
OpenCL.DebugInfo.100 Information
Extended Instruction Set Specification

Alexey Sotkin, Intel

Version 2.00, Revision 1

Table of Contents
1. Introduction . 3

1.1. Terms . 3

2. Binary Form . 4

2.1. Removing Instructions . 4

2.2. Forward references . 4

3. Enumerations . 5

3.1. Instruction Enumeration . 5

3.2. Debug Info Flags. 6

3.3. Base Type Attribute Encodings . 7

3.4. Composite Types . 7

3.5. Type Qualifiers . 7

3.6. Debug Operations . 7

3.7. Imported Entities. 9

4. Instructions. 10

4.1. Missing Debugging Information. 10

4.2. Compilation Unit . 10

4.3. Type instructions . 11

4.4. Templates . 16

4.5. Global Variables . 18

4.6. Functions . 19

4.7. Location Information . 21

4.8. Local Variables . 23

4.9. Macros . 26

4.10. Imported Entities. 27

5. Validation Rules . 28

6. Issues. 29

7. Revision History . 30

© Copyright 2014-2021 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group,
Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed,
broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos
Group. You may use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the receipt or possession of
this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of
Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that
NO CHARGE is made for the specification and the latest available update of the specification for any
version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG
AS the contents of the specification are not changed in any way. The specification may be incorporated into
a product that is sold as long as such product includes significant independent work developed by the
seller. A link to the current version of this specification on the Khronos Group website should be included
whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this specification, including, without limitation, any implied warranties of merchantability or fitness
for a particular purpose or noninfringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy, completeness,
timeliness, and reliability of the specification. Under no circumstances will the Khronos Group, or any of its
Promoters, Contributors or Members or their respective partners, officers, directors, employees, agents, or
representatives be liable for any damages, whether direct, indirect, special or consequential damages for
lost revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos, SYCL, SPIR, WebGL, EGL, COLLADA, StreamInput, OpenVX, OpenKCam, glTF, OpenKODE,
OpenVG, OpenWF, OpenSL ES, OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX DL are
trademarks and WebCL is a certification mark of the Khronos Group Inc. OpenCL is a trademark of Apple
Inc. and OpenGL and OpenML are registered trademarks and the OpenGL ES and OpenGL SC logos are
trademarks of Silicon Graphics International used under license by Khronos. All other product names,
trademarks, and/or company names are used solely for identification and belong to their respective owners.

1

Contributors and Acknowledgments
• Yaxun Liu, AMD

• Brian Sumner, AMD

• Ben Ashbaugh, Intel

• Alexey Bader, Intel

• Raun Krisch, Intel

• Pratik Ashar, Intel

• John Kessenich, Google

• David Neto, Google

• Neil Henning, Codeplay

• Kerch Holt, Nvidia

• Jaebaek Seo, Google

2

Chapter 1. Introduction
This is the specification of the OpenCL.DebugInfo.100 extended instruction set.

This extended instruction set is imported into a SPIR-V module in the following manner:

<extinst-id> OpExtInstImport "OpenCL.DebugInfo.100"

The instructions below are capable of conveying debug information about the source program.

The design guidelines for these instructions are:

• Sufficient for a back end to generate DWARF debug information for OpenCL C/C++ kernels

• Easy translation between SPIR-V/LLVM

• Clear

• Concise

• Extensible for other languages

• Capable of representing debug information for an optimized IR

1.1. Terms
Lexical scope: One of DebugCompilationUnit, DebugFunction, DebugLexicalBlock, or
DebugTypeComposite.

Local variable: A variable that is invisible in some lexical scopes. It depends on the definition of a local
variable in the high-level language.

DWARF: The DWARF Debugging Standard, which is a debugging file format used by many compilers and
debuggers to support source level debugging.

3

http://www.dwarfstd.org

Chapter 2. Binary Form
This section contains the semantics of the debug info extended instructions using the OpExtInst
instruction.

All Name operands are the <id> of OpString instructions, which represents the name of the entry (type,
variable, function, etc.) as it appears in the source program.

Result Type of all instructions below is the <id> of OpTypeVoid.

Set operand in all instructions below is the result of an OpExtInstImport instruction.

DebugScope, DebugNoScope, DebugDeclare, and DebugValue instructions can interleave with the
instructions within a function. All other instructions from this extended instruction set should be located after
the logical layout section 9 "All type declarations (OpTypeXXX instructions), all constant instructions, and all
global variable declarations …" and before section 10 "All function declaration" in section 2.4 Logical Layout
of a Module of the core SPIR-V specification.

Debug info for source language opaque types is represented by DebugTypeComposite without Members
operands. Size of the composite must be DebugInfoNone and Name must start with @ symbol to avoid
clashes with user defined names.

