
SYCLTM Specification

SYCL integrates OpenCL devices with modern C++

Version 1.2

Revision Date: 2015-05-08

Khronos OpenCL Working Group — SYCL subgroup

Editors: Lee Howes and Maria Rovatsou

Copyright 2011-2015 The Khronos Group Inc. All Rights Reserved

Contents

1 Introduction 11

2 SYCL Architecture 13
2.1 Overview . 13
2.2 The SYCL Platform Model . 13

2.2.1 Platform Mixed Version Support . 14
2.3 SYCL Execution Model . 14

2.3.1 Execution Model: Queues, Command Groups and Contexts 15
2.4 Memory Model . 16

2.4.1 Access to memory . 17
2.4.2 Memory consistency . 18
2.4.3 Atomic operations . 18

2.5 The SYCL programming model . 18
2.5.1 Basic data parallel kernels . 19
2.5.2 Work-group data parallel kernels . 19
2.5.3 Hierarchical data parallel kernels . 19
2.5.4 Kernels that are not launched over parallel instances . 20
2.5.5 Synchronization . 20
2.5.6 Error handling . 21
2.5.7 Scheduling of kernels and data movement . 21
2.5.8 Managing object lifetimes . 23
2.5.9 Device discovery and selection . 24
2.5.10 Interfacing with OpenCL . 24

2.6 Anatomy of a SYCL application . 26
2.7 Memory objects . 27
2.8 SYCL for OpenCL Framework . 28
2.9 SYCL device compiler . 29

2.9.1 Building a SYCL program . 29
2.9.2 Naming of kernels . 29

2.10 Language restrictions in kernels . 30
2.10.1 SYCL Linker . 30
2.10.2 Functions and datatypes available in kernels . 31

2.11 Execution of kernels on the SYCL host device . 31
2.12 Example SYCL application . 31

3 SYCL Programming Interface 34
3.1 Header files and namespaces . 34
3.2 C++ Standard library classes required for the interface . 34
3.3 SYCL runtime classes . 35

3.3.1 Device selection class . 35
3.3.2 Platform class . 37

3.3.2.1 Platform information descriptors . 39
3.3.3 Context class . 39

1

3.3.3.1 Context interface . 40
3.3.3.2 Context information descriptors . 42

3.3.4 Device class . 42
3.3.4.1 Device interface . 43
3.3.4.2 Device information descriptors . 45

3.3.5 Queue class . 55
3.3.5.1 Queue interface . 55
3.3.5.2 Queue information descriptors . 59
3.3.5.3 Queue error handling . 60

3.3.6 Event class for OpenCL interoperability . 60
3.3.6.1 Event information and profiling descriptors . 62

3.4 Data access and storage in SYCL . 64
3.4.1 Host allocation . 64

3.4.1.1 Default Allocators . 64
3.4.1.2 Map Allocator . 65

3.4.2 Buffers . 65
3.4.2.1 Buffer Interface . 66
3.4.2.2 Buffer Synchronization Rules . 69

3.4.3 Images . 71
3.4.3.1 Image Interface . 71
3.4.3.2 Image Synchronization Rules . 75

3.4.4 Sharing Host Memory With The SYCL Data Management Classes 75
3.4.4.1 Default behavior . 76
3.4.4.2 SYCL ownership of the host memory . 76
3.4.4.3 Shared SYCL ownership of the host memory 77

3.4.5 Synchronisation Primitives . 77
3.4.6 Accessors . 78

3.4.6.1 Access modes . 78
3.4.6.2 Access targets . 79
3.4.6.3 Accessor class . 79
3.4.6.4 Buffer accessors . 84
3.4.6.5 Image accessors . 85
3.4.6.6 Local accessors . 85
3.4.6.7 Host accessors . 85
3.4.6.8 Accessor capabilities and restrictions . 86

3.4.7 Address space classes . 88
3.4.7.1 Explicit pointer classes . 88
3.4.7.2 Multi-pointer class . 97

3.4.8 Samplers . 102
3.5 Expressing parallelism through kernels . 103

3.5.1 Ranges and index space identifiers . 103
3.5.1.1 range class . 103
3.5.1.2 nd_range class . 108
3.5.1.3 id class . 109
3.5.1.4 item class . 114
3.5.1.5 nd_item class . 115
3.5.1.6 group class . 117

3.5.2 Command group scope . 118
3.5.3 SYCL functions for invoking kernels . 119

3.5.3.1 single_task invoke . 119
3.5.3.2 parallel_for invoke . 120

3.5.3.3 Parallel For hierarchical invoke . 122
3.5.3.4 Command group handler class . 124

3.5.4 Kernel class . 128
3.5.5 Program class . 129
3.5.6 Defining kernels . 132

3.5.6.1 Defining kernels as functors . 132
3.5.6.2 Defining kernels as lambda functions . 133
3.5.6.3 Defining kernels using program objects . 134
3.5.6.4 Defining kernels using OpenCL C kernel objects 135

3.5.7 Rules for parameter passing to kernels . 135
3.6 Error handling . 136

3.6.1 Error Handling Rules . 136
3.6.2 Exception Class Interface . 137

3.7 Data types . 140
3.7.1 Scalar data types . 140
3.7.2 Vector types . 142

3.8 Synchronization and atomics . 148
3.9 Stream class . 154
3.10 SYCL built-in functions for SYCL host and device . 155

3.10.1 Description of the built-in types available for SYCL host and device 155
3.10.2 Work-item functions . 157
3.10.3 Math functions . 157
3.10.4 Integer functions . 162
3.10.5 Common functions . 163
3.10.6 Geometric Functions . 164
3.10.7 Relational functions . 166
3.10.8 Vector data and store functions . 167
3.10.9 Synchronization Functions . 168
3.10.10 printf function . 168

4 SYCL Support of Non-Core OpenCL Features 169
4.1 Enable extensions in a SYCL kernel . 169
4.2 Half Precision Floating-Point . 170
4.3 Writing to 3D image memory objects . 171
4.4 Interoperability with OpenGL . 171

4.4.1 OpenCL/OpenGL extensions to the context class . 171
4.4.2 Sharing SYCL/OpenGL memory objects . 172

4.4.2.1 SYCL/OpenGL extensions to SYCL buffer . 173
4.4.2.2 SYCL/OpenGL extensions to SYCL image . 173
4.4.2.3 SYCL/OpenGL extensions to SYCL accessors 175
4.4.2.4 SYCL/OpenGL extensions to SYCL events . 176
4.4.2.5 Extension for depth and depth-stencil images 176

5 SYCL Device Compiler 177
5.1 Offline compilation of SYCL source files . 177
5.2 Naming of kernels . 177
5.3 Language restrictions for kernels . 178
5.4 Compilation of functions . 179
5.5 Built-in scalar data types . 179
5.6 Preprocessor directives and macros . 180
5.7 Attributes . 181

5.8 Address-space deduction . 181
5.9 SYCL offline linking . 182

5.9.1 SYCL functions and methods linkage . 182
5.9.2 Offline linking with OpenCL C libraries . 182

A Glossary 183

B Interface of SYCL Classes in Full 186
B.1 Explicit pointer classes . 186
B.2 Multi pointer pointer class . 191
B.3 range class . 192
B.4 id class . 195
B.5 vec class . 196

C Interface of Memory Object Information Descriptors 199
C.1 Platform Information Descriptors . 199
C.2 Context Information Descriptors . 199
C.3 Device Information Descriptors . 200
C.4 Queue Information Descriptors . 202
C.5 Kernel Information Descriptors . 203
C.6 Program Information Descriptors . 203
C.7 Event Information Descriptors . 204

References 205

List of Tables

3.1 Constructors of the device_selector class . 36
3.2 Methods for the device_selector class . 36
3.3 Standard device selectors included with all SYCL implementations. 36
3.3 Standard device selectors included with all SYCL implementations. 37
3.4 Constructors of platform class . 38
3.5 Methods of platform class . 39
3.6 Platform information descriptors. 39
3.7 Constructors of the context class. 41
3.8 Methods of context class . 42
3.9 Context information descriptors . 42
3.10 Constructors of the device class . 44
3.11 Methods of the device class . 44
3.11 Methods of the device class . 45
3.12 Device information descriptors. 45
3.12 Device information descriptors. 46
3.12 Device information descriptors. 47
3.12 Device information descriptors. 48
3.12 Device information descriptors. 49
3.12 Device information descriptors. 50
3.12 Device information descriptors. 51
3.12 Device information descriptors. 52
3.12 Device information descriptors. 53
3.12 Device information descriptors. 54
3.12 Device information descriptors. 55
3.13 Constructors of the queue class. 57
3.13 Constructors of the queue class. 58
3.14 Methods for class queue . 58
3.14 Methods for class queue . 59
3.15 Queue information descriptors . 59
3.15 Queue information descriptors . 60
3.16 Constructors for the event class . 61
3.17 Methods for the event class . 61
3.17 Methods for the event class . 62
3.18 Event class information descriptors. 63
3.19 Event class profiling information descriptors. 63
3.19 Event class profiling information descriptors. 64
3.20 SYCL Default Allocators . 65
3.21 Constructors for the buffer class. 67
3.21 Constructors for the buffer class. 68
3.22 Methods for the buffer class. 68
3.22 Methods for the buffer class. 69
3.23 Constructors for the image class. 73
3.23 Constructors for the image class. 74

5

3.24 Methods of the image class. 74
3.24 Methods of the image class. 75
3.25 Enumeration of access modes available to accessors. 79
3.26 Enumeration of access modes available to accessors. 79
3.27 Accessor constructors. 82
3.28 Methods for the accessor class. 83
3.28 Methods for the accessor class. 84
3.29 Description of all the accessor types and modes with their valid combinations for buffers and

local memory . 86
3.30 Description of all the accessor types and modes with their valid combinations for images 86
3.31 Description of the accessor to accessor conversions allowed 87
3.32 Description of the pointer classes . 88
3.33 Constructors for global_ptr explicit pointer class. 90
3.34 Operators on the global_ptr explicit pointer class. 90
3.35 Constructors for constant_ptr explicit pointer class. 91
3.36 Operators on the constant_ptr explicit pointer class. 91
3.37 Constructors for local_ptr explicit pointer class. 91
3.38 Operators on the local_ptr explicit pointer class. 91
3.39 Constructors for private_ptr explicit pointer class. 92
3.40 Operators on the private_ptr explicit pointer class. 92
3.41 Non-member functions of the explicit pointer classes. 92
3.41 Non-member functions of the explicit pointer classes. 93
3.41 Non-member functions of the explicit pointer classes. 94
3.41 Non-member functions of the explicit pointer classes. 95
3.41 Non-member functions of the explicit pointer classes. 96
3.41 Non-member functions of the explicit pointer classes. 97
3.42 Constructors for multi_ptr class . 99
3.43 Methods of multi_ptr class . 99
3.43 Methods of multi_ptr class . 100
3.44 Non-member functions of the multi ptr class. 100
3.44 Non-member functions of the multi ptr class. 101
3.45 Constructors for the sampler class. 102
3.45 Constructors for the sampler class. 103
3.46 Methods for the sampler class. 103
3.47 Constructors for the range class. 104
3.48 Methods for the range class. 104
3.48 Methods for the range class. 105
3.49 Non-member functions for the range class. 105
3.49 Non-member functions for the range class. 106
3.49 Non-member functions for the range class. 107
3.49 Non-member functions for the range class. 108
3.50 Constructors for the nd_range class. 109
3.51 Methods for the nd_range class. 109
3.52 Constructors for the id class. 110
3.53 Methods for the id class. 110
3.53 Methods for the id class. 111
3.54 Non-member functions for the id class. 111
3.54 Non-member functions for the id class. 112
3.54 Non-member functions for the id class. 113
3.54 Non-member functions for the id class. 114
3.55 Methods for the item class. 115

3.56 Methods for the nd_item class. 116
3.56 Methods for the nd_item class. 117
3.57 Methods for the group class. 118
3.58 Constructors for the command group handler class . 125
3.59 Methods for the command group handler class . 126
3.59 Methods for the command group handler class . 127
3.60 kernel class constructors . 129
3.61 Methods for the kernel class. 129
3.62 Kernel class information descriptors. 129
3.63 Constructors for the program class . 131
3.64 Methods for the program class . 131
3.64 Methods for the program class . 132
3.65 Program class information descriptors. 132
3.66 Methods of the exception class. 138
3.67 Methods of the cl_exception class. 139
3.68 Methods of the exception_list . 139
3.69 Exceptions types that derive from the cl::sycl::runtime_error class 139
3.70 Exception types that derive from the cl::sycl::device_error class 139
3.70 Exception types that derive from the cl::sycl::device_error class 140
3.71 SYCL compiler fundamental integral datatypes . 140
3.71 SYCL compiler fundamental integral datatypes . 141
3.72 SYCL compiler fundamental floating point datatypes . 141
3.73 SYCL compiler OpenCL interoperability scalar datatypes . 141
3.74 Generic type name description for genVector, which serves as a description for all valid types of

OpenCL/SYCL interoperability vectors. 143
3.75 Constructors for the vec class . 144
3.76 Methods for the vec class . 144
3.76 Methods for the vec class . 145
3.76 Methods for the vec class . 146
3.76 Methods for the vec class . 147
3.77 Methods available on an object of type atomic<T>. 151
3.77 Methods available on an object of type atomic<T>. 152
3.78 Global functions available on atomic types. 153
3.78 Global functions available on atomic types. 154
3.80 Generic type name description, which serves as a description for all valid types of parameters to

kernel functions. [1] . 155
3.80 Generic type name description, which serves as a description for all valid types of parameters to

kernel functions. [1] . 156
3.81 Math functions which work on SYCL Host and device. They correspond to Table 6.7 of the

OpenCL 1.2 specification [1] . 157
3.81 Math functions which work on SYCL Host and device. They correspond to Table 6.7 of the

OpenCL 1.2 specification [1] . 158
3.81 Math functions which work on SYCL Host and device. They correspond to Table 6.7 of the

OpenCL 1.2 specification [1] . 159
3.81 Math functions which work on SYCL Host and device. They correspond to Table 6.7 of the

OpenCL 1.2 specification [1] . 160
3.82 Native functions which work on SYCL Host and device, are available in the cl::sycl::native

namespace. They correspond to Table 6.9 of the OpenCL 1.2 specification [1] 160
3.82 Native functions which work on SYCL Host and device, are available in the cl::sycl::native

namespace. They correspond to Table 6.9 of the OpenCL 1.2 specification [1] 161

3.83 Integer functions which work on SYCL Host and device, are available in the cl::sycl namespace.
They correspond to Table 6.10 of the OpenCL 1.2 specification [1] 162

3.83 Integer functions which work on SYCL Host and device, are available in the cl::sycl namespace.
They correspond to Table 6.10 of the OpenCL 1.2 specification [1] 163

3.84 Common functions which work on SYCL Host and device, are available in the cl::sycl namespace.
They correspond to Table 6.12 of the OpenCL 1.2 specification [1] 163

3.84 Common functions which work on SYCL Host and device, are available in the cl::sycl namespace.
They correspond to Table 6.12 of the OpenCL 1.2 specification [1] 164

3.85 Geometric functions which work on SYCL Host and device, are available in the cl::sycl names-
pace. They correspond to Table 6.13 of the OpenCL 1.2 specification [1] 164

3.85 Geometric functions which work on SYCL Host and device, are available in the cl::sycl names-
pace. They correspond to Table 6.13 of the OpenCL 1.2 specification [1] 165

3.86 Relational functions which work on SYCL Host and device, are available in the cl::sycl names-
pace. They correspond to Table 6.14 of the OpenCL 1.2 specification [1] 166

3.86 Relational functions which work on SYCL Host and device, are available in the cl::sycl names-
pace. They correspond to Table 6.14 of the OpenCL 1.2 specification [1] 167

4.1 SYCL support for OpenCL 1.2 API extensions. 169
4.1 SYCL support for OpenCL 1.2 API extensions. 170
4.2 Generic type name description for all valid types of kernel function parameters. [1] 170
4.3 Extended elementary functions which work on SYCL host and device. 171
4.4 Additional optional properties for creating context for SYCL/OpenGL sharing. 172
4.5 Extended context class interface. 172
4.6 Extended constructors for the buffer class. 173
4.7 Extended buffer class interface . 173
4.8 Additional optional image class constructors. 173
4.8 Additional optional image class constructors. 174
4.9 Additional optional image class method. 174
4.10 Mapping of GL internal format to CL image format (reference: [2, table 9.4]) 175
4.11 Enumerator description for access::target . 175
4.12 Additional optional class constructors for event class. 176
4.13 Additional optional class method for event class. 176

5.1 SYCL compiler fundamental scalar datatypes . 180

Copyright (c) 2013-2015 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or
any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise
exploited in any manner without the express prior written permission of Khronos Group. You may use this
specification for implementing the functionality therein, without altering or removing any trademark, copyright
or other notice from the specification, but the receipt or possession of this specification does not convey any rights
to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in
whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos
to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE
is made for the specification and the latest available update of the specification for any version of the API is
used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the
specification are not changed in any way. The specification may be incorporated into a product that is sold as long
as such product includes significant independent work developed by the seller. A link to the current version of this
specification on the Khronos Group website should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, re-
garding this specification, including, without limitation, any implied warranties of merchantability or fitness for
a particular purpose or non-infringement of any intellectual property. Khronos Group makes no, and expressly
disclaims any, warranties, express or implied, regarding the correctness, accuracy, completeness, timeliness, and
reliability of the specification. Under no circumstances will the Khronos Group, or any of its Promoters, Contrib-
utors or Members or their respective partners, officers, directors, employees, agents, or representatives be liable
for any damages, whether direct, indirect, special or consequential damages for lost revenues, lost profits, or
otherwise, arising from or in connection with these materials.

Khronos, SYCL, SPIR, WebGL, EGL, COLLADA, StreamInput, OpenVX, OpenKCam, glTF, OpenKODE,
OpenVG, OpenWF, OpenSL ES, OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX DL are trademarks
and WebCL is a certification mark of the Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL
and OpenML are registered trademarks and the OpenGL ES and OpenGL SC logos are trademarks of Silicon
Graphics International used under license by Khronos. All other product names, trademarks, and/or company
names are used solely for identification and belong to their respective owners.

Acknowledgements

Editors: Lee Howes, Qualcomm; Maria Rovatsou, Codeplay

Contributors:

• Eric Berdahl, Adobe

• Shivani Gupta, Adobe

• David Neto, Altera

• Ronan Keryell, AMD

• Brian Sumner, AMD

• Balázs Keszthelyi, Broadcom

• Gordon Brown, Codeplay

• Paul Keir, Codeplay

• Ralph Potter, Codeplay

• Ruyman Reyes, Codeplay

• Andrew Richards, Codeplay

• Maria Rovatsou, Codeplay

• Allen Hux, Intel

• Matt Newport, EA

• Lee Howes, Qualcomm

• Chu-Cheow Lim, Qualcomm

• Jack Liu, Qualcomm

10

1. Introduction

SYCL is a C++ programming model for OpenCL. SYCL builds on the underlying concepts, portability and
efficiency of OpenCL while adding much of the ease of use and flexibility of C++. Developers using SYCL are
able to write standard C++ code, with many of the techniques they are accustomed to, such as inheritance and
templating. At the same time developers have access to the full range of capabilities of OpenCL both through
the features of the SYCL libraries and, where necessary, through interoperation with code written directly to the
OpenCL APIs.

SYCL implements a shared source design which offers the power of source integration while allowing toolchains
to remain flexible. The shared source design supports embedding of code intended to be compiled for an OpenCL
device, for example a GPU, inline with host code. This embedding of code offers three primary benefits:

Simplicity For novice programmers, the separation of host and device source code in OpenCL can become com-
plicated to deal with, particularly when similar kernel code is used for multiple different operations. A
single compiler flow and integrated tool chain combined with libraries that perform a lot of simple tasks
simplifies initial OpenCL programs to a minimum complexity. This reduces the learning curve for pro-
grammers new to OpenCL and allows them to concentrate on parallelization techniques rather than syntax.

Reuse C++’s type system allows for complex interactions between different code units and supports efficient
abstract interface design and reuse of library code. For example, a transform or map operation applied to an
array of data may allow specialization on both the operation applied to each element of the array and on the
type of the data. The shared source design of SYCL enables this interaction to bridge the host code/device
code boundary such that the device code to be specialized on both of these factors directly from the host
code.

Efficiency Tight integration with the type system and reuse of library code enables a compiler to perform inlining
of code and to produce efficient specialized device code based on decisions made in the host code without
having to generate kernel source strings dynamically.

SYCL is designed to allow a compilation flow where the source file is passed through multiple different compilers,
including a standard C++ host compiler of the developer’s choice, and where the resulting application combines
the results of these compilation passes. This is distinct from a single-source flow that might use language exten-
sions that preclude the use of a standard host compiler. The SYCL standard does not preclude the use of a single
compiler flow, but is designed to not require it.

The advantages of this design are two-fold. First, it offers better integration with existing tool chains. An appli-
cation that already builds using a chosen compiler can continue to do so when SYCL code is added. Using the
SYCL tools on a source file within a project will both compile for an OpenCL device and let the same source
file be compiled using the same host compiler that the rest of the project is compiled with. Linking and library
relationships are unaffected. This design simplifies porting of pre-existing applications to SYCL. Second, the
design allows the optimal compiler to be chosen for each device where different vendors may provide optimised
tool-chains.

SYCL is designed to be as close to standard C++ as possible. In practice, this means that as long as no dependence
is created on SYCL’s integration with OpenCL, a standard C++ compiler can compile the SYCL programs and

11

they will run correctly on host CPU. Any use of specialized low-level features can be masked using the C pre-
processor in the same way that compiler-specific intrinsics may be hidden to ensure portability between different
host compilers.

SYCL retains the execution model, runtime feature set and device capabilities of the underlying OpenCL standard.
The OpenCL C specification imposes some limitations on the full range of C++ features that SYCL is able to
support. This ensures portability of device code across as wide a range of devices as possible. As a result,
while the code can be written in standard C++ syntax with interoperability with standard C++ programs, the
entire set of C++ features is not available in SYCL device code. In particular, SYCL device code, as defined by
this specification, does not support virtual function calls, function pointers in general, exceptions, runtime type
information or the full set of C++ libraries that may depend on these features or on features of a particular host
compiler.

The use of C++ features such as templates and inheritance on top of the OpenCL execution model opens a wide
scope for innovation in software design for heterogeneous systems. Clean integration of device and host code
within a single C++ type system enables the development of modern, templated libraries that build simple, yet
efficient, interfaces to offer more developers access to OpenCL capabilities and devices. SYCL is intended to
serve as a foundation for innovation in programming models for heterogeneous systems, that builds on an open
and widely implemented standard foundation in the form of OpenCL.

To reduce programming effort and increase the flexibility with which developers can write code, SYCL extends
the underlying OpenCL model in two ways beyond the general use of C++ features:

• The hierarchical parallelism syntax offers a way of expressing the data-parallel OpenCL execution model in
an easy-to-understand C++ form. It more cleanly layers parallel loops and synchronization points to avoid
fragmentation of code and to more efficiently map to CPU-style architectures.

• Data access in SYCL is separated from data storage. By relying on the C++-style resource acquisition is
initialization (RAII) idiom to capture data dependencies between device code blocks, the runtime library
can track data movement and provide correct behavior without the complexity of manually managing event
dependencies between kernel instances and without the programming having to explicitly move data. This
approach enables the data-parallel task-graphs that are already part of the OpenCL execution model to be
built up easily and safely by SYCL programmers.

To summarize, SYCL enables OpenCL kernels to be written inside C++ source files. This means that software
developers can develop and use generic algorithms and data structures using standard C++ template techniques,
while still supporting the multi-platform, multi-device heterogeneous execution of OpenCL. The specification
has been designed to enable implementation across as wide a variety of platforms as possible as well as ease of
integration with other platform-specific technologies, thereby letting both users and implementers build on top of
SYCL as an open platform for heterogeneous processing innovation.

12

2. SYCL Architecture

This chapter builds on the structure of the OpenCL specification’s architecture chapter to explain how SYCL
overlays the OpenCL specification and inherits its capabilities and restrictions as well as the additional features it
provides on top of OpenCL 1.2.

2.1 Overview

SYCL is an open industry standard for programming a heterogeneous system. The design of SYCL allows stan-
dard C++ source code to be written such that it can run on either an OpenCL device or on the host CPU.

The terminology used for SYCL inherits that of OpenCL with some SYCL-specific additions. The code that can
run on either an OpenCL device or host CPU is called a kernel. To ensure maximum backward-compatibility, a
software developer can produce a program that mixes standard OpenCL C kernels and OpenCL API code with
SYCL code and expect fully compatible interoperation.

The target users of SYCL are C++ programmers who want all the performance and portability features of OpenCL,
but with the flexibility to use higher-level C++ abstractions across the host/device code boundary. Developers can
use most of the abstraction features of C++, such as templates, classes and operator overloading. However, some
C++ language features are not permitted inside kernels, due to the limitations imposed by the capabilities of
the underlying OpenCL standard. These features include virtual functions, virtual inheritance, throwing/catching
exceptions, and run-time type-information. These features are available outside kernels as normal. Within these
constraints, developers can use abstractions defined by SYCL, or they can develop their own on top. These
capabilities make SYCL ideal for library developers, middleware providers and applications developers who want
to separate low-level highly-tuned algorithms or data structures that work on heterogeneous systems from higher-
level software development. OpenCL developers can produce templated algorithms that are easily usable by
developers in other fields.

2.2 The SYCL Platform Model

The SYCL platform model is based on the OpenCL platform model, but there are a few additional abstractions
available to programmers.

The model consists of a host connected to one or more OpenCL devices. An OpenCL device is divided into one
or more compute units (CUs) which are each divided into one or more processing elements (PEs). Computations
on a device occur within the processing elements. A SYCL application runs on a host according to the standard
C++ CPU execution model. The SYCL application submits command groups funtors to queues, which execute
either on OpenCL devices or on the SYCL host device.

When a SYCL implementation executes kernels on an OpenCL device, it achieves this by enqueuing OpenCL
commands to execute computations on the processing elements within a device. The processing elements within

13

an OpenCL compute unit may execute a single stream of instructions as ALUs within a SIMD unit (which execute
in lockstep with a single stream of instructions), as independent SPMD units (where each PE maintains its own
program counter) or as some combination of the two.

When a SYCL implementation executes kernels on the host device, it is free to use whatever parallel execution
facilities are available on the host, as long as it executes within the semantics of the kernel execution model defined
by OpenCL.

2.2.1 Platform Mixed Version Support

OpenCL is designed to support devices with different capabilities under a single platform. This includes devices
which conform to different versions of the OpenCL specification and devices which support different extensions
to the OpenCL specification. There are three important sets of capabilities to consider for a SYCL device: the
platform version, the version of a device and the extensions supported.

The SYCL system presents the user with a set of devices, grouped into some number of platforms. The device
version is an indication of the device’s capabilities, as represented by the device information returned by the cl
::sycl::device::get_info() method. Examples of attributes associated with the device version are resource
limits and information about functionality beyond the core OpenCL specification’s requirements. The version
returned corresponds to the highest version of the OpenCL specification for which the device is conformant, but is
not higher than the version of the device’s platform which bounds the overall capabilities of the runtime operating
the device.

In OpenCL, a device has a language version. In SYCL, the source language is compiled offline, so the language
version is not available at runtime. Instead, the SYCL language version is available as a compile-time macro:
CL_SYCL_LANGUAGE_VERSION.

2.3 SYCL Execution Model

Execution of a SYCL program occurs in two parts: kernels that execute on either the host CPU, or one or more
OpenCL devices, and a host program that executes on the host CPU. The host program defines the context for the
kernels and manages their execution. Like OpenCL, SYCL is capable of running kernels on multiple device types.
However, SYCL builds on top of OpenCL due to the integration into a host toolchain by providing an ability to
run kernel code directly on the CPU without interacting with an OpenCL runtime. This is distinct from running
on the CPU via an OpenCL device and can be used when no OpenCL platform is available on the machine.

