an initial value of init
and the operator binary_op, which must
be an instance of a SYCL function object.
binary_op(init, x) must return a value of
type T.

The type of binary_op must be the
same for all work-items in the group.

End of table

Table 4.149: Overloads of the group_reduce function.
360 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

4.19.5.5 group_exclusive_scan and group_inclusive_scan

The group_exclusive_scan and group_inclusive_scan functions correspond to the exclusive_scan and
inclusive_scan functions from the algorithm library in Section 4.19.4, respectively. The group_ variants of
the functions perform the same operations, but apply directly to values supplied by the work-items in a group
instead of a range of values stored in memory.

Function Description
template <typename Group, typename T, typename

BinaryOperation>

T group_exclusive_scan(Group g, T x,

BinaryOperation binary_op)

Perform an exclusive scan over the values
of x from all work-items in the group using
the operator binary_op, which must be
an instance of a SYCL function object.
binary_op(x, x) must return a value of
type T.

The value returned on work-item i is
the exclusive scan of the first i work-items
in the group and the identity value of
binary_op. For multi-dimensional groups,
the order of work-items in the group is
determined by their linear id.

The type of binary_op must be the
same for all work-items in the group.

template <typename Group, typename V, typename T,

typename BinaryOperation>

T group_exclusive_scan(Group g, V x, T init,

BinaryOperation binary_op)

Perform an exclusive scan over the values
of x from all work-items in the group using
the operator binary_op, which must be
an instance of a SYCL function object.
binary_op(init, x) must return a value of
type T.

The value returned on work-item i is
the exclusive scan of the first i work items
in the group and an initial value specified
by init. For multi-dimensional groups,
the order of work-items in the group is
determined by their linear id.

init and the type of binary_op must
be the same for all work-items in the group.

End of table

Table 4.150: Overloads of the group_exclusive_scan function.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 361



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Function Description
template <typename Group, typename T, typename

BinaryOperation>

T group_inclusive_scan(Group g, T x,

BinaryOperation binary_op)

Perform an inclusive scan over the values
of x from all work-items in the group using
the operator binary_op, which must be
an instance of a SYCL function object.
binary_op(x, x) must return a value of
type T.

The value returned on work-item i is
the inclusive scan of the first i work items
in the group. For multi-dimensional groups,
the order of work-items in the group is
determined by their linear id.

The type of binary_op must be the
same for all work-items in the group.

template <typename Group, typename V, typename

BinaryOperation, typename T>

T group_inclusive_scan(Group g, V x,

BinaryOperation binary_op, T init)

Perform an inclusive scan over the values
of x from all work-items in the group using
the operator binary_op, which must be
an instance of a SYCL function object.
binary_op(init, x) must return a value of
type T.

The value returned on work-item i is
the inclusive scan of the first i work items
in the group and an initial value specified
by init. For multi-dimensional groups,
the order of work-items in the group is
determined by their linear id.

init and the type of binary_op must
be the same for all work-items in the group.

End of table

Table 4.151: Overloads of the group_inclusive_scan function.

4.19.6 Math functions
In SYCL the OpenCL math functions are available in the namespace sycl on host and device with the same
precision guarantees as defined in the OpenCL 1.2 specification document [1, ch. 7] for host and device. For a
SYCL platform the numerical requirements for host need to match the numerical requirements of the OpenCL
math built-in functions. The built-in functions can take as input float or optionally double and their vec and marray
counterparts, for all supported dimensions including dimension 1.

The built-in functions available for SYCL host and device, with the same precision requirements for both host
and device, are described in Table 4.152.

362 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Math Function Description
genfloat acos (genfloat x) Inverse cosine function.
genfloat acosh (genfloat x) Inverse hyperbolic cosine.
genfloat acospi (genfloat x) Compute arccos(x)/π
genfloat asin (genfloat x) Inverse sine function.
genfloat asinh (genfloat x) Inverse hyperbolic sine.
genfloat asinpi (genfloat x) Compute arcsin(x)/π
genfloat atan (genfloat y_over_x) Inverse tangent function.
genfloat atan2 (genfloat y, genfloat x) Compute arctan(y/x).
genfloat atanh (genfloat x) Hyperbolic inverse tangent.
genfloat atanpi (genfloat x) Compute arctan(x)/π.
genfloat atan2pi (genfloat y, genfloat x) Compute arctan2(y, x)/π.
genfloat cbrt (genfloat x) Compute cube-root.
genfloat ceil (genfloat x) Round to integral value using the round to

positive infinity rounding mode.
genfloat copysign (genfloat x, genfloat y) Returns x with its sign changed to match the

sign of y.
genfloat cos (genfloat x) Compute cosine.
genfloat cosh (genfloat x) Compute hyperbolic cosine.
genfloat cospi (genfloat x) Compute cos(πx).
genfloat erfc (genfloat x) Complementary error function.
genfloat erf (genfloat x) Error function encountered in integrating the

normal distribution.
genfloat exp (genfloat x ) Compute the base-e exponential of x.
genfloat exp2 (genfloat x) Exponential base 2 function.
genfloat exp10 (genfloat x) Exponential base 10 function.
genfloat expm1 (genfloat x) Compute ex − 1.0.
genfloat fabs (genfloat x) Compute absolute value of a floating-point

number.
genfloat fdim (genfloat x, genfloat y) x − y if x > y,+0 if x is less than or equal to

y.
genfloat floor (genfloat x) Round to integral value using the round to

negative infinity rounding mode.
genfloat fma (genfloat a, genfloat b, genfloat c) Returns the correctly rounded floating-point

representation of the sum of c with the in-
finitely precise product of a and b. Round-
ing of intermediate products shall not oc-
cur. Edge case behavior is per the IEEE 754-
2008 standard.

genfloat fmax (genfloat x, genfloat y)

genfloat fmax (genfloat x, sgenfloat y)

Returns y if x < y, otherwise it returns x.
If one argument is a NaN, fmax() returns
the other argument. If both arguments are
NaNs, fmax() returns a NaN.

genfloat fmin (genfloat x, genfloat y)

genfloat fmin (genfloat x, sgenfloat y)

Returns y if y < x, otherwise it returns x.
If one argument is a NaN, fmin() returns
the other argument. If both arguments are
NaNs, fmin() returns a NaN.

genfloat fmod (genfloat x, genfloat y) Modulus. Returns x–y · trunc(x/y).
Continued on next page

Table 4.152: Math functions which work on SYCL host and device. They correspond to Table 6.8 of the OpenCL
1.2 specification [1].
CHAPTER 4. SYCL PROGRAMMING INTERFACE 363



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Math Function Description
genfloat fract (genfloat x, genfloatptr iptr) Returns fmin( x − floor (x),

nextafter(genfloat(1.0), genfloat(0.0)) ).
floor(x) is returned in iptr.

genfloat frexp (genfloat x, genintptr exp) Extract mantissa and exponent from x. For
each component the mantissa returned is a
float with magnitude in the interval [1/2, 1)
or 0. Each component of x equals mantissa
returned ×2exp.

genfloat hypot (genfloat x, genfloat y) Compute the value of the square root of x2+
y2 without undue overflow or underflow.

genint ilogb (genfloat x) Return the exponent as an integer value.
genfloat ldexp (genfloat x, genint k)

genfloat ldexp (genfloat x, int k)

Multiply x by 2 to the power k.

genfloat lgamma (genfloat x) Log gamma function. Returns the natu-
ral logarithm of the absolute value of the
gamma function.

genfloat lgamma_r (genfloat x, genintptr signp) Log gamma function. Returns the natu-
ral logarithm of the absolute value of the
gamma function. The sign of the gamma
function is returned in the signp argument of
lgamma_r.

genfloat log (genfloat x) Compute natural logarithm.
genfloat log2 (genfloat x) Compute a base 2 logarithm.
genfloat log10 (genfloat x) Compute a base 10 logarithm.
genfloat log1p (genfloat x) Compute loge(1.0 + x).
genfloat logb (genfloat x) Compute the exponent of x, which is the

integral part of logr (|x|).
genfloat mad (genfloat a,genfloat b, genfloat c) mad approximates a * b + c. Whether or

how the product of a * b is rounded and
how supernormal or subnormal intermediate
products are handled is not defined. mad is
intended to be used where speed is preferred
over accuracy.

genfloat maxmag (genfloat x, genfloat y) Returns x if |x| > |y|, y if |y| > |x|, otherwise
fmax(x, y).

genfloat minmag (genfloat x, genfloat y) Returns x if |x| < |y|, y if |y| < |x|, otherwise
fmin(x, y).

genfloat modf (genfloat x, genfloatptr iptr) Decompose a floating-point number. The
modf function breaks the argument x into in-
tegral and fractional parts, each of which has
the same sign as the argument. It stores the
integral part in the object pointed to by iptr.

genfloatf nan (ugenint nancode)

genfloatd nan (ugenlonginteger nancode)

Returns a quiet NaN. The nancode may be
placed in the significand of the resulting
NaN.

Continued on next page

Table 4.152: Math functions which work on SYCL host and device. They correspond to Table 6.8 of the OpenCL
1.2 specification [1].

364 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Math Function Description
genfloat nextafter (genfloat x, genfloat y) Computes the next representable single-

precision floating-point value following x in
the direction of y. Thus, if y is less than x,
nextafter() returns the largest representable
floating-point number less than x.

genfloat pow (genfloat x, genfloat y) Compute x to the power y.
genfloat pown (genfloat x, genint y) Compute x to the power y, where y is an

integer.
genfloat powr (genfloat x, genfloat y) Compute x to the power y, where x >= 0.
genfloat remainder (genfloat x, genfloat y) Compute the value r such that r = x - n*y,

where n is the integer nearest the exact value
of x/y. If there are two integers closest to x/y,
n shall be the even one. If r is zero, it is given
the same sign as x.

genfloat remquo (genfloat x, genfloat y, genintptr

quo)

The remquo function computes the value r
such that r = x - k*y, where k is the inte-
ger nearest the exact value of x/y. If there
are two integers closest to x/y, k shall be the
even one. If r is zero, it is given the same
sign as x. This is the same value that is re-
turned by the remainder function. remquo
also calculates the lower seven bits of the in-
tegral quotient x/y, and gives that value the
same sign as x/y. It stores this signed value
in the object pointed to by quo.

genfloat rint (genfloat x) Round to integral value (using round to
nearest even rounding mode) in floating-
point format. Refer to section 7.1 of the
OpenCL 1.2 specification document [1] for
description of rounding modes.

genfloat rootn (genfloat x, genint y) Compute x to the power 1/y.
genfloat round (genfloat x) Return the integral value nearest to x round-

ing halfway cases away from zero, regard-
less of the current rounding direction.

genfloat rsqrt (genfloat x) Compute inverse square root.
genfloat sin (genfloat x) Compute sine.
genfloat sincos (genfloat x, genfloatptr cosval) Compute sine and cosine of x. The com-

puted sine is the return value and computed
cosine is returned in cosval.

genfloat sinh (genfloat x) Compute hyperbolic sine.
genfloat sinpi (genfloat x) Compute sin (π x).
genfloat sqrt (genfloat x) Compute square root.
genfloat tan (genfloat x) Compute tangent.
genfloat tanh (genfloat x) Compute hyperbolic tangent.
genfloat tanpi (genfloat x) Compute tan (π x).
genfloat tgamma (genfloat x) Compute the gamma function.

Continued on next page

Table 4.152: Math functions which work on SYCL host and device. They correspond to Table 6.8 of the OpenCL
1.2 specification [1].

CHAPTER 4. SYCL PROGRAMMING INTERFACE 365



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Math Function Description
genfloat trunc (genfloat x) Round to integral value using the round to

zero rounding mode.
End of table

Table 4.152: Math functions which work on SYCL host and device. They correspond to Table 6.8 of the OpenCL
1.2 specification [1].

In SYCL the implementation defined precision math functions are defined in the namespace sycl::native. The
functions that are available within this namespace are specified in Tables 4.153.

Native Math Function Description
genfloatf cos (genfloatf x) Compute cosine over an implementation-

defined range. The maximum error is
implementation-defined.

genfloatf divide (genfloatf x, genfloatf y) Compute x / y over an implementation-
defined range. The maximum error is
implementation-defined.

genfloatf exp (genfloatf x) Compute the base- e exponential of x over
an implementation-defined range. The max-
imum error is implementation-defined.

genfloatf exp2 (genfloatf x) Compute the base- 2 exponential of x over
an implementation-defined range. The max-
imum error is implementation-defined.

genfloatf exp10 (genfloatf x) Compute the base- 10 exponential of x over
an implementation-defined range. The max-
imum error is implementation-defined.

genfloatf log (genfloatf x) Compute natural logarithm over an imple-
mentation defined range. The maximum er-
ror is implementation-defined.

genfloatf log2 (genfloatf x) Compute a base 2 logarithm over an
implementation-defined range. The maxi-
mum error is implementation-defined.

genfloatf log10 (genfloatf x) Compute a base 10 logarithm over an
implementation-defined range. The maxi-
mum error is implementation-defined.

genfloatf powr (genfloatf x, genfloatf y) Compute x to the power y, where
x >= 0. The range of x and y are
implementation-defined. The maximum er-
ror is implementation-defined.

genfloatf recip (genfloatf x) Compute reciprocal over an
implementation-defined range. The
maximum error is implementation-defined.

genfloatf rsqrt (genfloatf x) Compute inverse square root over an
implementation-defined range. The maxi-
mum error is implementation-defined.

Continued on next page

Table 4.153: Native math functions.

366 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Native Math Function Description
genfloatf sin (genfloatf x) Compute sine over an implementation-

defined range. The maximum error is
implementation-defined.

genfloatf sqrt (genfloatf x) Compute square root over an
implementation-defined range. The
maximum error is implementation-defined.

genfloatf tan (genfloatf x) Compute tangent over an implementation-
defined range. The maximum error is
implementation-defined.

End of table

Table 4.153: Native math functions.

In SYCL the half precision math functions are defined in sycl::half_precision. The functions that are available
within this namespace are specified in Tables 4.154. These functions are implemented with a minimum of 10-bits
of accuracy i.e. an ULP value is less than or equal to 8192 ulp.

Half Math function Description
genfloatf cos (genfloatf x) Compute cosine. x must be in the range -

216 to +216.
genfloatf divide (genfloatf x, genfloatf y) Compute x / y.
genfloatf exp (genfloatf x) Compute the base- e exponential of x.
genfloatf exp2 (genfloatf x) Compute the base- 2 exponential of x.
genfloatf exp10 (genfloatf x) Compute the base- 10 exponential of x.
genfloatf log (genfloatf x) Compute natural logarithm.
genfloatf log2 (genfloatf x) Compute a base 2 logarithm.
genfloatf log10 (genfloatf x) Compute a base 10 logarithm.
genfloatf powr (genfloatf x, genfloatf y) Compute x to the power y, where x >= 0.
genfloatf recip (genfloatf x) Compute reciprocal.
genfloatf rsqrt (genfloatf x) Compute inverse square root.
genfloatf sin (genfloatf x) Compute sine. x must be in the range -216

to +216.
genfloatf sqrt (genfloatf x) Compute square root.
genfloatf tan (genfloatf x) Compute tangent. x must be in the range -

216 to +216.
End of table

Table 4.154: Half precision math functions.

4.19.7 Integer functions
Integer math functions are available in SYCL in the namespace sycl on host and device. The built-in functions
can take as input char, unsigned char, short, unsigned short, int, unsigned int, long long int, unsigned
long long int and their vec and marray counterparts. The supported integer math functions are described in

Table 4.155.

CHAPTER 4. SYCL PROGRAMMING INTERFACE 367



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Integer Function Description
ugeninteger abs (geninteger x) Returns |x|.
ugeninteger abs_diff (geninteger x, geninteger y) Returns |x − y| without modulo overflow.
geninteger add_sat (geninteger x, geninteger y) Returns x + y and saturates the result.
geninteger hadd (geninteger x, geninteger y) Returns (x+ y) >> 1. The intermediate sum

does not modulo overflow.
geninteger rhadd (geninteger x, geninteger y) Returns (x + y + 1) >> 1. The intermediate

sum does not modulo overflow.
geninteger clamp (geninteger x, geninteger minval,

geninteger maxval)

geninteger clamp (geninteger x, sgeninteger

minval, sgeninteger maxval)

Returns min(max(x, minval), maxval). Re-
sults are undefined if minval > maxval.

geninteger clz (geninteger x) Returns the number of leading 0-bits in x,
starting at the most significant bit position.
If x is 0, returns the size in bits of the type
of x or component type of x, if x is a vector
type.

geninteger ctz (geninteger x) Returns the count of trailing 0-bits in x. If
x is 0, returns the size in bits of the type of x
or component type of x, if x is a vector type.

geninteger mad_hi (

geninteger a, geninteger b, geninteger c)

Returns mul_hi(a, b)+c.

geninteger mad_sat (geninteger a,

geninteger b, geninteger c)

Returns a * b + c and saturates the result.

geninteger max (geninteger x, geninteger y)

geninteger max (geninteger x, sgeninteger y)

Returns y if x < y, otherwise it returns x.

geninteger min (geninteger x, geninteger y)

geninteger min (geninteger x, sgeninteger y)

Returns y if y < x, otherwise it returns x.

geninteger mul_hi (geninteger x, geninteger y) Computes x * y and returns the high half
of the product of x and y.

geninteger rotate (geninteger v, geninteger i) For each element in v, the bits are shifted
left by the number of bits given by the corre-
sponding element in i (subject to usual shift
modulo rules described in section 6.3). Bits
shifted off the left side of the element are
shifted back in from the right.

geninteger sub_sat (geninteger x, geninteger y) Returns x − y and saturates the result.
ugeninteger16bit upsample (ugeninteger8bit hi,

ugeninteger8bit lo)

result[i] = ((ushort)hi[i] << 8)| lo[

i]

igeninteger16bit upsample (igeninteger8bit hi,

ugeninteger8bit lo)

result[i] = ((short)hi[i] << 8)| lo[i

]

ugeninteger32bit upsample (ugeninteger16bit hi,

ugeninteger16bit lo)

result[i] = ((uint)hi[i] << 16)| lo[i

]

igeninteger32bit upsample (igeninteger16bit hi,

ugeninteger16bit lo)

result[i] = ((int)hi[i] << 16)| lo[i]

ugeninteger64bit upsample (ugeninteger32bit hi,

ugeninteger32bit lo)

result[i] = ((ulonglong)hi[i] << 32)|

lo[i]

Continued on next page

Table 4.155: Integer functions which work on SYCL host and device, are available in the sycl namespace.

