™

g]TF " 2.0 Specification

The Khronos® 3D Formats Working Group

Version 2.0.1, 2021-10-11 23:01:57Z: from git branch: main commuit:
8e798b02d254cea97659a333cfch20875b62bdd4

Table of Contents

1. Foreword
2. Introduction
2.1. General
2.2. Document Conventions
2.2.1. Normative Terminology and References
2.2.2. Informative Language
2.2.3. Technical Terminology
2.2.4. Normative References
2.2.4.1. External Specifications
2.2.4.2. Media Type Registrations
2.3. Motivation and Design Goals (Informative)
2.4. gITF Basics
2.5. Versioning
2.6. File Extensions and Media Types
2.7.JSON Encoding
2.8. URIs
3. Concepts
3.1. General
3.2. Asset
3.3. Indices and Names
3.4. Coordinate System and Units
3.5. Scenes
3.5.1. Overview
3.5.2. Nodes and Hierarchy
3.5.3. Transformations
3.6. Binary Data Storage
3.6.1. Buffers and Buffer Views
3.6.1.1. Overview
3.6.1.2. GLB-stored Buffer
3.6.2. Accessors
3.6.2.1. Overview
3.6.2.2. Accessor Data Types
3.6.2.3. Sparse Accessors
3.6.2.4. Data Alignment
3.6.2.5. Accessors Bounds
3.7. Geometry
3.7.1. Overview
3.7.2. Meshes

O 00 00 00 ~J O U1 U1 W N DN DD N DN =

DN NN DNDNNDNIDRNIDNR R B R B R opR o,) |, |l e,
0 0 00 0 U1 N W NN R © © © 9 o G Ul U b W W w =~

3.7.2.1. Overview
3.7.2.2. Morph Targets
3.7.3. Skins
3.7.3.1. Overview
3.7.3.2. Joint Hierarchy
3.7.3.3. Skinned Mesh Attributes

3.7.4. Instantiation

3.8. Texture Data

3.8.1. Overview

3.8.2. Textures

3.8.3. Images

3.8.4. Samplers
3.8.4.1. Overview
3.8.4.2. Filtering
3.8.4.3. Wrapping
3.8.4.4. Example

3.8.4.5. Non-power-of-two Textures

3.9. Materials

3.9.1. Overview

3.9.2. Metallic-Roughness Material
3.9.3. Additional Textures

3.9.4. Alpha Coverage

3.9.5. Double Sided

3.9.6. Default Material

3.9.7. Point and Line Materials

3.10. Cameras

3.10.1. Overview
3.10.2. View Matrix
3.10.3. Projection Matrices

3.10.3.1. Overview

3.10.3.2. Infinite perspective projection

3.10.3.3. Finite perspective projection

3.10.3.4. Orthographic projection

3.11. Animations
3.12. Specifying Extensions

4. GLB File Format Specification
4.1. General (Informative)
4.2. Structure
4.3. File Extension & Media Type
4.4. Binary gITF Layout

4.4.1. Overview

28
32
35
35
36
37
39
41
41
42
42
44
44
44
45
45
46
46
46
47
49
51
52
52
52
53
53
53
53
53
54
35
35
35
61
63
63
63
63
63
63

4.4.2. Header

4.4.3. Chunks
4.4.3.1. Overview
4.4.3.2. Structured JSON Content
4.4.3.3. Binary buffer

5. Properties Reference

5.1. Accessor
5.1.1. accessor.bufferView
5.1.2. accessor.byteOffset
5.1.3. accessor.componentType
5.1.4. accessor.normalized
5.1.5. accessor.count
5.1.6. accessor.type
5.1.7. accessor.max
5.1.8. accessor.min
5.1.9. accessor.sparse
5.1.10. accessor.name
5.1.11. accessor.extensions
5.1.12. accessor.extras
5.2. Accessor Sparse
5.2.1. accessor.sparse.count
5.2.2. accessor.sparse.indices
5.2.3. accessor.sparse.values
5.2.4. accessor.sparse.extensions
5.2.5. accessor.sparse.extras
5.3. Accessor Sparse Indices
5.3.1. accessor.sparse.indices.bufferView
5.3.2. accessor.sparse.indices.byteOffset
5.3.3. accessor.sparse.indices.componentType
5.3.4. accessor.sparse.indices.extensions
5.3.5. accessor.sparse.indices.extras
5.4. Accessor Sparse Values
5.4.1. accessor.sparse.values.bufferView
5.4.2. accessor.sparse.values.byteOffset
5.4.3. accessor.sparse.values.extensions
5.4.4. accessor.sparse.values.extras
5.5. Animation
5.5.1. animation.channels
5.5.2. animation.samplers
5.5.3. animation.name

5.5.4. animation.extensions

64
64
64
65
65
66
66
67
67
67
68
68
68
68
69
69
69
69
69
70
70
70
71
71
71
71
72
72
72
73
73
73
74
74
74
74
74
75
75
76
76

5.5.5. animation.extras
5.6. Animation Channel
5.6.1. animation.channel.sampler
5.6.2. animation.channel.target
5.6.3. animation.channel.extensions
5.6.4. animation.channel.extras
5.7. Animation Channel Target
5.7.1. animation.channel.target.node
5.7.2. animation.channel.target.path
5.7.3. animation.channel.target.extensions
5.7.4. animation.channel.target.extras
5.8. Animation Sampler
5.8.1. animation.sampler.input
5.8.2. animation.sampler.interpolation
5.8.3. animation.sampler.output
5.8.4. animation.sampler.extensions
5.8.5. animation.sampler.extras
5.9. Asset
5.9.1. asset.copyright
5.9.2. asset.generator
5.9.3. asset.version
5.9.4. asset.minVersion
5.9.5. asset.extensions
5.9.6. asset.extras
5.10. Buffer
5.10.1. buffer.uri
5.10.2. buffer.byteLength
5.10.3. buffer.name
5.10.4. buffer.extensions
5.10.5. buffer.extras
5.11. Buffer View
5.11.1. bufferView.buffer
5.11.2. bufferView.byteOffset
5.11.3. bufferView.byteLength
5.11.4. bufferView.byteStride
5.11.5. bufferView.target
5.11.6. bufferView.name
5.11.7. bufferView.extensions
5.11.8. bufferView.extras
5.12. Camera

5.12.1. camera.orthographic

76
76
77
77
77
77
77
78
79
79
79
79
80
80
81
81
81
81
82
82
82
82
83
83
83
83
84
84
84
84
84
85
85
85
86
86
86
86
86
87
87

5.12.2. camera.perspective
5.12.3. camera.type

5.12.4. camera.name
5.12.5. camera.extensions

5.12.6. camera.extras

5.13. Camera Orthographic

5.13.1. camera.orthographic.xmag
5.13.2. camera.orthographic.ymag
5.13.3. camera.orthographic.zfar
5.13.4. camera.orthographic.znear
5.13.5. camera.orthographic.extensions

5.13.6. camera.orthographic.extras

5.14. Camera Perspective

5.14.1. camera.perspective.aspectRatio
5.14.2. camera.perspective.yfov

5.14.3. camera.perspective.zfar

5.14.4. camera.perspective.znear
5.14.5. camera.perspective.extensions

5.14.6. camera.perspective.extras

5.15. Extension
5.16. Extras
5.17. gITF

5.17.1. glTF.extensionsUsed
5.17.2. glTF.extensionsRequired
5.17.3. glTF.accessors
5.17.4. glTF.animations
5.17.5. glTF.asset

5.17.6. glTF.buffers

5.17.7. gITF.bufferViews
5.17.8. glTF.cameras

5.17.9. glTF.images

5.17.10. gITF.materials
5.17.11. gITF.meshes
5.17.12. gITF.nodes

5.17.13. glTF.samplers
5.17.14. glTF.scene

5.17.15. glTF.scenes
5.17.16. glTF.skins

5.17.17. gITF.textures
5.17.18. gITF.extensions
5.17.19. gITF.extras

88
88
88
88
88
89
89
90
90
90
90
90
91
91
91
92
92
92
92
92
93
93
94
94
94
94
94
95
95
95
95
95
95
96
96
96
96
96
96
96
97

5.18. Image 97

5.18.1. image.uri 98
5.18.2. image.mimeType 98
5.18.3. image.bufferView 98
5.18.4. image.name 98
5.18.5. image.extensions 98
5.18.6. image.extras 99
5.19. Material 99
5.19.1. material.name 100
5.19.2. material.extensions 100
5.19.3. material.extras 100
5.19.4. material.pbrMetallicRoughness 100
5.19.5. material.normalTexture 100
5.19.6. material.occlusionTexture 101
5.19.7. material.emissiveTexture 101
5.19.8. material.emissiveFactor 101
5.19.9. material.alphaMode 101
5.19.10. material.alphaCutoff 102
5.19.11. material.doubleSided 102
5.20. Material Normal Texture Info 102
5.20.1. material.normalTexturelnfo.index 103
5.20.2. material.normalTextureInfo.texCoord 103
5.20.3. material.normalTextureInfo.scale 103
5.20.4. material.normalTextureInfo.extensions 103
5.20.5. material.normalTextureInfo.extras 104
5.21. Material Occlusion Texture Info 104
5.21.1. material.occlusionTextureInfo.index 104
5.21.2. material.occlusionTextureInfo.texCoord 104
5.21.3. material.occlusionTexturelnfo.strength 105
5.21.4. material.occlusionTextureInfo.extensions 105
5.21.5. material.occlusionTextureInfo.extras 105
5.22. Material PBR Metallic Roughness 105
5.22.1. material.pbrMetallicRoughness.baseColorFactor 106
5.22.2. material.pbrMetallicRoughness.baseColorTexture 106
5.22.3. material.pbrMetallicRoughness.metallicFactor 106
5.22.4. material.pbrMetallicRoughness.roughnessFactor 107
5.22.5. material.pbrMetallicRoughness.metallicRoughnessTexture 107
5.22.6. material.pbrMetallicRoughness.extensions 107
5.22.7. material.pbrMetallicRoughness.extras 107
5.23. Mesh 108

5.23.1. mesh.primitives 108

5.23.2. mesh.weights 108

5.23.3. mesh.name 108
5.23.4. mesh.extensions 109
5.23.5. mesh.extras 109
5.24. Mesh Primitive 109
5.24.1. mesh.primitive.attributes 110
5.24.2. mesh.primitive.indices 110
5.24.3. mesh.primitive.material 110
5.24.4. mesh.primitive.mode 110
5.24.5. mesh.primitive.targets 111
5.24.6. mesh.primitive.extensions 111
5.24.7. mesh.primitive.extras 111
5.25. Node 111
5.25.1. node.camera 113
5.25.2. node.children 113
5.25.3. node.skin 113
5.25.4. node.matrix 113
5.25.5. node.mesh 114
5.25.6. node.rotation 114
5.25.7. node.scale 114
5.25.8. node.translation 114
5.25.9. node.weights 114
5.25.10. node.name 114
5.25.11. node.extensions 115
5.25.12. node.extras 115
5.26. Sampler 115
5.26.1. sampler.magFilter 115
5.26.2. sampler.minFilter 116
5.26.3. sampler.wrap$S 116
5.26.4. sampler.wrapT 116
5.26.5. sampler.name 117
5.26.6. sampler.extensions 117
5.26.7. sampler.extras 117
5.27. Scene 117
5.27.1. scene.nodes 118
5.27.2. scene.name 118
5.27.3. scene.extensions 118
5.27.4. scene.extras 118
5.28. Skin 118
5.28.1. skin.inverseBindMatrices 119

5.28.2. skin.skeleton 119

5.28.3. skin.joints 119

5.28.4. skin.name 120
5.28.5. skin.extensions 120
5.28.6. skin.extras 120
5.29. Texture 120
5.29.1. texture.sampler 121
5.29.2. texture.source 121
5.29.3. texture.name 121
5.29.4. texture.extensions 122
5.29.5. texture.extras 122
5.30. Texture Info 122
5.30.1. textureInfo.index 122
5.30.2. textureInfo.texCoord 123
5.30.3. textureInfo.extensions 123
5.30.4. textureInfo.extras 123

6. Acknowledgments (Informative) 124
6.1. Editors 124
6.2. Khronos 3D Formats Working Group and Alumni 124
6.3. Special Thanks 124
Appendix A: JSON Schema Reference (Informative) 126
A.1.JSON Schema for Accessor 126
A.2.JSON Schema for Accessor Sparse 130
A.3.JSON Schema for Accessor Sparse Indices 131
A.4.JSON Schema for Accessor Sparse Values 133
A.5.JSON Schema for Animation 134
A.6.JSON Schema for Animation Channel 135
A.7.JSON Schema for Animation Channel Target 136
A.8.JSON Schema for Animation Sampler 137
A.9.]JSON Schema for Asset 139
A.10. JSON Schema for Buffer 140
A.11. JSON Schema for Buffer View 141
A.12. JSON Schema for Camera 143
A.13. JSON Schema for Camera Orthographic 145
A.14. JSON Schema for Camera Perspective 146
A.15. JSON Schema for Extension 147
A.16. JSON Schema for Extras 148
A.17.JSON Schema for gITF 149
A.18. JSON Schema for gITF Child of Root Property 153
A.19. JSON Schema for gITF Id 154
A.20. JSON Schema for gITF Property 155

A.21. JSON Schema for Image 156

A.22. JSON Schema for Material 158

A.23. JSON Schema for Material Normal Texture Info 161
A.24. JSON Schema for Material Occlusion Texture Info 162
A.25. JSON Schema for Material PBR Metallic Roughness 163
A.26. JSON Schema for Mesh 165
A.27.JSON Schema for Mesh Primitive 166
A.28. JSON Schema for Node 169
A.29. JSON Schema for Sampler 172
A.30. JSON Schema for Scene 175
A.31. JSON Schema for Skin 176
A.32. JSON Schema for Texture 177
A.33. JSON Schema for Texture Info 178
Appendix B: BRDF Implementation 179
B.1. General 179
B.2. Material Structure 179
B.2.1. Metals 179
B.2.2. Dielectrics 180
B.2.3. Microfacet Surfaces 181
B.2.4. Complete Model 182
B.3. Sample Implementation (Informative) 183
B.3.1. Overview 183
B.3.2. Specular BRDF 183
B.3.3. Diffuse BRDF 184
B.3.4. Fresnel 184
B.3.5. Metal BRDF and Dielectric BRDF 185
B.3.6. Discussion 185
B.3.6.1. Masking-Shadowing Term and Multiple Scattering 185
B.3.6.2. Schlick’s Fresnel Approximation 185
B.3.6.3. Coupling Diffuse and Specular Reflection 186

B.4. References 187
Appendix C: Animation Sampler Interpolation Modes 188
C.1. Overview 188
C.2. Step Interpolation 188
C.3. Linear Interpolation 188
C.4. Spherical Linear Interpolation 188

C.5. Cubic Spline Interpolation 189

Chapter 1. Foreword

Copyright 2013-2021 The Khronos Group Inc.

This specification is protected by copyright laws and contains material proprietary to Khronos.
Except as described by these terms, it or any components may not be reproduced, republished,
distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the
express prior written permission of Khronos.

This specification has been created under the Khronos Intellectual Property Rights Policy, which is
Attachment A of the Khronos Group Membership Agreement available at https://www.khronos.org/
files/member_agreement.pdf. Khronos grants a conditional copyright license to use and reproduce
the unmodified specification for any purpose, without fee or royalty, EXCEPT no licenses to any
patent, trademark or other intellectual property rights are granted under these terms. Parties
desiring to implement the specification and make use of Khronos trademarks in relation to that
implementation, and receive reciprocal patent license protection under the Khronos IP Policy must
become Adopters under the process defined by Khronos for this specification; see
https://www.khronos.org/conformance/adopters/file-format-adopter-program.

Some parts of this Specification are non-normative through being explicitly identified as purely
informative, and do not define requirements necessary for compliance and so are outside the Scope
of this Specification.

Where this Specification includes normative references to external documents, only the specifically
identified sections and functionality of those external documents are in Scope. Requirements
defined by external documents not created by Khronos may contain contributions from non-
members of Khronos not covered by the Khronos Intellectual Property Rights Policy.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this specification, including, without limitation: merchantability, fitness for a particular
purpose, non-infringement of any intellectual property, correctness, accuracy, completeness,
timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters,
Contributors or Members, or their respective partners, officers, directors, employees, agents or
representatives be liable for any damages, whether direct, indirect, special or consequential
damages for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Khronos® and Vulkan® are registered trademarks, and ANARI™, WebGL™, gITF™, NNEF™,
OpenVX™, SPIR™, SPIR-V™, SYCL™, OpenVG™ and 3D Commerce™ are trademarks of The Khronos
Group Inc. OpenXR™ is a trademark owned by The Khronos Group Inc. and is registered as a
trademark in China, the European Union, Japan and the United Kingdom. OpenCL™ is a trademark
of Apple Inc. and OpenGL® is a registered trademark and the OpenGL ES™ and OpenGL SC™ logos
are trademarks of Hewlett Packard Enterprise used under license by Khronos. ASTC is a trademark
of ARM Holdings PLC. All other product names, trademarks, and/or company names are used solely
for identification and belong to their respective owners.

https://www.khronos.org/files/member_agreement.pdf
https://www.khronos.org/files/member_agreement.pdf
https://www.khronos.org/conformance/adopters/file-format-adopter-program

Chapter 2. Introduction

2.1. General

This document, referred to as the “gITF Specification” or just the “Specification” hereafter,
describes the gITF file format.

gITF is an API-neutral runtime asset delivery format. gITF bridges the gap between 3D content
creation tools and modern graphics applications by providing an efficient, extensible, interoperable
format for the transmission and loading of 3D content.

2.2. Document Conventions

The gITF Specification is intended for use by both implementers of the asset exporters or converters
(e.g., digital content creation tools) and application developers seeking to import or load gITF assets,
forming a basis for interoperability between these parties.

Specification text can address either party; typically, the intended audience can be inferred from
context, though some sections are defined to address only one of these parties.

Any requirements, prohibitions, recommendations, or options defined by normative terminology
are imposed only on the audience of that text.

2.2.1. Normative Terminology and References

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in BCP
14.

These key words are highlighted in the specification for clarity.

References to external documents are considered normative if the Specification uses any of the
normative terms defined in this section to refer to them or their requirements, either as a whole or
in part.

2.2.2. Informative Language

Some language in the specification is purely informative, intended to give background or
suggestions to implementers or developers.

If an entire chapter or section contains only informative language, its title is suffixed with
“(Informative)”. If not designated as informative, all chapters, sections, and appendices in this
document are normative.

All Notes, Implementation notes, and Examples are purely informative.

2.2.3. Technical Terminology

The gITF Specification makes use of linear algebra terms such as axis, matrix, vector, etc. to
identify certain math constructs and their behaviors as defined in the International
Electrotechnical Vocabulary.

The gITF Specification makes use of common engineering and graphics terms such as image,
buffer, texture, etc. to identify and describe certain gITF constructs and their attributes, states, and
behaviors. This section defines the basic meanings of these terms in the context of the Specification.
The Specification text provides fuller definitions of the terms and elaborates, extends, or clarifies
the definitions. When a term defined in this section is used in normative language within the
Specification, the definitions within the Specification govern and supersede any meanings the
terms may have in other technical contexts (i.e. outside the Specification).

accessor

An object describing the number and the format of data elements stored in a binary buffer.

animation

An object describing the keyframe data, including timestamps, and the target property affected
by it.

back-facing

See facingness.

buffer

An external or embedded resource that represents a linear array of bytes.

buffer view

An object that represents a range of a specific buffer, and optional metadata that controls how
the buffer’s content is interpreted.

camera

An object defining the projection parameters that are used to render a scene.

facingness

A classification of a triangle as either front-facing or back-facing, depending on the orientation
(winding order) of its vertices.

front-facing

See facingness.

image

A two dimensional array of pixels encoded as a standardized bitstream, such as PNG.

indexed geometry
A mesh primitive that uses a separate source of data (index values) to assemble the primitive’s
topology.

linear blend skinning

A skinning method that computes a per-vertex transformation matrix as a linear weighted sum
of transformation matrices of the designated nodes.

material

A parametrized approximation of visual properties of the real-world object being represented by
a mesh primitive.

mesh

A collection of mesh primitives.

mesh primitive

An object binding indexed or non-indexed geometry with a material.

mipmap

A set of image representations consecutively reduced by the factor of 2 in each dimension.

morph target

An altered state of a mesh primitive defined as a set of difference values for its vertex attributes.

node

An object defining the hierarchy relations and the local transform of its content.

non-indexed geometry

A mesh primitive that uses linear order of vertex attribute values to assemble the primitive’s
topology.

normal

A unit XYZ vector defining the perpendicular to the surface.

root node

A node that is not a child of any other node.

sampler

An object that controls how image data is sampled.

scene

An object containing a list of root nodes to render.

skinning
The process of computing and applying individual transforms for each vertex of a mesh
primitive.

tangent

A unit XYZ vector defining a tangential direction on the surface.

texture

An object that combines an image and its sampler.

topology type
State that controls how vertices are assembled, e.g. as lists of triangles, strips of lines, etc.

vertex attribute

A property associated with a vertex.

winding order

The relative order in which vertices are defined within a triangle

wrapping

A process of selecting an image pixel based on normalized texture coordinates.

2.2.4. Normative References

The following documents are referenced by normative sections of the specification:

2.2.4.1. External Specifications

Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, BCP 14, RFC 2119, March
1997. Leiba, B., Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, BCP 14, RFC 8174,
May 2017. https://www.rfc-editor.org/info/bcp14

IEC 60050-102 International Electrotechnical Vocabulary (IEV) - Part 102: Mathematics - General
concepts and linear algebra https://webstore.iec.ch/publication/160

IEC 60050-103 International Electrotechnical Vocabulary (IEV) - Part 103: Mathematics -
Functions https://webstore.iec.ch/publication/161

Note

An online version of these standards is available at
https://www.electropedia.org/

The Unicode Consortium, The Unicode Standard https://www.unicode.org/versions/latest/

Bray, T., Ed., The JavaScript Object Notation (JSON) Data Interchange Format, STD 90, RFC 8259,
DOI 10.17487/RFC8259, December 2017, https://www.rfc-editor.org/info/rfc8259

ISO/IEC 60559 Floating-point arithmetic https://www.iso.org/standard/80985.html

ISO/IEC 15948 Portable Network Graphics (PNG): Functional specification https://www.iso.org/
standard/29581.html

Note

A free version of this standard is available from W3C: https://www.w3.org/TR/
PNG/

ISO/IEC 10918-1 Digital compression and coding of continuous-tone still images: Requirements
and guidelines https://www.iso.org/standard/18902.html

https://www.rfc-editor.org/info/bcp14
https://webstore.iec.ch/publication/160
https://webstore.iec.ch/publication/161
https://www.electropedia.org/
https://www.unicode.org/versions/latest/
https://www.rfc-editor.org/info/rfc8259
https://www.iso.org/standard/80985.html
https://www.iso.org/standard/29581.html
https://www.iso.org/standard/29581.html
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
https://www.iso.org/standard/18902.html

Note

o An earlier edition of this standard called ITU Recommendation T.81 is available
from W3C: https://www.w3.org/Graphics/JPEG/itu-t81.pdf

ISO/IEC 10918-5 Digital compression and coding of continuous-tone still images: JPEG File
Interchange Format (JFIF) https://www.iso.org/standard/54989.html

Note

o An earlier edition of this standard is available from W3C: https://www.w3.0org/
Graphics/JPEG/jfif3.pdf

CIPA DC-008-Translation-2019 Exchangeable image file format for digital still cameras
https://www.cipa.jp/std/documents/download_e.html?DC-008-Translation-2019-E

Masinter, L., The "data" URL scheme, RFC 2397, DOI 10.17487/RFC2397, August 1998,
https://www.rfc-editor.org/info/rfc2397

Berners-Lee, T, Fielding, R., and L. Masinter, Uniform Resource Identifier (URI): Generic Syntax,
STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, https://www.rfc-editor.org/info/rfc3986

Duerst, M. and M. Suignard, Internationalized Resource Identifiers (IRIs), RFC 3987, DOI
10.17487/RFC3987, January 2005, https://www.rfc-editor.org/info/rfc3987

Fielding, R., Ed., and J. Reschke, Ed., Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing, RFC 7230, DOI 10.17487/RFC7230, June 2014, https://www.rfc-editor.org/info/rfc7230

IEC 61966-2-1 Default RGB colour space - SRGB https://webstore.iec.ch/publication/6169

Note

o The encoding characteristics of SRGB are freely available from ICC:
https://www.color.org/chardata/rgb/srgh.xalter

Recommendation ITU-R BT.709-6 Parameter values for the HDTV standards for production and
international programme exchange https://www.itu.int/rec/R-REC-BT.709-6-201506-I

MikkTSpace https://github.com/mmikk/MikkTSpace

Thomas Porter and Tom Duff. 1984. Compositing digital images. SIGGRAPH Comput. Graph. 18, 3
(July 1984), 253-259. DOI: https://doi.org/10.1145/964965.808606

Note

o A free version of this paper is available from Pixar: https://graphics.pixar.com/
library/Compositing/

2.2.4.2. Media Type Registrations

IANA. model/gltf+json Media Type. https://www.iana.org/assignments/media-types/model/
gltf+json

IANA. model/gltf-binary Media Type. https://www.iana.org/assignments/media-types/model/gltf-
binary

https://www.w3.org/Graphics/JPEG/itu-t81.pdf
https://www.iso.org/standard/54989.html
https://www.w3.org/Graphics/JPEG/jfif3.pdf
https://www.w3.org/Graphics/JPEG/jfif3.pdf
https://www.cipa.jp/std/documents/download_e.html?DC-008-Translation-2019-E
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc7230
https://webstore.iec.ch/publication/6169
https://www.color.org/chardata/rgb/srgb.xalter
https://www.itu.int/rec/R-REC-BT.709-6-201506-I
https://github.com/mmikk/MikkTSpace
https://doi.org/10.1145/964965.808606
https://graphics.pixar.com/library/Compositing/
https://graphics.pixar.com/library/Compositing/
https://www.iana.org/assignments/media-types/model/gltf+json
https://www.iana.org/assignments/media-types/model/gltf+json
https://www.iana.org/assignments/media-types/model/gltf-binary
https://www.iana.org/assignments/media-types/model/gltf-binary

IANA. application/gltf-buffer Media Type. https://www.iana.org/assignments/media-types/
application/gltf-buffer

IANA. application/octet-stream Media Type. https://www.iana.org/assignments/media-types/
application/octet-stream

Freed, N. and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types, RFC 2046, DOI 10.17487/RFC2046, November 1996, https://www.rfc-editor.org/info/rfc2046

IANA. image/png Media Type. https://www.iana.org/assignments/media-types/image/png

2.3. Motivation and Design Goals (Informative)

gITF is an open interoperable 3D asset ‘transmission’ format that is compact, and efficient to
process and render at runtime. gITF 2.0 is designed to be vendor- and runtime-neutral, usable by a
wide variety of native and web-based engines and applications regardless of underlying platforms
and 3D graphics APIs.

glTF’s focus on run-time efficiency is a different design goal than typical 3D ‘authoring’ formats.
Authoring formats are typically more verbose, with higher processing overheads, to carry
authoring data that is no longer needed after iterative design is complete. gITF is complementary to
authoring formats, providing a common, interoperable distillation target for publishing 3D assets to
a wide audience of end users.

A primary goal of gITF is to be deployable on a wide range of devices and platforms, including the
web and mobile devices with limited processing and memory resources. gITF can be evolved, to
keep pace with growing compute capabilities over time. This helps to foster broad industry
consensus on 3D functionality that can be used ubiquitously, including Physically Based Rendering.

gITF combines an easily parsable JSON scene description with one or more binary resources
representing geometry, animations, and other rich data. These binary resources can often be
loaded directly into GPU buffers with no additional parsing or processing, combining the faithful
preservation of full hierarchical scenes, nodes, meshes, cameras, materials, and animations with
efficient delivery and fast loading.

gITF has been designed to meet the following goals:

* Compact file sizes. The plain text gIlTF JSON file description is compact and rapid to parse. All
large data such as geometry, textures and animations are stored in binary files that are
significantly smaller than equivalent text representations.

* Runtime-independence. gITF is purely an asset format and does not mandate any runtime
behavior. This enables its use by any application for any purpose, including display using any
rendering technology, up to and including path tracing renderers.

* Complete 3D scene representation. Not restricted to single objects, glTF can represent entire
scenes, including nodes, transformations, transform hierarchy, meshes, materials, cameras, and
animations.

» Extensibility. gITF is fully extensible, enabling the addition of both general-purpose and
vendor-specific extensions, including geometry and texture compression. Widely adopted
extensions may be considered for integration into future versions of the glTF specification.

https://www.iana.org/assignments/media-types/application/gltf-buffer
https://www.iana.org/assignments/media-types/application/gltf-buffer
https://www.iana.org/assignments/media-types/application/octet-stream
https://www.iana.org/assignments/media-types/application/octet-stream
https://www.rfc-editor.org/info/rfc2046
https://www.iana.org/assignments/media-types/image/png

The following are outside the scope of gITF 2.0:

* gITF is not a streaming format. The binary data in gITF is inherently streamable, and the
buffer design allows for fetching data incrementally, but there are no other streaming
constructs in gITF 2.0.

* gITF is not an authoring format. gITF deliberately does not retain 3D authoring information,
in order to preserve runtime efficiency, however gITF files may be ingested by 3D authoring
tools for remixing.

* gITF is not intended to be human-readable, though by virtue of being represented in JSON, it
is developer-friendly.

2.4. gITF Basics

A gITF asset is represented by:
* A JSON-formatted file (.gltf) containing a full scene description: node hierarchy, materials,
cameras, as well as descriptor information for meshes, animations, and other constructs.
* Binary files (.bin) containing geometry, animation, and other buffer-based data.
* Image files (.jpg, .png) containing texture images.

Binary and image resources MAY also be embedded directly in JSON using Data URI or stored side-
by-side with JSON in GLB container.

A valid gITF asset MUST specify its version.