In OpenCL, queues contain commands, which can include data transfer operations, synchronization commands,
or kernels submitted for execution. In SYCL, the commands are grouped together into a functor object called
command group. Command groups associate sets of data movement operations with kernels that will be enqueued
together on an underlying OpenCL queue, through the command group handler object which is created for every
command group functor. These data transfer operations may be needed to make available data that the kernel
needs or to return its results to other devices.

When a kernel is submitted for execution by the host, an index space is defined. An instance of the kernel body
executes for each point in this index space. This kernel instance is called a work-item and is identified by its point
in the index space, which provides a global ID for the work-item. Each work-item executes the same code but the
specific execution pathway through the code and the data operated upon can vary by using the work-item global

14

ID to specialize the computation.

Work-items are organized into work-groups. The work-groups provide a more coarse-grained decomposition of
the index space. Each work-group is assigned a unique work-group ID with the same dimensionality as the index
space used for the work-items. Work-items are each assigned a local ID, unique within the work-group, so that a
single work-item can be uniquely identified by its global ID or by a combination of its local ID and work-group
ID. The work-items in a given work-group execute concurrently on the processing elements of a single compute
unit.

The index space supported in SYCL is called an nd range. An nd range is an N-dimensional index space, where n
is one, two or three. In SYCL, the nd range is represented via the nd_range<N> class. An nd_range<N> is made up
of a global range and a local range, each represented via values of type range<N> and a global offset, represented
via a value of type id<N>. The types nd_range<N> and id<N> are each N-dimensional arrays of integers. The
iteration space defined via an range<N> is an N-dimensional index space starting at the nd range’s global offset
and being of the size of its global range, split into work-groups of the size of its local range.

Each work-item in the nd range is identified by a value of type nd_item<N>. The type nd_item<N> encapsulates
a global ID, local ID and work-group ID, all of type id<N>, the iteration space offset also of type id<N>, as well
as global and local ranges and synchronization operations necessary to make work-groups useful. Work-groups
are assigned IDs using a similar approach to that used for work-item global IDs. Work-items are assigned to a
work-group and given a local ID with components in the range from zero to the size of the work-group in that
dimension minus one. Hence, the combination of a work-group ID and the local-ID within a work-group uniquely
defines a work-item.

SYCL allows a simplified execution model in which the workgroup size is left undefined. A kernel invoked over
a range<N>, instead of an nd_range<N> is executed within an iteration space of undefined workgroup size. In this
case, less information is available to each work-item through the simpler item<N> class.

2.3.1 Execution Model: Queues, Command Groups and Contexts

In OpenCL, a developer must create a context to be able to execute commands on a device. Creating a context
involves choosing a platform and a list of devices. In SYCL, contexts, platforms and devices all exist, but the user
can choose whether to specify them or have the SYCL implementation create them automatically. The minimum
required object for submitting work to devices in SYCL is the queue, which contains references to a platform,
device and context internally.

The resources managed by SYCL are:

1. Platforms: All features of OpenCL are implemented by platforms. A platform can be viewed as a given
hardware vendor’s runtime and the devices accessible through it. Some devices will only be accessible to
one vendor’s runtime and hence multiple platforms may be present. SYCL manages the different platforms
for the user. In SYCL, a platform resource is accessible through a cl::sycl::platform object. SYCL also
provides a host platform object, which only contains a single host device.

2. Contexts: Any OpenCL resource that is acquired by the user is attached to a context. A context contains
a collection of devices that the host can use and manages memory objects that can be shared between the
devices. Data movement between devices within a context may be efficient and hidden by the underlying
runtime while data movement between contexts must involve the host. A given context can only wrap
devices owned by a single platform. In SYCL, a context resource is accessible through by a cl::sycl::
context object.

15

3. Devices: Platforms provide one or more devices for executing kernels. In SYCL, a device is accessible
through a cl::sycl::device object. SYCL provides the abstract cl::sycl::device_selector class which
the user can subclass to define how the runtime should select the best device from all available platforms
for the user to use. For ease of use, SYCL provides a set of predefined concrete device_selector instances
that select devices based on common criteria, such as type of device. SYCL, unlike OpenCL, defines a host
device, which means any work that uses the host device will execute on the host and not on any OpenCL
device.

4. Command groups: SYCL groups OpenCL commands into a functor given a unique command group
handler object to perform all the necessary work required to correctly process host data on a device using a
kernel. In this way, they group the commands of transferring and processing these data in order to enqueue
them on a device for execution. Command groups are submitted to a SYCL queue.

5. Kernels: The SYCL functions that run on SYCL devices (i.e. either an OpenCL device, or the host) are
defined as C++ functors or lambda functions. In SYCL, all kernels must have a name, which must be
a globally-accessible C++ typename. This is required to enable kernels compiled with one compiler to
be linked to host code compiled with a different compiler. For functors, the typename of the functor is
sufficient as the kernel name, but for C++11 lambda functions, the user must provide a user- defined name.

6. Program Objects: OpenCL objects that store implementation data for the SYCL kernels. These objects are
only required for advanced use in SYCL and are encapsulated in the cl::sycl::program class.

7. Command-queues: SYCL kernels execute in command queues. The user must create a queue, which ref-
erences an associated context, platform and device. The context, platform and device may be chosen au-
tomatically, or specified by the user. In SYCL, command queues are accessible through cl::sycl::queue
objects.

The command-queue schedules commands submitted to it for execution on a device. Commands launched by
the host execute asynchronously with respect to the host thread, and not necessarily ordered with respect to each
other. It is the responsibility of the SYCL implementation to ensure that the different commands execute in
an order which preserves SYCL semantics. This means that a SYCL implementation must map, move or copy
data between host and device memory, execute kernels and perform synchronization between different queues,
devices and the host in a way that matches the semantics defined in this specification. If a command group runs
on an OpenCL device, then this is expected to be achieved by enqueuing the right memory and synchronization
commands to the queue to ensure correct execution. If a command group runs on the host device, then this
is expected to be achieved by host-specific synchronization as well as by ensuring that no OpenCL device is
simultaneously using any required data.

In OpenCL, queues can operate using in-order execution or out-of-order execution. In SYCL, the implementa-
tion must add synchronization commands to queues to provide when possible out-of-order execution ordering,
regardless of whether the underlying OpenCL queue is in-order or out-of-order.

2.4 Memory Model

Work-items executing in a kernel have access to four distinct memory regions:

• Global memory is accessible to all work-items in all work-groups. Work-items can read from or write to
any element of a global memory object. Reads and writes to global memory may be cached depending on
the capabilities of the device. Global memory is persistent across kernel invocations, however there is no
guarantee that two concurrently executing kernels can simultaneously write to the same memory object and

16

expect correct results.

• Constant memory is a region of global memory that remains constant during the execution of a kernel. The
host allocates and initializes memory objects placed into constant memory.

• Local Memory is a distinct memory region shared between work-items in a single work-group and inac-
cessible to work-items in other work-groups. This memory region can be used to allocate variables that
are shared by all work-items in that work-group. Work-group-level visibility allows local memory to be
implemented as dedicated regions of memory on an OpenCL device where this is appropriate.

• Private Memory is a region of memory private to a work-item. Variables defined in one work-item’s private
memory are not visible to another work-item.

The application running on the host uses SYCL buffer objects using instances of the cl::sycl::buffer class
to allocate memory in the global address space, or can allocate specialized image memory using the cl::sycl
::image class. In OpenCL, a memory object is attached to a specific context. In SYCL, a cl::sycl::buffer
or cl::sycl::image object can encapsulate multiple underlying OpenCL memory objects and host memory

allocations to enable the same buffer or image to be shared between multiple devices in different contexts, and
hence different platforms. It is the responsibility of the SYCL implementation to ensure that a buffer or image
object shared between multiple OpenCL contexts is moved between contexts using the correct synchronization
and copy commands to preserve SYCL memory ordering semantics.

2.4.1 Access to memory

To access global memory inside a kernel, the user must create a cl::sycl::accessor object which parameterizes
the type of access the kernel requires. The cl::sycl::accessor object specifies whether the access is via global
memory, constant memory or image samplers and their associated access functions. The accessor also specifies
whether the access is read-only, write-only or read-write. An optional discard flag can be added to an accessor
to tell the system to discard any previous contents of the data the accessor refers to. Atomic access can also be
requested on an accessor which allows cl::sycl::atomic classes to be used via the accessor.

It is not possible to pass a pointer into host memory directly as a kernel parameter because the devices may be
unable to support the same address space as the host.

To allocate local memory within a kernel, the user can either pass a cl::sycl::local_accessor object to the
kernel as a parameter, or can define a variable in workgroup scope inside cl::sycl::parallel_for_work_group.

Any variable defined inside a cl::sycl::parallel_for scope or cl::sycl::parallel_for_work_item scope
will be allocated in private memory. Variables defined in functions called from workgroup scope (i.e. cl::sycl
::parallel_for_work_group will also be local, while variables defined in functions called from workitem scope
(i.e. cl::sycl::parallel_for or cl::sycl::parallel_for_work_item) will be allocated in private memory.

Users can create accessors that reference sub-buffers as well as entire buffers.

Within kernels, accessors can be implicitly cast to C++ pointer types. The pointer types will contain a compile-
time deduced address space. So, for example, if an accessor to global memory is cast to a C++ pointer, the C++
pointer type will have a global address space attribute attached to it. The address space attribute will be compile-
time propagated to other pointer values when one pointer is initialized to another pointer value using a defined
mechanism.

When developers need to explicitly state the memory space of a pointer value, one of the explicit pointer classes

17

can be used. There is a different explicit pointer class for each address space: cl::sycl::local_ptr, cl::sycl
::global_ptr, cl::sycl::private_ptr, or cl::sycl::constant_ptr. An accessor declared with one address
space can be implicitly cast to an explicit pointer class for the same address space. Explicit pointer class values
cannot be passed as parameters to kernels or stored in global memory.

For templates that need to adapt to different address spaces, a cl::sycl::multi_ptr class is defined which is
templated via a compile-time constant enumerator value to specify the address space.

2.4.2 Memory consistency

OpenCL uses a relaxed memory consistency model, i.e. the state of memory visible to a work-item is not guaran-
teed to be consistent across the collection of work-items at all times. This also applies to SYCL kernels.

As in OpenCL, within a work-item memory has load/store consistency. Both local memory and global memory
may be made consistent across work-items in a single work-group through use of a work-group barrier operation
with appropriate flags. There are no guarantees of memory consistency between different work-groups executing
a kernel or between different kernels during their execution.

Memory consistency for cl::sycl::buffer and cl::sycl::image objects shared between enqueued commands
is enforced at synchronization points derived from completion of enqueued commands. Consistency of such data
between the OpenCL runtime and the host program is ensured via copy commands or map and unmap operations.

2.4.3 Atomic operations

Atomic operations can be performed on memory in buffers. The range of atomic operations available on a specific
OpenCL device is limited by the atomic capabilities of that device. The cl::sycl::atomic<T> must be used for
elements of a buffer to provide safe atomic access to the buffer from device code.

2.5 The SYCL programming model

A SYCL program is written in standard C++. Host code and device code is written in the same C++ source
file, enabling instantiation of templated kernels from host code and also enabling kernel source code to be shared
between host and device.

The C++ features used in SYCL are a subset of the C++14 standard features. Users will need to compile SYCL
source code with C++ compilers which support the following C++ features:

• All C++03 features, apart from Run Time Type Information

• Exception handling

• C++11 lambda functions

• C++11 variadic templates

• C++11 template aliases

18

• C++11 rvalue references

• C++11 std::function, std::string and std::vector, although users can optionally define and use their
own versions of these classes, which SYCL can use via template aliases.

SYCL programs are explicitly parallel and expose the full heterogeneous parallelism of the underlying machine
model of OpenCL. This includes exposing the data-parallelism, multiple execution devices and multiple mem-
ory storage spaces of OpenCL. However, SYCL adds on top of OpenCL a higher level of abstraction allowing
developers to hide much of the complexity from the source code, when a developer so chooses.

A SYCL program is logically split into host code and kernels. Host code is standard C++ code, as provided
by whatever C++ compiler the developer chooses to use for the host code. The kernels are C++ functors (see
C++ documentation for an explanation of functors) or C++11 lambda functions which have been designated to be
compiled as SYCL kernels. SYCL will also accept OpenCL cl_kernel objects.

SYCL programs target heterogeneous systems. The kernels may be compiled and optimized for multiple different
processor architectures with very different binary representations. In SYCL, kernels are contained within com-
mand group functors, which include all of the data movement/mapping/copying required to correctly execute the
kernel. A command group functor takes as a parameter a command group handler class object which provides
the interface for kernel invocations and then the functor itself can be submitted to a queue. The command group
functor is executed on the host in order to add all the specified commands to the specified queue. Kernels can only
access shared data via accessor objects constructed within the command group functor by passing the command
group handler as a parameter.

2.5.1 Basic data parallel kernels

Data-parallel kernels that execute as multiple work-items and where no local synchronization is required are
enqueued with the cl::sycl::parallel_for function parameterized by a cl::sycl::range parameter. These
kernels will execute the kernel function body once for each work-item in the range. The range passed to cl::sycl
::parallel_for represents the global size of an OpenCL kernel and will be divided into work-groups whose size
is chosen by the SYCL runtime. Barrier synchronization is not valid within these work-groups.

2.5.2 Work-group data parallel kernels

Data parallel kernels can also execute in a mode where the set of work-items is divided into work-groups of
user-defined dimensions. The user specifies the global range and local work-group size as parameters to the cl::
sycl::parallel_for function with a cl::sycl::nd_range parameter. In this mode of execution, kernels execute
over the nd range in work-groups of the specified size. It is possible to share data among work-items within the
same work-group in local or global memory and to synchronize between work-items in the same work-group by
calling the barrier function on an nd_item object. All work-groups in a given parallel_for will be the same
size and the global size defined in the nd range must be a multiple of the work-group size in each dimension.

2.5.3 Hierarchical data parallel kernels

The SYCL compiler provides a way of specifying data parallel kernels that execute within work groups via a
different syntax which highlights the hierarchical nature of the parallelism. This mode is purely a compiler feature

19

and does not change the execution model of the kernel. Instead of calling cl::sycl::parallel_for the user calls
cl::sycl::parallel_for_work_group with a cl::sycl::range value representing the number of work-groups
to launch and optionally a second cl::sycl::range representing the size of each work-group for performance
tuning. All code within the parallel_for_work_group scope effectively executes once per work-group. Within
the parallel_for_work_group scope, it is possible to call parallel_for_work_item which creates a new scope in
which all work-items within the current work-group execute. This enables a programmer to write code that looks
like there is an inner work-item loop inside an outer work-group loop, which closely matches the effect of the
execution model. All variables declared inside the parallel_for_work_group scope are allocated in workgroup
local memory, whereas all variables declared inside the parallel_for_work_item scope are declared in private
memory. All parallel_for_work_item calls within a given parallel_for_work_group execution must have the
same dimensions.

2.5.4 Kernels that are not launched over parallel instances

Simple kernels for which only a single instance of the kernel function will be executed are enqueued with the
cl::sycl::single_task function. The kernel enqueued takes no “work-item id” parameter and will only execute
once. The behavior is logically equivalent to executing a kernel on a single compute unit with a single work-group
comprising only one work-item. Such kernels may be enqueued on multiple queues and devices and as a result
may, like any other OpenCL entity, be executed in task-parallel fashion.

2.5.5 Synchronization

In SYCL, synchronization can be either global or local within a work-group. The SYCL implementation may
need to provide extra synchronization commands and host-side synchronization in order to enable synchronization
across OpenCL contexts, but this is handled internally within the SYCL host runtime.

Synchronization between work-items in a single work-group is achieved using a work-group barrier. This matches
the OpenCL C behaviour. All the work-items of a work-group must execute the barrier before any are allowed to
continue execution beyond the barrier. Note that the work-group barrier must be encountered by all work-items of
a work-group executing the kernel or by none at all. There is no mechanism for synchronization between work-
groups. In SYCL, workgroup barriers are exposed through a method on the cl::sycl::nd_item class, which
is only available inside kernels that are executed over workgroups. This ensures that developers can only use
workgroup barriers inside workgroups.

Synchronization points in SYCL are exposed through the following operations:

• Buffer destruction: The destructors for cl::sycl::buffer and cl::sycl::image objects wait for all en-
queued work on those objects to complete. If the objects were constructed with attached host memory, then
the destructor copies the data back to host memory before returning. More complex forms of synchroniza-
tion on buffer destruction can be specified by the user by constructing buffers with other kinds of references
to memory, such as shared_ptr and unique_ptr.

• Accessor construction: The constructor for a host accessor waits for all kernels that modify the same buffer
(or image) in any queues to complete and then copies data back to host memory before the constructor
returns. Any command groups submitted to any queue will wait for the accessor to be destroyed.

• Command group enqueue: The SYCL scheduler internally ensures that any command groups added to
queues have the correct event dependencies added to those queues to ensure correct operation. Adding

20

command groups to queues never blocks. Instead any required synchronization is added to the queue and
events of type handler_event are returned by the queue’s submit function that contain event information
related to the specific command group.

• Interaction with OpenCL synchronization operations: The user can obtain OpenCL events from command
groups, images and buffers which will enable the user to add barrier packets to their own queues to correctly
synchronize for buffer or image data dependencies.

• Queue destruction: The destructor for cl::sycl::queue objects waits for all commands executing on the
queue to complete before the destructor returns.

• Context destruction: The destructor for cl::sycl::context objects waits for all commands executing on
any queues in the context to complete before the destructor returns.

• SYCL event objects: SYCL provides cl::sycl::event objects which can be used for user synchronization.
If synchronization is required between two different OpenCL contexts, then the SYCL runtime ensures
that any extra host-based synchronization is added to enable the SYCL event objects to operate between
contexts correctly.

2.5.6 Error handling

In SYCL, there are two types of error: synchronous errors that can be detected immediately, and asynchronous
errors that can only be detected later. Synchronous errors, such as failure to construct an object, are reported
immediately by the runtime throwing an exception. Asynchronous errors, such as an error occurring during
execution of a kernel on a device, are reported via user-supplied asynchronous error-handlers.

A cl::sycl::context can be constructed with a user-supplied asynchronous error handler. If a cl::sycl::queue
is constructed without a user-supplied context, then the user can supply an asynchronous error handler for the
queue, otherwise errors on that queue will be reported to its context error handler.

Asynchronous errors are not reported immediately as they occur. The asynchronous error handler for a context
or queue is called with a cl::sycl::exception_list object, which contains a list of asynchronously-generated
exception objects, either on destruction of the context or queue that the error handler is associated with, or via an
explicit wait_and_throwmethod call on an associated queue. This style of asynchronous error handling is similar
to that proposed for an upcoming revision of the C++ standard.

2.5.7 Scheduling of kernels and data movement

Within the command group scope, accessor objects specify what data the command group will read and write.
When enqueuing a command group functor, the runtime ensures that synchronization operations are also en-
queued. By these means it ensures that the reads and writes are semantically equivalent to an in-order execution.
Different command groups may execute out-of-order relative to each other, as long as read and write dependencies
are enforced.

A command group functor can be submitted either to a single queue to be executed on, or a secondary queue can
be provided as well. If a command group functor fails to be enqueued to the primary queue, then the system will
attempt to enqueue it to the secondary queue, if given as a parameter to the submit function. If the command
group functor fails to be queued to both of these queues, then a synchronous SYCL exception will be thrown.

21

It is possible that a command group may be successfully enqueued, but then asynchronously fail to run, for some
reason. In this case, it may be possible for the runtime system to execute the command group functor on the
secondary queue, instead of the primary queue. The situations where a SYCL runtime may be able to achieve this
asynchronous fall-back is implementation- defined.

A command group functor at construction takes a command group handler as a parameter and anything within
that scope is immediately executed and has to get the handler object as a parameter. The intention is that a user
will perform calls to SYCL functions, methods, destructors and constructors inside that scope. These calls will
be non-blocking on the host, but enqueue operations to the queue the command group is submitted at. All user
functions within the command group scope will be called on the host as the command group functor is executed,
but any runtime SYCL operations will be queued.

The scheduler must treat command groups atomically. So if two threads simultaneously enqueue two command
groups onto the same queue, then each command group must be added to the queue as an atomic operation. The
order of two simultaneously enqueued command groups relative to each other is undefined but the constituent
commands must not interleave.

Command group functors are scheduled to enforce the ordering semantics of operations on memory objects (both
buffers and images). These ordering rules apply regardless of whether the command groups are enqueued in
the same context, queue, device or platform. Therefore, a SYCL implementation may need to produce extra
synchronization operations between contexts, platforms, devices and queues using OpenCL constructs such as
user events. How this is achieved is implementation defined. An implementation is free to re-order or parallelize
command groups in queues as long as the ordering semantics on memory objects are not violated.

The ordering semantics on memory objects are:

1. The ordering rules apply based on the totality of accessors constructed in the command group. The order
in which accessors are constructed within the command group is not relevant. If multiple accessors in
the same command group operate on the same memory object, then the command group’s access to that
memory object is the union of the access permissions of the accessors.

2. Accessors can be created to operate on sub-buffers. A buffer may be overlaid with any number of sub-
buffers. If two accessors are constructed to access the same buffer, but both are to non-overlapping sub-
buffers of the buffer, then the two accessors are said to not overlap, otherwise the accessors do overlap.
Overlapping is the test that is used to determine the scheduling order of command groups.

3. If a command group has any accessor with discard access to a memory object, then the scheduler does not
need to preserve the previous contents of the memory object when scheduling the command group.

4. All other accessors must preserve normal read-write ordering and data access. This means the scheduler
must ensure that a command group that reads a memory object must first copy or map onto the device the
data that might be read. Reads must follow writes to memory objects or overlapping sub-buffers.

5. It is permissible for command groups that only read data to not copy that data back to the host or other
devices after reading and for the scheduler to maintain multiple read-only copies of the data on multiple
devices.

In OpenCL, there are in-order queues and out-of-order queues. In SYCL, the SYCL queue is always out-of-
order, irrespective of the underlying OpenCL queues, maintaining the in-order execution semantics. There are
no guarantees, however, that all the applications can be executed in an out-of-order scheduling scheme so the
execution of command group functors cannot be guaranteed to be out-of-order or executed independently in
parallel by the final system. The latter is implementation defined.

22

It is worth noting that a SYCL queue does not necessarily map to only one OpenCL queue, however, the OpenCL
queue that is given when interacting with the SYCL queue will retain any synchronization information is needed
for synchronization with any other OpenCL queues spawned by the system.

An OpenCL implementation can require different queues for different devices and contexts. The synchroniza-
tion required to ensure order between commands in different queues varies according to whether the queues have
shared contexts. A SYCL implementation must determine the required synchronization to ensure the above or-
dering rules above are enforced.

SYCL provides host accessors. These accessors give temporary access to data in buffers on the host, outside
the command group scope. Host accessors are the only kinds of accessors that can be created outside command
groups. Creation of a host accessor is a blocking operation: all command groups that read or write data in the
buffer or image that the host accessor targets must have completed before the host thread will continue. All
data being written in an enqueued command group to the buffer or image must be completed and written to
the associated host memory before the host accessor constructor returns. Any subsequently enqueued command
group that accesses overlapping data in the buffer or image of the host accessor will block and not start execution
until the host accessor (and any copies) has been destroyed. This approach guarantees that there is no concurrent
access to a memory object between the host thread and any SYCL device.

If a user creates a SYCL buffer, image or accessor from an OpenCL object, then the SYCL runtime will correctly
manage synchronization and copying of data between the OpenCL memory object for the lifetime of the SYCL
buffer, image or accessor constructed from it. If a user makes use of the underlying OpenCL memory object at
the same time as a SYCL buffer, image or accessor is live, then the behaviour is undefined.

2.5.8 Managing object lifetimes

SYCL does not initialize any OpenCL features until a cl::sycl::context object is created. A user does not need
to explicitly create a cl::sycl::context object, but they do need to explicitly create a cl::sycl::queue object,
for which a cl::sycl::context object will be implicitly created if not provided by the user.

All OpenCL objects encapsulated in SYCL objects are reference-counted and will be destroyed once all references
have been released. This means that a user needs only create a SYCL queue (which will automatically create an
OpenCL context) for the lifetime of their application to initialize and release the OpenCL context safely.

When an OpenCL object that is encapsulated in a SYCL object is copied in C++, then the underlying OpenCL
object is not duplicated, but its OpenCL reference count is incremented. When the original or copied SYCL object
is destroyed, then the OpenCL reference count is decremented.

There is no global state specified to be required in SYCL implementations. This means, for example, that if the
user creates two queues without explicitly constructing a common context, then a SYCL implementation does not
have to create a shared context for the two queues. Implementations are free to share or cache state globally for
performance, but it is not required. Memory objects can be constructed with or without attached host memory. If
no host memory is attached at the point of construction, then destruction of that memory object is non-blocking.
The user may use C++ standard pointer classes for sharing the host data with the user application and for defining
blocking, or non-blocking behavior of the buffers and images. If host memory is attached by using a raw pointer,
then the default behavior is followed, which is that the destructor will block until any command groups operating
on the memory object have completed, then, if the contents of the memory object is modified on a device those
contents are copied back to host and only then does the destructor return. Instead of a raw pointer, a unique_ptr
may be provided, which uses move semantics for initializing and using the associated host memory. In this case,
the behavior of the buffer in relation to the user application will be non-blocking on destruction. In the case

23

where host memory is shared between the user application and the SYCL runtime, then the reference counter
of the shared_ptr is determining whether the buffer needs to copy data back on destruction and in that case the
blocking or non-blocking behavior depends on the user application.

The only blocking operations in SYCL (apart from explicit wait operations) are:

• Host accessor constructor, which waits for any kernels enqueued before its creation that write to the corre-
sponding object to finish and be copied back on host memory before it starts processing. The host accessor
does not necessarily copy back to the same host memory as the one initially given by the user.

• Memory object destruction, in the case where copies back to host memory have to be done

• Queue destruction, as all enqueued kernels need to finish executing first.

• Context destruction, as all enqueued kernels need to finish executing first.

• Device destruction, as all enqueued kernels need to finish executing first.

• Platform destruction, as all enqueued kernels need to finish executing first.

2.5.9 Device discovery and selection

A user specifies which queue to submit a command group functor on and each queue is targeted to run on a
specific device (and context). A user can specify the actual device on queue creation, or they can specify a device
selector which causes the SYCL runtime to choose a device based on the user’s provided preferences. Specifying
a selector causes the SYCL runtime to perform device discovery. No device discovery is performed until a SYCL
selector is passed to a queue constructor. Device topology may be cached by the SYCL runtime, but this is not
required.

Device discovery will return both OpenCL devices and platforms as well as a SYCL host platform and SYCL
host device. The host device allows queue creation and running of kernels, but does not support OpenCL-specific
features. It is an error for a user to request an underlying OpenCL device for the SYCL host device.

2.5.10 Interfacing with OpenCL

All SYCL objects which encapsulate an OpenCL object (such as contexts or queues) can be constructed from
the OpenCL object. The constructor takes one argument, the OpenCL object, and performs an OpenCL retain
operation on the OpenCL object to increase its reference count. The destructor for the SYCL object performs an
OpenCL release operation on the OpenCL object. The copy construction semantics of the SYCL object ensure
that each new SYCL copy of the object also does an OpenCL retain on the underlying object.

To obtain the underlying OpenCL object from a SYCL object, there is a getmethod on all relevant SYCL objects.
The get method returns the underlying OpenCL object and also performs a retain operation on the object. It is
the user’s responsibility to release the OpenCL object when the user has finished with it.

SYCL images and buffers are treated differently in that SYCL image and buffer objects do not refer to an OpenCL
context and may reference multiple underlying OpenCL image or buffer objects as well as host allocations. It is
the accessors to the image and buffer objects that refer to an actual OpenCL context. Accessors provide synchro-
nization in place of the events that the OpenCL runtime would use directly. Therefore, obtaining OpenCL cl_mem

24

objects from SYCL is achieved via special accessor classes which can return OpenCL cl_mem and cl_event ob-
jects. SYCL memory objects can be constructed from cl_mem objects, but the SYCL system is free to copy from
the OpenCL memory object into another memory object or host memory, to achieve normal SYCL semantics, for
as long as the SYCL memory object is live. No SYCL object is guaranteed to have only one underlying OpenCL
object created, however, every SYCL object is required to have an OpenCL object which an OpenCL program
can interface with and have all synchronization points refer to it.

