
OpenCL Extended Instruction Set
Specification

Ben Ashbaugh, Intel

Version 1.00, Revision 8

Table of Contents
1. Introduction . 4

2. Binary Form . 5

2.1. Math extended instructions . 6

2.2. Integer instructions . 49

2.3. Common instructions . 63

2.4. Geometric instructions . 67

2.5. Relational instructions. 71

2.6. Vector Data Load and Store instructions . 72

2.7. Miscellaneous Vector instructions. 81

2.8. Misc instructions . 83

3. Appendix A: Changes and TBD . 84

3.1. Changes from Version 0.99, Revision 1 . 84

3.2. Changes from Version 0.99, Revision 2 . 84

3.3. Changes from Version 0.99, Revision 3 . 84

3.4. Changes from Version 1.0, Revision 1 . 84

3.5. Changes from Version 1.0, Revision 2 . 84

3.6. Changes from Version 1.0, Revision 3 . 85

3.7. Changes from Version 1.0, Revision 4 . 85

3.8. Changes from Version 1.0, Revision 5 . 85

3.9. Changes from Version 1.0, Revision 6 . 85

3.10. Changes from Version 1.0, Revision 7 . 85

Copyright 2014-2023 The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos. Except as
described by these terms, it or any components may not be reproduced, republished, distributed,
transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written
permission of Khronos.

This Specification has been created under the Khronos Intellectual Property Rights Policy, which is
Attachment A of the Khronos Group Membership Agreement available at
www.khronos.org/files/member_agreement.pdf.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification for any
purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other intellectual property
rights are granted under these terms. Parties desiring to implement the Specification and make use of
Khronos trademarks in relation to that implementation, and receive reciprocal patent license protection
under the Khronos Intellectual Property Rights Policy must become Adopters and confirm the
implementation as conformant under the process defined by Khronos for this Specification; see
https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this Specification, including, without limitation: merchantability, fitness for a particular purpose,
non-infringement of any intellectual property, correctness, accuracy, completeness, timeliness, and
reliability. Under no circumstances will Khronos, or any of its Promoters, Contributors or Members, or their
respective partners, officers, directors, employees, agents or representatives be liable for any damages,
whether direct, indirect, special or consequential damages for lost revenues, lost profits, or otherwise,
arising from or in connection with these materials.

This Specification contains substantially unmodified functionality from, and is a successor to, Khronos
specifications including all versions of "The SPIR Specification", "The OpenGL Shading Language", "The
OpenGL ES Shading Language", as well as all Khronos OpenCL API and OpenCL programming language
specifications.

The Khronos Intellectual Property Rights Policy defines the terms Scope, Compliant Portion, and
Necessary Patent Claims.

Where this Specification uses technical terminology, defined in the Glossary or otherwise, that refer to
enabling technologies that are not expressly set forth in this Specification, those enabling technologies are
EXCLUDED from the Scope of this Specification. For clarity, enabling technologies not disclosed with
particularity in this Specification (e.g. semiconductor manufacturing technology, hardware architecture,
processor architecture or microarchitecture, memory architecture, compiler technology, object oriented
technology, basic operating system technology, compression technology, algorithms, and so on) are NOT to
be considered expressly set forth; only those application program interfaces and data structures disclosed
with particularity are included in the Scope of this Specification.

For purposes of the Khronos Intellectual Property Rights Policy as it relates to the definition of Necessary
Patent Claims, all recommended or optional features, behaviors and functionality set forth in this
Specification, if implemented, are considered to be included as Compliant Portions.

Khronos® and Vulkan® are registered trademarks, and ANARI™, WebGL™, glTF™, NNEF™, OpenVX™,
SPIR™, SPIR-V™, SYCL™, OpenVG™, Vulkan SC™, 3D Commerce™ and Kamaros™ are trademarks of

1

https://www.khronos.org/adopters

The Khronos Group Inc. OpenXR™ is a trademark owned by The Khronos Group Inc. and is registered as
a trademark in China, the European Union, Japan and the United Kingdom. OpenCL™ is a trademark of
Apple Inc. used under license by Khronos. OpenGL® is a registered trademark and the OpenGL ES™ and
OpenGL SC™ logos are trademarks of Hewlett Packard Enterprise used under license by Khronos. ASTC
is a trademark of ARM Holdings PLC. All other product names, trademarks, and/or company names are
used solely for identification and belong to their respective owners.

2

Contributors and Acknowledgments
• Yaxun Liu, AMD

• Brian Sumner, AMD

• Marty Johnson, AMD

• Mandana Baregheh, AMD

• Andrew Richards, Codeplay

• Ben Ashbaugh, Intel

• Alexey Bader, Intel

• Guy Benyei, Intel

• Raun Krisch, Intel

• Boaz Ouriel, Intel

• Yuan Lin, NVIDIA

• Lee Howes, Qualcomm

• Chihong Zang, Qualcomm

• Ben Gaster, Qualcomm

• Jack Liu, Qualcomm

• Ronan Keryell, Xilinx

3

Chapter 1. Introduction
This is the specification of OpenCL.std extended instruction set.

The library is imported into a SPIR-V module in the following manner:

<ext-inst-id> OpExtInstImport "OpenCL.std"

The library can only be imported if Memory Model is set to OpenCL

4

Chapter 2. Binary Form
This section contains the semantics and exact form of execution of OpenCL extended instructions using the
OpExtInst instruction.

In this section we use the following naming conventions:

• void denote an OpTypeVoid.

• half, float and double denote an OpTypeFloat with a width of 16, 32 and 64 bits respectively.

• i8, i16, i32 and i64 denote an OpTypeInt with a width of 8, 16, 32 and 64 bits respectively.

• bool denotes an OpTypeBool.

• size_t denotes an i32 if the Addressing Model is Physical32 and i64 if the Addressing Model is
Physical64.

• vector(n) denotes an OpTypeVector where n indicates the component count.

- vector(n1, n2, …, ni) abbreviates vector(n1), vector(n2), … or vector(ni).