2.5. Versioning

Any updates made to the gITF Specification in a minor version MUST be backward and forward
compatible. Backward compatibility means that any client implementation that supports loading a
gITF 2.x asset will also be able to load a gITF 2.0 asset. Forward compatibility means that a client
implementation that only supports gITF 2.0 can load gITF 2.x assets while gracefully ignoring any
new features it does not understand.

A minor version update MAY introduce new features but MUST NOT change any previously
existing behavior. Existing functionality MAY be deprecated in a minor version update, but it MUST
NOT be removed.

Major version updates MAY be incompatible with previous versions.

2.6. File Extensions and Media Types

* JSON gITF files SHOULD use .gltf extension and model/gltf+json Media Type.

* glITF files stored in GLB container SHOULD use .glb extension and model/gltf-binary Media
Type.
* Files representing binary buffers SHOULD use either:

o .bin file extension with application/octet-stream Media Type;
o .bin, .glbin, or .glbuf file extensions with application/gltf-buffer Media Type.
* PNG images SHOULD use .png file extension with image/png Media Type;

o PNG images SHOULD NOT contain animations, non-square pixel ratios, or embedded ICC
profiles. Such features, if present, MUST be ignored by client implementations.

* JPEG images SHOULD use . jpeg or . jpg file extensions with image/jpeg Media Type
o JPEG images MUST be compatible with JPEG File Interchange Format.

o JPEG images SHOULD NOT contain embedded ICC profiles. If present, embedded ICC
profiles MUST be ignored by client implementations.

o Exchangeable image file format (Exif) chunks MAY be ignored by client implementations.

Implementation Note

o Certain Exif chunks, e.g., “Orientation”, may severely impact an asset’s
portability.

2.7.JSON Encoding

Although gITF Specification does not define any subset of the JSON format, implementations
SHOULD be aware of its peculiar properties that could affect asset interoperability.

1. gITF JSON data SHOULD be written with UTF-8 encoding without BOM. This requirement is not
applied when a gITF implementation does not control string encoding. glTF implementations
SHOULD adhere to RFC 8259, Section 8.1. with regards to treating BOM presence.

2. ASCII characters stored in gITF JSON SHOULD be written without JSON escaping.

o Example
"buffer" instead of "\u6062\u@@75\u0066\u0066\ub065\ud0B72".

3. Non-ASCII characters stored in gITF JSON MAY be escaped.

4.

10

Example

These two examples represent the same gITF JSON data.

{
"asset": {
"version": "2.0"
+
"nodes": [
{
“name": "ky6"
I
{
"name": "OOD"
}
]
0
{
"asset": {
"version": "2.0"
+
"nodes": [
{
"name": "\u043a\u0443\u0431"
I
{
"name": "\u7acb\u65b9\u9ad4"
}
]
}

Property names (keys) within JSON objects SHOULD be unique. gITF client implementations
SHOULD override lexically preceding values for the same key.

Some of gITF properties are defined as integers in the schema. Such values MAY be stored as
decimals with a zero fractional part or by using exponent notation. Regardless of encoding, such
properties MUST NOT contain any non-zero fractional value.

Example

o 100, 100.0, and Te2 represent the same value. See RFC 8259, Section 6 for more
details.

Non-integer numbers SHOULD be written in a way that preserves original values when these
numbers are read back, ie., they SHOULD NOT be altered by JSON serialization /
deserialization roundtrip.

Implementation Note

This is typically achieved with algorithms like Grisu2 used by common JSON
libraries.

2.8. URIs

gITF assets use URIs or IRIs to reference buffers and image resources. Assets MAY contain at least
these two URI types:

* Data URIs that embed binary resources in the gITF JSON as defined by the RFC 2397. The Data
URI’s mediatype field MUST match the encoded content.

o Implementation Note
Base64 encoding used in Data URI increases the payload’s byte length by 33%.

* Relative paths —path-noscheme or ipath-noscheme as defined by RFC 3986, Section 4.2 or RFC
3987, Section 2.2 —without scheme, authority, or parameters. Reserved characters (as defined
by RFC 3986, Section 2.2. and RFC 3987, Section 2.2.) MUST be percent-encoded.

Paths with non-ASCII characters MAY be written as-is, with JSON string escaping, or with percent-
encoding; all these options are valid. For example, the following three paths point to the same
resource:

{
"images": [
{
"uri": "grande_sphére.png"
h
{
"uri": "grande_sph\u@@E8re.png"
h
{
"uri": "grande_sph%(C3%A8re.png"
}
]
}

Client implementations MAY optionally support additional URI components. For example http://
or file:// schemes, authorities, hostnames, absolute paths, and query or fragment parameters.
Assets containing these additional URI components would be less portable.

11

Implementation Note

This allows the application to decide the best approach for delivery: if different
assets share many of the same geometries, animations, or textures, separate files
may be preferred to reduce the total amount of data requested. With separate files,
applications may progressively load data and do not need to load data for parts of

o a model that are not visible. If an application cares more about single-file
deployment, embedding data may be preferred even though it increases the
overall size due to base64 encoding and does not support progressive or on-
demand loading. Alternatively, an asset could use the GLB container to store JSON
and binary data in one file without base64 encoding. See GLB File Format
Specification for details.

URIs SHOULD undergo syntax-based normalization as defined by RFC 3986, Section 6.2.2, RFC 3987,
Section 5.3.2, and applicable schema rules (e.g., REC 7230, Section 2.7.3 for HTTP) on export and/or
import.

Implementation Note

o While the specification does not explicitly disallow non-normalized URIs, their use
may be unsupported or lead to unwanted side-effects — such as security warnings
or cache misses — on some platforms.

12

Chapter 3. Concepts

3.1. General

The figure below shows relations between top-level arrays in a gITF asset. See the Properties

Reference.

v
\ 4
\ 4
\
A\ 4

I \

\
\
\

N\

\ \ 4

\
- \-

Figure 1. gITF Object Hierarchy

3.2. Asset

Each gITF asset MUST have an asset property. The asset object MUST contain a version property
that specifies the target gITF version of the asset. Additionally, an optional minVersion property MAY
be used to specify the minimum gITF version support required to load the asset. The minVersion
property allows asset creators to specify a minimum version that a client implementation MUST
support in order to load the asset. This is very similar to the extensionsRequired concept described
in Section 3.12, where an asset SHOULD NOT be loaded if the client does not support the specified
extension. Additional metadata MAY be stored in optional properties such as generator or
copyright. For example,

13

"asset": {
"version": "2.0",
"generator": "collada2qltf@f356b99aef8868f74877c7ca545f2cd206b9d3b7",
"copyright": "2017 (c) Khronos Group"

Implementation Note

Client implementations should first check whether a minVersion property is
specified and ensure both major and minor versions can be supported. If no

o minVersion is specified, then clients should check the version property and ensure
the major version is supported. Clients that load GLB format should also check for
the minVersion and version properties in the JSON chunk as the version specified in
the GLB header only refers to the GLB container version.

3.3. Indices and Names

Entities of a gITF asset are referenced by their indices in corresponding arrays, e.g., a bufferView
refers to a buffer by specifying the buffer’s index in buffers array. For example:

{
"buffers": [
{
"bytelLength": 1024,
"uri": "path-to.bin"
}
.
"bufferViews": [
{
"buffer": 0,
"bytelLength": 512,
"byteOffset": 0
}
]
+

In this example, buffers and bufferViews arrays have only one element each. The bufferView refers
to the buffer using the buffer’s index: "buffer": .

Indices MUST be non-negative integer numbers. Indices MUST always point to existing elements.

Whereas indices are used for internal glTF references, optional names are used for application-
specific uses such as display. Any top-level gITF object MAY have a name string property for this
purpose. These property values are not guaranteed to be unique as they are intended to contain
values created when the asset was authored.

14

For property names, glTF usually uses camel case, likeThis.

3.4. Coordinate System and Units

gITF uses a right-handed coordinate system. gITF defines +Y as up, +Z as forward, and -X as right;
the front of a gITF asset faces +Z.

Figure 2. gITF Coordinate System Orientation
The units for all linear distances are meters.
All angles are in radians.

Positive rotation is counterclockwise.

Red, Green, and Blue primary colors use Recommendation ITU-R BT.709 chromaticity coordinates.

Implementation Note

Chromaticity coordinates define the interpretation of each primary color channel
of the color model. In the context of a typical display, color primaries describe the

o color of the red, green, and blue phosphors or filters. Unless a wide color gamut
output is explicitly used, client implementations usually do not need to convert
colors. Future specification versions or extensions may allow other color primaries
(such as P3).

3.5. Scenes

3.5.1. Overview

gITF 2.0 assets MAY contain zero or more scenes, the set of visual objects to render. Scenes are
defined in a scenes array. All nodes listed in scene.nodes array MUST be root nodes, i.e., they MUST
NOT be listed in a node.children array of any node. The same root node MAY appear in multiple

15

scenes.

An additional root-level property, scene (note singular), identifies which of the scenes in the array
SHOULD be displayed at load time. When scene is undefined, client implementations MAY delay
rendering until a particular scene is requested.

A gITF asset that does not contain any scenes SHOULD be treated as a library of individual entities
such as materials or meshes.

The following example defines a glTF asset with a single scene that contains a single node.

{
"nodes": [
{
"name": "singleNode"
}
1
"scenes": [
{
"name": "singleScene",
"nodes": [
0
]
}
.
"scene": 0
}

3.5.2. Nodes and Hierarchy
gITF assets MAY define nodes, that is, the objects comprising the scene to render.
Nodes MAY have transform properties, as described later.

Nodes are organized in a parent-child hierarchy known informally as the node hierarchy. A node is
called a root node when it doesn’t have a parent.

The node hierarchy MUST be a set of disjoint strict trees. That is node hierarchy MUST NOT contain
cycles and each node MUST have zero or one parent node.

The node hierarchy is defined using a node’s children property, as in the following example:

16

"nodes": [

{

"name": "Car",
"children": [1, 2, 3, 4]

"name": "wheel 1"
"name": "wheel_ 2"
"name": "wheel 3"

"name": "wheel 4"

The node named Car has four children. Each of those nodes could in turn have its own children,
creating a hierarchy of nodes.

3.5.3. Transformations

Any node MAY define a local space transform either by supplying a matrix property, or any of
translation, rotation, and scale properties (also known as TRS properties). translation and scale
are 3D vectors in the local coordinate system. rotation is a unit quaternion value, XYZW, in the local
coordinate system, where W is the scalar.

When matrix is defined, it MUST be decomposable to TRS properties.

o Implementation Note
Transformation matrices cannot skew or shear.

When a node is targeted for animation (referenced by an animation.channel.target), only TRS
properties MAY be present; matrix MUST NOT be present.

To compose the local transformation matrix, TRS properties MUST be converted to matrices and
postmultiplied in the T * R * S order; first the scale is applied to the vertices, then the rotation, and
then the translation.

Implementation Note

Non-invertible transforms (e.g., scaling one axis to zero) could lead to lighting
and/or visibility artifacts.

17

Implementation Note

When the scale is zero on all three axes (by node transform or by animated scale),

o implementations are free to optimize away rendering of the node’s mesh, and all
of the node’s children’s meshes. This provides a mechanism to animate visibility.
Skinned meshes must not use this optimization unless all of the joints in the skin
are scaled to zero simultaneously.

The global transformation matrix of a node is the product of the global transformation matrix of its
parent node and its own local transformation matrix. When the node has no parent node, its global
transformation matrix is identical to its local transformation matrix.

In the example below, a node named Box defines non-default rotation and translation.

"nodes": [

{
||namell: "BOX“’
"rotation": [
0,

I

—_co
~

1,
"translation": [
-17.7082,
-11.4156,

2.0922

The next example defines the transform for a node with attached camera using the matrix property
rather than using the individual TRS values:

18

"nodes": [

{

"name": "node-camera",

"camera": 1,

"matrix": [
-0.99975,
-0.00679829,
0.0213218,
0,
0.00167596,
0.927325,
0.374254,
0,
-0.0223165,
0.374190,
-0.927081,
0,
-0.0115543,
0.194711,
-0.478297,
1

3.6. Binary Data Storage

3.6.1. Buffers and Buffer Views

3.6.1.1. Overview

A buffer is arbitrary data stored as a binary blob. The buffer MAY contain any combination of
geometry, animation, skins, and images.

Binary blobs allow efficient creation of GPU buffers and textures since they require no additional
parsing, except perhaps decompression.

gITF assets MAY have any number of buffer resources. Buffers are defined in the asset’s buffers
array.

While there’s no hard upper limit on buffer’s size, gITF assets SHOULD NOT use buffers bigger
than 2*° bytes because some JSON parsers may be unable to parse their byteLength correctly. Buffers
stored as GLB binary chunk have an implicit limit of 2*-1 bytes.

All buffer data defined in this specification (i.e., geometry attributes, geometry indices, sparse
accessor data, animation inputs and outputs, inverse bind matrices) MUST use little endian byte
order.

19

The following example defines a buffer. The bytelLength property specifies the size of the buffer file.
The uri property is the URI to the buffer data.

{
"buffers": [
{
"bytelLength": 102040,
"uri": "duck.bin"
}
]
}

The byte length of the referenced resource MUST be greater than or equal to the buffer.bytelength
property.

Buffer data MAY alternatively be embedded in the gITF file via data: URI with base64 encoding.
When data: URI is used for buffer storage, its mediatype field MUST be set to application/octet-
stream or application/qltf-buffer.

A buffer view represents a contiguous segment of data in a buffer, defined by a byte offset into the
buffer specified in the byteOffset property and a total byte length specified by the bytelength
property of the buffer view.

Buffer views used for images, vertex indices, vertex attributes, or inverse bind matrices MUST
contain only one kind of data, i.e., the same buffer view MUST NOT be used both for vertex indices
and vertex attributes.

When a buffer view is used by vertex indices or attribute accessors it SHOULD specify
bufferView.target with a value of element array buffer or array buffer respectively.

Implementation Note

This allows client implementations to early designate each buffer view to a proper

o processing step, e.g, buffer views with vertex indices and attributes would be
copied to the appropriate GPU buffers, while buffer views with image data would
be passed to format-specific image decoders.

The bufferView.target value uses integer enums defined in the Properties Reference.

The following example defines two buffer views: the first holds the indices for an indexed triangle
set, and the second holds the vertex data for the triangle set.

20

"bufferViews": [

{
"buffer": 0,
"bytelLength": 25272,
"byteOffset": 0,
"target": 34963

I

{
"buffer": 0,
"bytelLength": 76768,
"byteOffset": 25272,
"byteStride": 32,
"target": 34962

}

When a buffer view is used for vertex attribute data, it MAY have a byteStride property. This
property defines the stride in bytes between each vertex. Buffer views with other types of data
MUST NOT not define byteStride (unless such layout is explicitly enabled by an extension).

Buffers and buffer views do not contain type information. They simply define the raw data for
retrieval from the file. Objects within the gITF asset (meshes, skins, animations) access buffers or
buffer views via accessors.

3.6.1.2. GLB-stored Buffer

The gITF asset MAY use the GLB file container to pack gITF JSON and one gITF buffer into one file.
Data for such a buffer is provided via the GLB-stored BIN chunk.

A buffer with data provided by the GLB-stored BIN chunk, MUST be the first element of buffers
array and it MUST have its buffer.uri property undefined. When such a buffer exists, a BIN chunk
MUST be present.

Any gITF buffer with undefined buffer.uri property that is not the first element of buffers array
does not refer to the GLB-stored BIN chunk, and the behavior of such buffers is left undefined to
accommodate future extensions and specification versions.

The byte length of the BIN chunk MAY be up to 3 bytes bigger than JSON-defined buffer.bytelLength
value to satisfy GLB padding requirements.

Implementation Note

o Not requiring strict equality of chunk’s and buffer’s lengths slightly simplifies gITF
to GLB conversion: buffer.bytelLength does not need to be updated after applying
GLB padding.

In the following example, the first buffer object refers to GLB-stored data, while the second points
to external resource:

21

"buffers": [

{
"bytelLength": 35884

iy

{
"bytelLength": 504,
"uri": "external.bin"

}

]
}

See GLB File Format Specification for details on GLB File Format.

3.6.2. Accessors

3.6.2.1. Overview

All binary data for meshes, skins, and animations is stored in buffers and retrieved via accessors.

An accessor defines a method for retrieving data as typed arrays from within a buffer view. The
accessor specifies a component type (e.g., float) and a data type (e.g., VEC3 for 3D vectors), which
when combined define the complete data type for each data element. The number of elements is
specified using the count property. Elements could be, e.g., vertex indices, vertex attributes,
animation keyframes, etc.

The byteOffset property specifies the location of the first data element within the referenced buffer
view. If the accessor is used for vertex attributes (i.e., it is referenced by a mesh primitive or its
morph targets), the locations of the subsequent data elements are controlled by the
bufferView.byteStride property. If the accessor is used for any other kind of data (vertex indices,
animation keyframes, etc.), its data elements are tightly packed.

All accessors are stored in the asset’s accessors array.

The following example shows two accessors, the first is a scalar accessor for retrieving a primitive’s
indices, and the second is a 3-float-component vector accessor for retrieving the primitive’s position
data.

22

"accessors": [

{

"bufferView": 0,
"byteOffset": 0,
"componentType": 5123,
"count": 12636,
"max": [

4212
1,
"min": [

0
1,
"type": "SCALAR"

"bufferView": 1,
"byteOffset": 0,
"componentType": 5126,
"count": 2399,

"max": [

0.961799,
1.6397,
0.539252

1,

"min": [
-0.692985,
0.0992937,
-0.613282

1,

"type": "VEC3"

3.6.2.2. Accessor Data Types

componentType

5120

5121
5122

5123
5125
5126

Data Type
signed byte

unsigned byte

signed short

unsigned short
unsigned int

float

Signed

Signed, two’s
complement

Unsigned

Signed, two’s
complement

Unsigned
Unsigned
Signed

Bits

16

16
32
32

23

Signed 32-bit integer components are not supported.
Floating-point data MUST use IEEE-754 single precision format.

Values of NaN, +Infinity, and -Infinity MUST NOT be present.

type Number of components
"SCALAR"

"VEC2"
"VEC3"
"VEC4"
"MAT2"

© o w N

"MAT3"
"MAT4" 16

Element size, in bytes, is (size in bytes of the 'componentType') * (number of components defined
by "type').

For example:

{
"accessors": [
{
"bufferView": 1,
"byteOffset": 7032,
"componentType": 5126,
"count": 585,
“type": "VEC3"
}
]
}

In this accessor, the componentType is 5126 (float), so each component is four bytes. The type is "VEC3",
so there are three components. The size of each element is 12 bytes (4 * 3). Thus, the accessor takes
7020 bytes ([7032 -+ 14051] inclusive range of the buffer view).

3.6.2.3. Sparse Accessors

Sparse encoding of arrays is often more memory-efficient than dense encoding when describing
incremental changes with respect to a reference array. This is often the case when encoding morph
targets (it is, in general, more efficient to describe a few displaced vertices in a morph target than
transmitting all morph target vertices).

Similar to a standard accessor, a sparse accessor initializes an array of typed elements from data
stored in a bufferView. When accessor.bufferView is undefined, the sparse accessor is initialized as
an array of zeros of size (size of the accessor element) * (accessor.count) bytes.

24

On top of that, a sparse accessor includes a sparse JSON object describing the elements that are
different from their initialization values. The sparse object contains the following REQUIRED
properties:

 count: number of displaced elements. This number MUST NOT be greater than the number of
the base accessor elements.

* indices: object describing the location and the component type of indices of values to be
replaced. The indices MUST form a strictly increasing sequence. The indices MUST NOT be
greater than or equal to the number of the base accessor elements.

* values: object describing the location of displaced elements corresponding to the indices
referred from the indices.

The following example shows an example of a sparse accessor with 10 elements that are different
from the initialization array.

"accessors": [
{
"bufferView": 0,
"byteOffset": 0,
"componentType": 5123,
"count": 12636,
“type": "VEC3",
"sparse": {
"count": 10,
"indices": {
"bufferView": 1,
"byteOffset": 0,
"componentType": 5123
+
"values": {
"bufferView": 2,
"byteOffset": 0

3.6.2.4. Data Alignment

The offset of an accessor into a bufferView (i.e., accessor.byteOffset) and the offset of an accessor
into a buffer (i.e., accessor.byteOffset + bufferView.byteOffset) MUST be a multiple of the size of
the accessor’s component type.

When byteStride of the referenced bufferView is not defined, it means that accessor elements are
tightly packed, i.e., effective stride equals the size of the element. When byteStride is defined, it
MUST be a multiple of the size of the accessor’s component type.

25

When two or more vertex attribute accessors use the same bufferView, its byteStride MUST be
defined.

Each accessor MUST fit its bufferView, i.e.,

accessor.byteOffset + EFFECTIVE_BYTE_STRIDE * (accessor.count - 1) + SIZE_OF_COMPONENT
* NUMBER_OF _COMPONENTS

MUST be less than or equal to bufferView.length.

For performance and compatibility reasons, each element of a vertex attribute MUST be aligned to
4-byte boundaries inside a bufferView (i.e., accessor.byteOffset and bufferView.byteStride MUST be
multiples of 4).

Accessors of matrix type have data stored in column-major order; start of each column MUST be
aligned to 4-byte boundaries. Specifically, when ROWS * SIZE_OF_COMPONENT (where ROWS is the
number of rows of the matrix) is not a multiple of 4, then (ROWS * SIZE_OF_COMPONENT) % 4 padding
bytes MUST be inserted at the end of each column.

Only the following three accessor configurations require padding.

00 01 02 03
| | | |

nd0 | nlO

04 05 06 07
| | | |

ndl | nmll

Figure 3. Matrix 2x2, 1-byte Components

00 01 02 03
| | | |

n00 | MmO | nR0

04 05 06 07
| | | |

n0l | m1l | nR1

08 09 0A 0B
| | | |

nb2 | m2 | nk2

Figure 4. Matrix 3x3, 1-byte Components

26

00 01 02 03 04 05 06 07
100 | 100 | mo | mo | meo | meo [|
08 09 0A 0B 0oC 0D OE OF
w01 [o1 [m1 | m1 | we1 [we1 ||
10 11 12 13 14 15 16 17
w02 [0z [m2 [m2 w2 w2 []

Figure 5. Matrix 3x3, 2-byte Components

Alignment requirements apply only to the start of each column, so trailing bytes MAY be omitted if
there’s no further data.

Implementation Note

o Alignment requirements allow client implementations to more efficiently process
binary buffers because creating aligned data views usually does not require extra
copying.

Consider the following example:

{
"bufferViews": [
{
"buffer": 0,
"bytelLength": 17136,
"byteOffset": 620
}
I
"accessors": [
{
"bufferView": 0,
"byteOffset": 4608,
"componentType": 5123,
"count": 42,
"type": "VEC2"
}
]
}

In this example, the accessor describes tightly-packed two-component unsigned short values.

The corresponding segment of the underlying buffer would start from byte 5228

start = accessor.byteOffset + accessor.bufferView.byteOffset

and continue until byte 5396 exclusive

27

end = 2 * 2 * accessor.count + start

The unsigned short view for the resulting buffer range could be created without copying: 84 scalar
values starting from byte offset 5228.

When accessor values are not tightly-packed (i.e., bufferView.byteStride is greater than element’s
byte length), iteration over the created data view would need to take interleaved values into
account (i.e., skip them).

3.6.2.5. Accessors Bounds

accessor.min and accessor.max properties are arrays that contain per-component minimum and
maximum values, respectively. The length of these arrays MUST be equal to the number of
accessor’s components.

Values stored in gITF JSON MUST match actual minimum and maximum binary values stored in
buffers. The accessor.normalized flag has no effect on these properties.

A sparse accessor min and max properties correspond, respectively, to the minimum and maximum
component values once the sparse substitution is applied.

When neither sparse nor bufferView is defined, min and max properties MAY have any values. This is
intended for use cases when binary data is supplied by external means (e.g., via extensions).

For floating-point components, JSON-stored minimum and maximum values represent single
precision floats and SHOULD be rounded to single precision before usage to avoid any potential
boundary mismatches.

o ECMAScript Implementation Note

Math.fround function could be used to achieve that.

Animation input and vertex position attribute accessors MUST have accessor.min and accessor.max
defined. For all other accessors, these properties are optional.

3.7. Geometry

3.7.1. Overview

Any node MAY contain one mesh, defined in its mesh property. The mesh MAY be skinned using
information provided in a referenced skin object. The mesh MAY have morph targets.

3.7.2. Meshes

3.7.2.1. Overview

Meshes are defined as arrays of primitives. Primitives correspond to the data required for GPU
draw calls. Primitives specify one or more attributes, corresponding to the vertex attributes used
in the draw calls. Indexed primitives also define an indices property. Attributes and indices are

28

defined as references to accessors containing corresponding data. Each primitive MAY also specify
amaterial and a mode that corresponds to the GPU topology type (e.g., triangle set).

Implementation Note

Splitting one mesh into several primitives can be useful to limit the number of
indices per draw call or to assign different materials to different parts of the mesh.

If material is undefined, then a default material MUST be used.

The following example defines a mesh containing one indexed triangle primitive:

"meshes": [

{
"primitives": [
{
"attributes": {
"NORMAL": 23,
"POSITION": 22,
"TANGENT": 24,
"TEXCOORD_0": 25

}

"indices": 21,
"material": 3,
"mode": 4

Each attribute is defined as a property of the attributes object. The name of the property
corresponds to an enumerated value identifying the vertex attribute, such as POSITION. The value of
the property is the index of an accessor that contains the data.

The specification defines the following attribute semantics: POSITION, NORMAL, TANGENT, TEXCOORD_n,
COLOR_n, JOINTS_n, and WEIGHTS_n.

Application-specific attribute semantics MUST start with an underscore, e.g., _TEMPERATURE.
Application-specific attribute semantics MUST NOT use unsigned int component type.

Valid accessor type and component type for each attribute semantic property are defined below.

Name Accessor Type(s) Component Type(s) Description

POSITION VEC3 float Unitless XYZ vertex
positions

NORMAL VEC3 float Normalized XYZ vertex
normals

29

Name Accessor Type(s) Component Type(s) Description

TANGENT VEC4 float XYZW vertex tangents
where the XYZ portion is
normalized, and the W
component is a sign value (-
1 or +1) indicating
handedness of the tangent

basis
TEXCOORD_n VEC2 float ST texture coordinates
unsigned byte normalized
unsigned short normalized
COLOR_n VEC3 float RGB or RGBA vertex color
VEC4 unsigned byte normalized linear multiplier
unsigned short normalized
JOINTS_n VEC4 unsigned byte unsigned short See Skinned Mesh Attributes
WEIGHTS_ n VEC4 float See Skinned Mesh Attributes

unsigned byte normalized
unsigned short normalized

POSITION accessor MUST have its min and max properties defined.
The W component of each TANGENT accessor element MUST be set to 1.0 or -1.0.

When a COLOR_n attribute uses an accessor of "VEC3" type, its alpha component MUST be assumed to
have a value of 1.0.

All components of each COLOR_0 accessor element MUST be clamped to [0.0, 1.0] range.

TEXCOORD_n, COLOR_n, JOINTS_n, and WEIGHTS_n attribute semantic property names MUST be of the
form [semantic]_[set_index], e.g., TEXCOORD_@, TEXCOORD_1, COLOR_O@. All indices for indexed attribute
semantics MUST start with 0 and be consecutive positive integers: TEXCOORD_@, TEXCOORD_1, etc.
Indices MUST NOT use leading zeroes to pad the number of digits (e.g., TEXCOORD_@1 is not allowed).

Client implementations SHOULD support at least two texture coordinate sets, one vertex color, and
one joints/weights set.

All attribute accessors for a given primitive MUST have the same count. When indices property is
not defined, attribute accessors' count indicates the number of vertices to render; when indices
property is defined, it indicates the upper (exclusive) bound on the index values in the indices
accessor, i.e., all index values MUST be less than attribute accessors' count.

indices accessor MUST NOT contain the maximum possible value for the component type used (i.e.,
255 for unsigned bytes, 65535 for unsigned shorts, 4294967295 for unsigned ints).

Implementation Note

The maximum values trigger primitive restart in some graphics APIs and would
require client implementations to rebuild the index buffer.

30

When indices property is not defined, the number of vertex indices to render is defined by count of
attribute accessors (with the implied values from range [0..count)); when indices property is
defined, the number of vertex indices to render is defined by count of accessor referred to by
indices. In either case, the number of vertex indices MUST be valid for the topology type used:

For points, it MUST be non-zero.

For line loops and line strips, it MUST be 2 or greater.

For triangle strips and triangle fans, it MUST be 3 or greater.
For lines, it MUST be divisible by 2 and non-zero.

For triangles, it MUST be divisible by 3 and non-zero

Topology types are defined as follows.

Points

Each vertex defines a single point primitive, according to the equation:

pi={vi}
Line Strips

One line primitive is defined by each vertex and the following vertex, according to the equation:

pi = {V;, Viua}
Line Loops

Loops are the same as line strips except that a final segment is added from the final specified
vertex to the first vertex.

Lines

Each consecutive pair of vertices defines a single line primitive, according to the equation:

Pi = {Vai, Vaia}
Triangles

Each consecutive set of three vertices defines a single triangle primitive, according to the
equation:

Pi = {Vsi Vsiu1, Viina}
Triangle Strips

One triangle primitive is defined by each vertex and the two vertices that follow it, according to

31

the equation:

Pi = Vi, Vieasinnzys Vieziioon)}
* Triangle Fans

Triangle primitives are defined around a shared common vertex, according to the equation:

Pi = {Vii1, Viep, Vo}

Mesh geometry SHOULD NOT contain degenerate lines or triangles, i.e., lines or triangles that use
the same vertex more than once per topology primitive.

When positions are not specified, client implementations SHOULD skip primitive’s rendering
unless its positions are provided by other means (e.g., by an extension). This applies to both indexed
and non-indexed geometry.

When tangents are not specified, client implementations SHOULD calculate tangents using default
MikkTSpace algorithms with the specified vertex positions, normals, and texture coordinates
associated with the normal texture.