368 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Integer Function Description
igeninteger64bit upsample (igeninteger32bit hi,

ugeninteger32bit lo)

result[i] = ((longlong)hi[i] << 32)|

lo[i]

geninteger popcount (geninteger x) Returns the number of non-zero bits in x.
geninteger32bit mad24 (geninteger32bit x,

geninteger32bit y, geninteger32bit z)

Multiply two 24-bit integer values x and y
and add the 32-bit integer result to the 32-
bit integer z. Refer to definition of mul24 to
see how the 24-bit integer multiplication is
performed.

geninteger32bit mul24 (geninteger32bit x,

geninteger32bit y)

Multiply two 24-bit integer values x and y.
x and y are 32-bit integers but only the low
24-bits are used to perform the multiplica-
tion. mul24 should only be used when val-
ues in x and y are in the range [−223, 223−1]
if x and y are signed integers and in the range
[0, 224 − 1] if x and y are unsigned integers.
If x and y are not in this range, the multipli-
cation result is implementation-defined.

End of table

Table 4.155: Integer functions which work on SYCL host and device, are available in the sycl namespace.

4.19.8 Common functions
In SYCL the OpenCL common functions are available in the namespace sycl on host and device as defined in
the OpenCL 1.2 specification document [1, par. 6.12.4]. They are described here in Table 4.156. The built-in
functions can take as input float or optionally double and their vec and marray counterparts.

Common Function Description
genfloat clamp (genfloat x, genfloat minval,

genfloat maxval)

genfloatf clamp (genfloatf x, float minval, float

maxval)

genfloatd clamp (genfloatd x, double minval,

double maxval)

Returns fmin(fmax(x, minval), maxval). Re-
sults are undefined if minval > maxval.

genfloat degrees (genfloat radians) Converts radians to degrees, i.e.(180/π) ∗
radians.

genfloat max (genfloat x, genfloat y)

genfloatf max (genfloatf x, float y)

genfloatd max (genfloatd x, double y)

Returns y if x < y, otherwise it returns x. If
x or y are infinite or NaN, the return values
are undefined.

genfloat min (genfloat x, genfloat y)

genfloatf min (genfloatf x, float y)

genfloatd min (genfloatd x, double y)

Returns y if y < x, otherwise it returns x. If
x or y are infinite or NaN, the return values
are undefined.

genfloat mix (genfloat x, genfloat y, genfloat a)

genfloatf mix (genfloatf x, genfloatf y, float a)

genfloatd mix (genfloatd x, genfloatd y, double

a)

Returns the linear blend of x&y imple-
mented as: x+(y−x)∗a. a must be a value in
the range 0.0 ... 1.0. If a is not in the range
0.0 ... 1.0, the return values are undefined.

Continued on next page

Table 4.156: Common functions which work on SYCL host and device, are available in the sycl namespace.
They correspond to Table 6.12 of the OpenCL 1.2 specification [1].
CHAPTER 4. SYCL PROGRAMMING INTERFACE 369



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Common Function Description
genfloat radians (genfloat degrees) Converts degrees to radians, i.e. (π/180) ∗

degrees.
genfloat step (genfloat edge, genfloat x)

genfloatf step (float edge, genfloatf x)

genfloatd step (double edge, genfloatd x)

Returns 0.0 if x < edge, otherwise it returns
1.0.

genfloat smoothstep (genfloat edge0, genfloat edge1,

genfloat x)

genfloatf smoothstep (float edge0, float edge1,

genfloatf x)

genfloatd smoothstep (double edge0, double edge1

, genfloatd x)

Returns 0.0 if x <= edge0 and 1.0 if x >=
edge1 and performs smooth Hermite inter-
polation between 0 and 1 when edge0 <
x < edge1. This is useful in cases where
you would want a threshold function with a
smooth transition.
This is equivalent to:
gentype t;

t = clamp ((x <= edge0)/ (edge1 >=

edge0), 0, 1);

return t * t * (3 - 2 * t);

Results are undefined if edge0 >= edge1 or
if x, edge0 or edge1 is a NaN.

genfloat sign (genfloat x) Returns 1.0 if x > 0, −0.0 if x = −0.0, +0.0
if x = +0.0, or −1.0 if x < 0. Returns 0.0 if
x is a NaN.

End of table

Table 4.156: Common functions which work on SYCL host and device, are available in the sycl namespace.
They correspond to Table 6.12 of the OpenCL 1.2 specification [1].

4.19.9 Geometric functions
In SYCL the OpenCL geometric functions are available in the namespace sycl on host and device as defined in
the OpenCL 1.2 specification document [1, par. 6.12.5]. The built-in functions can take as input float or optionally
double and their vec and codeinlinemarray counterparts, for dimensions 2, 3 and 4. On the host the vector types
use the vec class and on an SYCL device use the corresponding native SYCL backend vector types. All of the
geometric functions use round-to-nearest-even rounding mode. Table 4.157 contains the definitions of supported
geometric functions.

Geometric Function Description
float4 cross (float4 p0, float4 p1)

float3 cross (float3 p0, float3 p1)

double4 cross (double4 p0, double4 p1)

double3 cross (double3 p0, double3 p1)

Returns the cross product of p0.xyz and
p1.xyz. The w component of float4 result
returned will be 0.0.

mfloat4 cross (mfloat4 p0, mfloat4 p1)

mfloat3 cross (mfloat3 p0, mfloat3 p1)

mdouble4 cross (mdouble4 p0, mdouble4 p1)

mdouble3 cross (mdouble3 p0, mdouble3 p1)

Returns the cross product of first 3 compo-
nents of p0 and p1. The 4th component of
result returned will be 0.0.

float dot (gengeofloat p0, gengeofloat p1)

double dot (gengeodouble p0, gengeodouble p1)

Compute dot product.

Continued on next page

Table 4.157: Geometric functions which work on SYCL host and device, are available in the sycl namespace.
They correspond to Table 6.13 of the OpenCL 1.2 specification [1].370 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Geometric Function Description
float distance (gengeofloat p0, gengeofloat p1)

double distance (gengeodouble p0, gengeodouble p1)

Returns the distance between p0 and p1.
This is calculated as length(p0 - p1).

float length (gengeofloat p)

double length (gengeodouble p)

Return the length of vector p, i.e.,√
p.x2 + p.y2 + ...

gengeofloat normalize (gengeofloat p)

gengeodouble normalize (gengeodouble p)

Returns a vector in the same direction as p
but with a length of 1.

float fast_distance (gengeofloat p0, gengeofloat p1) Returns fast_length(p0 - p1).
float fast_length (gengeofloat p) Returns the length of vector p computed

as: sqrt((half)(pow(p.x,2)+ pow(p.y,2)
+ ...))

gengeofloat fast_normalize (gengeofloat p) Returns a vector in the same direction as
p but with a length of 1. fast normalize is
computed as: p * rsqrt((half)(pow(p.x
,2)+ pow(p.y,2)+ ... ))

The result shall be within 8192 ulps error
from the infinitely precise result of if (all
(p == 0.0f))

result = p;

else

result = p / sqrt (pow(p.x,2)+ pow(p.

y,2)+ ... );

with the following exceptions:
1. If the sum of squares is greater than
FLT_MAX then the value of the floating-
point values in the result vector are
undefined.

2. If the sum of squares is less than
FLT_MIN then the implementation may
return back p.

3. If the device is in “denorms are
flushed to zero” mode, individual
operand elements with magnitude less
than sqrt(FLT_MIN) may be flushed
to zero before proceeding with the cal-
culation.

End of table

Table 4.157: Geometric functions which work on SYCL host and device, are available in the sycl namespace.
They correspond to Table 6.13 of the OpenCL 1.2 specification [1].

4.19.10 Relational functions
In SYCL the OpenCL relational functions are available in the namespace sycl on host and device as defined in
the OpenCL 1.2 specification document [1, par. 6.12.6]. The built-in functions can take as input char, unsigned
char, short, unsigned short, int, unsigned int, long, unsigned long, float or optionally double and their
vec and marray counterparts. The relational functions are provided in addition to the the operators.

The available built-in functions for vec template class are described in Tables 4.158

CHAPTER 4. SYCL PROGRAMMING INTERFACE 371



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Relational Function Description
igeninteger32bit isequal (genfloatf x, genfloatf y)

igeninteger64bit isequal (genfloatd x, genfloatd y)

Returns the component-wise compare of
x == y.

igeninteger32bit isnotequal (genfloatf x, genfloatf

y)

igeninteger64bit isnotequal (genfloatd x, genfloatd

y)

Returns the component-wise compare of
x! = y.

igeninteger32bit isgreater (genfloatf x, genfloatf y

)

igeninteger64bit isgreater (genfloatd x, genfloatd y

)

Returns the component-wise compare of x >
y.

igeninteger32bit isgreaterequal (genfloatf x,

genfloatf y)

igeninteger64bit isgreaterequal (genfloatd x,

genfloatd y)

Returns the component-wise compare of
x >= y.

igeninteger32bit isless (genfloatf x, genfloatf y)

igeninteger64bit isless (genfloatd x, genfloatd y)

Returns the component-wise compare of x <
y.

igeninteger32bit islessequal (genfloatf x, genfloatf

y)

igeninteger64bit islessequal (genfloatd x, genfloatd

y)

Returns the component-wise compare of
x <= y.

igeninteger32bit islessgreater (genfloatf x,

genfloatf y)

igeninteger64bit islessgreater (genfloatd x,

genfloatd y)

Returns the component-wise compare of
(x < y)||(x > y).

igeninteger32bit isfinite (genfloatf x)

igeninteger64bit isfinite (genfloatd x)

Test for finite value.

igeninteger32bit isinf (genfloatf x)

igeninteger64bit isinf (genfloatd x)

Test for infinity value (positive or negative) .

igeninteger32bit isnan (genfloatf x)

igeninteger64bit isnan (genfloatd x)

Test for a NaN.

igeninteger32bit isnormal (genfloatf x)

igeninteger64bit isnormal (genfloatd x)

Test for a normal value.

igeninteger32bit isordered (genfloatf x, genfloatf y

)

igeninteger64bit isordered (genfloatd x, genfloatd y

)

Test if arguments are ordered. isordered()
takes arguments x and y, and returns the re-
sult isequal(x, x) && isequal(y, y).

igeninteger32bit isunordered (genfloatf x, genfloatf

y)

igeninteger64bit isunordered (genfloatd x, genfloatd

y)

Test if arguments are unordered.
isunordered() takes arguments x and y,
returning non-zero if x or y is NaN, and
zero otherwise.

igeninteger32bit signbit (genfloatf x)

igeninteger64bit signbit (genfloatd x)

Test for sign bit. The scalar version of the
function returns a 1 if the sign bit in the float
is set else returns 0.
The vector version of the function returns
the following for each component in floatn:
-1 (i.e all bits set) if the sign bit in the float
is set else returns 0.

Continued on next page

Table 4.158: Relational functions for vec template class which work on SYCL host and device, are available in
the sycl namespace. They correspond to Table 6.14 of the OpenCL 1.2 specification [1].
372 CHAPTER 4. SYCL PROGRAMMING INTERFACE



SYCL 2020 provisional 4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE

Relational Function Description
int any (igeninteger x) Returns 1 if the most significant bit in any

component of x is set; otherwise returns 0.
int all (igeninteger x) Returns 1 if the most significant bit in all

components of x is set; otherwise returns 0.
gentype bitselect (gentype a, gentype b, gentype c) Each bit of the result is the corresponding

bit of a if the corresponding bit of c is 0.
Otherwise it is the corresponding bit of b.

geninteger select (geninteger a, geninteger b,

igeninteger c)

geninteger select (geninteger a, geninteger b,

ugeninteger c)

genfloatf select (genfloatf a, genfloatf b,

genint c)

genfloatf select (genfloatf a, genfloatf b,

ugenint c)

genfloatd select (genfloatd a, genfloatd b,

igeninteger64 c)

genfloatd select (genfloatd a, genfloatd b,

ugeninteger64 c)

For each component of a vector type:
result[i] = (MSB of c[i] is set)? b[i

] : a[i].

For a scalar type:
result = c ? b : a.
geninteger must have the same number of
elements and bits as gentype.

End of table

Table 4.158: Relational functions for vec template class which work on SYCL host and device, are available in
the sycl namespace. They correspond to Table 6.14 of the OpenCL 1.2 specification [1].

The available built-in functions for marray template class are described in Tables 4.159

Relational Function Description
genbool isequal (genfloatf x, genfloatf y)

genbool isequal (genfloatd x, genfloatd y)

Returns the component-wise compare of
x == y.

genbool isnotequal (genfloatf x, genfloatf y)

genbool isnotequal (genfloatd x, genfloatd y)

Returns the component-wise compare of
x! = y.

genbool isgreater (genfloatf x, genfloatf y)

genbool isgreater (genfloatd x, genfloatd y)

Returns the component-wise compare of x >
y.

genbool isgreaterequal (genfloatf x, genfloatf y)

genbool isgreaterequal (genfloatd x, genfloatd y)

Returns the component-wise compare of
x >= y.

genbool isless (genfloatf x, genfloatf y)

genbool isless (genfloatd x, genfloatd y)

Returns the component-wise compare of x <
y.

genbool islessequal (genfloatf x, genfloatf y)

genbool islessequal (genfloatd x, genfloatd y)

Returns the component-wise compare of
x <= y.

genbool islessgreater (genfloatf x, genfloatf y)

genbool islessgreater (genfloatd x, genfloatd y)

Returns the component-wise compare of
(x < y)||(x > y).

genbool isfinite (genfloatf x)

genbool isfinite (genfloatd x)

Test for finite value.

genbool isinf (genfloatf x)

genbool isinf (genfloatd x)

Test for infinity value (positive or negative) .

genbool isnan (genfloatf x)

genbool isnan (genfloatd x)

Test for a NaN.

Continued on next page

Table 4.159: Relational functions for scalar data types and marray template class template class which work on
SYCL host and device, are available in the sycl namespace..CHAPTER 4. SYCL PROGRAMMING INTERFACE 373



4.19. SYCL BUILT-IN FUNCTIONS FOR SYCL HOST AND DEVICE SYCL 2020 provisional

Relational Function Description
genbool isnormal (genfloatf x)

genbool isnormal (genfloatd x)

Test for a normal value.

genbool isordered (genfloatf x, genfloatf y)

genbool isordered (genfloatd x, genfloatd y)

Test if arguments are ordered. isordered()
takes arguments x and y, and returns the re-
sult isequal(x, x) && isequal(y, y).

genbool isunordered (genfloatf x, genfloatf y)

genbool isunordered (genfloatd x, genfloatd y)

Test if arguments are unordered.
isunordered() takes arguments x and y,
returning true if x or y is NaN, and false
otherwise.

genbool signbit (genfloatf x)

genbool signbit (genfloatd x)

Test for sign bit, returning true if the sign
bit in the float is set, and false otherwise.

bool any (genbool x) Returns true if the most significant bit in
any component of x is set; otherwise returns
false.

int all (igeninteger x) Returns true if the most significant bit in
all components of x is set; otherwise returns
false.

gentype bitselect (gentype a, gentype b, gentype c) Each bit of the result is the corresponding
bit of a if the corresponding bit of c is 0.
Otherwise it is the corresponding bit of b.

gentype select (gentype a, gentype b, genbool c) Returns the component-wise result = c ?
b : a.

End of table

Table 4.159: Relational functions for scalar data types and marray template class template class which work on
SYCL host and device, are available in the sycl namespace..

4.19.11 Vector data load and store functions
The functionality from the OpenCL functions as defined in the OpenCL 1.2 specification document [1, par. 6.12.7]
is available in SYCL through the vec class in section 4.16.2.

4.19.12 Synchronization functions
In SYCL the OpenCL synchronization functions are available through the nd_item class 4.10.1.5, as they are
applied to work-items for local or global address spaces. Please see 4.83.

4.19.13 printf function
The functionality of the printf function is covered by the stream class 4.18, which has the capability to print
to standard output all of the SYCL classes and primitives, and covers the capabilities defined in the OpenCL 1.2
specification document [1, par. 6.12.13].

374 CHAPTER 4. SYCL PROGRAMMING INTERFACE



5. SYCL Device Compiler

This section specifies the requirements of the SYCL device compiler. Most features described in this section
relate to underlying SYCL backend capabilities of target devices and limiting the requirements of device code to
ensure portability.

5.1 Offline compilation of SYCL source files

There are two alternatives for a SYCL device compiler: a single-source device compiler and a device compiler
that supports the technique of SMCP.

A SYCL device compiler takes in a C++ source file, extracts only the SYCL kernels and outputs the device code
in a form that can be enqueued from host code by the associated SYCL runtime. How the SYCL runtime invokes
the kernels is implementation defined, but a typical approach is for a device compiler to produce a header file with
the compiled kernel contained within it. By providing a command-line option to the host compiler, it would cause
the implementation’s SYCL header files to #include the generated header file. The SYCL specification has been
written to allow this as an implementation approach in order to allow SMCP. However, any of the mechanisms
needed from the SYCL compiler, the SYCL runtime and build system are implementation defined, as they can
vary depending on the platform and approach.

A SYCL single-source device compiler takes in a C++ source file and compiles both host and device code at the
same time. This specification specifies how a SYCL single-source device compiler sees and outputs device code
for kernels, but does not specify the host compilation.

5.2 Naming of kernels

SYCL kernels are extracted from C++ source files and stored in an implementation- defined format. In the case of
the shared-source compilation model, the kernels have to be uniquely identified by both host and device compiler.
This is required in order for the host runtime to be able to load the kernel by using the OpenCL host runtime
interface.

From this requirement the following rules apply for naming the kernels:

• The kernel name is a C++ typename.

• The kernel name type may not be forward declared other than in namespace scope (including global names-
pace scope). If it isn’t forward declared but is specified as a template argument in a kernel invoking interface,
as described in 4.10.7, then it may not conflict with a name in any enclosing namespace scope.

• If the kernel is defined as a named function object type, the name can be the typename of the function
object as long as it is either declared at namespace scope, or does not conflict with any name in an enclosing
namespace scope.

• If the kernel is defined as a lambda, a typename can optionally be provided to the kernel invoking interface
as described in 4.10.7, so that the developer can control the kernel name for purposes such as debugging or

375



5.3. COMPILATION OF FUNCTIONS SYCL 2020 provisional

referring to the kernel when applying build options.

In both single-source and shared-source implementations, a device compiler should detect the kernel invocations
(e.g. parallel_for<kernelname>) in the source code and compile the enclosed kernels, storing them with their
associated type name.

The format of the kernel and the compilation techniques are implementation defined. The interface between the
compiler and the runtime for extracting and executing SYCL kernels on the device is implementation defined.

5.3 Compilation of functions

The SYCL device compiler parses an entire C++ source file supplied by the user, including any header files
referenced via #include directives. From this source file, the SYCL device compiler must compile kernels for
the device, as well as any functions that the kernels call.