2.1. Removing Instructions
All instructions in this extended set have no semantic impact and can be safely removed. This is easily
done if all debug instructions are removed together, at once. However, when removing a subset, for
example, inlining a function, there may be dangling references to <id> that have been removed. These can
be replaced with the Result <id> of the DebugInfoNone instruction.

All <id> referred to must be defined (dangling references are not allowed).

2.2. Forward references
Forward references (an operand <id> that appears before the Result <id> defining it) are generally not
allowed, except for the following exceptions:

• Each of DebugTypeComposite Members is a forward reference to a DebugTypeMember,
DebugFunction, or DebugTypeInheritance.

• A DebugFunction Function is a forward reference to an OpFunction.

4

https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#_a_id_logicallayout_a_logical_layout_of_a_module
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#_a_id_logicallayout_a_logical_layout_of_a_module

Chapter 3. Enumerations

3.1. Instruction Enumeration

Instr
uctio

n
num
ber

Instruction name

0 DebugInfoNone

1 DebugCompilationUnit

2 DebugTypeBasic

3 DebugTypePointer

4 DebugTypeQualifier

5 DebugTypeArray

6 DebugTypeVector

7 DebugTypedef

8 DebugTypeFunction

9 DebugTypeEnum

10 DebugTypeComposite

11 DebugTypeMember

12 DebugTypeInheritance

13 DebugTypePtrToMember

14 DebugTypeTemplate

15 DebugTypeTemplateParameter

16 DebugTypeTemplateTemplateParameter

17 DebugTypeTemplateParameterPack

18 DebugGlobalVariable

19 DebugFunctionDeclaration

20 DebugFunction

21 DebugLexicalBlock

22 DebugLexicalBlockDiscriminator

23 DebugScope

24 DebugNoScope

25 DebugInlinedAt

5

Instr
uctio

n
num
ber

Instruction name

26 DebugLocalVariable

27 DebugInlinedVariable

28 DebugDeclare

29 DebugValue

30 DebugOperation

31 DebugExpression

32 DebugMacroDef

33 DebugMacroUndef

34 DebugImportedEntity

35 DebugSource

3.2. Debug Info Flags

Value Flag Name

1 << 0 FlagIsProtected

1 << 1 FlagIsPrivate

1<<0 | 1<<1 FlagIsPublic

1 << 2 FlagIsLocal

1 << 3 FlagIsDefinition

1 << 4 FlagFwdDecl

1 << 5 FlagArtificial

1 << 6 FlagExplicit

1 << 7 FlagPrototyped

1 << 8 FlagObjectPointer

1 << 9 FlagStaticMember

1 << 10 FlagIndirectVariable

1 << 11 FlagLValueReference

1 << 12 FlagRValueReference

1 << 13 FlagIsOptimized

1 << 14 FlagIsEnumClass

1 << 15 FlagTypePassByValue

6

Value Flag Name

1 << 16 FlagTypePassByReference

3.3. Base Type Attribute Encodings
Used by DebugTypeBasic

Encoding code name

0 Unspecified

1 Address

2 Boolean

3 Float

4 Signed

5 SignedChar

6 Unsigned

7 UnsignedChar

3.4. Composite Types
Used by DebugTypeComposite

Tag code name

0 Class

1 Structure

2 Union

3.5. Type Qualifiers
Used by DebugTypeQualifier

Qualifier tag code name

0 ConstType

1 VolatileType

2 RestrictType

3 AtomicType

3.6. Debug Operations
These operations are used to form a DWARF expression. Such expressions provide information about the
current location (described by DebugDeclare) or value (described by DebugValue) of a variable.

7

Operations in an expression are to be applied on a stack. Initially, the stack contains one element: the
address or value of the source variable.
Used by DebugOperation

Operation
encodings

No.
of
Op
era
nd
s

Description

0 Deref 0 Pops the top stack entry,
treats it as an address,
pushes the value retrieved
from that address.

1 Plus 0 Pops the top two entries
from the stack, adds them
together and push the
result.

2 Minus 0 Pops the top two entries
from the stack, subtracts
the former top entry from
the former second to top
entry and push the result.

3 PlusUconst 1 Pops the top stack entry,
adds the addend operand
to it, and pushes the result.
The operand must be a
single word integer literal.

4 BitPiece 2 Describes an object or
value that may be contained
in part of a register or
stored in more than one
location. The first operand
is offset in bit from the
location defined by the
preceding operation. The
second operand is size of
the piece in bits. The
operands must be a single
word integer literals.

5 Swap 0 Swaps the top two stack
values.

8

Operation
encodings

No.
of
Op
era
nd
s

Description

6 Xderef 0 Pops the top two entries
from the stack. Treats the
former top entry as an
address and the former
second to top entry as an
address space. The value
retrieved from the address
in the given address space
is pushed.

7 StackValue 0 Describes an object that
doesn’t exist in memory but
it’s value is known and is at
the top of the DWARF
expression stack.