25

2.6 Anatomy of a SYCL application

Below is an example of a typical SYCL application which schedules a job to run in parallel on any OpenCL
device.

1 #include <CL/sycl.hpp>

2 #include <iostream>

3
4 int main() {

5 using namespace cl::sycl;

6
7 int data[1024]; // initialize data to be worked on

8
9 // By including all the SYCL work in a {} block, we ensure

10 // all SYCL tasks must complete before exiting the block

11 {

12 // create a queue to enqueue work to

13 queue myQueue;

14
15 // wrap our data variable in a buffer

16 buffer<int, 1> resultBuf(data, range<1>(1024));

17
18 // create a command_group to issue commands to the queue

19 myQueue.submit([&](handler& cgh) {

20 // request access to the buffer

21 auto writeResult = resultBuf.get_access<access::write>(cgh);

22
23 // enqueue a prallel_for task

24 cgh.parallel_for<class simple_test>(range<1>(1024), [=](id<1> idx) {

25 writeResult[idx] = static_cast<int>(idx[0]);

26 }); // end of the kernel function

27 }); // end of our commands for this queue

28 } // end of scope, so we wait for the queued work to complete

29
30 // print result

31 for (int i = 0; i < 1024; i++)

32 std::cout<<"data["<<i<<"] = "<<data[i]<<std::endl;

33
34 return 0;

35 }

At line 1, we “#include” the SYCL header files, which provide all of the SYCL features that will be used.

A SYCL application has three scopes which specify the different sections; application scope, command group
scope and kernel scope. The kernel scope specifies a single kernel function that will be, or has been, compiled
by a device compiler and executed on a device. In this example kernel scope is defined by lines 23 to 25. The
command group scope specifies a unit of work which will comprise of a kernel function and accessors. In this
example command group scope is defined by lines 18 to 26. The application scope specifies all other code outside
of a command group scope. These three scopes are used to control the application flow and the construction and
lifetimes of the various objects used within SYCL.

26

A kernel function is the scoped block of code that will be compiled using a device compiler. This code may
be defined by the body of a lambda function, by the operator() function of a function object or by the binary
cl_kernel entity generated from an OpenCL C string. Each instance of the kernel function will be executed as
a single, though not necessarily entirely independent, flow of execution and has to adhere to restrictions on what
operations may be allowed to enable device compilers to safely compile it to a range of underlying devices.

The parallel_for function is templated with a class, in this case called class simple_test. This class is used
only as a name to enable the kernel (compiled with a device compiler) and the host code (possibly compiled with
a different host compiler) to be linked. This is required because C++ lambda functions have no name that a linker
could use to link the kernel to the host code.

The parallel_for method creates an instance of a kernel object. The kernel object is the entity that will be
enqueued within a command_group. In the case of parallel_for the kernel function will be executed over the
given range from 0 to 1023. A kernel function can only be defined within a command group scope. Command
group scope is the syntactic scope wrapped by the construction of a command group functor object as seen on line
18. The command group functor takes as a parameter a command group handler which is a runtime constructed
object. The command group functor contains all the the operations to be enqueued on the queue this functor will
be submitted to. In this case the constructor used for myQueue on line 13 is the default constructor, which allows
the queue to select the best underlying device to execute on, leaving the decision up to the runtime.

In SYCL, data that is required within a kernel function must be contained within a buffer or image. We construct
a buffer on line 16. Access to the buffer is controlled via an accessor which is constructed on line 21 through
the get_access method of the buffer. The buffer is used to keep track of access to the data and the accessor is
used to request access to the data on a queue, as well as to track the dependencies between kernel functions. In
this example the accessor is used to write to the data buffer on line 25. All buffers must be constructed in the
application scope, whereas all accessors must be constructed in the command group scope.

2.7 Memory objects

Memory objects in SYCL fall into one of two categories: buffer objects and image objects. A buffer object stores
a one-, two- or three-dimensional collection of elements that are stored linearly directly back to back in the same
way C or C++ stores arrays. An image object is used to store a one-, two- or three-dimensional texture, frame-
buffer or image that may be stored in an optimized and device-specific format in memory and must be accessed
through specialized operations.

Elements of a buffer object can be a scalar data type (such as an int, float), vector data type, or a user-defined
structure. In SYCL, a buffer object is a templated type (cl::sycl::buffer), parameterized by the element type
and number of dimensions. An image object is stored in one of a limited number of formats. The elements of an
image object are selected from a list of predefined image formats which are provided by an underlying OpenCL
implementation. Images are encapsulated in the cl::sycl::image type, which is templated by the number of
dimensions in the image. The minimum number of elements in a memory object is one.

The fundamental differences between a buffer and an image object are:

• Elements in a buffer are stored in an array of 1, 2 or 3 dimensions and can be accessed using an accessor by
a kernel executing on a device. The accessors for kernels can be converted within a kernel into C++ pointer
types, or the cl::sycl::global_ptr, cl::sycl::constant_ptr classes. Elements of an image are stored
in a format that is opaque to the user and cannot be directly accessed using a pointer. SYCL provides image
accessors and samplers to allow a kernel to read from or write to an image.

27

• For a buffer object, the data is stored in the same format as it is accessed by the kernel, but in the case of
an image object the data format used to store the image elements may not be the same as the data format
used inside the kernel. Image elements are always a 4-component vector (each component can be a float
or signed/unsigned integer) in a kernel. The SYCL accessor and sampler methods to read from an image
convert an image element from the format it is stored into a 4-component vector. Similarly, the SYCL
accessor methods provided to write to an image convert the image element from a 4-component vector to
the appropriate image format specified such as 4 8-bit elements, for example.

Memory objects, both buffers and images, may have one or more underlying OpenCL cl_mem objects. When
a buffer or image is allocated on more than one OpenCL device, if these devices are on separate contexts then
multiple cl_mem objects may be allocated for the memory object, depending on whether the object has actively
been used on these devices yet or not.

Users may want fine-grained control of the synchronization, memory management and storage semantics of SYCL
image or buffer objects. For example, a user may wish to specify the host memory for a memory object to use,
but may not want the memory object to block on destruction.

Depending on the control and the use cases of the SYCL applications well established C++ classes and patterns
can be used for reference counting and sharing data between user applications and the SYCL runtime. For control
over memory allocation on the host and mapping between host and device memory, C++ allocator classes are
used that can be the pre-defined ones or user-defined. For better control of synchronization between a SYCL
and a non SYCL application that share data shared_ptr and mutex classes are used. In the case where the user
would not like the host side to block on destruction of buffers or images, as the data given to the buffers are for
initialization only, the unique_ptr class can be used instead of a raw pointer to data.

2.8 SYCL for OpenCL Framework

The SYCL framework allows applications to use a host and one or more OpenCL devices as a single heterogeneous
parallel computer system. The framework contains the following components:

• SYCL C++ Template Library: The template library layer provides a set of C++ templates and classes which
provide the programming model to the user. It enables the creation of queues, buffers and images, as well
as access to some underlying OpenCL features such as contexts, platforms, devices and program objects.

• SYCL Runtime: The SYCL runtime interfaces with the underlying OpenCL implementations and handles
scheduling of commands in queues, moving of data between host and devices, manages contexts, programs,
kernel compilation and memory management.

• OpenCL Implementation(s): The SYCL system assumes the existence of one or more OpenCL imple-
mentations available on the host machine. If no OpenCL implementation is available, then the SYCL
implementation provides only a SYCL-specific host device to run kernels on.

• SYCL Device Compiler(s): The SYCL device compilers compile SYCL C++ kernels into a format which
can be executed on an OpenCL device at runtime. There may be more than one SYCL device compiler in a
SYCL implementation. The format of the compiled SYCL kernels is not defined. A SYCL device compiler
may, or may not, also compile the host parts of the program.

28

2.9 SYCL device compiler

To enable SYCL to work on a variety of platforms, with different devices, operating systems, build systems and
host compilers, SYCL provides a number of options to implementers to enable the compilation of SYCL kernels
for devices, while still providing a unified programming model to the user.

2.9.1 Building a SYCL program

A SYCL program runs on a host and one or more OpenCL devices. This requires a compilation model that enables
compilation for a variety of targets. There is only ever one host for the SYCL program, so the compilation of the
source code for the host must happen once and only once. Both kernel and non-kernel source code is compiled
for host.

The design of SYCL enables a single SYCL source file to be passed to multiple, different compilers. This is an
implementation option and is not required. What this option enables is for an implementer to provide a device
compiler only and not have to provide a host compiler. A programmer who uses such an implementation will
compile the same source file twice: once with the host compiler of their choice and once with a device compiler.
This approach allows the advantages of having a single source file for both host code and kernels, while still
allowing users an independent choice of host and SYCL device compilers.

Only the kernels are compiled for OpenCL devices. Therefore, any compiler that compiles only for one or more
devices must not compile non-kernel source code. Kernels are contained within C++ source code and may be
dependent on lambda capture and template parameters, so compilation of the non-kernel code must determine
lambda captures and template parameters, but not generate device code for non-kernel code.

Compilation of a SYCL program may follow either of the following options. The choice of option is made by the
implementer:

1. Separate compilation: One or more device compilers compile just the SYCL kernels for one or more
devices. The device compilers all produce header files for interfacing between the compiler and the runtime,
which are integrated together with a tool that produces a single header file. The user compiles the source
file with a normal C++ host compiler for their platform. The user must ensure that the host compiler is
given the correct command-line arguments (potentially a macro) to ensure that the device compiler output
header file is #included from inside the SYCL header files.

2. Single-source compiler: In this approach, a single compiler may compile an entire source file for both
host and one or more devices. It is the responsibility of the single-source compiler to enable kernels to be
compiled correctly for devices and enqueued from the host.

An implementer of SYCL may choose an implementation approach from the options above.

2.9.2 Naming of kernels

SYCL kernels are extracted from C++ source files and stored in an implementation-defined format. When the
SYCL runtime needs to enqueue a SYCL kernel, it is necessary for the runtime to load the kernel and pass it to an
OpenCL runtime. This requires the kernel to have a globally-visible name to enable an association between the
kernel invocation and the kernel itself. The association is achieved using a kernel name, which is a C++ typename.

29

For a functor, the kernel name can be the same type as the functor itself, as long as the functor type is globally
accessible. For a lambda function, there is no globally-visible name, so the user must provide one. In SYCL, the
name is provided as a template parameter to the kernel invocation, e.g. parallel_for<kernelname>.

A device compiler should detect the kernel invocations (e.g. parallel_for<kernelname>) in the source code and
compile the enclosed kernels, storing them with their associated type name. For details please refer to 5.2. The
user can also extract OpenCL cl_kernel and cl_program objects for kernels by providing the typename of the
kernel.

2.10 Language restrictions in kernels

The SYCL kernels are executed on SYCL devices and all of the functions called from a SYCL kernel is going to be
compiled for the device by a SYCL device compiler. Due to restrictions of the OpenCL 1.2 runtime and OpenCL
1.2 capable devices, there are certain restrictions for SYCL kernels. Those restrictions can be summarized as the
kernels cannot include RTTI information, exception classes, recursive code, virtual functions or make use of C++
libraries that are not compiled for the device. For more details on language restrictions please refer to 5.3.

SYCL kernels use parameters that are captured by value in the command group scope described in 3.5.2 or are
passed from the host to the device using the data management runtime classes of cl::sycl::accessors. Sharing
data structures between host and device code imposes certain restrictions, such as you can only use user defined
classes that are C++11 standard layout classes for the data structures and in general, no pointers initialized for
host can be used on the device, the only way of passing pointers to a kernel is through the usage of cl::sycl::
accessor class, which supports the cl::sycl::buffer and cl::sycl::image classes. No hierarchical structures
of these classes are supported and any other data containers need to be converted to the SYCL data management
classes using the SYCL interface. For more details on the rules for kernel parameter passing, please refer to 3.5.7.

Some types in SYCL vary according to pointer size or vary on the host according to the host ABI, such as size_t
or long. It is the responsibility of the SYCL device compiler to ensure that the sizes of these types match the
sizes on the host, to enable data of these types to be shared between host and device.

The OpenCL C function qualifier __kernel and the access qualifiers: __read_only, __write_only and _-
_read_write are not exposed in SYCL via keywords, but instead encapsulated in SYCL’s parameter passing
system inside accessors. Users wishing to achieve the OpenCL equivalent of these qualifiers in SYCL should
instead use SYCL accessors with equivalent semantics.

2.10.1 SYCL Linker

In SYCL only offline linking is supported for SYCL and OpenCL programs and libraries. In the case of linking
C++ functions and methods to a SYCL application, where the definitions and declarations are not available in
the same translation unit of the compiler, then the macro SYCL_EXTERNAL has to be provided. Any OpenCL
C function included in a pre-built OpenCL library can be defined as extern "C" function and the the OpenCL
program has to be linked against any SYCL program that contains kernels using the external function. In this
case, the data types used have to comply with the interoperability data types defined in 3.73.

30

2.10.2 Functions and datatypes available in kernels

Inside kernels, the functions and datatypes available are restricted by the underlying capabilities of OpenCL
devices. All OpenCL C features are provided by C++ classes and functions, which are available on host and
device.

2.11 Execution of kernels on the SYCL host device

SYCL enables kernels to run on either the host device or on OpenCL devices. When kernels run on an OpenCL
device, then the features and behaviour of that execution follows the OpenCL specification, otherwise they follow
the behaviour specified for the SYCL host device.

Any kernel enqueued to a host queue executes on the host device according to the same rules as the OpenCL
devices.

Kernel math library functions on the host must conform to OpenCL math precision requirements.

The range of image formats supported by the host device is implementation- defined, but must match the minimum
requirements of the OpenCL specification.

Some of the OpenCL extensions and optional features may be available on a SYCL host device, but since these
are optional features and vendor specific extensions, the user must query the host device to determine availability.
A SYCL implementer must state what OpenCL device features are available on their host device implementation.

The synchronization and data movement that occurs when a kernel is executed on the host may be implemented
in a variety of ways on top of OpenCL. The actual mechanism is implementation-defined.

2.12 Example SYCL application

Below is a more complex example application, combining some of the features described above.

1 #include <CL/sycl.hpp>

2 #include <iostream>

3
4 using namespace cl::sycl;

5
6 // Size of the matrices

7 const size_t N = 2000;

8 const size_t M = 3000;

9
10 int main() {

11 {

12 // By including all the SYCL work in a {} block, we ensure

13 // all SYCL tasks must complete before exiting the block

14
15
16 // Open scope to make lifetime of queue clear

31

17 {

18 // Create a queue to work on

19 queue myQueue;

20
21 // Create some 2D buffers of float for our matrices

22 buffer<float, 2> a({N, M});

23 buffer<float, 2> b({N, M});

24 buffer<float, 2> c({N, M});

25
26 // Launch a first asynchronous kernel to initialize a

27 myQueue.submit([&](handler& cgh) {

28 // The kernel write a, so get a write accessor on it

29 auto A = a.get_access<access::write>(cgh);

30
31 // Enqueue a parallel kernel iterating on a N*M 2D iteration space

32 cgh.parallel_for<class init_a>(

33 {N, M}, [=](id<2> index) { A[index] = index[0] * 2 + index[1]; });

34 });

35
36 // Launch an asynchronous kernel to initialize b

37 myQueue.submit([&](handler& cgh) {

38 // The kernel write b, so get a write accessor on it

39 auto B = b.get_access<access::write>(cgh);

40 /* From the access pattern above, the SYCL runtime detect this

41 command_group is independant from the first one and can be

42 scheduled independently */

43
44 // Enqueue a parallel kernel iterating on a N*M 2D iteration space

45 cgh.parallel_for<class init_b>({N, M}, [=](id<2> index) {

46 B[index] = index[0] * 2014 + index[1] * 42;

47 });

48 });

49
50 // Launch an asynchronous kernel to compute matrix addition c = a + b

51 myQueue.submit([&](handler& cgh) {

52 // In the kernel a and b are read, but c is written

53 auto A = a.get_access<access::read>(cgh);

54 auto B = b.get_access<access::read>(cgh);

55 auto C = c.get_access<access::write>(cgh);

56 // From these accessors, the SYCL runtime will ensure that when

57 // this kernel is run, the kernels computing a and b completed

58
59 // Enqueue a parallel kernel iterating on a N*M 2D iteration space

60 cgh.parallel_for<class matrix_add>(

61 {N, M}, [=](id<2> index) { C[index] = A[index] + B[index]; });

62 });

63
64 /* Ask an access to read c from the host-side. The SYCL runtime

65 ensures that c is ready when the accessor is returned */

66 auto C = c.get_access<access::read, access::host_buffer>();

67 std::cout << std::endl << "Result:" << std::endl;

68 for (size_t i = 0; i < N; i++) {

69 for (size_t j = 0; j < M; j++) {

70 // Compare the result to the analytic value

71 if (C[i][j] != i * (2 + 2014) + j * (1 + 42)) {

32

72 std::cout << "Wrong value " << C[i][j] << " on element " << i << " "

73 << j << std::endl;

74 exit(-1);

75 }

76 }

77 }

78 } /* End scope of myQueue, this wait for any remaining operations on the

79 queue to complete */

80
81 std::cout << "Good computation!" << std::endl;

82 return 0;

83 }

33

3. SYCL Programming Interface

The SYCL programming interface provides a C++ abstraction to OpenCL 1.2 functionality and feature set. This
section describes all the available classes and interfaces of SYCL, focusing on the C++ interface of the underlying
runtime. In this section, we are defining all the classes and methods for the SYCL API, which are available
for SYCL host and OpenCL devices. This section also describes the synchronization rules and OpenCL API
interoperability rules which guarantee that all the methods, including constructors, of the SYCL classes are thread
safe.

It is assumed that the OpenCL API is also available to the developer at the same time as SYCL.

3.1 Header files and namespaces

SYCL provides one standard header file: "CL/sycl.hpp", which needs to be included in every SYCL program.

All SYCL classes, constants, types and functions are defined within the cl::sycl namespace.

3.2 C++ Standard library classes required for the interface

The SYCL programming interfaces make extensive use of vectors, strings and function objects to carry informa-
tion. Moreover, smart pointer and mutex classes, allow extending the SYCL programming interface in terms of
host data management a SYCL will default to using the STL string, vector, function, mutex and smart pointer
classes, unless defined otherwise. These types are exposed internally as cl::sycl::vector_class, cl::sycl::
string_class, cl::sycl::function_class, cl::sycl::mutex_class, cl::sycl::unique_ptr_class, cl::sycl
::shared_ptr_class and cl::sycl::weak_ptr_class.

It is possible to disable the STL versions of these classes when required. A common reason for doing this is to
specify a custom allocator to move memory management under the control of the SYCL user. This is achieved
by defining CL_SYCL_NO_STD_VECTOR, CL_SYCL_NO_STD_STRING, CL_SYCL_NO_STD_FUNCTION, CL_SYCL_-
NO_STD_MUTEX, CL_SYCL_NO_UNIQUE_PTR, CL_SYCL_NO_SHARED_PTR, CL_SYCL_NO_WEAK_PTR, respectively,
before including "CL/sycl.hpp", and by replacing the template aliases in the cl::sycl namespace as necessary.

1 namespace cl {

2 namespace sycl {

3 #define CL_SYCL_NO_STD_VECTOR

4 #include <vector>

5 template < class T, class Alloc = std::allocator<T> >

6 using vector_class = std::vector<T, Alloc>;

7
8 #define CL_SYCL_NO_STD_STRING

9 #include <string>

34

10 using string_class = std::string;

11
12 #define CL_SYCL_NO_STD_FUNCTION

13 #include <functional>

14 using function_class = std::function

15
16 #define CL_SYCL_NO_STD_MUTEX

17 #include <functional>

18 using mutex_class = std::mutex

19
20 #define CL_SYCL_NO_STD_UNIQUE_PTR

21 #include <functional>

22 using unique_ptr_class = std::unique_ptr

23
24 #define CL_SYCL_NO_STD_SHARED_PTR

25 #include <functional>

26 using shared_ptr_class = std::shared_ptr

27
28 #define CL_SYCL_NO_STD_WEAK_PTR

29 #include <functional>

30 using weak_ptr_class = std::weak_ptr

31
32 #include <cl/sycl.hpp>

33 } // sycl

34 } // cl

3.3 SYCL runtime classes

3.3.1 Device selection class

The class device_selector is a functor which enables the SYCL runtime to choose the best device based on
heuristics specified by the user, or by one of the built-in device selectors. The built-in device selectors are listed
in Table 3.3. The device_selector constructors and methods are described in tables 3.1 and 3.2.

1 namespace cl {

2 namespace sycl {

3 class device_selector {

4 public:

5 device_selector();

6
7 device_selector(const device_selector &selector);

8
9 virtual ∼device_selector();

10
11 device select_device() const;

12
13 virtual int operator()(const device &device) const = 0;

14 };

15 } // namespace sycl

16 } // namespace cl

35

Constructors Description
device_selector() Default device selector constructor for the

abstract class.
device_selector(const device_selector &selector) Copy constructor.

End of table
Table 3.1: Constructors of the device_selector class

Methods Description
device select_device()const Returns a selected device using the functor

operator defined in sub-classes operator()(
const device &device).

virtual int operator()(const device &device)const This pure virtual operator allows the cus-
tomization of device selection. It defines
the behavior of the device_selector func-
tor called by the SYCL runtime on device
selection. It returns a “score” for each de-
vice in the system and the highest rated de-
vice will be used by the SYCL runtime.

End of table
Table 3.2: Methods for the device_selector class

operator() is an abstract method which returns a“score” per-device. At the stage where the SYCL runtime selects
a device, the system will go through all the available devices in the system and choose the one with the highest
score as computed by the current device selection class. If a device has a negative score it will never be chosen.
While OpenCL devices may or may not be available, the SYCL host device is always available, so the developer is
able to choose the SYCL host device as a fall-back device. Selection of the SYCL host device will allow execution
of CPU-compiled versions of kernels scheduled on queues created against that device.

The system also provides built-in device selectors, including selectors which choose a device based on the default
behavior of the system. An important note is that the system is not required to have global state and its behavior
is defined by the platforms the developer chooses to target.

The default selector is the selector that incorporates the default behavior of the system, and it is implicitly used
by the system for the creation of the queue when no other device selector or underlying OpenCL identifier is
provided. The method the default selector uses to rank and select devices is implementation-defined. The default -
selector will choose the SYCL host device if there are no OpenCL devices available.

SYCL device selectors Description
default_selector Devices selected by heuristics of the sys-

tem. If no OpenCL device is found then it
defaults to the SYCL host device.

gpu_selector Select devices according to device type
info::device::device_type::gpu from all
the available OpenCL devices. If no
OpenCL GPU device is found the selector
fails.

Continued on next page
Table 3.3: Standard device selectors included with all SYCL implemen-
tations.

36

SYCL device selectors Description
cpu_selector Select devices according to device type

info::device::device_type::cpu from all
the available devices and heuristics. If no
OpenCL CPU device is found the selector
fails.

host_selector Selects the SYCL host CPU device that
does not require an OpenCL runtime.

End of table
Table 3.3: Standard device selectors included with all SYCL implemen-
tations.

3.3.2 Platform class

The platform class represents a SYCL platform: a collection of related SYCL supported devices. Each platform
may be either an OpenCL platform, or it may be the SYCL host platform, containing only the SYCL host device.
The host platform may be useful when no OpenCL platform is available or during the development process,
especially for debugging. The platform class offers a selection of static methods to obtain information about the
platforms available at runtime. The SYCL host platform reports itself as a valid SYCL platform. The constructors
and methods of the platform class are listed in Tables 3.4 and 3.5.

1 namespace cl {

2 namespace sycl {

3 namespace info {

4 enum class device_type : unsigned int {

5 cpu,

6 gpu,

7 accelerator,

8 custom,

9 defaults,

10 host,

11 all

12 }

13 } // info

14
15 class platform {

16 public:

17 platform();

18
19 explicit platform(cl_platform_id platformID);

20
21 explicit platform(device_selector &devSelector);

22
23 platform(const platform &rhs);

24
25 platform &operator=(const platform &rhs);

26
27 ∼platform();

28
29 //The OpenCL cl_platform_id or nullptr for SYCL host.

37

30 cl_platform_id get() const;

31
32 // Returns all the available OpenCL platforms and the SYCL host platform

33 static vector_class<platform> get_platforms() const;

34
35 //Returns the devices available in this platform

36 vector_class<device> get_devices(

37 info::device_type = info::device_type::all) const;

38
39 //Returns the corresponding descriptor information for all SYCL platforms

40 //(OpenCL and host)

41 template <info::platform param>

42 typename info::param_traits<info::platform, param>::type get_info()

43 const;

44
45 //Returns the available extensions for all SYCL platforms(OpenCL and host)

46 bool has_extension(string_class extension) const;

47
48 //True if the platform is host

49 bool is_host() const;

50 };

51 } // namespace sycl

52 } // namespace cl

The SYCL host platform is not an OpenCL platform. The get() method will return nullptr cl platform id. The
SYCL host platform will be included in the output of the static function get platforms.

Constructors Description
platform() Default constructor for platform. It con-

structs a platform object to encapsulate the
device returned by the default device selec-
tor. Returns errors via the SYCL exception
class.

explicit platform(cl_platform_id platformId) Construct a platform object from an
OpenCL platform id. Returns errors via the
SYCL exception class.

explicit platform(device_selector &devSelector) Construct a platform object from the device
returned by a device selector of the user’s
choice. Returns errors via the SYCL excep-
tion class.

platform(const platform &rhs) Copy constructor.
platform &operator=(const platform &rhs) Assignment operator.

End of table
Table 3.4: Constructors of platform class

The default constructor will create an instance of the platform class where the underlying platform will be the
SYCL host platform by default.

38

Methods Description
cl_platform_id get ()const Returns the cl platform id of the underlying

OpenCL platform. If the platform is not a
valid OpenCL platform, for example if it is
the SYCL host, a nullptr will be returned.

static vector_class<platform> get_platforms ()const Returns all available platforms in the sys-
tem.

vector_class<device> get_devices(

info::device_type = info::device_type::all)const

Returns all the available devices for this
platform, of type device type, which is de-
faulted to info::device_type::all

template <info::platform param>

typename info::param_traits<info::platform,

param>::type

get_info()const

Queries OpenCL information for the under-
lying cl platform.

bool has_extension(string_class extension)const Specifies whether a specific extension is
supported on the platform.

bool is_host()const Returns true if this is a SYCL host platform.
End of table

Table 3.5: Methods of platform class

3.3.2.1 Platform information descriptors

A SYCL platform can be queried for all of the following information using the get_info function. All SYCL
contexts have valid devices for them, including the SYCL host device. The available information is in table 3.6.
The interface of all available nplatform descriptors in the appendix C.1.

Platform Descriptors Return type Description
info::platform::profile string_class Returns the profile name supported by the im-

plementation. Can be either FULL PROFILE
or EMBEDDED PROFILE.

info::platform::version string_class OpenCL software driver version string in the
form major number.minor number

info::platform::name string_class Name of the platform.
info::platform::vendor string_class String provided by the platform vendor.
info::platform::extensions string_class A space-separated list of extension names sup-

ported by the platform.
End of table

Table 3.6: Platform information descriptors.

3.3.3 Context class

The context class encapsulates an OpenCL context, which is implicitly created and the lifetime of the context
instance defines the lifetime of the underlying OpenCL context instance. On destruction clReleaseContext is
called. The default context is the SYCL host context containing only the SYCL host device.

39

The constructors and methods of the context class are listed in Tables 3.7 and 3.8.