The device compiler identifies kernels by looking for calls to kernel invocation commands such as parallel_for.
One of the parameters is a function object which is known as a SYCL kernel function, and this function must
always return void. Any function called by the SYCL kernel function is also compiled for the device, and these
functions together with the SYCL kernel functions are known as device functions. The device compiler searches
recursively for any functions called from a device function, and these functions are also compiled for the device
and known as device functions.

To illustrate, the following source code shows three functions and a kernel invoke with comments explaining
which functions need to be compiled for the device.

1 void f(handler& cgh) {

2 // Function "f" is not compiled for device

3
4 cgh.single_task([=] {

5 // This code is compiled for device

6 g(); // This line forces "g" to be compiled for device

7 });

8 }

9
10 void g() {

11 // Called from kernel, so "g" is compiled for device

12 }

13
14 void h() {

15 // Not called from a device function, so not compiled for device

16 }

In order for the SYCL device compiler to correctly compile device functions, all functions in the source file,
whether device functions or not, must be syntactically correct functions according to this specification. A syntac-
tically correct function adheres to at least the minimum required C++ version defined in Section 3.8.1.

5.4 Language restrictions for device functions

Device functions must abide by certain restrictions. The full set of C++ features are not available to these func-
tions. Following is a list of these restrictions:

376 CHAPTER 5. SYCL DEVICE COMPILER



SYCL 2020 provisional 5.5. BUILT-IN SCALAR DATA TYPES

• Structures containing pointers may be shared. However, when a pointer is passed between SYCL devices
or between the host and a SYCL device, dereferencing that pointer on the device produces undefined be-
havior unless the device supports USM and the pointer is an address within a USM memory region (see
Section 4.8).

• Memory storage allocation is not allowed in kernels. All memory allocation for the device is done on the
host using accessor classes or using USM as explained in Section 4.8. Consequently, the default allocation
operator new overloads that allocate storage are disallowed in a SYCL kernel. The placement new operator
and any user-defined overloads that do not allocate storage are permitted.

• Kernel functions must always have a void return type. A kernel lambda trailing-return-type that is not void
is therefore illegal, as is a return statement (that would return from the kernel function) with an expression
that does not convert to void.

• The odr-use of polymorphic classes and classes with virtual inheritance is allowed. However, no virtual
member functions are allowed to be called in a SYCL kernel or any functions called by the kernel.

• No function pointers or references are allowed to be called in a SYCL kernel or any functions called by the
kernel.

• RTTI is disabled inside kernels.

• No variadic functions are allowed to be called in a SYCL kernel or any functions called by the kernel.

• Exception-handling cannot be used inside a SYCL kernel or any code called from the kernel. But of course
noexcept is allowed.

• Recursion is not allowed in a SYCL kernel or any code called from the kernel.

• Variables with thread storage duration (thread_local storage class specifier) are not allowed to be odr-used
in kernel code.

• Variables with static storage duration that are odr-used inside a kernel must be const or constexpr and
zero-initialized or constant-initialized.

• The rules for kernels apply to both the kernel function objects themselves and all functions, operators,
member functions, constructors and destructors called by the kernel. This means that kernels can only
use library functions that have been adapted to work with SYCL. Implementations are not required to
support any library routines in kernels beyond those explicitly mentioned as usable in kernels in this spec.
Developers should refer to the SYCL built-in functions in 4.19 to find functions that are specified to be
usable in kernels.

• Interacting with a special SYCL runtime class (i.e. SYCL accessor, sampler or stream) that is stored
within a C++ union is undefined behavior.

5.5 Built-in scalar data types

In a SYCL device compiler, the device definition of all standard C++ fundamental types from Table 5.1 must match
the host definition of those types, in both size and alignment. A device compiler may have this preconfigured so
that it can match them based on the definitions of those types on the platform, or there may be a necessity for a
device compiler command-line option to ensure the types are the same.

CHAPTER 5. SYCL DEVICE COMPILER 377



5.6. PREPROCESSOR DIRECTIVES AND MACROS SYCL 2020 provisional

The standard C++ fixed width types, e.g. int8_t, int16_t, int32_t,int64_t, should have the same size as defined
by the C++ standard for host and device.

Fundamental data type Description
bool A conditional data type which can be ei-

ther true or false. The value true expands
to the integer constant 1 and the value false
expands to the integer constant 0.

char A signed or unsigned 8-bit integer, as de-
fined by the C++ core language

signed char A signed 8-bit integer, as defined by the
C++ core language

unsigned char An unsigned 8-bit integer, as defined by the
C++ core language

short int A signed integer of at least 16-bits, as de-
fined by the C++ core language

unsigned short int An unsigned integer of at least 16-bits, as
defined by the C++ core language

int A signed integer of at least 16-bits, as de-
fined by the C++ core language

unsigned int An unsigned integer of at least 16-bits, as
defined by the C++ core language

long int A signed integer of at least 32-bits, as de-
fined by the C++ core language

unsigned long int An unsigned integer of at least 32-bits, as
defined by the C++ core language

long long int An integer of at least 64-bits, as defined by
the C++ core language

unsigned long long int An unsigned integer of at least 64-bits, as
defined by the C++ core language

float A 32-bit floating-point. The float data type
must conform to the IEEE 754 single preci-
sion storage format.

double A 64-bit floating-point. The double data
type must conform to the IEEE 754 double
precision storage format.

End of table

Table 5.1: Fundamental data types supported by SYCL.

5.6 Preprocessor directives and macros

The standard C++ preprocessing directives and macros are supported. The following preprocessor macros must
be defined by all conformant implementations:

• SYCL_LANGUAGE_VERSION substitutes an integer reflecting the version number and revision of the SYCL
language being supported by the implementation. The version of SYCL defined in this document will
have SYCL_LANGUAGE_VERSION substitute the integer 202001, composed with the general SYCL version
followed by 2 digits representing the revision number;

378 CHAPTER 5. SYCL DEVICE COMPILER



SYCL 2020 provisional 5.7. KERNEL ATTRIBUTES

• __SYCL_DEVICE_ONLY__ is defined to 1 if the source file is being compiled with a SYCL device compiler
which does not produce host binary;

• __SYCL_SINGLE_SOURCE__ is defined to 1 if the source file is being compiled with a SYCL single-source
compiler which produces host as well as device binary;

• SYCL_EXTERNAL is an optional macro which enables external linkage of SYCL functions and member
functions to be included in a SYCL kernel. The macro is only defined if the implementation supports
external linkage. For more details see 5.9.1

In addition, for each SYCL backend supported, the preprocessor macros described in the backend section 4.1
must be defined by all conformant implementations.

5.7 Kernel attributes

The SYCL general programming interface defines attributes that augment the information available while gener-
ating the device code for a particular platform.

5.7.1 Core kernel attributes
The attributes in Table 5.2 are defined in the [[sycl::]] namespace and are applied to the function-type of
kernel function declarations using C++ attribute specifier syntax.

A given attribute-token shall appear at most once in each attribute-list. The first declaration of a function shall
specify an attribute if any declaration of that function specifies the same attribute. If a function is declared with an
attribute in one translation unit and the same function is declared without the same attribute in another translation
unit, the program is ill-formed and no diagnostic is required.

If there are any conflicts between different kernel attributes, then the behavior is undefined. The attributes have
an effect when applied to a kernel function and no effect otherwise (i.e. no effect on non-kernel functions and on
anything other than a function). If an attribute is applied to a device function that is not a kernel function (but
that is potentially called from a kernel function), then the effect is implementation defined. It is implementation
defined whether any diagnostic is produced when an attribute is applied to anything other than the function-type
of a kernel function declaration.

CHAPTER 5. SYCL DEVICE COMPILER 379



5.7. KERNEL ATTRIBUTES SYCL 2020 provisional

SYCL attribute Description
reqd_work_group_size(dim0)

reqd_work_group_size(dim0, dim1)

reqd_work_group_size(dim0, dim1, dim2)

Indicates that the kernel must be launched
with the specified work-group size. The
order of the arguments matches the con-
structor of the group class. Each argument
to the attribute must be an integral con-
stant expression. The dimensionality of
the attribute variant used must match the
dimensionality of the work-group used to
invoke the kernel.

SYCL device compilers should give a
compilation error if the required work-
group size is unsupported. If the kernel
is submitted for execution using an in-
compatible work-group size, the SYCL
runtime must throw an exception with the
errc::nd_range_error error code.

work_group_size_hint(dim0)

work_group_size_hint(dim0, dim1)

work_group_size_hint(dim0, dim1, dim2)

Hint to the compiler on the work-group size
most likely to be used when launching the
kernel at runtime. Each argument must be an
integral constant expression, and the number
of dimensional values defined provide ad-
ditional information to the compiler on the
dimensionality most likely to be used when
launching the kernel at runtime. The effect
of this attribute, if any, is implementation
defined.

vec_type_hint(<type>) Hint to the compiler on the vector computa-
tional width of of the kernel. The argument
must be one of the vector types defined in
section 4.10.2. The effect of this attribute, if
any, is implementation defined.

This attribute is deprecated (available
for use, but will likely be removed in a
future version of the specification and is not
recommended for use in new code).

Continued on next page

Table 5.2: Attributes supported by the SYCL General programming interface.

380 CHAPTER 5. SYCL DEVICE COMPILER



SYCL 2020 provisional 5.7. KERNEL ATTRIBUTES

SYCL attribute Description
reqd_sub_group_size(dim) Indicates that the kernel must be compiled

and executed with the specified sub-group
size. The argument to the attribute must be
an integral constant expression.

SYCL device compilers should give a
compilation error if the required sub-group
size is unsupported by the device or incom-
patible with any language feature used by
the kernel. The set of valid sub-group sizes
for a kernel can be queried as described in
Table 4.19 and Table 4.99.

End of table

Table 5.2: Attributes supported by the SYCL General programming interface.

Other attributes may be provided as part of SYCL backend-interop functionality.

5.7.2 Example attribute syntax
Using [[sycl::reqd_work_group_size(16)]] as an example attribute, but applying equally to all attributes in
Table 5.2 and to attributes that are part of SYCL backend-interop or extensions, the following code examples
demonstrate how to apply the attributes to the function-type of a kernel function.

1 // Kernel defined as a lambda

2 myQueue.submit([&](handler &h) {

3 h.parallel_for( range<1>(16),

4 [=] (item<1> it) [[sycl::reqd_work_group_size(16)]] {

5 //[kernel code]

6 });

7 });

8
9 // Kernel defined as a functor to be invoked later

10 class KernelFunctor {

11 public:

12 void operator()(item<1> it) const [[sycl::reqd_work_group_size(16)]] {

13 //[kernel code]

14 };

15 };

5.7.3 Deprecated attribute syntax
The SYCL 1.2.1 specification (superseded by this version) defined two mechanisms for kernel attributes to be
specified, which are deprecated in this version of SYCL. The old syntaxes are supported but will be removed in
a future version, and are therefore not recommended for use. Specifically, the following two attribute syntaxes
defined by the SYCL 1.2.1 specification are deprecated:

1. The attribute syntax defined by the OpenCL C specification within device code (__attribute__((attrib)
)).

CHAPTER 5. SYCL DEVICE COMPILER 381



5.8. ADDRESS-SPACE DEDUCTION SYCL 2020 provisional

2. The C++ attribute specifier syntax in the [[cl::]] namespace applied to device functions (not the
function-type of a kernel function), including automatic propagation of the attribute to any caller of such
device functions.

5.8 Address-space deduction

C++ has no type-level support to represent address spaces. As a consequence, the SYCL generic programming
model does not directly affect the C++ type of unannotated pointers and references.

Source level guarantees about addresse spaces in the SYCL generic programming model can only be achieved
using pointer classes (instances of multi_ptr), which are regular classes that represent pointers to data stored in
the corresponding address spaces.

In SYCL, the address space of pointer and references are derived from:

• Accessors that give access to shared data. They can be bound to a memory object in a command group and
passed into a kernel. Accessors are used in scheduling of kernels to define ordering. Accessors to buffers
have a compile-time address space based on their access mode.

• Explicit pointer classes (e.g. global_ptr) holds a pointer which is known to be addressing the address
space represented by the access::address_space. This allows the compiler to determine whether the
pointer references global, local, constant or private memory and generate code accordingly.

• Raw C++ pointer and reference types (e.g. int*) are allowed within SYCL kernels. They can be constructed
from the address of local variables, explicit pointer classes, or accessors.

5.8.1 Address space assignment
In order to understand where data lives, the device compiler is expected to assign address spaces while lowering
types for the underlying target based on the context. The address space deducing rules differ slightly depending
on the target device of the SYCL backend.

If the target of the SYCL backend can represent the generic address space, then the “common address space
deduction rules” (section 5.8.2) and the “generic as default address space rules” (section 5.8.3) apply. If the target
of the SYCL backend cannot represent the generic address space, then the “common address space deduction
rules” (section 5.8.2) and the “inferred address space rules” (section 5.8.4) apply.

[Note: SYCL address space does not affect the type, address space shall be understood as memory segment in
which data is allocated. For instance, if int i; is allocated to the global address space, then decltype(&i) shall
evaluate to int*. — end note]

5.8.2 Common address space deduction rules
The variable declarations get assigned to an address space depending on their scope and storage class:

• Namespace scope

– The declaration is assigned to global address space if the type is not const

– The declaration is assigned to constant address space if the type is const

• Block scope and function parameter scope

382 CHAPTER 5. SYCL DEVICE COMPILER



SYCL 2020 provisional 5.8. ADDRESS-SPACE DEDUCTION

– Declarations with static storage are treated the same way as variables in namespace scope

– Otherwise the declaration is assigned to the local address space if declared in a hierarchical context

– Otherwise the declaration is assigned to the private address space

• Class scope:

– Static data members are treated the same way as for variable in namespace scope

The result of a prvalue-to-xvalue conversion is assigned to the local address space if it happens in a hierarchical
context or to the private address space otherwise.

5.8.3 Generic as default address space
Unannotated pointers and references are considered to be pointing to the generic address space.

5.8.4 Inferred address space
[Note for this provisional version: The address space deduction feature described next is being reworked to better
align with addition of generic address space and generic as default address space. — end note]

Inside kernels, the SYCL device compiler will need to auto-deduce the memory region of unannotated pointer
and reference types during the lowering of types from C++ to the underlying representation.

If a kernel function or device function contains a pointer or reference type, then the address space deduction must
be attempted using the following rules:

• If an explicit pointer class is converted into a C++ pointer value, then the C++ pointer value will point to
same address space as the one represented by the explicit pointer class.

• If a variable is declared as a pointer type, but initialized in its declaration to a pointer value with an already-
deduced address space, then that variable will have the same address space as its initializer.

• If a function parameter is declared as a pointer type, and the argument is a pointer value with a deduced
address space, then the function will be compiled as if the parameter had the same address space as its
argument. It is legal for a function to be called in different places with different address spaces for its
arguments: in this case the function is said to be “duplicated” and compiled multiple times. Each duplicated
instance of the function must compile legally in order to have defined behavior.

• If a function return type is declared as a pointer type and return statements use address space deduced
expressions, then the function will be compiled as if the return type had the same address space. To compile
legally, all return expressions must deduce to the same address space.

• The rules for pointer types also apply to reference types. i.e. a reference variable takes its address space
from its initializer. A function with a reference parameter takes its address space from its argument.

• If no other rule above can be applied to a declaration of a pointer, then it is assumed to be in the private
address space.

It is illegal to assign a pointer value addressing one address space to a pointer variable addressing a different
address space.

CHAPTER 5. SYCL DEVICE COMPILER 383



5.9. SYCL OFFLINE LINKING SYCL 2020 provisional

5.9 SYCL offline linking

5.9.1 SYCL functions and member functions linkage
The default behavior in SYCL applications is that all the definitions and declarations of the functions and member
functions are available to the SYCL compiler, in the same translation unit. When this is not the case, all the
symbols that need to be exported to a SYCL library or from a C++ library to a SYCL application need to be
defined using the macro: SYCL_EXTERNAL.

The SYCL_EXTERNAL macro will only be defined if the implementation supports offline linking. The macro is
implementation-defined, but the following restrictions apply:

• SYCL_EXTERNAL can only be used on functions;

• if the SYCL backend does not support the generic address space then the function cannot use raw pointers
as parameter or return types. Explicit pointer classes must be used instead;

• externally defined functions cannot call a sycl::parallel_for_work_item member function;

• externally defined functions cannot be called from a sycl::parallel_for_work_group scope.

The SYCL linkage mechanism is optional and implementation defined.

384 CHAPTER 5. SYCL DEVICE COMPILER



6. SYCL Extensions

This section describes the mechanism by which the SYCL core specification can be extended. An extension can
be either of two flavors: an extension ratified by the Khronos SYCL group or a vendor supplied extension. In
both cases, an extension is an optional feature set which an implementation need not implement in order to be
conformant with the core SYCL specification.

Vendors may choose to define extensions in order to expose custom features or to gather feedback on an API that
is not yet ready for inclusion in the core specification. Since the APIs for extensions may change as feedback is
gathered, the extension mechanism includes a way for application developers to test for the API version of each
extension. Once a vendor extension has stabilized, vendors are encouraged to promote it to a future version of
the core SYCL specification. Thus, extensions can be viewed as a pipeline of features for consideration in future
SYCL versions.

This section does not describe any particular extension to SYCL. Rather, it describes the mechanism for defining
an extension. Each extension is defined by its own separate document. If an extension is ratified by the Khronos
SYCL group, that group will release a document describing the extension. If a vendor defines an extension, the
vendor is responsible for releasing its documentation.

6.1 Definition of an extension

An extension can be implemented by adding new types or free functions in a specific namespace, by adding
functionality to an existing class that is defined in the core SYCL specification, or through a combination of the
two.

New types or free functions for Khronos ratified extensions are defined in the namespace ::sycl::khr::<
extensionname>. For example, ::sycl::khr::fancy could be the namespace for a Khronos extension named
“fancy”.

If a vendor specific extension adds new types or free functions, the vendor is encouraged to define them in the
namespace ::sycl::ext::<vendorname> and they are encouraged to add another namespace layer according to
the name of the extension. For example, ::sycl::ext::acme::fancier could be the namespace for an extension
from the Acme vendor. However, vendors may also choose to define new types and free functions in another
top-level namespace that is outside of ::sycl. This might be more appropriate, for example, when an exten-
sion integrates features from an existing non-SYCL API. A vendor may not define new types or free functions
underneath ::sycl, unless they are in ::sycl::ext::<vendorname>.

[Note: Vendors are discouraged from defining top level namespaces that start with the word “sycl” because we
believe that application developers may want to use namespaces like this as namespace aliases. — end note]

Extensions may only add functionality to existing SYCL classes in a limited way. When a Khronos ratified
extension needs to add functionality to an existing class, it does so by adding a member function named khr() to
that class. For example, an extension on the device class would add a member function like this:

1 class device {

385



6.2. PREDEFINED MACROS SYCL 2020 provisional

2 // ...