• integer denotes i8, i16, i32 or i64.

• floating-point denotes half, float, double.

• pointer(storage) denotes an OpTypePointer which points to storage Storage Class.

- pointer(constant) denotes an OpTypePointer with UniformConstant Storage Class.

- pointer(generic) denotes an OpTypePointer with Generic Storage Class.

- pointer(global) denotes an OpTypePointer with CrossWorkgroup Storage Class.

- pointer(local) denotes an OpTypePointer with Workgroup Storage Class.

- pointer(private) denotes an OpTypePointer with Function Storage Class.

- pointer(s1, s2, …, si) abbreviates pointer(s1), pointer(s2), … or pointer(si).

• image defines all types of image memory objects (See image encoding section).

• sampler a SPIR-V sampler object (See sampler encoding section).

5

2.1. Math extended instructions
This section describes the list of external math instructions. The external math instructions are categorized
into the following:

• A list of instructions that have scalar or vector argument versions, and,

• A list of instructions that only take scalar float arguments.

The vector versions of the math instructions operate component-wise. The description is per-component.

The math instructions are not affected by the prevailing rounding mode in the calling environment, and
always return the same value as they would if called with the round to nearest even rounding mode.

For environments that allow use of FPFastMathMode decorations on OpExtInst instructions,
FPFastMathMode decorations may be applied to the math instructions.

acos

Compute the arc cosine of x.

Result is an angle in radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

0 <id>
x

acosh

Compute the inverse hyperbolic cosine of x .

Result is an angle in radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

1 <id>
x

6

acospi

Compute acos(x) / pi.

Result is an angle in radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

2 <id>
x

asin

Compute the arc sine of x.

Result is an angle in radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

3 <id>
x

asinh

Compute the inverse hyperbolic sine of x.

Result is an angle in radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

4 <id>
x

7

asinpi

Compute asin(x) / pi.

Result is an angle in radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

5 <id>
x

atan

Compute the arc tangent of x.

Result is an angle in radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

6 <id>
x

atan2

Compute the arc tangent of y / x.

Result is an angle in radians.

Result Type, y and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

7 <id>
y

<id>
x

8

atanh

Compute the hyperbolic arc tangent of x.

Result is an angle in radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

8 <id>
x

atanpi

Compute atan(x) / pi.

Result is an angle in radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

9 <id>
x

atan2pi

Compute atan(y, x) / pi.

Result is an angle in radians.

Result Type, y and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

10 <id>
y

<id>
x

9

cbrt

Compute the cube root of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

11 <id>
x

ceil

Round x to integral value using the round to positive infinity rounding mode.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

12 <id>
x

copysign

Returns x with its sign changed to match the sign of y.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

13 <id>
x

<id>
y

cos

Compute the cosine of x radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

10

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

14 <id>
x

11

cosh

Compute the hyperbolic cosine of x radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

15 <id>
x

cospi

Compute cos(x) / pi radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

16 <id>
x

erfc

Complementary error function of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

17 <id>
x

erf

Error function of x encountered in integrating the normal distribution.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

12

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

18 <id>
x

13

exp

Compute the base-e exponential of x. (i.e. ex)

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

19 <id>
x

exp2

Computes 2 raised to the power of x. (i.e. 2x)

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

20 <id>
x

exp10

Computes 10 raised to the power of x. (i.e. 10x)

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

21 <id>
x

expm1

Computes ex - 1.0 .

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

14

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

22 <id>
x

15

fabs

Compute the absolute value of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

23 <id>
x

fdim

x - y if x > y, +0 if x is less than or equal to y.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

24 <id>
x

<id>
y

floor

Round x to the integral value using the round to negative infinity rounding mode.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

25 <id>
x

fma

Compute the correctly rounded floating-point representation of the sum of c with the infinitely precise
product of a and b. Rounding of intermediate products shall not occur. Edge case results are per the IEEE
754-2008 standard.

Result Type, a, b and c must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

16

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

26 <id>
a

<id>
b

<id>
c

17

fmax

Returns y if x < y, otherwise it returns x. If one operand is a NaN, fmax returns the other argument. If
both arguments are NaNs, fmax returns a NaN.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: fmax behaves as defined by C99 and may not match the IEEE 754-2008 definition for
maxNum with regard to signaling NaNs. Specifically, signaling NaNs may behave as quiet NaNs

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

27 <id>
x

<id>
y

fmin

Returns y if y < x, otherwise it returns x. If one operand is a NaN, fmin returns the other argument. If
both arguments are NaNs, fmin returns a NaN.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: fmin behaves as defined by C99 and may not match the IEEE 754-2008 definition for minNum
with regard to signaling NaNs. Specifically, signaling NaNs may behave as quiet NaNs

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

28 <id>
x

<id>
y

fmod

Modulus. Returns x - y * trunc(x/y).

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

29 <id>
x

<id>
y

18

fract

Returns fmin(x - floor(x), 0x1.fffffep-1f). floor(x) is returned in ptr.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

ptr must be a pointer(global, local, private, generic) to floating-point or vector(2,3,4,8,16) of floating-
point values.

All of the operands, including the Result Type operand, must be of the same type, or must be a pointer
to the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

30 <id>
x

<id>
ptr

frexp

Extract the mantissa and exponent from x. The Result Type holds the mantissa, and exp points to the
exponent. For each component the mantissa returned is a floating-point with magnitude in the interval
[1/2, 1) or 0. Each component of x equals mantissa returned * 2exp.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

exp must be a pointer(global, local, private, generic) to i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x operands must be of the same type. exp operand must point to an i32 with the
same component count as Result Type and x operands.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

31 <id>
x

<id>
exp

hypot

Compute the value of the square root of x2+ y2 without undue overflow or underflow.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

32 <id>
x

<id>
y

19

ilogb

Return the exponent of x as an i32 value.