3.3.3.1 Context interface

1 namespace cl {

2 namespace sycl {

3 class context {

4 public:

5 context();

6
7 explicit context(async_handler asyncHandler = nullptr);

8
9 context(cl_context clContext, async_handler asyncHandler = nullptr);

10
11 context(const device_selector &deviceSelector,

12 info::gl_context_interop interopFlag,

13 async_handler asyncHandler = nullptr);

14
15 context(const device &dev, info::gl_context_interop interopFlag,

16 async_handler asyncHandler = nullptr);

17
18 context(const platform &plt, info::gl_context_interop interopFlag,

19 async_handler asyncHandler = nullptr);

20
21 context(vector_class<device> deviceList, info::gl_context_interop interopFlag,

22 async_handler asyncHandler = nullptr);

23
24 context(const context &rhs);

25
26 context &operator=(const context &rhs);

27
28 ∼context();

29
30 cl_context get() const;

31
32 bool is_host() const;

33
34 platform get_platform();

35
36 vector_class<device> get_devices() const;

37
38 template <info::context param>

39 typename param_traits<info::context, param>::type get_info() const;

40 };

41 } // namespace sycl

42 } // namespace cl

40

Constructors Description
context () Default constructor that chooses the con-

text according the heuristics of the default -
selector. Returns synchronous errors via the
SYCL exception class.

explicit context(async_handler asyncHandler =

nullptr)

Constructs a context object for SYCL host
using an async handler for handling asyn-
chronous errors.

context(const device_selector &deviceSelector,

info::gl_context_interop interopFlag,

async_handler asyncHandler = nullptr)

Constructs a context object using a device -
selector object. The context is constructed
with a single device retrieved from the de-
vice selector object provided. Returns syn-
chronous errors via the SYCL exception
class and asynchronous errors are handled
via the async handler, if provided.

context(const device &dev,

info::gl_context_interop interopFlag,

async_handler asyncHandler = nullptr)

Constructs a context object using a device
object. Returns synchronous errors via the
SYCL exception class and asynchronous er-
rors are handled via the async handler, if
provided.

context(const platform &plt,

info::gl_context_interop interopFlag,

async_handler asyncHandler = nullptr)

Constructs a context object using a platform
object. Returns synchronous errors via the
SYCL exception class and asynchronous er-
rors are handled via the async handler, if
provided.

context(vector_class<device> deviceList,

info::gl_context_interop interopFlag,

async_handler asyncHandler = nullptr)

Constructs a context object using a vec-
tor class of device objects. Returns syn-
chronous errors via the SYCL exception
class and asynchronous errors are handled
via the async handler, if provided.

context (cl_context clContext,

async_handler asyncHandler = nullptr)

Context constructor, where the underlying
OpenCL context is given as a parameter.
The constructor executes a retain on the cl -
context. Returns synchronous errors via the
SYCL exception class and asynchronous er-
rors are handled via the async_handler, if
provided.

context(const context &rhs) Constructs a context object from another
context object and retains the cl context ob-
ject if the context is not SYCL host.

End of table
Table 3.7: Constructors of the context class.

Methods Description
cl_context get ()const Returns the underlying cl context object, af-

ter retaining the cl context. Retains a ref-
erence to the returned cl_context object.
Caller should release it when finished.

41

Methods Description
bool is_host ()const Specifies whether the context is in SYCL

Host Execution Mode.
template <info::context param>

typename param_traits

<info::context, param>::type

get_info ()const

Queries OpenCL information for the under-
lying cl context.

platform get_platform() Returns the SYCL platform that the context
is initialized for.

vector_class<device>

get_devices()const

Returns the set of devices that are part of this
context.

Table 3.8: Methods of context class

3.3.3.2 Context information descriptors

A SYCL context can be queried for all of the following information using the get_info function. All SYCL
contexts have valid devices for them, including the SYCL host device. The available information is in table 3.9.
The interface of all available context descriptors in the appendix C.2. UPDATED: changed info::context::context -
reference count to info::context::reference count for consistency)

Context Descriptors Return type Description
info::context::reference_count cl_uint Return the context reference count.
info::context::num_devices cl_uint Return the number of devices in context.
info::context::devices vector_class<

cl_device_id>

Return the list of devices in context.

info::context::gl_interop info::

gl_context_interop

Boolean value which specifies whether the
context is used for OpenCL/OpenGL interoper-
ability according to the OpenCL 1.2 extensions
specification document [2].

End of table
Table 3.9: Context information descriptors

On construction of a context, it is possible to supply an asynchronous error handler function object. If supplied,
then asynchronous errors can be reported to the error handler. Asynchronous errors are only reported to the user
when a queue attached to the context is destroyed or as its wait_and_throw() method called.

3.3.4 Device class

The SYCL device class encapsulates a particular SYCL device against on which kernels may be executed. The
SYCL device may be an OpenCL device or it may be a SYCL host device representing the host CPU. In the
OpenCL device case it should have valid cl_device_id and cl_platform_id available. The cl_device_id for the
SYCL host device is not going to be available through the OpenCL interface, as it is not an OpenCL device. In the
case where the SYCL device is constructed from an existing cl_device_id the system will call clRetainDevice.
On destruction the runtime will call clReleaseDevice. It is the user’s responsibility to make sure that the device

42

object with cl_device_id is a valid object during the lifetime of the device class.

3.3.4.1 Device interface

The constructors and methods of the device class are listed in Tables 3.10 and 3.11.

1 namespace cl {

2 namespace sycl {

3 class device {

4 public:

5 device();

6
7 explicit device(cl_device_id deviceId);

8
9 explicit device(device_selector &deviceSelector);

10
11 device(const device &rhs);

12
13 device &operator=(const device &rhs);

14
15 ∼device();

16
17 // The OpenCL cl_platform_id or nullptr for SYCL host.

18 cl_device_id get() const;

19
20 bool is_host() const;

21
22 bool is_cpu() const;

23
24 bool is_gpu() const;

25
26 bool is_accelerator() const;

27
28 platform get_platform() const;

29
30 // Returns all the available OpenCL devices and the SYCL host device

31 static vector_class<device> get_devices(

32 info::device_type deviceType = info::device_type::all);

33
34 template <info::device param>

35 typename info::param_traits<info::device, param>::type

36 get_info<info::device>() const;

37
38 bool has_extension(string_class extension) const;

39
40 vector_class<device> create_sub_devices(

41 info::device_partition_type partitionType,

42 info::device_partition_property partitionProperty,

43 info::device_affinity_domain affinityDomain) const;

44
45
46 };

47 } // namespace sycl

43

48 } // namespace cl

The default constructor will create an instance of the SYCL host device.

The developer can partition existing devices through the create_sub_devices API. More documentation on
this is in the OpenCL 1.2 specification [1, sec. 4.3]. It is valid to construct a SYCL device directly from an
OpenCL sub-device.

Information about the SYCL device may be queried through the get_info method. The developer can also query
the device instance for the cl_device_id which will be nullptr if the SYCL device is the host device. The
get_platform method will return the corresponding platform object.

To facilitate the different options for SYCL devices, there are methods that check the type of device. The method
is_host() returns true if the device is actually the host. In the case where an OpenCL device has been initialized
through this API, the methods is_cpu() , is_gpu() and is_accelerator() return true if the OpenCL device is
CPU, GPU or an accelerator.

Constructors Description
device () Default constructor for the device. It choses

a device using host selector. Returns errors
via C++ exception class.

explicit device (device_selector &deviceSelector) Constructs a device class instance using the
device selector provided. Returns errors via
C++ exception class.

explicit device (cl_device_id deviceId) Constructs a device class instance using cl -
device id of the OpenCL device. Returns
synchronous errors via the SYCL exception
class. Retains a reference to the OpenCL de-
vice and if this device was an OpenCL sub-
device the device should be released by the
caller when it is no longer needed.

device (const device &rhs) Copy constructor. Returns synchronous er-
rors via the SYCL exception class.

device &operator=(const device &rhs) Assignment constructor. Returns syn-
chronous errors via the SYCL exception
class.

End of table
Table 3.10: Constructors of the device class

Methods Description
cl_device_id get ()const Returns the cl device id of the underlying

OpenCL platform. Returns synchronous er-
rors via the SYCL exception class. Retains a
reference to the returned cl_device_id ob-
ject. Caller should release it when finished.
In the case where this is the SYCL host de-
vice it will return a nullptr.

Continued on next page
Table 3.11: Methods of the device class

44

Methods Description
platform get_platform ()const Returns the platform of device. Returns

synchronous errors via the SYCL exception
class.

bool is_host ()const Returns true if the device is a SYCL host
device.

bool is_cpu ()const Returns true if the device is an OpenCL
CPU device.

bool is_gpu ()const Returns true if the device is an OpenCL
GPU device.

bool is_accelerator ()const Returns true if the device is an OpenCL ac-
celerator device.

template <info::device param> typename info::

param_traits

<info::device, param>::type

get_info ()const

Queries the device for OpenCL
info::device info. Returns synchronous
errors via the SYCL exception class.

bool has_extension (string_class extension)const Specifies whether a specific extension is
supported on the device.

vector_class<device> create_sub_devices (

info::device_partition_type partitionType,

info::device_partition_property

partitionProperty,

info::device_affinity_domain affinityDomain)

const

Partitions the device into sub devices based
upon the properties provided. Returns syn-
chronous errors via SYCL exception classes.

static vector_class<device>

get_devices (

info::device_type deviceType =

info::device_type::all)

Returns a list of all available devices. Re-
turns synchronous errors via SYCL excep-
tion classes.

End of table
Table 3.11: Methods of the device class

3.3.4.2 Device information descriptors

A SYCL device can be queried for all of the following information using the get_info function. All SYCL
devices have valid queries for them, including the SYCL host device. The available information is in table 3.12.
The interface of all available device descriptors in the appendix C.3.

Device Descriptors Return type Description
info::device::device_type info::device_type The SYCL device type. Currently supported

values are: cpu, gpu, accelerator, defaults, cus-
tom, host, all.

info::device::vendor_id cl_uint A unique SYCL device vendor identifier. An
example of a unique device identifier could be
the PCIe ID. The SYCL host device has to re-
port a valid vendor id.

Continued on next page
Table 3.12: Device information descriptors.

45

Device Descriptors Return type Description
info::device::max_compute_units cl_uint The number of parallel compute units on the

SYCL device. A work-group executes on a sin-
gle compute unit. The minimum value is 1.

info::device::

max_work_item_dimensions

cl_uint Maximum dimensions that specify the global
and local work-item IDs used by the data par-
allel execution model. The minimum value
is 3 for devices that are not of type info::
device_type::custom.

info::device::max_work_item_sizes id<3> Maximum number of work-items that can be
specified in each dimension of the work-group
to the nd range. The minimum value is (1,
1, 1) for devices that are not of type info::
device_type::custom.

info::device::max_work_group_size size_t Maximum number of work-items in a work-
group executing a kernel on a single compute
unit, using the data parallel execution model.
The minimum value is 1.

info::device::

preferred_vector_width_char

info::device::

preferred_vector_width_short

info::device::

preferred_vector_width_int

info::device::

preferred_vector_width_long

info::device::

preferred_vector_width_float

info::device::

preferred_vector_width_double

info::device::

preferred_vector_width_half

cl_uint Preferred native vector width size for builtin
scalar types that can be put into vectors.
The vector width is defined as the number
of scalar elements that can be stored in the
vector. If double precision is not supported,
info::device_preferred_width_double

must return 0. If the cl_khr_fp16

extension is not supported, info::device::
preferred_vector_width_half must return
0.

info::device::

native_vector_width_char info::

device::native_vector_width_short

info::device::

native_vector_width_int info::

device::native_vector_width_long

info::device::

native_vector_width_float

info::device::

native_vector_width_double info::

device::native_vector_width_half

cl_uint Returns the native ISA vector width. The vec-
tor width is defined as the number of scalar ele-
ments that can be stored in the vector. If double
precision is not supported, info::device::
native_vector_width_double must return 0.
If the cl_khr_fp16 extension is not supported,
info::device::native_vector_width_half

must return 0.

info::device::max_clock_frequency cl_uint Maximum configured clock frequency of the
device in MHz.

info::device::address_bits cl_uint The default compute device address space size
specified as an unsigned integer value in bits.
Currently supported values are 32 or 64 bits.

Continued on next page
Table 3.12: Device information descriptors.

46

Device Descriptors Return type Description
info::device::max_mem_alloc_size cl_long Max size of memory object allocation in bytes.

The minimum value is max (1/4th of info::
device::global_mem_size,128*1024*1024)
for devices that are not of type info::device -
type::custom.

info::device::image_support cl_bool Is 1 if images are supported by the SYCL de-
vice and 0 otherwise.

info::device::max_read_image_args cl_uint Max number of simultaneous image objects
that can be read by a kernel. The minimum
value is 128 if info::device::image support is
true.

info::device::

max_write_image_args

cl_uint Max number of simultaneous image objects
that can be written to by a kernel. The mini-
mum value is 8 if info::device::image support
is true.

info::device::image2d_max_width size_t Max width of 2D image or 1D image not cre-
ated from a buffer object in pixels. The mini-
mum value is 8192 if info::device::image sup-
port is true.

info::device::image_2d_max_height size_t Max height of 2D image in pixels. The mini-
mum value is 8192 if info::device::image sup-
port is true.

info::device::image3d_max_width size_t Max width of 3D image in pixels. The mini-
mum value is 2048 if info::device::image sup-
port is true.

info::device::image3d_max_height size_t Max height of 3D image in pixels. The mini-
mum value is 2048 if info::device::image sup-
port is true.

info::device::image3d_max_depth size_t Max depth of 3D image in pixels. The mini-
mum value is 2048 if info::device::image sup-
port is true.

info::device::

image_max_buffer_size

size_t Max number of pixels for a 1D image created
from a buffer object. The minimum value is
65536 if info::device::image support is true.

info::device::

image_max_array_size

size_t Max number of images in a 1D or 2D im-
age array. The minimum value is 2048 if
info::device::image support is true.

info::device::max_samplers cl_uint Maximum number of samplers that can be
used in a kernel. The minimum value is 16 if
info::device::image support is true.

info::device::max_parameter_size size_t Max size in bytes of the arguments that can be
passed to a kernel. The minimum value is 1024
for devices that are not of type info::device -
type::custom. For this minimum value, only a
maximum of 128 arguments can be passed to a
kernel.

Continued on next page
Table 3.12: Device information descriptors.

47

Device Descriptors Return type Description
info::device::mem_base_addr_align cl_uint The minimum value is the size (in bits) of the

largest SYCL built-in data type supported by
the device is longlong16 for devices that are not
of type info::device type::custom.

info::device::single_fp_config info::

device_fp_config

Describes single precision floating-point capa-
bility of the device. This is a bit-field that de-
scribes one or more of the following values:
• info::fp config::denorm : denorms are

supported
• info::fp config::inf nan : INF and quiet

NaNs are supported.
• info::fp config::round to nearest: round

to nearest even rounding mode supported
• info::fp config::round to zero : round to

zero rounding mode supported
• info::fp config::round to inf : round to

positive and negative infinity rounding
modes supported

• info::fp config::fma : IEEE754-2008
fused multiply add is supported.

• info::fp config::correctly rounded di-
vide sqrt : divide and sqrt are correctly
rounded as defined by the IEEE754
specification.

• info::fp config::soft float : Basic
floating-point operations (such as
addition, subtraction, multiplication)
are implemented in software. The
mandated minimum floating-point
capability for devices that are not
of type info::device type::custom
is: info::fp config::round to nearest
info::fp config::inf nan

Continued on next page
Table 3.12: Device information descriptors.

48

Device Descriptors Return type Description
info::device::double_fp_config info::

device_fp_config

Describes double precision floating-point capa-
bility of the SYCL device. This is a bit-field
that describes one or more of the following val-
ues:
• info::fp_config::denorm: denorms

are supported
• info::fp_config::inf_nan : INF and

NaNs are supported.
• info::fp_config::round_to_nearest :

round to nearest even rounding mode
supported.

• info::fp_config::round_to_zero :
round to zero rounding mode supported.

• info::fp_config::round_to_inf :
round to positive and negative infinity
rounding modes supported.

• info::fp_config::fma : IEEE754-2008
fused multiply-add is supported.

• info::fp_config::soft_float : Basic
floating-point operations (such as addi-
tion, subtraction, multiplication) are im-
plemented in software.

Double precision is an optional feature so the
mandated minimum double precision floating-
point capability is 0. If double precision is sup-
ported by the device, then the minimum double
precision floating-point capability must be:
info::fp_config::fma | info::fp_config

::round_to_nearest | info::fp_config

::round_to_zero | info::fp_config::

round_to_inf | info::fp_config::inf_nan

| info::fp_config::denorm.
info::device::

global_mem_cache_type

info::

device_mem_cache

_type

Type of global memory cache supported. Valid
values are: none, read only cache, write only -
cache.

info::device::

global_mem_cacheline_size

cl_uint Size of global memory cache line in bytes.

info::device::

global_mem_cache_size

cl_ulong Size of global memory cache in bytes.

info::device::global_mem_size cl_ulong Size of global device memory in bytes.
info::device::

max_constant_buffer_size

cl_ulong Max size in bytes of a constant buffer alloca-
tion. The minimum value is 64 KB for devices
that are not of type info::device type::custom.

info::device::max_constant_args cl_uint Max number of constant arguments declared in
a kernel. The minimum value is 8 for devices
that are not of type info::device type::custom.

Continued on next page
Table 3.12: Device information descriptors.

49

Device Descriptors Return type Description
info::device::local_mem_type info::

local_mem_type

Type of local memory supported. This can
be set to info::local mem type::local imply-
ing dedicated local memory storage such as
SRAM, or info::local mem type::global. For
custom devices, info::local mem type::none
can also be returned indicating no local mem-
ory support.

info::device::local_mem_size cl_ulong Size of local memory arena in bytes. The min-
imum value is 32 KB for devices that are not of
type info::device type::custom.

info::device::

error_correction_support

cl_bool Is true if the device implements error correc-
tion for all accesses to compute device memory
(global and constant). Is false if the device does
not implement such error correction.

info::device::host_unified_memory cl_bool Is true if the device and the host have a unified
memory subsystem and is false otherwise.

info::device::

profiling_timer_resolution

size_t Describes the resolution of device timer. This
is measured in nanoseconds.

info::device::is_endian_little cl_bool Is true if the SYCL device is a little endian
device and false otherwise.

info::device::is_available cl_bool Is true if the device is available and false if the
device is not available.

info::device::

is_compiler_available

cl_bool Is false if the implementation does not have
a compiler available to compile the program
source. An OpenCL device that conforms to
the OpenCL Embedded Profile may not have
an online compiler available.

info::device::is_linker_available cl_bool Is false if the implementation does not have a
linker available. An OpenCL device that con-
forms to the OpenCL Embedded Profile may
not have a linker available. However, it needs
to be true if info::device::is compiler available
is true.

info::device::

execution_capabilities

info::device_exec_

capabilities

Describes the execution capabilities of the de-
vice. This is a bit-field that describes one or
more of the following values:
• info::device execution capabili-

ties::exec kernel : The OpenCL device
can execute OpenCL kernels.

• info::device execution capabili-
ties::exec native kernel : The OpenCL
device can execute native kernels.
The mandated minimum capability
is: info::device execution capabili-
ties::exec kernel.

Continued on next page
Table 3.12: Device information descriptors.

50

Device Descriptors Return type Description
info::device::queue_properties vector_class<info

::device_queue_

properties>

Describes the command-queue properties sup-
ported by the device. This is a bit-field that de-
scribes one or more of the following values:
• info::queue properties::out of order
• info::queue properties::profiling

The mandated capability is to enable profiling.
info::device::built_in_kernels string_class A semi-colon separated list of built-in kernels

supported by the device. An empty string is
returned if no built-in kernels are supported by
the device.

info::device::platform cl_platform_id The platform associated with this device.
info::device::name string_class Device name string
info::device::vendor string_class Vendor name string.
info::device::version string_class OpenCL software driver version string in the

form major number.minor number
info::device::profile string_class OpenCL profile string. Returns the profile

name supported by the device. The profile
name returned can be one of the following
strings:
• FULL PROFILE : if the device supports

the OpenCL specification (functionality
defined as part of the core specification
and does not require any extensions to be
supported).

• EMBEDDED PROFILE - if the device
supports the OpenCL embedded profile.

info::device::version string_class OpenCL version string. Returns the OpenCL
version supported by the device. This version
string has the following format: OpenCL<

space><major_version.minor_version><

space><vendor-specific-information> The
major_version.minor_version value returned
will be 1.2.

Continued on next page
Table 3.12: Device information descriptors.

51

Device Descriptors Return type Description
info::device::opencl_c_version string_class OpenCL C version string. Returns the

highest OpenCL C version supported by the
compiler for this device that is not of type
info::device type::custom. This version string
has the following format: OpenCL<space>

C<space><major_version.minor_version

><space><vendor-specific-information>

The major_version.minor_version value re-
turned must be 1.2 if info::device::version
is OpenCL 1.2. The major_version.

minor_version value returned must be
1.1 if info::device::version is OpenCL 1.1. The
major_version.minor_version value returned
can be 1.0 or 1.1 if info::device::version is
OpenCL 1.0.

Continued on next page
Table 3.12: Device information descriptors.

52

Device Descriptors Return type Description
info::device::extensions string_class Returns a space separated list of extension

names (the extension names themselves do not
contain any spaces) supported by the device.
The list of extension names returned can be
vendor supported extension names and one or
more of the following Khronos approved exten-
sion names:
• cl_khr_int64_base_atomics
• cl_khr_int64_extended_atomics
• cl_khr_3d_image_writes
• cl_khr_fp16
• cl_khr_gl_sharing
• cl_khr_gl_event
• cl_khr_d3d10_sharing
• cl_khr_dx9_media_sharing
• cl_khr_d3d11_sharing
• cl_khr_depth_images
• cl_khr_gl_depth_images
• cl_khr_gl_msaa_sharing
• cl_khr_image2d_from_buffer
• cl_khr_initialize_memory
• cl_khr_context_abort
• cl_khr_spir

The following approved Khronos extension
names must be returned by all device that sup-
port OpenCL C 1.2:
• cl_khr_global_int32_base_atomics
• cl_khr_global_int32_extended_atomics

• cl_khr_local_int32_base_atomics
• cl_khr_local_int32_extended_atomics

• cl_khr_byte_addressable_store
• cl_khr_fp64 (for backward compatibil-

ity if double precision is supported)
Please refer to the OpenCL 1.2 Extension Spec-
ification for a detailed description of these ex-
tensions.

info::device::printf_buffer_size size_t Maximum size of the internal buffer that holds
the output of printf calls from a kernel. The
minimum value for the full profile is 1 MB.

Continued on next page
Table 3.12: Device information descriptors.

53

Device Descriptors Return type Description
info::device::

preferred_interop_user_sync

cl_bool Is true if the devices preference is for the user
to be responsible for synchronization, when
sharing memory objects between OpenCL and
other APIs such as DirectX, false if the de-
vice/implementation has a performant path for
performing synchronization of memory object
shared between OpenCL and other APIs such
as DirectX.

info::device::parent_device cl_device_id Returns the cl device id of the parent device
to which this sub-device belongs. If device is
a root-level device, or the host device a NULL
value is returned.

info::device::

partition_max_sub_devices

cl_uint Returns the maximum number of subdevices
that can be created when a device is parti-
tioned. The value returned cannot exceed info
::device::device_max_compute_units

info::device::

partition_properties

vector_class

< info::

device_partition_

property >

Returns the list of partition types sup-
ported by device. The is an array of info
::device_partition_property values drawn
from the following list:
• info::device partition prop-

erty::partition equally
• info::device partition prop-

erty::partition by counts
• info::device partition by affinity do-

main
If the device cannot be partitioned (i.e. there is
no partitioning scheme supported by the device
that will return at least two subdevices), a value
of 0 will be returned.

info::device::

partition_affinity_domain

info::

device_affinity_

domain

Returns the list of supported affinity domains
for partitioning the device using info::device -
affinity domain. This is a bit-field that de-
scribes one or more of the following values:
• info::device affinity do-

main::unsupported
• info::device affinity domain::numa
• info::device affinity domain::L4 cache
• info::device affinity domain::L3 cache
• info::device affinity domain::L2 cache
• info::device affinity domain::L1 cache
• info::device affinity domain::next parti-

tionable

Continued on next page
Table 3.12: Device information descriptors.

54

Device Descriptors Return type Description
info::device::partition_type vector< info::

device_partition_

property >

Returns the properties argument specified
when creating sub devices, if device is a subde-
vice. In the case where the properties argument
to creating sub devices is info::device parti-
tion property::partintion by affinity domain
info::device partition property::partition affin-
ity domain next partitionable, the affinity
domain used to perform the partition will be
returned. This can be one of the following
values:
• info::device affinity do-

main::unsupported
• info::device affinity domain::numa
• info::device affinity domain::L4 cache
• info::device affinity domain::L3 cache
• info::device affinity domain::L2 cache
• info::device affinity domain::L1 cache

Otherwise the implementation may either re-
turn a param_value_size_ret of 0 i.e. there is
no partition type associated with device or can
return a property value of 0 (where 0 is used
to terminate the partition property list) in the
memory that param value points to.

info::device::reference_count cl_uint Returns the device reference count. If the de-
vice is a root-level device, a reference count of
one is returned.

End of table
Table 3.12: Device information descriptors.

3.3.5 Queue class

The class queue is a SYCL encapsulation of an OpenCL cl_command_queue. Can be constructed from a cl_-
command_queue. The destructor waits for all execution on the queue to end and then passes any exceptions that
occurred asynchronously on the queue to the asynchronous error handler, if provided to the constructor, before
calling clReleaseCommandQueue.

3.3.5.1 Queue interface

The constructors and methods of the Queue class are listed in Tables 3.13 and 3.14.

1 namespace cl {

2 namespace sycl {

3 class queue {

4 public:

5 explicit queue(async_handler asyncHandler = nullptr);

55

6
7 queue(const device_selector &deviceSelector,

8 async_handler asyncHandler = nullptr);

9
10 queue(const context &syclContext, const device_selector &deviceSelector,

11 async_handler asyncHandler = nullptr);

12
13 queue(const context &syclContext, const device &syclDevice,

14 async_handler asyncHandler = nullptr);

15
16 queue(const context &syclContext, const device &syclDevice, info

17 : queue_profiling profilingFlag, async_handler asyncHandler = nullptr);

18
19 queue(const device &syclDevice, async_handler asyncHandler = nullptr);

20
21 queue(cl_command_queue clQueue, async_handler asyncHandler = nullptr);

22
23 queue(const queue &syclQueue);

24
25 ∼queue();

26
27 bool is_host();

28
29 context get_context();

30
31 cl_command_queue get();

32
33 device get_device();

34
35 context get_context();

36
37 template <info::queue param>

38 typename param_traits<info::queue, param>::type get_info() const;

39
40 template <typename T>

41 handler_event submit(T cgf);

42
43 template <typename T>

44 handler_event submit(T cgf, queue &secondaryQueue);

45
46 void wait();

47
48 void wait_and_throw();

49
50 void throw_asynchronous();

51 };

52 } // namespace sycl

53 } // namespace cl

56

Constructors Description
explicit queue (

async_handler asyncHandler = nullptr)

This constructor creates a SYCL queue from
an OpenCL queue. At construction it does
a retain on the queue memory object. Re-
tains a reference to the cl_command_queue
object. Caller should release the passed
cl_command_queue object when it is no
longer needed. Returns synchronous errors
regarding the creation of the queue and re-
ports asynchronous errors via the async -
handler callback function in conjunction
with the synchronization and throw meth-
ods.

queue (const device_selector &selector,

async_handler asyncHandler = nullptr)

Creates a queue for the device provided by
the device selector. If no device is selected,
an error is reported. Returns synchronous er-
rors regarding the creation of the queue and
reports asynchronous errors via the async -
handler callback function if and only if there
is an async_handler provided.

queue (const device &syclDevice,

async_handler asyncHandler = nullptr)

A queue is created for syclDevice. Returns
asynchronous errors via the async handler
callback function.

queue (context & syclContext,

device_selector &deviceSelector

async_handler asyncHandler = nullptr)

This constructor chooses a device based on
the provided device selector, which needs
to be in the given context. If no device is
selected, an error is reported.Returns syn-
chronous errors regarding the creation of the
queue. If and only if there is an asyncHan-
dler provided, it reports asynchronous er-
rors via the async handler callback function
in conjunction with the synchronization and
throw methods.

queue (const context &syclContext,

const device &syclDevice

async_handler asyncHandler = nullptr)

Creates a command queue using
clCreateCommandQueue from a con-
text and a device. Returns synchronous
errors regarding the creation of the queue.
If and only if there is an asyncHandler
provided, it reports asynchronous errors
via the async handler callback function in
conjunction with the synchronization and
throw methods.