3 sycl::khr::device khr();

4 };

The khr() member function returns an object, and that object provides member functions that are part of the
extension.

Likewise, a vendor specific extension may add functionality to an existing SYCL class by adding a member
function named ext_<vendorname>() (e.g. ext_acme() for the Acme vendor) like this:

1 class device {

2 // ...

3 sycl::ext::acme::device ext_acme();

4 };

One motivation for this pattern is to reduce verbosity of application code that uses an extension and to facilitate
application migration when an extension is promoted to the core SYCL specification. Consider the following
application code:

1 void foo(sycl::device dev) {

2 dev.ext_acme().fancy();

3 };

If the extension “fancy” is later promoted to the core SYCL specification, the application need only remove the
call to ext_acme() in order to migrate the application.

Extensions may also add C++ attributes. The attribute namespace sycl:: is reserved for attributes in the core
SYCL specification and for Khronos ratified extensions. Vendor defined extensions should use a different attribute
namespace.

Applications must include a special header file in order to get declarations for the types and free functions of an
extension. Each Khronos ratified extension has an associated header named "SYCL/khr/<extensionname>.hpp".

The include path "SYCL/ext/<vendorname>" is reserved for vendor extensions. Vendors can choose to provide
a single header for all extensions or to provide separate headers for each extension. For example, the Acme
vendor could provide the header "SYCL/ext/acme/extensions.hpp" for access to all of its extensions. As with
namespaces, vendors are encouraged to define header files in "SYCL/ext/<vendorname>", but a vendor may also
define header files in another file system path that is outside of the "SYCL" directory. Vendors may not define
header files in the "SYCL" path unless they are underneath "SYCL/ext/<vendorname>".

6.2 Predefined macros

Each Khronos ratified extension has a corresponding feature test macro of the form SYCL_KHR_<extensionname>
whose value follows the C++20 pattern for language feature test macros. The value is a number with 6 decimal
digits in YYYYMM format identifying the year and month the extension was first adopted or the date the ex-
tension was last updated. An implementation must predefine this macro only if it implements the extension, so
applications can use the macro in order to determine if the extension is available.

If an implementation provides a vendor specific extension, it should also predefine a feature test macro of the
form SYCL_EXT_<vendorname>_<extensionname> (e.g. SYCL_EXT_ACME_FANCY). The value of the macro must be

386 CHAPTER 6. SYCL EXTENSIONS



SYCL 2020 provisional 6.3. DEVICE ASPECTS AND CONDITIONAL FEATURES

an integer that monotonically increases for each version of the extension, and vendors are encouraged to use the
same YYYYMM format described above.

[Note: The feature test macros are defined uniformly across all parts of a SYCL application, just like any macro.
If an implementation uses SMCP, all compiler passes predefine a particular feature test macro the same way,
regardless of whether that compiler pass’s device supports the feature. Thus, the feature test macros cannot
be used to determine whether any particular device supports a feature. If the feature is device-specific, the
application must use device::has() or platform::has() to test the feature’s aspect in order to determine whether
a particular device supports the feature. — end note]

Each vendor’s implementation must also predefine a macro of the form SYCL_VENDOR_<vendorname> (e.g.
SYCL_VENDOR_ACME), which applications can use to determine whether they are being compiled by that vendor’s
toolchain.

An implementation, of course, is allowed to predefine additional macros too. However, an implementation may
not predefine a macro whose name starts with SYCL unless it starts with SYCL_EXT_<vendorname> or SYCL_VENDOR_
<vendorname>.

6.3 Device aspects and conditional features

An extension may define additional device aspects and it may provide features which are only available on de-
vices with certain aspects. If it does so, the extension documentation must describe which aspects enable these
conditional features. If an extension provides a new enumerated aspect value, the type of the new value must be
::sycl::aspect but the enumerated value must be in the extension’s namespace scope. For example, a Khronos
ratified extension could add a new aspect value like this:

1 namespace sycl {

2 namespace khr {

3 namespace aspect {

4
5 static constexpr auto foo = static_cast<sycl::aspect>(1000);

6
7 } // namespace aspect

8 } // namespace khr

9
10 template<> struct is_aspect_active<khr::aspect::foo> : std::true_type {};

11
12 } // namespace sycl

A vendor extension could add an aspect value in a similar way:

1 namespace sycl {

2 namespace ext {

3 namespace acme {

4 namespace aspect {

5
6 static constexpr auto bar = static_cast<sycl::aspect>(-1);

7
8 } // namespace aspect

9 } // namespace acme

10 } // namespace ext

CHAPTER 6. SYCL EXTENSIONS 387



6.4. BACKENDS SYCL 2020 provisional

11
12 template<> struct is_aspect_active<ext::acme::aspect::bar> : std::true_type {};

13
14 } // namespace sycl

In the examples above, the vendor has decided to implement aspects from Khronos ratified extensions starting at
1000 and to implement vendor specific aspects as negative integers. However, these are just example implemen-
tation details. The SYCL specification does not prescribe the numerical value of any aspect.

6.4 Backends

A vendor extension may define a new SYCL backend. If it does so, the enumerated value for the backend should
be defined in the extension’s namespace, similar to the way an extended aspect is defined:

1 namespace sycl {

2 namespace ext {

3 namespace acme {

4 namespace backend {

5
6 static constexpr auto foo = static_cast<sycl::backend>(-1);

7
8 } // namespace backend

9 } // namespace acme

10 } // namespace ext

11 } // namespace sycl

The backend’s interoperability API should be made available through a header named "SYCL/ext/<vendorname
>/backend/<backendname>.hpp" and it should be defined in the namespace ::sycl::ext::<vendorname>::<
backendname>. The implementation should also predefine a macro of the form SYCL_EXT_<vendorname>_BACKEND_
<backendname> when the backend is active.

6.5 Conditional features and compilation errors

SYCL applications are allowed to contain kernels for heterogeneous devices and those kernels, of course, are
allowed to use features that are available only on certain devices. Applications are responsible for ensuring that a
kernel using such a feature is never submitted to a device that does not support the feature and is never compiled for
a device that does not support the feature (e.g. via the module build() or compile() functions). If an application
fails to adhere to this requirement, the implementation raises a feature_not_supported exception.

[Note: If an implementation defines a compiler flag that causes some kernels to be pre-compiled for some devices,
the vendor is responsible for defining the semantics about when errors are reported for kernels that use device
specific extensions. — end note]

An implementation may not raise a spurious error as a result of speculative compilation of a kernel for a device
when the application did not specifically ask to submit the kernel to that device or to compile the kernel for that
device. To clarify, consider the following example. An application with kernels K1 and K2 runs on devices D1
and D2. Kernel K1 uses extensions specific to D1, and kernel K2 uses extensions specific to D2. The application
is coded to ensure that K1 is only submitted to D1 and that K2 is only submitted to D2. An implementation may
not raise errors due to speculative compilation of K1 for device D2 or for compilation of K2 for device D1.

388 CHAPTER 6. SYCL EXTENSIONS



SYCL 2020 provisional 6.5. CONDITIONAL FEATURES AND COMPILATION ERRORS

An implementation is required, however, to raise an error for a kernel that is not valid for any device. Therefore
an implementation must raise an error for a kernel K that is invalid for all devices, even if the application is coded
such that kernel K is never submitted to any device.

CHAPTER 6. SYCL EXTENSIONS 389



6.5. CONDITIONAL FEATURES AND COMPILATION ERRORS SYCL 2020 provisional

390 CHAPTER 6. SYCL EXTENSIONS



A. Information descriptors

The purpose of this chapter is to include all the headers of the memory object descriptors, which are described in
detail in Chapter 4, for platform, context, device, and queue.

A.1 Platform information descriptors

The following interface includes all the information descriptors for the platform class as described in Table 4.12.

1 namespace sycl {

2 namespace info {

3 enum class platform : unsigned int {

4 profile,

5 version,

6 name,

7 vendor,

8 extensions // Deprecated

9 };

10 } // namespace info

11 } // namespace sycl

A.2 Context information descriptors

The following interface includes all the information descriptors for the context class as described in Table 4.15.

1 namespace sycl {

2 namespace info {

3 enum class context : int {

4 platform,

5 devices,

6 atomic_memory_order_capabilities,

7 atomic_fence_order_capabilities

8 atomic_memory_scope_capabilities,

9 atomic_fence_scope_capabilities

10 };

11 } // info

12 } // sycl

A.3 Device information descriptors

The following interface includes all the information descriptors for the device class as described in Table 4.19.

391



A.3. DEVICE INFORMATION DESCRIPTORS SYCL 2020 provisional

1 namespace sycl {

2 namespace info {

3
4 enum class device : int {

5 device_type,

6 vendor_id,

7 max_compute_units,

8 max_work_item_dimensions,

9 max_work_item_sizes,

10 max_work_group_size,

11 preferred_vector_width_char,

12 preferred_vector_width_short,

13 preferred_vector_width_int,

14 preferred_vector_width_long,

15 preferred_vector_width_float,

16 preferred_vector_width_double,

17 preferred_vector_width_half,

18 native_vector_width_char,

19 native_vector_width_short,

20 native_vector_width_int,

21 native_vector_width_long,

22 native_vector_width_float,

23 native_vector_width_double,

24 native_vector_width_half,

25 max_clock_frequency,

26 address_bits,

27 max_mem_alloc_size,

28 image_support, // Deprecated

29 max_read_image_args,

30 max_write_image_args,

31 image2d_max_height,

32 image2d_max_width,

33 image3d_max_height,

34 image3d_max_width,

35 image3d_max_depth,

36 image_max_buffer_size,

37 image_max_array_size,

38 max_samplers,

39 max_parameter_size,

40 mem_base_addr_align,

41 half_fp_config,

42 single_fp_config,

43 double_fp_config,

44 global_mem_cache_type,

45 global_mem_cache_line_size,

46 global_mem_cache_size,

47 global_mem_size,

48 max_constant_buffer_size,

49 max_constant_args,

50 local_mem_type,

51 local_mem_size,

52 error_correction_support,

53 host_unified_memory,

54 atomic_memory_order_capabilities,

55 atomic_fence_order_capabilities,

392 APPENDIX A. INFORMATION DESCRIPTORS



SYCL 2020 provisional A.3. DEVICE INFORMATION DESCRIPTORS

56 atomic_memory_scope_capabilities,

57 atomic_fence_scope_capabilities,

58 profiling_timer_resolution,

59 is_endian_little,

60 is_available,

61 is_compiler_available, // Deprecated

62 is_linker_available, // Deprecated

63 execution_capabilities,

64 queue_profiling, // Deprecated

65 built_in_kernels,

66 platform,

67 name,

68 vendor,

69 driver_version,

70 profile,

71 version,

72 backend_version,

73 aspects,

74 extensions, // Deprecated

75 printf_buffer_size,

76 preferred_interop_user_sync,

77 parent_device,

78 partition_max_sub_devices,

79 partition_properties,

80 partition_affinity_domains,

81 partition_type_property,

82 partition_type_affinity_domain,

83 reference_count

84 };

85
86 enum class device_type : unsigned int {

87 cpu, // Maps to OpenCL CL_DEVICE_TYPE_CPU

88 gpu, // Maps to OpenCL CL_DEVICE_TYPE_GPU

89 accelerator, // Maps to OpenCL CL_DEVICE_TYPE_ACCELERATOR

90 custom, // Maps to OpenCL CL_DEVICE_TYPE_CUSTOM

91 automatic, // Maps to OpenCL CL_DEVICE_TYPE_DEFAULT

92 host,

93 all // Maps to OpenCL CL_DEVICE_TYPE_ALL

94 };

95
96 enum class partition_property : int {

97 no_partition,

98 partition_equally,

99 partition_by_counts,

100 partition_by_affinity_domain

101 };

102
103 enum class partition_affinity_domain : int {

104 not_applicable,

105 numa,

106 L4_cache,

107 L3_cache,

108 L2_cache,

109 L1_cache,

110 next_partitionable

APPENDIX A. INFORMATION DESCRIPTORS 393



A.4. QUEUE INFORMATION DESCRIPTORS SYCL 2020 provisional

111 };

112
113 enum class local_mem_type : int { none, local, global };

114
115 enum class fp_config : int {

116 denorm,

117 inf_nan,

118 round_to_nearest,

119 round_to_zero,

120 round_to_inf,

121 fma,

122 correctly_rounded_divide_sqrt,

123 soft_float

124 };

125
126 enum class global_mem_cache_type : int { none, read_only, read_write };

127
128 enum class execution_capability : unsigned int {

129 exec_kernel,

130 exec_native_kernel

131 };

132
133 } // namespace info

134 } // namespace sycl

A.4 Queue information descriptors

The following interface includes all the information descriptors for the queue class as described in Table 4.23.

1 namespace sycl {

2 namespace info {

3 enum class queue : int {

4 context,

5 device

6 };

7 } // namespace info

8 } // namespace sycl

A.5 Kernel information descriptors

The following interface includes all the information descriptors for the kernel class as described in Table 4.98.

1 namespace sycl {

2 namespace info {

3 enum class kernel: int {

4 function_name,

5 num_args,

6 context,

7 module,

8 attributes

9 };

394 APPENDIX A. INFORMATION DESCRIPTORS



SYCL 2020 provisional A.6. EVENT INFORMATION DESCRIPTORS

10
11 enum class kernel_work_group: int {

12 global_work_size,

13 work_group_size,

14 compile_work_group_size,

15 preferred_work_group_size_multiple,

16 private_mem_size

17 };

18
19 enum class kernel_device_specific: int {

20 global_work_size,

21 work_group_size,

22 compile_work_group_size,

23 preferred_work_group_size_multiple,

24 private_mem_size,

25 max_num_sub_groups,

26 compile_num_sub_groups,

27 max_sub_group_size,

28 compile_sub_group_size

29 };

30
31 } // namespace info

32 } // namespace sycl

A.6 Event information descriptors

The following interface includes all the information descriptors for the event class as described in Table 4.28 and
Table 4.29.

1 namespace sycl {

2 namespace info {

3 enum class event: int {

4 command_execution_status

5 };

6
7 enum class event_command_status : int {

8 submitted,

9 running,

10 complete

11 };

12
13 enum class event_profiling : int {

14 command_submit,

15 command_start,

16 command_end

17 };

18 } // namespace info

19 } // namespace sycl

APPENDIX A. INFORMATION DESCRIPTORS 395



A.6. EVENT INFORMATION DESCRIPTORS SYCL 2020 provisional

396 APPENDIX A. INFORMATION DESCRIPTORS



B. Feature sets

As of SYCL 2020 there are now two distinct feature sets which a SYCL implementation can conform to, in order
to better fit the requirements of different domains, such as embedded, mobile, and safety critical, which may have
limitations because of the toolchains used.

A SYCL implementation can choose to conform to either the full feature set or the reduced feature set.

B.1 Full feature set

The full feature set includes all features specified in the core SYCL specification with no exceptions.

B.2 Reduced feature set

The reduced feature set makes certain features optional or restricted to specific forms. The following list defines
all the differences between the reduced feature set and the full feature set.

1. Un-named SYCL kernel functions: SYCL kernel functions which are are defined using a lambda expres-
sion and therefore have no standard name are required to be provided a name via the kernel name template
parameter of kernel invocation functions such as parallel_for. This overrides the core SYCL specification
rules for SYCL kernel function naming as specified in Section 4.10.7.

B.3 Compatibility

In order to avoid introducing any kind of divergence the reduced and full feature sets are defined such that the
full feature set is a subsumption of the reduced feature set. This means that any applications which are devel-
oped for the reduced feature will be compatible with both a SYCL reduced implementation and a SYCL full
implementation.

B.4 Conformance

One of the reasons for having this be defined in the specification is that hardware vendors which wish to support
SYCL on their platform(s) want to be able to demonstrate their support for it by passing conformance. How-
ever, if passing conformance means adopting features which they do not believe to be necessary at an additional
development effort then this may deter them.

Each feature set has its own route for passing conformance allowing adopters of SYCL to specify the feature set
they wish to test conformance against. The conformance test suite would then alter or disable the tests within the
test suite according to how the feature sets are differentiated above.

397



B.4. CONFORMANCE SYCL 2020 provisional

398 APPENDIX B. FEATURE SETS



C. Host backend specification

This chapter describes how SYCL is mapped on the SYCL host backend. The SYCL host backend exposes the
host where the SYCL application is executing as a platform to dispatch SYCL kernels. The SYCL host backend
exposes at least one SYCL host device.

C.1 Mapping of the SYCL programming model on the host

The SYCL host device implements all functionality required to execute the SYCL kernels directly on the host,
without relying on a third party API. It has full SYCL capabilities and reports them through the SYCL information
retrieval interface. At least one SYCL host device must be exposed in the SYCL host backend in all SYCL
implementations, and it must always be available. Any C++ application debugger, if available on the system, can
be used for debugging SYCL kernels executing on a SYCL host device.

When a SYCL implementation executes kernels on the host device, it is free to use whatever parallel execution
facilities available on the host, as long as it executes within the semantics of the kernel execution model defined
by the SYCL kernel execution model.

Kernel math library functions on the host must conform to OpenCL math precision requirements. The SYCL host
device needs to be queried for the capabilities it provides. This ensures consistency when executing any SYCL
general application.

The SYCL host device must report as supporting images and therefore support the minimum image formats.

The range of image formats supported by the host device is implementation-defined, but must match the minimum
requirements of the OpenCL specification.

SYCL implementors can provide extensions on the host-device to match any other backend-specific extension.
This allows developers to rely on the host device to execute their programs when said backend is not available.

C.1.1 SYCL memory model on the host

All SYCL device memories are available on devices from the host backend.

SYCL Host
Global System memory

Constant System memory
Local System memory

Private Stack

Table C.1: Mapping of SYCL memory regions into host memory regions.

399



C.2. INTEROPERABILITY WITH THE HOST APPLICATION SYCL 2020 provisional

C.2 Interoperability with the host application

The host backend must ensure all functionality of the SYCL generic programming model is always available to
developers. However, since there is no heterogeneous API behind the host backend (it directly targets the host
platform), there are no native types for SYCL objects to map to in the SYCL application.

Inside SYCL kernels, the host backend must ensure interoperability with existing host code, so that existing host
libraries can be used inside SYCL kernels executing on the host. In particular, when retrieving a raw pointer from
a multi pointer object, the pointer returned must be usable by any library accessible by the SYCL application.

400 APPENDIX C. HOST BACKEND SPECIFICATION



D. OpenCL backend specification

This chapter describes how the SYCL general programming model is mapped on top of OpenCL, and how the
SYCL generic interoperability interface must be implemented by vendors providing SYCL for OpenCL imple-
mentations to ensure SYCL applications written for the OpenCL backend are interoperable.