When normals are not specified, client implementations MUST calculate flat normals and the
provided tangents (if present) MUST be ignored.

Vertices of the same triangle SHOULD have the same tangent.w value. When vertices of the same
triangle have different tangent.w values, its tangent space is considered undefined.

The bitangent vectors MUST be computed by taking the cross product of the normal and tangent
XYZ vectors and multiplying it against the W component of the tangent: bitangent =
cross(normal.xyz, tangent.xyz) * tangent.w.

Extensions MAY add additional attribute names, accessor types, and/or component types.

3.7.2.2. Morph Targets

Morph targets are defined by extending the Mesh concept.

A morph target is a morphable Mesh where the primitives' attributes are obtained by adding the
original attributes to a weighted sum of the target’s attributes.

For instance, the morph target vertices POSITION for the primitive at index i are computed in this
way:

primitives[i].attributes.POSITION +
weights[0] * primitives[i].targets[0].POSITION +
weights[1] * primitives[i].targets[1].POSITION +
weights[2] * primitives[i].targets[2].POSITION + ...

32

Morph targets are specified via the targets property defined in the Mesh primitives. Each target in
the targets array is a plain JSON object mapping a primitive attribute to an accessor containing
morph target displacement data (deltas).

For each morph target attribute, an original attribute MUST be present in the mesh primitive.

Attributes present in the base mesh primitive but not included in a given morph target MUST
retain their original values for the morph target.

Implementation Note

This allows skipping zero-filled accessors and implies that different morph targets
may contain different sets of attributes.

Client implementations SHOULD support at least three attributes—POSITION, NORMAL, and
TANGENT — for morphing. Client implementations MAY optionally support morphed TEXCOORD_n
and/or COLOR_n attributes.

If morph targets contain application-specific semantics, their names MUST be prefixed with an
underscore (e.g., _TEMPERATURE) like the associated attribute semantics.

All primitives MUST have the same number of morph targets in the same order.

Accessor type and component type for each morphed attribute semantic property MUST follow the
table below. Note that the W component for handedness is omitted when targeting TANGENT data
since handedness cannot be displaced.

Name Accessor Type(s) Component Type(s) Description
POSITION VEC3 float XYZ vertex position
displacements
NORMAL VEC3 float XYZ vertex normal
displacements
TANGENT VEC3 float XYZ vertex tangent
displacements
TEXCOORD_n VEC2 float ST texture coordinate
signed byte normalized displacements
signed short
normalized
unsigned byte
normalized
unsigned short
normalized

33

Name Accessor Type(s) Component Type(s) Description

COLOR_n VEC3 float RGB or RGBA color
VEC4 signed byte normalized deltas

signed short

normalized

unsigned byte

normalized

unsigned short

normalized

POSITION accessor MUST have its min and max properties defined.

Displacements for POSITION, NORMAL, and TANGENT attributes MUST be applied before any
transformation matrices affecting the mesh vertices such as skinning or node transforms.

When the base mesh primitive does not specify tangents, client implementations SHOULD calculate
tangents for each morph target using default MikkTSpace algorithms with the updated vertex
positions, normals, and texture coordinates associated with the normal texture.

When the base mesh primitive does not specify normals, client implementations MUST calculate
flat normals for each morph target; the provided tangents and their displacements (if present)
MUST be ignored.

When COLOR_n deltas use an accessor of "VEC3" type, their alpha components MUST be assumed to
have a value of 0.0.

After applying color deltas, all components of each COLOR_0 morphed accessor element MUST be
clamped to [0.0, 1.0] range.

All morph target accessors MUST have the same count as the accessors of the original primitive.

A mesh with morph targets MAY also define an optional mesh.weights property that stores the
default targets' weights. These weights MUST be used when node.weights is undefined. When
mesh.weights is undefined, the default targets' weights are zeros.

The following example extends the Mesh defined in the previous example to a morphable one by
adding two morph targets:

34

"primitives": [

{

"attributes": {
"NORMAL": 23,
"POSITION": 22,
"TANGENT": 24,
"TEXCOORD_0": 25

Jrs

"indices": 21,

"material": 3,

"targets": [

{
"NORMAL": 33,
"POSITION": 32,
"TANGENT": 34

Iy,

{
"NORMAL": 43,
"POSITION": 42,
"TANGENT": 44

}

]
}

1,
"weights": [0, 0.5]

The number of morph targets is not limited. Client implementations SHOULD support at least eight
morphed attributes. This means that they SHOULD support eight morph targets when each morph
target has one attribute, four morph targets where each morph target has two attributes, or two
morph targets where each morph target has three or four attributes.

For assets that contain a higher number of morphed attributes, client implementations MAY choose
to only use the eight attributes of the morph targets with the highest weights.

Implementation Note

A significant number of authoring and client implementations associate names

o with morph targets. While the gITF 2.0 specification currently does not provide a
way to specify names, most tools use an array of strings, mesh.extras.targetNames,
for this purpose. The targetNames array and all primitive targets arrays must have
the same length.

3.7.3. SKkins

3.7.3.1. Overview

gITF 2.0 meshes support Linear Blend Skinning via skin objects, joint hierarchies, and designated

35

vertex attributes.

Skins are stored in the skins array of the asset. Each skin is defined by a REQUIRED joints property
that lists the indices of nodes used as joints to pose the skin and an OPTIONAL inverseBindMatrices
property that points to an accessor with inverse bind matrices data used to bring coordinates being
skinned into the same space as each joint.

The order of joints is defined by the skin.joints array and it MUST match the order of
inverseBindMatrices accessor elements (when the latter is present). The skeleton property (if
present) points to the node that is the common root of a joints hierarchy or to a direct or indirect
parent node of the common root.

Implementation Note

o Although the skeleton property is not needed for computing skinning transforms,
it may be used to provide a specific “pivot point” for the skinned geometry.

An accessor referenced by inverseBindMatrices MUST have floating-point components of "MAT4"
type. The number of elements of the accessor referenced by inverseBindMatrices MUST greater than
or equal to the number of joints elements. The fourth row of each matrix MUST be set to [0.0,
0.0, 0.0, 1.0].

Implementation Note

o The matrix defining how to pose the skin’s geometry for use with the joints (also
known as “Bind Shape Matrix”) should be premultiplied to mesh data or to Inverse
Bind Matrices.

3.7.3.2. Joint Hierarchy

The joint hierarchy used for controlling skinned mesh pose is simply the node hierarchy, with each
node designated as a joint by a reference from the skin.joints array. Each skin’s joints MUST have
a common parent node (direct or indirect) called common root, which may or may not be a joint
node itself. When a skin is referenced by a node within a scene, the common root MUST belong to
the same scene.

Implementation Note

o A node object does not specify whether it is a joint. Client implementations may
need to traverse the skins array first, marking each joint node.

A joint node MAY have other nodes attached to it, even a complete node sub graph with meshes.

Implementation Note

It’s common to have an entire geometry attached to a joint node without having it

o being skinned (e.g., a sword attached to a hand). Note that the node transform is
the local transform of the node relative to the joint, like any other node in the gITF
node hierarchy as described in the Transformations section.

Only the joint transforms are applied to the skinned mesh; the transform of the skinned mesh node

36

MUST be ignored.

In the example below, the translation of node_0 and the scale of node_1 are applied while the
translation of node_3 and rotation of node_4 are ignored.

{
"nodes": [
{
"name": "node 0",
"children": [1],
"translation": [0.0, 1.0, 0.0]
iy
{
"name": "node_1",
"children": [2],
"scale": [0.5, 0.5, 0.5]
iy
{
"name": "node_2"
I
{
"name": "node_3",
"children": [4 1],
"translation": [1.0, 0.0, 0.0]
H
{
"name": "node_4",
"mesh": 0,
"rotation": [0.0, 1.0, 0.0, 0.0],
"skin": 0
}
1
"skins": [
{
"inverseBindMatrices": 0,
"joints": [1, 2],
"skeleton": 1
}
]
}

3.7.3.3. Skinned Mesh Attributes

The skinned mesh MUST have vertex attributes that are used in skinning calculations. The JOINTS_n
attribute data contains the indices of the joints from the corresponding skin.joints array that affect
the vertex. The WEIGHTS_n attribute data defines the weights indicating how strongly the joint
influences the vertex.

To apply skinning, a transformation matrix is computed for each joint. Then, the per-vertex
transformation matrices are computed as weighted linear sums of the joint transformation

37

matrices. Note that per-joint inverse bind matrices (when present) MUST be applied before the base
node transformes.

In the following example, a mesh primitive defines JOINTS_0 and WEIGHTS_0 vertex attributes:

"meshes": [

{

"name": "skinned-mesh_1",
"primitives": [
{
"attributes": {
"JOINTS_@": 179,
"NORMAL": 165,
"POSITION": 163,
"TEXCOORD_0": 167,
"WEIGHTS_0@": 176
}

"indices": 161,
"material": 1,
"mode": 4

The number of joints that influence one vertex is limited to 4 per set, so the referenced accessors
MUST have VEC4 type and following component types:
* JOINTS_n: unsigned byte or unsigned short

* WEIGHTS_n: float, or normalized unsigned byte, or normalized unsigned short
The joint weights for each vertex MUST NOT be negative.
Joints MUST NOT contain more than one non-zero weight for a given vertex.

When the weights are stored using float component type, their linear sum SHOULD be as close as
reasonably possible to 1.0 for a given vertex.

When the weights are stored using normalized unsigned byte, or normalized unsigned short
component types, their linear sum before normalization MUST be 255 or 65535 respectively.
Without these requirements, vertices would be deformed significantly because the weight error
would get multiplied by the joint position. For example, an error of 1/255 in the weight sum would
result in an unacceptably large difference in the joint position.

Implementation Note

The threshold in the official validation tool is set to 2e-7 times the number of non-
zero weights per vertex.

38

Implementation Note

o Since the allowed threshold is much lower than minimum possible step for
quantized component types, weight sum should be renormalized after
quantization.

When any of the vertices are influenced by more than four joints, the additional joint and weight
information are stored in subsequent sets. For example, JOINTS_1 and WEIGHTS_1 if present will
reference the accessor for up to 4 additional joints that influence the vertices. For a given primitive,
the number of JOINTS_n attribute sets MUST be equal to the number of WEIGHTS _n attribute sets.

Client implementations MAY support only a single set of up to four weights and joints, however not
supporting all weight and joint sets present in the file may have an impact on the asset’s animation.

All joint values MUST be within the range of joints in the skin. Unused joint values (i.e., joints with a
weight of zero) SHOULD be set to zero.

3.7.4. Instantiation

A mesh is instantiated by node.mesh property. The same mesh could be used by many nodes, which
could have different transforms. For example:

{
"nodes": [
{
"mesh": 11
I
{
"mesh": 11,
"translation": [
-20,
S
0
]
}
]
}

After applying the node’s global transform, mesh vertex position values are meters.

When a mesh primitive uses any triangle-based topology (i.e., triangles, triangle strip, or triangle
fan), the determinant of the node’s global transform defines the winding order of that primitive. If
the determinant is a positive value, the winding order triangle faces is counterclockwise; in the
opposite case, the winding order is clockwise.

Implementation Note

o Switching the winding order to clockwise enables mirroring geometry via negative
scale transforms.

39

When an instantiated mesh has morph targets, it MUST use morph weights specified with the
node.weights property. When the latter is undefined, mesh.weights property MUST be used instead.
When both of these fields are undefined, the mesh is instantiated in a non-morphed state (i.e., with
all morph weights set to zeros).

The example below instantiates a Morph Target with non-default weights.

{
"nodes": [
{
"mesh": 11,
"weights": [0, 0.5]
}
]
}

A skin is instantiated within a node using a combination of the node’s mesh and skin properties. The
mesh for a skin instance is defined in the mesh property. The skin property contains the index of the
skin to instance.

The following example shows a skinned mesh instance: a skin object, a node with a skinned mesh,
and two joint nodes.

40

"skins": [
{
"inverseBindMatrices": 29,
"joints": [1, 2]

}
.
"nodes": [
{
"name":"Skinned mesh node",
"mesh": 0,
"skin": 0
I
{
“name":"Skeleton root joint",
"children": [2],
"rotation": [
0,
0,
0.7071067811865475,
0.7071067811865476
Il
"translation": [
4.61599,
-2.032e-06,
-5.08e-08
]
H
{
"name": "Head",
"translation": [
8.76635,
0,
0
]
}
]

3.8. Texture Data

3.8.1. Overview

gITF 2.0 separates texture access into three distinct types of objects: Textures, Images, and
Samplers.

41

3.8.2. Textures

Textures are stored in the asset’s textures array. A texture is defined by an image index, denoted by
the source property and a sampler index (sampler). For example:

{
"textures": [
{
"sampler": 0,
"source": 2
}
]
+

gITF 2.0 supports only static 2D textures.

When texture.source is undefined, the image SHOULD be provided by an extension or application-
specific means, otherwise the texture object is undefined.

Implementation Note

Client implementations may render such textures with a predefined placeholder
image or being filled with some error color (usually magenta).

When texture.sampler is undefined, a sampler with repeat wrapping (in both directions) and auto
filtering MUST be used.

3.8.3. Images
Images referred to by textures are stored in the images array of the asset.
Each image contains one of

* a URI (or IRI) to an external file in one of the supported image formats, or
e a Data URI with embedded data, or

» areference to a bufferView; in that case mimeType MUST be defined.

The following example shows an image pointing to an external PNG image file and another image
referencing a bufferView with JPEG data.

42

"images": [
{
"uri"
H
{

: "duckCM.png"

"bufferView": 14,
"mimeType": "image/jpeq"

Client implementations MAY need to manually determine the media type of some images. In such a
case, the following table SHOULD be used to check the values of the first few bytes.

Media Type

image/png

image/jpeg

Pattern Length Pattern Bytes

8

0x89 0x50 Ox4E 0x47 0x0D Ox0A
Ox1A Ox0A

OxFF 0xD8 OxFF

The image data MUST match the image.mimeType property when the latter is defined.

The origin of the texture coordinates (0, 0) corresponds to the upper left corner of a texture image.
This is illustrated in the following figure, where the respective coordinates are shown for all four
corners of a normalized texture space:

(0,0)

0.1)

v

S

>

(1, 0)

1, 1)

Figure 6. Normalized Texture Coordinates

Any colorspace information (such as ICC profiles, intents, gamma values, etc.) from PNG or JPEG
images MUST be ignored. Effective transfer function (encoding) is defined by a gITF object that
refers to the image (in most cases it’s a texture that is used by a material).

43

Web Implementation Note

To ignore embedded colorspace information when using WebGL API, set
o UNPACK_COLORSPACE_CONVERSION_WEBGL flag to NONE.

To ignore embedded colorspace information when using ImageBitmap API, set
colorSpaceConversion option to none.

3.8.4. Samplers

3.8.4.1. Overview

Samplers are stored in the samplers array of the asset. Each sampler specifies filtering and
wrapping modes.

The sampler properties use integer enums defined in the Properties Reference.

Client implementations SHOULD follow specified filtering modes. When the latter are undefined,
client implementations MAY set their own default texture filtering settings.

Client implementations MUST follow specified wrapping modes.

3.8.4.2. Filtering

Filtering modes control texture’s magnification and minification.
Magnification modes include:
* Nearest. For each requested texel coordinate, the sampler selects a texel with the nearest
coordinates. This process is sometimes called “nearest neighbor”.
* Linear. For each requested texel coordinate, the sampler computes a weighted sum of several
adjacent texels. This process is sometimes called “bilinear interpolation”.

Minification modes include:

* Nearest. For each requested texel coordinate, the sampler selects a texel with the nearest (in
Manhattan distance) coordinates from the original image. This process is sometimes called
“nearest neighbor”.

* Linear. For each requested texel coordinate, the sampler computes a weighted sum of several
adjacent texels from the original image. This process is sometimes called “bilinear
interpolation”.

* Nearest-mipmap-nearest. For each requested texel coordinate, the sampler first selects one of
pre-minified versions of the original image, and then selects a texel with the nearest (in
Manhattan distance) coordinates from it.

* Linear-mipmap-nearest. For each requested texel coordinate, the sampler first selects one of pre-
minified versions of the original image, and then computes a weighted sum of several adjacent
texels from it.

* Nearest-mipmap-linear. For each requested texel coordinate, the sampler first selects two pre-

44

minified versions of the original image, selects a texel with the nearest (in Manhattan distance)
coordinates from each of them, and performs final linear interpolation between these two
intermediate results.

* Linear-mipmap-linear. For each requested texel coordinate, the sampler first selects two pre-
minified versions of the original image, computes a weighted sum of several adjacent texels
from each of them, and performs final linear interpolation between these two intermediate
results. This process is sometimes called “trilinear interpolation”.

To properly support mipmap modes, client implementations SHOULD generate mipmaps at
runtime. When runtime mipmap generation is not possible, client implementations SHOULD
override the minification filtering mode as follows:

Mipmap minification mode Fallback mode

Nearest-mipmap-nearest Nearest
Nearest-mipmap-linear

Linear-mipmap-nearest Linear
Linear-mipmap-linear

3.8.4.3. Wrapping

Per-vertex texture coordinates, which are provided via TEXCOORD_n attribute values, are normalized
for the image size (not to confuse with the normalized accessor property, the latter refers only to
data encoding). That is, the texture coordinate value of (0.0, 0.0) points to the beginning of the
first (upper-left) image pixel, while the texture coordinate value of (1.0, 1.0) points to the end of
the last (lower-right) image pixel.

Sampler’s wrapping modes define how to handle texture coordinates that are negative or greater
than or equal to 1.0, independently for both directions. Supported modes include:

* Repeat. Only the fractional part of texture coordinates is used.

o Example
2.2 mapsto0.2; -0.4 maps to 0.6.

* Mirrored Repeat. This mode works as repeat but flips the direction when the integer part
(truncated towards -) is odd.

o Example
2.2 mapsto0.2; -0.4is treated as 0.4.

* Clamp to edge. Texture coordinates with values outside the image are clamped to the closest
existing image texel at the edge.

3.8.4.4. Example

The following example defines a sampler with linear magnification filtering, linear-mipmap-linear
minification filtering, and repeat wrapping in both directions.

45

"samplers": [

{
"magFilter": 9729,
"minFilter": 9987,
"wrapS": 10497,
"wrapT": 10497

}

3.8.4.5. Non-power-of-two Textures

Client implementations SHOULD resize non-power-of-two textures (so that their horizontal and
vertical sizes are powers of two) when running on platforms that have limited support for such
texture dimensions.

Implementation Note

Specifically, if the sampler the texture references:

o * has a wrapping mode (either wrapS or wrapT) equal to repeat or mirrored repeat,
or

* has a minification filter (minFilter) that uses mipmapping.

3.9. Materials

3.9.1. Overview

gITF defines materials using a common set of parameters that are based on widely used material
representations from Physically Based Rendering (PBR). Specifically, glTF uses the metallic-
roughness material model. Using this declarative representation of materials enables a gITF file to
be rendered consistently across platforms.

46

Base Color Metal Rough

Bottle Cap Side
Bottle

 Sleeve Side

Emissive Occlusion Normal

Figure 7. Physically Based Rendering Example

3.9.2. Metallic-Roughness Material

All parameters related to the metallic-roughness material model are defined under the
pbrMetallicRoughness property of material object. The following example shows how to define a
gold-like material using the metallic-roughness parameters:

{
"materials": [
{
“name": "gold",
"pbrMetallicRoughness": {
"baseColorFactor": [1.000, 0.766, 0.336, 1.0],
"metallicFactor": 1.0,
"roughnessFactor": 0.0
}
}
]
}

The metallic-roughness material model is defined by the following properties:

» base color - The base color of the material.

» metalness - The metalness of the material; values range from 0.0 (non-metal) to 1.0 (metal); see
Appendix B for the interpretation of intermediate values.

* roughness - The roughness of the material; values range from 0.0 (smooth) to 1.0 (rough).

The base color has two different interpretations depending on the value of metalness. When the

47

material is a metal, the base color is the specific measured reflectance value at normal incidence
(FO). For a non-metal the base color represents the reflected diffuse color of the material. In this
model it is not possible to specify a FO value for non-metals, and a linear value of 4% (0.04) is used.

The value for each property MAY be defined using factors and/or textures (e.g., baseColorTexture
and baseColorFactor). If a texture is not given, all respective texture components within this
material model MUST be assumed to have a value of 1.0. If both factors and textures are present,
the factor value acts as a linear multiplier for the corresponding texture values. A texture binding is
defined by an index of a texture object and an optional index of texture coordinates.

The following example shows a material that uses a texture for its base color property.

{
"materials": [
{
"pbrMetallicRoughness": {
"baseColorTexture": {
"index": 0,
"texCoord": 1
Iy
}
}
1,
"textures": [
{
"source": 0
}
1,
"images": [
{
"uri": "base_color.png"
}
]
}

The base color texture MUST contain 8-bit values encoded with the sRGB opto-electronic transfer
function so RGB values MUST be decoded to real linear values before they are used for any
computations. To achieve correct filtering, the transfer function SHOULD be decoded before
performing linear interpolation.

The textures for metalness and roughness properties are packed together in a single texture called
metallicRoughnessTexture. Its green channel contains roughness values and its blue channel
contains metalness values. This texture MUST be encoded with linear transfer function and MAY
use more than 8 bits per channel.

For example, assume an 8-bit RGBA value of [64, 124, 231, 255] is sampled from baseColorTexture
and assume that baseColorFactor is given as [0.2, 1.0, 0.7, 1.0]. Then, the final base color value
would be (after decoding the transfer function and multiplying by the factor)

48

[0.051 * 0.2, 0.202 * 1.0, ©.799 * 0.7, 1.0 * 1.0] = [0.0102, 0.202, 0.5593, 1.0]

In addition to the material properties, if a primitive specifies a vertex color using the attribute
semantic property COLOR_0, then this value acts as an additional linear multiplier to base color.

Implementations of the bidirectional reflectance distribution function (BRDF) itself MAY vary
based on device performance and resource constraints. See Appendix B for more details on the
BRDF calculations.

3.9.3. Additional Textures

The material definition also provides for additional textures that MAY also be used with the
metallic-roughness material model as well as other material models, which could be provided via
glTF extensions.

The following additional textures are supported:

* normal : A tangent space normal texture. The texture encodes XYZ components of a normal
vector in tangent space as RGB values stored with linear transfer function. Normal textures
SHOULD NOT contain alpha channel as it not used anyway. After dequantization, texel values
MUST be mapped as follows: red [0.0 .. 1.0] to X [-1 .. 1], green [0.0 .. 1.0] to Y [-1 .. 1], blue (0.5 ..
1.0] maps to Z (0 .. 1]. Normal textures SHOULD NOT contain blue values less than or equal to
0.5.

o Implementation Note
This mapping is usually implemented as sampledValue * 2.0 - 1.0.

The texture binding for normal textures MAY additionally contain a scalar scale value that
linearly scales X and Y components of the normal vector.

Normal vectors MUST be normalized before being used in lighting equations. When scaling is
used, vector normalization happens after scaling.

* occlusion : The occlusion texture; it indicates areas that receive less indirect lighting from
ambient sources. Direct lighting is not affected. The red channel of the texture encodes the
occlusion value, where 0.0 means fully-occluded area (no indirect lighting) and 1.0 means not
occluded area (full indirect lighting). Other texture channels (if present) do not affect occlusion.

The texture binding for occlusion maps MAY optionally contain a scalar strength value that is
used to reduce the occlusion effect. When present, it affects the occlusion value as 1.0 +
strength * (occlusionTexture - 1.0).

* emissive : The emissive texture and factor control the color and intensity of the light being
emitted by the material. The texture MUST contain 8-bit values encoded with the sRGB opto-
electronic transfer function so RGB values MUST be decoded to real linear values before they
are used for any computations. To achieve correct filtering, the transfer function SHOULD be
decoded before performing linear interpolation.

49

For implementations where a physical light unit is needed, the units for the multiplicative
product of the emissive texture and factor are candela per square meter (cd / m?), sometimes

called nits.

Implementation Note

Because the value is specified per square meter, it indicates the brightness of
any given point along the surface. However, the exact conversion from
physical light units to the brightness of rendered pixels requires knowledge of

o the camera’s exposure settings, which are left as an implementation detail
unless otherwise defined by a gITF extension.

Many rendering engines simplify this calculation by assuming that an emissive
factor of 1.0 results in a fully exposed pixel.

The following example shows a material that is defined using pbrMetallicRoughness parameters as
well as additional textures:

"materials": [

{

"name": "Material@",
"pbrMetallicRoughness": {
"baseColorFactor": [0.5, 0.5, 0.5, 1.0 1],
"baseColorTexture": {
"index": 1,
"texCoord": 1
b
"metallicFactor": 1,
"roughnessFactor": 1,
"metallicRoughnessTexture": {
"index": 2,
"texCoord": 1

}I

"normalTexture": {
"scale": 2,
"index": 3,
"texCoord": 1

}

"emissiveFactor": [0.2, 0.1, 0.0]

If a client implementation is resource-bound and cannot support all the textures defined it
SHOULD support these additional textures in the following priority order. Resource-bound
implementations SHOULD drop textures from the bottom to the top.

50

Texture Rendering impact when feature is not supported

Normal Geometry will appear less detailed than authored.
Occlusion Model will appear brighter in areas that are intended to be darker.
Emissive Model with lights will not be lit. For example, the headlights of a car model

will be off instead of on.

3.9.4. Alpha Coverage

The alphaMode property defines how the alpha value is interpreted. The alpha value is taken from
the fourth component of the base color for metallic-roughness material model.

alphaMode can be one of the following values:

» OPAQUE - The rendered output is fully opaque and any alpha value is ignored.

* MASK - The rendered output is either fully opaque or fully transparent depending on the alpha
value and the specified alpha cutoff value; the exact appearance of the edges MAY be subject to
implementation-specific techniques such as “Alpha-to-Coverage”.

o Note
This mode is used to simulate geometry such as tree leaves or wire fences.

* BLEND - The rendered output is combined with the background using the “over” operator as
described in Compositing digital images.

o Note
This mode is used to simulate geometry such as gauze cloth or animal fur.

When alphaMode is set to MASK the alphaCutoff property specifies the cutoff threshold. If the alpha
value is greater than or equal to the alphaCutoff value then it is rendered as fully opaque,
otherwise, it is rendered as fully transparent. alphaCutoff value is ignored for other modes.

31

Implementation Note for Real-Time Rasterizers

Real-time rasterizers typically use depth buffers and mesh sorting to support alpha
modes. The following describe the expected behavior for these types of renderers.

* OPAQUE - A depth value is written for every pixel and mesh sorting is not
required for correct output.

* MASK - A depth value is not written for a pixel that is discarded after the alpha
o test. A depth value is written for all other pixels. Mesh sorting is not required
for correct output.

» BLEND - Support for this mode varies. There is no perfect and fast solution that
works for all cases. Client implementations should try to achieve the correct
blending output for as many situations as possible. Whether depth value is
written or whether to sort is up to the implementation. For example,
implementations may discard pixels that have zero or close to zero alpha value
to avoid sorting issues.

3.9.5. Double Sided

The doubleSided property specifies whether the material is double sided.
When this value is false, back-face culling is enabled, i.e., only front-facing triangles are rendered.

When this value is true, back-face culling is disabled and double sided lighting is enabled. The back-
face MUST have its normals reversed before the lighting equation is evaluated.

3.9.6. Default Material

The default material, used when a mesh does not specify a material, is defined to be a material with
no properties specified. All the default values of material apply.

Implementation Note

This material does not emit light and will be black unless some lighting is present
in the scene.

3.9.7. Point and Line Materials

This specification does not define size or style of non-triangular primitives (such as points or lines),
and applications MAY use various techniques to render these primitives as appropriate. However,
the following conventions are RECOMMENDED for consistency:

* Points and Lines SHOULD have widths of 1px in viewport space.

 Points or Lines with NORMAL and TANGENT attributes SHOULD be rendered with standard lighting
including normal textures.

* Points or Lines with NORMAL but without TANGENT attributes SHOULD be rendered with standard
lighting but ignoring any normal textures on the material.

* Points or Lines with no NORMAL attribute SHOULD be rendered without lighting and instead use

32

the sum of the base color value (as defined above, multiplied by COLOR_0 when present) and the
emissive value.

3.10. Cameras

3.10.1. Overview

Cameras are stored in the asset’s cameras array. Each camera defines a type property that designates
the type of projection (perspective or orthographic), and either a perspective or orthographic
property that defines the details. A camera is instantiated within a node using the node.camera

property.

A camera object defines the projection matrix that transforms scene coordinates from the view
space to the clip space.

A node containing the camera instance defines the view matrix that transforms scene coordinates
from the global space to the view space.

3.10.2. View Matrix

The camera is defined such that the local +X axis is to the right, the “lens” looks towards the local -Z
axis, and the top of the camera is aligned with the local +Y axis.

The view matrix is derived from the global transform of the node containing the camera with the
scaling ignored. If the node’s global transform is identity, the location of the camera is at the origin.

3.10.3. Projection Matrices
3.10.3.1. Overview
The projection can be perspective or orthographic.

There are two subtypes of perspective projections: finite and infinite. When the zfar property is
undefined, the camera defines an infinite projection. Otherwise, the camera defines a finite
projection.

The following example defines two perspective cameras with supplied values for Y field of view,
aspect ratio, and clipping information.

33

"cameras": [
{
"name": "Finite perspective camera",
"type": "perspective",
"perspective": {
"aspectRatio": 1.5,
"yfov": 0.660593,
"zfar": 100,
"znear": 0.01

}
e
{
"name": "Infinite perspective camera",
"type": "perspective",
"perspective”: {
"aspectRatio": 1.5,
"yfov": 0.660593,
“znear": 0.01
}
}

Client implementations SHOULD use the following projection matrices.

3.10.3.2. Infinite perspective projection

Let

*a be the aspect ratio (width over height) of the field of view,
camera.perspective.aspectRatio, or the aspect ratio of the viewport;

* y be the vertical field of view in radians, set by camera.perspective.yfov;

* n be the distance to the near clipping plane, set by camera.perspective.znear.