8 Constu 1 Pushes a constant value
onto the stack. The value
operand must be a single
word integer literal.

9 Fragment 2 Has the same semantics as
BitPiece, but the offset
operand defines location
within the source variable.

3.7. Imported Entities
Used by DebugImportedEntity

Tag code name

0 ImportedModule

1 ImportedDeclaration

9

Chapter 4. Instructions

4.1. Missing Debugging Information

DebugInfoNone

Other instructions can refer to this one in case the debugging information is unknown, not available, or not
applicable.

Result Type must be OpTypeVoid.

5 12 <id>
Result Type

Result <id> <id> Set 0

4.2. Compilation Unit

DebugCompilationUnit

Describe a source compilation unit. A SPIR-V module can contain one or multiple source compilation
units. The Result <id> of this instruction represents a lexical scope.

Result Type must be OpTypeVoid.

Version is version of the SPIRV debug information format.

DWARF Version is version of the DWARF standard this specification is compatible with.

Source is a DebugSource instruction representing text of the source program.

Language is the source programming language of this particular compilation unit. Possible values of this
operand are described in the Source Language section of the core SPIR-V specification.

9 12 <id>
Result
Type

Result
<id>

<id> Set 1 Literal
Number
Version

Literal
Number
DWARF
version

<id> Source Language

DebugSource

Describe the source program. It can be either the primary source file or a file added via a #include
directive.

Result Type must be OpTypeVoid.

File is an OpString holding the name of the source file including its full path.

Text is an OpString that contains text of the source program the SPIR-V module is derived from.

6+ 12 <id>
Result Type

Result <id> <id> Set 35 <id> File Optional
<id> Text

10

4.3. Type instructions

DebugTypeBasic

Describe a basic data type.

Result Type must be OpTypeVoid.

Name is an OpString representing the name of the type as it appears in the source program. May be
empty.

Size is an OpConstant with 32-bit or 64-bit integer type and its value is the number of bits required to hold
an instance of the type.

Encoding describes how the base type is encoded.

8 12 <id>
Result
Type

Result
<id>

<id> Set 2 <id> Name <id> Size Encoding

DebugTypePointer

Describe a pointer or reference data type.

Result Type must be OpTypeVoid.

Base Type is the <id> of a debugging instruction that represents the pointee type.

Storage Class is the class of the memory where the object pointed to is allocated. Possible values of this
operand are described in the Storage Class section of the core SPIR-V specification.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

8 12 <id>
Result
Type

Result
<id>

<id> Set 3 <id> Base Type Storage Class Literal
Flags

DebugTypeQualifier

Describe a const, volatile, or restrict qualified data type. A type with multiple qualifiers are represented as
a sequence of DebugTypeQualifier instructions.

Result Type must be OpTypeVoid.

Base Type is debug instruction that represents the type being qualified.

Type Qualifier is a literal value from the TypeQualifiers table.

7 12 <id>
Result Type

Result <id> <id> Set 4 <id> Base Type Type Qualifier

11

DebugTypeArray

Describe a array data type.

Result Type must be OpTypeVoid.

Base Type is a debugging instruction that describes the element type of the array.

Component Count is the number of elements in the corresponding dimension of the array. The number
and order of Component Count operands must match with the number and order of array dimensions as
they appear in the source program. Component Count must be a Result <id> of an OpConstant,
DebugGlobalVariable, or DebugLocalVariable. If it is an OpConstant, its type must be a 32-bit or 64-bit
integer type. Otherwise its type must be a DebugTypeBasic whose Size is 32 or 64 and whose Encoding
is Unsigned.

7+ 12 <id>
Result Type

Result <id> <id> Set 5 <id> Base Type <id> Component
Count, …

DebugTypeVector

Describe a vector data type.

Result Type must be OpTypeVoid.

Base Type is the <id> of a debugging instruction that describes the type of element of the vector.

Component Count is a single word literal denoting the number of elements in the vector.

7 12 <id>
Result Type

Result <id> <id> Set 6 <id> Base Type Literal Number
Component Count

DebugTypedef

Describe a C/C++ typedef declaration.

Result Type must be OpTypeVoid.

Name is an OpString that represents a new name for the Base Type.

Base Type is a debugging instruction representing the type for which a new name is being declared.

Source is a DebugSource instruction representing text of the source program containing the typedef
declaration.

Line is a single word literal denoting the source line number at which the declaration appears in the
Source.

Column is a single word literal denoting the column number at which the first character of the declaration
appears.

Scope is the <id> of a debug instruction that represents the lexical scope that contains the typedef
declaration.

12

11 12 <id>
Result
Type

Result
<id>

<id>
Set

7 <id>
Name

<id> Base
Type

<id>
Source

Literal
Number
Line

Literal
Number
Column

<id>
Scope

DebugTypeFunction

Describe a function type.