Result Type must be i32 or vector(2,3,4,8,16) of i32 values.

x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must have the same component count.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

33 <id>
x

ldexp

Multiply x by 2 to the power k.

k must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must be of the same type. k operand must have the same component
count as Result Type and x operands.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

34 <id>
x

<id>
k

lgamma

Log gamma function of x. Returns the natural logarithm of the absolute value of the
gamma function.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

35 <id>
x

20

lgamma_r

Log gamma function of x. Returns the natural logarithm of the absolute value of the gamma function.
The sign of the gamma function is returned in the signp operand

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

signp must be a pointer(global, local, private, generic) to i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x operands must be of the same type. signp operand must point to an i32 with the
same component count as Result Type and x operands.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

36 <id>
x

<id>
signp

log

Compute the natural logarithm of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

37 <id>
x

log2

Compute the base 2 logarithm of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

38 <id>
x

21

log10

Compute the base 10 logarithm of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

39 <id>
x

log1p

Compute loge(1.0 + x).

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

40 <id>
x

logb

Compute the exponent of x, which is the integral part of logr | x |.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

41 <id>
x

22

mad

Computes a * b + c. mad may compute a * b + c with reduced accuracy in the embedded profile - see the
OpenCL SPIR-V Environment specification for details. On some hardware the mad instruction may
provide better performance than the expanded computation of a * b + c.

Result Type, a, b and c must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: For some usages, e.g. mad(a, b, -a * b), the definition of mad is loose enough that almost any
result is allowed from mad for some values of a and b.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

42 <id>
a

<id>
b

<id>
c

maxmag

Returns x if | x | > | y | , y if | y | > | x | , otherwise fmax(x, y).

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

43 <id>
x

<id>
y

minmag

Returns x if | x | < | y |, y if | y | < | x |, otherwise fmin(x, y).

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

44 <id>
x

<id>
y

23

modf

Decompose a floating-point number. The modf instruction breaks the operand x into integral and
fractional parts, each of which has the same sign as the operand. It stores the integral part in the
object pointed to by iptr

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

iptr must be a pointer(global, local, private, generic) to floating-point or vector(2,3,4,8,16) of floating-
point values.

All of the operands, including the Result Type operand, must be of the same type, or must be a pointer
to the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

45 <id>
x

<id>
iptr

nan

Returns a quiet NaN. The nancode may be placed in the significand of the resulting NaN.

Result Type must be floating-point or vector(2,3,4,8,16) of floating-point values.

nancode must be integer or vector(2,3,4,8,16) of integer values.

Result Type and nancode operands must have the same component count. The primitive
data type size of nancode and Result Type must be equal.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

46 <id>
nancode

24

nextafter

Computes the next representable floating-point value following x in the direction of y. Thus, if y is less
than x, nextafter returns the largest representable floating-point number less than x.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

47 <id>
x

<id>
y

pow

Compute x to the power y.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

48 <id>
x

<id>
y

pown

Compute x to the power y, where y is an i32 integer.

y must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must be of the same type. y operand must have the same component
count as Result Type and x operands.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

49 <id>
x

<id>
y

25

powr

Compute x to the power y, where x is >= 0.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

50 <id>
x

<id>
y

remainder

Compute the value r such that r = x - n*y, where n is the integer nearest the exact value of x/y. If there
are two integers closest to x/y, n shall be the even one. If r is zero, it is given the same sign as x.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

51 <id>
x

<id>
y

remquo

The remquo instruction computes the value r such that r = x - k*y, where k is the integer nearest the exact
value of x/y. If there are two integers closest to x/y, k shall be the even one. If r is zero, it is given the same
sign as x. This is the same value that is returned by the remainder instruction. remquo also calculates at
least the lower seven bits of the integral quotient x/y, and gives that value the same sign as x/y. It stores
this signed value in the object pointed to by quo.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

quo must be a pointer(global, local, private, generic) to i32 or vector(2,3,4,8,16) of i32 values.

Result Type, x and y operands must be of the same type. quo operand must point to an i32 with the same
component count as Result Type, x and y operands.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

52 <id>
x

<id>
y

<id>
quo

26

rint

Round x to integral value (using round to nearest even rounding mode) in floating-point
format.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

53 <id>
x

27

rootn

Compute x to the power 1/y.

y must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must be of the same type. y operand must have the same component
count as Result Type and x operands.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

54 <id>
x

<id>
y

round

Return the integral value nearest to x rounding halfway cases away from zero, regardless
of the current rounding direction.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

55 <id>
x

rsqrt

Compute inverse square root of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

56 <id>
x

28

sin

Compute sine of x radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

57 <id>
x

sincos

Compute sine and cosine of x radians. The computed sine is the return value and computed cosine is
returned in cosval.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

cosval must be a pointer(global, local, private, generic) to floating-point or vector(2,3,4,8,16) of
floating-point values.

All of the operands, including the Result Type operand, must be of the same type, or must be a pointer
to the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

58 <id>
x

<id>
cosval

sinh

Compute hyperbolic sine of x radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

59 <id>
x

29

sinpi

Compute sin (pi x) radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

60 <id>
x

30

sqrt

Compute square root of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

61 <id>
x

tan

Compute tangent of x radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

62 <id>
x

tanh

Compute hyperbolic tangent of x radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

63 <id>
x

tanpi

Compute tan (pi x) radians.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

31

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

64 <id>
x

32

tgamma

Compute the gamma function of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

65 <id>
x

trunc

Round x to integral value using the round to zero rounding mode.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

66 <id>
x

half_cos

Compute cosine of x radians. The resulting value is undefined if x is not in the range -216

… +216.ha

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

67 <id>
x

half_divide

Compute x / y.

Result Type, x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

33

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

68 <id>
x

<id>
y

34

half_exp

Compute the base-e exponential of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

69 <id>
x

half_exp2

Compute the base 2 exponential of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

70 <id>
x

half_exp10

Compute the base 10 exponential of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

71 <id>
x

half_log

Compute the natural logarithm of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

35

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

72 <id>
x

36

half_log2

Compute the base 2 logarithm of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

73 <id>
x

half_log10

Compute the base 10 logarithm of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

74 <id>
x

half_powr

Compute x to the power y, where x is >= 0.