D.1 SYCL for OpenCL framework

The SYCL framework allows applications to use a host and one or more OpenCL devices as a single heterogeneous
parallel computer system. The framework contains the following components:

• SYCL C++ template library: The template library provides a set of C++ templates and classes which
provide the programming model to the user. It enables the creation of runtime classes such as SYCL
queues, buffers and images, as well as access to some underlying OpenCL runtime object, such as contexts,
platforms, devices and program objects.

• SYCL runtime: The SYCL runtime interfaces with the underlying OpenCL implementations and handles
scheduling of commands in queues, moving of data between host and devices, manages contexts, programs,
kernel compilation and memory management.

• OpenCL Implementation(s): The SYCL system assumes the existence of one or more OpenCL imple-
mentations available on the host machine. If no OpenCL implementation is available, then the SYCL
implementation provides only the SYCL host device to run kernels on.

• SYCL device compilers: The SYCL device compilers compile SYCL C++ kernels into a format which can
be executed on an OpenCL device at runtime. There may be more than one SYCL device compiler in a
SYCL implementation. The format of the compiled SYCL kernels is not defined. A SYCL device compiler
may, or may not, also compile the host parts of the program.

The OpenCL backend is enabled using the sycl::backend::opencl value of enum class backend. That means
that when the OpenCL backend is active, the value of sycl::is_backend_active<sycl::backend::opencl>::
value will be true.

D.2 Mapping of SYCL programming model on top of OpenCL

The SYCL programming model was originally designed as a high-level model for the OpenCL API, hence the
mapping of SYCL on the OpenCL API is mostly straightforward.

When the OpenCL backend is active on a SYCL application, all visible OpenCL platforms are exported as SYCL
platforms.

When a SYCL implementation executes kernels on an OpenCL device, it achieves this by enqueuing OpenCL
commands to execute computations on the processing elements within a device. The processing elements within
an OpenCL compute unit may execute a single stream of instructions as ALUs within a SIMD unit (which execute

401



D.2. MAPPING OF SYCL PROGRAMMING MODEL ON TOP OF OPENCL SYCL 2020 provisional

SYCL OpenCL
Global Global memory

Constant Constant memory
Local Local memory

Private Private memory

Table D.1: Mapping of SYCL memory regions into OpenCL memory regions.

in lockstep with a single stream of instructions), as independent SPMD units (where each PE maintains its own
program counter) or as some combination of the two.

D.2.1 Platform mixed version support
The SYCL system presents the user with a set of devices, grouped into some number of platforms. The device
version is an indication of the device’s capabilities, as represented by the device information returned by the sycl
::device::get_info() member function. Examples of attributes associated with the device version are resource
limits and information about functionality beyond the core SYCL specification’s requirements. The version re-
turned corresponds to the highest version of the OpenCL specification for which the device is conformant, but is
not higher than the version of the device’s platform which bounds the overall capabilities of the runtime operating
the device.

D.2.2 OpenCL memory model
The memory model for SYCL devices running on OpenCL platforms follows the memory model of the OpenCL
version they conform to. Work-items executing in a kernel have access to four distinct memory regions, with the
mapping between SYCL and OpenCL described in table D.1.

D.2.3 OpenCL resources managed by SYCL application
In OpenCL, a developer must create a context to be able to execute commands on a device. Creating a context
involves choosing a platform and a list of devices. In SYCL, contexts, platforms and devices all exist, but the user
can choose whether to specify them or have the SYCL implementation create them automatically. The minimum
required object for submitting work to devices in SYCL is the queue, which contains references to a platform,
device and context internally.

The resources managed by SYCL are:

1. Platforms: all features of OpenCL are implemented by platforms. A platform can be viewed as a given
hardware vendor’s runtime and the devices accessible through it. Some devices will only be accessible to
one vendor’s runtime and hence multiple platforms may be present. SYCL manages the different platforms
for the user. In SYCL, a platform resource is accessible through a sycl::platform object. SYCL also
provides a host platform object, which only contains a single host device.

2. Contexts: any OpenCL resource that is acquired by the user is attached to a context. A context contains
a collection of devices that the host can use and manages memory objects that can be shared between the
devices. Data movement between devices within a context may be efficient and hidden by the underlying
OpenCL runtime while data movement between contexts may involve the host. A given context can only
wrap devices owned by a single platform. In SYCL, a context resource is accessible through a sycl::
context object.

402 APPENDIX D. OPENCL BACKEND SPECIFICATION



SYCL 2020 provisional D.3. INTEROPERABILITY WITH THE OPENCL API

3. Devices: platforms provide one or more devices for executing kernels. In SYCL, a device is accessible
through a sycl::device object.

4. Kernels: the SYCL functions that run on SYCL devices (i.e. either an OpenCL device, or the host device)
are defined as C++ function objects (a named function object type or a lambda function).

5. Modules: OpenCL objects that store implementation data for the SYCL kernels. These objects are only
required for advanced use in SYCL and are encapsulated in the sycl::module class.

6. Queues: SYCL kernels execute in command queues. The user must create a queue, which references an
associated context, platform and device. The context, platform and device may be chosen automatically, or
specified by the user. In SYCL, command queues are accessible through sycl::queue objects.

D.3 Interoperability with the OpenCL API

The OpenCL backend for SYCL ensures maximum compatibility between SYCL and OpenCL kernels and API.
This includes supporting devices with different capabilities and support for different versions of the OpenCL C
language, in addition to supporting SYCL kernels written in C++.

SYCL runtime classes which encapsulate an OpenCL opaque type such as SYCL context or SYCL queue must
provide an interoperability constructor taking an instance of the OpenCL opaque type. These constructors must
retain that instance to increase the reference count of the OpenCL resource.

The destructor for the SYCL runtime classes which encapsulate an OpenCL opaque type must release that instance
to decrease the reference count of the OpenCL resource.

Note that an instance of a SYCL runtime class which encapsulates an OpenCL opaque type can encapsulate any
number of instances of the OpenCL type, unless it was constructed via the interoperability constructor, in which
case it can encapsulate only a single instance of the OpenCL type.

The lifetime of a SYCL runtime class that encapsulates an OpenCL opaque type and the instance of that opaque
type retrieved via the get() member function are not tied in either direction given correct usage of OpenCL
reference counting. For example if a user were to retrieve a cl_command_queue instance from a SYCL queue
instance and then immediately destroy the SYCL queue instance, the cl_command_queue instance is still valid.
Or if a user were to construct a SYCL queue instance from a cl_command_queue instance and then immediately
release the cl_command_queue instance, the SYCL queue instance is still valid.

Note that a SYCL runtime class that encapsulates an OpenCL opaque type is not responsible for any incor-
rect use of OpenCL reference counting outside of the SYCL runtime. For example if a user were to retrieve a
cl_command_queue instance from a SYCL queue instance and then release the cl_command_queue instance more
than once without any prior retain then the SYCL queue instance that the cl_command_queue instance was retrieved
from is now undefined.

Note that an instance of the SYCL buffer or SYCL image class templates constructed via the interoperability
constructor is free to copy from the cl_mem into another memory allocation within the SYCL runtime to achieve
normal SYCL semantics, for as long as the SYCL buffer or SYCL image instance is alive.

Table D.2 relates SYCL objects to their OpenCL native type in the SYCL application.

APPENDIX D. OPENCL BACKEND SPECIFICATION 403



D.3. INTEROPERABILITY WITH THE OPENCL API SYCL 2020 provisional

OpenCL backend native types Description
device

cl_device_id

A SYCL device object encapsulates an
OpenCL device object.

context

cl_context

A SYCL context object encapsulates an
OpenCL context object.

program

cl_program

When a SYCL program is constructed for
the OpenCL backend, this maps directly to
an OpenCL program object.

kernel

cl_kernel

The SYCL implementation will produce
OpenCL programs from the SYCL device
kernels. They are dispatched on the OpenCL
interface as OpenCL kernel objects. This
also apply to built-in kernels.

event

std::vector<cl_event>

A SYCL event can encapsulate one or mul-
tiple OpenCL events, representing a number
of dependencies in the same or different con-
texts, that must be satisfied for the SYCL
event to be complete.

buffer

std::vector<cl_mem>

SYCL buffers containing OpenCL memory
objects can handle multiple cl_mem objects
in the same or different context. The inter-
operability interface will return a list of ac-
tive buffers in the SYCL runtime.

image

std::vector<cl_mem>

SYCL images containing OpenCL image
objects can handle multiple underlying
cl_mem objects at the same time in the same
or different OpenCL contexts. The interop-
erability interface will return a list of active
images in the SYCL runtime.

End of table

Table D.2: List of native types per SYCL object in the OpenCL backend.

The user can also extract OpenCL cl_kernel and cl_program objects for kernels by providing the type name of
the kernel.

Inside the SYCL kernel, the SYCL API offers interoperability with OpenCL device types. The table D.3 describes
the mapping of kernel types.

SYCL kernel native types in OpenCL Description
multi_ptr::get() Returns a pointer in the OpenCL address

space corresponding to the type of multi
pointer object

device_event::get() Returns an event_t object, which can be
used to identify copies from global to local
memory and vice-versa

End of table

Table D.3: List of native types per SYCL object on kernel code.

404 APPENDIX D. OPENCL BACKEND SPECIFICATION



SYCL 2020 provisional D.4. PROGRAMMING INTERFACE

When a buffer or image is allocated on more than one OpenCL device, if these devices are on separate contexts
then multiple cl_mem objects may be allocated for the memory object, depending on whether the object has
actively been used on these devices yet or not.

Some types in SYCL vary according to pointer size or vary on the host according to the host ABI, such as size_t
or long. In order for the the SYCL device compiler to ensure that the sizes of these types match the sizes on the
host and to enable data of these types to be shared between host and device, the OpenCL interoperability types
are defined, sycl::cl_int and sycl::cl_size_t.

The OpenCL C function qualifier __kernel and the access qualifiers: __read_only, __write_only and __-
read_write are not exposed in SYCL via keywords, but are instead encapsulated in SYCL’s parameter passing
system inside accessors. Users wishing to achieve the OpenCL equivalent of these qualifiers in SYCL should
instead use SYCL accessors with equivalent semantics.

Any OpenCL C function included in a pre-built OpenCL library can be defined as an extern "C" function and the
OpenCL program has to be linked against any SYCL program that contains kernels using the external function.
In this case, the data types used have to comply with the interoperability aliases defined in D.7.

D.4 Programming interface

The following section describes the OpenCL-specific API. All free functions are available in the sycl::opencl
namespace.

OpenCL interoperability functions Description
sycl::context make_context (

const cl_context &clContext,

const sycl::async_handler &asyncHandler = {})

Constructs a SYCL context instance from
an OpenCL cl_context in accordance with
the requirements described in 4.5.2.

cl_context get_native<sycl::context>(

const sycl::context &syclContext)

Returns a valid cl_context instance in ac-
cordance with the requirements described in
4.5.2.

sycl::event make_event (const cl_event &clEvent,

const sycl::context &syclContext)

Constructs a SYCL event instance from
an OpenCL cl_event in accordance with
the requirements described in 4.5.2. The
syclContext must match the OpenCL con-
text associated with the clEvent.

cl_event get_native<sycl::event>(

const sycl::event &syclEvent)

Returns a valid cl_event instance in accor-
dance with the requirements described in
4.5.2.

sycl::device make_device(

const cl_device_id &clDeviceId)

Constructs a SYCL device instance from an
OpenCL cl_device_id in accordance with
the requirements described in 4.5.2.

cl_device_id get_native<sycl::device>(

const sycl::device &syclDevice)

Returns a valid cl_device_id instance in ac-
cordance with the requirements described in
4.5.2.

sycl::platform make_platform(

const cl_platform_id &clPlatformId)

Constructs a SYCL platform instance from
an OpenCL cl_platform_id in accordance
with the requirements described in 4.5.2.

cl_platform_id get_native<sycl::platform>(

const sycl::platform &syclPlatform)

Returns a valid cl_platform_id instance in
accordance with the requirements described
in 4.5.2.

APPENDIX D. OPENCL BACKEND SPECIFICATION 405



D.4. PROGRAMMING INTERFACE SYCL 2020 provisional

OpenCL interoperability functions Description
sycl::queue make_queue(

const cl_command_queue &clQueue,

const sycl::context &syclContext,

const sycl::async_handler &asyncHandler = {})

Constructs a SYCL queue instance with an
optional async_handler from an OpenCL
cl_command_queue in accordance with the
requirements described in 4.5.2.

cl_command_queue get_native<sycl::queue>(

const sycl::queue &syclQueue)

Returns a valid cl_command_queue instance
in accordance with the requirements de-
scribed in 4.5.2.

sycl::buffer make_buffer(

const cl_mem &clMemObject,

const sycl::context &syclContext,

sycl::event availableEvent = {})

Available only when: dimensions == 1.
Constructs a SYCL buffer instance from
an OpenCL cl_mem in accordance with the
requirements described in 4.5.2. The in-
stance of the SYCL buffer class tem-
plate being constructed must wait for the
SYCL event parameter, if one is provided,
availableEvent to signal that the cl_mem
instance is ready to be used. The SYCL
context parameter syclContext is the con-
text associated with the memory object.

sycl::sampled_image make_sampled_image(

const cl_mem &clMemObject,

const context &syclContext,

event availableEvent = {})

Constructs a SYCL sampled_image instance
from an OpenCL cl_mem in accordance with
the requirements described in 4.5.2. The
instance of the SYCL image class tem-
plate being constructed must wait for the
SYCL event parameter, if one is provided,
availableEvent to signal that the cl_mem
instance is ready to be used. The SYCL
context parameter syclContext is the con-
text associated with the memory object.

sycl::unsampled_image make_unsampled_image(

const cl_mem &clMemObject,

const sycl::context &syclContext,

sycl::image_sampler syclImageSampler,

event availableEvent = {})

Constructs a SYCL unsampled_image in-
stance from an OpenCL cl_mem in accor-
dance with the requirements described in
4.5.2. The instance of the SYCL image class
template being constructed must wait for the
SYCL event parameter, if one is provided,
availableEvent to signal that the cl_mem
instance is ready to be used. The SYCL
context parameter syclContext is the con-
text associated with the memory object.

sycl::image_sampler make_image_sampler(

const cl_sampler &clSampler,

const sycl::context &syclContext,

Constructs a SYCL image_sampler instance
from an OpenCL cl_sampler in accordance
with the requirements described in 4.5.2.
The SYCL context parameter syclContext
is the context associated with the sampler

object.

406 APPENDIX D. OPENCL BACKEND SPECIFICATION



SYCL 2020 provisional D.4. PROGRAMMING INTERFACE

OpenCL interoperability functions Description
sycl::kernel make_kernel(

const cl_kernel &clKernel,

const sycl::context& syclContext)

Constructs a SYCL kernel instance from
an OpenCL cl_kernel in accordance with
the requirements described in 4.5.2. The
SYCL context must represent the same un-
derlying OpenCL context associated with
the OpenCL kernel object.

cl_kernel get_native<sycl::kernel>(

const sycl::kernel &syclKernel)const

Returns a valid cl_kernel instance in ac-
cordance with the requirements described in
4.5.2.

D.4.1 Reference counting
All OpenCL objects are reference counted. The SYCL general programming model doesn’t require that native
objects are reference counted. However, for convenience, the following function is provided in the sycl::opencl
namespace.

Reference counting Description
template <typename openCLT>

cl_uint get_reference_count(openCLT obj)

Returns the reference counting of the given
object

D.4.2 Errors and limitations
If there is an OpenCL error associated with an exception triggered, then the OpenCL error code can be obtained
by the free function cl_int sycl::opencl::get_error_code(sycl::exception&). In the case where there is no
OpenCL error associated with the exception triggered, the OpenCL error code will be CL_SUCCESS.

D.4.3 Interoperability with modules
In OpenCL [1] any kernel function that is enqueued over an nd-range is represented by acl_kernel and must be
compiled and linked via a cl_program using clBuildProgram, clCompileProgram and clLinkProgram.

For OpenCL SYCL backend this detail is abstracted away by modules and a module object containing all SYCL
kernel functions in a translation is retrieved by calling the free function this_module::get.

However, there are cases where it is useful to be able to manually create a module from an input specific to the
OpenCL SYCL backend such as OpenCL C source, and intermediate representation/language such as SPIR-V.
This can be useful for interoperability with existing OpenCL kernels or libraries or binaries generated by another
tool which need to be linked at runtime.

The OpenCL SYCL backend specification provides additional free functions which provide the above functional-
ity, each resulting in an input module which can then be built, compiled and linked as described in 4.13.7.

1 namespace sycl {

2 namespace opencl {

3
4 using binary_blob_t = std::pair<const char*, size_t>;

5
6 module<module_state::input> create_module_with_source (context ctx, std::string source);

APPENDIX D. OPENCL BACKEND SPECIFICATION 407



D.4. PROGRAMMING INTERFACE SYCL 2020 provisional

7
8 module<module_state::input> create_module_with_binary(context ctx, binary_blob_t binary);

9
10 module<module_state::input> create_module_with_il (context ctx, binary_blob_t il);

11
12 module<module_state::input> create_module_with_builtin_kernels (context ctx,

13 std::vector<std::string> kernelNames);

14
15 } // namespace opencl

16 } // namespace sycl

D.4.3.1 Free functions

1 module<module_state::input> create_module_with_source (context ctx, std::string source); // (1)

1. Preconditions: The context specified by ctx must be associated with the OpenCL SYCL backend. The
OpenCL C source specified by source must not be an empty string.

Effects: Constructs a module from the provided OpenCL C source specified by source and associated with
the context specified by ctx by invoking the necessary OpenCL APIs.

Returns: A module of module_state::input containing the kernels defined in the OpenCL C source spec-
ified by source.

Throws: invalid_object_error if any error is produced by invoking the OpenCL APIs.

1 module<module_state::input> create_module_with_binary(context ctx, binary_blob_t binary); // (1)

1. Preconditions: The context specified by ctx must be associated with the OpenCL SYCL backend. The
binary blob specified by binary must not contain a null pointer or zero size.

Effects: Constructs a module from the provided binary blob specified by binary and associated with the
context specified by ctx by invoking the necessary OpenCL APIs.

Returns: A module of module_state::input containing the kernels defined in the binary blob specified by
binary.

Throws: invalid_object_error if any error is produced by invoking the OpenCL APIs.

1 module<module_state::input> create_module_with_il (context ctx, binary_blob_t il); // (1)

1. Preconditions: The context specified by ctx must be associated with the OpenCL SYCL backend. The
intermediate language specified by il must not contain a null pointer or zero size.

Effects: Constructs a module from the provided intermediate language specified by il and associated with
the context specified by ctx by invoking the necessary OpenCL APIs.

Returns: A module of module_state::input containing the kernels defined in the binary intermediate
language by il.

Throws: invalid_object_error if any error is produced by invoking the OpenCL APIs.