Continued on next page
Table 3.13: Constructors of the queue class.

57

Constructors Description
queue (const context &syclContext,

const device &syclDevice,

info::queue_profiing profilingFlag,

async_handler asyncHandler = nullptr)

Creates a command queue using
clCreateCommandQueue from a con-
text and a device. It enables profiling on
the queue if the profilingFlag is set to true.
Returns synchronous errors regarding the
creation of the queue. If and only if there
is an asyncHandler provided, it reports
asynchronous errors via the async handler
callback function in conjunction with the
synchronization and throw methods.

queue (cl_command_queue clQueue,

async_handler asyncHandler = nullptr)

This constructor creates a SYCL queue from
an OpenCL queue. At construction it does a
retain on the queue memory object. Returns
synchronous errors regarding the creation of
the queue. If and only if there is an asyn-
cHandler provided, it reports asynchronous
errors via the async handler callback func-
tion in conjunction with the synchronization
and throw methods.

queue (queue &syclQueue) Copy constructor
End of table

Table 3.13: Constructors of the queue class.

Methods Description
cl_command_queue get() Returns the underlying OpenCL command

queue after doing a retain. This memory
object is expected to be released by the de-
veloper. Retains a reference to the returned
cl_command_queue object. Caller should re-
lease it when finished. If the queue is a
SYCL host queue then a nullptr will be re-
turned.

context get_context () Returns the SYCL queue’s context. Reports
errors using SYCL exception classes.

device get_device () Returns the SYCL device the queue is as-
sociated with. Reports errors using SYCL
exception classes.

bool is_host() Returns whether the queue is executing on
a SYCL host device.

void wait () Performs a blocking wait for the comple-
tion all enqueued tasks in the queue. Syn-
chronous errors will be reported through
SYCL exceptions.

Continued on next page
Table 3.14: Methods for class queue

58

Methods Description
void wait_and_throw () Performs a blocking wait for the comple-

tion all enqueued tasks in the queue. Syn-
chronous errors will be reported via SYCL
exceptions. Asynchronous errors will be
passed to the async_handler passed to the
queue on construction. If no async_handler
was provided then asynchronous exceptions
will be lost.

void throw_asynchronous () Checks to see if any asynchronous er-
rors have been produced by the queue and
if so reports them by passing them to the
async_handler passed to the queue on con-
struction. If no async_handler was pro-
vided then asynchronous exceptions will be
lost.

template<info::queue param>

typename param_traits

<info::queue, param>::type

get_info ()const

Queries the platform for cl command -
queue info

template <typename T>

handler_event submit(T cgf)

Submit a command group functor to the
queue, in order to be scheduled for execu-
tion on the device.

template <typename T>

handler_event submit(

T cgf, queue & secondaryQueue)

Submit a command group functor to the
queue, in order to be scheduled for execu-
tion on the device. On kernel error, this com-
mand group functor, then it is scheduled for
execution on the secondary queue. Returns a
command group functor event, which is cor-
responds to the queue the command group
functor is being enqueued on.

End of table
Table 3.14: Methods for class queue

3.3.5.2 Queue information descriptors

A SYCL queue can be queried for all of the following information using the get_info function. All SYCL
queues have valid queries for them, including the SYCL host queue. The available information is in table 3.15.
The interface of all available device descriptors in the appendix C.4.

Queue Descriptors Return type Description
info::queue::context cl_context Return the context specified when the

command-queue is created.
info::queue::device cl_device_id Return the device specified when the

command-queue is created.
info::queue::reference_count cl_uint Return the command-queue reference count.

Continued on next page
Table 3.15: Queue information descriptors

59

Queue Descriptors Return type Description
info::queue::properties info::

queue_profiling

Return the currently specified properties for the
command-queue. These properties are speci-
fied by the properties argument in the queue
constructor.

End of table
Table 3.15: Queue information descriptors

3.3.5.3 Queue error handling

Queue errors come in two forms:

• Synchronous Errors are those that we would expect to be reported directly at the point of waiting on an
event, and hence waiting for a queue to complete, as well as any immediate errors reported by enqueuing
work onto a queue. Such errors are returned through exceptions.

• Asynchronous errors are those that are produced through callback functions only. These will be stored
within the queue’s context until they are dispatched to the context’s asynchronous error handler. If a queue is
constructed with a user-supplied context, then it is this context’s asynchronous error handler to which asyn-
chronous errors are reported. If a queue is constructed without a user-supplied context, then the queue’s
constructor can be supplied with a queue-specific asynchronous error handler which will be used to con-
struct the queue’s context. To ensure that such errors are processed predictably in a known host thread
these errors are only passed to the asynchronous error handler on request when either wait_and_throw is
called or when throw_asynchronous is called. If no asynchronous error handler is passed to the queue or
its context on construction, then such errors go unhandled, much as they would if no callback were passed
to an OpenCL context.

3.3.6 Event class for OpenCL interoperability

An event in SYCL abstracts the cl_event objects in OpenCL. In OpenCL events’ mechanism is comprised of
low-level event objects that require from the developer to use them in order to synchronize memory transfers,
enqueuing kernels and signaling barriers.

In SYCL, events are an abstraction of the OpenCL event objects, but they retain the features and functionality of
the OpenCL event mechanism. They accommodate synchronization between different contexts, devices and plat-
forms. It is the responsibility of the SYCL implementation to ensure that when SYCL events are used in OpenCL
queues, the correct synchronization points are created to allow cross-platform or cross-device synchronization.
Since data management and storage is handled by the SYCL runtime, the event class is used for providing the
appropriate interface for OpenCL/SYCL interoperability. In the case where the SYCL objects contain OpenCL
memory objects created outside the SYCL mechanism then events can be used in order to provide to the SYCL
runtime the initial events it has to synchronize against. However, the events mechanism does not provide full
interoperability during the SYCL code execution with OpenCL. Interoperability is achieved by using the synchro-
nization rules with buffer and image class.

A SYCL event can be constructed from an OpenCL event or can return an OpenCL event. The constructors and
methods of the Event class are listed in Tables 3.16 and 3.17.

60

1 namespace cl {

2 namespace sycl {

3 class event {

4 public:

5 event() = default;

6
7 explicit event(cl_event clEvent);

8
9 event(const event & rhs);

10
11 ∼event();

12
13 cl_event get();

14
15 vector_class<event> get_wait_list();

16
17 void wait();

18
19 static void wait(const vector_class<event> &eventList);

20
21 void wait_and_throw();

22
23 static void wait_and_throw(const vector_class<event> &eventList);

24
25 template <info::event param>

26 typename param_traits<info::event, param>::type get_info() const;

27
28 template <info::event_profiling param>

29 typename param_traits<info::event_profiling, param>::type get_profiling_info() const;

30 };

31 } // namespace sycl

32 } // namespace cl

Constructors Description
event ()= default Default construct a null event object.
explicit event (cl_event clEvent) Construct a SYCL event from a cl_event,

only used with the SYCL/ OpenCL interop-
erability interface for buffers and images.

event (const event & rhs) Construct a copy sharing the same under-
lying event. The underlying event will be
reference counted.

End of table
Table 3.16: Constructors for the event class

Methods Description
cl_event get() Return the underlying OpenCL event ref-

erence. Retains a reference to the returned
cl_event object. Caller should release it
when finished.

Continued on next page
Table 3.17: Methods for the event class

61

Methods Description
vector_class<event> get_wait_list() Return the list of events that this event waits

for in the dependence graph.
void wait() Wait for the event and the command associ-

ated with it to complete.
void wait_and_throw() Wait for the event and the command associ-

ated with it to complete.
If any uncaught asynchronous errors oc-
curred on the context (or contexts) that the
event is waiting on executions from, then
will also call that context’s asynchronous er-
ror handler with those errors.

static void wait(

const vector_class<event> &eventList)

Synchronously wait on a list of events.

static void wait_and_throw(

const vector_class<event> &eventList)

Synchronously wait on a list of events. If
any uncaught asynchronous errors occurred
on the context (or contexts) that the events
are waiting on executions from, then will
also call those contexts’ asynchronous error
handlers with those errors.

template <info::event param>

typename param_traits

<info::event, param>::type

get_info ()const

Queries OpenCL information for the under-
lying cl event.

template <info::event_profiling param>

typename param_traits

<info::event_profiling, param>::type

get_profiling_info ()const

Queries OpenCL profiling information for
the underlying cl event.

End of table
Table 3.17: Methods for the event class

3.3.6.1 Event information and profiling descriptors

A SYCL event can be queried for all of the following information using the get_info function. The available
information is in table 3.18. Profiling information available is in table 3.19. The interface of all available event
and profiling descriptors in the appendix C.7.

62

Event Descriptors Return type Description
info::event::command_type cl_command_type Return the command associated with event.

Can be one of the following values:
• CL_COMMAND_NDRANGE_KERNEL
• CL_COMMAND_TASK
• CL_COMMAND_NATIVE_KERNEL
• CL_COMMAND_READ_BUFFER
• CL_COMMAND_WRITE_BUFFER
• CL_COMMAND_COPY_BUFFER
• CL_COMMAND_READ_IMAGE
• CL_COMMAND_WRITE_IMAGE
• CL_COMMAND_COPY_IMAGE
• CL_COMMAND_COPY_BUFFER_TO_IMAGE
• CL_COMMAND_COPY_IMAGE_TO_BUFFER
• CL_COMMAND_MAP_BUFFER
• CL_COMMAND_MAP_IMAGE
• CL_COMMAND_UNMAP_MEM_OBJECT
• CL_COMMAND_MARKER
• CL_COMMAND_ACQUIRE_GL_OBJECTS
• CL_COMMAND_RELEASE_GL_OBJECTS
• CL_COMMAND_READ_BUFFER_RECT
• CL_COMMAND_WRITE_BUFFER_RECT
• CL_COMMAND_COPY_BUFFER_RECT
• CL_COMMAND_USER
• CL_COMMAND_BARRIER
• CL_COMMAND_MIGRATE_MEM_OBJECTS
• CL_COMMAND_FILL_BUFFER
• CL_COMMAND_FILL_IMAGE

info::event::

command_execution_status

cl_int Execution status of the command underlying
the event. One of: CL_QUEUED, CL_SUBMITTED,
CL_RUNNING, CL_COMPLETE.

info::event::reference_count cl_uint Return the reference count of the event.
End of table

Table 3.18: Event class information descriptors.

Event Profiling Descriptors Return type Description
info::event_profiling::

command_queued

cl_ulong 64-bit value describing the device time in
nanoseconds when the command was enqueued
by the host.

info::event_profiling::num_args cl_ulong 64-bit value describing the device time in
nanoseconds when the command was submit-
ted by the host to the device.

info::event_profiling::

reference_count

cl_ulong 64-bit value describing the device time in
nanoseconds when the command started exe-
cuting on the device.

Continued on next page
Table 3.19: Event class profiling information descriptors.

63

Event Profiling Descriptors Return type Description
info::event_profiling::attributes cl_ulong 64-bit value describing the device time in

nanoseconds when the command finished ex-
ecuting on the device.

End of table
Table 3.19: Event class profiling information descriptors.

3.4 Data access and storage in SYCL

In SYCL, data storage and access are handled by separate classes. Buffers and images handle storage and own-
ership of the data, whereas accessors handle access to the data. Buffers and images in SYCL are different to
OpenCL buffers and images in that they can be bound to more than one device or context and they get destroyed
when they go out-of-scope. They also handle ownership of the data, while allowing exception handling for block-
ing and non-blocking data transfers. Accessors manage data transfers between host and all the devices in the
system, as well as tracking data dependencies.

3.4.1 Host allocation

A SYCL runtime may need to allocate temporary objects on the host to handle some operations (such as copying
data from one context to the other). Allocation on the host is managed using an allocator object, following the
standard C++ allocator class definition. The default allocator for memory objects is implementation defined, but
the user can supply their own allocator class.

1 {

2 buffer<int, 1, UserDefinedAllocator<int> > b(d);

3 }

When an allocator returns a nullptr, the runtime cannot create data in the host. Note that in this case the runtime
will raise an error if it requires host memory but it is not available (e.g when moving data across OpenCL contexts).

An allocator can always return the same host address if a user wants so.

The definition of allocators extends the current functionality of SYCL, ensuring that users can define alloca-
tor functions for specific hardware or certain complex shared memory mechanism (e.g. NUMA) and improves
interoperability with STL-based libraries (e.g, Intel’s TBB provides their own allocator).

3.4.1.1 Default Allocators

A default allocator is always defined by the implementation, and it is guaranteed to return non nullptr and new
memory positions every time. The default allocator for const buffers will remove the const-ness of the type
(therefore, the default allocator for a buffer of type ”const int” will be an Allocator<int>). This implies that
host accessors will not synchronize with the pointer given by the user in the buffer/image constructor, but will use
the memory returned by the Allocator itself for that purpose. The user can implement an allocator that returns

64

the same address as the one passed in the buffer constructor, but it is the responsibility of the user to handle the
potential race conditions.

Allocators Description
buffer_allocator It is the default buffer allocator used by the

runtime, when no allocator is defined by the
user.

image_allocator It is the default image allocator used by the
runtime, when no allocator is defined by the
user. The image allocator is required to be a
byte-sized allocator, so the default type this
allocator is typed to a type of size 1.

End of table
Table 3.20: SYCL Default Allocators

See later 3.4.5 for detail on manual host-device synchronization.

3.4.1.2 Map Allocator

map allocator is a class provided by the SYCL interface that can be matched with a specialized constructor of
the buffer or image in order to provide the capability of ’mapping’ the host data on any devices that the buffer
uses.

This allocator always uses the same host address in order to create or map any device buffers, avoiding any copies
from host data to host buffer and also uses the same host memory for all host accesses. A side effect of that, is
that the host accessors will synchronize with the host memory and the runtime will handle that synchronization.

The host data address used for mapping the host data to the device data cannot be ’const’, as the map allocator
will always use that address even for transferring data across devices of different contexts.

3.4.2 Buffers

The buffer class defines a shared array data of one, two or three dimensions that can be used by kernels in queues
and has to be accessed using accessor classes. Buffers are templated on both the type of their data, and the
number of dimensions the data is stored and accessed through.

A cl::sycl::buffer does not map to only one OpenCL buffer object and all OpenCL buffer memory objects
are temporary for the use within a command group on a specific device. The only exception to this rule is when
a buffer is constructed from a cl_mem object to interoperate with OpenCL. In the interop case the buffer will
constitute a single cl_mem object and the ownership of the buffer cl_mem memory object remains at the OpenCL
side. The SYCL buffer constructor and destructor use the existing retain and release mechanism available in
OpenCL. Use of an interoperability buffer on a queue mapping to a context other than that in which the cl_mem
was created is an error.

65

3.4.2.1 Buffer Interface

Buffer constructors are listed in Table 3.21 and methods in Table 3.22.

1 namespace cl{

2 namespace sycl {

3 template <typename T,

4 int dimensions,

5 typename AllocatorT = cl::sycl::buffer_allocator>

6 class buffer {

7 public:

8 using value_type = T;

9 using reference = value_type&;

10 using const_reference = const value_type&;

11
12 buffer(const range<dimensions> &bufferRange);

13
14 buffer(const T * hostData, const range<dimensions> & bufferRange);

15
16 buffer(T * hostData, const range<dimensions> & bufferRange);

17
18 buffer(shared_ptr_class<T> & hostData, const range<dimensions>

19 & bufferRange, cl::sycl::mutex_class * m = nullptr);

20
21 buffer(unique_ptr_class<void> && hostData,

22 const range<dimensions> & bufferRange);

23
24 buffer(buffer<T, dimensions, AllocatorT> b,

25 id<dimensions> & baseIndex,

26 range<dimensions> & subRange);

27
28 template <class InputIterator>

29 buffer<T, 1> (InputIterator first, InputIterator last);

30
31 buffer(cl_mem memObject,

32 queue & fromQueue, event availableEvent = {});

33
34 buffer(const buffer<T,dimensions,AllocatorT> &rhs);

35
36 buffer<T,dimensions,AllocatorT> &operator = (const

37 buffer<T,dimensions,AllocatorT> & rhs);

38
39 ∼buffer();

40
41 size_t get_range();

42 size_t get_count();

43 size_t get_size();

44
45 template <access::mode mode,

46 access::target target=access::global_buffer>

47 accessor<T, dimensions, mode, target> get_access();

48
49 template<T>

50 set_final_data(weak_ptr_class<T> & finalData))

66

51 };

52 } // namespace sycl

53 } // namespace cl

Constructors Description
template<typename T, int dimensions,

typename AllocatorT = cl::sycl::buffer_allocator

>

buffer (const range<dimensions> & bufferRange)

Create a new buffer of the given size with
storage managed by the SYCL runtime. The
default behavior is to use the default host
buffer allocator, in order to allow for host
accesses. If the type of the buffer, has the
const qualifier, then the default allocator will
remove the qualifier to allow host access to
the data.

template<typename T, int dimensions,

typename AllocatorT = cl::sycl::buffer_allocator

>

buffer(const T* hostData,

const range<dimensions> & bufferRange)

Create a new buffer with associated host
memory. hostData points to the stor-
age and values used by the buffer and
range<dimensions> defines the size. The
host address is const T, so the host accesses
can be read-only. However, the typename
T is not const so the device accesses can
be both read and write accesses. Since, the
hostData is const, this buffer is only ini-
tialized with this memory and there is no
write after its destruction, unless there is
another final data address given after con-
struction of the buffer. The default value of
the allocator is going to be the cl::sycl::
buffer_allocator which will be of type T.

template<typename T, int dimensions,

typename AllocatorT= cl::sycl::buffer_allocator>

buffer(T* hostData,

const range<dimensions> & bufferRange)

Create a new buffer with associated host
memory. The memory is owned by the
runtime during the lifetime of the object.
Data is copied back to the host unless
the user overrides the behavior using the
set_final_data method. hostData points
to the storage and values used by the buffer
and range<dimensions> defines the size.

template<typename T, int dimensions,

typename AllocatorT= cl::sycl::buffer_allocator>

buffer(shared_ptr_class<T>& hostData,

const range<dimensions> & bufferRange, cl::sycl

::mutex_class * m)

Create a new buffer with associated mem-
ory, using the data in codeinlinehostData.
The ownership of the hostData is shared be-
tween the runtime and the user. In order,
to enable both the user application and the
SYCL runtime to use the same pointer, an cl
::sycl::mutex_class is used. The mutex m
is locked by the runtime whenever the data is
in use and unlocked otherwise. Data is syn-
chronized with hostData, when the mutex is
unlocked by the runtime.

Continued on next page
Table 3.21: Constructors for the buffer class.

67

Constructors Description
template<typename T, int dimensions,

typename AllocatorT= cl::sycl::buffer_allocator>

buffer(unique_ptr_class<void> && hostData,

const range<dimensions> & bufferRange)

Create a new buffer which is initialized by
hostData. The SYCL runtime receives full
ownership of the hostData unique_ptr and
there in effect there is no synchronization
with the application code using hostData.

template<typename T, int dimensions =1,

typename AllocatorT= cl::sycl::buffer_allocator>

buffer(Iterator first, Iterator last)

Create a new allocated 1D buffer initialized
from the given elements ranging from first
up to one before last. The data is copied
to an intermediate memory position by the
runtime. Data is written back to the same it-
erator set if the iterator is not a const iterator.

template<typename T, int dimensions,

typename AllocatorT= cl::sycl::buffer_allocator>

buffer<T, dimensions, AllocatorT> (

const buffer<T,dimensions,AllocatorT> & b)

Create a new buffer copy that shares the data
than the original buffer. The system uses ref-
erence counting to deal with data lifetime.
The destruction of a copy of a buffer does
not trigger a copy back from the device.

template<typename T, int dimensions, typename

AllocatorT= cl::sycl::buffer_allocator>

buffer(buffer<T, dimensions, AllocatorT> &b,

index<dimensions> & baseIndex,

range<dimensions> & subRange)

Create a new sub-buffer without allocation
to have separate accessors later. b is the
buffer with the real data. baseIndex spec-
ifies the origin of the sub-buffer inside the
buffer b. subRange specifies the size of the
sub-buffer.

template<typename T, int dimensions, typename

AllocatorT= cl::sycl::buffer_allocator>

buffer (cl_mem memObject,

queue & fromQueue,

event availableEvent = {})

Create a buffer from an existing OpenCL
memory object associated with a context af-
ter waiting for an event signaling the avail-
ability of the OpenCL data. memObject is the
OpenCL memory object to use. fromQueue
is the queue associated to the memory ob-
ject. availableEvent specifies the event to
wait for if non null. Note that a buffer cre-
ated from a cl_mem object will only have
one underlying cl_mem for the lifetime of
the buffer and use on an incompatible queue
constitues an error.

buffer(const buffer<T,dimensions,AllocatorT> & rhs) Copy constructor
End of table

Table 3.21: Constructors for the buffer class.

Methods Description
range<dimensions> get_range() Return a range object representing the size

of the buffer in terms of number of elements
in each dimension as passed to the construc-
tor.

size_t get_count() Returns the total number of elements in the
buffer. Equal to get range()[0] * ... * get -
range()[dimensions-1].

Continued on next page
Table 3.22: Methods for the buffer class.

68

Methods Description
size_t get_size() Returns the size of the buffer storage in

bytes. Equal to get count()*sizeof(T).
template<

access::mode mode,

access::target target=access::global_buffer>

accessor<T, dimensions, mode, target>

get_access()

Returns a valid accessor to the buffer
with the specified access mode and
target. The value of target can be
access::global_buffer, access::

constant_buffer or access::host_buffer.
template<T>

set_final_data(weak_ptr_class<T> & finalData))

The finalData points to the host memory to
which, the outcome of all the buffer process-
ing is going to be copied to. This is the final
pointer, which is going to be accessible after
the destruction of the buffer and in the case
where this is a valid pointer, the data are go-
ing to be copied to this host address.
finalData is different from the original host
address, if the buffer was created associated
with one. This is mainly to be used when a
shared ptr is given in the constructor and the
output data will reside in a different location
from the initialization data.
It is defined as a weak_ptr referring to a
shared_ptr that is not associated with the cl
::sycl::buffer, and so the cl::sycl::buffer
will have no ownership of finalData.

End of table
Table 3.22: Methods for the buffer class.

3.4.2.2 Buffer Synchronization Rules

Buffers are reference-counted. When a buffer value is constructed from another buffer, the two values reference
the same buffer and a reference count is incremented. When a buffer value is destroyed, the reference count
is decremented. Only when there are no more buffer values that reference a specific buffer is the actual buffer
destroyed and the buffer destruction behavior defined below is followed.

If any error occurs on buffer destruction, it is reported via the associated queue’s asynchronous error handling
mechanism

1. A buffer can be constructed with just a size and using the default buffer allocator. The memory management
for this type of buffer is entirely handled by the SYCL system. The destructor for this type of buffer never
blocks, even if work on the buffer has not completed. Instead, the SYCL system frees any storage required
for the buffer asynchronously when it is no longer in use in queues. The initial contents of the buffer are
undefined.

2. A buffer can be constructed with associated host memory and a default buffer allocator. The buffer will use
this host memory for its full lifetime, but the contents of this host memory are undefined for the lifetime
of the buffer. If the host memory is modified by the host, or mapped to another buffer or image during the
lifetime of this buffer, then the results are undefined. The initial contents of the buffer will be the contents
of the host memory at the time of construction.

69

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have completed,
then copy the contents of the buffer back to the host memory (if required) and then return.

3. If the type of the host data is const, then the buffer is read-only; only read accessors are allowed on
the buffer and no-copy-back to host memory is performed (although the host memory must still be kept
available for use by SYCL). When using the default buffer allocator, the const-ness of the type will be
removed in order to allow host allocation of memory, which will allow temporary host copies of the data by
the SYCL runtime, for example for speeding up host accesses.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have completed
and then return, as there is no copy of data back to host.

4. If the type of the host data is not const but the pointer to host data is const, then the read-only restriction
applies only on host and not on device accessed.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have completed
and then return, as there is no copy of data back to host.

However, if the set final data() function is used and host data pointer is valid for copying data back, then
the buffer will block on destruction and copy data using the weak_ptr provided.

5. A buffer can be constructed using a unique_ptr to host data, which serve as an initialization point for the
buffer. The ownership of the host data pointer is moved to the SYCL runtime, and those data will not be
available after the destruction of the buffer.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have completed
and then return, as there is no copy of data back to host, since the original pointer is invalid.

However, if the set final data() function is used and host data pointer is valid for copying data back, then
the buffer will block on destruction and copy data using the weak_ptr provided.

6. A buffer can be constructed using a shared_ptr to host data. This pointer is shared between the SYCL
application and runtime. In order to allow synchronization between the the application and the runtime an
mutex is used which will be locked by the runtime whenever the data are in use and unlock it when it no
longer needs them.

The shared_ptr reference counting is used in order to prevent either from destroying the buffer host data
prematurely. If the shared_ptr is deleted from the user application before the buffer destruction, the buffer
can continue securely due to the fact that the pointer hasn’t be destroyed yet, but will not copy data back to
the host before destruction, as the application side has already deleted its copy.

There is no need to use the set_final_data() function in order to set the final data pointer if its is going to
be the same as the shared_ptr used in construction of the buffer.

In the case where set_final_data() is used and a weak_ptr referencing to a valid shared_ptr on the SYCL
application side, the buffer will block and copy data back to that host memory.

7. A buffer can be constructed from a pair of iterator values. In this case, the buffer construction will copy the
data from the data range defined by the iterator pair. The destructor will not copy back any data and will
not block.

8. A buffer constructed from a cl_mem object creates a SYCL buffer that is initialized from a cl_mem object
and may use the cl_mem object for the lifetime of the buffer. The destructor for this type of buffer will

70

block until all operations on the buffer have completed and then will (if necessary) copy all modified data
back into the associated cl_mem object. The buffer will have a single cl_mem object and all operations will
be performed on this underlying storage.

As a convenience for the user, any constructor that takes a range argument can instead be passed range values as
1, 2 or 3 arguments of type size_t.

A buffer object can also be copied, which just copies a reference to the buffer. The buffer objects use reference
counting, so copying a buffer object increments a reference count on the underlying buffer. If after destruction,
the reference count for the buffer is non-zero, then no further action is taken.

A sub-buffer object can be created which is a sub-range reference to a base buffer. This sub-buffer can be used to
create accessors to the base buffer, but which only have access to the range specified at time of construction of the
sub-buffer.

If a buffer object is constructed from a cl_mem object, then the buffer is created and initialized from the OpenCL
memory object. The SYCL system may copy the data to another device and/or context, but must copy it back (if
modified) at the point of destruction of the buffer. The user must provide a queue and event. The memory object
is assumed to only be available to the SYCL scheduler after the event has signaled and is assumed to be currently
resident on the context and device signified by the queue.

3.4.3 Images

The class image<int dimensions> (Table 3.23) defines shared image data of one, two or three dimensions, that
can be used by kernels in queues and has to be accessed using accessor classes with image accessor modes.

Image constructors are listed in Table 3.23 and methods in Table 3.24. Where relevant, it is the responsibility of
the user to ensure that the format of the data matches the format described by order and type. Custom image
allocators can be defined, but they need to be byte-sized allocators.

If an image object is constructed from a cl_mem object, then the image is created and initialized from the OpenCL
memory object. The SYCL system may copy the data to the host, but must copy it back (if modified) at the point
of destruction of the image. The user must provide a queue and event. The memory object is assumed to only be
available to the SYCL scheduler after the event has signaled and is assumed to be currently resident on the context
and device signified by the queue.