Result Type, x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

75 <id>
x

<id>
y

half_recip

Compute the reciprocal of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

37

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

76 <id>
x

38

half_rsqrt

Compute the inverse square root of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

77 <id>
x

half_sin

Compute the sine of x radians. The resulting value is undefined if x is not in the range -
216 … +216.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

78 <id>
x

half_sqrt

Compute the square root of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

79 <id>
x

half_tan

Compute tangent value of x radians. The resulting values are undefined if x is not in the
range -216 … +216.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

39

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

80 <id>
x

40

native_cos

Compute cosine of x radians over an implementation-defined range. The maximum error
is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

81 <id>
x

native_divide

Compute x / y over an implementation-defined range. The maximum error is implementation-defined.

Result Type, x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically has better
performance compared to the corresponding non-native instruction. Support for denormal values is
implementation-defined for native instructions.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

82 <id>
x

<id>
y

native_exp

Compute the base-e exponential of x over an implementation-defined range. The
maximum error is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

41

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

83 <id>
x

42

native_exp2

Compute the base- 2 exponential of x over an implementation-defined range. The
maximum error is implementation-defined..

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

84 <id>
x

native_exp10

Compute the base- 10 exponential of x over an implementation-defined range. The
maximum error is implementation-defined..

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

85 <id>
x

43

native_log

Compute natural logarithm of x over an implementation-defined range. The maximum
error is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

86 <id>
x

native_log2

Compute a base 2 logarithm of x over an implementation-defined range. The maximum
error is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

87 <id>
x

44

native_log10

Compute a base 10 logarithm of x over an implementation-defined range. The maximum
error is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

88 <id>
x

native_powr

Compute x to the power y, where x is >= 0.

Result Type, x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically has better
performance compared to the corresponding non-native instruction. Support for denormal values is
implementation-defined for native instructions.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

89 <id>
x

<id>
y

45

native_recip

Compute reciprocal of x over an implementation-defined range. The range of x and y are
implementation-defined. The maximum error is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

90 <id>
x

native_rsqrt

Compute inverse square root of x over an implementation-defined range. The maximum
error is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

91 <id>
x

46

native_sin

Compute sine of x radians over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

92 <id>
x

native_sqrt

Compute the square root of x over an implementation-defined range. The maximum error
is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

93 <id>
x

47

native_tan

Compute tangent value of x radians over an implementation-defined range. The
maximum error is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction may map to one or more native device instructions and typically
has better performance compared to the corresponding non-native instruction. Support
for denormal values is implementation-defined for native instructions.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

94 <id>
x

48

2.2. Integer instructions
This section describes the list of integer instructions that take scalar or vector arguments. The vector
versions of the integer instructions operate component-wise. The description is per-component.

s_abs

Returns |x|, where x is treated as signed integer.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

This instruction can be decorated with NoSignedWrap.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

141 <id>
x

s_abs_diff

Returns | x - y | without modulo overflow, where x and y are treated as signed integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

142 <id>
x

<id>
y

s_add_sat

Returns the saturated value of x + y, where x and y are treated as signed integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

143 <id>
x

<id>
y

49

u_add_sat

Returns the saturated value of x + y, where x and y are treated as unsigned integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

144 <id>
x

<id>
y

s_hadd

Returns the value of (x + y) >> 1, where x and y are treated as signed integers. The intermediate sum
does not modulo overflow.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

145 <id>
x

<id>
y

u_hadd

Returns the value of (x + y) >> 1, where x and y are treated as unsigned integers. The intermediate
sum does not modulo overflow.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

146 <id>
x

<id>
y

s_rhadd

Returns the value of (x + y + 1) >> 1, where x and y are treated as signed integers. The intermediate
sum does not modulo overflow.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

50

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

147 <id>
x

<id>
y

u_rhadd

Returns the value of (x + y + 1) >> 1, where x and y are treated as unsigned integers. The
intermediate sum does not modulo overflow.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

148 <id>
x

<id>
y

s_clamp

Returns s_min(s_max(x,minval),maxval), where x, minval, and maxval are treated as signed integers. The
resulting values are undefined if minval > maxval.

Result Type, x, minval and maxval must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

149 <id>
x

<id>
minval

<id>
maxval

u_clamp

Returns u_min(u_max(x,minval),maxval), where x, minval, and maxval are treated as unsigned integers.
The resulting values are undefined if minval > maxval.

Result Type, x, minval and maxval must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

150 <id>
x

<id>
minval

<id>
maxval

51

clz

Returns the number of leading 0 bits in x, starting at the most significant bit position. If x
is 0, returns the size in bits of the type of x or component type of x, if x is a vector.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

151 <id>
x

ctz

Returns the count of trailing 0 bits in x. If x is 0, returns the size in bits of the type of x or
component type of x, if x is a vector.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

152 <id>
x

s_mad_hi

Returns mul_hi(a, b) + c, where a,b and c are treated as signed integers.

Result Type, a, b and c must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

153 <id>
a

<id>
b

<id>
c

u_mad_sat

Returns x * y + z and saturates the result where x, y and z are treated as unsigned integers.

Result Type, x, y and z must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

52

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

154 <id>
x

<id>
y

<id>
z

s_mad_sat

Returns x * y + z and saturates the result where x, y and z are treated as signed integers.

Result Type, x, y and z must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

155 <id>
x

<id>
y

<id>
z

53

s_max

Returns y if x < y, otherwise it returns x, where x and y are treated as signed integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

156 <id>
x

<id>
y

u_max

Returns y if x < y, otherwise it returns x, where x and y are treated as unsigned integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

157 <id>
x

<id>
y

s_min

Returns y if y < x, otherwise it returns x, where x and y are treated as signed integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

158 <id>
x

<id>
y

u_min

Returns y if y < x, otherwise it returns x, where x and y are treated as unsigned integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

54

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

159 <id>
x

<id>
y

55

s_mul_hi

Computes x * y and returns the high half of the product of x and y, where x and y are treated as
signed integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

160 <id>
x

<id>
y

rotate

For each element in v, the bits are shifted left by the number of bits given by the corresponding
element in i. Bits shifted off the left side of the element are shifted back in from the right.