Result Type must be OpTypeVoid.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

Return Type is a debug instruction that represents the type of return value of the function. If the function
has no return value, this operand is OpTypeVoid.

Parameter Types are debug instructions that describe the type of parameters of the function.

7+ 12 <id>
Result
Type

Result
<id>

<id> Set 8 Literal
Flags

<id> Return
Type

Optional <id>,
<id>, …
Parameter
Types

DebugTypeEnum

Describe an enumeration type.

Result Type must be OpTypeVoid.

Name is an OpString holding the name of the enumeration as it appears in the source program.

Underlying Type is a debugging instruction that describes the underlying type of the enum in the source
program. If the underlying type is not specified in the source program, this operand must refer to
DebugInfoNone.

Source is a DebugSource instruction representing text of the source program containing the enum
declaration.

Line is a single word literal denoting the source line number at which the enumeration declaration appears
in the Source.

Column is a single word literal denoting the column number at which the first character of the enumeration
declaration appears.

Scope is the <id> of a debug instruction that represents the lexical scope that contains the enumeration
type.

Size is an OpConstant with 32-bit or 64-bit integer type and its value is the number of bits required to hold
an instance of the enumeration type.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

Enumerators are encoded as trailing pairs of Value and corresponding Name. Values must be the <id> of
OpConstant instructions, with a 32-bit integer result type. Name must be the <id> of an OpString
instruction.

13

13
+

12 <id
>
Re
sult
Typ
e

Re
sult
<id
>

<id
>
Set

9 <id
>
Na
me

<id
>
Un
derl
yin
g
Typ
e

<id
>
So
urc
e

Literal
Number
Line

Literal
Number
Column

<id>
Scope

<id>
Size

Literal
Flags

<id> Value,
<id> Name,
<id> Value,
<id> Name,
…

DebugTypeComposite

Describe a structure, class, or union data type. The Result <id> of this instruction represents a lexical
scope.

Result Type must be OpTypeVoid.

Tag is a literal value from the Composite Types table that specifies the kind of the composite type.

Name is an OpString holding the name of the type as it appears in the source program.

Source is a DebugSource instruction representing text of the source program containing the type
declaration.

Line is a single word literal denoting the source line number at which the type declaration appears in the
Source.

Column is a single word literal denoting the column number at which the first character of the declaration
appears.

Scope is the <id> of a debug instruction that represents the lexical scope that contains the composite
type. It must be one of the following: DebugCompilationUnit, DebugFunction, DebugLexicalBlock, or
DebugTypeComposite.

Linkage Name is an OpString, holding the linkage name or mangled name of the composite.

Size is an OpConstant with 32-bit or 64-bit integer type and its value is the number of bits required to hold
an instance of the composite type.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

Members must be the <id>s of DebugTypeMember, DebugFunction, or DebugTypeInheritance. This
could be a forward reference.

Note: To represent a source language opaque type, this instruction must have no Members operands,
Size operand must be DebugInfoNone, and Name must start with @ to avoid clashes with user defined
names.

1
4
+

1
2

<id>
Res
ult
Typ
e

Res
ult
<id>

<id>
Set

1
0

<id>
Name

Tag <id>
Source

Literal
Numb
er
Line

Literal
Numb
er
Colum
n

<id>
Scope

<id>
Linkag
e
Name

<id>
Size

Literal
Flags

<id>,
<id>,
…
Memb
ers

14

DebugTypeMember

Describe a data member of a structure, class, or union.

Result Type must be OpTypeVoid.

Name is an OpString holding the name of the member as it appears in the source program.

Type is a debug type instruction that represents the type of the member.

Source is a DebugSource instruction representing text of the source program containing the member
declaration.

Line is a single word literal denoting the source line number at which the member declaration appears in
the Source.

Column is a single word literal denoting the column number at which the first character of the member
declaration appears.

Scope is the <id> of a debug instruction that represents a composite type containing this member.

Offset is an OpConstant with integral type, and its value is the memory offset in bits from the beginning of
the Scope type.

Size is an OpConstant with 32-bit or 64-bit integer type and its value is the number of bits the member
occupies within the Scope type.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

Value is an OpConstant representing initialization value in case of const static qualified member in C++.

1
4
+

1
2

<id>
Res
ult
Typ
e

Res
ult
<id>

<id>
Set

1
1

<id>
Name

<id>
Type

<id>
Source

Literal
Numb
er
Line

Literal
Numb
er
Colum
n

<id>
Scope

<id>
Offset

<id>
Size

Flags Option
al <id>
Value

15

DebugTypeInheritance

Describe the inheritance relationship with a parent class or structure. The Result of this instruction can be
used as a member of a composite type.

Result Type must be OpTypeVoid.

Child is a debug instruction representing a derived class or struct in C++.