3.4.3.1 Image Interface

1 namespace cl {

2 namespace sycl {

3 namespace image_format {

4 enum class channel_order : unsigned int {

5 R,

6 Rx,

7 A,

8 INTENSITY,

9 LUMINANCE,

10 RG,

11 RGx,

71

12 RA,

13 RGB,

14 RGBx,

15 RGBA,

16 ARGB,

17 BGRA

18 }

19
20 enum class channel_type : unsigned int {

21 SNORM_INT8,

22 SNORM_INT16,

23 UNORM_INT8,

24 UNORM_INT16,

25 UNORM_SHORT_565,

26 UNORM_SHORT_555,

27 UNORM_INT_101010,

28 SIGNED_INT8,

29 SIGNED_INT16,

30 SIGNED_INT32,

31 UNSIGNED_INT8,

32 UNSIGNED_INT16,

33 UNSIGNED_INT32,

34 HALF_FLOAT,

35 FLOAT

36 }

37 } // namespace image_format

38
39 template <int dimensions, typename AllocatorT = cl::sycl::image_allocator>

40 class image {

41 public:

42 image(void *hostPointer, image_format::channel_order order,

43 image_format::channel_type type, const range<dimensions> &range);

44
45 image(void *hostPointer, image_format::channel_order order,

46 image_format::channel_type type, const range<dimensions> &range,

47 range<dimensions - 1> &pitch);

48
49 image(shared_ptr_class<void> &hostPointer,

50 image_format::channel_order order, image_format::channel_type type,

51 const range<dimensions> &range, mutex_class *m = nullptr)

52
53 image(shared_ptr_class<void> &hostPointer,

54 image_format::channel_order order, image_format::channel_type type,

55 const range<dimensions> &range, const range<dimensions - 1> &pitch,

56 mutex_class *m = nullptr)

57
58 image(const image<dimensions, AllocatorT> & rhs);

59
60 image<dimensions,AllocatorT> &operator=(

61 const image<dimensions,AllocatorT> &rhs);

62
63 image(cl_mem memObject, const queue &fromQueue, event availableEvent = {});

64
65 image(const image &rhs);

66

72

67 ∼image();

68
69 range<dimensions> get_range();

70
71 range<dimensions - 1> get_pitch();

72
73 size_t get_size();

74
75 size_t get_count();

76
77 template <access::mode accessMode,

78 access::target accessTarget = access::image>

79 accessor<T, dimensions, accessMode, accessTarget> get_access();

80
81 template<T>

82 set_final_data(weak_ptr_class<T> & finalPointer));

83 };

84 } // namespace sycl

85 } // namespace cl

Constructors Description
template<int dimensions,

typename AllocatorT= cl::sycl::image_allocator>

image (void * hostPointer,

image_format::channel_order order,

image_format::channel_type type,

const range<dimensions> & range)

Create a new image of the given size with
storage managed by SYCL.

template<int dimensions,

typename AllocatorT= cl::sycl::image_allocator>

image<dimensions>(void *hostPointer,

image_format::channel_order order,

image_format::channel_type type,

const range<dimensions> & range, const range<

dimensions-1> &pitch)

Construct an image. The associated host
memory is in hostPointer. The type of the
image data is defined by order and type.
The size of the image in pixels is defined by
size and the pitch is defined by pitch.

template<int dimensions,

typename AllocatorT= cl::sycl::image_allocator>

image(shared_ptr_class<void>& hostPointer,

image_format::channel_order order, image_format

::channel_type type,

const range<dimensions> & range, mutex_class *

mutex = nullptr)

Construct an image from shared host mem-
ory between the SYCL application and run-
time. The type of the image data is defined
by order and type. The size of the image
in pixels is defined by size. The mutex is
locked by the runtime whenever the data is
in use and unlocked otherwise. Data is syn-
chronized with host pointer when the mutex
is unlocked by the runtime.

Continued on next page
Table 3.23: Constructors for the image class.

73

Constructors Description
template<int dimensions, typename AllocatorT= cl::

sycl::image_allocator>

image(shared_ptr_class<void>& hostPointer,

image_format::channel_order order, image_format

::channel_type type,

const range<dimensions> & range, const range<

dimensions-1> & pitch,

mutex_class * mutex = nullptr)

Construct an image using the data in host
pointer. The type of the image data is de-
fined by order and type.The size of the im-
age in pixels is defined by size. The pitch
of the image data, in bytes, is defined by
pitch. The ownership is shared between
the SYCL runtime and application. The mu-
tex is locked by the runtime whenever the
data is in use and unlocked otherwise. Data
is synchronized with hostPointer when the
mutex is unlocked by the runtime.

template<int dimensions, typename AllocatorT= cl::

sycl::image_allocator>

image(image<dimensions, AllocatorT> & rhs)

Copy construct an image as a reference
to another image. Images are reference
counted, so that they all point to the same
underlying memory.

template<int dimensions, typename AllocatorT= cl::

sycl::image_allocator>

image<dimensions>(cl_mem memObject, queue

fromQueue,

event availableEvent = {})

Create an image from an existing OpenCL
memory object associated with a context af-
ter waiting for an event signaling the avail-
ability of the OpenCL data. memObject is the
OpenCL memory object to use. fromQueue
is the queue associated to the memory ob-
ject. availableEvent specifies the event to
wait for if non-null. Retains a reference to
the cl_mem object. Caller should release the
passed cl_mem object when it is no longer
needed. Note that an image created from a
cl_mem object will only have one underlying
cl_mem for the lifetime of the buffer and use
on an incompatible queue constitues an er-
ror.

image(const image<dimensions, AllocatorT> & rhs) Copy Constructor
image<dimensions,AllocatorT> &operator=(

const image<dimensions,AllocatorT> &rhs)

Assignment operator which will be sharing
the same underlying object and will be ref-
erence counted internally by the SYCL run-
time.

End of table
Table 3.23: Constructors for the image class.

Methods Description
range<dimensions> get_range() Return a range object representing the size

of the image in terms of the number of el-
ements in each dimension as passed to the
constructor.

range<dimensions-1> get_pitch() Return a range object representing the pitch
of the image in bytes.

Continued on next page
Table 3.24: Methods of the image class.

74

Methods Description
size_t get_count() Returns the total number of elements in the

image. Equal to get range()[0] * ... * get -
range()[dimensions-1].

size_t get_size() Returns the size of the image storage
in bytes. The number of bytes may
be greater than get_count()*element size
due to padding of elements, rows and slices
of the image for efficient access.

template<

access::mode mode,

access::target target=access::image>

accessor<T, dimensions, mode, target>

get_access()

Returns a valid accessor to the image with
the specified access mode and target. The
value of target can be access::image or
access::host_image.

template<T>

set_final_data(weak_ptr_class<T>& finalPointer))

Function that sets the final data pointer, to
be different than the original pointer given.
This is mainly to be used when a shared -
ptr is given in the constructor and the output
data will reside in a different location than
the initialization data.

End of table
Table 3.24: Methods of the image class.

3.4.3.2 Image Synchronization Rules

For the lifetime of the image object, the associated host memory must be left available to the SYCL runtime and
the contents of the associated host memory is undefined until the image object is destroyed. If an image object
value is copied, then only a reference to the underlying image object is copied. The underlying image object is
reference-counted. Only after all image value references to the underlying image object have been destroyed is
the actual image object itself destroyed.

If an image object is constructed with associated host memory, then its destructor blocks until all operations in all
SYCL queues on that image object have completed. Any modifications to the image data will be copied back, if
necessary, to the associated host memory. Any errors occurring during destruction are reported to any associated
context’s asynchronous error handler. If an image object is constructed with a storage object, then the storage
object defines what synchronization or copying behaviour occurs on image object destruction.

3.4.4 Sharing Host Memory With The SYCL Data Management
Classes

In SYCL in order to all the SYCL runtime to do the memory management and allow for data dependencies there
are two classes defined, buffer and image. The ’default’ behavior for them is that a ’raw’ pointer is given at the
construction of the data management class with full ownership to use it until the destruction of the SYCL object.

In this section we go in greater detail on sharing or explicitly not sharing host memory with the SYCL data classes,
and we will use the buffer class as an example. However, the same rules will apply to images, as well.

75

3.4.4.1 Default behavior

When using a SYCL buffer, the ownership of the pointer passed to the constructor of the class is, by default,
passed to SYCL runtime, and that pointer cannot be used in the host side until the buffer or image is destroyed. A
SYCL application can use memory managed by a SYCL buffer within the buffer scope by using a host_accessor
, as defined in 3.4.6. However, there is no guarantee that the host accessor synchronizes with the original host
address used in its constructor.

The pointer passed in is the one use to copy data back, if needed, before buffer destruction. This host pointer will
not de-allocated by the runtime when the buffer is back on the host, and the data is always copied back from the
device (if there was a need for it).

3.4.4.2 SYCL ownership of the host memory

In the case where there is host memory to be used for initialization of data but there is no intention of using that
host memory after the buffer is destroyed, then the buffer can take full ownership of that host memory.

When a buffer owns the host pointer there is no copy back, by default. In this situations the SYCL application
may pass a unique pointer to the host data, which will be then used by the runtime internally to initialize the data
in the device.

If the pointer contained in the unique_ptr is null, pointer is initialized internally in the runtime but no data is
copied in. This will be the generic case of a buffer constructor that takes no host pointer.

In this case the buffer and image constructors used will be the following:

• template<typename T, int dimensions, typename U=default_allocator> buffer(cl::sycl::
unique_ptr_class<T> hostData,range<dimensions> myRange);

• template<int dimensions, typename U=image_allocator> image(cl::sycl::unique_ptr_class<void
> hostData, cl_channel_order order, cl_channel_type type, range<dimensions> size)

For example, the following could be used:

1 {

2 cl::sycl::unique_ptr_class<int> ptr(data);

3 buffer<int, 1> b(std::move(ptr));

4 // ptr is not valid anymore

5 // There is nowhere to copy data back

6 }

However optionally the buffer::set final data() can be set to a cl::sycl::weak_ptr_class to enable copying data
back, to another host memory address that is going to be valid after buffer construction.

1 {

2 cl::sycl::unique_ptr_class<int> ptr(data);

3 buffer<int, 1> b(std::move(ptr));

4 // ptr is not valid anymore

5 // There is nowhere to copy data back

76

6 b.set_final_data(cl::sycl::weak_ptr_class<int>(....))

7 }

3.4.4.3 Shared SYCL ownership of the host memory

When an shared_ptr is passed to the buffer constructor, then the buffer object and the developer’s application is
shared. If the shared pointer is still used in the application’s side then the data are going to be copied back from
the buffer or image and be available to the application after the buffer or image is destroyed.

If the data pointed by the shared object is initialized to some data, then that data is used to initialize the buffer.
If the shared pointer is null, the pointer is initialized by the runtime internally (and, therefore, the user can use it
afterwards in the host).

When the buffer is destroyed, if the number of copies of the shared pointer outside the runtime is 0, there is no
user-side shared pointer to read the data and therefore the data is not copied out, and the buffer destructor does not
need to wait for the data processes to be finished from OpenCL, as the outcome is not needed on the application’s
side.

This behavior can be overiden using the set_final_data() method of the buffer class, which will by any means
force the buffer destructor to wait until the data is copied to wherever the set_final_data() method has put the
data (or not wait nor copy if set final data is nullptr).

1 {

2 cl::sycl::shared_ptr_class<int> ptr(data);

3 {

4 buffer<int, 1> b(ptr, range<2>(10, 10));

5 } // Data is copied back because there is an user side shared ptr

6 }

1 {

2 cl::sycl::shared_ptr_class<int> ptr(data);

3 {

4 buffer<int, 1> b(ptr, range<2>(10, 10));

5 ptr.release();

6 } // Data is not copied back, there is no user side shared ptr.

7 }

3.4.5 Synchronisation Primitives

When the user wants to use the buffer simultaneously in the SYCL runtime and its own code (e.g. a multi-threaded
mechanism) and want to use manual synchonization without host accessors, a pointer to a cl::sycl::mutex can be
passed to the buffer constructor.

The runtime promises to lock the mutex whenever the data is in use and unlock it when it no longer needs it.

1 {

2 cl::sycl::mutex_class * m;

77

3 auto shD = std::make_shared<int>(42)

4 {

5 buffer<int, 1> b(shD, m);

6
7 m.lock();

8 // User accesses the data

9 do_something(shD);

10 m.unlock();

11
12 }

13 }

When the runtime releases the mutex the user is guaranteed to have the data copied back on the shared pointer -
unless the final data destination has been changed using the method set_final_data.

3.4.6 Accessors

Accessors manage the access to data in buffers and images. The user specifies the type of access to the data
and the SYCL implementation ensures that the data is accessible in the right way on the right device in a queue.
This separation allows an SYCL implementation to choose an efficient way to provide access to the data within
an execution schedule. Common ways of allowing data access to shared data in a heterogeneous system include
copying between different memory systems, mapping memory into different device address spaces, or direct
sharing of data in memory. The buffers and images are SYCL runtime classes that provide the management of the
data.

Accessors are device accessors by default, but can optionally be specified as being host accessors. Device acces-
sors can only be constructed within command groups and provide access to the underlying data in a queue. Only
a kernel can access data using a device accessor. Constructing a device accessor is a non-blocking operation: the
synchronization is added to the queue, not the host.

Host accessors can be created outside command groups and give immediate access to data on the host. Con-
struction of host accessors is blocking, waiting for all previous operations on the underlying buffer or image to
complete, including copying from device memory to host memory. Any subsequent device accessors need to
block until the processing of the host accessor is done and the data are copied to the device.

Accessors always have an element data type. When accessing a buffer, the accessor’s element data type must
match the same data type as the buffer. An image accessor may have an element data type of either an integer
vector or a floating-point vector. The image accessor data type provides the number and type of components of
the pixel read. The actual format of the underlying image data is not encoded in the accessor, but in the image
object itself. The data types allowed by buffer can be SYCL data types or user defined types that are aligned with
the restrictions on kernel parameter passing 3.5.7.

There are two enumeration types inside namespace cl::sycl::access, access::mode and access::target.
These two enumerations define both the access mode and the data that the accessor is targeting.

3.4.6.1 Access modes

The mode enumeration, shown in Table 3.25, has a base value, which must be provided.

78

The user must provide the access mode when defining an accessor. This information is used by the scheduler to
ensure that any data dependencies are resolved by enqueuing any data transfers before or after the execution of a
kernel. If a command group contains only discard write mode accesses to a buffer, then the previous contents of
the buffer (or sub-range of the buffer, if provided) are not preserved. If a user wants to modify only certain parts
of a buffer, preserving other parts of the buffer, then the user should specify the exact sub-range of modification
of the buffer. A command-group’s access to a specific buffer is the union of all access modes to that buffer in
the command group, regardless of construction order. Atomic access is only valid to local, global_buffer and
host_buffer targets (see next section).

access::mode Description

read read-only access

write write-only access. Previous contents not dis-
carded.

read_write read and write access

discard_write write-only access. Previous contents discarded.

discard_read_write read and write access. Previous contents dis-
carded.

atomic atomic access.

Table 3.25: Enumeration of access modes available to accessors.

3.4.6.2 Access targets

The target enumeration, shown in Table 3.26, describes the type of object to be accessed via the accessor. The
different values of the target enumeration require different constructors for the accessors.

access::target Description

global_buffer Access buffer via global memory.

constant_buffer Access buffer via constant memory.

local Access work-group-local memory.

image Access an image.

host_buffer Access a buffer immediately in host code.

host_image Access an image immediately in host code.

image_array Access an array of images on a device.

Table 3.26: Enumeration of access modes available to accessors.

3.4.6.3 Accessor class

The accessormakes a data available to host code, or to a specific kernel. The accessor is parameterized with the
type and number of dimensions of the data. An accessor also has a mode, which defines the operations possible
on the underlying data (see Table 3.25) and a target (see Table 3.26, which defines the type of data object to be
modified. The constructors and methods available on an accessor depend on the mode and target.

79

The generic methods for the accessor class are defined in Table 3.28. Available methods are limited by the access
mode and target provided as template parameters to the accessor object.

1 namespace cl {

2 namespace sycl {

3 namespace access {

4 enum class mode {

5 read = 1,

6 write,

7 read_write,

8 discard_write,

9 discard_read_write,

10 atomic

11 };

12
13 enum class target {

14 global_buffer = 2014,

15 constant_buffer,

16 local,

17 image,

18 host_buffer,

19 host_image,

20 image_array

21 };

22 } // namespace access

23
24 template <

25 typename elementType,

26 int dimensions,

27 access::mode accessMode,

28 access::target accessTarget>

29 class accessor {

30 public:

31 using value_type = T;

32 using reference = value_type&;

33 using const_reference = const value_type&;

34
35 // Available only for: access::global_buffer, access::host_buffer,

36 // and access::constant_buffer

37 accessor(buffer<elementType, dimensions> &bufferRef,

38 handler &commandGroupHandler);

39
40 accessor(buffer<elementType, dimensions> &bufferRef,

41 handler &commandGroupHandler,

42 range<dimensions> offset, range<dimensions> range);

43
44 // Available only for: access::image and access::host_image

45 accessor(image<dimensions> &imageRef, handler &commandGroupHandler);

46
47 // Available only for: access::local

48 accessor(range<dimensions> allocationSize, handler &commandGroupHandler);

49
50 size_t get_size();

51
52 // Methods available to buffer targets

80

53 // Available when access_mode includes non-atomic write permissions

54 // and dimensions>0

55 elementType &operator[](id<dimensions>);

56 // Available when access_mode is read-only and dimensions>0

57 const elementType &operator[](id<dimensions>);

58 // Available when access_mode includes non-atomic write permissions

59 // and dimensions==0

60 elementType &operator*();

61
62 // Available when access_mode is read-only and dimensions==0

63 const elementType &operator[]();

64 elementType operator*();

65
66 // Available when dimensions==0 and access mode is non-atomic.

67 operator elementType();

68
69 // Methods available for image targets

70 __undefined__ &operator()(sampler sample);

71 __undefined__ &operator[](id<dimensions>);

72
73 // Available when the accessor is to an image array

74 // Returns an accessor to a particular slice

75 accessor<elementType, 2, mode, image> operator[](size_t index)

76
77 // Available when the access target is global_buffer, host_buffer,

78 // or local, and access mode is atomic

79 // and dimensions>0

80 atomic<elementType> &operator[](id<dimensions);

81
82 // Available when the access target is global_buffer, host_buffer,

83 // or local, and access mode is atomic

84 // and dimensions==0

85 atomic<elementType> operator()();

86 atomic<elementType> operator*();

87
88
89 //Available when access target is local and access mode is non-atomic

90 local_ptr<elementType> get_pointer();

91
92 //Available when access target is global_buffer and access mode is non-atomic

93 global_ptr<elementType> get_pointer();

94
95 //Available when access target is constant_buffer

96 constant_ptr<elementType> get_pointer();

97
98 //Available when access target is host_buffer and access mode is non-atomic

99 elementType * get_pointer();

100 };

101
102 } // namespace sycl

103 } // namespace cl

81

Constructors Description
accessor(buffer<elementType, dimensions> &bufferRef,

handler &commandGroupHandler)

Construct a buffer accessor from a buffer us-
ing a command group handler object from
the command group scope. Constructor only
available for access modes global_buffer
, host_buffer constant_buffer see Ta-
ble 3.25. access_target defines the form
of access being obtained. See Table 3.26.

accessor(

buffer<elementType, dimensions> &bufferRef,

handler &commandGroupHandler,

range<dimensions> offset,

range<dimensions> range)

Construct a buffer accessor from a buffer
given a specific range for access permissions
and an offset that provides the starting point
for the access range using a command group
handler object from the command group
scope. This accessor limits the processing
of the buffer to the [offset, offset+range] for
every dimension. Any other parts of the
buffer will be unaffected. Constructor only
available for access modes global_buffer,
host_buffer or constant_buffer (see Ta-
ble 3.25). access_target defines the form
of access being obtained (see Table 3.26).
This accessor is recommended for discard -
write and discard read write access modes,
when the unaffected parts of the processing
should be retained.

accessor(image<dimensions> &imageRef,

handler &commandGroupHandler)

Construct an image accessor from an im-
age using a command group handler object
from the command group scope. Construc-
tor only available if accessMode is image, or
host_image, see Table 3.25. access_target
defines the form of access being obtained.

See Table 3.26. The elementType for im-
age accessors must be defined by the user
and is the type returned by any sampler or
accessor read operation, as well as the value
accepted by any write operation. It must be
an int, unsigned int or float vector of 4
dimensions.

accessor(range<dimensions> allocationSize,

handler &commandGroupHandler)

Construct an accessor of dimensions dimen-
sions with elements of type elementType us-
ing the passed range to specify the size in
each dimension. It needs as a parameter
a command group handler object from the
command group scope. Constructor only
available if accessMode is local, see Ta-
ble 3.25.

End of table
Table 3.27: Accessor constructors.

82

Methods Description
size_t get_size() Returns the size of the underlying buffer in

number of elements.
elementType &operator[](id<dimensions>) Return a writeable reference to an ele-

ment in the buffer. Available when mode
includes non-atomic write permissions and
dimensions 0.

elementType &operator[](int) Return a writeable reference to an ele-
ment in the buffer. Available when mode
includes non-atomic write permissions and
dimensions == 1.

const elementType &operator[](id<dimensions>) Return the value of an element in the
buffer. Available when mode is read-only and
dimensions 0.

const elementType &operator[](int) Return the value of an element in the
buffer. Available when mode is read-only and
dimensions == 1.

elementType &operator[]() Return a writeable reference to the ele-
ment in the buffer. Available when mode
includes non-atomic write permissions and
dimensions == 0.

const elementType &operator[]() Return the value of the element in the
buffer. Available when mode is read-only and
dimensions == 0.

operator elementType() Return the value of the element in the
buffer. Available when mode is non-atomic
and dimensions == 0.

accessor<elementType, 2, mode, image>

operator[](size_t index)

Returns an accessor to a particular plane of
an image array. Available when accessor
acts on an image array.

__undefined__ <dimensions-1> &operator[](int) Return an intermediate type with an addi-
tional subscript operator for each subsequent
dimension of buffer where (dimensions ¿ 0).
Available when mode non-atomic and for ac-
cess mode read only the return type is const.

__undefined__ &operator()(sampler sample) Return the value of an element in the image
given a sampler. Available only for the case
of an image accessor type.

__undefined__ &operator [] (id < dimensions >) Return the value of an element in the image
with a sampler-less read. Available only for
the case of an image accessor type.

atomic<elementType> &operator[](id<dimensions>) Returns a reference to an atomic object,
when the accessor if of type access::
global_buffer, access::local_buffer,

access::host_buffer, the target mode is
access::mode::atomic and dimensions >0
.

Continued on next page
Table 3.28: Methods for the accessor class.

83

Methods Description
atomic<elementType> &operator()() Returns a reference to an atomic object,

when the accessor if of type access::
global_buffer, access::local_buffer,

access::host_buffer, the target mode is
access::mode::atomic and dimensions

==0.
atomic<elementType> &operator*() Returns a reference to an atomic object,

when the accessor if of type access::
global_buffer, access::local_buffer,

access::host_buffer, the target mode is
access::mode::atomic and dimensions

==0.
local_ptr<elementType> get_pointer() Returns the accessor pointer, when the ac-

cessor is of type access::local and mode is
non-atomic.

global_ptr<elementType> get_pointer() Returns the accessor pointer, when the ac-
cessor is of type access::global_buffer
and mode is non-atomic.

constant_ptr<elementType> get_pointer() Returns the accessor pointer, when the ac-
cessor is of type access::constant_buffer

elementType* get_pointer() Returns the accessor pointer, when the ac-
cessor is of type access::host_buffer and
mode is non-atomic.

End of table
Table 3.28: Methods for the accessor class.

3.4.6.4 Buffer accessors

Accessors to buffers are constructed from a buffer with the same element data type and dimensionality as the
accessor. A buffer accessor uses global memory by default, but can optionally be set to use constant memory.
Accessors that use constant memory are restricted by the underlying OpenCL restrictions on device constant
memory, i.e. there is a maximum total constant memory usable by a kernel and that maximum is specified by the
OpenCL device. Only certain methods and constructors are available for buffer accessors.

The array operator [id<dimensions>] provides access to the elements of the buffer. The user can provide an
index as an id parameter of the same dimensionality of the buffer, or just like C++ arrays, can provide one array
operator per dimension, with individual indices of type size_t (e.g. myAccessor[i][j][k]).

The address space for the index operator matches that of the accessor target. For an access::global_buffer,
the address space is global. For an access::constant_buffer, the address space is global.

Accessors to buffers can be constructed to only access a sub-range of the buffer. The sub-range restricts access
to just that range of the buffer, which the scheduler can use as extra information to extract more parallelism from
queues as well as restrict the amount of information copied between devices.

84

3.4.6.5 Image accessors

Accessors that target images must be constructed from images of the same dimensionality as the acces-
sor. The target parameter must be either image or host_image. The dataType parameter must be a 4
dimension vector of unsigned int, int or float. The array operator [id<dimensions>] provides sam-
plerless reading and writing of the image. The user can provide an index as an id parameter of the same
dimensionality of the image, or just like C++ arrays, can provide one array operator per dimension, with
individual indices of type size_t (e.g. myAccessor[i][j][k]). The bracket operator takes a sampler
(see 3.4.8) parameter, which then allows floating-point sampler-based reading using the array operator (e.g.
myAccessor(mySampler)[my2dFloatVector]).

To enable the reading and writing of pixels with and without samplers, using standard C++ operators, there are
two internal classes: __image_ref and _ _sampler. These classes only exist to ensure that assignment to pixels
uses image write functions and reading the value of pixels uses image read functions.

There are restrictions that apply to cl::sycl::access::mode depending on the SYCL device they are used. In
OpenCL 1.2 devices there are extensions that can allow access::mode::read_write on images, but this is not
a core feature of the OpenCL 1.2 devices. It is the developer’s responsibility to check whether there is this
capability on the target SYCL device. Core capabilities are access::mode::read, access::mode::write and
access::discard_write.

3.4.6.6 Local accessors

Accessors can also be created for local memory, to enable pre-allocation of local buffers used inside a kernel.
These accessors are constructed using cl::sycl::range, which defines the size of the memory to be allocated
on a per work-group basis and must be constructed with an access target of local. Local memory is only shared
across a work-group. A local accessor can provide a local_ptr to the underlying data within a kernel and is only
usable within a kernel. The host has no access to the data of the local buffer and cannot read or write to the data,
so the accessor cannot read or write data back to the host. There can be no associated host pointer for a local
buffer or data transfers.

Local accessors are not valid for single-task or basic parallel_for invocations.

3.4.6.7 Host accessors

Host accessors have a target of access::host_buffer or access::host_image. Unlike other accessors, host
accessors should be constructed outside of any command group and they do not require an object of a command
group handler. The constructor will block until the data is ready for the host to access, while the destructor will
block any further operations on the data in any SYCL queue. There are no special constructor or method signatures
for host accessors, so there are is no table for special host accessors here (see buffer and image accessors above).

Host accessors are constructed outside command groups and not associated with any queue, so any error reporting
is synchronous. By default, error reporting is via exceptions.

85

3.4.6.8 Accessor capabilities and restrictions

Accessors provide access on the device or on the host to a buffer or image. The access modes allowed depend
on the accessor type and target. A device accessor grants access to a kernel inside a command group scope, and
depending on the access target, there are different accesses allowed. A host accessor grants access to the host
program to the access target. Tables 3.29, 3.30 and 3.31 show all the permitted access modes depending on target.

Accessor Type Access Target Access mode Data Type Description

Device global_buffer read
write
read_write

discard_write
discard_read_write

All available data types
supported in SYCL.

Access a buffer allocated in global memory
on the device.

Device constant_buffer read All available data types
supported in SYCL.

Access a buffer allocated in constant mem-
ory on the device.

Host host_buffer read
write
read_write
discard_write
discard_read_write

All available data types
supported in SYCL.

Access a host allocated buffer on host.

Device local read
write
read_write

All supported data types
in local memory

Access work-group local buffer, which is
not associated with a host buffer.
This is only accessible on device.

Table 3.29: Description of all the accessor types and modes with their valid combinations for buffers and local
memory

Accessor Type Access Target Access mode Data Type Description

Device image read
write
read_write
discard_-
writediscard_read_-
write

uint4, int4,
float4, half4

Access an image on device.

Host host_image read
write
read_write
discard_-
writediscard_read_-
write

uint4, int4,
float4, half4

Access an image on the host.