Result Type, v and i must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

161 <id>
v

<id>
i

s_sub_sat

Returns the saturated value of x - y, where x and y are treated as signed integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

162 <id>
x

<id>
y

u_sub_sat

Returns the saturated value of x - y, where x and y are treated as unsigned integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

56

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

163 <id>
x

<id>
y

57

u_upsample

If hi and lo component type is i8:

Result = ((upcast…to i16)hi << 8) | lo

If hi and lo component type is i16:

Result = ((upcast…to i32)hi << 16) | lo

If hi and lo component i32:

Result = ((upcast…to i64)hi << 32) | lo

hi and lo are treated as unsigned integers.

hi and lo must be i8, i16 or i32 or vector(2,3,4,8,16) of i8, i16 or i32 values.

Result Type must be i16, i32 or i64 or vector(2,3,4,8,16) of i16, i32 or i64 values.

hi and lo operands must be of the same type. If hi and lo component type is i8, the Result Type component
type must be i16. If hi and lo component type is i16, the Result Type component type must be i32. If hi and
lo component type is i32, the Result Type component type must be i64. Result Type must have the same
component count as hi and lo operands.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

164 <id>
hi

<id>
lo

58

s_upsample

If hi and lo component type is i8:

Result = ((upcast…to i16)hi << 8) | lo

If hi and lo component type is i16:

Result = ((upcast…to i32)hi << 16) | lo

If hi and lo component i32:

Result = ((upcast…to i64)hi << 32) | lo

hi is treated as a signed integer and lo is treated as an unsigned integer.

hi and lo must be i8, i16 or i32 or vector(2,3,4,8,16) of i8, i16 or i32 values.

Result Type must be i16, i32 or i64 or vector(2,3,4,8,16) of i16, i32 or i64 values.

hi and lo operands must be of the same type. If hi and lo component type is i8, the Result Type component
type must be i16. If hi and lo component type is i16, the Result Type component type must be i32. If hi and
lo component type is i32, the Result Type component type must be i64. Result Type must have the same
component count as hi and lo operands.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

165 <id>
hi

<id>
lo

popcount

Returns the number of non-zero bits in x.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

166 <id>
x

59

s_mad24

Multiply two 24-bit integer values x and y and add the 32-bit integer result to the 32-bit integer z. Refer to
definition of s_mul24 to see how the 24-bit integer multiplication is performed.

Result Type, x, y and z must be i32 or vector(2,3,4,8,16) of i32 values.

All of the operands, including the Result Type operand, must be of the same type.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

167 <id>
x

<id>
y

<id>
z

u_mad24

Multiply two 24-bit integer values x and y and add the 32-bit integer result to the 32-bit integer z. Refer to
definition of u_mul24 to see how the 24-bit integer multiplication is performed.

Result Type, x, y and z must be i32 or vector(2,3,4,8,16) of i32 values.

All of the operands, including the Result Type operand, must be of the same type.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

168 <id>
x

<id>
y

<id>
z

s_mul24

Multiply two 24-bit integer values x and y, where x and y are treated as signed integers. x and y are 32-bit
integers but only the low-order 24 bits are used to perform the multiplication. s_mul24 should only be used
if values in x and y are in the range [-223, 223-1]. If x and y are not in this range, the multiplication result is
implementation-defined.

Result Type, x and y must be i32 or vector(2,3,4,8,16) of i32 values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

169 <id>
x

<id>
y

60

u_mul24

Multiply two 24-bit integer values x and y, where x and y are treated as unsigned integers. x and y are 32-
bit integers but only the low-order 24 bits are used to perform the multiplication. u_mul24 should only be
used if values in x and y are in the range [0, 224-1]. If x and y are not in this range, the multiplication result
is implementation-defined.

Result Type, x and y must be i32 or vector(2,3,4,8,16) of i32 values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

170 <id>
x

<id>
y

u_abs

Returns |x|, where x is treated as unsigned integer.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

201 <id>
x

u_abs_diff

Returns | x - y | without modulo overflow, where x and y are treated as unsigned integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

202 <id>
x

<id>
y

61

u_mul_hi

Computes x * y and returns the high half of the product of x and y, where x and y are treated as
unsigned integers.

Result Type, x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

203 <id>
x

<id>
y

u_mad_hi

Returns mul_hi(a, b) + c, where a,b and c are treated as unsigned integers.

Result Type, a, b and c must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

204 <id>
a

<id>
b

<id>
c

62

2.3. Common instructions
This section describes the list of common instructions that take scalar or vector arguments. The vector
versions of the integer instructions operate component-wise. The description is per-component. The
common instructions are implemented using the round to nearest even rounding mode.

For environments that allow use of FPFastMathMode decorations on OpExtInst instructions,
FPFastMathMode decorations may be applied to the common instructions.

fclamp

Returns fmin(fmax(x, minval), maxval). The resulting values are undefined if minval > maxval.

Result Type, x, minval and maxval must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

95 <id>
x

<id>
minval

<id>
maxval

degrees

Converts radians to degrees, i.e. (180 / pi) * radians.

Result Type and radians must be floating-point or vector(2,3,4,8,16) of floating-point
values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

96 <id>
radians

fmax_common

Returns y if x < y, otherwise it returns x. If x or y are infinite or NaN, the resulting values are
undefined.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

97 <id>
x

<id>
y

63

fmin_common

Returns y if y < x, otherwise it returns x. If x or y are infinite or NaN, the resulting values are
undefined.

Result Type, x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

98 <id>
x

<id>
y

mix

Returns the linear blend of x & y implemented as:

x + (y - x) * a

Result Type, x, y and a must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction can be implemented using contractions such as mad or fma.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

99 <id>
x

<id>
y

<id>
a

radians

Converts degrees to radians, i.e. (pi / 180) * degrees.