Then, the projection matrix is defined as follows.

1
0 0 0
a x tan(0.5 x y)
1
0 —_ 0
tan(0.5 x y)
0 0 -1 —2n
0 0 -1 0

set

by

When the provided camera’s aspect ratio does not match the aspect ratio of the viewport, client
implementations SHOULD NOT crop or perform non-uniform scaling (“stretching”) to fill the

viewport.

54

3.10.3.3. Finite perspective projection

Let

*a be the aspect ratio (width over height) of the field of view, set by
camera.perspective.aspectRatio, or the aspect ratio of the viewport;

* y be the vertical field of view in radians, set by camera.perspective.yfov;

f be the distance to the far clipping plane, set by camera.perspective.zfar;

* n be the distance to the near clipping plane, set by camera.perspective.znear.

Then, the projection matrix is defined as follows.

1
_— 0 0 0
a x tan(0.5 x y)
1
0 _ 0 0
tan(0.5 x y)
0 f+n 2fn
n—f n-f
I 0 -1 0 |

When the provided camera’s aspect ratio does not match the aspect ratio of the viewport, client
implementations SHOULD NOT crop or perform non-uniform scaling (“stretching”) to fill the
viewport.

3.10.3.4. Orthographic projection

Let

r be half the orthographic width, set by camera.orthographic.xmag;

t be half the orthographic height, set by camera.orthographic.ymag;

f be the distance to the far clipping plane, set by camera.orthographic.zfar;

n be the distance to the near clipping plane, set by camera.orthographic.znear.

Then, the projection matrix is defined as follows.

1
- 0 0 0
r
1
0 - 0 0
t
0 0 2 f+n
n—f n-f
L0 O 0 1

When r / t does not match the aspect ratio of the viewport, client implementations SHOULD NOT
crop or perform non-uniform scaling (“stretching”) to fill the viewport.

3.11. Animations

gITF supports articulated and skinned animation via key frame animations of nodes' transforms.
Key frame data is stored in buffers and referenced in animations using accessors.

55

gITF 2.0 also supports animation of instantiated morph targets in a similar fashion.

Note

o gITF 2.0 only supports animating node transforms and morph target weights.
Extensions or a future version of the specification may support animating
arbitrary properties, such as material colors and texture transformation matrices.

Note

gITF 2.0 defines only storage of animation keyframes, so this specification doesn’t
define any runtime behavior, such as: order of playing, auto-start, loops, mapping

o of timelines, etc. When loading a gITF 2.0 asset, client implementations may select
an animation entry and pause it on the first frame, play it automatically, or ignore
all animations until further user requests. When a playing animation is stopped,
client implementations may reset the scene to the initial state or freeze it at the
current frame.

Implementation Note

gITF 2.0 does not specifically define how an animation will be used when imported

o but, as a best practice, it is recommended that each animation is self-contained as
an action. For example, “Walk” and “Run” animations might each contain multiple
channels targeting a model’s various bones. The client implementation may choose
when to play any of the available animations.

All animations are stored in the animations array of the asset. An animation is defined as a set of
channels (the channels property) and a set of samplers that specify accessors with key frame data
and interpolation method (the samplers property).

The following examples show the expected usage of animations.

"animations": [
{
"name": "Animate all properties of one node with different samplers",
"channels": [

{
"sampler": 0,
"target": {
"node": 1,
"path": "rotation"
}
+
{
"sampler": 1,
"target": {
"node": 1,
"path": "scale"
}
+

36

"sampler": 2,

"target": {
"node": 1,
"path": "translation"
}
}
Il
"samplers": [
{
“input": 4,
"interpolation": "LINEAR",
"output": 5
}
{
“input": 4,
"interpolation": "LINEAR",
"output": 6
H
{
“input": 4,
"interpolation": "LINEAR",
"output": 7
}
]
}
{

"name": "Animate two nodes with different samplers",
"channels": [

{
"sampler": 0,
"target": {
"node": 0,
"path": "rotation"
}
+
{
"sampler": 1,
"target": {
"node": 1,
"path": "rotation"
}
}
Il
"samplers": [
{
"input": 0,
"interpolation": "LINEAR",
"output": 1
}
{

57

"input": 2,
"interpolation": "LINEAR",

"output": 3
}
]
b
{
"name": "Animate two nodes with the same sampler",
"channels": [
{
"sampler": 0,
"target": {
"node": 0,
"path": "rotation"
}
Iy
{
"sampler": 0,
"target": {
"node": 1,
"path": "rotation"
}
}
Il
"samplers": [
{
“input": 0,
"interpolation": "LINEAR",
"output": 1
}
]
b
{

“name": "Animate a node rotation channel and the weights of a Morph Target

it instantiates",
"channels": [

{
"sampler": 0,
"target": {
"node": 1,
"path": "rotation"
}
H
{
"sampler": 1,
"target": {
"node": 1,
"path": "weights"
}
}

38

"samplers": [

{
"input": 4,
"interpolation": "LINEAR",
"output": 5

Iy

{
“input": 4,
"interpolation": "LINEAR",
"output": 6

}

Channels connect the output values of the key frame animation to a specific node in the hierarchy.
A channel’s sampler property contains the index of one of the samplers present in the containing
animation’s samplers array. The target property is an object that identifies which node to animate
using its node property, and which property of the node to animate using path. Non-animated
properties MUST keep their values during animation.

When node isn’t defined, channel SHOULD be ignored. Valid path names are "translation",

m.n

"rotation”, "scale", and "weights".
Nodes that do not contain a mesh with morph targets MUST NOT be targeted with "weights" path.

Within one animation, each target (a combination of a node and a path) MUST NOT be used more
than once.

Implementation Note

This prevents potential ambiguities when one target is affected by two or more
overlapping samplers.

Each of the animation’s samplers defines the input/output pair: a set of floating-point scalar values
representing linear time in seconds; and a set of vectors or scalars representing the animated
property. All values are stored in a buffer and accessed via accessors; refer to the table below for
output accessor types. Interpolation between keys is performed using the interpolation method
specified in the interpolation property. Supported interpolation values include LINEAR, STEP, and
CUBICSPLINE. See Appendix C for additional information about interpolation modes.

The inputs of each sampler are relative to t = 0, defined as the beginning of the parent animations
entry. Before and after the provided input range, output MUST be clamped to the nearest end of the
input range.

39

Implementation Note

o For example, if the earliest sampler input for an animation is t = 10, a client
implementation must begin playback of that animation channel at t = 0 with
output clamped to the first available output value.

Samplers within a given animation MAY have different inputs.

channel.path Accessor Component Type(s) Description
Type
"translation" "VEC3" float XYZ translation vector
"rotation" "VEC4" float XYZW rotation quaternion
signed byte normalized

unsigned byte normalized
signed short normalized
unsigned short normalized

"scale" "VEC3" float XYZ scale vector
"weights" "SCALAR" float Weights of morph targets
signed byte normalized

unsigned byte normalized
signed short normalized
unsigned short normalized

Implementations MUST use following equations to decode real floating-point value f from a
normalized integer ¢ and vise-versa:

accessor.componentType int-to-float float-to-int

signed byte f = max(c / 127.0, -1.0) ¢ = round(f * 127.0)
unsigned byte f=c/ 255.0 ¢ = round(f * 255.0)
signed short f = max(c / 32767.0, -1.0) c = round(f * 32767.0)
unsigned short f =c / 65535.0 ¢ = round(f * 65535.0)

Animation sampler’s input accessor MUST have its min and max properties defined.

Implementation Note

Animations with non-linear time inputs, such as time warps in Autodesk 3ds Max

o or Maya, are not directly representable with gIlTF animations. gITF is a runtime
format and non-linear time inputs are expensive to compute at runtime. Exporter
implementations should sample a non-linear time animation into linear inputs
and outputs for an accurate representation.

A morph target animation frame is defined by a sequence of scalars of length equal to the number
of targets in the animated morph target. These scalar sequences MUST lie end-to-end as a single
stream in the output accessor, whose final size is equal to the number of morph targets times the
number of animation frames.

60

Morph target animation is by nature sparse, consider using Sparse Accessors for storage of morph
target animation. When used with CUBICSPLINE interpolation, tangents (a,, b,) and values (v;) are
grouped within keyframes:

A4,a9,...85,V1,V,...V,01,0,,...0,
See Appendix C for additional information about interpolation modes.

Skinned animation is achieved by animating the joints in the skin’s joint hierarchy.

3.12. Specifying Extensions

gITF defines an extension mechanism that allows the base format to be extended with new
capabilities. Any gITF object MAY have an optional extensions property, as in the following
example:

"material": [
{
"extensions": {
"KHR_materials_sheen": {
"sheenColorFactor": [
1.0,
0.329,
0.1
1,

"sheenRoughnessFactor": 0.8

All extensions used in a gITF asset MUST be listed in the top-level extensionsUsed array object, e.g.,

{

"extensionsUsed": [
"KHR_materials_sheen",
"VENDOR_physics"

]

}

All gITF extensions required to load and/or render an asset MUST be listed in the top-level
extensionsRequired array, e.g.,

61

"extensionsRequired": [
"KHR_texture transform"

1,
"extensionsUsed": [
"KHR_texture_transform"

extensionsRequired is a subset of extensionsUsed. All values in extensionsRequired MUST also exist in
extensionsUsed.

62

Chapter 4. GLB File Format Specification

4.1. General (Informative)

gITF provides two delivery options that can be used together:

» gITF JSON points to external binary data (geometry, key frames, skins), and images.

» gITF JSON embeds base64-encoded binary data, and images inline using data URIs.

Hence, loading gITF files usually requires either separate requests to fetch all binary data, or extra
space due to base64-encoding. Base64-encoding requires extra processing to decode and increases
the file size (by ~33% for encoded resources). While transport-layer gzip mitigates the file size
increase, decompression and decoding still add significant loading time.

To avoid this file size and processing overhead, a container format, Binary gITF is introduced that
enables a gITF asset, including JSON, buffers, and images, to be stored in a single binary blob.

A Binary gITF asset can still refer to external resources. For example, an application that wants to
keep images as separate files may embed everything needed for a scene, except images, in a Binary
gITF.

4.2. Structure

A Binary gITF (which can be a file, for example) has the following structure:

* A 12-byte preamble, called the header.

* One or more chunks that contain JSON content and binary data.

The chunk containing JSON MAY refer to external resources as usual, and MAY also reference
resources stored within other chunks.

4.3. File Extension & Media Type
The file extension to be used with Binary gITF is .glb.

The registered media type is model/gltf-binary.

4.4. Binary gITF Layout

4.4.1. Overview

Binary gITF is little endian. The figure below shows an example of a Binary gITF asset.

63

12-byte header Chunk 0 (JSON) Chunk 1 (Binary Buffer)

magi ¢ version I ength chunkLengt h| chunkType | chunkData [chunkLength| chunkType | chunkData
(uint32) (uint32) (uint 32) (uint32) (uint32) (ubyte[]) (uint32) (uint32) (ubyte[])