Parent is a debug instruction representing a class or structure the Child Type is derived from.

Offset is an OpConstant with integral type and its value is the offset of the Parent Type in bits in layout of
the Child Type.

Size is an OpConstant with 32-bit or 64-bit integer type and its value is the number of bits the Parent type
occupies within the Child Type.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

10 12 <id>
Result
Type

Result
<id>

<id> Set 12 <id>
Child

<id>
Parent

<id> Offset <id> Size Fla
gs

DebugTypePtrToMember

Describe the type of an object that is a pointer to a structure or class member.

Result Type must be OpTypeVoid.

Member Type is a debug instruction representing the type of the member.

Parent is a debug instruction, representing a structure or class type.

7 12 <id>
Result Type

Result <id> <id> Set 13 <id> Member Type <id> Parent

4.4. Templates

DebugTypeTemplate

Describe an instantiated template of class, struct, or function in C++.

Result Type must be OpTypeVoid.

Target is a debug instruction representing the class, struct, or function that has template parameter(s).

Parameters are debug instructions representing the template parameters for this particular instantiation.

7 12 <id>
Result Type

Result <id> <id> Set 14 <id> Target <id>… Parameters

16

DebugTypeTemplateParameter

Describe a formal parameter of a C++ template instantiation.

Result Type must be OpTypeVoid.

Name is an OpString holding the name of the template parameter.

Actual Type is a debug instruction representing the actual type of the formal parameter for this particular
instantiation.

If this instruction describes a template value parameter, the Value is represented by an OpConstant with
an integer result type. For a template type parameter, the Value operand must be the Result <id> of
DebugInfoNone.

Source is a DebugSource instruction representing text of the source program containing the template
instantiation.

Line is a single word literal denoting the source line number at which the template parameter declaration
appears in the Source.

Column is a single word literal denoting the column number at which the first character of the template
parameter declaration appears.

11 12 <id>
Result
Type

Result
<id>

<id>
Set

15 <id>
Name

<id>
Actual
Type

<id> Value <id>
Source

Literal
Number
Line

Literal
Number
Column

DebugTypeTemplateTemplateParameter
+ Describe a template template parameter of a C++ template instantiation.

Result Type must be OpTypeVoid.

Name is an OpString holding the name of the template template parameter

Template Name is an OpString holding the name of the template used as template parameter in this
particular instantiation.

Source is a DebugSource instruction representing text of the source program containing the template
instantiation.

Line is a single word literal denoting the source line number at which the template template parameter
declaration appears in the Source

Column is a single word literal denoting column number at which the first character of the template
template parameter declaration appears on the Line

10 12 <id>
Result
Type

Result
<id>

<id>
Set

16 <id> Name <id>
Template
Name

<id> Source Literal
Number
Line

Literal
Number
Column

17

DebugTypeTemplateParameterPack

Describe the expanded template parameter pack in a variadic template instantiation in C++.

Result Type must be OpTypeVoid.

Name is an OpString holding the name of the template parameter pack.

Source is a DebugSource instruction representing text of the source program containing the template
instantiation.

Line is a single word literal denoting the source line number at which the template parameter pack
declaration appears in the Source.

Column is a single word literal denoting the column number at which the first character of the template
parameter pack declaration appears.

Template parameters are DebugTypeTemplateParameters describing the expanded parameter pack in
the variadic template instantiation.

10
+

12 <id>
Result
Type

Result
<id>

<id>
Set

17 <id> Name <id> Source Literal
Number
Line

Literal
Number
Column

<id>…
Template
parameters

4.5. Global Variables

18

DebugGlobalVariable

Describe a source global variable.

Result Type must be OpTypeVoid.

Name is an OpString, holding the name of the variable as it appears in the source program.

Type is a debug instruction that represents the type of the variable.

Source is a DebugSource instruction representing text of the source program containing the source
global variable declaration.

Line is a single word literal denoting the source line number at which the source global variable declaration
appears in the Source.

Column is a single word literal denoting the column number at which the first character of the source
global variable declaration appears.

Scope is the <id> of a debug instruction that represents the lexical scope that contains the source global
variable declaration. It must be one of the following: DebugCompilationUnit, DebugFunction,
DebugLexicalBlock, or DebugTypeComposite.

Linkage Name is an OpString, holding the linkage name of the variable.

Variable is the <id> of the source global variable or constant that is described by this instruction. If the
variable is optimized out, this operand must be DebugInfoNone.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

If the source global variable represents a defining declaration for a C++ static data member of a structure,
class, or union, the optional Static Member Declaration operand refers to the debugging type of the
previously declared variable, i.e. DebugTypeMember.