408 APPENDIX D. OPENCL BACKEND SPECIFICATION



SYCL 2020 provisional D.4. PROGRAMMING INTERFACE

1 module<module_state::input> create_module_with_builtin_kernels (context ctx, //(1)

2 std::vector<std::string> kernelNames);

1. Preconditions: The context specified by ctx must be associated with the OpenCL SYCL backend. The list
of names specified by kernelNames must not be empty.

Effects: Constructs a module from the provided builtin kernel names specified by kernelNames and associ-
ated with the context specified by ctx by invoking the necessary OpenCL APIs.

Returns: A module of module_state::input containing the built-in kernels defined by the list of kernel
names specified by kernelNames.

Throws: invalid_object_error if any error is produced by invoking the OpenCL APIs.

D.4.4 Interoperability with kernels
It is possible to construct a kernel from a previously created OpenCL cl_kernel by calling the interop free
function make_kernel defined in 4.5.2.3.

This will create a kernel object which can be invoked by any of kernel invocation commands such as
parallel_for which take a kernel but not SYCL kernel function.

Calling make_kernel must trigger a call to clRetainKernel and the resulting kernel object must call
clReleaseKernel on destruction.

The kernel arguments for the OpenCL C kernel kernel can either be set prior to creating the kernel object or by
calling the set_arg member function of the handler class.

If kernel arguments are set prior to creating the kernel object the SYCL runtime is not responsible for managing
the data of these arguments.

D.4.5 OpenCL kernel conventions and SYCL
OpenCL and SYCL use opposite conventions for the unit stride dimension. SYCL aligns with C++ conventions,
which is important to understand from a performance perspective when porting code to SYCL. The unit stride
dimension, at least for data, is implicit in the linearization equations in SYCL (Equation 4.3) and OpenCL. SYCL
aligns with C++ array subscript ordering arr[a][b][c], in that range constructor dimension ordering used to
launch a kernel (e.g. range<3> R{a,b,c}) and range and ID queries within a kernel, are ordered in the same way
as the C++ multi-dimensional subscript operators (unit stride on the right).

When specifying a range as the global or local size in a parallel_for that invokes an OpenCL interop kernel
(through cl_kernel interop or compile_with_source/ build_with_source), the highest dimension of the range in
SYCL will map to the lowest dimension within the OpenCL kernel. That statement applies to both an underlying
enqueue operation such as clEnqueueNDRangeKernel in OpenCL, and also ID and size queries within the OpenCL
kernel. For example, a 3D global range specified in SYCL as:

range<3> R{r0,r1,r2};

maps to an clEnqueueNDRangeKernel global_work_size argument of:

size_t cl_interop_range[3] = {r2,r1,r0};

APPENDIX D. OPENCL BACKEND SPECIFICATION 409



D.4. PROGRAMMING INTERFACE SYCL 2020 provisional

Likewise, a 2D global range specified in SYCL as:

range<2> R{r0,r1};

maps to an clEnqueueNDRangeKernel global_work_size argument of:

size_t cl_interop_range[2] = {r1,r0};

The mapping of highest dimension in SYCL to lowest dimension in OpenCL applies to all operations where
a multi-dimensional construct must be mapped, such as when mapping SYCL explicit memory operations to
OpenCL APIs like clEnqueueCopyBufferRect.

Work-item and work-group ID and range queries have the same reversed convention for unit stride dimension
between SYCL and OpenCL. For example, with three, two, or one dimensional SYCL global ranges, OpenCL
and SYCL kernel code queries relate to the range as shown in Table D.6. The “SYCL kernel query” column
applies for SYCL-defined kernels, and the “OpenCL kernel query” column applies for kernels defined through
OpenCL interop.

SYCL kernel query OpenCL kernel query Returned Value

With enqueued 3D SYCL global range of range<3> R{r0,r1,r2}

nd_item::get_global_range(0)/ item::get_range(0) get_global_size(2) r0

nd_item::get_global_range(1)/ item::get_range(1) get_global_size(1) r1

nd_item::get_global_range(2)/ item::get_range(2) get_global_size(0) r2

nd_item::get_global_id(0)/ item::get_id(0) get_global_id(2) Value in range 0..(r0-1)

nd_item::get_global_id(1)/ item::get_id(1) get_global_id(1) Value in range 0..(r1-1)

nd_item::get_global_id(2)/ item::get_id(2) get_global_id(0) Value in range 0..(r2-1)

With enqueued 2D SYCL global range of range<2> R{r0,r1}

nd_item::get_global_range(0)/ item::get_range(0) get_global_size(1) r0

nd_item::get_global_range(1)/ item::get_range(1) get_global_size(0) r1

nd_item::get_global_id(0)/ item::get_id(0) get_global_id(1) Value in range 0..(r0-1)

nd_item::get_global_id(1)/ item::get_id(1) get_global_id(0) Value in range 0..(r1-1)

With enqueued 1D SYCL global range of range<1> R{r0}

nd_item::get_global_range(0)/ item::get_range(0) get_global_size(0) r0

nd_item::get_global_id(0)/ item::get_id(0) get_global_id(0) Value in range 0..(r0-1)

Table D.6: Example range mapping from SYCL enqueued three dimensional global range to OpenCL and SYCL
queries.

D.4.6 Data types
The OpenCL C language standard [1, Section 6.11] defines its own built-in scalar data types, and these have
additional requirements in terms of size and signedness on top of what is guaranteed by ISO C++. For the
purpose of interoperability and portability, SYCL defines a set of aliases to C++ types within the sycl::opencl
namespace using the cl_ prefix. These aliases are described in Table D.7

410 APPENDIX D. OPENCL BACKEND SPECIFICATION



SYCL 2020 provisional D.5. PREPROCESSOR DIRECTIVES AND MACROS

Scalar data type alias Description
cl_bool Alias to a conditional data type which can

be either true or false. The value true ex-
pands to the integer constant 1 and the value
false expands to the integer constant 0.

cl_char Alias to a signed 8-bit integer, as defined by
the C++ core language.

cl_uchar Alias to an unsigned 8-bit integer, as defined
by the C++ core language.

cl_short Alias to a signed 16-bit integer, as defined
by the C++ core language.

cl_ushort Alias to an unsigned 16-bit integer, as de-
fined by the C++ core language.

cl_int Alias to a signed 32-bit integer, as defined
by the C++ core language.

cl_uint Alias to an unsigned 32-bit integer, as de-
fined by the C++ core language.

cl_long Alias to a signed 64-bit integer, as defined
by the C++ core language.

cl_ulong Alias to an unsigned 64-bit integer, as de-
fined by the C++ core language.

cl_float Alias to a 32-bit floating-point. The float
data type must conform to the IEEE 754 sin-
gle precision storage format.

cl_double Alias to a 64-bit floating-point. The dou-
ble data type must conform to the IEEE 754
double precision storage format.

cl_half Alias to a 16-bit floating-point. The
half data type must conform to the
IEEE 754-2008 half precision storage for-
mat. An exception with the errc::
feature_not_supported error code must be
thrown if the half type is used in a SYCL
kernel function which executes on a SYCL
device that does not support the extension
khr_fp16.

End of table

Table D.7: Scalar data type aliases supported by SYCL OpenCL backend.

D.5 Preprocessor directives and macros

• SYCL_BACKEND_OPENCL substitutes to one if the OpenCL SYCL backend is active while building the SYCL
application.

D.5.1 Offline linking with OpenCL C libraries
SYCL supports linking SYCL kernel functions with OpenCL C libraries during offline compilation or during
online compilation by the SYCL runtime within a SYCL application.

APPENDIX D. OPENCL BACKEND SPECIFICATION 411



D.5. PREPROCESSOR DIRECTIVES AND MACROS SYCL 2020 provisional

Linking with OpenCL C kernel functions offline is an optional feature and is unspecified. Linking with OpenCL
C kernel functions online is performed by using the SYCL module class to compile and link an OpenCL C source;
using the compile_with_source or build_with_source member functions.

OpenCL C functions that are linked with, using either offline or online compilation, must be declared as extern
"C" function declarations. The function parameters of these function declarations must be defined as the OpenCL
C interoperability aliases; pointer of the multi_ptr class template, vector_t of the vec class template and scalar
data type aliases described in Table D.7.

For example:

1 extern "C" typename sycl::decorated_global_ptr<std::int32_t>::pointer my_func(

2 sycl::float4::vector_t x, double y);

412 APPENDIX D. OPENCL BACKEND SPECIFICATION



SYCL 2020 provisional D.6. SYCL SUPPORT OF NON-CORE OPENCL FEATURES

D.6 SYCL support of non-core OpenCL features

In addition to the OpenCL core features, SYCL also provides support for OpenCL extensions which provide
features in OpenCL via khr extensions.

Some extensions are natively supported within the SYCL interface, however some can only be used via the
OpenCL interoperability interface. The SYCL interface required for native extensions must be available. However
if the respective extension is not supported by the executing SYCL device, the SYCL runtime must throw an
exception with the errc::feature_not_supported error code.

The OpenCL backend exposes khr extensions to SYCL applications through the sycl::aspect enumerated type.
Therefore, applications can query for the existence of khr extensions by calling the device::has() or platform
::has() member functions.

All OpenCL extensions are available through the OpenCL interoperability interface, but some can also be used
through core SYCL APIs. Table D.8 shows which these are. Table D.8 also shows the mapping from each
OpenCL extension name to its associated SYCL device aspect. Note that some aspects are part of the core SYCL
specification, and these are in namespace ::sycl::aspect. Other aspects are specific to the OpenCL backend,
and these are in namespace ::sycl::opencl::aspect.

SYCL Aspect OpenCL Extension Core SYCL API
aspect::int64_base_atomics cl_khr_int64_base_atomics Yes
aspect::int64_extended_atomics cl_khr_int64_extended_atomics Yes
aspect::fp16 cl_khr_fp16 Yes
opencl::aspect::3d_image_writes cl_khr_3d_image_writes Yes
opencl::aspect::khr_gl_sharing cl_khr_gl_sharing No
opencl::aspect::apple_gl_sharing cl_apple_gl_sharing No
opencl::aspect::d3d10_sharing cl_khr_d3d10_sharing No
opencl::aspect::d3d11_sharing cl_khr_d3d11_sharing No
opencl::aspect::dx9_media_sharing cl_khr_dx9_media_sharing No

End of table

Table D.8: SYCL support for OpenCL 1.2 extensions.

D.6.1 Half precision floating-point

The half scalar data type: half and the half vector data types: half1, half2, half3, half4, half8 and half16must
be available at compile-time. However if any of the above types are used in a SYCL kernel function, executing
on a device which does not support the extension khr_fp16, the SYCL runtime must throw an exception with the
errc::feature_not_supported error code.

The conversion rules for half precision types follow the same rules as in the OpenCL 1.2 extensions specification
[5, par. 9.5.1].

The math functions for half precision types follow the same rules as in the OpenCL 1.2 extensions specification [5,
par. 9.5.2, 9.5.3, 9.5.4, 9.5.5]. The allowed error in ULP(Unit in the Last Place) is less than 8192, corresponding
to Table 6.9 of the OpenCL 1.2 specification [1].

APPENDIX D. OPENCL BACKEND SPECIFICATION 413



D.6. SYCL SUPPORT OF NON-CORE OPENCL FEATURES SYCL 2020 provisional

D.6.2 Writing to 3D image memory objects
The accessor class for target access::target::image in SYCL support member functions for writing 3D image
memory objects, but this functionality is only allowed on a device if the extension cl_khr_3d_image_writes is
supported on that device.

D.6.3 Interoperability with OpenGL
Interoperability between SYCL and OpenGL is not directly provided by the SYCL interface, however can be
achieved via the SYCL OpenCL interoperability interface.

414 APPENDIX D. OPENCL BACKEND SPECIFICATION



E. What has changed from previous versions

E.1 What has changed from SYCL 1.2.1 to SYCL 2020

The SYCL runtime moved from namespace cl::sycl provided by #include "CL/sycl.hpp" to namespace sycl
provided by #include "SYCL/sycl.hpp" as explained in Section 4.3. The old header file is still available for
compatibility with SYCL 1.2.1 applications.

The SYCL specification is now based on the core language of C++17, as described in Section 3.8.1. Features of
C++17 are now enabled within the specification, such as deduction guides for class template argument deduction.

Naming of lambda functions passed to kernel invocations is now optional.

The accessor class definition and interface have been significantly modified to simplify commonly written SYCL
code. Default modes have been defined and modifiers use tag arguments. Host accessors have now their own class
host_accessor as explained in Section 4.7.6.10.

Kernel attributes have been better described and are now applied to the function type of a kernel function, which
allows them to be applied directly to lambdas. This means that propagation of the attribute from a function to
the calling kernel is no longer required, and attributes are instead applied directly to the kernel function that they
impact.

The list of built-in integer math functions was extended with ctz() in Tables 4.155. Specification of clz() was
extended with the case of argument is 0.

The classes vector_class, string_class, function_class, mutex_class, shared_ptr_class, weak_ptr_class
, hash_class and exception_ptr_class have been removed from the API and the standard classes std::
vector, std::string, std::function, std::mutex, std::shared_ptr, std::weak_ptr, std::hash and std::
exception_ptr are used instead.

operator[] of SYCL accessor for SYCL buffer was changed to return const reference when accessMode ==
access::mode::read.

The specific sycl::buffer API taking std::unique_ptr has been removed. The behavior is the same as in SYCL
1.2.1 but with a simplified API. Since there is still the API taking std::shared_ptr and there is an implicit
conversion from a std::unique_ptr prvalue to a std::shared_ptr, the API can still be used as before with a
std::unique_ptr to give away memory ownership.

Unified Shared Memory (USM), in Section 4.8, has been added as a pointer-based strategy for data management.
It defines several types of allocations with various accessibility rules for host and devices. USM is meant to
complement buffers, not replace them.

The queue class received a new property that requires in-order semantics for a queue where operations are
executed in the order in which they are submitted.

The queue class received several new member functions to define kernels directly on a queue objects instead of

415



E.1. WHAT HAS CHANGED FROM SYCL 1.2.1 TO SYCL 2020 SYCL 2020 provisional

inside a command group handler in the submit member function.

The program class has been replaced with the module which provides a type-safe and thread-safe interface for
compiling and linking SYCL kernel function. The previous member functions of the program class are now free
functions. Modules are now retrieved from the this_module::get function which produces a module containing
the SYCL kernel functions of the current translation unit.

The module class now supports specialization constants which allow SYCL kernel functions to define constant
variables, whose value is not known until the containing module is compiled. The specialization_constant
class has been introduced to represent a reference to a specialization constant both in the SYCL application for
setting the value and in a SYCL kernel function for retrieving the value.

The kernel_handler class has been introduced as an optional parameter to kernel invocation commands to provide
functionality and queries relating to a SYCL kernel function at the kernel scope, including getting the value of a
specialization constant.

The constructors for SYCL context and queue are made explicit to prevent ambiguities in the selected con-
structor resulting from implicit type conversion.

The requirement for C++ standard layout for data shared between host and devices has been softened and now
only C++ trivially copyable is required, as explained mainly in Section 4.14.4.

The concept of a group of work-items was generalized to include work-groups and sub-groups. A work-group
is represented by the sycl::group class as in SYCL 1.2.1, and a sub-group is represented by the new sycl::
sub_group class.

The host_task member function for the queue has been introduced for en-queueing host tasks on a queue to
schedule the SYCL runtime to invoke native C++ functions, conforming to the SYCL memory model. Host tasks
also support interoperability with the native SYCL backend objects associated at that point in the DAG using the
optional interop_handle class.

A library of algorithms based on the C++17 algorithms library was introduced in Section 4.19.4. These algorithms
provide a simple way for developers to apply common parallel algorithms using the work-items of a group.

The definition of the sycl::group class was modified to support the new group functions in Section 4.19.5. New
member types and variables were added to enable generic programming, and member functions were updated to
encapsulate all functionality tied to work-groups in the sycl::group class. See Table 4.85 for details.

The barrier and mem_fence member functions of the nd_item class have been removed. The barrier member
function has been replaced by the group_barrier() function, which can be used to synchronize either work-
groups or sub-groups. The mem_fence member function has been replaced by the atomic_fence function, which
is more closely aligned with std::atomic_thread_fence and offers control over memory ordering and scope.

Changes in the SYCL vec class described in Section 4.16.2:

• operator[] was added;

• unary operator+() and operator-() were added;

• get_count() and get_size() were made static constexpr.

Buffer and local accessors now meet the C++ requirement of ContiguousContainer. This includes (but is not
limited to) returning begin and end iterators, specifying a default constructible accessor that can be passed to a

416 APPENDIX E. WHAT HAS CHANGED FROM PREVIOUS VERSIONS



SYCL 2020 provisional E.1. WHAT HAS CHANGED FROM SYCL 1.2.1 TO SYCL 2020

kernel but not dereferenced, and making them equality comparable within kernel functions. accessor::get_size
() has been removed to prevent confusion with accessor::size(), and replaced with accessor::byte_size().
All buffer and local accessor size and iterator queries have been marked noexcept.

The device selection now relies on a simpler API based on ranking functions used as device selectors described
in Section 4.6.1.1.

A new reduction library consisting of the reduction function, reducer class and parallel_reducewas introduced
to simplify the expression of variables with reduction semantics in SYCL kernels. See Section 4.10.2.

Global and constant accessors can now be constructed as placeholders without specifying the access::
placeholder template parameter (which has been deprecated). It is allowed to call handler::require on both
placeholder and non-placeholder global and constant buffer accessors, and it is allowed to call it multiple times.
accessor::is_placeholder is not constexpr anymore.

The image class has been replaced with unsampled_image and sampled_image classes. The sampler class has
been modified to support these changes.

Specified the constness semantics of accessors. const dataT and access::mode::read are semantically equiva-
lent, and having at least one of those parameters part of the accessor type makes the accessor read-only. Defined
implicit conversions based on these semantics. Specified default access mode to be access::mode::read for
const dataT and access::mode::read_write otherwise. Specified default accessor dimensions to be 1. All of
these rules enable most buffer accessor code to only need to use accessor<T> for mutable data and accessor<
const T> for const data.

The atomic class from SYCL 1.2.1 and accessors using access::mode::atomic were deprecated in favor of a new
atomic_ref interface.

The SYCL exception class hierarchy has been condensed into a single exception type: exception. exception
now derives from std::exception. The variety of errors are now provided via error codes, which aligns with the
C++ error code mechanism.

The new error code mechanism now also generalizes the previous get_cl_code interface to provide a generic
interface way for querying backend-specific error codes.

Default asynchronous error handling behavior is now defined, so that asynchronous errors will cause abnormal
program termination even if a user-defined asynchronous handler function is not defined. This prevents asyn-
chronous errors from being silently lost during early stages of application development.