Device image_array read
write
read_write
discard_-
writediscard_read_-
write

uint4, int4,
float4, half4

Access an array of images on device.

Table 3.30: Description of all the accessor types and modes with their valid combinations for images

Rules for casting apply to the accessors, as there is only a specific set of permitted conversions.

86

Accessor
Types

Original
Accessor Target

Original Access Mode Converted Accessor
Target

Converted
Access Mode

Device global_buffer read_write global_buffer read
write
discard_read_write

Device local_buffer read_write local_buffer read
write

Host host_buffer read_write host_buffer read
write
discard_read_write

Table 3.31: Description of the accessor to accessor conversions allowed

87

3.4.7 Address space classes

In OpenCL, there are four different address spaces. These are: global, local, constant and private. In OpenCL C,
these address spaces are manually specified using OpenCL-specific keywords. In SYCL, the device compiler is
expected to auto-deduce the address space for pointers in common situations of pointer usage. However, there are
situations where auto-deduction is not possible. Here are the most common situations:

• When linking SYCL kernels with OpenCL C functions. In this case, it is necessary to specify the address
space for any pointer parameters when declaring an extern "C" function.

• When declaring data structures with pointers inside, it is not possible for the SYCL compiler to deduce at
the time of declaration of the data structure what address space pointer values assigned to members of the
structure will be. So, in this case, the address spaces will have to be explicitly declared by the developer.

• When a pointer is declared as a variable, but not initialized, then address space deduction is not automatic
and so an explicit pointer class should be used, or the pointer should be initialized at declaration.

3.4.7.1 Explicit pointer classes

Explicit pointer classes are just like pointers: they can be converted to and from pointers with compatible address
spaces, qualifiers and types. Assignment between explicit pointer types of incompatible address spaces is illegal.
In SYCL 1.2, all address spaces are incompatible with all other address spaces. For a future SYCL 2.0, a generic
address space will be compatible with all other address spaces. Conversion from an explicit pointer to a C++
pointer preserves the address space.

In order to facilitate SYCL/OpenCL C interoperability, the pointer_t type is provided. It is an implementation
defined type which corresponds to the underlying OpenCL C pointer type and can be used in extern ‘‘C’’
function declarations for OpenCL functions used in SYCL kernels.

Explicit Pointer Classes OpenCL Address Space Compatible Accessor Target
global_ptr __global global buffer
constant_ptr __constant constant buffer
local_ptr __local local
private_ptr __private none

End of table
Table 3.32: Description of the pointer classes

An overview of the interface provided for all the explicit pointer classes is the following, for the full interface
please refer to B.1.

1 namespace cl {

2 namespace sycl {

3
4 template <typename ElementType>

5 class global_ptr {

6 public:

7 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

8 // interoperability type for OpenCL C functions

88

9 typedef __undefined__ pointer_t;

10
11 global_ptr(pointer_t); // global pointer

12
13 template <access::mode Mode>

14 global_ptr(accessor<ElementType, 1, Mode, global_buffer>);

15
16 global_ptr(const global_ptr&);

17
18 ∼global_ptr();

19
20 ElementType& operator*();

21 ElementType& operator[](size_t i);

22
23 // implementation defined implicit conversion

24 // to OpenCL C pointer types.

25 operator pointer_t();

26
27 };

28
29 template <typename ElementType>

30 class constant_ptr {

31 public:

32 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

33 // interoperability type for OpenCL C functions

34 typedef __undefined__ pointer_t;

35
36 constant_ptr(pointer_t); // constant pointer

37
38 template <access::mode Mode>

39 constant_ptr(accessor<ElementType, 1, Mode, constant_buffer>);

40
41 ElementType& operator*();

42 ElementType& operator[](size_t i);

43
44 // implementation defined implicit conversion

45 // to OpenCL C pointer types.

46 operator pointer_t();

47 };

48
49 template <typename ElementType>

50 class local_ptr {

51 public:

52 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

53 // interoperability type for OpenCL C functions

54 typedef __undefined__ pointer_t;

55
56 local_ptr(pointer_t); // local pointer

57
58 template <access::mode Mode>

59 local_ptr(accessor<ElementType, 1, Mode, local_buffer>);

60
61 ElementType& operator*();

62 ElementType& operator[](size_t i);

63

89

64 // implementation defined implicit conversion

65 // to OpenCL C pointer types.

66 operator pointer_t();

67 };

68
69 template <typename ElementType>

70 class private_ptr {

71 public:

72 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

73 // interoperability type for OpenCL C functions

74 typedef __undefined__ pointer_t;

75
76 private_ptr(pointer_t); // private pointer

77
78 ElementType& operator*();

79 ElementType& operator[](size_t i);

80
81 // implementation defined implicit conversion

82 // to OpenCL C pointer types.

83 operator pointer_t();

84 };

85 } // namespace sycl

86 } // namespace cl

Constructors Description
template <typename ElementType>

global_ptr(pointer_t)

Constructs a global_ptr from the underly-
ing ElementType pointer.

template <access::mode Mode>

global_ptr(

accessor<ElementType, 1, Mode, global_buffer>)

Constructs a global_ptr from an accessor
of access::target::global_buffer.

template <typename ElementType>

global_ptr(const global_ptr &)

Copy constructor.

End of table
Table 3.33: Constructors for global_ptr explicit pointer class.

Operators Description
template <typename ElementType>

ElementType &operator*()

Returns the ElementType of the de-
referenced pointer class.

template <typename ElementType>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType>

operator pointer_t()

Returns the underlying pointer type of the
global_ptr class

End of table
Table 3.34: Operators on the global_ptr explicit pointer class.

90

Constructors Description
template <typename ElementType>

constant_ptr(pointer_t)

Constructs a constant_ptr from the under-
lying ElementType pointer.

template <access::mode Mode>

constant_ptr(

accessor<ElementType, 1, Mode, constant_buffer>)

Constructs a constant_ptr from an accessor
of access::target::constant_buffer.

template <typename ElementType>

constant_ptr(const constant_ptr &)

Copy constructor.

End of table
Table 3.35: Constructors for constant_ptr explicit pointer class.

Operators Description
template <typename ElementType>

ElementType &operator*()

Returns the ElementType of the de-
referenced pointer class.

template <typename ElementType>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType>

operator pointer_t()

Returns the underlying pointer type of the
constant_ptr class

End of table
Table 3.36: Operators on the constant_ptr explicit pointer class.

Constructors Description
template <typename ElementType>

local_ptr(pointer_t)

Constructs a local_ptr from the underlying
ElementType pointer.

template <access::mode Mode>

local_ptr(

accessor<ElementType, 1, Mode, constant_buffer>)

Constructs a local_ptr from an accessor of
access::target::local.

template <typename ElementType>

local_ptr(const local_ptr &)

Copy constructor.

End of table
Table 3.37: Constructors for local_ptr explicit pointer class.

Operators Description
template <typename ElementType>

ElementType &operator*()

Returns the ElementType of the de-
referenced pointer class.

template <typename ElementType>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType>

operator pointer_t()

Returns the underlying pointer type of the
local_ptr class

End of table
Table 3.38: Operators on the local_ptr explicit pointer class.

91

Constructors Description
template <typename ElementType>

private_ptr(pointer_t)

Constructs a private_ptr from an Element-
Type pointer.

template <typename ElementType>

private_ptr(const private_ptr &)

Copy constructor.

End of table
Table 3.39: Constructors for private_ptr explicit pointer class.

Operators Description
template <typename ElementType>

ElementType &operator*()

Returns the ElementType of the de-
referenced pointer class.

template <typename ElementType>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType>

operator pointer_t()

Returns the underlying pointer type of the
private_ptr class

End of table
Table 3.40: Operators on the private_ptr explicit pointer class.

Non-member functions Description
template <typename ElementType>

bool operator==(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator == for global_ptr
class.

template <typename ElementType>

bool operator!=(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator != for global_ptr
class.

template <typename ElementType>

bool operator<(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator < for global_ptr
class.

template <typename ElementType>

bool operator>(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator > for global_ptr
class.

template <typename ElementType>

bool operator>=(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator >= for global_ptr
class.

template <typename ElementType>

bool operator<=(const global_ptr<ElementType>&

lhs,

const global_ptr<ElementType>& rhs)

Comparison operator <= for global_ptr
class.

Continued on next page
Table 3.41: Non-member functions of the explicit pointer classes.

92

Non-member functions Description
template <typename ElementType>

bool operator!=(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator != for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator!=(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator != for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator == for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator == for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator > for global_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator>(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator > for global_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator < for global_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator < for global_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator

¿=(constglobalptr < ElementType > &lhs, nullptrtrhs)

Comparison operator >= for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator >= for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(const global_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(nullptr_t lhs, const global_ptr<

ElementType>& rhs)

Comparison operator <= for global_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator == for constant_ptr
class.

template <typename ElementType>

bool operator!=(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator != for constant_ptr
class.

Continued on next page
Table 3.41: Non-member functions of the explicit pointer classes.

93

Non-member functions Description
template <typename ElementType>

bool operator<(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator < for constant_ptr
class.

template <typename ElementType>

bool operator>(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator > for constant_ptr
class.

template <typename ElementType>

bool operator>=(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator >= for constant_ptr
class.

template <typename ElementType>

bool operator<=(const constant_ptr<ElementType>&

lhs,

const constant_ptr<ElementType>& rhs)

Comparison operator <= for constant_ptr
class.

template <typename ElementType>

bool operator!=(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator!=(nullptr_t lhs, const

constant_ptr<ElementType>& rhs)

Comparison operator ! = for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator == for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(nullptr_t lhs, const

constant_ptr<ElementType>& rhs)

Comparison operator == for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator > for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(nullptr_t lhs, const constant_ptr

<ElementType>& rhs)

Comparison operator > for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator < for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(nullptr_t lhs, const constant_ptr

<ElementType>& rhs)

Comparison operator < for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator >= for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(nullptr_t lhs, const

constant_ptr<ElementType>& rhs)

Comparison operator >= for constant_ptr
class with a nullptr_t.

Continued on next page
Table 3.41: Non-member functions of the explicit pointer classes.

94

Non-member functions Description
template <typename ElementType>

bool operator<=(const constant_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(nullptr_t lhs, const

constant_ptr<ElementType>& rhs)

Comparison operator <= for constant_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const local_ptr<ElementType>&

lhs,

const local_ptr<ElementType>& rhs)

Comparison operator == for local_ptr
class.

template <typename ElementType>

bool operator!=(const local_ptr<ElementType>&

lhs,

const local_ptr<ElementType>& rhs)

Comparison operator != for local_ptr
class.

template <typename ElementType>

bool operator<(const local_ptr<ElementType>& lhs

,

const local_ptr<ElementType>& rhs)

Comparison operator < for local_ptr class.

template <typename ElementType>

bool operator>(const local_ptr<ElementType>& lhs

,

const local_ptr<ElementType>& rhs)

Comparison operator > for local_ptr class.

template <typename ElementType>

bool operator>=(const local_ptr<ElementType>&

lhs,

const local_ptr<ElementType>& rhs)

Comparison operator >= for local_ptr
class.

template <typename ElementType>

bool operator<=(const local_ptr<ElementType>&

lhs,

const local_ptr<ElementType>& rhs)

Comparison operator <= for local_ptr
class.

template <typename ElementType>

bool operator!=(const local_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator ! = for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator!=(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator ! = for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const local_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator == for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator == for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(const local_ptr<ElementType>& lhs

, nullptr_t rhs)

Comparison operator > for local_ptr class
with a nullptr_t.

Continued on next page
Table 3.41: Non-member functions of the explicit pointer classes.

95

Non-member functions Description
template <typename ElementType>

bool operator>(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator > for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<(const local_ptr<ElementType>& lhs

, nullptr_t rhs)

Comparison operator < for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator < for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator>=(const local_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator >= for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator>=(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator >= for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<=(const local_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator<=(nullptr_t lhs, const local_ptr<

ElementType>& rhs)

Comparison operator <= for local_ptr class
with a nullptr_t.

template <typename ElementType>

bool operator==(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator == for private_ptr
class.

template <typename ElementType>

bool operator!=(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator != for private_ptr
class.

template <typename ElementType>

bool operator<(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator < for private_ptr
class.

template <typename ElementType>

bool operator>(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator > for private_ptr
class.

template <typename ElementType>

bool operator>=(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator >= for private_ptr
class.

template <typename ElementType>

bool operator<=(const private_ptr<ElementType>&

lhs,

const private_ptr<ElementType>& rhs)

Comparison operator <= for private_ptr
class.

Continued on next page
Table 3.41: Non-member functions of the explicit pointer classes.

96

Non-member functions Description
template <typename ElementType>

bool operator!=(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator ! = for local_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator!=(nullptr_t lhs, const private_ptr

<ElementType>& rhs)

Comparison operator ! = for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator == for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator==(nullptr_t lhs, const private_ptr

<ElementType>& rhs)

Comparison operator == for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator >= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>(nullptr_t lhs, const private_ptr<

ElementType>& rhs)

Comparison operator >= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<(nullptr_t lhs, const private_ptr<

ElementType>& rhs)

Comparison operator < for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator>=(nullptr_t lhs, const private_ptr

<ElementType>& rhs)

Comparison operator >= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(const private_ptr<ElementType>&

lhs, nullptr_t rhs)

Comparison operator <= for private_ptr
class with a nullptr_t.

template <typename ElementType>

bool operator<=(nullptr_t lhs, const private_ptr

<ElementType>& rhs)

Comparison operator <= for private_ptr
class with a nullptr_t.

End of table
Table 3.41: Non-member functions of the explicit pointer classes.

3.4.7.2 Multi-pointer class

There are situations where a user may want to template a datastructure by an address space. Or, a user may want
to write templates that adapt to the address space of a pointer. An example might be wrapping a pointer inside
a class, where a user may need to template the class according to the address space of the pointer the class is
initialized with. In this case, the multi_ptr class enables users to do this. In order to facilitate SYCL/OpenCL
C interoperability, the pointer_t type is provided. It is an implementation defined type which corresponds to
the underlying OpenCL C pointer type and can be used in extern ‘‘C’’ function declarations for OpenCL

97

functions used in SYCL kernels.

An overview of the interface provided for the multi_ptr class is the following, for the full interface please refer
to B.2.

1 namespace cl {

2 namespace sycl {

3 namespace access {

4 enum class address_space : int {

5 global_space,

6 local_space,

7 constant_space,

8 private_space

9 };

10 } // namespace access

11
12 template <typename ElementType, access::address_space Space>

13 class multi_ptr {

14 public :

15 // Implementation defined pointer type that corresponds to the SYCL/OpenCL

16 // interoperability type for OpenCL C functions

17 typedef __undefined__ pointer_t;

18
19 const address_space space;

20
21 multi_ptr(pointer_t);

22 multi_ptr(const multi_ptr&);

23 ∼multi_ptr();

24
25 ElementType &operator*();

26 ElementType &operator[](size_t i);

27
28 // Only if Space == global_space

29 operator global_ptr<ElementType>();

30 global_ptr<ElementType> pointer();

31
32 // Only if Space == local_space

33 operator local_ptr<ElementType>();

34 local_ptr<ElementType> pointer();

35
36 // Only if Space == constant_space

37 operator constant_ptr<ElementType>();

38 constant_ptr<ElementType> pointer();

39
40 // Only if Space == private_space

41 operator private_ptr<ElementType>();

42 private_ptr<ElementType> pointer();

43 };

44
45 template <typename ElementType, access::address_space Space>

46 multi_ptr<ElementType, Space> make_ptr(pointer_t);

47 } // namespace sycl

48 } // namespace cl

98

Constructors Description
template <typename ElementType, enum address_space

Space>

explicit multi_ptr(pointer_t)

Constructor that takes as an argument a
pointer of ElementType.

template <typename ElementType, access::

address_space Space>

multi_ptr(const multi_ptr &)

Copy constructor.

template <typename ElementType, access::

address_space Space>

multi_ptr<ElementType, Space> make_ptr(pointer_t

)

Global function to create a multi_ptr in-
stance depending on the address space of the
pointer_t pointer type.

End of table
Table 3.42: Constructors for multi_ptr class

Methods Description
template <typename ElementType, access::

address_space Space>

ElementType &operator*()

Operator that returns a reference to the Ele-
mentType of the multi ptr class.

template <typename ElementType, access::

address_space Space>

ElementType &operator[](size_t i)

Subscript operator.

template <typename ElementType,

access::address_space Space = access::

address_space::global_space>

operator global_ptr<ElementType>()

Conversion operator from multi_ptr

<ElementType,address_space::

global_space> to global_ptr<

ElementType>.
template <typename ElementType,

access::address_space Space = access::

address_space::global_space>

global_ptr<ElementType> pointer()

Pointer method that returns a global_ptr
<ElementType> from a multi_ptr

<ElementType,address_space::

global_space>.
template <typename ElementType,

access::address_space Space = access::

address_space::local_space>

operator local_ptr<ElementType>()

Conversion operator from multi_ptr

<ElementType,address_space::

local_space> to local_ptr<ElementType>.

template <typename ElementType,

access::address_space Space = access::

address_space::local_space>

local_ptr<ElementType> pointer()

Pointer method that returns a local_ptr
<ElementType> from a multi_ptr

<ElementType,address_space::

local_space>.
template <typename ElementType,

access::address_space Space = access::

address_space::constant_space>

operator constant_ptr<ElementType>()

Conversion operator from multi_ptr

<ElementType,address_space::

constant_space> to constant_ptr<

ElementType>.
template <typename ElementType,

access::address_space Space = access::

address_space::constant_space>

constant_ptr<ElementType> pointer()

Pointer method that returns a constant_ptr
<ElementType> from a multi_ptr

<ElementType,address_space::

constant_space>.
Continued on next page

Table 3.43: Methods of multi_ptr class

99

Methods Description
template <typename ElementType,

access::address_space Space = access::

address_space::private_space>

operator private_ptr<ElementType>()

Conversion operator from multi_ptr

<ElementType,address_space::

private_space> to private_ptr<

ElementType>.
template <typename ElementType,

access::address_space Space = access::

address_space::private_space>

private_ptr<ElementType> pointer()

Pointer method that returns a private_ptr
<ElementType> from a multi_ptr

<ElementType,address_space::

private_space>.
End of table

Table 3.43: Methods of multi_ptr class

Non-member functions Description
template <typename ElementType, access::

address_space Space>

bool operator==(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator == for multi_ptr
class.

template <typename ElementType, access::

address_space Space>

bool operator!=(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator != for multi_ptr
class.

template <typename ElementType, access::

address_space Space>

bool operator<(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator < for multi_ptr class.

template <typename ElementType, access::

address_space Space>

bool operator>(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator > for multi_ptr class.

template <typename ElementType, access::

address_space Space>

bool operator<=(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator <= for multi_ptr
class.

template <typename ElementType, access::

address_space Space>

bool operator>=(const multi_ptr<ElementType,

Space>& lhs,

const multi_ptr<ElementType, Space>& rhs)

Comparison operator >= for multi_ptr
class.

template <typename ElementType, access::

address_space Space>

bool operator!=(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator != for multi_ptr class
with a nullptr_t.

Continued on next page
Table 3.44: Non-member functions of the multi ptr class.

100

Non-member functions Description
template <typename ElementType, access::

address_space Space>

bool operator!=(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator != for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator==(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator == for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator==(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator == for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator>(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator > for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator>(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator > for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator<(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator < for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator<(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator < for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator>=(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator >= for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator>=(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator >= for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator<=(const multi_ptr<ElementType,

Space>& lhs, nullptr_t rhs)

Comparison operator <= for multi_ptr class
with a nullptr_t.

template <typename ElementType, access::

address_space Space>

bool operator<=(nullptr_t lhs, const multi_ptr<

ElementType, Space>& rhs)

Comparison operator <= for multi_ptr class
with a nullptr_t.

End of table
Table 3.44: Non-member functions of the multi ptr class.

101

3.4.8 Samplers

Samplers use the cl::sycl::sampler type which is equivalent to the OpenCL C cl_sampler and sampler_t
types. Constructors for the sampler class are listed in Table 3.45 and methods in Table 3.46.

1 namespace cl {

2 namespace sycl {

3 class sampler {

4 public:

5 enum class sampler_addressing_mode {

6 SYCL_SAMPLER_ADDRESS_MIRRORED_REPEAT,

7 SYCL_SAMPLER_ADDRESS_REPEAT,

8 SYCL_SAMPLER_ADDRESS_CLAMP_TO_EDGE,

9 SYCL_SAMPLER_ADDRESS_CLAMP,

10 SYCL_SAMPLER_ADDRESS_NONE

11 };

12 enum class sampler_filter_mode {

13 SYCL_SAMPLER_FILTER_NEAREST,

14 SYCL_SAMPLER_FILTER_LINEAR

15 };

16
17 sampler(bool normalized_coords, sampler_addressing_mode addressing_mode,

18 sampler_filter_mode filter_mode);

19
20 sampler(cl_sampler);

21
22 ∼sampler() {}

23
24 sampler_addressing_mode get_address() const;

25
26 sampler_filter_mode get_filter() const;

27
28 cl_sampler get_opencl_sampler() const;

29 };

30 } // namespace sycl

31 } // namespace cl

Constructors Description
sampler(

bool normalized_coords,

sampler_addressing_mode addressing_mode,

sampler_filter_mode filter_mode)

normalized_coords selects whether nor-
malized or unnormalized coordinates are
used for accessing image data.
addressing_mode specifies how out-of-
range image coordinates are handled.
filter_mode specifies the type of filter that
must be applied when reading an image.

Continued on next page
Table 3.45: Constructors for the sampler class.

102

Constructors Description
sampler(cl_sampler)

Construct a sampler from an OpenCL sam-
pler object. Retains a reference to the
cl_sampler object. Caller should release
the passed cl_sampler object when it is no
longer needed.

End of table
Table 3.45: Constructors for the sampler class.

Methods Description
sampler_addressing_mode get_address()const Return the addressing mode used to con-

struct the sampler.
sampler_filter_mode get_filter()const Return the filter mode used to construct the

sampler.
cl_sampler get_sampler()const Returns the underlying cl sampler ob-

ject. Retains a reference to the returned
cl_sampler object. Caller should release it
when finished.

End of table
Table 3.46: Methods for the sampler class.

3.5 Expressing parallelism through kernels

3.5.1 Ranges and index space identifiers

The data parallelism of the OpenCL execution model and its exposure through SYCL requires instantiation of a
parallel execution over a range of iteration space coordinates. To achieve this we expose types to define the range
of execution and to identify a given execution instance’s point in the iteration space.

To achieve this we expose five types: range, nd_range, id, item, nd_item and group.

When constructing ids or ranges from integers, the elements are written in row-major format.

3.5.1.1 range class

range<int dimensions> is a 1D, 2D or 3D vector that defines the iteration domain of either a single work-group
in a parallel dispatch, or the overall dimensions of the dispatch. It can be constructed from integers. Constructors
for the range class are described in Table 3.47, methods in Table 3.48 and global operators on ranges in Table 3.49.

An overview of the interface provided for the range class is the following, for the full interface please refer to B.3.

1 namespace cl {

103

2 namespace sycl {

3 template <size_t dimensions>

4 struct range {

5 range(const range<dimensions> &);

6
7 range(size_t x); // When dimensions==1

8 range(size_t x, size_t y); // When dimensions==2

9 range(size_t x, size_t y, size_t z); // When dimensions==3

10
11 size_t get(int dimension) const;

12 size_t &operator[](int dimension);

13
14 range &operator=(const range &rhs);

15 range &operator+=(const range &rhs);

16 range &operator*=(const range &rhs);

17 range &operator/=(const range &rhs);

18 range &operator%=(const range &rhs);

19 range &operator>>=(const range &rhs);

20 range &operator<<=(const range &rhs);

21 range &operator&=(const range &rhs);

22 range &operatorˆ=(const range &rhs);

23 range &operator|=(const range &rhs);

24
25 size_t size() const;

26 };

27 } // sycl

28 } // cl

Constructors Description
range(const range<dimensions>&) Construct a range by deep copy from an-

other range.
range(size_t x) Construct a 1D range with value x. Only

valid when for one dimension.
range(size_t x, size_t y) Construct a 2D range with value x, y. Only

valid when dimensions is 2.
range(size_t x, size_t y, size_t z) Construct a 3D range with value x, y, z.

Only valid when dimensions is 3.
End of table

Table 3.47: Constructors for the range class.

Methods Description
size_t get(int dimension)const Return the value of the specified dimension

of the range.
size_t &operator[](int dimension) Return the l-value of the specified dimen-

sion of the range.
range &operator=(const range &rhs) Assign each element of range from its corre-

sponding element of rhs.
range &operator+=(const range &rhs) Elementwise addition of rhs to the current

range. Returns reference to updated range.
Continued on next page

Table 3.48: Methods for the range class.

104

Methods Description
range &operator*=(const range &rhs) Elementwise multiplication of the current

range by rhs. Returns reference to updated
range.

range &operator/=(const range &rhs) Elementwise division of the current range
by rhs. Returns reference to updated range.

range &operator%=(const range &rhs) Elementwise division of the current range
by rhs, updating with the division remainder.
Returns reference to updated range.

range &operator>>=(const range &rhs) Elementwise arithmetic right shift of the
current range by rhs. Returns reference to
updated range.

range &operator<<=(const range &rhs) Elementwise logical left shift of the current
range by rhs. Returns reference to updated
range.

range &operator&=(const range &rhs) Elementwise bitwise AND of the current
range by rhs. Returns reference to updated
range.

range &operatorˆ=(const range &rhs) Elementwise bitwise exclusive OR of the
current range by rhs. Returns reference to
updated range.

range &operator|=(const range &rhs) Elementwise bitwise OR of the current
range by rhs. Returns reference to updated
range.

size_t size()const; Return the size of the range computed as
dimension0*...*dimensionN.

End of table
Table 3.48: Methods for the range class.

Non-member functions Description
template <size_t dimensions>

bool operator ==(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges for elementwise equal-
ity. If all dimensions are equal, the ranges
are equal.

template <size_t dimensions>

bool operator !=(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges for elementwise in-
equality. If any dimension is not equal, the
ranges are not equal.

template <size_t dimensions>

bool operator >(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges such that a is lexically
greater than b. Returns true if for any di-
mension n, a[n] > b[n] and for all m > n,
a[m] == b[m].

template <size_t dimensions>

bool operator <(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges such that a is lexically
less than b. Returns true if for any dimension
n, a[n] < b[n] and for all m > n, a[m] ==
b[m].

Continued on next page
Table 3.49: Non-member functions for the range class.

105

Non-member functions Description
template <size_t dimensions>

bool operator >=(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges such that a is lexically
less than or equal to b. Returns true if a == b
or a > b.

template <size_t dimensions>

bool operator <=(

const range<dimensions> &a,

const range<dimensions> &b)

Compare two ranges such that a is lexically
less than or equal to b. Returns true if a == b
or a < b.

template <int dimensions>

range<dimensions> operator *(

range<dimensions> a,

range<dimensions> b)

Multiply each element of a by its respective
element of b and return a range constructed
from the resulting values.

template <int dimensions>

range<dimensions> operator /(

range<dimensions> dividend,

range<dimensions> divisor)

Divide each element of dividend by its re-
spective element element in divisor and
return a range constructed of the resulting
value.

template <int dimensions>

range<dimensions> operator +(

range<dimensions> a,

range<dimensions> b)

Add each element of a to its respective el-
ement of b and return a range constructed
from the resulting values.

template <int dimensions>

range<dimensions> operator -(

range<dimensions> a,

range<dimensions> b)

Subtract each element of b from its respec-
tive element of a and return a range con-
structed from the resulting values.

template <size_t dimensions>

range<dimensions> operator %(

const range<dimensions> &a,

const range<dimensions> &b)

Divide each element of b from its respective
element of a and return a range constructed
from the remainders.

template <size_t dimensions>

range<dimensions> operator <<(

const range<dimensions> &a,

const range<dimensions> &b)

Logically shift each element of a left by its
matching element of b and return a range
constructed from the shifted values.

template <size_t dimensions>

range<dimensions> operator >>(

const range<dimensions> &a,

const range<dimensions> &b)

Arithmetically shift each element of a right
by its matching element of b and return a
range constructed from the shifted values.

template <size_t dimensions>

range<dimensions> operator &(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the bitwise AND of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

range<dimensions> operator |(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the bitwise OR of
each element of a with the equivalent ele-
ment of b.