1
4
+

1
2

<id>
Res
ult
Typ
e

Res
ult
<id>

<id>
Set

1
8

<id>
Name

<id>
Type

<id>
Source

Literal
Numb
er
Line

Literal
Numb
er
Colum
n

<id>
Scope

<id>
Linkag
e
Name

<id>
Variabl
e

Flags Option
al <id>
Static
Memb
er
Declar
ation

4.6. Functions

19

DebugFunctionDeclaration

Describe a function or method declaration.

Result Type must be OpTypeVoid.

Name is an OpString, holding the name of the function as it appears in the source program.

Type is an DebugTypeFunction instruction that represents the type of the function.

Source is a DebugSource instruction representing text of the source program containing the function
declaration.

Line is a single word literal denoting the source line number at which the function declaration appears in
the Source.

Column is a single word literal denoting the column number at which the first character of the function
declaration appears.

Scope is the <id> of a debug instruction that represents the lexical scope that contains the function
declaration.

Linkage Name is an OpString, holding the linkage name of the function.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

1
3

1
2

<id>
Resu
lt
Type

Resu
lt
<id>

<id>
Set

1
9

<id>
Name

<id>
Type

<id>
Source

Literal
Number
Line

Literal
Number
Column

<id>
Scope

<id>
Linkage
Name

Flags

20

DebugFunction

Describe a function or method definition. The Result <id> of this instruction represents a lexical scope.

Result Type must be OpTypeVoid.

Name is an OpString, holding the name of the function as it appears in the source program.

Type is an DebugTypeFunction instruction that represents the type of the function.

Source is a DebugSource instruction representing text of the source program containing the function
definition.

Line is a single word literal denoting the source line number at which the function declaration appears in
the Source.

Column is a single word literal denoting the column number at which the first character of the function
declaration appears.

Scope is the <id> of a debug instruction that represents the lexical scope that contains the function
definition.

Linkage Name is an OpString, holding the linkage name of the function.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

Scope Line a single word literal denoting line number in the source program at which the function lexical
scope begins.

Function is a forward reference to the Result <id> of an OpFunction, which is described by this
instruction. If that function is optimized out, this operand must be the Result <id> of the DebugInfoNone.

Declaration is DebugFunctionDeclaration that represents non-defining declaration of the function.

1
5
+

1
2

<id
>
Res
ult
Typ
e

Res
ult
<id
>

<id
>
Set

2
0

<id>
Name

<id>
Type

<id>
Sourc
e

Literal
Numb
er
Line

Literal
Numb
er
Colum
n

<id>
Scope

<id>
Linka
ge
Name

Flags Literal
Numb
er
Scope
Line

<id>
Functi
on

Optio
nal
<id>
Declar
ation

4.7. Location Information

21

DebugLexicalBlock

Describe a lexical block in the source program. The Result <id> of this instruction represents a lexical
scope.

Result Type must be OpTypeVoid.

Source is a DebugSource instruction representing text of the source program containing the lexical block.

Line is a single word literal denoting the source line number at which the lexical block begins in the
Source.

Column is a single word literal denoting the column number at which the lexical block begins.

Scope is the <id> of a debug instruction that represents the lexical scope containing the lexical block.
Entities in the global lexical scope should have Scope referring to a DebugCompilationUnit.

The presence of the Name operand indicates that this instruction represents a C++ namespace. This
operand refers to an OpString holding the name of the namespace. For anonymous C++ namespaces,
the name must be an empty string.

9+ 12 <id>
Result
Type

Result
<id>

<id>
Set

21 <id> Source Literal
Number
Line

Literal
Number
Column

<id> Scope Optional
<id> Name

DebugLexicalBlockDiscriminator

Distinguish lexical blocks on a single line in the source program.

Result Type must be OpTypeVoid.

Source is a DebugSource instruction representing text of the source program containing the lexical block.

Scope is the <id> of a debug instruction that represents the lexical scope containing the lexical block.

Discriminator is a single word literal denoting a DWARF discriminator value for instructions in the lexical
block.

8 12 <id>
Result
Type

Result
<id>

<id> Set 22 <id> Source Literal Number
Discriminator

<id> Scope

DebugScope

Provide information about a previously declared lexical scope. This instruction delimits the start of a
contiguous group of instructions, to be ended by any of the following: the next end of block, the next
DebugScope instruction, or the next DebugNoScope instruction.

Result Type must be OpTypeVoid.

Scope is a previously declared lexical scope.

Inlined is a DebugInlinedAt instruction that represents the lexical scope and location to where Scope
instructions were inlined.

22

6+ 12 <id>
Result Type

Result <id> <id> Set 23 <id> Scope Optional
<id> Inlined

DebugNoScope

Delimit the end of a contiguous group of instructions started by the previous DebugScope.

Result Type must be OpTypeVoid.

5 12 <id>
Result Type

Result <id> <id> Set 24

DebugInlinedAt

Declare to where instructions grouped together by a DebugScope instruction are inlined. When a function
is inlined, a DebugScope for the function or a part of the function can have an Inlined operand i.e.,
DebugInlinedAt, which means the set of instructions grouped by the DebugScope was inlined to the Line
operand of the DebugInlinedAt of the Scope operand of the DebugInlinedAt.