Result Type and degrees must be floating-point or vector(2,3,4,8,16) of floating-point
values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

100 <id>
degrees

64

step

Returns 0.0 if x < edge, otherwise it returns 1.0.

Result Type, edge and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

101 <id>
edge

<id>
x

smoothstep

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth Hermite interpolation between 0 and
1, if edge0 < x < edge1.

This is equivalent to :

t = fclamp((x - edge0) / (edge1 - edge0), 0, 1);

return t * t * (3 - 2 * t);

The resulting values are undefined if edge0 >= edge1 or if x, edge0 or edge1 is a NaN.

Result Type, edge0, edge1 and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This instruction can be implemented using contractions such as mad or fma.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

102 <id>
edge0

<id>
edge1

<id>
x

sign

Returns 1.0 if x > 0, -0.0 if x = -0.0, +0.0 if x = +0.0, or -1.0 if x < 0. Returns 0.0 if x is a
NaN.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

65

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

103 <id>
x

66

2.4. Geometric instructions
This section describes the list of geometric instructions. In this section x,y,z and w denote the first, second,
third and fourth component respectively, of vectors with 3 and four components. The geometric instructions
are implemented using the round to nearest even rounding mode.

Note: The geometric instructions can be implemented using contractions such as mad or fma

For environments that allow use of FPFastMathMode decorations on OpExtInst instructions,
FPFastMathMode decorations may be applied to the geometric instructions.

cross

Returns the cross product of p0.xyz and p1.xyz.

If the vector component count is 4, the w component returned is 0.0.

Result Type, p0 and p1 must be vector(3,4) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

104 <id>
p0

<id>
p1

distance

Returns the distance between p0 and p1. This is calculated as length(p0 - p1).

Result Type must be floating-point.

p0 and p1 must be floating-point or vector(2,3,4) of floating-point values.

p0 and p1 operands must have the same type. Result Type, p0 and p1 operands must have the same
component type

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

105 <id>
p0

<id>
p1

67

length

Return the length of vector p, i.e. sqrt(p.x2 + p.y2 + …)

Result Type must be floating-point.

p must be floating-point or vector(2,3,4) of floating-point values.

Result Type and p operands must have the same component type

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

106 <id>
p

68

normalize

Returns a vector in the same direction as p but with a length of 1.

Result Type and p must be floating-point or vector(2,3,4) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

107 <id>
p

fast_distance

Returns fast_length(p0 - p1).

Result Type must be floating-point.

p0 and p1 must be floating-point or vector(2,3,4) of floating-point values.

p0 and p1 operands must have the same type. Result Type, p0 and p1 operands must have the same
component type

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

108 <id>
p0

<id>
p1

fast_length

Return the length of vector p computed as: half_sqrt(p.x2 + p.y2 + …)

Result Type must be floating-point.

p must be vector(2,3,4) of floating-point values.

Result Type and p operands must have the same component type

6 12 <id>
Result Type

Result <id> extended
instructions
set <id>

109 <id>
p

69

fast_normalize

Returns a vector in the same direction as p but with a length of 1 computed as:

p * half_rsqrt(p.x2 + p.y2 …)

The result shall be within 8192 ulps error from the infinitely precise result of:

if (all(p == 0.0f)) { result = p; }

else { result = p / sqrt(p.x2 + p.y2 + …); }

with the following exceptions :

1) If the sum of squares is greater than FLT_MAX then the value of the floating-point values in the result
vector are undefined.

2) If the sum of squares is less than FLT_MIN then the implementation may return back p.

3) If the device is in "denorms are flushed to zero" mode, individual operand elements with magnitude less
than sqrt(FLT_MIN) may be flushed to zero before proceeding with the calculation.

Result Type and p must be floating-point or vector(2,3,4) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 12 <id>
Result Type

Result <id> extended
instructions set
<id>

110 <id>
p

70

2.5. Relational instructions
This section describes the list of relational instructions that take scalar or vector arguments. The vector
versions of the integer instructions operate component-wise. The description is per-component.

bitselect

Each bit of the result is the corresponding bit of a if the corresponding bit of c is 0. Otherwise it is the
corresponding bit of b.

Result Type, a, b and c must be floating-point or integer or vector(2,3,4,8,16) of floating-point or integer
values.

All of the operands, including the Result Type operand, must be of the same type.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

186 <id>
a

<id>
b

<id>
c

select

For each component of a vector type, the result is a if the most significant bit of c is zero, otherwise it is b.

For a scalar type, the result is a if c is zero, otherwise it is b.

c must be integer or vector(2,3,4,8,16) of integer values.

Result Type, a and b must be floating-point or integer or vector(2,3,4,8,16) of floating-point or integer
values.

Result Type, a and b must have the same type. c operand must have the same component count and
component bit width as the rest of the operands.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

187 <id>
a

<id>
b

<id>
c

71

2.6. Vector Data Load and Store instructions
This section describes the list of instructions that allow reading and writing of vector types from a pointer to
memory.

For environments that allow use of FPFastMathMode decorations on OpExtInst instructions,
FPFastMathMode decorations may be applied to vector data load and store instructions that convert to or
from half values.

vloadn

Reads n components from the address computed as (p + (offset * n)) and creates a vector result value
from the n components.

Behavior is undefined if the computed address is not 8-bit aligned when p points to an i8 value; 16-bit
aligned when p points to an i16 or half value; 32-bit aligned when p points to an i32 or float value; 64-bit
aligned when p points to an i64 or double value.

offset must be size_t.

p must be a pointer(global, local, private, constant, generic) to floating-point, integer.

Result Type must be vector(2,3,4,8,16) of floating-point or integer values.

Result Type component count must be equal to n and its component type must be equal to the type
pointed by p.

n must be 2, 3, 4, 8 or 16.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

171 <id>
offset

<id>
p

Literal
n

72

vstoren

Writes n components from the data vector value to the address computed as (p + (offset * n)), where n is
equal to the component count of the vector data.