_____ ti-/-..___ buf f er s[0]
T .
{ External
A data y

~~~~~~~~~

Figure 8. Binary glTF Layout

The following sections describe the structure more in detail.

4.4.2. Header
The 12-byte header consists of three 4-byte entries:
uint32 magic

uint32 version
uint32 length

* magic MUST be equal to equal 0x46546(67. It is ASCII string g1TF and can be used to identify data
as Binary gITF.

* version indicates the version of the Binary gITF container format. This specification defines
version 2.

Client implementations that load GLB format MUST also check for the asset version properties
in the JSON chunk, as the version specified in the GLB header only refers to the GLB container
version.

» length is the total length of the Binary gITF, including header and all chunks, in bytes.

4.4.3. Chunks

4.4.3.1. Overview
Each chunk has the following structure:
uint32 chunkLength

uint32 chunkType
ubyte[] chunkData

 chunkLength is the length of chunkData, in bytes.
* chunkType indicates the type of chunk. See Table 1 for details.
 chunkData is the binary payload of the chunk.

The start and the end of each chunk MUST be aligned to a 4-byte boundary. See chunks definitions
for padding schemes. Chunks MUST appear in exactly the order given in Table 1.

64



Table 1. Chunk types

Chunk Type ASCII Description Occurrences
1. 0x4E4F534A JSON Structured JSON 1
content
2. 0x004E4942 BIN Binary buffer Oor1

Client implementations MUST ignore chunks with unknown types to enable gITF extensions to
reference additional chunks with new types following the first two chunks.

4.4.3.2. Structured JSON Content

This chunk holds the gITF JSON, as it would be provided within a .gltf file.

ECMAScript Implementation Note

o In a JavaScript implementation, the TextDecoder API can be used to extract the gITF
content from the ArrayBuffer, and then the JSON can be parsed with JSON.parse as
usual.

This chunk MUST be the very first chunk of a Binary gITF asset. By reading this chunk first, an
implementation is able to progressively retrieve resources from subsequent chunks. This way, it is
also possible to read only a selected subset of resources from a Binary gITF asset.

This chunk MUST be padded with trailing Space chars (0x20) to satisfy alignment requirements.

4.4.3.3. Binary buffer

This chunk contains the binary payload for geometry, animation key frames, skins, and images. See
GLB-stored Buffer for details on referencing this chunk from JSON.

This chunk MUST be the second chunk of the Binary gITF asset.
This chunk MUST be padded with trailing zeros (0x00) to satisfy alignment requirements.

When the binary buffer is empty or when it is stored by other means, this chunk SHOULD be
omitted.

65



Chapter 5. Properties Reference

5.1. Accessor

A typed view into a buffer view that contains raw binary data.

Table 2. Accessor Properties

bufferView

byteOffset

componentType

normalized

count

type

max

min

sparse

name

66

Type

integer

integer

integer

boolean

integer

string

number [1-16]

number [1-16]

accessor.sparse

string

Description Required
The index of the No
bufferView.

The offset relative to No, default: 0
the start of the buffer
view in bytes.

The datatype of the Vv Yes
accessor’s components.

Specifies whether No, default: false
integer data values are

normalized before

usage.

The number of v Yes
elements referenced by
this accessor.

Specifies if the Vv Yes
accessor’s elements are
scalars, vectors, or

matrices.

Maximum value of No
each component in this
accessor.

Minimum value of each No
component in this
accessor.

Sparse storage of No
elements that deviate

from their initialization
value.

The user-defined name No
of this object.



Type Description Required

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: accessor.schema.json

5.1.1. accessor.bufferView

The index of the buffer view. When undefined, the accessor MUST be initialized with zeros; sparse
property or extensions MAY override zeros with actual values.

* Type: integer
* Required: No

e Minimum: >= 0

5.1.2. accessor.byteOffset

The offset relative to the start of the buffer view in bytes. This MUST be a multiple of the size of the
component datatype. This property MUST NOT be defined when bufferView is undefined.

» Type: integer
* Required: No, default: 0

e Minimum: >= 0

Related WebGL functions: vertexAttribPointer() offset parameter

5.1.3. accessor.componentType

The datatype of the accessor’s components. UNSIGNED_INT type MUST NOT be used for any
accessor that is not referenced by mesh.primitive.indices.

» Type: integer

* Required: v Yes

* Allowed values:
> 5120 BYTE
> 5121 UNSIGNED_BYTE
o 5122 SHORT

o

5123 UNSIGNED_SHORT

o

5125 UNSIGNED_INT

67



o 5126 FLOAT

* Related WebGL functions: type parameter of vertexAttribPointer(). The corresponding typed
arrays are Int8Array, Uint8Array, Int16Array, Uint16Array, Uint32Array, and Float32Array.

5.1.4. accessor.normalized

Specifies whether integer data values are normalized (true) to [0, 1] (for unsigned types) or to [-1, 1]
(for signed types) when they are accessed. This property MUST NOT be set to true for accessors
with FLOAT or UNSIGNED_INT component type.

* Type: boolean

* Required: No, default: false

* Related WebGL functions: normalized parameter of vertexAttribPointer()

5.1.5. accessor.count

The number of elements referenced by this accessor, not to be confused with the number of bytes
or number of components.

* Type: integer
* Required: v Yes

e Minimum: >= 1

5.1.6. accessor.type

Specifies if the accessor’s elements are scalars, vectors, or matrices.

» Type: string
* Required: v Yes
* Allowed values:
o "SCALAR"
o "VEC2"
o "VEC3"
o "VEC4"
o "MAT2"
o "MAT3"
o "MAT4"

5.1.7. accessor.max

Maximum value of each component in this accessor. Array elements MUST be treated as having the
same data type as accessor’s componentType. Both min and max arrays have the same length. The
length is determined by the value of the type property; it can be 1, 2, 3, 4, 9, or 16.

68



normalized property has no effect on array values: they always correspond to the actual values
stored in the buffer. When the accessor is sparse, this property MUST contain maximum values of
accessor data with sparse substitution applied.

» Type: number [1-16]
* Required: No
5.1.8. accessor.min

Minimum value of each component in this accessor. Array elements MUST be treated as having the
same data type as accessor’s componentType. Both min and max arrays have the same length. The
length is determined by the value of the type property; it can be 1, 2, 3, 4, 9, or 16.

normalized property has no effect on array values: they always correspond to the actual values
stored in the buffer. When the accessor is sparse, this property MUST contain minimum values of
accessor data with sparse substitution applied.

» Type: number [1-16]

* Required: No

5.1.9. accessor.sparse
Sparse storage of elements that deviate from their initialization value.
» Type: accessor.sparse

* Required: No

5.1.10. accessor.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No

5.1.11. accessor.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

» Type of each property: Extension

5.1.12. accessor.extras

Application-specific data.

* Type: extras

69



* Required: No

5.2. Accessor Sparse

Sparse storage of accessor values that deviate from their initialization value.

Table 3. Accessor Sparse Properties

count

indices

values

extensions

extras

Type

integer

accessor.sparse.indice
S

accessor.sparse. values

extension

extras

Additional properties are allowed.

* JSON schema: accessor.sparse.schema.json

5.2.1. accessor.sparse.count

Description

Number of deviating
accessor values stored
in the sparse array.

An object pointing to a
buffer view containing
the indices of deviating
accessor values. The
number of indices is
equal to count. Indices
MUST strictly increase.

An object pointing to a
buffer view containing
the deviating accessor

values.

JSON object with
extension-specific
objects.

Application-specific
data.

Number of deviating accessor values stored in the sparse array.

* Type: integer
* Required: v Yes

e Minimum: >= 1

5.2.2. accessor.sparse.indices

An object pointing to a buffer view containing the indices of deviating accessor values. The number

of indices is equal to count. Indices MUST strictly increase.

70

Required
v Yes

v Yes

v Yes

No

No



» Type: accessor.sparse.indices

* Required: v Yes

5.2.3. accessor.sparse.values
An object pointing to a buffer view containing the deviating accessor values.

» Type: accessor.sparse.values

* Required: v Yes

5.2.4. accessor.sparse.extensions

JSON object with extension-specific objects.

* Type: extension
* Required: No

* Type of each property: Extension

5.2.5. accessor.sparse.extras

Application-specific data.

* Type: extras
* Required: No

5.3. Accessor Sparse Indices

An object pointing to a buffer view containing the indices of deviating accessor values. The number
of indices is equal to accessor.sparse.count. Indices MUST strictly increase.

Table 4. Accessor Sparse Indices Properties

Type Description Required

bufferView integer The index of the buffer + Yes
view with sparse
indices. The referenced
buffer view MUST NOT
have its target or
byteStride properties
defined. The buffer
view and the optional
byteOffset MUST be
aligned to the
componentType byte
length.

71



Type Description Required

byteOffset integer The offset relative to No, default: 0
the start of the buffer
view in bytes.

componentType integer The indices data type. v Yes

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: accessor.sparse.indices.schema.json

5.3.1. accessor.sparse.indices.buffervView

The index of the buffer view with sparse indices. The referenced buffer view MUST NOT have its
target or byteStride properties defined. The buffer view and the optional byteOffset MUST be
aligned to the componentType byte length.

» Type: integer

* Required: v Yes

e Minimum: >= 0

5.3.2. accessor.sparse.indices.byteOffset

The offset relative to the start of the buffer view in bytes.

» Type: integer
* Required: No, default: 0

e Minimum: >= 0

5.3.3. accessor.sparse.indices.componentType

The indices data type.

» Type: integer

* Required: v Yes

* Allowed values:
o 5121 UNSIGNED_BYTE
o 5123 UNSIGNED_SHORT
o 57125 UNSIGNED_INT

72



5.3.4. accessor.sparse.indices.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

» Type of each property: Extension

5.3.5. accessor.sparse.indices.extras

Application-specific data.

* Type: extras
* Required: No

5.4. Accessor Sparse Values

An object pointing to a buffer view containing the deviating accessor values. The number of
elements is equal to accessor.sparse.count times number of components. The elements have the
same component type as the base accessor. The elements are tightly packed. Data MUST be aligned
following the same rules as the base accessor.

Table 5. Accessor Sparse Values Properties
Type Description Required

bufferView integer The index of the Vv Yes
bufferView with sparse
values. The referenced
buffer view MUST NOT
have its target or
byteStride properties
defined.

byteOffset integer The offset relative to No, default: 0
the start of the
bufferView in bytes.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: accessor.sparse.values.schema.json

73



5.4.1. accessor.sparse.values.bufferView

The index of the bufferView with sparse values. The referenced buffer view MUST NOT have its
target or byteStride properties defined.

» Type: integer
* Required: v Yes
* Minimum: >= 0
5.4.2. accessor.sparse.values.byteOffset

The offset relative to the start of the bufferView in bytes.

» Type: integer
* Required: No, default: 0

e Minimum: >= 0

5.4.3. accessor.sparse.values.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

» Type of each property: Extension

5.4.4. accessor.sparse.values.extras

Application-specific data.

* Type: extras
* Required: No

5.5. Animation

A keyframe animation.

Table 6. Animation Properties

74



Type Description Required

channels animation.channel [1-*] An array of animation + Yes
channels. An animation
channel combines an
animation sampler
with a target property
being animated.
Different channels of
the same animation
MUST NOT have the
same targets.

samplers animation.sampler [1-*] An array of animation + Yes
samplers. An animation
sampler combines
timestamps with a
sequence of output
values and defines an
interpolation
algorithm.

name string The user-defined name No
of this object.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: animation.schema.json

5.5.1. animation.channels

An array of animation channels. An animation channel combines an animation sampler with a
target property being animated. Different channels of the same animation MUST NOT have the
same targets.

» Type: animation.channel [1-*]

* Required: v Yes

5.5.2. animation.samplers

An array of animation samplers. An animation sampler combines timestamps with a sequence of
output values and defines an interpolation algorithm.

* Type: animation.sampler [1-*]

75



* Required: v Yes

5.5.3. animation.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No
5.5.4. animation.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

* Type of each property: Extension

5.5.5. animation.extras

Application-specific data.

* Type: extras
* Required: No

5.6. Animation Channel

An animation channel combines an animation sampler with a target property being animated.

Table 7. Animation Channel Properties
Type Description Required

sampler integer The index of a sampler + Yes
in this animation used
to compute the value
for the target.

target animation.channel.targ The descriptor of the  + Yes
et animated property.
extensions extension JSON object with No
extension-specific
objects.
extras extras Application-specific No
data.

Additional properties are allowed.

76



* JSON schema: animation.channel.schema.json

5.6.1. animation.channel.sampler

The index of a sampler in this animation used to compute the value for the target, e.g., a node’s
translation, rotation, or scale (TRS).

» Type: integer
* Required: v Yes
* Minimum: >= 0
5.6.2. animation.channel.target
The descriptor of the animated property.
» Type: animation.channel.target
* Required: v Yes
5.6.3. animation.channel.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

» Type of each property: Extension

5.6.4. animation.channel.extras

Application-specific data.

* Type: extras
* Required: No

5.7. Animation Channel Target

The descriptor of the animated property.

Table 8. Animation Channel Target Properties

77



Type Description Required

node integer The index of the node  No
to animate. When
undefined, the
animated object MAY
be defined by an
extension.

path string The name of the node’s + Yes
TRS property to
animate, or the
"weights" of the Morph
Targets it instantiates.
For the "translation”
property, the values
that are provided by
the sampler are the
translation along the X,
Y, and Z axes. For the
“rotation” property, the
values are a quaternion
in the order (%, y, z, w),
where w is the scalar.
For the "scale"
property, the values are
the scaling factors
along the X, Y, and Z
axes.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: animation.channel.target.schema.json

5.7.1. animation.channel.target.node

The index of the node to animate. When undefined, the animated object MAY be defined by an
extension.

» Type: integer
* Required: No

e Minimum: >= 0

78



5.7.2. animation.channel.target.path

The name of the node’s TRS property to animate, or the "weights" of the Morph Targets it
instantiates. For the "translation" property, the values that are provided by the sampler are the
translation along the X, Y, and Z axes. For the "rotation" property, the values are a quaternion in
the order (%, y, z, w), where w is the scalar. For the "scale" property, the values are the scaling

factors along the X, Y, and Z axes.

» Type: string
* Required: v Yes
* Allowed values:

o "translation"

o "rotation"
o "scale"
o "weights"

5.7.3. animation.channel.target.extensions

JSON object with extension-specific objects.

* Type: extension

* Required: No

» Type of each property: Extension

5.7.4. animation.channel.target.extras

Application-specific data.

* Type: extras
* Required: No

5.8. Animation Sampler

An animation sampler combines timestamps with a sequence of output values and defines an

interpolation algorithm.

Table 9. Animation Sampler Properties

Type

input integer

Description Required

The index of an Vv Yes
accessor containing
keyframe timestamps.

79



Type Description Required

interpolation string Interpolation No, default: "LINEAR"
algorithm.
output integer The index of an Vv Yes

accessor, containing
keyframe output
values.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: animation.sampler.schema.json

5.8.1. animation.sampler.input

The index of an accessor containing keyframe timestamps. The accessor MUST be of scalar type
with floating-point components. The values represent time in seconds with time[0] >= 0.0, and
strictly increasing values, i.e., time[n + 1] > time[n].

» Type: integer
* Required: v Yes

e Minimum: >= 0

5.8.2. animation.sampler.interpolation

Interpolation algorithm.

» Type: string
* Required: No, default: "LINEAR"
* Allowed values:

o "LINEAR" The animated values are linearly interpolated between keyframes. When targeting
a rotation, spherical linear interpolation (slerp) SHOULD be used to interpolate
quaternions. The number of output elements MUST equal the number of input elements.

o "STEP" The animated values remain constant to the output of the first keyframe, until the
next keyframe. The number of output elements MUST equal the number of input elements.

o "CUBICSPLINE" The animation’s interpolation is computed using a cubic spline with specified
tangents. The number of output elements MUST equal three times the number of input
elements. For each input element, the output stores three elements, an in-tangent, a spline
vertex, and an out-tangent. There MUST be at least two keyframes when using this
interpolation.

80



5.8.3. animation.sampler.output

The index of an accessor, containing keyframe output values.

* Type: integer
* Required: v Yes

e Minimum: >= 0

5.8.4. animation.sampler.extensions

JSON object with extension-specific objects.

* Type: extension

* Required: No

» Type of each property: Extension

5.8.5. animation.sampler.extras

Application-specific data.

* Type: extras
* Required: No

5.9. Asset

Metadata about the gITF asset.

Table 10. Asset Properties

Type
copyright string
generator string
version string

Description Required

A copyright message No
suitable for display to
credit the content

creator.

Tool that generated this No
gITF model. Useful for
debugging.

The gITF version in the « Yes
form of <major>.<minor>
that this asset targets.

81



Type Description Required

minVersion string The minimum gITF No
version in the form of
<major>.<minor> that
this asset targets. This
property MUST NOT be
greater than the asset
version.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: asset.schema.json

5.9.1. asset.copyright

A copyright message suitable for display to credit the content creator.

» Type: string
* Required: No

5.9.2. asset.generator

Tool that generated this glTF model. Useful for debugging.

» Type: string
* Required: No

5.9.3. asset.version

The gITF version in the form of <major>.<minor> that this asset targets.

* Type: string
* Required: v Yes
« Pattern: "[0-9]+\.[0-9]+$

5.9.4. asset.minVersion

The minimum gITF version in the form of <major>.<minor> that this asset targets. This property
MUST NOT be greater than the asset version.

» Type: string

82



* Required: No
 Pattern: A[0-9]+\.[0-9]+$

5.9.5. asset.extensions
JSON object with extension-specific objects.

» Type: extension
* Required: No

* Type of each property: Extension

5.9.6. asset.extras

Application-specific data.

* Type: extras
* Required: No

5.10. Buffer

A buffer points to binary geometry, animation, or skins.

Table 11. Buffer Properties

Type Description Required
uri string The URI (or IRI) of the No
buffer.
byteLength integer The length of the buffer + Yes
in bytes.
name string The user-defined name No

of this object.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: buffer.schema.json

5.10.1. buffer.uri

The URI (or IRI) of the buffer. Relative paths are relative to the current gITF asset. Instead of

83



referencing an external file, this field MAY contain a data:-URL

» Type: string
* Required: No
* Format: iri-reference

5.10.2. buffer.byteLength

The length of the buffer in bytes.

* Type: integer

* Required: v Yes

* Minimum: >= 1
5.10.3. buffer.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No
5.10.4. buffer.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No
» Type of each property: Extension

5.10.5. buffer.extras

Application-specific data.

* Type: extras
* Required: No

5.11. Buffer View

A view into a buffer generally representing a subset of the buffer.

Table 12. Buffer View Properties
Type Description Required
buffer integer The index of the buffer. v Yes

84



byteOffset

byteLength

byteStride

target

name

extensions

extras

Type

integer

integer

integer

integer

string

extension

extras

Additional properties are allowed.

* JSON schema: bufferView.schema.json

5.11.1. bufferView.buffer

The index of the buffer.

» Type: integer
* Required: v Yes

e Minimum: >= 0

5.11.2. bufferView.byteOffset

The offset into the buffer in bytes.

* Type: integer

* Required: No, default: 0

e Minimum: >= 0

5.11.3. bufferView.byteLength

The length of the bufferView in bytes.

* Type: integer
* Required: v Yes

Description

The offset into the
buffer in bytes.

The length of the
bufferView in bytes.

The stride, in bytes.

The hint representing
the intended GPU
buffer type to use with
this buffer view.

The user-defined name
of this object.

JSON object with
extension-specific
objects.

Application-specific
data.

Required
No, default: 0

v Yes

No
No

No

No

No

85



e Minimum: >= 1

5.11.4. bufferView.byteStride

The stride, in bytes, between vertex attributes. When this is not defined, data is tightly packed.
When two or more accessors use the same buffer view, this field MUST be defined.

» Type: integer

* Required: No

* Minimum: >= 4

* Maximum: <= 252

* Related WebGL functions: vertexAttribPointer() stride parameter

5.11.5. bufferView.target

The hint representing the intended GPU buffer type to use with this buffer view.

* Type: integer
* Required: No
* Allowed values:
o 34962 ARRAY_BUFFER
o 34963 ELEMENT_ARRAY_BUFFER
* Related WebGL functions: bindBuffer()

5.11.6. bufferView.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No

5.11.7. bufferView.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

» Type of each property: Extension

5.11.8. bufferView.extras

Application-specific data.

* Type: extras

86



* Required: No

5.12. Camera

A camera’s projection. A node MAY reference a camera to apply a transform to place the camera in
the scene.

Table 13. Camera Properties

Type Description Required

orthographic camera.orthographic An orthographic No
camera containing
properties to create an
orthographic projection
matrix. This property
MUST NOT be defined
when perspective is
defined.

perspective camera.perspective A perspective camera  No
containing properties
to create a perspective
projection matrix. This
property MUST NOT be
defined when
orthographic is defined.

type string Specifies if the camera + Yes
uses a perspective or
orthographic
projection.

name string The user-defined name No

of this object.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: camera.schema.json

5.12.1. camera.orthographic

An orthographic camera containing properties to create an orthographic projection matrix. This
property MUST NOT be defined when perspective is defined.

87



* Type: camera.orthographic
* Required: No
5.12.2. camera.perspective

A perspective camera containing properties to create a perspective projection matrix. This property
MUST NOT be defined when orthographic is defined.

» Type: camera.perspective
* Required: No
5.12.3. camera.type

Specifies if the camera uses a perspective or orthographic projection. Based on this, either the
camera’s perspective or orthographic property MUST be defined.

» Type: string
* Required: v Yes
* Allowed values:
o "perspective"
o "orthographic”
5.12.4. camera.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No

5.12.5. camera.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

* Type of each property: Extension

5.12.6. camera.extras

Application-specific data.

* Type: extras
* Required: No

88



5.13. Camera Orthographic

An orthographic camera containing properties to create an orthographic projection matrix.

Table 14. Camera Orthographic Properties

Type Description Required
xmag number The floating-point v Yes
horizontal

magnification of the
view. This value MUST
NOT be equal to zero.
This value SHOULD
NOT be negative.

ymag number The floating-point v Yes
vertical magnification
of the view. This value
MUST NOT be equal to
zero. This value
SHOULD NOT be
negative.

zfar number The floating-point v Yes
distance to the far
clipping plane. This
value MUST NOT be
equal to zero. zfar
MUST be greater than
znear.

znear number The floating-point Vv Yes
distance to the near
clipping plane.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: camera.orthographic.schema.json

5.13.1. camera.orthographic.xmag

The floating-point horizontal magnification of the view. This value MUST NOT be equal to zero.
This value SHOULD NOT be negative.

* Type: number

89



* Required: v Yes

5.13.2. camera.orthographic.ymag

The floating-point vertical magnification of the view. This value MUST NOT be equal to zero. This
value SHOULD NOT be negative.

* Type: number
* Required: v Yes

5.13.3. camera.orthographic.zfar

The floating-point distance to the far clipping plane. This value MUST NOT be equal to zero. zfar
MUST be greater than znear.

» Type: number
* Required: v Yes

e Minimum: > 0

5.13.4. camera.orthographic.znear

The floating-point distance to the near clipping plane.

» Type: number
* Required: v Yes

e Minimum: >= 0

5.13.5. camera.orthographic.extensions
JSON object with extension-specific objects.

* Type: extension

* Required: No

* Type of each property: Extension
5.13.6. camera.orthographic.extras

Application-specific data.

* Type: extras
* Required: No

90



5.14. Camera Perspective

A perspective camera containing properties to create a perspective projection matrix.

Table 15. Camera Perspective Properties

Type Description Required
aspectRatio number The floating-point No
aspect ratio of the field
of view.
yfov number The floating-point v Yes

vertical field of view in
radians. This value
SHOULD be less than 7.

zfar number The floating-point No
distance to the far
clipping plane.

znear number The floating-point v Yes
distance to the near
clipping plane.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: camera.perspective.schema.json

5.14.1. camera.perspective.aspectRatio

The floating-point aspect ratio of the field of view. When undefined, the aspect ratio of the
rendering viewport MUST be used.

» Type: number
* Required: No
* Minimum: > 0
5.14.2. camera.perspective.yfov

The floating-point vertical field of view in radians. This value SHOULD be less than 7.

* Type: number
* Required: v Yes

91



e Minimum: > 0

5.14.3. camera.perspective.zfar

The floating-point distance to the far clipping plane. When defined, zfar MUST be greater than
znear. If zfar is undefined, client implementations SHOULD use infinite projection matrix.

* Type: number
* Required: No

e Minimum: > 0

5.14.4. camera.perspective.znear

The floating-point distance to the near clipping plane.

» Type: number
* Required: v Yes

e Minimum: > 0

5.14.5. camera.perspective.extensions
JSON object with extension-specific objects.

» Type: extension
* Required: No

» Type of each property: Extension

5.14.6. camera.perspective.extras

Application-specific data.

* Type: extras
* Required: No

5.15. Extension

JSON object with extension-specific objects.
Additional properties are allowed.

* JSON schema: extension.schema.json

92



5.16. Extras

Application-specific data.

Although extras MAY have any type, it is common for applications to store and access custom data
as key/value pairs. Therefore, extras SHOULD be a JSON object rather than a primitive value for
best portability.

5.17. glTF

The root object for a gITF asset.

Table 16. g1TF Properties

Type Description Required
extensionsUsed string [1-*] Names of gITF No
extensions used in this
asset.
extensionsRequired  string [1-*] Names of gITF No

extensions required to
properly load this asset.

accessors accessor [1-*] An array of accessors. No

animations animation [1-*] An array of keyframe  No
animations.

asset asset Metadata about the Vv Yes
gITF asset.

buffers buffer [1-*] An array of buffers. No

bufferViews bufferView [1-*] An array of No
bufferViews.

cameras camera [1-*] An array of cameras. No

images image [1-*] An array of images. No

materials material [1-*] An array of materials. No

meshes mesh [1-*] An array of meshes. No

nodes node [1-*] An array of nodes. No

samplers sampler [1-*] An array of samplers. No

scene integer The index of the default No
scene.

scenes scene [1-*] An array of scenes. No

skins skin [1-*] An array of skins. No

textures texture [1-*] An array of textures. No

93



Type Description
extensions extension JSON object with
extension-specific
objects.
extras extras Application-specific
data.

Additional properties are allowed.

* JSON schema: glTF.schema.json

5.17.1. glTF.extensionsUsed

Names of gITF extensions used in this asset.

* Type: string [1-*]
o Each element in the array MUST be unique.

* Required: No

5.17.2. glTF.extensionsRequired

Names of gITF extensions required to properly load this asset.

» Type: string [1-*]
o Each element in the array MUST be unique.

* Required: No

5.17.3. glTF.accessors
An array of accessors. An accessor is a typed view into a bufferView.
» Type: accessor [1-*]

* Required: No

5.17.4. glTF.animations
An array of keyframe animations.
* Type: animation [1-*]

* Required: No

5.17.5. glTF.asset

Metadata about the gITF asset.

* Type: asset

94

Required
No

No



* Required: v Yes

5.17.6. gITF.buffers

An array of buffers. A buffer points to binary geometry, animation, or skins.
» Type: buffer [1-*]

* Required: No

5.17.7. gITE.bufferViews

An array of bufferViews. A bufferView is a view into a buffer generally representing a subset of the
buffer.

» Type: bufferView [1-*]

* Required: No

5.17.8. glTF.cameras

An array of cameras. A camera defines a projection matrix.
» Type: camera [1-*]

* Required: No

5.17.9. glTF.images
An array of images. An image defines data used to create a texture.
* Type: image [1-*]
* Required: No
5.17.10. glTF.materials
An array of materials. A material defines the appearance of a primitive.
» Type: material [1-*]
* Required: No
5.17.11. gITF.meshes

An array of meshes. A mesh is a set of primitives to be rendered.

» Type: mesh [1-*]
* Required: No

95



5.17.12. glTF.nodes

An array of nodes.
* Type: node [1-*]

* Required: No

5.17.13. glTF.samplers

An array of samplers. A sampler contains properties for texture filtering and wrapping modes.
» Type: sampler [1-*]

* Required: No

5.17.14. gITF.scene

The index of the default scene. This property MUST NOT be defined, when scenes is undefined.

» Type: integer
* Required: No

e Minimum: >= 0

5.17.15. gITF.scenes

An array of scenes.
» Type: scene [1-*]

* Required: No

5.17.16. gITF.skins

An array of skins. A skin is defined by joints and matrices.
» Type: skin [1-*]

* Required: No

5.17.17. gITF.textures
An array of textures.
» Type: texture [1-*]

* Required: No

5.17.18. gITF.extensions
JSON object with extension-specific objects.

* Type: extension

96



* Required: No

» Type of each property: Extension

5.17.19. gITF.extras

Application-specific data.

* Type: extras
* Required: No

5.18. Image

Image data used to create a texture. Image MAY be referenced by an URI (or IRI) or a buffer view
index.

Table 17. Image Properties

Type Description Required
uri string The URI (or IR]) of the  No
image.
mimeType string The image’s media No

type. This field MUST
be defined when
bufferView is defined.

bufferView integer The index of the No
bufferView that
contains the image.
This field MUST NOT
be defined when uri is
defined.

name string The user-defined name No
of this object.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: image.schema.json

97



5.18.1. image.uri

The URI (or IRI) of the image. Relative paths are relative to the current gITF asset. Instead of
referencing an external file, this field MAY contain a data:-URI. This field MUST NOT be defined
when bufferView is defined.

» Type: string
* Required: No
e Format: iri-reference
5.18.2. image.mimeType
The image’s media type. This field MUST be defined when bufferView is defined.
» Type: string
* Required: No
¢ Allowed values:
o "image/jpeg"
> "image/png"
5.18.3. image.bufferView

The index of the bufferView that contains the image. This field MUST NOT be defined when uri is
defined.

» Type: integer

* Required: No

* Minimum: >= 0
5.18.4. image.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No

5.18.5. image.extensions

JSON object with extension-specific objects.

» Type: extension
* Required: No

* Type of each property: Extension

98



5.18.6. image.extras

Application-specific data.

* Type: extras
* Required: No

5.19. Material

The material appearance of a primitive.

Table 18. Material Properties

name

extensions

extras

pbrMetallicRoughness

normalTexture

occlusionTexture

emissiveTexture

emissiveFactor

alphaMode

Type

string

extension

extras

material.pbrMetallicRo

ughness

material.normalTexture
Info

material.occlusionText
ureInfo

texturelnfo

number [3]

string

Description

The user-defined name

of this object.

JSON object with
extension-specific
objects.

Application-specific
data.

A set of parameter
values that are used to
define the metallic-
roughness material
model from Physically
Based Rendering (PBR)
methodology. When
undefined, all the
default values of
pbrMetallicRoughness
MUST apply.

The tangent space
normal texture.

The occlusion texture.

The emissive texture.

The factors for the
emissive color of the
material.

The alpha rendering
mode of the material.

Required
No

No

No

No

No

No

No
No, default: [0,0,0]

No, default: "OPAQUE"

99



Type Description Required

alphaCutoff number The alpha cutoff value No, default: 0.5
of the material.

doubleSided boolean Specifies whether the  No, default: false
material is double
sided.

Additional properties are allowed.

* JSON schema: material.schema.json

5.19.1. material.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No
5.19.2. material.extensions
JSON object with extension-specific objects.
* Type: extension
* Required: No
» Type of each property: Extension
5.19.3. material.extras
Application-specific data.
* Type: extras
* Required: No
5.19.4. material.pbrMetallicRoughness

A set of parameter values that are used to define the metallic-roughness material model from
Physically Based Rendering (PBR) methodology. When undefined, all the default values of
pbrMetallicRoughness MUST apply.

» Type: material.pbrMetallicRoughness

* Required: No

5.19.5. material.normalTexture

The tangent space normal texture. The texture encodes RGB components with linear transfer
function. Each texel represents the XYZ components of a normal vector in tangent space. The

100



normal vectors use the convention +X is right and +Y is up. +Z points toward the viewer. If a fourth
component (A) is present, it MUST be ignored. When undefined, the material does not have a
tangent space normal texture.

* Type: material.normalTexturelnfo