Result Type must be OpTypeVoid.

Line is a single word literal denoting the line number in the source file to where the range of instructions
were inlined.

Scope is a lexical scope that contains Line.

Inlined is a debug instruction representing the next level of inlining in case of recursive inlining.

7+ 12 <id>
Result
Type

Result
<id>

<id> Set 25 Literal Number
Line

<id> Scope Optional <id>
Inlined

4.8. Local Variables

23

DebugLocalVariable

Describe a local variable.

Result Type must be OpTypeVoid.

Name is an OpString, holding the name of the variable as it appears in the source program.

Type is a debugging instruction that represents the type of the local variable.

Source is a DebugSource instruction representing text of the source program containing the local variable
declaration.

Line is a single word literal denoting the source line number at which the local variable declaration appears
in the Source.

Column is a single word literal denoting the column number at which the first character of the local variable
declaration appears.

Scope is the <id> of a debug instruction that represents the lexical scope that contains the local variable
declaration.

Flags is a single word literal formed by the bitwise-OR of values from the Debug Info Flags table.

If ArgNumber operand is present, this instruction represents a function formal parameter.

1
2
+

1
2

<id>
Resu
lt
Type

Resu
lt
<id>

<id>
Set

2
6

<id>
Name

<id>
Type

<id>
Source

Literal
Number
Line

Literal
Number
Column

<id>
Scope

Literal
Flags

Optional
Literal
Number
ArgNum
ber

DebugInlinedVariable

Describe an inlined local variable.

Result Type must be OpTypeVoid.

Variable is a debug instruction representing a local variable that is inlined.

Inlined is an DebugInlinedAt instruction representing the inline location.

7+ 12 <id>
Result Type

Result <id> <id> Set 27 <id> Variable <id> Inlined

24

DebugDeclare

Define point of declaration of a local variable.

Result Type must be OpTypeVoid.

Local Variable must be an <id> of DebugLocalVariable.

Variable must be the <id> of an OpVariable instruction that defines the local variable.

Expression must be an <id> of a DebugExpression instruction.

8 12 <id>
Result
Type

Result
<id>

<id> Set 28 <id> Local
Variable

<id> Variable <id> Expression

DebugValue

Represent a changing of value of a local variable.

Result Type must be OpTypeVoid.

Local Variable must be an <id> of a DebugLocalVariable.

Value is a Result <id> of a non-debug instruction. The new value of Local Variable is the result of the
evaluation of Expression to Value.

Expression is the <id> of a DebugExpression instruction.

Indexes have the same semantics as the corresponding operand(s) of OpAccessChain.

8+ 12 <id>
Result
Type

Result
<id>

<id> Set 29 <id> Local
Variable

<id> Value <id>
Expression

<id>, <id>, …
Indexes

DebugOperation

Represent a DWARF operation that operates on a stack of values.

Result Type must be OpTypeVoid.

Operation is a DWARF operation from the Debug Operations table.

Operands are zero or more single word literals that the Operation operates on.

6+ 12 <id>
Result Type

Result <id> <id> Set 30 Operation Optional Literal
Operands …

25

DebugExpression

Represent a DWARF expression, which describe how to compute a value or name location during
debugging of a program. This is expressed in terms of DWARF operations that operate on a stack of
values.

Result Type must be OpTypeVoid.

Operation is zero or more ids of DebugOperation.

5+ 12 <id>
Result Type

Result <id> <id> Set 31 Optional <id>…
Operation

4.9. Macros

DebugMacroDef

Represents a macro definition.

Result Type must be OpTypeVoid.

Source is the <id> of an OpString, which contains the name of the file that contains definition of the
macro.

Line is the line number in the source file at which the macro is defined. If Line is zero, the macro definition
is provided by compiler’s command line argument.

Name is the <id> of an OpString, which contains the name of the macro as it appears in the source
program. In the case of a function-like macro definition, no whitespace characters appear between the
name of the defined macro and the following left parenthesis. Formal parameters are separated by a
comma without any whitespace. A right parenthesis terminates the formal parameter list.

Value is the <id> of an OpString, which contains text with definition of the macro.

7+ 12 <id>
Result
Type

Result
<id>

<id> Set 32 <id> Source Literal
Number
Line

<id> Name Optional
Value

DebugMacroUndef

Discontinue previous macro definition.

Result Type must be OpTypeVoid.

Source is the <id> of an OpString, which contains the name of the file in which the macro is undefined.

Line is line number in the source program at which the macro is rendered as undefined.

Macro is the <id> of DebugMacroDef which represent the macro to be undefined.