Behavior is undefined if the computed address is not 8-bit aligned when p points to an i8 value; 16-bit
aligned when p points to an i16 or half value; 32-bit aligned when p points to an i32 or float value; 64-bit
aligned when p points to an i64 or double value.

offset must be size_t.

Result Type must be void.

p must be a pointer(global, local, private, generic) to floating-point, integer.

data must be vector(2,3,4,8,16) of floating-point or integer values.

data component type must be equal to the type pointed by p.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

172 <id>
data

<id>
offset

<id>
p

73

vload_half

Reads a half value from the address computed as (p + (offset)) and converts it to a float result value.

Behavior is undefined if the computed address is not 16-bit aligned.

Result Type must be float.

offset must be size_t.

p must be a pointer(global, local, private, constant, generic) to half.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

173 <id>
offset

<id>
p

vload_halfn

Reads n half components from the address (p + (offset * n)), converts to n float components, and creates
a float vector result value from the n float components.

Behavior is undefined if the computed address is not 16-bit aligned.

offset must be size_t.

p must be a pointer(global, local, private, constant, generic) to half.

Result Type must be vector(2,3,4,8,16) of float values.

Result Type component count must be equal to n.

n must be 2, 3, 4, 8 or 16.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

174 <id>
offset

<id>
p

Literal
n

74

vstore_half

Converts the data float or double value to a half value using the default rounding mode and writes the half
value to the address computed as (p + offset).

Behavior is undefined if the computed address is not 16-bit aligned.

data must be float or double.

offset must be size_t.

Result Type must be void.

p must be a pointer(global, local, private, generic) to half.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

175 <id>
data

<id>
offset

<id>
p

vstore_half_r

Converts the data float or double value to a half value using the specified rounding mode mode and writes
the half value to the address computed as (p + offset).

Behavior is undefined if the computed address is not 16-bit aligned.

data must be float or double.

offset must be size_t.

Result Type must be void.

p must be a pointer(global, local, private, generic) to half.

9 12 <id>
Result
Type

Result
<id>

extended
instruction
s set <id>

176 <id>
data

<id>
offset

<id>
p

FP
Rounding
Mode
mode

75

vstore_halfn

Converts the data vector of float or vector of double values to a vector of half values using the default
rounding mode and writes the half values to memory.

Let n be the component count of the vector data.

The n components from the converted vector of half values are written to the address computed as (p +
(offset * n)).

Behavior is undefined if the computed address is not 16-bit aligned.

offset must be size_t.

Result Type must be void.

p must be a pointer(global, local, private, generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

177 <id>
data

<id>
offset

<id>
p

76

vstore_halfn_r

Converts the data vector of float or vector of double values to a vector of half values using the specified
rounding mode mode and writes the half values to memory.

Let n be the component count of the vector data.

The n components from the converted vector of half values are written to the address computed as (p +
(offset * n)).

Behavior is undefined if the computed address is not 16-bit aligned.

offset must be size_t.

Result Type must be void.

p must be a pointer(global, local, private, generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

9 12 <id>
Result
Type

Result
<id>

extended
instruction
s set <id>

178 <id>
data

<id>
offset

<id>
p

FP
Rounding
Mode
mode

77

vloada_halfn

Reads a vector of n half values from aligned memory and converts it to a float vector result value.

For n equal to 2, 4, 8, and 16, the vector of n half values is read from the address computed as (p + (offset
* n)). Behavior is undefined if the computed address is not aligned to (sizeof(half) * n) bytes.

For n equal to 3, the vector of n half values are read from the address computed as (p + (offset * 4)).
Behavior is undefined if the computed address is not aligned to (sizeof(half) * 4) bytes.

offset must be size_t.

p must be a pointer(global, local, private, constant, generic) to half.

Result Type must be vector(2,3,4,8,16) of float values.

Result Type component count must be equal to n.

n must be 2, 3, 4, 8 or 16.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

179 <id>
offset

<id>
p

Literal
n

78

vstorea_halfn

Converts the data vector of float or vector of double values to a vector of half values using the default
rounding mode, and then writes the converted vector of half values to aligned memory.

Let n be the component count of the vector data.

For n equal to 2, 4, 8, and 16, the converted vector of half values is written to the address computed as (p
+ (offset * n)). Behavior is undefined if the computed address is not aligned to (sizeof(half) * n) bytes.

For n equal to 3, the converted vector of half values is written to the address computed as (p + (offset *
4)). Behavior is undefined if the computed address is not aligned to (sizeof(half) * 4) bytes.

offset must be size_t.

Result Type must be void.

p must be a pointer(global, local, private, generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

180 <id>
data

<id>
offset

<id>
p

79

vstorea_halfn_r

Converts the data vector of float or vector of double values to a vector of half values using the specified
rounding mode mode, and then write the converted vector of half values to aligned memory.

Let n be the component count of the vector data.

For n equal to 2, 4, 8, and 16, the converted vector of half values is written to the address computed as (p
+ (offset * n)). Behavior is undefined if the computed address is not aligned to (sizeof(half) * n) bytes.

For n equal to 3, the converted vector of half values is written to the address computed as (p + (offset *
4)). Behavior is undefined if the computed address is not aligned to (sizeof(half) * 4) bytes.

offset must be size_t.

Result Type must be void.

p must be a pointer(global, local, private, generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

9 12 <id>
Result
Type

Result
<id>

extended
instruction
s set <id>

181 <id>
data

<id>
offset

<id>
p

FP
Rounding
Mode
mode

80

2.7. Miscellaneous Vector instructions
This section describes additional vector instructions.

shuffle

Construct a permutation of components from x vector value, returning a vector value with the same
component type as x and component count that is the same as shuffle mask.

For this instruction, only the ilogb(2 m -1) least significant bits of each mask element are considered,
where m is equal to the component count of x.

shuffle mask operand specifies, for each component in the result vector, which component of x it gets.