* Required: No

5.19.6. material.occlusionTexture

The occlusion texture. The occlusion values are linearly sampled from the R channel. Higher values
indicate areas that receive full indirect lighting and lower values indicate no indirect lighting. If
other channels are present (GBA), they MUST be ignored for occlusion calculations. When
undefined, the material does not have an occlusion texture.

» Type: material.occlusionTextureInfo

* Required: No

5.19.7. material.emissiveTexture

The emissive texture. It controls the color and intensity of the light being emitted by the material.
This texture contains RGB components encoded with the sRGB transfer function. If a fourth
component (A) is present, it MUST be ignored. When undefined, the texture MUST be sampled as
having 1.0 in RGB components.

* Type: texturelnfo
* Required: No

5.19.8. material.emissiveFactor

The factors for the emissive color of the material. This value defines linear multipliers for the
sampled texels of the emissive texture.

» Type: number [3]
- Each element in the array MUST be greater than or equal to @ and less than or equal to 1.

* Required: No, default: [0,0,0]

5.19.9. material.alphaMode

The material’s alpha rendering mode enumeration specifying the interpretation of the alpha value
of the base color.
» Type: string
* Required: No, default: "OPAQUE"
* Allowed values:
o "OPAQUE" The alpha value is ignored, and the rendered output is fully opaque.

o "MASK" The rendered output is either fully opaque or fully transparent depending on the

101



alpha value and the specified alphaCutoff value; the exact appearance of the edges MAY be
subject to implementation-specific techniques such as “Alpha-to-Coverage”.

o "BLEND" The alpha value is used to composite the source and destination areas. The rendered
output is combined with the background using the normal painting operation (i.e. the Porter
and Duff over operator).

5.19.10. material.alphaCutoff

Specifies the cutoff threshold when in MASK alpha mode. If the alpha value is greater than or equal
to this value then it is rendered as fully opaque, otherwise, it is rendered as fully transparent. A
value greater than 1.0 will render the entire material as fully transparent. This value MUST be
ignored for other alpha modes. When alphalode is not defined, this value MUST NOT be defined.

» Type: number
* Required: No, default: 0.5

e Minimum: >= 0
5.19.11. material.doubleSided

Specifies whether the material is double sided. When this value is false, back-face culling is
enabled. When this value is true, back-face culling is disabled and double-sided lighting is enabled.
The back-face MUST have its normals reversed before the lighting equation is evaluated.

* Type: boolean
* Required: No, default: false

5.20. Material Normal Texture Info

Reference to a texture.

Table 19. Material Normal Texture Info Properties

Type Description Required
index integer The index of the Vv Yes
texture.
texCoord integer The set index of No, default: 0
texture’s TEXCOORD

attribute used for
texture coordinate

mapping.
scale number The scalar parameter  No, default: 1
applied to each normal

vector of the normal
texture.

102



Type Description Required

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: material.normalTextureInfo.schema.json

5.20.1. material.normalTexturelnfo.index

The index of the texture.

* Type: integer
* Required: v Yes

e Minimum: >= 0

5.20.2. material.normalTexturelnfo.texCoord

This integer value is used to construct a string in the format TEXCOORD_<set index> which is a
reference to a key in mesh.primitives.attributes (e.g. a value of 0 corresponds to TEXCOORD_0). A
mesh primitive MUST have the corresponding texture coordinate attributes for the material to be
applicable to it.

* Type: integer
* Required: No, default: 0
e Minimum: >= 0
5.20.3. material.normalTexturelnfo.scale

The scalar parameter applied to each normal vector of the texture. This value scales the normal
vector in X and Y directions using the formula: scaledNormal = normalize<sampled normal texture
value> * 2.0 - 1.0) * vec3(<normal scale>, <normal scale>, 1.0.

* Type: number
* Required: No, default: 1

5.20.4. material.normalTextureInfo.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

» Type of each property: Extension

103



5.20.5. material.normalTextureInfo.extras

Application-specific data.

* Type: extras
* Required: No

5.21. Material Occlusion Texture Info

Reference to a texture.

Table 20. Material Occlusion Texture Info Properties

Type Description Required
index integer The index of the Vv Yes
texture.
texCoord integer The set index of No, default: 0
texture’s TEXCOORD

attribute used for
texture coordinate
mapping.

strength number A scalar multiplier No, default: 1
controlling the amount
of occlusion applied.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: material.occlusionTextureInfo.schema.json

5.21.1. material.occlusionTexturelnfo.index

The index of the texture.

» Type: integer
* Required: v Yes

e Minimum: >= 0

5.21.2. material.occlusionTexturelnfo.texCoord

This integer value is used to construct a string in the format TEXCOORD_<set index> which is a

104



reference to a key in mesh.primitives.attributes (e.g. a value of @ corresponds to TEXCOORD_0). A
mesh primitive MUST have the corresponding texture coordinate attributes for the material to be
applicable to it.

* Type: integer

* Required: No, default: 0

e Minimum: >= 0

5.21.3. material.occlusionTextureInfo.strength

A scalar parameter controlling the amount of occlusion applied. A value of 0.0 means no occlusion.
A value of 1.0 means full occlusion. This value affects the final occlusion value as: 1.0 + strength *
(<sampled occlusion texture value> - 1.0).

» Type: number
* Required: No, default: 1

e Minimum: >= 0
e Maximum: <= 1
5.21.4. material.occlusionTexturelnfo.extensions

JSON object with extension-specific objects.

* Type: extension
* Required: No
* Type of each property: Extension
5.21.5. material.occlusionTextureIlnfo.extras

Application-specific data.

* Type: extras
* Required: No

5.22. Material PBR Metallic Roughness

A set of parameter values that are used to define the metallic-roughness material model from
Physically-Based Rendering (PBR) methodology.

Table 21. Material PBR Metallic Roughness Properties
Type Description Required

baseColorFactor number [4] The factors for the base No, default: [1,1,1,1]
color of the material.

105



Type Description Required

baseColorTexture textureInfo The base color texture. No
metallicFactor number The factor for the No, default: 1
metalness of the
material.
roughnessFactor number The factor for the No, default: 1
roughness of the
material.
metallicRoughnessTe texturelnfo The metallic-roughness No
xture texture.
extensions extension JSON object with No
extension-specific
objects.
extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: material.pbrMetallicRoughness.schema.json

5.22.1. material.pbrMetallicRoughness.baseColorFactor

The factors for the base color of the material. This value defines linear multipliers for the sampled
texels of the base color texture.

» Type: number [4]
o Each element in the array MUST be greater than or equal to 0 and less than or equal to 1.

* Required: No, default: [1,1,1,1]

5.22.2. material.pbrMetallicRoughness.baseColorTexture

The base color texture. The first three components (RGB) MUST be encoded with the SRGB transfer
function. They specify the base color of the material. If the fourth component (A) is present, it
represents the linear alpha coverage of the material. Otherwise, the alpha coverage is equal to 1.0.
The material.alphaMode property specifies how alpha is interpreted. The stored texels MUST NOT be
premultiplied. When undefined, the texture MUST be sampled as having 1.0 in all components.

* Type: texturelnfo
* Required: No

5.22.3. material.pbrMetallicRoughness.metallicFactor

The factor for the metalness of the material. This value defines a linear multiplier for the sampled
metalness values of the metallic-roughness texture.

106



* Type: number
* Required: No, default: 1

e Minimum: >= 0

e Maximum: <= 1

5.22.4. material.pbrMetallicRoughness.roughnessFactor

The factor for the roughness of the material. This value defines a linear multiplier for the sampled
roughness values of the metallic-roughness texture.

» Type: number
* Required: No, default: 1

* Minimum: >= 0
* Maximum: <= 1
5.22.5. material.pbrMetallicRoughness.metallicRoughnessTexture

The metallic-roughness texture. The metalness values are sampled from the B channel. The
roughness values are sampled from the G channel. These values MUST be encoded with a linear
transfer function. If other channels are present (R or A), they MUST be ignored for metallic-
roughness calculations. When undefined, the texture MUST be sampled as having 1.0 in G and B
components.

* Type: texturelnfo

* Required: No

5.22.6. material.pbrMetallicRoughness.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

* Type of each property: Extension

5.22.7. material.pbrMetallicRoughness.extras

Application-specific data.

* Type: extras
* Required: No

107



5.23. Mesh

A set of primitives to be rendered. Its global transform is defined by a node that references it.

Table 22. Mesh Properties

Type Description Required

primitives mesh.primitive [1-*] An array of primitives, + Yes
each defining geometry
to be rendered.

weights number [1-*] Array of weights to be No
applied to the morph
targets. The number of
array elements MUST
match the number of
morph targets.

name string The user-defined name No
of this object.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: mesh.schema.json

5.23.1. mesh.primitives

An array of primitives, each defining geometry to be rendered.
» Type: mesh.primitive [1-*]
* Required: v Yes

5.23.2. mesh.weights

Array of weights to be applied to the morph targets. The number of array elements MUST match the
number of morph targets.

» Type: number [1-*]

* Required: No

5.23.3. mesh.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

108



* Type: string
* Required: No

5.23.4. mesh.extensions
JSON object with extension-specific objects.

» Type: extension
* Required: No

* Type of each property: Extension

5.23.5. mesh.extras

Application-specific data.

* Type: extras
* Required: No

5.24. Mesh Primitive

Geometry to be rendered with the given material.
Related WebGL functions: drawElements() and drawArrays()

Table 23. Mesh Primitive Properties
Type Description Required

attributes object A plain JSON object, v Yes
where each key
corresponds to a mesh
attribute semantic and
each value is the index
of the accessor
containing attribute’s
data.

indices integer The index of the No
accessor that contains
the vertex indices.

material integer The index of the No
material to apply to this
primitive when
rendering.

mode integer The topology type of No, default: 4
primitives to render.

109



Type Description Required

targets object [1-*] An array of morph No
targets.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: mesh.primitive.schema.json

5.24.1. mesh.primitive.attributes

A plain JSON object, where each key corresponds to a mesh attribute semantic and each value is the
index of the accessor containing attribute’s data.

» Type: object

* Required: v Yes

» Type of each property: integer
5.24.2. mesh.primitive.indices

The index of the accessor that contains the vertex indices. When this is undefined, the primitive
defines non-indexed geometry. When defined, the accessor MUST have SCALAR type and an
unsigned integer component type.

» Type: integer

* Required: No

* Minimum: >= 0

* Related WebGL functions: drawElements() when defined and drawArrays() otherwise.

5.24.3. mesh.primitive.material

The index of the material to apply to this primitive when rendering.

» Type: integer
* Required: No

e Minimum: >= 0

5.24.4. mesh.primitive.mode

The topology type of primitives to render.

110



* Type: integer
* Required: No, default: 4
* Allowed values:

o 0 POINTS

o 1 LINES

- 2 LINE_LOOP

o

3 LINE_STRIP

o

4 TRIANGLES
o 5 TRIANGLE_STRIP

)

6 TRIANGLE_FAN

5.24.5. mesh.primitive.targets
An array of morph targets.
* Type: object [1-*]
* Required: No
5.24.6. mesh.primitive.extensions
JSON object with extension-specific objects.

» Type: extension
* Required: No

* Type of each property: Extension

5.24.7. mesh.primitive.extras

Application-specific data.

* Type: extras
* Required: No

5.25. Node

A node in the node hierarchy. When the node contains skin, all mesh.primitives MUST contain
JOINTS_@ and WEIGHTS_@ attributes. A node MAY have either a matrix or any combination of
translation/rotation/scale (TRS) properties. TRS properties are converted to matrices and
postmultiplied in the T * R * S order to compose the transformation matrix; first the scale is
applied to the vertices, then the rotation, and then the translation. If none are provided, the
transform is the identityy, When a node is targeted for animation (referenced by an
animation.channel.target), matrix MUST NOT be present.

111



Table 24. Node Properties

Type Description Required

camera integer The index of the No
camera referenced by
this node.

children integer [1-*] The indices of this No
node’s children.

skin integer The index of the skin ~ No
referenced by this
node.

matrix number [16] A floating-point 4x4 No, default:
transformation matrix [1.,9,0,0,0,1,0,0,0,0,1
stored in column-major /0,0,0,0,1]
order.

mesh integer The index of the mesh No
in this node.

rotation number [4] The node’s unit No, default: [0,0,0,1]
quaternion rotation in
the order (%, V, z, w),
where w is the scalar.

scale number [3] The node’s non- No, default: [1,1,1]
uniform scale, given as
the scaling factors
along the x,y, and z
axes.

translation number [3] The node’s translation No, default: [0,0,0]
along the X, y, and z
axes.

weights number [1-*] The weights of the No
instantiated morph
target. The number of
array elements MUST
match the number of
morph targets of the
referenced mesh. When
defined, mesh MUST
also be defined.

name string The user-defined name No
of this object.

extensions extension JSON object with No
extension-specific
objects.

112



Type Description Required

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: node.schema.json

5.25.1. node.camera

The index of the camera referenced by this node.
* Type: integer
* Required: No
* Minimum: >= 0

5.25.2. node.children

The indices of this node’s children.

* Type: integer [1-*]
o Each element in the array MUST be unique.
o Each element in the array MUST be greater than or equal to 0.

* Required: No

5.25.3. node.skin

The index of the skin referenced by this node. When a skin is referenced by a node within a scene,
all joints used by the skin MUST belong to the same scene. When defined, mesh MUST also be
defined.

» Type: integer

* Required: No

¢ Minimum: >= 0
5.25.4. node.matrix

A floating-point 4x4 transformation matrix stored in column-major order.

» Type: number [16]
* Required: No, default: [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]

» Related WebGL functions: uniformMatrix4fv() with the transpose parameter equal to false

113



5.25.5. node.mesh

The index of the mesh in this node.

* Type: integer

* Required: No

e Minimum: >= 0
5.25.6. node.rotation

The node’s unit quaternion rotation in the order (%, y, z, w), where w is the scalar.

* Type: number [4]
- Each element in the array MUST be greater than or equal to -1 and less than or equal to 1.

* Required: No, default: [0,0,0,1]

5.25.7. node.scale

The node’s non-uniform scale, given as the scaling factors along the X, y, and z axes.
» Type: number [3]
* Required: No, default: [1,1,1]

5.25.8. node.translation

The node’s translation along the x, y, and z axes.
» Type: number [3]
* Required: No, default: [0,0,0]

5.25.9. node.weights

The weights of the instantiated morph target. The number of array elements MUST match the
number of morph targets of the referenced mesh. When defined, mesh MUST also be defined.

* Type: number [1-*]

* Required: No

5.25.10. node.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

* Type: string
* Required: No

114



5.25.11. node.extensions

JSON object with extension-specific objects.

* Type: extension

* Required: No

» Type of each property: Extension

5.25.12. node.extras

Application-specific data.

* Type: extras
* Required: No

5.26. Sampler

Texture sampler properties for filtering and wrapping modes.

Table 25. Sampler Properties

Type
magFilter integer
minFilter integer
wrapS$S integer
wrapT integer
name string
extensions extension
extras extras

Additional properties are allowed.

* JSON schema: sampler.schema.json

5.26.1. sampler.magFilter

Magnification filter.

* Type: integer
* Required: No

Description
Magnification filter.
Minification filter.

S (U) wrapping mode.
T (V) wrapping mode.

The user-defined name
of this object.

JSON object with
extension-specific
objects.

Application-specific
data.

Required

No

No

No, default: 10497
No, default: 10497
No

No

No

115



* Allowed values:
> 9728 NEAREST
o 9729 LINEAR
* Related WebGL functions: samplerParameteri() with pname equal to TEXTURE_MAG_FILTER

5.26.2. sampler.minFilter

Minification filter.

* Type: integer
* Required: No
* Allowed values:
> 9728 NEAREST
> 9729 LINEAR
o 9984 NEAREST _MIPMAP_NEAREST
> 9985 LINEAR_MIPMAP_NEAREST

o

9986 NEAREST MIPMAP_LINEAR
o 9987 LINEAR_MIPMAP LINEAR
* Related WebGL functions: samplerParameteri() with pname equal to TEXTURE_MIN_FILTER

5.26.3. sampler.wrap$S

S (U) wrapping mode. All valid values correspond to WebGL enums.

* Type: integer
* Required: No, default: 10497
* Allowed values:
> 33071 CLAMP_TO_EDGE
o 33648 MIRRORED_REPEAT
o 10497 REPEAT
* Related WebGL functions: samplerParameteri() with pname equal to TEXTURE_WRAP_S

5.26.4. sampler.wrapT

T (V) wrapping mode.
* Type: integer
* Required: No, default: 10497

¢ Allowed values:

> 33071 CLAMP_TO_EDGE

116



> 33648 MIRRORED_REPEAT
> 10497 REPEAT
* Related WebGL functions: samplerParameteri() with pname equal to TEXTURE_WRAP_T
5.26.5. sampler.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No
5.26.6. sampler.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

» Type of each property: Extension

5.26.7. sampler.extras

Application-specific data.

* Type: extras
* Required: No

5.27. Scene

The root nodes of a scene.

Table 26. Scene Properties

Type Description Required
nodes integer [1-*] The indices of each root No
node.
name string The user-defined name No

of this object.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

117



Additional properties are allowed.

* JSON schema: scene.schema.json

5.27.1. scene.nodes

The indices of each root node.

» Type: integer [1-*]
o Each element in the array MUST be unique.
o Each element in the array MUST be greater than or equal to 0.
* Required: No
5.27.2. scene.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No

5.27.3. scene.extensions

JSON object with extension-specific objects.

* Type: extension
* Required: No

» Type of each property: Extension

5.27.4. scene.extras

Application-specific data.

* Type: extras
* Required: No

5.28. Skin

Joints and matrices defining a skin.

Table 27. Skin Properties

118



Type Description Required

inverseBindMatrices integer The index of the No
accessor containing the
floating-point 4x4
inverse-bind matrices.

skeleton integer The index of the node No
used as a skeleton root.

joints integer [1-*] Indices of skeleton v Yes
nodes, used as joints in
this skin.

name string The user-defined name No

of this object.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: skin.schema.json

5.28.1. skin.inverseBindMatrices

The index of the accessor containing the floating-point 4x4 inverse-bind matrices. Its accessor.count
property MUST be greater than or equal to the number of elements of the joints array. When
undefined, each matrix is a 4x4 identity matrix.

* Type: integer
* Required: No
* Minimum: >= 0

5.28.2. skin.skeleton

The index of the node used as a skeleton root. The node MUST be the closest common root of the
joints hierarchy or a direct or indirect parent node of the closest common root.

* Type: integer
* Required: No

e Minimum: >= 0

5.28.3. skin.joints

Indices of skeleton nodes, used as joints in this skin.

119



» Type: integer [1-*]
o Each element in the array MUST be unique.
o Each element in the array MUST be greater than or equal to 0.

* Required: v Yes

5.28.4. skin.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string
* Required: No
5.28.5. skin.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No
» Type of each property: Extension

5.28.6. skin.extras

Application-specific data.

* Type: extras
* Required: No

5.29. Texture

A texture and its sampler.

Related WebGL functions: createTexture(), deleteTexture(), bindTexture(), texImage2D(), and
texParameterf()

Table 28. Texture Properties

Type Description Required
sampler integer The index of the No
sampler used by this

texture. When
undefined, a sampler
with repeat wrapping
and auto filtering
SHOULD be used.

120



Type Description Required

source integer The index of the image No
used by this texture.
When undefined, an
extension or other
mechanism SHOULD
supply an alternate
texture source,
otherwise behavior is
undefined.

name string The user-defined name No
of this object.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: texture.schema.json

5.29.1. texture.sampler

The index of the sampler used by this texture. When undefined, a sampler with repeat wrapping
and auto filtering SHOULD be used.

* Type: integer

* Required: No

e Minimum: >= 0
5.29.2. texture.source

The index of the image used by this texture. When undefined, an extension or other mechanism
SHOULD supply an alternate texture source, otherwise behavior is undefined.

» Type: integer

* Required: No

e Minimum: >= 0
5.29.3. texture.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

» Type: string

121



* Required: No

5.29.4. texture.extensions
JSON object with extension-specific objects.

* Type: extension
* Required: No

* Type of each property: Extension

5.29.5. texture.extras

Application-specific data.

* Type: extras
* Required: No

5.30. Texture Info

Reference to a texture.

Table 29. Texture Info Properties

Type Description Required
index integer The index of the v Yes
texture.
texCoord integer The set index of No, default: 0
texture’s TEXCOORD

attribute used for
texture coordinate
mapping.

extensions extension JSON object with No
extension-specific
objects.

extras extras Application-specific No
data.

Additional properties are allowed.

* JSON schema: textureInfo.schema.json

5.30.1. textureInfo.index

The index of the texture.

122



* Type: integer
* Required: v Yes
* Minimum: >= 0
5.30.2. texturelInfo.texCoord

This integer value is used to construct a string in the format TEXCOORD_<set index> which is a
reference to a key in mesh.primitives.attributes (e.g. a value of @ corresponds to TEXCOORD_0). A
mesh primitive MUST have the corresponding texture coordinate attributes for the material to be
applicable to it.

» Type: integer
* Required: No, default: 0

e Minimum: >= 0

5.30.3. texturelnfo.extensions

JSON object with extension-specific objects.

* Type: extension
* Required: No

» Type of each property: Extension

5.30.4. texturelInfo.extras

Application-specific data.

* Type: extras
* Required: No

123



Chapter 6. Acknowledgments (Informative)

6.1. Editors

Saurabh Bhatia, Microsoft

* Patrick Cozzi, Cesium
* Alexey Knyazev, Individual Contributor

* Tony Parisi, Unity

6.2. Khronos 3D Formats Working Group and Alumni

* Remi Arnaud, Vario

e Mike Bond, Adobe

* Leonard Daly, Individual Contributor
e Emiliano Gambaretto, Adobe

» Tobias Haufler, Dassault Systemes

* Gary Hsu, Microsoft

e Marco Hutter, Individual Contributor

Uli Klumpp, Individual Contributor

* Max Limper, Fraunhofer IGD

Ed Mackey, Analytical Graphics, Inc.
* Don McCurdy, Google

Scott Nagy, Microsoft

* Norbert Nopper, UX3D

» Fabrice Robinet, Individual Contributor (Previous Editor and Incubator)
 Bastian Sdorra, Dassault Systemes

e Neil Trevett, NVIDIA

* Jan Paul Van Waveren, Oculus

 Amanda Watson, Oculus

6.3. Special Thanks

¢ Sarah Chow, Cesium

Tom Fili, Cesium
* Darryl Gough

e Eric Haines, Autodesk

Yu Chen Hou, Individual Contributor

124



Scott Hunter, Analytical Graphics, Inc.
Brandon Jones, Google

Arseny Kapoulkine, Individual Contributor
Jon Leech, Individual Contributor

Sean Lilley, Cesium

Juan Linietsky, Godot Engine

Matthew McMullan, Individual Contributor
Mohamad Moneimne, University of Pennsylvania
Kai Ninomiya, formerly Cesium

Cedric Pinson, Sketchfab

Jeff Russell, Marmoset

Miguel Sousa, Fraunhofer IGD

Timo Sturm, Fraunhofer IGD

Rob Taglang, Cesium

Maik Thoner, Fraunhofer IGD

Steven Vergenz, AltspaceVR

Corentin Wallez, Google

Alex Wood, Analytical Graphics, Inc

125



Appendix A: JSON Schema Reference
(Informative)

A.1. JSON Schema for Accessor

"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$id": "accessor.schema.json",
"title": "Accessor",
“type": "object",
"description": "A typed view into a buffer view that contains raw binary data.",
"all0f": [ { "$ref": "glTFChildOfRootProperty.schema.json" } 1,
"properties": {
"bufferView": {

"allof": [ { "$ref": "gl1TFid.schema.json" } 1,

"description”: "The index of the bufferView.",

"gltf_detailedDescription": "The index of the buffer view. When undefined,
the accessor **MUST** be initialized with zeros; ‘sparse‘ property or extensions
**MAY** override zeros with actual values."

I
"byteOffset": {

"type": "integer",

"description": "The offset relative to the start of the buffer view in
bytes.",

"minimum": 0,

"default": 0,

"gltf_detailedDescription”: "The offset relative to the start of the
buffer view in bytes. This **MUST** be a multiple of the size of the component
datatype. This property **MUST NOT** be defined when ‘bufferView' is undefined.",

"gltf_webgl": "‘vertexAttribPointer()' offset parameter"

H
"componentType": {
"description": "The datatype of the accessor's components.",
"gltf_detailedDescription": "The datatype of the accessor's components.
UNSIGNED_INT type **MUST NOT** be used for any accessor that is not referenced by
‘mesh.primitive.indices".",

"gltf_webgl": "‘“type‘ parameter of ‘vertexAttribPointer()'. The
corresponding typed arrays are ‘Int8Array‘, ‘Uint8Array‘, ‘Int16Array‘, ‘Uint16Array",
‘Uint32Array', and ‘Float32Array'.",

"any0f": [

{
"const": 5120,
"description": "BYTE",
"type": "integer"

"const": 5121,
"description": "UNSIGNED_BYTE",

126



"type": "integer"

H

{
"const": 5122,
"description": "SHORT",
"type": "integer"

Irg

{
"const": 5123,
"description": "UNSIGNED_SHORT",
"type": "integer"

I

{
"const": 5125,
"description": "UNSIGNED_INT",
"type": "integer"

I

{
"const": 5126,
"description”: "FLOAT",
"type": "integer"

Jis

{
"type": "integer"

}

]
}

ormalized": {

"type": "boolean",

"description”: "Specifies whether integer data values are normalized
before usage.",

"default": false,

"gltf_detailedDescription": "Specifies whether integer data values are
normalized (‘true‘) to [@, 1] (for unsigned types) or to [-1, 1] (for signed types)
when they are accessed. This property **MUST NOT** be set to ‘true‘ for accessors with
“FLOAT' or ‘UNSIGNED_INT' component type.",

"gltf_webgl": "‘normalized' parameter of ‘vertexAttribPointer()" "

Jfo
"count": {

"type": "integer",

"description": "The number of elements referenced by this accessor.",

"minimum": 1,

"gltf_detailedDescription": "The number of elements referenced by this
accessor, not to be confused with the number of bytes or number of components."

i
"type": {
"description": "Specifies if the accessor's elements are scalars, vectors,
or matrices.",
"any0f": [
{
"const": "SCALAR"

127



{
"const": "VEC2"
Iy
{
"const": "VEC3"
Irg
{
"const": "VEC4"
Jis
{
"const": "MAT2"
Iy
{
"const": "MAT3"
Iy
{
"const": "MAT4"
Irg
{
"type": "string"
}
]
s
"max": {

"type": "array",

"description”: "Maximum value of each component in this accessor.",

"items": {

“type": "number"

}

"minItems": 1,

"maxItems": 16,

"gltf_detailedDescription”: "Maximum value of each component in this
accessor. Array elements **MUST** be treated as having the same data type as
accessor's ‘componentType‘. Both ‘min‘ and ‘max‘ arrays have the same length. The
length is determined by the value of the ‘type‘ property; it can be 1, 2, 3, 4, 9, or
16.\n\n"normalized" property has no effect on array values: they always correspond to
the actual values stored in the buffer. When the accessor is sparse, this property
**MUST** contain maximum values of accessor data with sparse substitution applied.”

¥
"min": {

"type": "array",

"description": "Minimum value of each component in this accessor.",

"items": {

"type": "number"

}

inItems": 1,

"maxItems": 16,

"gltf_detailedDescription”: "Minimum value of each component in this
accessor. Array elements **MUST** be treated as having the same data type as
accessor's ‘componentType‘. Both ‘min‘ and ‘max‘ arrays have the same length. The

128



length is determined by the value of the “type‘ property; it can be 1, 2, 3, 4, 9, or
16.\n\n"normalized" property has no effect on array values: they always correspond to
the actual values stored in the buffer. When the accessor is sparse, this property
**MUST** contain minimum values of accessor data with sparse substitution applied.”
1
"sparse": {
"al10f": [ { "$ref": "accessor.sparse.schema.json" } 1],
"description”: "Sparse storage of elements that deviate from their
initialization value."
T
"name": { },
"extensions": { },
"extras": { }
e
"dependencies": {
"byteOffset": [ "bufferView" ]
)

"required": [ "componentType", "count", "type" ]

129



A.2. JSON Schema for Accessor Sparse

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"§id": "accessor.sparse.schema.json",
"title": "Accessor Sparse",
"type": "object",
"description"”: "Sparse storage of accessor values that deviate from their
initialization value.",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
"properties": {
"count": {
"type": "integer",
"description”: "Number of deviating accessor values stored in the sparse
array.",
"minimum": 1
o
"indices": {
"all0f": [ { "$ref": "accessor.sparse.indices.schema.json" } 1,
"description”: "An object pointing to a buffer view containing the indices
of deviating accessor values. The number of indices is equal to ‘count‘. Indices
**MUST** strictly increase.”

}

alues": {
"all0f": [ { "$ref": "accessor.sparse.values.schema.json" } 1,
"description": "An object pointing to a buffer view containing the
deviating accessor values."
¥
"extensions": { },
"extras": { }

}I

"required": [ "count", "indices", "values" ]

130



A.3.JSON Schema for Accessor Sparse Indices

"$§schema": "https://json-schema.org/draft/2020-12/schema",

"§id": "accessor.sparse.indices.schema.json",

"title": "Accessor Sparse Indices",

"type": "object",

"description”: "An object pointing to a buffer view containing the indices of

deviating accessor values. The number of indices is equal to ‘accessor.sparse.count'.

Indices **MUST** strictly increase.",
"al10f": [ { "$ref": "glTFProperty.schema.json" } 1,
"properties": {
"bufferView": {

"al10f": [ { "$ref": "g1TFid.schema.json" } 1,

"description”: "The index of the buffer view with sparse indices. The
referenced buffer view **MUST NOT** have its ‘target' or ‘byteStride' properties
defined. The buffer view and the optional ‘byteOffset' **MUST** be aligned to the
‘componentType' byte length."

i
"byteOffset": {
"type": "integer",
"description": "The offset relative to the start of the buffer view in
bytes.",
"minimum": 0,
"default": 0
¥
"componentType": {
"description”: "The indices data type.",
"any0f": [
{
"const": 5121,
"description": "UNSIGNED_BYTE",
"type": "integer"

+
{
"const": 5123,
"description": "UNSIGNED_SHORT",
"type": "integer"
I
{
"const": 5125,
"description”: "UNSIGNED_INT",
"type": "integer"
b
{
"type": "integer"
}

]
}I

"extensions": { 1},

131



"extras": { }

}I

"required": [ "bufferView", "componentType" ]

132



A.4. JSON Schema for Accessor Sparse Values

"$§schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "accessor.sparse.values.schema.json",

"title": "Accessor Sparse Values",

"type": "object",

"description”: "An object pointing to a buffer view containing the deviating
accessor values. The number of elements is equal to ‘accessor.sparse.count' times
number of components. The elements have the same component type as the base accessor.
The elements are tightly packed. Data **MUST** be aligned following the same rules as
the base accessor.",

"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,

"properties": {

"bufferView": {

"al10f": [ { "$ref": "gl1TFid.schema.json" } 1,

"description": "The index of the bufferView with sparse values. The
referenced buffer view **MUST NOT** have its ‘target‘' or ‘byteStride' properties
defined."

}
"byteOffset": {
"type": "integer",
"description”: "The offset relative to the start of the bufferView in

bytes.",
"minimum": 0,
"default": 0
s
"extensions": { },
"extras": { }
Jr

"required": [ "bufferView" ]

133



A.5.JSON Schema for Animation

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "animation.schema.json",
"title": "Animation",
"type": "object",
"description": "A keyframe animation.",
"all0f": [ { "$ref": "g1TFChildOfRootProperty.schema.json" } 1,
“properties": {
"channels": {

"type": "array",

"description": "An array of animation channels. An animation channel
combines an animation sampler with a target property being animated. Different
channels of the same animation **MUST NOT** have the same targets."”,

"items": {

"$ref": "animation.channel.schema.json"

3

"minltems": 1

}
"samplers": {

"type": "array",

"description”: "An array of animation samplers. An animation sampler
combines timestamps with a sequence of output values and defines an interpolation
algorithm.",

"items": {

"$ref": "animation.sampler.schema.json"

}

inltems": 1
b
"name": { },
"extensions": { },
"extras": { }

b

"required": [ "channels", "samplers" ]

134



A.6. JSON Schema for Animation Channel

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$§id": "animation.channel.schema.json",
"title": "Animation Channel",
"type": "object",
"description”: "An animation channel combines an animation sampler with a target
property being animated.",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
"properties": {
"sampler": {
"allof": [ { "$ref": "glTFid.schema.json" } 1,
"description": "The index of a sampler in this animation used to compute
the value for the target.",
"gltf_detailedDescription": "The index of a sampler in this animation used
to compute the value for the target, e.g., a node's translation, rotation, or scale
(TRS)."

b

"target": {
"all0f": [ { "$ref": "animation.channel.target.schema.json" } 1,
"description": "The descriptor of the animated property."

}

xtensions": { },
"extras": { }

}I

"required": [ "sampler", "target" ]

135



A.7.]JSON Schema for Animation Channel Target

"$§schema": "https://json-schema.org/draft/2020-12/schema",

"$§id": "animation.channel.target.schema.json",

"title": "Animation Channel Target",

"type": "object",

"description": "The descriptor of the animated property.",

"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,

“properties": {

"node": {
"all0f": [ { "$ref": "gl1TFid.schema.json" } 1,
"description": "The index of the node to animate. When undefined, the
animated object **MAY** be defined by an extension."
k.
"path": {

"description": "The name of the node's TRS property to animate, or the
\"weights\""' of the Morph Targets it instantiates. For the ‘\"translation\"' property,
the values that are provided by the sampler are the translation along the X, Y, and Z
axes. For the “\"rotation\"' property, the values are a quaternion in the order (x, vy,