8 12 <id>
Result
Type

Result
<id>

<id> Set 33 <id> Source Literal Number
Line

<id> Macro

26

4.10. Imported Entities

DebugImportedEntity

Represents a C++ namespace using-directive, namespace alias, or using-declaration.

Name is an OpString, holding the name or alias for the imported entity.

Tag is a literal value from the Imported Entities table which specifies the kind of the imported entity.

Source is a DebugSource instruction representing text of the source program the Entity is being imported
from.

Entity is a debug instruction representing a namespace or declaration that is being imported.

Line is a single word literal denoting the source line number at which the using declaration appears in the
Source.

Column is a single word literal denoting the column number at which the first character of the using
declaration appears.

Scope is the <id> of a debug instruction that represents the lexical scope that contains the namespace or
declaration.

1
2

1
2

<id>
Resul
t Type

Resul
t <id>

<id>
Set

3
4

<id>
Name

Literal
Tag

<id>
Source

<id>
Entity

Literal
Number
Line

Literal
Number
Column

<id>
Scope

27

Chapter 5. Validation Rules
None.

28

Chapter 6. Issues
1. Does the ABI used for the OpenCL C 2.0 blocks feature have to be declared somewhere else in the

module?

RESOLVED: No. Block ABI is out of scope for this specification.

29

Chapter 7. Revision History
Rev Date Author Changes

0.99 Rev 1 2016-11-25 Alexey
Sotkin

Initial revision

0.99 Rev 2 2016-12-08 Alexey
Sotkin

Added details for the type instructions

0.99 Rev 3 2016-12-14 Alexey
Sotkin

Added details for the rest of instructions

0.99 Rev 4 2016-12-21 Alexey
Sotkin

Applied comments after review

0.99 Rev 5 2017-03-22 Alexey
Sotkin

Format the specification as extended instruction set

0.99 Rev 6 2017-04-21 Alexey
Sotkin

Adding File and Line operands

0.99 Rev 7 2017-06-05 Alexey
Sotkin

Moving Flags to operands. Adding several new instructions.

0.99 Rev 8 2017-08-31 Alexey
Sotkin

Replacing File operand by Source operand. Fixing typos.
Formatting

0.99 Rev 9 2017-09-05 Alexey
Sotkin

Clarifying representation of opaque types

0.99 Rev 10 2017-09-13 Alexey
Sotkin

Support of multidimensional arrays. Adding
DebugFunctionDeclaration. Updating debug operations.

0.99 Rev 11 2017-12-13 Alexey
Sotkin

Removing "Op" prefix

0.99 Rev 12 2017-12-13 Alexey
Sotkin

Changing style of enum tokens to CamelCase

1.00 Rev 1 2017-12-14 David
Neto

Approved by SPIR WG on 2017-09-22. Change to 1.00 Rev 1

2.00 Rev 1 2018-12-05 Alexey
Sotkin

Changing the name string in OpExtInstImport instruction.
Adding DebugSource and DebugImportedEntity instructions.
Adding AtomicType to the Type Qualifiers table.
Adding FlagIsEnumClass, FlagTypePassByValue,
FlagTypePassByReference to the Debug Info Flags table.
Adding Fragment to the Debug Operations table.
Adding Linkage Name operand to the DebugTypeComposite
instruction.
Adding Flags operand to the DebugTypeFunction and
DebugLocalVariable instructions.
Adding Language operand to the DebugCompilationUnit
instruction.

2.00 Rev.2 2018-12-19 Alexey
Sotkin

Added description of DebugOperations.
Fixed minor typos and grammatical errors.

30

Rev Date Author Changes

2.00 Rev.2 2020-05-06 Jaebaek
Seo

Revising the overall specification to fix errors, typos, and grammar
errors.
Revising the overall specification to address incorrect or
contradictory expression of semantics.
Adding definition of the lexical scope.
Adding definition of the local variable.
Adding the rule for forward references.
Clarifying the valid location of instructions from this extended
instruction set.

31

	OpenCL.DebugInfo.100 Information Extended Instruction Set Specification
	Table of Contents
	Chapter 1. Introduction
	1.1. Terms

	Chapter 2. Binary Form
	2.1. Removing Instructions
	2.2. Forward references

	Chapter 3. Enumerations
	3.1. Instruction Enumeration
	3.2. Debug Info Flags
	3.3. Base Type Attribute Encodings
	3.4. Composite Types
	3.5. Type Qualifiers
	3.6. Debug Operations
	3.7. Imported Entities

	Chapter 4. Instructions
	4.1. Missing Debugging Information
	4.2. Compilation Unit
	4.3. Type instructions
	4.4. Templates
	4.5. Global Variables
	4.6. Functions
	4.7. Location Information
	4.8. Local Variables
	4.9. Macros
	4.10. Imported Entities

	Chapter 5. Validation Rules
	Chapter 6. Issues
	Chapter 7. Revision History