The size of each component in shuffle mask must match the size of each component in Result Type.

Result Type must have the same component type as x and component count as shuffle mask.

shuffle mask must be vector(2,4,8,16) of integer values.

Result Type and x must be vector(2,4,8,16) of floating-point or integer values.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

182 <id>
x

<id>
shuffle mask

81

shuffle2

Construct a permutation of components from x and y vector values, returning a vector value with the same
component type as x and y and component count that is the same as shuffle mask.

For this instruction, only the ilogb(2 m - 1) + 1 least significant bits of each mask component are
considered, where m is equal to the component count of x and y.

shuffle mask operand specifies, for each component in the result vector, which component of x or y it gets.
Where component count begins with x and then proceeds to y.

x and y must be of the same type.

The size of each component in shuffle mask must match the size of each component in Result Type.

Result Type must have the same component type as x and component count as shuffle mask.

shuffle mask must be vector(2,4,8,16) of integer values.

Result Type, x and y must be vector(2,4,8,16) of floating-point or integer values.

8 12 <id>
Result Type

Result <id> extended
instructions
set <id>

183 <id>
x

<id>
y

<id>
shuffle mask

82

2.8. Misc instructions
This section describes additional miscellaneous instructions.

printf

The printf extended instruction writes output to an implementation-defined stream such as stdout under
control of the string pointed to by format that specifies how subsequent arguments are converted for
output. If there are insufficient arguments for the format, the behavior is undefined. If the format is
exhausted while arguments remain, the excess arguments are evaluated (as always) but are otherwise
ignored. The printf instruction returns when the end of the format string is encountered

printf returns 0 if it was executed successfully and -1 otherwise

Result Type must be i32.

format must be a pointer(constant) to i8.

6 +
vari
able

12 <id>
Result Type

Result <id> extended
instructions
set <id>

184 <id>
format

<id>, <id>, …
additional
arguments

prefetch

Prefetch num_elements * size in bytes of the type pointed by p, into the global cache. The prefetch
instruction is applied to an invocation in a workgroup and does not affect the functionality of the
kernel.

num_elements must be size_t.

Result Type must be void.

ptr must be a pointer(global) to floating-point, integer or vector(2,3,4,8,16) of floating-point, integer
values.

7 12 <id>
Result Type

Result <id> extended
instructions
set <id>

185 <id>
ptr

<id>
num_element
s

83

Chapter 3. Appendix A: Changes and TBD
• Fork the revision stream, changes section, TBD, etc. from the core specification, so this specification

has its own, starting numbering at revision 1. This document now lives independently.

3.1. Changes from Version 0.99, Revision 1
• Move to use the updated image/texturing/sampling, instead of extended instructions. Also, see changes

in core specification related to this.

- 14241 Implement OpenCL Extended Instructions for images/samplers with core OpImageSample
instructions

• Fixed internal bugs

- 13455 Merged the OpenCL 1.2, 2.0, and 2.1 extended-instruction set into a single OpenCL
extended-instruction set.

• Fixed public bugs

3.2. Changes from Version 0.99, Revision 2
• 14679 moved precision information to the OpenCL environment spec

• 14636 clarified trig functions to accept and return radians

3.3. Changes from Version 0.99, Revision 3
• Fixed internal bugs:

- 14862 removed remaining image instructions as core versions are sufficient

- 14636 Fixed type-o’s in several trig functions accepting radian inputs and/or producing radian
results

- Flattened opcode numbers

3.4. Changes from Version 1.0, Revision 1
• Fixed internal bugs:

- Issue 8 - order of parameters for prefetch was reversed; pointer operand should be first.

- Issue 103 - typo: singp should be signp

• Fixed public bugs

- 1469 - incorrect specification of pow and pown

3.5. Changes from Version 1.0, Revision 2
• Fixed internal bugs:

- Issue 261 - clarified that s_mad24 and u_mad24 only support 32-bit integers

- Issue 262 - added scalars to the types supported by length

- Issue 266 - fixed shuffle and shuffle2 description

- Issue 267 - fixed description of ldexp operands

84

3.6. Changes from Version 1.0, Revision 3
• Moved image and sampler encoding to the OpenCL environment specification

• Editorial fixes and improvements

• Fixed internal bugs:

- Issue 271 - storage class inconsistency between vloadn/vstoren and vload_half/vstore_half

- Issue 312 - bad wording for vstorea_halfn

3.7. Changes from Version 1.0, Revision 4
Support SPV_KHR_no_integer_wrap_decoration, in the s_abs instruction.

3.8. Changes from Version 1.0, Revision 5
• Fixed internal bugs:

- Issue 497 - fixed description for s_upsample

3.9. Changes from Version 1.0, Revision 6
• Fixed internal bugs:

- Issue 515 - permit use of FPFastMathMode decorations with math, common, geometric, and vector
data load/store instructions for environments that allow it.

3.10. Changes from Version 1.0, Revision 7
• Fixed internal bugs:

- Corrected the description of u_upsample and s_upsample.

85

	OpenCL Extended Instruction Set Specification
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Binary Form
	2.1. Math extended instructions
	2.2. Integer instructions
	2.3. Common instructions
	2.4. Geometric instructions
	2.5. Relational instructions
	2.6. Vector Data Load and Store instructions
	2.7. Miscellaneous Vector instructions
	2.8. Misc instructions

	Chapter 3. Appendix A: Changes and TBD
	3.1. Changes from Version 0.99, Revision 1
	3.2. Changes from Version 0.99, Revision 2
	3.3. Changes from Version 0.99, Revision 3
	3.4. Changes from Version 1.0, Revision 1
	3.5. Changes from Version 1.0, Revision 2
	3.6. Changes from Version 1.0, Revision 3
	3.7. Changes from Version 1.0, Revision 4
	3.8. Changes from Version 1.0, Revision 5
	3.9. Changes from Version 1.0, Revision 6
	3.10. Changes from Version 1.0, Revision 7