z, w), where w is the scalar. For the ‘\"scale\"' property, the values are the scaling
factors along the X, Y, and Z axes.",

\

"any0f": [
{
"const": "translation"
Iy
{
"const": "rotation"
H
{
"const": "scale"
b
{
"const": "weights"
Iy
{
"type": "string"
}

]
}

xtensions": { },
"extras": { }

+
"required": [ "path" ]

136



A.8.JSON Schema for Animation Sampler

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$§id": "animation.sampler.schema.json",
"title": "Animation Sampler",
"type": "object",
"description”: "An animation sampler combines timestamps with a sequence of output
values and defines an interpolation algorithm.",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
"properties": {
“input": {
"allof": [ { "$ref": "glTFid.schema.json" } 1,
"description": "The index of an accessor containing keyframe timestamps.",
"gltf_detailedDescription”: "The index of an accessor containing keyframe
timestamps. The accessor **MUST** be of scalar type with floating-point components.
The values represent time in seconds with ‘time[@] >= 0.0, and strictly increasing
values, i.e., ‘time[n + 1] > time[n]'."
i
"interpolation": {
"description": "Interpolation algorithm.",
"default": "LINEAR",
"gltf_detailedDescription”: "Interpolation algorithm.",
"any0f": [
{

"const": "LINEAR",

"description": "The animated values are linearly interpolated
between keyframes. When targeting a rotation, spherical linear interpolation (slerp)
**SHOULD** be used to interpolate quaternions. The number of output elements **MUST**
equal the number of input elements."

his

{

"const": "STEP",

"description": "The animated values remain constant to the output
of the first keyframe, until the next keyframe. The number of output elements **MUST**
equal the number of input elements."

b
{

"const": "CUBICSPLINE",

"description”: "The animation's interpolation is computed using a
cubic spline with specified tangents. The number of output elements **MUST** equal
three times the number of input elements. For each input element, the output stores
three elements, an in-tangent, a spline vertex, and an out-tangent. There **MUST** be
at least two keyframes when using this interpolation.”

b
{

"type": "string"
}

137



"output": {
"al10f": [ { "$ref": "gl1TFid.schema.json" } 1,
"description”: "The index of an accessor, containing keyframe output

values."
s
"extensions": { 1},
"extras": { }
Jr

“required": [ "input", "output" ]

138



A.9. JSON Schema for Asset

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$§id": "asset.schema.json",
"title": "Asset",
"type": "object",
"description”: "Metadata about the glTF asset.",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
“properties": {
"copyright": {
"type": "string",
"description”: "A copyright message suitable for display to credit the
content creator."”
k.
"generator": {
"type": "string",
"description": "Tool that generated this glTF model. Useful for
debugging.”
5
"version": {
“type": "string",
"description”: "The gl1TF version in the form of ‘<major>.<minor>‘ that
this asset targets.",
"pattern": "A[0-9]+\\.[0-9]+$"
¥

"minVersion": {

"type": "string",

"description”: "The minimum glTF version in the form of ‘<major>.<minor>"
that this asset targets. This property **MUST NOT** be greater than the asset
version.",

"pattern”: "A[0-9]+\\.[0-9]+%"

+
"extensions": { },
"extras": { }

b

"required": [ "version" ]

139



A.10. JSON Schema for Buffer

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "buffer.schema.json",
"title": "Buffer",
"type": "object",
"description”: "A buffer points to binary geometry, animation, or skins.",
"all0f": [ { "$ref": "g1TFChildOfRootProperty.schema.json" } 1,
“properties": {
"uri": {

"type": "string",

"description": "The URI (or IRI) of the buffer.",

"format": "iri-reference",

"gltf_detailedDescription”: "The URI (or IRI) of the buffer. Relative
paths are relative to the current glTF asset. Instead of referencing an external
file, this field **MAY** contain a ‘data:'-URI.",

"gltf_uriType": "application”

I
"byteLength": {

"type": "integer",

"description”: "The length of the buffer in bytes.",

"minimum": 1

b

"name": { },
"extensions": { },
"extras": { }

b
"required": [ "bytelLength" ]

140



A.11. JSON Schema for Buffer View

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "bufferView.schema.json",
"title": "Buffer View",
"type": "object",
"description”: "A view into a buffer generally representing a subset of the
buffer.",
"all0f": [ { "$ref": "glTFChildOfRootProperty.schema.json" } 1,
"properties": {
"buffer": {
"allof": [ { "$ref": "glTFid.schema.json" } 1,
"description": "The index of the buffer."
b
"byteOffset": {

"type": "integer",

"description”: "The offset into the buffer in bytes.",

"minimum": 0,

"default": 0

y
"byteLength": {
"type": "integer",
"description": "The length of the bufferView in bytes.",
"minimum": 1
Iy
"byteStride": {

"type": "integer",

"description": "The stride, in bytes.",

"minimum": 4,

"maximum": 252,

"multipleOf": 4,

"gltf_detailedDescription": "The stride, in bytes, between vertex
attributes. When this is not defined, data is tightly packed. When two or more
accessors use the same buffer view, this field **MUST** be defined.",

"gltf_webgl": "‘vertexAttribPointer()' stride parameter"

I
"target": {

"description”: "The hint representing the intended GPU buffer type to use
with this buffer view.",

"gltf_webgl": "‘bindBuffer()"",

"any0f": [

{
"const": 34962,
"description": "ARRAY_BUFFER",
"type": "integer"

"const": 34963,
"description”: "ELEMENT_ARRAY_BUFFER",

141



"type": "integer"

"type": "integer"

]
o
"name": { },
"extensions": { 1},
"extras": { }

}
"required": [ "buffer", "bytelLength" ]

142



A.12. JSON Schema for Camera

143



"$§schema": "https://json-schema.org/draft/2020-12/schema",

"§id": "camera.schema.json",

"title": "Camera",

"type": "object",

"description”: "A camera's projection. A node **MAY** reference a camera to apply
a transform to place the camera in the scene.",

"all0f": [ { "$ref": "glTFChildOfRootProperty.schema.json" } 1,

"properties": {

"orthographic": {

"all0f": [ { "$ref": "camera.orthographic.schema.json" } 1,

"description": "An orthographic camera containing properties to create an
orthographic projection matrix. This property **MUST NOT** be defined when
‘perspective’ is defined."

e
"perspective": {

"all0f": [ { "$ref": "camera.perspective.schema.json" } 1],

"description”: "A perspective camera containing properties to create a
perspective projection matrix. This property **MUST NOT** be defined when
‘orthographic' is defined."

1
"type": {

"description": "Specifies if the camera uses a perspective or orthographic
projection."”,

"gltf_detailedDescription": "Specifies if the camera uses a perspective or
orthographic projection. Based on this, either the camera's ‘perspective‘ or
‘orthographic' property **MUST** be defined.",

"any0f": [
{
"const": "perspective"
b
{
"const": "orthographic”
e
{
"type": "string"
}
]
e
"name": { },

"extensions": { 1},
"extras": { }

b
"required": [ "type" 1,
"not": {
"required": [ "perspective", "orthographic" ]
}

144



A.13. JSON Schema for Camera Orthographic

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "camera.orthographic.schema.json",
"title": "Camera Orthographic",
"type": "object",
"description”: "An orthographic camera containing properties to create an
orthographic projection matrix.",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
"properties": {
"xmag": {
"type": "number",
"description": "The floating-point horizontal magnification of the view.
This value **MUST NOT** be equal to zero. This value **SHOULD NOT** be negative."
¥
"ymag": {
"type": "number",
"description": "The floating-point vertical magnification of the view.
This value **MUST NOT** be equal to zero. This value **SHOULD NOT** be negative."
¥
"zfar": {
"type": "number",
"description": "The floating-point distance to the far clipping plane.
This value **MUST NOT** be equal to zero. ‘zfar' **MUST** be greater than ‘znear'.",
"exclusiveMinimum": 0.0

}

"znear": {
"type": "number",
"description”: "The floating-point distance to the near clipping plane.",
"minimum": 0.0

}

"extensions": { 1},
"extras": { }

}I

"required": [ "xmag", "ymag", "zfar", "znear" ]

145



A.14. JSON Schema for Camera Perspective

"$§schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "camera.perspective.schema.json",

"title": "Camera Perspective",

"type": "object",

"description”: "A perspective camera containing properties to create a perspective
projection matrix.",

"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,

"properties": {

"aspectRatio": {

"type": "number",

"description": "The floating-point aspect ratio of the field of view.",

"exclusiveMinimum": 0.0,

"gltf_detailedDescription": "The floating-point aspect ratio of the field
of view. When undefined, the aspect ratio of the rendering viewport **MUST** be used."

¥
"yfov": {

“type": "number",

"description": "The floating-point vertical field of view in radians. This
value **SHOULD** be less than m.",

"exclusiveMinimum": 0.0

¥
"zfar": {

"type": "number",

"description”: "The floating-point distance to the far clipping plane.",

"exclusiveMinimum": 0.0,

"gltf_detailedDescription": "The floating-point distance to the far
clipping plane. When defined, ‘zfar' **MUST** be greater than ‘znear‘. If ‘zfar' is
undefined, client implementations **SHOULD** use infinite projection matrix."

3
"znear": {

"type": "number",

"description”: "The floating-point distance to the near clipping plane.",

"exclusiveMinimum": 0.0,

"gltf_detailedDescription”: "The floating-point distance to the near
clipping plane."

3
"extensions": { },
"extras": { }

b

"required": [ "yfov", "znear" ]

146



A.15. JSON Schema for Extension

"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$id": "extension.schema.json",
"title": "Extension",
"type": "object",
"description”: "JSON object with extension-specific objects."
"properties": {
),
"additionalProperties": {
"type": "object"

~

}

147



A.16. JSON Schema for Extras

"$§schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "extras.schema.json",

"title": "Extras",

"description": "Application-specific data.",

"gltf_sectionDescription": "Although ‘extras’ **MAY** have any type, it is common
for applications to store and access custom data as key/value pairs. Therefore,
‘extras' **SHOULD** be a JSON object rather than a primitive value for best
portability."

}

148



A.17.JSON Schema for gITF

{
"$§schema": "https://json-schema.org/draft/2020-12/schema",
"§id": "glTF.schema.json",
"title": "glTF",
"type": "object",
"description”: "The root object for a glTF asset.",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
“properties": {
"extensionsUsed": {
"type": "array",
"description”: "Names of glTF extensions used in this asset.",
"items": {
"type": "string"
3
"uniqueltems": true,
"minItems": 1
i
"extensionsRequired": {
"type": "array",
"description”: "Names of glTF extensions required to properly load this
asset."”,

"items": {
"type": "string"
}

niqueltems": true,
"minItems": 1
s
"accessors": {
"type": "array",
"description": "An array of accessors.",
"items": {
"$ref": "accessor.schema.json"
I
"minItems": 1,
"gltf_detailedDescription”: "An array of accessors. An accessor is a
typed view into a bufferView."
k.
"animations": {
"type": "array",
"description”: "An array of keyframe animations.",
"items": {
"$ref": "animation.schema.json"

}

inItems": 1
Iy
"asset": {

"allof": [ { "$ref": "asset.schema.json" } 1,
"description": "Metadata about the glTF asset.”

149



I¥
"buffers": {
"type": "array",
"description": "An array of buffers.",
"items": {
"$ref": "buffer.schema.json"
)
"minItems": 1,
"gltf_detailedDescription”: "An array of buffers. A buffer points to
binary geometry, animation, or skins."
¥
"bufferViews": {
"type": "array",
"description": "An array of bufferViews.",
"items": {
"$ref": "bufferView.schema.json"
¥
"minItems": 1,
"gltf_detailedDescription": "An array of bufferViews. A bufferView is a
view into a buffer generally representing a subset of the buffer."
i
"cameras": {
"type": "array",
"description": "An array of cameras.",
"items": {
"$ref": "camera.schema.json"

}

inItems": 1,
"gltf_detailedDescription”: "An array of cameras. A camera defines a
projection matrix."
s
"images": {
"type": "array",
"description”: "An array of images.",
"items": {
"$ref": "image.schema.json"

}

inItems": 1,
"gltf_detailedDescription”: "An array of images. An image defines data
used to create a texture."
1
"materials": {
"type": "array",
"description”: "An array of materials.",
"items": {
"$ref": "material.schema.json"

}

inItems": 1,
"gltf_detailedDescription”: "An array of materials. A material defines
the appearance of a primitive."

}I

150



"meshes": {
"type": "array",
"description": "An array of meshes.",
"items": {
"$ref": "mesh.schema.json"

}

inItems": 1,
"gltf_detailedDescription”: "An array of meshes. A mesh is a set of
primitives to be rendered."

Frs
"nodes": {
"type": "array",
"description”: "An array of nodes.",
"items": {
"$ref": "node.schema.json"
b
"minItems": 1
}

amplers": {
"type": "array",
"description": "An array of samplers.",
"items": {
"$ref": "sampler.schema.json"
H
"minItems": 1,
"gltf_detailedDescription": "An array of samplers. A sampler contains
properties for texture filtering and wrapping modes."
Iy
"scene": {
"al10f": [ { "$ref": "gl1TFid.schema.json" } 1,
"description": "The index of the default scene.",
"gltf_detailedDescription”: "The index of the default scene. This
property **MUST NOT** be defined, when ‘scenes‘ is undefined."

}
"scenes": {
"type": "array",
"description”: "An array of scenes.",
"items": {
"$ref": "scene.schema.json"
}
"minltems": 1
¥
"skins": {

"type": "array",

"description": "An array of skins.",

"items": {

"$ref": "skin.schema.json"

),

"minItems": 1,

"gltf_detailedDescription": "An array of skins. A skin is defined by
joints and matrices."

151



5
"textures": {
"type": "array",
"description": "An array of textures.",
"items": {
"$ref": "texture.schema.json"
)
"minItems": 1
i
"extensions": { },
"extras": { }
),
"dependencies": {
"scene": [ "scenes" ]
¥

"required": [ "asset" ]

152



A.18. JSON Schema for gITF Child of Root Property

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"§id": "glTFChildOfRootProperty.schema.json",
"title": "glTF Child of Root Property",
"type": "object",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
"properties": {
"name": {
"type": "string",
"description": "The user-defined name of this object.",
"gltf_detailedDescription": "The user-defined name of this object. This
is not necessarily unique, e.g., an accessor and a buffer could have the same name, or
two accessors could even have the same name."

}

153



A.19. JSON Schema for gITF Id

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$id": "g1TFid.schema.json",
"title": "glTF Id",
"type": "integer",
"minimum": 0
}

154



A.20. JSON Schema for gITF Property

{
"$schema": "https://json-schema.org/draft/2020-12/schema”,
"$id": "glTFProperty.schema.json",
"title": "glTF Property",
"type": "object",
"properties": {
"extensions": {
"$ref": "extension.schema.json"
b
"extras": {
"$ref": "extras.schema.json"
}
}
}

155



A.21. JSON Schema for Image

"$§schema": "https://json-schema.org/draft/2020-12/schema",

"$§id": "image.schema.json",

"title": "Image",

"type": "object",

"description”: "Image data used to create a texture. Image **MAY** be referenced
by an URI (or IRI) or a buffer view index.",

"all0f": [ { "$ref": "glTFChildOfRootProperty.schema.json" } 1,

"properties": {

"uri": {

"type": "string",

"description": "The URI (or IRI) of the image.",

"format": "iri-reference",

"gltf_detailedDescription": "The URI (or IRI) of the image. Relative
paths are relative to the current glTF asset. Instead of referencing an external
file, this field **MAY** contain a ‘data:'-URI. This field **MUST NOT** be defined
when ‘bufferView' is defined.",

"gltf_uriType": "image"

¥
"mimeType": {
"anyOf": [
{
"const": "image/jpeg"
b
{
"const": "image/png"
}
{
"type": "string"
}

Il
"description”: "The image's media type. This field **MUST** be defined
when ‘bufferView' is defined."
+
"bufferView": {
"al10f": [ { "$ref": "g1TFid.schema.json" } 1,
"description”: "The index of the bufferView that contains the image. This
field **MUST NOT** be defined when ‘uri‘ is defined."
+
"name": { },
"extensions": { 1},
"extras": { }
Iy,
"dependencies": {
"bufferView": [ "mimeType" ]
}
"one0f": [
{ "required": [ "uri" 1},

156



{ "required": [ "bufferView" ] }

157



A.22. JSON Schema for Material

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "material.schema.json",
"title": "Material",
"type": "object",
"description": "The material appearance of a primitive.",
"all0f": [ { "$ref": "g1TFChildOfRootProperty.schema.json" } 1,
“properties": {

"name": { },

"extensions": { },

"extras": { },

"pbrMetallicRoughness": {

"al10f": [ { "$ref": "material.pbrMetallicRoughness.schema.json" } 1,

"description": "A set of parameter values that are used to define the
metallic-roughness material model from Physically Based Rendering (PBR) methodology.
When undefined, all the default values of ‘pbrMetallicRoughness® **MUST** apply."

i
"normalTexture": {

"al10f": [ { "$ref": "material.normalTextureInfo.schema.json" } 1,

"description”: "The tangent space normal texture.",

"gltf_detailedDescription”: "The tangent space normal texture. The texture
encodes RGB components with linear transfer function. Each texel represents the XYZ
components of a normal vector in tangent space. The normal vectors use the convention
+X is right and +Y is up. +Z points toward the viewer. If a fourth component (A) is
present, it **MUST** be ignored. When undefined, the material does not have a tangent
space normal texture."

F
"occlusionTexture": {

"all0f": [ { "$ref": "material.occlusionTextureInfo.schema.json" } 1,

"description": "The occlusion texture.",

"gltf_detailedDescription": "The occlusion texture. The occlusion values
are linearly sampled from the R channel. Higher values indicate areas that receive
full indirect lighting and lower values indicate no indirect lighting. If other
channels are present (GBA), they **MUST** be ignored for occlusion calculations. When
undefined, the material does not have an occlusion texture."

¥
"emissiveTexture": {

"al10f": [ { "$ref": "textureInfo.schema.json" } 1,

"description": "The emissive texture.",

"gltf_detailedDescription”: "The emissive texture. It controls the color
and intensity of the 1light being emitted by the material. This texture contains RGB
components encoded with the sRGB transfer function. If a fourth component (A) is
present, it **MUST** be ignored. When undefined, the texture **MUST** be sampled as
having ‘1.0 in RGB components."

¥

"emissiveFactor": {
"type": "array",
"items": {

158



"type": "number",
"minimum": 0.0,
"maximum": 1.0

}

inItems": 3,
"maxItems": 3,
"default": [ 0.0, 0.0, 0.0 1],
"description”: "The factors for the emissive color of the material.",
"gltf_detailedDescription": "The factors for the emissive color of the
material. This value defines linear multipliers for the sampled texels of the emissive
texture."
k.
"alphaMode": {
"default": "OPAQUE",
"description”: "The alpha rendering mode of the material.",
"gltf_detailedDescription": "The material's alpha rendering mode
enumeration specifying the interpretation of the alpha value of the base color.",
"any0f": [
{
"const": "OPAQUE",
"description": "The alpha value is ignored, and the rendered
output is fully opaque."
Iy

{
"const": "MASK",

"description": "The rendered output is either fully opaque or
fully transparent depending on the alpha value and the specified ‘alphaCutoff‘ value;
the exact appearance of the edges **MAY** be subject to implementation-specific
techniques such as \"*

H
{

Alpha-to-Coverage*\".

"const": "BLEND",

"description”: "The alpha value is used to composite the source
and destination areas. The rendered output is combined with the background using the
normal painting operation (i.e. the Porter and Duff over operator)."

¥
{
"type": "string"
}
]
}
"alphaCutoff": {
"type": "number",
"minimum": 0.0,
"default": 0.5,
"description": "The alpha cutoff value of the material.",
"gltf_detailedDescription": "Specifies the cutoff threshold when in ‘MASK®
alpha mode. If the alpha value is greater than or equal to this value then it is
rendered as fully opaque, otherwise, it is rendered as fully transparent. A value
greater than ‘1.0 will render the entire material as fully transparent. This value
**MUST** be ignored for other alpha modes. When ‘alphaMode‘ is not defined, this value

159



**MUST NOT** be defined."
Jfo
"doubleSided": {
"type": "boolean",
"default": false,
"description": "Specifies whether the material is double sided.",
"gltf_detailedDescription": "Specifies whether the material is double
sided. When this value is false, back-face culling is enabled. When this value is
true, back-face culling is disabled and double-sided lighting is enabled. The back-
face **MUST** have its normals reversed before the lighting equation is evaluated."
}
h
"dependencies" : {
"alphaCutoff" : ["alphaMode"]

160



A.23. JSON Schema for Material Normal Texture Info

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$§id": "material.normalTextureInfo.schema.json",

"title": "Material Normal Texture Info",

"type": "object",

"all0f": [ { "$ref": "texturelnfo.schema.json" } 1,
"properties": {

"index": { },
"texCoord": { },
"scale": {

"type": "number",

"description": "The scalar parameter applied to each normal vector of the
normal texture.",

"default": 1.0,

"gltf_detailedDescription”: "The scalar parameter applied to each normal
vector of the texture. This value scales the normal vector in X and Y directions using
the formula: ‘scaledNormal = normalize((<sampled normal texture value> * 2.0 - 1.0) *
vec3(<normal scale>, <normal scale>, 1.0))"."

¥
"extensions": { },
"extras": { }

161



A.24. JSON Schema for Material Occlusion Texture Info

{
"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "material.occlusionTextureInfo.schema.json",
"title": "Material Occlusion Texture Info",
"type": "object",
"all0f": [ { "$ref": "texturelnfo.schema.json" } 1,
"properties": {
"index": { },
"texCoord": { },
"strength": {
"type": "number",
"description": "A scalar multiplier controlling the amount of occlusion
applied.",

"default": 1.0,

"minimum": 0.0,

"maximum": 1.0,

"gltf_detailedDescription": "A scalar parameter controlling the amount of
occlusion applied. A value of '0.0' means no occlusion. A value of ‘1.0 means full
occlusion. This value affects the final occlusion value as: ‘1.0 + strength *
(<sampled occlusion texture value> - 1.0)"."

¥
"extensions": { },
"extras": { }

162



A.25.JSON Schema for Material PBR Metallic
Roughness

"$schema": "https://json-schema.org/draft/2020-12/schema",
"§id": "material.pbrMetallicRoughness.schema.json",
"title": "Material PBR Metallic Roughness",
"type": "object",
"description": "A set of parameter values that are used to define the metallic-
roughness material model from Physically-Based Rendering (PBR) methodology.",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
"properties": {
"baseColorFactor": {
"type": "array",
"items": {
"type": "number",
"minimum": 0.0,
"maximum": 1.0

1

"description": "The factors for the base color of the material.",

"default": [ 1.0, 1.0, 1.0, 1.0 1,

"minltems": 4,

"maxItems": 4,

"gltf_detailedDescription": "The factors for the base color of the
material. This value defines linear multipliers for the sampled texels of the base
color texture."

¥
"baseColorTexture": {

"al10f": [ { "$ref": "textureInfo.schema.json" } 1,

"description": "The base color texture.",

"gltf_detailedDescription”: "The base color texture. The first three
components (RGB) **MUST** be encoded with the sRGB transfer function. They specify the
base color of the material. If the fourth component (A) is present, it represents the
linear alpha coverage of the material. Otherwise, the alpha coverage is equal to
*1.0%. The ‘material.alphaMode" property specifies how alpha is interpreted. The
stored texels **MUST NOT** be premultiplied. When undefined, the texture **MUST** be
sampled as having ‘1.0' in all components."

1
"metallicFactor": {

"type": "number",

"description": "The factor for the metalness of the material.”,

"default": 1.0,

"minimum": 0.0,

"maximum": 1.0,

"gltf_detailedDescription”: "The factor for the metalness of the material.
This value defines a linear multiplier for the sampled metalness values of the
metallic-roughness texture."

1

"roughnessFactor": {

163



"type": "number",
"description": "The factor for the roughness of the material.",
"default": 1.0,
"minimum": 0.0,
"maximum": 1.0,
"gltf_detailedDescription": "The factor for the roughness of the material.
This value defines a linear multiplier for the sampled roughness values of the
metallic-roughness texture."
i
"metallicRoughnessTexture": {
"all0f": [ { "$ref": "textureInfo.schema.json" } 1,
"description”: "The metallic-roughness texture.",
"gltf_detailedDescription”: "The metallic-roughness texture. The metalness
values are sampled from the B channel. The roughness values are sampled from the G
channel. These values **MUST** be encoded with a linear transfer function. If other
channels are present (R or A), they **MUST** be ignored for metallic-roughness
calculations. When undefined, the texture **MUST** be sampled as having ‘1.0% in G and
B components."
¥
"extensions": { },
"extras": { }

164



A.26. JSON Schema for Mesh

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"§id": "mesh.schema.json",
"title": "Mesh",
"type": "object",
"description”: "A set of primitives to be rendered. Its global transform is
defined by a node that references it.",
"all0f": [ { "$ref": "glTFChildOfRootProperty.schema.json" } 1,
"properties": {
"primitives": {
"type": "array",
"description": "An array of primitives, each defining geometry to be
rendered.",
"items": {
"$ref": "mesh.primitive.schema.json"
3
"minItems": 1
}
"weights": {
"type": "array",
"description”: "Array of weights to be applied to the morph targets. The
number of array elements **MUST** match the number of morph targets.",
"items": {
"type": "number"

}

inltems": 1
o

"name": { },
"extensions": { 1},
"extras": { }

}I

"required": [ "primitives" ]

165



A.27.JSON Schema for Mesh Primitive

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"§id": "mesh.primitive.schema.json",
"title": "Mesh Primitive",
"type": "object",
"description"”: "Geometry to be rendered with the given material.",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
“properties": {
"attributes": {

"type": "object",

"description”: "A plain JSON object, where each key corresponds to a mesh
attribute semantic and each value is the index of the accessor containing attribute's
data.",

"minProperties": 1,

"additionalProperties": {

"$ref": "glTFid.schema.json"

¥
}
"indices": {
"al10f": [ { "$ref": "glTFid.schema.json" } 1,
"description”: "The index of the accessor that contains the vertex
indices.",

"gltf_detailedDescription": "The index of the accessor that contains the
vertex indices. When this is undefined, the primitive defines non-indexed geometry.
When defined, the accessor **MUST** have ‘SCALAR' type and an unsigned integer
component type.",

"gltf_webgl": "‘drawElements()‘ when defined and ‘drawArrays()"
otherwise."

i
"material": {
"al10f": [ { "$ref": "gl1TFid.schema.json" } 1,
"description”: "The index of the material to apply to this primitive when

rendering.”
¥
"mode": {
"description": "The topology type of primitives to render.",
"default": 4,
"any0f": [
{
"const": 0,

"description”: "POINTS",
"type": "integer"

Iy,

{
"const": 1,
"description": "LINES",
"type": "integer"

Iy

166



"const": 2,
"description": "LINE_LOOP",
"type": "integer"

I

{
"const": 3,
"description": "LINE_STRIP",
"type": "integer"

Jis

{
"const": 4,
"description”: "TRIANGLES",
"type": "integer"

b

{
"const": 5,
"description”: "TRIANGLE_STRIP",
"type": "integer"

Jr

{
"const": 6,
"description”: "TRIANGLE_FAN",
"type": "integer"

Iy

{
"type": "integer"

}

]
b
"targets": {

"type": "array",
"description": "An array of morph targets.",
"items": {
"type": "object",
"minProperties": 1,
"additionalProperties": {
"$ref": "glTFid.schema.json"
¥
"description”: "A plain JSON object specifying attributes
displacements in a morph target, where each key corresponds to one of the three
supported attribute semantic (‘POSITION', ‘NORMAL', or ‘TANGENT') and each value is
the index of the accessor containing the attribute displacements' data."

}

inItems": 1
+

"extensions": { 1},
"extras": { }

b
"gltf_webgl": "‘drawElements()' and ‘drawArrays()‘",
"required": [ "attributes" ]

167






A.28. JSON Schema for Node

"$§schema": "https://json-schema.org/draft/2020-12/schema",

"$§id": "node.schema.json",

"title": "Node",

"type": "object",

"description”: "A node in the node hierarchy. When the node contains ‘skin', all
‘mesh.primitives® **MUST** contain ‘JOINTS_@' and ‘WEIGHTS_@' attributes. A node
**MAY** have either a ‘matrix' or any combination of ‘translation‘/‘rotation‘/‘scale’
(TRS) properties. TRS properties are converted to matrices and postmultiplied in the
‘T * R * S order to compose the transformation matrix; first the scale is applied to
the vertices, then the rotation, and then the translation. If none are provided, the
transform is the identity. When a node is targeted for animation (referenced by an
animation.channel.target), ‘matrix‘ **MUST NOT** be present.",

"all0f": [ { "$ref": "g1TFChildOfRootProperty.schema.json" } 1,

"properties": {

"camera": {
"al10f": [ { "$ref": "gl1TFid.schema.json" } 1,
"description": "The index of the camera referenced by this node."

b
"children": {
"type": "array",
"description": "The indices of this node's children.",
"items": {
"$ref": "glTFid.schema.json"
Jrs
"uniqueltems": true,
"minItems": 1
b
"skin": {

"allof": [ { "$ref": "gl1TFid.schema.json" } 1,
"description”: "The index of the skin referenced by this node.",
"gltf_detailedDescription”: "The index of the skin referenced by this
node. When a skin is referenced by a node within a scene, all joints used by the skin
**MUST** belong to the same scene. When defined, ‘mesh® **MUST** also be defined."
1
"matrix": {
"type": "array",
"description”: "A floating-point 4x4 transformation matrix stored in
column-major order.",
"items": {
"type": "number"
1,
"minItems": 16,
"maxItems": 16,
"default": [ 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 ],
"gltf_webgl": "‘uniformMatrix4fv()" with the transpose parameter equal to
false"

169



5
"mesh": {
"allof": [ { "$ref": "gl1TFid.schema.json" } 1,
"description": "The index of the mesh in this node."
1
"rotation": {
"type": "array",
"description”: "The node's unit quaternion rotation in the order (x, y, z,
w), where w is the scalar.",
"items": {
"type": "number",
"minimum": -1.0,
"maximum": 1.0

}

inItems": 4,
"maxItems": 4,
"default": [ 0.0, 0.0, 0.0, 1.0 ]
¥
"scale": {
"type": "array",
"description": "The node's non-uniform scale, given as the scaling factors
along the x, y, and z axes.",
"items": {
“type": "number"
3
"minltems": 3,
"maxItems": 3,
"default": [ 1.0, 1.0, 1.0 ]
}
"translation": {
"type": "array",
"description”: "The node's translation along the x, y, and z axes.",
"items": {
"type": "number"

}

inItems": 3,

"maxItems": 3,

"default": [ 0.0, 0.0, 0.0 ]
I
"weights": {

“type": "array",

"description”: "The weights of the instantiated morph target. The number
of array elements **MUST** match the number of morph targets of the referenced mesh.
When defined, ‘mesh‘ **MUST** also be defined.",

"minItems": 1,
"items": {
"type": "number"
}
¥
"name": { },
"extensions": { },

170



"extras": { }

H

"dependencies": {
"weights": [ "mesh" ],
"skin": [ "mesh" ]

Iy
"not": {
"any0f": [
{ "required": [ "matrix", "translation" ] },
{ "required": [ "matrix", "rotation" ] },
{ "required": [ "matrix", "scale" ] }
]
}

171



A.29. JSON Schema for Sampler

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "sampler.schema.json",
"title": "Sampler",
"type": "object",
"description"”: "Texture sampler properties for filtering and wrapping modes.",
"all0f": [ { "$ref": "g1TFChildOfRootProperty.schema.json" } 1,
“properties": {
"magFilter": {
"description": "Magnification filter.",
"gltf_webgl": "‘samplerParameteri()' with pname equal to
TEXTURE _MAG_FILTER",
"any0f": [
{
"const": 9728,
"description”: "NEAREST",
"type": "integer"

¥

{
"const": 9729,
"description": "LINEAR",
"type": "integer"

b

{
"type": "integer"

}

1
"minFilter": {
"description": "Minification filter.",
"gltf_webgl": "‘samplerParameteri()‘ with pname equal to
TEXTURE_MIN_FILTER",
"any0f": [
{
"const": 9728,
"description": "NEAREST",
"type": "integer"

Iy

{
"const": 9729,
"description": "LINEAR",
"type": "integer"

Iy,

{
"const": 9984,
"description": "NEAREST_MIPMAP_NEAREST",
"type": "integer"

Iy

172



"const": 9985,
"description": "LINEAR_MIPMAP_NEAREST",
"type": "integer"

I
{
"const": 9986,
"description": "NEAREST_MIPMAP_LINEAR",
"type": "integer"
Jis
{
"const": 9987,
"description”: "LINEAR_MIPMAP_LINEAR",
"type": "integer"
b
{
"type": "integer"
}
]
b
"wrapS": {

"description": "S (U) wrapping mode.",
"default": 10497,

"gltf_detailedDescription”: "S (U) wrapping mode.

correspond to WebGL enums.",

"gltf_webgl": "‘samplerParameteri()‘ with pname equal to TEXTURE_WRAP_S",

"any0f": [

{
"const": 33071,
"description": "CLAMP_TO_EDGE",
"type": "integer"

Jr
{
"const": 33648,
"description”: "MIRRORED_REPEAT",
"type": "integer"
Iy
{
"const": 10497,
"description": "REPEAT",
"type": "integer"
Iy
{
"type": "integer"
}
]
b
"wrapT": {

"description”: "T (V) wrapping mode.",
"default": 10497,

"gltf_webgl": "‘samplerParameteri()' with pname equal to TEXTURE_WRAP_T",

A1l valid values

173



"any0f": [

{
"const": 33071,
"description": "CLAMP_TO_EDGE",
"type": "integer"

Iy

{
"const": 33648,
"description”: "MIRRORED_REPEAT",
"type": "integer"

Iy

{
"const": 10497,
"description": "REPEAT",
"type": "integer"

Iy

{
"type": "integer"

}

]
iy
"name": { },

"extensions": { 1},
"extras": { }

174



A.30. JSON Schema for Scene

{
"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "scene.schema.json",
"title": "Scene",
"type": "object",
"description": "The root nodes of a scene.",
"all0f": [ { "$ref": "g1TFChildOfRootProperty.schema.json" } 1,
“properties": {
"nodes": {
"type": "array",
"description": "The indices of each root node.",
"items": {
"$ref": "glTFid.schema.json"
I
"uniqueltems": true,
"minItems": 1
I
"name": { },
"extensions": { 1},
"extras": { }
}
}

175



A.31.JSON Schema for Skin

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"§id": "skin.schema.json",
"title": "Skin",
"type": "object",
"description”: "Joints and matrices defining a skin.",
"all0f": [ { "$ref": "g1TFChildOfRootProperty.schema.json" } 1,
“properties": {
"inverseBindMatrices": {

"all0f": [ { "$ref": "gl1TFid.schema.json" } 1,

"description”: "The index of the accessor containing the floating-point
4x4 inverse-bind matrices.",

"gltf_detailedDescription”: "The index of the accessor containing the
floating-point 4x4 inverse-bind matrices. Its ‘accessor.count' property **MUST** be
greater than or equal to the number of elements of the ‘joints' array. When undefined,
each matrix is a 4x4 identity matrix."

i
"skeleton": {

"al10f": [ { "$ref": "gl1TFid.schema.json" } 1,

"description": "The index of the node used as a skeleton root.",

"gltf_detailedDescription”: "The index of the node used as a skeleton
root. The node **MUST** be the closest common root of the joints hierarchy or a direct
or indirect parent node of the closest common root."

b
"joints": {
"type": "array",
"description": "Indices of skeleton nodes, used as joints in this skin.",
"items": {