Kernel invocation functions, such as parallel_for, now take kernel functions by const reference. Kernel func-
tions must now have a const-qualified operator(), and are allowed to be copied zero or more times by an
implementation. These clarifications allow implementations to have flexibility for specific devices, and define
what users should expect with kernel functors. Specifically, kernel functors can not be marked as mutable, and
sharing of data between work-items should not be attempted through state stored within a kernel functor.

A new concept called device aspects has been added, which tells the set of optional features a device supports.
This new mechanism replaces the has_extension() function and some uses of get_info().

There is a new Chapter 6 which describes how extensions to the SYCL language can be added by vendors and by
The Khronos Group.

A queue constructor has been added that takes both a device and context, to simplify interfacing with libraries.

APPENDIX E. WHAT HAS CHANGED FROM PREVIOUS VERSIONS 417



E.1. WHAT HAS CHANGED FROM SYCL 1.2.1 TO SYCL 2020 SYCL 2020 provisional

The parallel_for interface has been simplified in some forms to accept a braced initializer list in place of a
range, and to always take item arguments. Kernel invocation functions have also been modified to accept generic
lambda expressions. Some implicit conversions have been defined to allow one-dimensional item to convert to
scalar types. All of these modifications lead to simpler SYCL code in common use cases.

Some device-specific queries have been renamed to more clearly be “device-specific kernel” get_info
queries (info::kernel_device_specific) instead of “work-group” (get_workgroup_info) and sub-group

(get_sub_group_info) queries.

A new math array type marray has been defined to begin disambiguation of the multiple possible interpretations
of how sycl::vec should be interpreted and implemented.

Changes in SYCL address spaces:

• the address space meaning has been significantly improved;

• the generic address space was introduced;

• behavior of unannotated pointer/reference (raw pointer/reference) is now dependent on the compilation
mode. The compiler can either interpret unannotated pointer/reference has addressing the generic address
space or to be deduced;

• some ambiguities in the address space deduction were clarified. Notably that deduced type does not affect
the user-provided type.

Changes in multi_ptr interface:

• addition of access::address_space::generic_space to represent the generic address space;

• an extra template parameter to allow to select a flavor of the multi_ptr interface. There are now 3 different
interfaces:

– interface exposing undecorated types. Returned pointer and reference are not annotated by an address
space;

– interface exposing decorated types. Returned pointer and reference are annotated by an address space;

– legacy 1.2.1 interface (deprecated).

• deprecation of the 1.2.1 interface;

• global_ptr, local_ptr, constant_ptr and private_ptr alias take the new extra parameter;

• addition of the address_space_cast free function to cast undecorated pointer to multi_pointer;

• addition of construction/conversion operator for the generic address space;

• removal of the constructor and assignment operator taking an unannotated pointer;

• implicit conversion to a pointer is now deprecated. get should be used instead;

• the return type of the member function get now depends on the selected interface.

• addition of the member function get_raw which returns the underlying pointer as an unannotated pointer;

418 APPENDIX E. WHAT HAS CHANGED FROM PREVIOUS VERSIONS



SYCL 2020 provisional E.1. WHAT HAS CHANGED FROM SYCL 1.2.1 TO SYCL 2020

• addition of the member function get_decorated which returns the underlying pointer as an annotated
pointer.

The accessor member function get_pointer now returns a raw pointer. The get_multi_ptrmember function was
introduced to accessor classes which return the multi_ptr class to the appropriate space.

The cl::sycl::byte has been deprecated and now the C++17 std::byte should be used instead.

APPENDIX E. WHAT HAS CHANGED FROM PREVIOUS VERSIONS 419



E.1. WHAT HAS CHANGED FROM SYCL 1.2.1 TO SYCL 2020 SYCL 2020 provisional

420 APPENDIX E. WHAT HAS CHANGED FROM PREVIOUS VERSIONS



References

[1] Khronos OpenCL Working Group, The OpenCL Specification, version 1.2.19, 2012. [Online]. Available:
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

[2] International Organization for Standardization (ISO), “Programming Languages - C++,” Tech. Rep. ISO/IEC
14882:2017, 2017.

[3] ——, Working Draft, Standard for Programming Language C++, 2020. [Online]. Available:
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2020/n4849.pdf

[4] Khronos OpenCL Working Group, The OpenCL Specification, Version 2.0, 2015. [Online]. Available:
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf

[5] ——, The OpenCL Extension Specification, version 1.2.22, 2012. [Online]. Available: http:
//www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf

421

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2020/n4849.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf


REFERENCES SYCL 2020 provisional

422 REFERENCES



Glossary

accessor An accessor is a class which allows a SYCL kernel function to access data managed by a buffer or
image class. Accessors are used to express the dependencies among the different command groups. For the
full description please refer to section [4.7.6]. 30, 31, 37, 38, 109, 110, 124, 142, 144, 263, 265, 266

SYCL application A SYCL application is a C++ application which uses the SYCL programming model in order
to execute kernels on devices. 30, 33, 57, 58, 59, 265, 266, 272, 325, 416, 423, 424, 428

application scope The application scope starts with the construction first SYCL runtime class object and finishes
with the destruction of the last one. Application refers to the C++ SYCL application and not the SYCL
runtime. 30, 33, 159

aspect A characteristic of a device which determines whether it supports some optional feature. Aspects are
always boolean, so a device either has or does not have an aspect. 70, 78, 88, 91, 387, 417

async_handler An asynchronous error handler object is a function class instance providing necessary code for
handling all the asynchronous errors triggered from the execution of command groups on a queue, within a
context or an associated event. For the full description please refer to section [4.15.2]. 7, 94, 100, 104, 106,
107, 285, 286

asynchronous error A SYCL asynchronous error is an error occurring after the host API call invoking the error
causing action has returned, such that the error cannot be thrown as a typical C++ exception from a host API
call. Such errors are typically generated from device kernel invocations which are executed when SYCL
task graph dependencies are satisfied, which occur asynchronously from host code execution. For the full
description and associated asynchronous error handling mechanisms, please refer to section [4.15]. 46, 94,
100, 104, 106, 107, 285, 286

SYCL backend An implementation of the SYCL programming model using an heterogeneous programming
API. A SYCL backend exposes one or multiple SYCL platforms. For example, the OpenCL backend, via
the ICD loader, can expose multiple OpenCL platforms. 3, 19, 29, 31, 32, 33, 34, 37, 38, 45, 46, 47, 48,
49, 51, 55, 56, 57, 58, 61, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 88, 92, 93, 99, 101, 103,
105, 106, 107, 108, 109, 110, 124, 178, 266, 268, 269, 270, 271, 278, 287, 289, 292, 324, 370, 375, 379,
381, 382, 388, 407, 408, 409, 411, 416, 424, 429

buffer The buffer class manages data for the SYCL C++ host application and the SYCL device kernels. The
buffer class may acquire ownership of some host pointers passed to its constructors according to the con-
structor kind.

The buffer class, together with the accessor class, is responsible for tracking memory transfers and guaran-
teeing data consistency among the different kernels. The SYCL runtime manages the memory allocations
on both the host and the device within the lifetime of the buffer object. For the full description please refer
to section [4.7.2]. 31, 37, 42, 48, 49, 109, 142, 158, 263, 265, 423, 429

command A request to execute work that is submitted to a queue such as the invocation of a SYCL kernel

423



Glossary SYCL 2020 provisional

function, the invocation of a host task or an asynchronous copy. 243, 244, 263, 267, 425, 429

command group handler The command group handler class provides the interface for the commands that can
be executed inside the command group scope. It is provided as a scoped object to all of the data access
requests within the command group scope. For the full description please refer to section [4.10.4]. 159,
239, 244, 248, 260, 262, 263, 266, 424, 427

command group function object A type which is callable with operator() that takes a reference to a command
group handler, that defines a command group which can be submitted by a queue. The function object can
be a named type, lambda function or std::function. 31, 32, 34, 46, 47, 48, 100, 243, 244, 286, 424

command group scope The command group scope is the function scope defined by the command group function
object. The command group command group handler object lifetime is restricted to the command group
scope. For more details please see [4.10.3]. 30, 31, 33, 51, 57, 159, 243, 244, 424

command group In SYCL, the operations required to process data on a device are represented using a command
group function object. Each command group function object is given a unique command group handler
object to perform all the necessary work required to correctly process data on a device using a kernel. In
this way, the group of commands for transferring and processing data is enqueued as a command group on
a device for execution. A command group is submitted atomically to a SYCL queue. 11, 33, 34, 35, 36, 37,
38, 39, 94, 104, 105, 108, 109, 145, 248, 260, 261, 262, 263, 266, 272, 423, 424, 425, 426

constant memory A region of global memory that remains constant during the execution of a kernel. The SYCL
runtime allocates and initializes memory objects placed into constant memory. 40, 143, 147

context A context represents the runtime data structures and state required by a SYCL backend API to interact
with a group of devices associated with a platform. The context is defined as the sycl::context class, for
further details please see [4.6.3]. 31, 32, 34, 48, 72, 73, 74, 247, 262, 263, 264, 266, 271, 272, 276, 278,
279, 280, 281, 402, 408, 409, 424, 427

device A SYCL device encapsulates a number of heterogeneous devices exposed by a SYCL platform from a
given SYCL backend. SYCL devices can execute SYCL kernel functions. 29, 30, 31, 32, 33, 34, 48, 71,
73, 74, 79, 80, 88, 91, 92, 93, 94, 103, 262, 263, 264, 266, 271, 275, 276, 279, 280, 402, 403, 414, 423,
424, 425, 426, 427, 428, 429

device function A device function is any function in a SYCL application that can be run on a device. This
includes SYCL kernel functions and, recursively, and functions they call. 376

device image selection function A callable object which takes the begin and end iterators of a module pointing
to a sequence of device image and returns an iterator to a chosen device image. 262

device image A SYCL device image represents an implementation defined file format that encapsulates the rel-
evant functions, symbols and meta-data to represent the SYCL kernel function set of a module. 247, 262,
271, 272, 274, 276, 277, 278, 279, 280, 424, 427

device selector A way to select a device used in various places. This is a callable object taking a device ref-
erence and returning an integer rank. One of the device with the highest positive value is selected. See
Section 4.6.1.1 for more details. 48, 66, 67, 68, 69, 70, 75, 77, 97, 98, 417

device compiler A SYCL device compiler is a compiler that produces OpenCL device binaries from a valid
SYCL application. For the full description please refer to section [5]. 30, 42, 50, 234, 278, 375, 401

424 Glossary



SYCL 2020 provisional Glossary

event A SYCL object that represents the status of an operation that is being executed by the SYCL runtime. 105,
108

executable A state which a module can be in, representing SYCL kernel functions as an executable. 274, 276,
425

executable module A module that is of module state executable. 272, 276, 277, 278, 427

SYCL file A SYCL C++ source file that contains SYCL API calls. 428

generic memory Generic memory is a virtual memory region which can represent global, local and private mem-
ory region. 41

global memory Global memory is a memory region accessible to all work-items executing on a device. 40, 143,
147, 187

global id As in OpenCL, a global ID is used to uniquely identify a work-item and is derived from the number of
global work-items specified when executing a kernel. A global ID is a one, two or three-dimensional value
that starts at 0 per dimension. 36, 223, 224, 426, 429

group A group of work-items within the index space of a SYCL kernel execution, such as a work-group or
sub-group. 42, 324, 353, 416, 427

group mem-fence A group mem-fence guarantees that any memory access before a group barrier must complete
before continuing to process any data after the barrier. All work-items in the group execute a release fence
prior to synchronizing at the barrier, and all work-items in the group execute an acquire fence afterwards.
The scope of these fences can be specified by a memory_scope. 359, 425, 427

group barrier A synchronization function within a group of work-items. All the work-items of a group must
execute the barrier construct for any work-item continues execution beyond the barrier. Additionally a
group barrier performs a group mem-fence. 42, 46, 324, 357, 358, 425, 429

host Host is the system that executes the C++ application including the SYCL API. 29, 50, 159, 167, 173, 324,
428, 429

SYCL host device See SYCL host backend. 324, 399, 401, 426

host task command A type of command that can be used inside a command group in order to schedule a native
C++ function. 263

host task A command which invokes a native C++ callable, scheduled conforming to SYCL dependency rules.
263, 264, 265, 266, 416, 424

host pointer A pointer to memory on the host. Cannot be accessed directly from a device. 140

SYCL host backend The SYCL host device is a native C++ implementation of a device. It does not have an
native handle. It has full SYCL capabilities and reports them through the SYCL information retrieval
interface. The SYCL host device is mandatory for every SYCL implementation and is always available, but
may not achieve the same performance as a different backend running on the CPU. Any C++ application
debugger can be used for debugging SYCL kernels executing on a SYCL host device. 33, 55, 66, 67, 69,
71, 73, 79, 99, 399, 425

Glossary 425



Glossary SYCL 2020 provisional

id It is a unique identifier of an item in an index space. It can be one, two or three dimensional index space,
since the SYCL kernel execution model is an nd-range. It is one of the index space classes. For the full
description please refer to section 4.10.1.3. 217, 222, 223, 224, 230, 234, 426, 427

image Images in SYCL, like buffers, are abstractions of multidimensional structured arrays. Image can refer to
unsampled_image and sampled_image. For the full description please refer to section [4.7.3]. 31, 37, 48,
49, 109, 142, 263, 265, 423

index space classes The OpenCL kernel execution model defines an nd-range index space. The SYCL runtime
class that defines an nd-range is the sycl::nd_range, which takes as input the sizes of global and local
work-items, represented using the sycl::range class. The kernel library classes for indexing in the defined
nd-range are the following classes:

• sycl::id : The basic index class representing a id.

• sycl::item : The index class that contains the global id and local id.

• sycl::nd_item : The index class that contains the global id, local id and the work-group id.

• sycl::group : The group class that contains the work-group id and the member functions on a work-
group.

253

input A state which a module can be in, representing SYCL kernel functions as a source or intermediate repre-
sentation. 274, 275, 426

input module A module that is of module state input. 272, 275, 278, 279, 407, 427, 428

item An item id is an interface used to retrieve the global id, work-group id and local id. For further details see
[4.10.1.4]. 220, 225, 226, 227, 426

kernel A SYCL kernel which can be executed on a device, including the SYCL host device. Is created implicitly
when defining a SYCL kernel function (see 4.10) but can also be created manually in order to pre-compile
SYCL kernel functions. 34, 50, 75, 110, 248, 252, 260, 267, 269, 270, 281, 403, 409, 423, 427

kernel invocation command A type of command that can be used inside a command group in order to schedule a
SYCL kernel function, includes single_task, all variants of parallel_for and parallel_for_workgroup.
262, 263, 271, 272, 376, 409, 416, 429

kernel handler A representation of a SYCL kernel function being invoked that is available to the kernel scope.
247

kernel name A kernel name is a class type that is used to assign a name to the kernel function, used to link the
host system with the kernel object output by the device compiler. For details on naming kernels please see
[5.2]. 50, 248, 249, 250, 251, 252, 283, 429

kernel scope The function scope of the operator() on a SYCL kernel function. Note that any function or
member function called from the kernel is also compiled in kernel scope. The kernel scope allows C++
language extensions as well as restrictions to reflect the capabilities of OpenCL devices. The extensions
and restrictions are defined in the SYCL device compiler specification. 30, 33, 247, 416, 426

SYCL kernel function A type which is callable with operator() that takes a id, item, nd-item or work-group

426 Glossary



SYCL 2020 provisional Glossary

which can be passed to kernel enqueue member functions of the command group handler. A SYCL kernel
function defines an entry point to a kernel. The function object can be a named trivially copyable type or
lambda function. 29, 30, 31, 32, 43, 56, 57, 101, 102, 103, 244, 247, 248, 249, 250, 251, 252, 253, 256,
259, 262, 263, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 283, 376, 397, 407, 409, 411, 416, 423,
424, 425, 426, 427, 428, 429

local memory Local memory is a memory region associated with a work-group and accessible only by work-
items in that work-group. 41, 142, 143, 167, 170, 171, 257

local id A unique identifier of a work-item among other work-items of a work-group. 36, 223, 230, 426, 429

mem-fence A memory fence guarantees that any memory access must complete before continuing to process any
data after the fence. The sycl::atomic_fence function acts as a fence across all work-items and devices
specified by a memory_scope argument, and a group mem-fence acts as a fence across all work-items in a
specific group. 42, 324

module A SYCL module represents a set of SYCL kernel functions which can be executed on a number of
devices associated with a context. 34, 247, 262, 263, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 403,
407, 408, 409, 416, 424, 425, 426, 427

module state A SYCL module state represents an the state abstract state of a module and therefore it’s capabili-
ties in the SYCL programming API. Can be either a input module, object module or an executable module.
274, 275, 276, 278, 281, 425, 426, 427

native-specialization constant A specialization constant which is natively supported by the device image which
contains it. 272, 277

native backend object An opaque object defined by a specific backend that represents a high-level SYCL object
on said backend. There is no guarantee of having native backend objects for all SYCL types. 48, 57, 58,
59, 60, 61, 68, 75, 94, 194, 263, 264, 265, 266

nd-item A unique identifier representing a single work-item and work-group within the index space of a SYCL
kernel execution. Can be one, two or three dimensional. In the SYCL interface a nd-item is represented by
the nd_item class (see Section 4.10.1.5). 103, 250, 252, 426, 427

nd-range A representation of the index space of a SYCL kernel execution, the distribution of work-items within
into work-groups. Contains a range specifying the number of global work-items, a range specifying the
number of local work-items and a id specifying the global offset. Can be one, two or three dimensional.
The minimum size of each range within the nd-range is 1 per dimension. In the SYCL interface an nd-range
is represented by the nd_range class (see Section 4.10.1.2). 36, 103, 223, 230, 248, 250, 252, 256, 257,
426, 427

object A state which a module can be in, representing SYCL kernel functions as a non-executable object. 274,
275, 427

object module A module that is of module state object. 272, 275, 427

platform The host together or a collection of devices managed by the OpenCL framework that allow an applica-
tion to share resources and execute kernels on devices in the platform. A SYCL application can target one

Glossary 427



Glossary SYCL 2020 provisional

or multiple OpenCL platforms provided by OpenCL device vendors [1]. 32, 33, 34, 48, 71, 74, 402, 423,
424

private memory A region of memory private to a work-item. Variables defined in one work-item’s private mem-
ory are not visible to another work-item. [1]. The sycl::private_memory class provides access to the
work-item’s private memory for the hierarchical API as it is described at [4.10.7.3]. 41, 258

queue A SYCL command queue is an object that holds command groups to be executed on a SYCL device.
SYCL provides a heterogeneous platform integration using device queue, which is the minimum require-
ment for a SYCL application to run on a SYCL device. For the full description please refer to section
[4.6.5]. 31, 32, 33, 34, 47, 48, 103, 262, 263, 264, 266, 402, 403, 416, 423, 424

range A representation of a number of work-items or work-group within the index space of a SYCL kernel
execution. Can be one, two or three dimensional. In the SYCL interface a work-group is represented by the
group class (see Section 4.10.1.7 ). 427

reduction An operation that produces a single value by combining multiple values in an unspecified order using
a binary operator. If the operator is non-associative or non-commutative, the behavior of a reduction may
be non-deterministic. 44, 234, 235, 237, 417

rule of zero For a given class, if the copy constructor, move constructor, copy assignment operator, move assign-
ment operator and destructor would all be inlined, public and defaulted, none of them should be explicity
declared . 62, 63

rule of five For a given class, if at least one of the copy constructor, move constructor, copy assignment operator,
move assignment operator or destructor is explicitly declared, all of them should be explicity declared . 62,
63