"$ref": "glTFid.schema.json"
s
"uniqueltems": true,
"minItems": 1,
"gltf_detailedDescription": "Indices of skeleton nodes, used as joints in
this skin."
b
"name": { },

"extensions": { },
"extras": { }

b

"required": [ "joints" ]

176



A.32. JSON Schema for Texture

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "texture.schema.json",
"title": "Texture",
"type": "object",
"description”: "A texture and its sampler.",
"all0f": [ { "$ref": "g1TFChildOfRootProperty.schema.json" } 1,
“properties": {
"sampler": {

"all0f": [ { "$ref": "gl1TFid.schema.json" } 1,

"description": "The index of the sampler used by this texture. When
undefined, a sampler with repeat wrapping and auto filtering **SHOULD** be used."

k.
"source": {

"al10f": [ { "$ref": "glTFid.schema.json" } 1,

"description”: "The index of the image used by this texture. When
undefined, an extension or other mechanism **SHOULD** supply an alternate texture
source, otherwise behavior is undefined."

y
"name": { },
"extensions": { },
"extras": { }
}
"gltf_webgl": "‘createTexture()', ‘deleteTexture()‘, ‘bindTexture()",
“texImage2D()", and ‘texParameterf()""

}

177



A.33.JSON Schema for Texture Info

"$§schema": "https://json-schema.org/draft/2020-12/schema",
"$§id": "textureInfo.schema.json",
"title": "Texture Info",
"type": "object",
"description": "Reference to a texture.",
"all0f": [ { "$ref": "glTFProperty.schema.json" } 1,
“properties": {
"index": {
"all0f": [ { "$ref": "gl1TFid.schema.json" } 1,
"description": "The index of the texture."
¥
"texCoord": {

"type": "integer",

"description": "The set index of texture's TEXCOORD attribute used for
texture coordinate mapping."”,

"default": 0,

"minimum": 0,

"gltf_detailedDescription": "This integer value is used to construct a
string in the format ‘TEXCOORD_<set index>' which is a reference to a key in
‘mesh.primitives.attributes' (e.g. a value of ‘0" corresponds to ‘TEXCOORD_0'). A mesh
primitive **MUST** have the corresponding texture coordinate attributes for the
material to be applicable to it."

¥
"extensions": { },
"extras": { }

b

"required": [ "index" ]

178



Appendix B: BRDF Implementation

B.1. General

This chapter presents the bidirectional reflectance distribution function (BRDF) of the gITF 2.0
metallic-roughness material. The BRDF describes the reflective properties of the surface of a
physically based material. For a pair of directions, the BRDF returns how much light from the
incoming direction is reflected from the surface in the outgoing direction.

Note

o See Pharr et al. (2016), Chapter 5.6 “Surface Reflection”, for an introduction to
radiometry and the BRDF.

The BRDF of the metallic-roughness material is a linear interpolation of a metallic BRDF and a
dielectric BRDF. The BRDFs share the parameters for roughness and base color. The blending factor
metallic describes the metalness of the material.

material = mix(dielectric_brdf, metal _brdf, metallic)
= (1.0 - metallic) * dielectric_brdf + metallic * metal_brdf

Note
Such a material model based on a linear interpolation of metallic and dielectric
components was introduced by Burley (2012) and adapted by many renderers,
resulting in a wide range of applications supporting it.

o Usually, a material is either metallic or dielectric. A texture provided for metallic
with either 1.0 or 0.0 separates metallic from dielectric regions on the mesh. There

are situations in which there is no clear separation. It may happen that due to anti-
aliasing or mip-mapping there is a portion of metal and a portion of dielectric
within a texel. Furthermore, a material composed of several semi-transparent
layers may be represented as a blend between several single-layered materials
(layering via parameter blending).

The logical structure of the material is presented below, using an abstract notation that describes
the material as a directed acyclic graph (DAG). The vertices correspond to the basic building blocks
of the material model: BRDFs, mixing operators, input parameters, and constants. This is followed
by an informative sample implementation as a set of equations and source code for the BRDFs and
mixing operators.

B.2. Material Structure

B.2.1. Metals

Metallic surfaces reflect most illumination, only a small portion of the light is absorbed by the
material.

179



o Note
See Pharr et al. (2016), Chapter 8.2 “Specular Reflection and Transmission”.

This effect is described by the Fresnel term conductor_fresnel with the wavelength-dependent
refractive index and extinction coefficient. To make parameterization simple, the metallic-
roughness material combines the two quantities into a single, user-defined color value baseColor
that defines the reflection color at normal incidence, also referred to as 0. The reflection color at
grazing incidence is called f90. It is set to 1.0 because the grazing angle reflectance for any material
approaches pure white in the limit. The conductor Fresnel term modulates the contribution of a
specular BRDF parameterized by the roughness parameter.

metal _brdf =
conductor_fresnel(
f@ = baseColor,
bsdf = specular_brdf(
o = roughness M 2))

B.2.2. Dielectrics

Unlike metals, dielectric materials transmit most of the incident illumination into the interior of the
object and the Fresnel term is parameterized only by the refractive index.

o Note
See Pharr et al. (2016), Chapter 8.2 “Specular Reflection and Transmission”.

This makes dielectrics like glass, oil, water or air transparent. Other dielectrics, like most plastic
materials, are filled with particles that absorb or scatter most or all of the transmitted light,
reducing the transparency and giving the surface its colorful appearance.

As a result, dielectric materials are modeled as a Fresnel-weighted combination of a specular BRDF,
simulating the reflection at the surface, and a diffuse BRDF, simulating the transmitted portion of
the light that is absorbed and scattered inside the object. The reflection roughness is given by the
squared roughness of the material. The color of the diffuse BRDF comes from the baseColor. The
amount of reflection compared to transmission is directional-dependent and as such determined by
the Fresnel term. Its index of refraction is set to a fixed value of 1.5, a good compromise for most
opaque, dielectric materials.

dielectric_brdf =
fresnel_mix(
ior = 1.5,
base = diffuse_brdf(
color = baseColor),
layer = specular_brdf(
o = roughness A 2))

180



B.2.3. Microfacet Surfaces

The metal BRDF and the dielectric BRDF are based on a microfacet model.

Note

o The theory behind microfacet models was developed in early works by Torrance
and Sparrow (1967), Cook and Torrance (1982) and others.

A microfacet model describes the orientation of tiny facets (microfacets) on the surface as a
statistical distribution. The distribution determines the orientation of the facets as a random
perturbation around the normal direction of the surface. The perturbation strength depends on the
roughness parameter and varies between 0.0 (smooth surface) and 1.0 (rough surface). A number of
distribution functions have been proposed in the last decades.

The Trowbridge-Reitz / GGX microfacet distribution describes the microsurface as being composed
of perfectly specular, infinitesimal oblate ellipsoids, whose half-height in the normal direction is a
times the radius in the tangent plane. a = 1 gives spheres, which results in uniform reflection in all
directions. This reflection behavior corresponds to a rough surface. a = 0 gives a perfectly specular
surface.

Note

The Trowbridge-Reitz distribution was first described by Trowbridge and Reitz
o (1975). Later Walter et al. (2007) independently developed the same distribution

and called it “GGX”. They show that it is a better fit for measured data than the

Beckmann distribution used by Cook and Torrance (1982) due to its stronger tails.

The mapping a = roughness” results in more perceptually linear changes in the roughness.
o Note
This mapping was suggested by Burley (2012).

The distribution only describes the proportion of each normal on the microsurface. It does not
describe how the normals are organized. For this we need a microsurface profile.

181



Note

The difference between distribution and profile is detailed by Heitz (2014), where
he in addition provides an extensive study of common microfacet profiles. Based
on this work, we suggest using the Smith microsurface profile (originally
developed by Smith (1967)) and its corresponding masking-shadowing function.
Heitz describes the Smith profile as the most accurate model for reflection from
random height fields. It assumes that height and normal between neighboring
points are not correlated, implying a random set of microfacets instead of a

o continuous surface.

Microfacet models often do not consider multiple scattering. The shadowing term
suppresses light that intersects the microsurface a second time. Heitz et al. (2016)
extended the Smith-based microfacet models to include a multiple scattering
component, which significantly improves accuracy of predictions of the model. We
suggest to incorporate multiple scattering whenever possible, either by making use
of the unbiased stochastic evaluation introduced by Heitz, or one of the
approximations presented later, for example by Kulla and Conty (2017) or Turquin
(2019).

B.2.4. Complete Model

The BRDFs and mixing operators used in the metallic-roughness material are summarized in the
following figure.

Dielectric

specular_brdf
a = <roughness>2 \
fresnel_mix {—|
layer
diffuse_brdf base \ mix
color = <baseColor> jor=1.5 bsdfo

bsdfl
weight = <metallic>

Metal

conductor_fresnel ]

specular_brdf +—— 3| bsdf
a= <roughness>2 fO = <baseColor>

Figure 9. BRDFs and Mixing Operators

The gITF Specification is designed to allow applications to choose different lighting
implementations based on their requirements. Some implementations MAY focus on an accurate
simulation of light transport while others MAY choose to deliver real-time performance. Therefore,
any implementation that adheres to the rules for mixing BRDFs is conformant to the gITF
Specification.

In a physically accurate light simulation, the BRDFs MUST follow some basic principles: the BRDF
MUST be positive, reciprocal, and energy conserving. This ensures that the visual output of the
simulation is independent of the underlying rendering algorithm, if it is unbiased.

The unbiased light simulation with physically realistic BRDFs will be the ground-truth for

182



approximations in real-time renderers that are often biased, but still give visually pleasing results.

B.3. Sample Implementation (Informative)

B.3.1. Overview

Often, renderers use approximations to solve the rendering equation, like the split-sum
approximation for image based lighting, or simplify the math to save instructions and reduce
register pressure. However, there are many ways to achieve good approximations, depending on
the platform.

A sample implementation is available at https://github.com/KhronosGroup/glTF-Sample-Viewer/
and provides an example of a WebGL 2.0 implementation of a standard BRDF based on the gITF
material parameters. To achieve high performance in real-time applications, this implementation
uses several approximations and uses non-physical simplifications that break energy-conservation
and reciprocity.

We use the following notation:

* Vis the normalized vector from the shading location to the eye
* L is the normalized vector from the shading location to the light
* Nis the surface normal in the same space as the above values

e H is the half vector, where H = normalize(L + V)

B.3.2. Specular BRDF

The specular reflection specular_brdf(a) is a microfacet BRDF

. GD
MicrofacetBRDF = ——
4|N - L|IN - V|
with the Trowbridge-Reitz/GGX microfacet distribution

a?y*(N - H)
(N -HXa?=1)+1)?

and the separable form of the Smith joint masking-shadowing function

.- 2IN - L|y*(H - L) 2IN - V| x*H - V)
IN - L+y/a?+(1—a?(N - LF|N - V|+y/a?+(1 - a?)(N - V)

where x'(x) denotes the Heaviside function: 1 if x > 0 and 0 if x < 0. See Heitz (2014) for a
derivation of the formulas.

Introducing the visibility function

G
Ve ——
4N LN - V]|

simplifies the original microfacet BRDF to

183


https://github.com/KhronosGroup/glTF-Sample-Viewer/

MicrofacetBRDF = VD
with

b £HH L) LHH V)
IN-L|+y/a?+(1—a®(N-LPIN - V|+/a?+(1 - a?(N - V)

Thus, we have the function

function specular_brdf(a) {
return V. * D

}

B.3.3. Diffuse BRDF

The diffuse reflection diffuse_brdf(color) is a Lambertian BRDF

1
LambertianBRDF = p

multiplied with the color.

function diffuse_brdf(color) {
return (1/pi) * color

}

B.3.4. Fresnel

An inexpensive approximation for the Fresnel term that can be used for conductors and dielectrics
was developed by Schlick (1994):

F=fo+(1—-fy)1—=|V-H|?

The conductor Fresnel conductor_fresnel(f@, bsdf) applies a view-dependent tint to a BSDF:

function conductor_fresnel(f@, bsdf) {
return bsdf * (f0 + (1 - @) * (1 - abs(VdotH))A5)
}

For the dielectric BRDF a diffuse component base and a specular component layer are combined via
fresnel_mix(ior, base, layer). The f@ color is now derived from the index of refraction ior.

function fresnel_mix(ior, base, layer) {
f0 = ((1-ior)/(1+ior))N2
fr =0 + (1 - f0)*(1 - abs(VdotH))"5
return mix(base, layer, fr)

}

184



B.3.5. Metal BRDF and Dielectric BRDF

Now that we have an implementation for all the functions used in the gITF metallic-roughness
material model, we are able to connect the functions according to the graph shown in section
“Complete Model”. By substituting the mixing functions (fresnel_mix, conductor_fresnel) for the
implementation, we arrive at the following BRDFs for the metal and the dielectric component:

metal_brdf = specular_brdf(roughness”2) * (baseColor.rgb + (1 - baseColor.rgb) * (1 -
abs(VdotH))"5)

dielectric_brdf = mix(diffuse_brdf(baseColor.rgb), specular_brdf(roughness?2), 0.04 +
(1 - 0.04) * (1 - abs(VdotH))A5)

Note that the dielectric index of refraction ior = 1.5is now 0 = 0.04.

Metal and dielectric are mixed according to the metalness:

material = mix(dielectric_brdf, metal _brdf, metallic)

Taking advantage of the fact that roughness is shared between metal and dielectric and that the
Schlick Fresnel is used, we can simplify the mix and arrive at the final BRDF for the material:

const black = 0

c_diff = lerp(baseColor.rgb, black, metallic)
f0 = lerp(0.04, baseColor.rgb, metallic)
o = roughness”?

F=10+ (1 - f0) * (1 - abs(VdotH))A5

f diffuse = (1 - F) * (1 / m) * c_diff
f_specular = F * D(a) * G(a) / (4 * abs(VdotN) * abs(LdotN))

material = f_diffuse + f_specular

B.3.6. Discussion

B.3.6.1. Masking-Shadowing Term and Multiple Scattering

The model for specular reflection can be improved in several ways. Heitz (2014) notes that a more
accurate form of the masking-shadowing function takes the correlation between masking and
shadowing due to the height of the microsurface into account. This correlation is accounted for in
the height-correlated masking and shadowing function. Another improvement in accuracy can be
achieved by modeling multiple scattering, see Section Microfacet Surfaces.

B.3.6.2. Schlick’s Fresnel Approximation

Although Schlick’s Fresnel is a good approximation for a wide range of metallic and dielectric

185



materials, there are a couple of reasons to use a more sophisticated solution for the Fresnel term.

Metals often exhibit a “dip” in reflectance near grazing angles, which is not present in the Schlick
Fresnel. Lazanyi and Szirmay-Kalos (2005) extend the Schlick Fresnel with an error term to account
for it. Hoffman (2019) improves the parameterization of this term by introducing an artist-friendly
82 color, the color at an angle of about 82°. An additional color parameter for metals was also
introduced by Gulbrandsen (2014). Gulbrandson calls it “edge tint” and uses it in the full Fresnel
equations instead of Schlick’s approximation. Even though the full Fresnel equations should give a
more accurate result, Hoffman shows that it is worse than Schlick’s approximation in the context of
RGB renderers. As we target RGB renderers and do not provide an additional color parameter for
metals in gITF, we suggest using the original Schlick Fresnel for metals.

The index of refraction of most dielectrics is 1.5. For that reason, the dielectric Fresnel term uses a
fixed f0 = 0.04. The Schlick Fresnel approximates the full Fresnel equations well for an index of
refraction in the range [1.2, 2.2]. The main reason for a material to fall outside this range is
transparency and nested objects. If a transparent object overlaps another transparent object and
both have the same (or similar) index of refraction, the resulting ratio at the boundary is 1 (or close
to 1). According to the full Fresnel equations, there is no (or almost no) reflection in this case. The
reflection intensity computed from the Schlick Fresnel approximation will be too high.
Implementations that care about accuracy in case of nested dielectrics are encouraged to use the
full Fresnel equations for dielectrics. For metals Schlick’s approximation is still a good choice.

B.3.6.3. Coupling Diffuse and Specular Reflection

While the coupling of diffuse and specular components in fresnel_mix as proposed in this section is
simple and cheap to compute, it is not very accurate and breaks a fundamental property that a
physically based BRDF must fulfill — energy conservation. Energy conservation means that a BRDF
must not reflect more light than it receives. Several fixes have been proposed, each with its own
trade-offs regarding performance and quality.

Burley (2012) notes that a common solution found in many models calculates the diffuse Fresnel
factor by evaluating the Fresnel term twice with view and light direction instead of the half vector:
(1-F(NdotL)) * (1-F(NdotV)). While this is energy-conserving, he notes that this weighting results in
significant darkening at grazing angles, an effect they couldn’t observe in their measurements.
They propose some changes to the diffuse BRDF to make it better predict the measurements, but
even the fixed version is still not energy conserving mathematically.

More recently, Jakob et al. (2014) developed a generic framework for computing BSDFs of layered
materials, including multiple scattering within layers. Amongst much more complicated scenarios
it also solves the special case of coupling diffuse and specular components, but it is too heavy for
textured materials, even in offline rendering.

Kulla and Conty (2017) found a solution tailored to the special case of coupling diffuse and specular
components, which is easy to compute. It requires the directional albedo of the Fresnel-weighted
specular BRDF to be precomputed and tabulated, but they found that the function is smooth, and a
low-resolution 3D texture (1623 pixels) is sufficient. Their coupled diffuse-specular model is not only
energy-conserving, but also energy-preserving, meaning that if neither the specular nor the diffuse
component absorb any energy, all energy is reflected.

186



B.4. References

* Burley, B. (2012): Physically-Based Shading at Disney.

* Cook, R. L., and K. E. Torrance (1982): A Reflectance Model for Computer Graphics. ACM
Transactions on Graphics 1 (1), 7-24.

* Gulbrandsen, O. (2014): Artist Friendly Metallic Fresnel
* Heitz, E. (2014): Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs

* Heitz, E., J. Hanika, E. d’Eon, and C. Dachsbacher (2016): Multiple-Scattering Microfacet BSDFs
with the Smith Model

» Naty Hoffman (2019): Fresnel Equations Considered Harmful

» Jakob, W, E. d’Eon, O. Jakob, S. Marschner (2014): A Comprehensive Framework for Rendering
Layered Materials

» Kulla, C., and A. Conty (2017): Revisiting Physically Based Shading at Imageworks
» Lazanyi, I. and L. Szirmay-Kalos (2005): Fresnel term approximations for metals

e Pharr, M., W. Jakob, and G. Humphreys (2016): Physically Based Rendering: From Theory To
Implementation, 3rd edition.

» Schlick, C. (1994): An Inexpensive BRDF Model for Physically-based Rendering. Computer
Graphics Forum 13, 233-246.

* Smith, B. (1967): Geometrical shadowing of a random rough surface. IEEE Transactions on
Antennas and Propagation 15 (5), 668-671.

* Torrance, K. E.,, E. M. Sparrow (1967): Theory for Off-Specular Reflection From Roughened
Surfaces. Journal of the Optical Society of America 57 (9), 1105-1114.

» Trowbridge, T., and K. P. Reitz (1975): Average irregularity representation of a rough surface for
ray reflection. Journal of the Optical Society of America 65 (5), 531-536.

* Turquin E. (2019): Practical multiple scattering compensation for microfacet models

» Walter, B., S. Marschner, H. Li, and K. Torrance (2007): Microfacet models for refraction through
rough surfaces.

187


https://disneyanimation.com/publications/physically-based-shading-at-disney/
https://graphics.pixar.com/library/ReflectanceModel/paper.pdf
https://graphics.pixar.com/library/ReflectanceModel/paper.pdf
http://jcgt.org/published/0003/04/03/paper-lowres.pdf
http://jcgt.org/published/0003/02/03/paper.pdf
https://eheitzresearch.wordpress.com/240-2/
https://eheitzresearch.wordpress.com/240-2/
https://renderwonk.com/publications/mam2019/
https://research.cs.cornell.edu/layered-sg14/
https://research.cs.cornell.edu/layered-sg14/
https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imageworks_slides_v2.pdf
http://wscg.zcu.cz/WSCG2005/Papers_2005/Short/H29-full.pdf
https://www.pbr-book.org/
https://www.pbr-book.org/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.2297&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.2297&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/1138991
https://ieeexplore.ieee.org/document/1138991
https://www.graphics.cornell.edu/~westin/pubs/TorranceSparrowJOSA1967.pdf
https://www.graphics.cornell.edu/~westin/pubs/TorranceSparrowJOSA1967.pdf
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-65-5-531
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-65-5-531
https://blog.selfshadow.com/publications/turquin/ms_comp_final.pdf
https://www.cs.cornell.edu/~srm/publications/EGSR07-btdf.html
https://www.cs.cornell.edu/~srm/publications/EGSR07-btdf.html

Appendix C: Animation Sampler
Interpolation Modes

C.1. Overview

Animation sampler interpolation modes define how to compute values of animated properties for
the timestamps located between the keyframes. When the current (requested) timestamp exists in
the animation data, its associated property value MUST be used as-is, without interpolation.

For the following sections, let

n bhe the total number of keyframes, n > 0;

tx be the timestamp of the k-th keyframe, k €[1, n];

Vk be the animated property value of the k-th keyframe;
tc be the current (requested) timestamp, tk <tc <tk +1;

tq =tk +1— tx be the duration of the interpolation segment;
te—ty

t= T

be the segment-normalized interpolation factor.

The scalar-vector multiplications are per vector component.

C.2. Step Interpolation

This mode is used when the animation sampler interpolation mode is set to STEP.
The interpolated sampler value V: at the current (requested) timestamp tc is computed as follows.

Vi= Vg

C.3. Linear Interpolation

This mode is used when the animation sampler interpolation mode is set to LINEAR and the
animated property is not rotation.

The interpolated sampler value V: at the current (requested) timestamp tc is computed as follows.

vi=(1—-t)*ve+t*ve

C.4. Spherical Linear Interpolation

This mode is used when the animation sampler interpolation mode is set to LINEAR and the
animated property is rotation, i.e., values of the animated property are unit quaternions.

Let
a = arccos(|vy - vi +1]) be the arccosine of the absolute value of the dot product of two consecutive

quaternions;

188



Yk Vk+1

s = ;i be the sign of the dot product of two consecutive quaternions.

T lvg vk s
The interpolated sampler value V: at the timestamp tc is computed as follows.

_sin(a(l-1t)) sin(at)
Ve = sin(a) FVpts? sin(a)

* Vi1

Implementation Note

o Using the dot product’s absolute value for computing a and multiplying Vk+1 by
the dot product’s sign ensure that the spherical interpolation follows the short
path along the great circle defined by the two quaternions.

Implementations MAY approximate these equations to reach application-specific accuracy and/or
performance targets.

Implementation Note

When a is close to zero, spherical linear interpolation turns into regular linear
interpolation.

C.5. Cubic Spline Interpolation
This mode is used when the animation sampler interpolation mode is set to CUBICSPLINE.
An animation sampler that uses cubic spline interpolation MUST have at least 2 keyframes.

For each timestamp stored in the animation sampler, there are three associated keyframe values:
in-tangent, property value, and out-tangent.

Let

ak, Vk, and bk be the in-tangent, the property value, and the out-tangent of the k-th frame
respectively.

The interpolated sampler value V¢ at the timestamp tc is computed as follows.
vi=2t3=3t2+ D) * v+ tg(t3 =262+ t)* by + (=23 + 3t * vy + ta(t3 =t *ay 1

When the animation sampler targets a node’s rotation property, the interpolated quaternion MUST
be normalized before applying the result to the node’s rotation.

When writing out rotation values, exporters SHOULD take care to not write out values that can
result in an invalid quaternion with all zero values being produced by the interpolation.

o Implementation Note
This can be achieved by ensuring that Vx # — Vi +1 for all keyframes.

The first in-tangent @: and last out-tangent b» SHOULD be zeros as they are not used in the spline
calculations.

189



	glTF™ 2.0 Specification
	Table of Contents
	Chapter 1. Foreword
	Chapter 2. Introduction
	2.1. General
	2.2. Document Conventions
	2.2.1. Normative Terminology and References
	2.2.2. Informative Language
	2.2.3. Technical Terminology
	2.2.4. Normative References
	2.2.4.1. External Specifications
	2.2.4.2. Media Type Registrations


	2.3. Motivation and Design Goals (Informative)
	2.4. glTF Basics
	2.5. Versioning
	2.6. File Extensions and Media Types
	2.7. JSON Encoding
	2.8. URIs

	Chapter 3. Concepts
	3.1. General
	3.2. Asset
	3.3. Indices and Names
	3.4. Coordinate System and Units
	3.5. Scenes
	3.5.1. Overview
	3.5.2. Nodes and Hierarchy
	3.5.3. Transformations

	3.6. Binary Data Storage
	3.6.1. Buffers and Buffer Views
	3.6.1.1. Overview
	3.6.1.2. GLB-stored Buffer

	3.6.2. Accessors
	3.6.2.1. Overview
	3.6.2.2. Accessor Data Types
	3.6.2.3. Sparse Accessors
	3.6.2.4. Data Alignment
	3.6.2.5. Accessors Bounds


	3.7. Geometry
	3.7.1. Overview
	3.7.2. Meshes
	3.7.2.1. Overview
	3.7.2.2. Morph Targets

	3.7.3. Skins
	3.7.3.1. Overview
	3.7.3.2. Joint Hierarchy
	3.7.3.3. Skinned Mesh Attributes

	3.7.4. Instantiation

	3.8. Texture Data
	3.8.1. Overview
	3.8.2. Textures
	3.8.3. Images
	3.8.4. Samplers
	3.8.4.1. Overview
	3.8.4.2. Filtering
	3.8.4.3. Wrapping
	3.8.4.4. Example
	3.8.4.5. Non-power-of-two Textures


	3.9. Materials
	3.9.1. Overview
	3.9.2. Metallic-Roughness Material
	3.9.3. Additional Textures
	3.9.4. Alpha Coverage
	3.9.5. Double Sided
	3.9.6. Default Material
	3.9.7. Point and Line Materials

	3.10. Cameras
	3.10.1. Overview
	3.10.2. View Matrix
	3.10.3. Projection Matrices
	3.10.3.1. Overview
	3.10.3.2. Infinite perspective projection
	3.10.3.3. Finite perspective projection
	3.10.3.4. Orthographic projection


	3.11. Animations
	3.12. Specifying Extensions

	Chapter 4. GLB File Format Specification
	4.1. General (Informative)
	4.2. Structure
	4.3. File Extension & Media Type
	4.4. Binary glTF Layout
	4.4.1. Overview
	4.4.2. Header
	4.4.3. Chunks
	4.4.3.1. Overview
	4.4.3.2. Structured JSON Content
	4.4.3.3. Binary buffer



	Chapter 5. Properties Reference
	5.1. Accessor
	5.1.1. accessor.bufferView
	5.1.2. accessor.byteOffset
	5.1.3. accessor.componentType
	5.1.4. accessor.normalized
	5.1.5. accessor.count
	5.1.6. accessor.type
	5.1.7. accessor.max
	5.1.8. accessor.min
	5.1.9. accessor.sparse
	5.1.10. accessor.name
	5.1.11. accessor.extensions
	5.1.12. accessor.extras

	5.2. Accessor Sparse
	5.2.1. accessor.sparse.count
	5.2.2. accessor.sparse.indices
	5.2.3. accessor.sparse.values
	5.2.4. accessor.sparse.extensions
	5.2.5. accessor.sparse.extras

	5.3. Accessor Sparse Indices
	5.3.1. accessor.sparse.indices.bufferView
	5.3.2. accessor.sparse.indices.byteOffset
	5.3.3. accessor.sparse.indices.componentType
	5.3.4. accessor.sparse.indices.extensions
	5.3.5. accessor.sparse.indices.extras

	5.4. Accessor Sparse Values
	5.4.1. accessor.sparse.values.bufferView
	5.4.2. accessor.sparse.values.byteOffset
	5.4.3. accessor.sparse.values.extensions
	5.4.4. accessor.sparse.values.extras

	5.5. Animation
	5.5.1. animation.channels
	5.5.2. animation.samplers
	5.5.3. animation.name
	5.5.4. animation.extensions
	5.5.5. animation.extras

	5.6. Animation Channel
	5.6.1. animation.channel.sampler
	5.6.2. animation.channel.target
	5.6.3. animation.channel.extensions
	5.6.4. animation.channel.extras

	5.7. Animation Channel Target
	5.7.1. animation.channel.target.node
	5.7.2. animation.channel.target.path
	5.7.3. animation.channel.target.extensions
	5.7.4. animation.channel.target.extras

	5.8. Animation Sampler
	5.8.1. animation.sampler.input
	5.8.2. animation.sampler.interpolation
	5.8.3. animation.sampler.output
	5.8.4. animation.sampler.extensions
	5.8.5. animation.sampler.extras

	5.9. Asset
	5.9.1. asset.copyright
	5.9.2. asset.generator
	5.9.3. asset.version
	5.9.4. asset.minVersion
	5.9.5. asset.extensions
	5.9.6. asset.extras

	5.10. Buffer
	5.10.1. buffer.uri
	5.10.2. buffer.byteLength
	5.10.3. buffer.name
	5.10.4. buffer.extensions
	5.10.5. buffer.extras

	5.11. Buffer View
	5.11.1. bufferView.buffer
	5.11.2. bufferView.byteOffset
	5.11.3. bufferView.byteLength
	5.11.4. bufferView.byteStride
	5.11.5. bufferView.target
	5.11.6. bufferView.name
	5.11.7. bufferView.extensions
	5.11.8. bufferView.extras

	5.12. Camera
	5.12.1. camera.orthographic
	5.12.2. camera.perspective
	5.12.3. camera.type
	5.12.4. camera.name
	5.12.5. camera.extensions
	5.12.6. camera.extras

	5.13. Camera Orthographic
	5.13.1. camera.orthographic.xmag
	5.13.2. camera.orthographic.ymag
	5.13.3. camera.orthographic.zfar
	5.13.4. camera.orthographic.znear
	5.13.5. camera.orthographic.extensions
	5.13.6. camera.orthographic.extras

	5.14. Camera Perspective
	5.14.1. camera.perspective.aspectRatio
	5.14.2. camera.perspective.yfov
	5.14.3. camera.perspective.zfar
	5.14.4. camera.perspective.znear
	5.14.5. camera.perspective.extensions
	5.14.6. camera.perspective.extras

	5.15. Extension
	5.16. Extras
	5.17. glTF
	5.17.1. glTF.extensionsUsed
	5.17.2. glTF.extensionsRequired
	5.17.3. glTF.accessors
	5.17.4. glTF.animations
	5.17.5. glTF.asset
	5.17.6. glTF.buffers
	5.17.7. glTF.bufferViews
	5.17.8. glTF.cameras
	5.17.9. glTF.images
	5.17.10. glTF.materials
	5.17.11. glTF.meshes
	5.17.12. glTF.nodes
	5.17.13. glTF.samplers
	5.17.14. glTF.scene
	5.17.15. glTF.scenes
	5.17.16. glTF.skins
	5.17.17. glTF.textures
	5.17.18. glTF.extensions
	5.17.19. glTF.extras

	5.18. Image
	5.18.1. image.uri
	5.18.2. image.mimeType
	5.18.3. image.bufferView
	5.18.4. image.name
	5.18.5. image.extensions
	5.18.6. image.extras

	5.19. Material
	5.19.1. material.name
	5.19.2. material.extensions
	5.19.3. material.extras
	5.19.4. material.pbrMetallicRoughness
	5.19.5. material.normalTexture
	5.19.6. material.occlusionTexture
	5.19.7. material.emissiveTexture
	5.19.8. material.emissiveFactor
	5.19.9. material.alphaMode
	5.19.10. material.alphaCutoff
	5.19.11. material.doubleSided

	5.20. Material Normal Texture Info
	5.20.1. material.normalTextureInfo.index
	5.20.2. material.normalTextureInfo.texCoord
	5.20.3. material.normalTextureInfo.scale
	5.20.4. material.normalTextureInfo.extensions
	5.20.5. material.normalTextureInfo.extras

	5.21. Material Occlusion Texture Info
	5.21.1. material.occlusionTextureInfo.index
	5.21.2. material.occlusionTextureInfo.texCoord
	5.21.3. material.occlusionTextureInfo.strength
	5.21.4. material.occlusionTextureInfo.extensions
	5.21.5. material.occlusionTextureInfo.extras

	5.22. Material PBR Metallic Roughness
	5.22.1. material.pbrMetallicRoughness.baseColorFactor
	5.22.2. material.pbrMetallicRoughness.baseColorTexture
	5.22.3. material.pbrMetallicRoughness.metallicFactor
	5.22.4. material.pbrMetallicRoughness.roughnessFactor
	5.22.5. material.pbrMetallicRoughness.metallicRoughnessTexture
	5.22.6. material.pbrMetallicRoughness.extensions
	5.22.7. material.pbrMetallicRoughness.extras

	5.23. Mesh
	5.23.1. mesh.primitives
	5.23.2. mesh.weights
	5.23.3. mesh.name
	5.23.4. mesh.extensions
	5.23.5. mesh.extras

	5.24. Mesh Primitive
	5.24.1. mesh.primitive.attributes
	5.24.2. mesh.primitive.indices
	5.24.3. mesh.primitive.material
	5.24.4. mesh.primitive.mode
	5.24.5. mesh.primitive.targets
	5.24.6. mesh.primitive.extensions
	5.24.7. mesh.primitive.extras

	5.25. Node
	5.25.1. node.camera
	5.25.2. node.children
	5.25.3. node.skin
	5.25.4. node.matrix
	5.25.5. node.mesh
	5.25.6. node.rotation
	5.25.7. node.scale
	5.25.8. node.translation
	5.25.9. node.weights
	5.25.10. node.name
	5.25.11. node.extensions
	5.25.12. node.extras

	5.26. Sampler
	5.26.1. sampler.magFilter
	5.26.2. sampler.minFilter
	5.26.3. sampler.wrapS
	5.26.4. sampler.wrapT
	5.26.5. sampler.name
	5.26.6. sampler.extensions
	5.26.7. sampler.extras

	5.27. Scene
	5.27.1. scene.nodes
	5.27.2. scene.name
	5.27.3. scene.extensions
	5.27.4. scene.extras

	5.28. Skin
	5.28.1. skin.inverseBindMatrices
	5.28.2. skin.skeleton
	5.28.3. skin.joints
	5.28.4. skin.name
	5.28.5. skin.extensions
	5.28.6. skin.extras

	5.29. Texture
	5.29.1. texture.sampler
	5.29.2. texture.source
	5.29.3. texture.name
	5.29.4. texture.extensions
	5.29.5. texture.extras

	5.30. Texture Info
	5.30.1. textureInfo.index
	5.30.2. textureInfo.texCoord
	5.30.3. textureInfo.extensions
	5.30.4. textureInfo.extras


	Chapter 6. Acknowledgments (Informative)
	6.1. Editors
	6.2. Khronos 3D Formats Working Group and Alumni
	6.3. Special Thanks

	Appendix A: JSON Schema Reference (Informative)
	A.1. JSON Schema for Accessor
	A.2. JSON Schema for Accessor Sparse
	A.3. JSON Schema for Accessor Sparse Indices
	A.4. JSON Schema for Accessor Sparse Values
	A.5. JSON Schema for Animation
	A.6. JSON Schema for Animation Channel
	A.7. JSON Schema for Animation Channel Target
	A.8. JSON Schema for Animation Sampler
	A.9. JSON Schema for Asset
	A.10. JSON Schema for Buffer
	A.11. JSON Schema for Buffer View
	A.12. JSON Schema for Camera
	A.13. JSON Schema for Camera Orthographic
	A.14. JSON Schema for Camera Perspective
	A.15. JSON Schema for Extension
	A.16. JSON Schema for Extras
	A.17. JSON Schema for glTF
	A.18. JSON Schema for glTF Child of Root Property
	A.19. JSON Schema for glTF Id
	A.20. JSON Schema for glTF Property
	A.21. JSON Schema for Image
	A.22. JSON Schema for Material
	A.23. JSON Schema for Material Normal Texture Info
	A.24. JSON Schema for Material Occlusion Texture Info
	A.25. JSON Schema for Material PBR Metallic Roughness
	A.26. JSON Schema for Mesh
	A.27. JSON Schema for Mesh Primitive
	A.28. JSON Schema for Node
	A.29. JSON Schema for Sampler
	A.30. JSON Schema for Scene
	A.31. JSON Schema for Skin
	A.32. JSON Schema for Texture
	A.33. JSON Schema for Texture Info

	Appendix B: BRDF Implementation
	B.1. General
	B.2. Material Structure
	B.2.1. Metals
	B.2.2. Dielectrics
	B.2.3. Microfacet Surfaces
	B.2.4. Complete Model

	B.3. Sample Implementation (Informative)
	B.3.1. Overview
	B.3.2. Specular BRDF
	B.3.3. Diffuse BRDF
	B.3.4. Fresnel
	B.3.5. Metal BRDF and Dielectric BRDF
	B.3.6. Discussion
	B.3.6.1. Masking-Shadowing Term and Multiple Scattering
	B.3.6.2. Schlick’s Fresnel Approximation
	B.3.6.3. Coupling Diffuse and Specular Reflection


	B.4. References

	Appendix C: Animation Sampler Interpolation Modes
	C.1. Overview
	C.2. Step Interpolation
	C.3. Linear Interpolation
	C.4. Spherical Linear Interpolation
	C.5. Cubic Spline Interpolation