SYCL runtime A SYCL runtime is an implementation of the SYCL API specification. The SYCL runtime
manages the different OpenCL platforms, devices, contexts as well as memory handling of data between
host and OpenCL contexts to enable semantically correct execution of SYCL programs. 32, 39, 45, 46, 47,
48, 49, 50, 55, 56, 57, 58, 59, 60, 62, 64, 66, 94, 104, 109, 111, 118, 121, 123, 125, 127, 129, 130, 131,
132, 135, 136, 138, 139, 140, 142, 148, 158, 159, 167, 173, 230, 244, 247, 249, 250, 251, 252, 253, 263,
264, 265, 266, 267, 272, 276, 284, 285, 291, 326, 375, 377, 401, 403, 409, 411, 413, 416, 423, 424, 426

SMCP The single-source multiple compiler-passes (SMCP) technique allows a single source file to be parsed by
multiple compilers for building native programs per compilation target. For example, a standard C++ CPU
compiler for targeting host will parse the SYCL file to create the C++ SYCL application which offloads
parts of the computation to other devices. A SYCL device compiler will parse the same source file and
target only SYCL kernels. 27, 28, 50, 92, 375, 387

specialization id An identifier which represents a reference to a specialization constant both in the SYCL appli-
cation for setting the value prior to the compilation of an input module and in a SYCL kernel function for
retrieving the value during invocation. 272, 275

specialization constant A constant variable where the value is not known until compilation of the SYCL kernel
function. 247, 263, 272, 275, 277, 278, 283, 416, 427, 428

string kernel name The name of a SYCL kernel function in string form, this can be the name of a kernel function
created via interop or a string form of a type kernel name. 277, 280

428 Glossary



SYCL 2020 provisional Glossary

sub-group barrier A group barrier for all work-items in a sub-group. 46

sub-group The SYCL sub-group (sycl::sub_group class) is a representation of a collection of related work-
items within a work-group that execute concurrently, and which may make independent forward progress
with respect to other sub-groups in the same work-group. For further details for the sycl::sub_group class
see [4.10.1.8]. 42, 223, 233, 234, 416, 425, 429

SYCL C++ template library The template library is a set of C++ templated classes which provide the program-
ming interface to the SYCL developer. 401

SYCL backend API The exposed API for writing SYCL code against a given SYCL backend. 3, 29, 34, 35, 48,
50, 57

type kernel name The name of a SYCL kernel function in type form, this can be either a kernel name provided
to akernel invocation command or the type of a function object use as a SYCL kernel function. 280, 428

USM Unified Shared Memory (USM) provides a pointer-based alternative to the buffer programming model.
USM enables:

• easier integration into existing code bases by representing allocations as pointers rather than buffers,
with full support for pointer arithmetic into allocations

• fine-grain control over ownership and accessibility of allocations, to optimally choose between per-
formance and programmer convenience;

• a simpler programming model, by automatically migrating some allocations between SYCL devices
and the host.

See Section 4.8. 27, 42, 196, 197, 377

work-group barrier A group barrier for all work-items in a work-group. 46, 255, 256, 258, 324

work-group id As in OpenCL, SYCL kernels execute in work-groups. The group ID is the ID of the work-group
that a work-item is executing within. A group ID is an one, two or three dimensional value that starts at 0
per dimension. 36, 222, 230, 426, 429

work-group The SYCL work-group (sycl::group class) is a representation of a collection of related work-items
that execute on a single compute unit. The work-items in the group execute the same kernel-instance
and share local memory and work-group functions [1]. For further details for the sycl::group class see
[4.10.1.7]. 36, 42, 167, 223, 224, 228, 230, 231, 234, 248, 256, 257, 416, 425, 426, 427, 428, 429

work-item The SYCL work-item is a representation of a work-item among a collection of parallel executions of
a kernel invoked on a device by a command. A work-item is executed by one or more processing elements
as part of a work-group executing on a compute unit. A work-item is distinguished from other work-items
by its global id or the combination of its work-group id and its local id within a work-group [1]. 36, 42,
167, 221, 222, 224, 225, 256, 257, 258, 416, 425, 427, 428, 429

Glossary 429


	1 Acknowledgements
	2 Introduction
	3 SYCL architecture
	3.1 Overview
	3.2 Anatomy of a SYCL application
	3.3 Normative references
	3.4 The SYCL platform model
	3.5 The backend model
	3.5.1 Platform mixed version support

	3.6 SYCL execution model
	3.6.1 SYCL application execution model
	3.6.1.1 backend resources managed by the SYCL application
	3.6.1.2 SYCL command groups and execution order

	3.6.2 SYCL kernel execution model

	3.7 Memory model
	3.7.1 SYCL application memory model
	3.7.2 SYCL device memory model
	3.7.2.1 Access to memory
	3.7.2.2 Memory consistency inside SYCL kernels
	3.7.2.3 Atomic operations


	3.8 The SYCL programming model
	3.8.1 Minimum version of C++
	3.8.2 Alignment with future versions of C++
	3.8.3 Basic data parallel kernels
	3.8.4 Work-group data parallel kernels
	3.8.5 Hierarchical data parallel kernels
	3.8.6 Kernels that are not launched over parallel instances
	3.8.7 Pre-defined kernels
	3.8.8 Synchronization
	3.8.8.1 Synchronization in the SYCL application
	3.8.8.2 Synchronization in SYCL kernels

	3.8.9 Error handling
	3.8.10 Fallback mechanism
	3.8.11 Scheduling of kernels and data movement
	3.8.12 Managing object lifetimes
	3.8.13 Device discovery and selection
	3.8.14 Interfacing with backend-api

	3.9 Memory objects
	3.10 SYCL device compiler
	3.10.1 Building a SYCL program
	3.10.2 Naming of kernels

	3.11 Language restrictions in kernels
	3.11.1 SYCL linker
	3.11.2 Functions and data types available in kernels

	3.12 Endianness support
	3.13 Example SYCL application

	4 SYCL programming interface
	4.1 Backends
	4.1.1 Backend macros

	4.2 Generic vs non-generic SYCL
	4.3 Header files and namespaces
	4.4 Class availability
	4.5 Common interface
	4.5.1 Param traits class
	4.5.2 Backend interoperability
	4.5.2.1 Type traits [basicstyle=]@backend_traits@
	4.5.2.2 Template function [basicstyle=]@get_native@
	4.5.2.3 Template functions [basicstyle=]@make_*@

	4.5.3 Common reference semantics
	4.5.4 Common by-value semantics
	4.5.5 Properties
	4.5.5.1 Properties interface


	4.6 SYCL runtime classes
	4.6.1 Device selection
	4.6.1.1 Device selector

	4.6.2 Platform class
	4.6.2.1 Platform interface
	4.6.2.2 Platform information descriptors

	4.6.3 Context class
	4.6.3.1 Context interface
	4.6.3.2 Context information descriptors
	4.6.3.3 Context properties

	4.6.4 Device class
	4.6.4.1 Device interface
	4.6.4.2 Device information descriptors
	4.6.4.3 Device aspects

	4.6.5 Queue class
	4.6.5.1 Queue interface
	4.6.5.2 Queue information descriptors
	4.6.5.3 Queue properties
	4.6.5.4 Queue error handling

	4.6.6 Event class
	4.6.6.1 Event information and profiling descriptors


	4.7 Data access and storage in SYCL
	4.7.1 Host allocation
	4.7.1.1 Default allocators

	4.7.2 Buffers
	4.7.2.1 Buffer interface
	4.7.2.2 Buffer properties
	4.7.2.3 Buffer synchronization rules

	4.7.3 Images
	4.7.3.1 Unsampled image interface
	4.7.3.2 Sampled image interface
	4.7.3.3 Image properties
	4.7.3.4 Image synchronization rules

	4.7.4 Sharing host memory with the SYCL data management classes
	4.7.4.1 Default behavior
	4.7.4.2 SYCL ownership of the host memory
	4.7.4.3 Shared SYCL ownership of the host memory

	4.7.5 Synchronization primitives
	4.7.6 Accessors
	4.7.6.1 Access targets
	4.7.6.2 Access modes
	4.7.6.3 Access tags
	4.7.6.4 Device and host accessors
	4.7.6.5 Placeholder accessor
	4.7.6.6 Accessor declaration
	4.7.6.7 Constness of the accessor data type
	4.7.6.8 Implicit accessor conversions
	4.7.6.9 Device buffer accessor
	4.7.6.9.1 Device buffer accessor interface
	4.7.6.9.2 Device buffer accessor properties

	4.7.6.10 Host buffer accessor
	4.7.6.10.1 Host buffer accessor interface
	4.7.6.10.2 Host buffer accessor properties

	4.7.6.11 Local accessor
	4.7.6.11.1 Local accessor interface
	4.7.6.11.2 Local accessor properties

	4.7.6.12 Image accessor
	4.7.6.12.1 Image accessor interface
	4.7.6.12.2 Image accessor properties


	4.7.7 Address space classes
	4.7.7.1 Multi-pointer class
	4.7.7.2 Explicit pointer aliases

	4.7.8 Samplers

	4.8 Unified shared memory (USM)
	4.8.1 Unified addressing
	4.8.2 Kinds of unified shared memory
	4.8.2.1 Explicit USM
	4.8.2.2 Restricted USM
	4.8.2.3 Concurrent USM
	4.8.2.4 System USM

	4.8.3 USM allocations
	4.8.4 C++ allocator interface
	4.8.5 Utility functions
	4.8.5.1 Explicit USM
	4.8.5.1.1 [basicstyle=]@malloc_device@
	4.8.5.1.2 [basicstyle=]@aligned_alloc_device@
	4.8.5.1.3 [basicstyle=]@memcpy@
	4.8.5.1.4 [basicstyle=]@memset@
	4.8.5.1.5 [basicstyle=]@fill@

	4.8.5.2 Restricted USM
	4.8.5.2.1 [basicstyle=]@malloc@
	4.8.5.2.2 [basicstyle=]@aligned_alloc_host@
	4.8.5.2.3 Performance hints
	4.8.5.2.3.1 [basicstyle=]@prefetch@


	4.8.5.3 Concurrent USM
	4.8.5.3.1 Performance hints
	4.8.5.3.1.1 [basicstyle=]@prefetch@
	4.8.5.3.1.2 [basicstyle=]@mem_advise@


	4.8.5.4 General
	4.8.5.4.1 [basicstyle=]@malloc@
	4.8.5.4.2 [basicstyle=]@aligned_alloc@
	4.8.5.4.3 [basicstyle=]@free@


	4.8.6 Unified shared memory information
	4.8.6.1 Pointer queries
	4.8.6.1.1 [basicstyle=]@get_pointer_type@
	4.8.6.1.2 [basicstyle=]@get_pointer_device@



	4.9 SYCL scheduling
	4.9.1 DAGs without accessors
	4.9.2 Coarse grain DAGs with [basicstyle=]@depends_on@

	4.10 Expressing parallelism through kernels
	4.10.1 Ranges and index space identifiers
	4.10.1.1 [basicstyle=]@range@ class
	4.10.1.2 [basicstyle=]@nd_range@ class
	4.10.1.3 [basicstyle=]@id@ class
	4.10.1.4 [basicstyle=]@item@ class
	4.10.1.5 [basicstyle=]@nd_item@ class
	4.10.1.6 [basicstyle=]@h_item@ class
	4.10.1.7 [basicstyle=]@group@ class
	4.10.1.8 [basicstyle=]@sub_group@ class

	4.10.2 Reduction variables
	4.10.2.1 [basicstyle=]@reduction@ interface
	4.10.2.2 [basicstyle=]@reducer@ class

	4.10.3 Command group scope
	4.10.4 Command group [basicstyle=]@handler@ class
	4.10.5 Class [basicstyle=]@kernel_handler@
	4.10.5.1 Constructors
	4.10.5.2 Member functions

	4.10.6 SYCL functions for adding requirements
	4.10.7 SYCL functions for invoking kernels
	4.10.7.1 [basicstyle=]@single_task@ invoke
	4.10.7.2 [basicstyle=]@parallel_for@ invoke
	4.10.7.3 Parallel for hierarchical invoke

	4.10.8 SYCL functions for explicit memory operations
	4.10.9 Functions for using a module
	4.10.10 Functions for using specialization constants

	4.11 Host tasks
	4.11.1 Overview
	4.11.2 Class [basicstyle=]@interop_handle@
	4.11.2.1 Constructors
	4.11.2.2 Template member functions get_native_*

	4.11.3 Additions to the [basicstyle=]@handler@ class

	4.12 Kernel class
	4.12.1 Kernel information descriptors

	4.13 Modules
	4.13.1 Overview
	4.13.2 Specialization constants
	4.13.3 Synopsis
	4.13.4 Enum class [basicstyle=]@module_state@
	4.13.5 Class template [basicstyle=]@specialization_id@
	4.13.5.1 Constructors
	4.13.5.2 Special member functions

	4.13.6 Class template module
	4.13.6.1 Constructors
	4.13.6.2 Member functions

	4.13.7 Free functions
	4.13.8 Namespace [basicstyle=]@this_module@
	4.13.8.1 Type traits
	4.13.8.2 Free functions


	4.14 Defining kernels
	4.14.1 Defining kernels as named function objects
	4.14.2 Defining kernels as lambda functions
	4.14.3 Defining kernels using modules
	4.14.4 Rules for parameter passing to kernels

	4.15 Error handling
	4.15.1 Error handling rules
	4.15.1.1 Asynchronous error handler
	4.15.1.2 Behavior without an async-handler
	4.15.1.3 Priorities of async-handler
	4.15.1.4 Asynchronous errors with a secondary queue

	4.15.2 Exception class interface

	4.16 Data types
	4.16.1 Scalar data types
	4.16.2 Vector types
	4.16.2.1 Vec interface
	4.16.2.2 Aliases
	4.16.2.3 Swizzles
	4.16.2.4 Swizzled [basicstyle=]@vec@ class
	4.16.2.5 Rounding modes
	4.16.2.6 Memory layout and alignment
	4.16.2.7 Considerations for endianness
	4.16.2.8 Performance note

	4.16.3 Math array types
	4.16.3.1 Math array interface
	4.16.3.2 Aliases
	4.16.3.3 Memory layout and alignment


	4.17 Synchronization and atomics
	4.17.1 Barriers and fences
	4.17.2 [basicstyle=]@device_event@ class
	4.17.3 Atomic references
	4.17.4 Atomic types (deprecated)

	4.18 Stream class
	4.18.1 Stream class interface
	4.18.2 Synchronization
	4.18.3 Implicit flush
	4.18.4 Performance note

	4.19 SYCL built-in functions for SYCL host and device
	4.19.1 Description of the built-in types available for SYCL host and device
	4.19.2 Work-item functions
	4.19.3 Function objects
	4.19.4 Algorithms library
	4.19.4.1 [basicstyle=]@any_of@, [basicstyle=]@all_of@ and [basicstyle=]@none_of@
	4.19.4.2 [basicstyle=]@reduce@
	4.19.4.3 [basicstyle=]@exclusive_scan@ and [basicstyle=]@inclusive_scan@

	4.19.5 Group functions
	4.19.5.1 [basicstyle=]@group_broadcast@
	4.19.5.2 [basicstyle=]@group_barrier@
	4.19.5.3 [basicstyle=]@group_any_of@, [basicstyle=]@group_all_of@ and [basicstyle=]@group_none_of@
	4.19.5.4 [basicstyle=]@group_reduce@
	4.19.5.5 [basicstyle=]@group_exclusive_scan@ and [basicstyle=]@group_inclusive_scan@

	4.19.6 Math functions
	4.19.7 Integer functions
	4.19.8 Common functions
	4.19.9 Geometric functions
	4.19.10 Relational functions
	4.19.11 Vector data load and store functions
	4.19.12 Synchronization functions
	4.19.13 [basicstyle=]@printf@ function


	5 SYCL Device Compiler
	5.1 Offline compilation of SYCL source files
	5.2 Naming of kernels
	5.3 Compilation of functions
	5.4 Language restrictions for device functions
	5.5 Built-in scalar data types
	5.6 Preprocessor directives and macros
	5.7 Kernel attributes
	5.7.1 Core kernel attributes
	5.7.2 Example attribute syntax
	5.7.3 Deprecated attribute syntax

	5.8 Address-space deduction
	5.8.1 Address space assignment
	5.8.2 Common address space deduction rules
	5.8.3 Generic as default address space
	5.8.4 Inferred address space

	5.9 SYCL offline linking
	5.9.1 SYCL functions and member functions linkage


	6 SYCL Extensions
	6.1 Definition of an extension
	6.2 Predefined macros
	6.3 Device aspects and conditional features
	6.4 Backends
	6.5 Conditional features and compilation errors

	A Information descriptors
	A.1 Platform information descriptors
	A.2 Context information descriptors
	A.3 Device information descriptors
	A.4 Queue information descriptors
	A.5 Kernel information descriptors
	A.6 Event information descriptors

	B Feature sets
	B.1 Full feature set
	B.2 Reduced feature set
	B.3 Compatibility
	B.4 Conformance

	C Host backend specification
	C.1 Mapping of the SYCL programming model on the host
	C.1.1 SYCL memory model on the host

	C.2 Interoperability with the host application

	D OpenCL backend specification
	D.1 SYCL for OpenCL framework
	D.2 Mapping of SYCL programming model on top of OpenCL
	D.2.1 Platform mixed version support
	D.2.2 OpenCL memory model
	D.2.3 OpenCL resources managed by SYCL application

	D.3 Interoperability with the OpenCL API
	D.4 Programming interface
	D.4.1 Reference counting
	D.4.2 Errors and limitations
	D.4.3 Interoperability with modules
	D.4.3.1 Free functions

	D.4.4 Interoperability with kernels
	D.4.5 OpenCL kernel conventions and SYCL
	D.4.6 Data types

	D.5 Preprocessor directives and macros
	D.5.1 Offline linking with OpenCL C libraries

	D.6 SYCL support of non-core OpenCL features
	D.6.1 Half precision floating-point
	D.6.2 Writing to 3D image memory objects
	D.6.3 Interoperability with OpenGL


	E What has changed from previous versions
	E.1 What has changed from SYCL 1.2.1 to SYCL 2020

	References
	Glossary