Continued on next page
Table 3.49: Non-member functions for the range class.

106

Non-member functions Description
template <size_t dimensions>

range<dimensions> operator &&(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the logical AND of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

range<dimensions> operator ||(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the logical OR of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

range<dimensions> operator ˆ(

const range<dimensions> &a,

const range<dimensions> &b)

Construct a range from the bitwise XOR of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

range<dimensions> operator *(

const size_t &a,

const range<dimensions> &b)

Construct a range from the multiplication of
each element of b with a.

template <size_t dimensions>

range<dimensions> operator *(

const range<dimensions> &a,

const size_t &b)

Construct a range from the multiplication of
each element of a with b.

template <size_t dimensions>

range<dimensions> operator /(

const size_t &a,

const range<dimensions> &b)

Construct a range from the division of each
element of a by b.

template <size_t dimensions>

range<dimensions> operator /(

const range<dimensions> &a,

const size_t &b)

Construct a range from the division of each
element of a with b.

template <size_t dimensions>

range<dimensions> operator +(

const size_t &a,

const range<dimensions> &b)

Construct a range from the addition of each
element of b with a.

template <size_t dimensions>

range<dimensions> operator +(

const range<dimensions> &a,

const size_t &b)

Construct a range from the addition of each
element of a with b.

template <size_t dimensions>

range<dimensions> operator -(

const size_t &a,

const range<dimensions> &b)

Construct a range from the subtraction of
each element of b with a.

template <size_t dimensions>

range<dimensions> operator -(

const range<dimensions> &a,

const size_t &b)

Construct a range from the subtraction of
each element of a with b.

Continued on next page
Table 3.49: Non-member functions for the range class.

107

Non-member functions Description
template <size_t dimensions>

range<dimensions> operator %(

const size_t &a,

const range<dimensions> &b)

Construct a range from the modulo of each
element of b with a.

template <size_t dimensions>

range<dimensions> operator %(

const range<dimensions> &a,

const size_t &b)

Construct a range from the modulo of each
element of a with b.

template <size_t dimensions>

range<dimensions> operator <<(

const size_t &a,

const range<dimensions> &b)

Construct a range from shiffting left of each
element of b with a.

template <size_t dimensions>

range<dimensions> operator <<(

const range<dimensions> &a,

const size_t &b)

Construct a range from shiffting left of each
element of a with b.

template <size_t dimensions>

range<dimensions> operator >>(

const size_t &a,

const range<dimensions> &b)

Construct a range from shiffting right of
each element of b with a.

template <size_t dimensions>

range<dimensions> operator >>(

const range<dimensions> &a,

const size_t &b)

Construct a range from shiffting right of
each element of a with b.

End of table
Table 3.49: Non-member functions for the range class.

3.5.1.2 nd_range class

1 namespace cl {

2 namespace sycl {

3 template <int dimensions>

4 struct nd_range {

5 nd_range(const nd_range<dimensions> &);

6
7 nd_range(range<dims> globalSize, range<dims> localSize,

8 id<dims> offset = id<dims>());

9
10 range<dims> get_global() const;

11 range<dims> get_local() const;

12 range<dims> get_group() const;

13 id<dims> get_offset() const;

14 };

15 } // namespace sycl

16 } // namespace cl

nd_range<int dimensions> defines the iteration domain of both the work-groups and the overall dispatch. To
define this the nd_range comprises two ranges: the whole range over which the kernel is to be executed, and

108

the range of each work group. Constructors for the nd range class are described in Table 3.50 and methods in
Table 3.51.

Constructors Description
nd_range(const nd_range<dimensions> &) Construct an nd_range by deep copy from

another ndrange.
nd_range<dimensions>(

range<dimensions> globalSize,

range<dimensions> localSize)

id<dimensions> offset = id<dimensions>())

Construct an nd_range from the local and
global constituent ranges as well as an op-
tional offset. If the offset is not provided it
will default to no offset.

End of table
Table 3.50: Constructors for the nd_range class.

Methods Description
range<dimensions> get_global()const Return the constituent global range.
range<dimensions> get_local()const Return the constituent local range.
range<dimensions> get_group()const Return a range representing the number of

groups in each dimension. This range would
result from globalSize/localSize as pro-
vided on construction.

id<dimensions> get_offset()const Return the constituent offset.
End of table

Table 3.51: Methods for the nd_range class.

3.5.1.3 id class

id<int dimensions> is a vector of dimensions that is used to represent an index into a global or local range. It
can be used as an index in an accessor of the same rank. The [n] operator returns the component n as an size_t.
Constructors for the id class are described in Table 3.52, methods in Table 3.53 and global operators on ids in
Table 3.54

An overview of the interface provided for the id class is the following, for the full interface please refer to B.4.

1 namespace cl {

2 namespace sycl {

3 template <size_t dimensions>

4 struct id {

5 id(size_t x); // When dimensions==1

6 id(size_t x, size_t y); // When dimensions==2

7 id(size_t x, size_t y , size_t z); // When dimensions==3

8 id(const id<dimensions> & rhs);

9 id(const range<dimensions> & rangeSize);

10 id(const item<dimensions> & rhs);

11
12 size_t get(int dimension) const;

13 size_t &operator[](int dimension);

14 operator size_t(); // When dimensions==1

109

15
16 id &operator=(const id & rhs);

17 id &operator+=(const id & rhs);

18 id &operator*=(const id & rhs);

19 id &operator/=(const id & rhs);

20 id &operator%=(const id & rhs);

21 id &operator>>=(const id & rhs);

22 id &operator<<=(const id & rhs);

23 id &operator&=(const id & rhs);

24 id &operatorˆ=(const id & rhs);

25 id &operator|=(const id & rhs);

26 };

27 } // namespace sycl

28 } // namespace cl

Constructors Description
id(size_t x) Construct a 1D id with value x. Only valid

when dimensions is 1.
id(size_t x, size_t y) Construct a 1D id with value x, y. Only

valid when dimensions is 2.
id(size_t x, size_t y, size_t z) Construct a 1D id with value x, y, z. Only

valid when dimensions is 3.
id(const id &) Construct an id by deep copy.
id(const range &r) Construct an id from the dimensions of a

range.
id(const item &it) Construct an id from it.get global id().

End of table
Table 3.52: Constructors for the id class.

Methods Description
size_t get(int dimension)const Return the value of the id for dimension

dimension.
size_t &operator[](int dimension)const Return a reference to the requested dimen-

sion of the id object.
operator size_t() Conversion operator so that a id<1> can be

used as a plain size_t.
id &operator=(const id &rhs) Elementwise assignment of id rhs to current

id.
id &operator+=(const id &rhs) Elementwise addition of rhs to the current

id. Returns reference to updated id.
id &operator*=(const id &rhs) Elementwise multiplication of the current id

by rhs. Returns reference to updated id.
id &operator/=(const id &rhs) Elementwise division of the current id by

rhs. Returns reference to updated id.
id &operator%=(const id &rhs) Elementwise division of the current id by

rhs, updating with the division remainder.
Returns reference to updated id.

Continued on next page
Table 3.53: Methods for the id class.

110

Methods Description
id &operator>>=(const id &rhs) Elementwise arithmetic right shift of the

current id by rhs. Returns reference to up-
dated id.

id &operator<<=(const id &rhs) Elementwise logical left shift of the current
id by rhs. Returns reference to updated id.

id &operator&=(const id &rhs) Elementwise bitwise AND of the current id
by rhs. Returns reference to updated id.

id &operatorˆ=(const id &rhs) Elementwise bitwise exclusive OR of the
current id by rhs. Returns reference to up-
dated id.

id &operator|=(const id &rhs) Elementwise bitwise OR of the current id
by rhs. Returns reference to updated id.

End of table
Table 3.53: Methods for the id class.

Non-member functions Description
template <size_t dimensions>

bool operator ==(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids for elementwise equality.
If all dimensions are equal, the ids are equal.

template <size_t dimensions>

bool operator !=(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids for elementwise inequality.
If any dimension is not equal, the ids are not
equal.

template <size_t dimensions>

bool operator >(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids such that a is lexically
greater than b. Returns true if for any di-
mension n, a[n] > b[n] and for all m > n,
a[m] == b[m].

template <size_t dimensions>

bool operator <(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids such that a is lexically less
than b. Returns true if for any dimension n,
a[n] < b[n] and for all m > n, a[m] == b[m].

template <size_t dimensions>

bool operator >=(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids such that a is lexically less
than or equal to b. Returns true if a == b or
a > b.

template <size_t dimensions>

bool operator <=(

const id<dimensions> &a,

const id<dimensions> &b)

Compare two ids such that a is lexically less
than or equal to b. Returns true if a == b or
a < b.

template <size_t dimensions>

id<dimensions> operator *(

const id<dimensions> &a,

const id<dimensions> &b)

Multiply each element of a by its respective
element of b and return an id constructed
from the resulting values.

Continued on next page
Table 3.54: Non-member functions for the id class.

111

Non-member functions Description
template <size_t dimensions>

id<dimensions> operator /(

const id<dimensions> ÷nd,

const id<dimensions> &divisor)

Divide each element of dividend by its re-
spective element element in divisor and re-
turn an id constructed of the resulting value.

template <size_t dimensions>

id<dimensions> operator +(

const id<dimensions> &a,

const id<dimensions> &b)

Add each element of a to its respective ele-
ment of b and return an id constructed from
the resulting values.

template <size_t dimensions>

id<dimensions> operator -(

const id<dimensions> &a,

const id<dimensions> &b)

Subtract each element of b from its respec-
tive element of a and return an id constructed
from the resulting values.

template <size_t dimensions>

id<dimensions> operator %(

const id<dimensions> &a,

const id<dimensions> &b)

Divide each element of b from its respec-
tive element of a and return an id constructed
from the remainders.

template <size_t dimensions>

id<dimensions> operator <<(

const id<dimensions> &a,

const id<dimensions> &b)

Logically shift each element of a left by its
matching element of b and return an id con-
structed from the shifted values.

template <size_t dimensions>

id<dimensions> operator >>(

const id<dimensions> &a,

const id<dimensions> &b)

Arithmetically shift each element of a right
by its matching element of b and return an id
constructed from the shifted values.

template <size_t dimensions>

id<dimensions> operator &(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the bitwise AND of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

id<dimensions> operator |(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the bitwise OR of each
element of a with the equivalent element of
b.

template <size_t dimensions>

id<dimensions> operator ˆ(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the bitwise XOR of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

id<dimensions> operator &&(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the logical AND of
each element of a with the equivalent ele-
ment of b.

template <size_t dimensions>

id<dimensions> operator ||(

const id<dimensions> &a,

const id<dimensions> &b)

Construct an id from the logical OR of each
element of a with the equivalent element of
b.

Continued on next page
Table 3.54: Non-member functions for the id class.

112

Non-member functions Description
template <size_t dimensions>

id<dimensions> operator *(

const size_t &a,

const id<dimensions> &b)

Construct an id from the multiplication of a
with each element of a.

template <size_t dimensions>

id<dimensions> operator *(

const id<dimensions> &a,

const size_t &b)

Construct an id from the multiplication of
each element of a with b.

template <size_t dimensions>

id<dimensions> operator +(

const size_t &a,

const id<dimensions> &b)

Construct an id from the addition of a with
each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator +(

const id<dimensions> &a,

const size_t &b)

Construct an id from the addition of each el-
ement of a with b.

template <size_t dimensions>

id<dimensions> operator -(

const size_t &a,

const id<dimensions> &b)

Construct an id from the subtraction of a
with each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator -(

const id<dimensions> &a,

const size_t &b)

Construct an id from the subtraction of each
element of a with b.

template <size_t dimensions>

id<dimensions> operator /(

const size_t &a,

const id<dimensions> &b)

Construct an id from the division of a with
each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator /(

const id<dimensions> &a,

const size_t &b)

Construct an id from the division of each el-
ement of a with b.

template <size_t dimensions>

id<dimensions> operator %(

const size_t &a,

const id<dimensions> &b)

Construct an id from the modulo of a with
each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator %(

const id<dimensions> &a,

const size_t &b)

Construct an id from the modulo of each el-
ement of a with b.

template <size_t dimensions>

id<dimensions> operator <<(

const size_t &a,

const id<dimensions> &b)

Construct an id from shifting left awith each
equivalent element of b.

Continued on next page
Table 3.54: Non-member functions for the id class.

113

Non-member functions Description
template <size_t dimensions>

id<dimensions> operator <<(

const id<dimensions> &a,

const size_t &b)

Construct an id from shifting left each ele-
ment of a with b.

template <size_t dimensions>

id<dimensions> operator >>(

const size_t &a,

const id<dimensions> &b)

Construct an id from shifting right a with
each equivalent element of b.

template <size_t dimensions>

id<dimensions> operator >>(

const id<dimensions> &a,

const size_t &b)

Construct an id from shifting right each ele-
ment of a with b.

End of table
Table 3.54: Non-member functions for the id class.

3.5.1.4 item class

item<int dimensions> identifies an instance of the functor executing at each point in a range<> passed to a
parallel_for call, or passed to a parallel_for_work_item call. It encapsulates enough information to identify
the work-item’s global or local ID, the range of possible values, and the offset of the range, if provided to the
parallel_for. Instances of the item<> class are not user-constructible and are passed by the runtime to each
instance of the functor. Methods for the item<> class are described in Table 3.55.

1 namespace cl {

2 namespace sycl {

3 template <int dimensions>

4 struct item {

5 item() = delete;

6
7 item(const item &rhs) = default;

8
9 id<dimensions> get() const;

10
11 size_t get(int dimension) const;

12
13 size_t &operator[](int dimension);

14
15 range<dimensions> get_range() const;

16
17 id<dimensions> get_offset() const;

18
19 size_t get_linear_id() const;

20
21 operator id<dimensions>();

22 };

23 } // namespace sycl

24 } // namespace cl

114

Methods Description
id<dimensions> get()const Return the constituent local or global id<>

representing the work-item’s position in the
iteration space.

size_t get(int dimension)const Return the requested dimension of the con-
stituent id<> representing the work-item’s
position in the iteration space.

size_t &operator[](int dimension) Return the constituent id<> l-value repre-
senting the work-item’s position in the itera-
tion space in the given dimension.

range<dimensions> get_range()const Returns a range<> representing the dimen-
sions of the range of possible values of the
item.

id<dimensions> get_offset()const Returns an id<> representing the n-
dimensional offset provided to the
parallel_for and that is added by the
runtime to the global-ID of each work-item,
if this item represents a global range. For an
item representing a local range of where no
offset was passed this will always return an
id of all 0 values.

size_t get_linear_id()const Return the linearized ID in the item’s range.
Computed as the flatted ID after the offset is
subtracted.

End of table
Table 3.55: Methods for the item class.

3.5.1.5 nd_item class

nd_item<int dimensions> identifies an instance of the functor executing at each point in an nd_range<int
dimensions> passed to a parallel_for_ndrange call. It encapsulates enough information to identify the work-
item’s local and global IDs, the work-groups ID and also provides barrier functionality to synchronize work-items.
Instances of the nd_item<int dimensions> class are not user-constructible and are passed by the runtime to each
instance of the functor. Methods for the nd_item<int dimensions> class are described in Table 3.56.

1 namespace cl {

2 namespace sycl {

3 template <int dimensions>

4 struct nd_item {

5 nd_item() = delete;

6
7 nd_item(const nd_item &) = default;

8
9 id<dimensions> get_global() const;

10
11 size_t get_global(int) const;

12
13 size_t get_global_linear_id() const;

14

115

15 id<dimensions> get_local() const;

16
17 size_t get_local(int) const;

18
19 size_t get_local_linear_id() const;

20
21 group<dimensions> get_group() const;

22
23 size_t get_group(int) const;

24
25 size_t get_group_linear_id() const;

26
27 int get_num_groups(int) const;

28
29 id<dimensions> get_num_groups() const;

30
31 range<dimensions> get_global_range() const;

32
33 range<dimensions> get_local_range() const;

34
35 id<dimensions> get_offset() const;

36
37 nd_range<dimensions> get_nd_range() const;

38
39 void barrier(access::fence_space flag = access::global_and_local) const;

40 };

41 } // namespace sycl

42 } // namespace cl

Methods Description
id<dimensions> get_global()const Return the constituent global id represent-

ing the work-item’s position in the global it-
eration space.

size_t get_global(int dimension)const Return the constituent element of the global
id representing the work-item’s position
in the global iteration space in the given
dimension.

id<dimensions> get_global_linear_id()const Return the flattened id of the current work-
item after subtracting the offset.

id<dimensions> get_local()const Return the constituent local id representing
the work-item’s position within the current
work-group.

size_t get_local(int dimension)const Return the constituent element of the lo-
cal id representing the work-item’s position
within the current work-group in the given
dimension.

id<dimensions> get_local_linear_id()const Return the flattened id of the current work-
item within the current work-group.

group<dimensions> get_group()const Return the constituent group group repre-
senting the work-group’s position within the
overall nd_range.

Continued on next page
Table 3.56: Methods for the nd_item class.

116

Methods Description
size_t get_group(int dimension)const Return the constituent element of the group

id representing the work-group’s position
within the overall nd_range in the given
dimension.

size_t get_group_linear_id()const Return the flattened id of the current work-
group.

int get_num_groups(int dimension)const Return the number of groups for dimension
in the nd_range.

id<dimensions> get_num_groups()const Returns the number of groups in the
nd_range.

range<dimensions> get_global_range()const Returns a range<> representing the dimen-
sions of the nd_range<>

range<dimensions> get_local_range()const Returns a range<> representing the dimen-
sions of the current work-group.

id<dimensions> get_offset()const Returns an id<> representing the n-
dimensional offset provided to the construc-
tor of the nd_range<> and that is added by
the runtime to the global-ID of each work-
item.

nd_range<dimensions> get_nd_range()const Returns the nd_range<> of the current ex-
ecution.

void barrier(

access::fence_space flag=

access::global_and_local)const

Executes a barrier with memory ordering on
the local address space, global address space
or both based on the value of flag. The cur-
rent work-item will wait at the barrier un-
til all work-items in the current work-group
have reached the barrier. In addition the bar-
rier performs a fence operation ensuring that
all memory accesses in the specified address
space issued before the barrier complete be-
fore those issued after the barrier.

End of table
Table 3.56: Methods for the nd_item class.

3.5.1.6 group class

The group<int dimensions> is passed to each instance of the functor execution a parallel_for_workgroup
in a hierarchical parallel execution. The group encapsulates all functionality required to represent a particular
group within a parallel execution. It is not user-constructable. Methods for the group<> class are described in
Table 3.57.

The local range stored in the group class will be provided either by the programmer, when it is passed as an
optional parameter to parallel_for_work_group, or by the runtime system when it selects the optimal work-group
size. This allows the developer to always know how many concurrent work-items are active in each executing
work-group, even through the abstracted dimensions of the parallel_for_work_item loops.

1 namespace cl {

117

2 namespace sycl {

3 template <int dimensions>

4 struct group {

5 group(const group &rhs) = default;

6
7 id<dimensions> get() const;

8
9 size_t get(int dimension) const;

10
11 range<dimensions> get_global_range() const;

12
13 size_t get_global_range(int) const;

14
15 range<dimensions> get_group_range() const;

16
17 size_t get_group_range(int) const;

18
19 size_t operator[](int) const;

20
21 size_t get_linear() const;

22 };

23 } // sycl

24 } // cl

Methods Description
id<dimensions> get() Return an id representing the index of the

group within the nd_range for every dimen-
sion.

size_t get(int dimension)const Return the index of the group in the given
dimension.

range<dimensions> get_global_range() Return the constituent global range.
size_t get_global_range(int dimension) Return element dimension from the con-

stituent global range.
range<dimensions> get_group_range() Return a range<> representing the dimen-

sions of the current group. This local range
may have been provided by the programmer,
or chosen by the runtime.

size_t get_group_range(int dimension) Return element dimension from the con-
stituent group range.

size_t operator[](int dimension)const Return the index of the group in the given
dimension within the nd_range<>.

size_t get_linear()const Get a linearized version of the group ID.
End of table

Table 3.57: Methods for the group class.

3.5.2 Command group scope

A command group scope in SYCL as it is defined in Section 2.3.1 consists of a kernel and all the commands
for queued data transfers in order for the kernel’s execution to be successful. In SYCL, as it is in OpenCL,

118

a kernel needs to be enqueued and there are a lot of commands that need to be enqueued as well for making
the data available to the kernel. The commands that enqueue a kernel and all the relevant data transfers to be
enqueued for it, form the command group functor. The command group functor takes as a parameter an instance
of the command group handler 3.5.3.4 class which encapsulates all the methods executed in the command group
scope. This abstraction of the kernel execution unifies the data with its processing and consequently allows more
abstraction and flexibility in the parallel programming models that can be implemented on top of SYCL.

The command group functor and the handler class serves as an interface for the encapsulation of command group
scope. A kernel is defined in a command group either as a functor object or as a lambda function. All the device
data accesses are defined inside this group and any transfers are managed by the system. The rules for the data
transfers regarding device and host data accesses are better described in the data management section (3.4), where
buffers (3.4.2) and accessor (3.4.6) classes are described.

It is possible to obtain events for the start of the command group functor, the kernel starting, and the command
group completing. These events are most useful for profiling, because safe synchronization in SYCL requires
synchronization on buffer availability, not on kernel completion. This is due to the fact that the it is not rigidly
specified which memory data are stored on kernel completion. The events are provided at the submission of the
command group functor at the queue to be executed on.

It is possible for a command group functor to fail to enqueue to a queue, or for it to fail to execute correctly.
A user can therefore supply a secondary queue when submitting a command group to the primary queue. If
the SYCL runtime fails to enqueue or execute a command group on a primary queue, it can attempt to run the
command group on the secondary queue. The circumstances in which it is, or is not, possible for a SYCL runtime
to fall-back from primary to secondary queue are undefined in the specification.

The command group handler class provides the interface for all of the methods that are able to be executed
inside the command group scope and also it is provided as a scoped object to all of the data access requests. The
command group handler class provides the interface in which every command of the command group scope will
be submitted to a queue.

3.5.3 SYCL functions for invoking kernels

Kernels can be invoked as single tasks, basic data-parallel kernels, OpenCL-style NDRanges in work-groups, or
SYCL hierarchical parallelism.

Each function takes a kernel name template parameter. The kernel name must be a datatype that is unique for
each kernel invocation. If a kernel is a functor, and its type is globally visible, then the kernel’s functor type will
be automatically used as the kernel name and so the user does not need to supply a name. If the kernel function is
a C++11 lambda function, then the user must manually provide a kernel name to enable linking between host and
device code to occur.

All the functions for invoking kernels are methods of the command group cl::sycl::handler class 3.5.3.4, which
is used to encapsulate all the methods provided in a command group scope.

3.5.3.1 single_task invoke

SYCL provides a simple interface to enqueue a kernel that will be sequentially executed on an OpenCL device.
Only one instance of the kernel will be executed. This interface is useful a primitive for more complicated parallel
algorithms, as it can easily create a chain of sequential tasks on an OpenCL device with each of them managing

119

its own data transfers.

This function can only be called inside a command group using the command group handler object created by
the runtime. Any accessors that are used in a kernel should be defined inside the same command group.

Local accessors are disallowed for single task invocations.

1 auto command_group = [&](handler & cgh) {

2 cgh.single_task<class kernel_name>(

3 [=] () {

4 // [kernel code]

5 }));

6 };

For single tasks, the kernel method takes no parameters, as there is no need for indexing classes in a unary index
space.

3.5.3.2 parallel_for invoke

The parallel_for interface offers the ability to the SYCL users to declare a kernel and enqueue it as a parallel
execution over a range of instances. There are three variations to the parallel for interface and they depend on
the index space that the developer would like the kernels to be executed on and the feature set available in those
kernels.

In the simplest case, the developer only needs to provide the number of work-items the kernel will use in total and
the system will use the best range available to enqueue it on a device. In this case the developer, may only need
to know the index over the total range that he has provided, by providing the number of work-items that will be
executing on. This type of kernels will be using the parallel for invocation with a range type to provide the range
of the execution and an id to provide the index within that range. Whether it is a lambda function or a kernel
functor the parameter to the invocation function need to be id.

An example of a parallel for using a lambda function for a kernel invocation in this case of parallel for is the
following.

1 class MyKernel;

2
3 myQueue.submit([&](handler & cmdgroup)

4 {

5 auto acc=myBuffer.get_access<read_write>();

6
7 cmdgroup.parallel_for<class MyKernel>(range<1>(workItemNo),

8 [=] (id<1> index)

9 {

10 acc[index] = 42.0f;

11 });

12 });

Another case, which is based on this very basic parallel for, is the case where the developer would like to let the
runtime choose the index space that is matching best the range provided but would like to use information given
the scheduled interface instead of the general interface. This is enabled by using the class item as an indexing

120

class in the kernel, and of course that would mean that the kernel invocation would match the range with the item
parameter to the kernel.

1 class MyKernel;

2
3 myQueue.submit([&](handler & cmdgroup)

4 {

5 auto acc=myBuffer.get_access<read_write>();

6
7 cmdgroup.parallel_for<class MyKernel>(range<1>(workItemNo),

8 [=] (item<1> myItem)

9 {

10 size_t index = item.get_global();

11 acc[index] = 42.0f;

12 });

13 });

Local accessors are disallowed for the basic parallel_for invocations described above.

The following two examples show how a kernel functor can be launched over a 3D grid, 3 elements in each
dimension. In the first case work-item IDs range from 0 to 2 inclusive, in the second case work-item IDs they run
from 1 to 3.

1 auto command_group = [&](handler & cgh) {

2 cgh.parallel_for<class example_kernel1>(

3 range<3>(3,3,3), // global range

4 [=] (item<3> it) {

5 //[kernel code]

6 });

7 };

8 auto command_group2 = [&](handler & cgh) {

9 cgh.parallel_for<class example_kernel2>(

10 range<3>(3,3,3), // global range

11 id<3>(1,1,1), // offset

12 [=] (item<3> it) {

13 //[kernel code]

14 });

15 };

The last case of a parallel for invocation enables low-level functionality of work-items and work-groups. This
becomes valuable, when an execution requires groups of work-items that communicate and synchronize. These
are exposed in SYCL through parallel_for (nd_range,...) and the nd_item class, which provides all the
functionality of OpenCL for an NDRange. In this case, the developer needs to define the nd_range that the kernel
will execute on in order to have fine grained control of the enqueing of the kernel. This variation of parallel -
for expects an nd_range, specifying both local and global ranges, defining the global number of work-items and
the number in each cooperating work-group. The resulting functor or lambda is passed an nd_item<i>nstance
making all the information available as well as barrier primitives to synchronize the work-items in the group.

The following example shows how sixty-four work-items may be launched in a three-dimensional grid with four
in each dimension and divided into sixteen work-groups. Each group of work-items synchronizes with a barrier.

1 auto command_group = [&](handler& cgh) {

121

2 cgh.parallel_for<class example_kernel>(

3 nd_range(range(4, 4, 4), range(2, 2, 2)), [=](nd_item<3> item) {

4 //[kernel code]

5 // Internal synchronization

6 item.barrier(access::fence_space::global);

7 //[kernel code]

8 });

9 };

Optionally, in any of these variations of parallel for invocations, the developer may also pass an offset. An offset
is an instance of the id class added to the identifier for each point in the range.

In all of these case the underlying nd range will be created and the kernel defined as a lambda or as a kernel
functor will be created and enqueued as part of the command group scope.

3.5.3.3 Parallel For hierarchical invoke

The hierarchical parallel kernel execution interface provides the same functionality as is available from the
NDRange interface but exposed differently. To execute the same sixty-four work-items in sixteen work-groups
that we saw in the previous example, we execute an outer parallel_for_work_group call to create the groups.
parallel_for_work_group is parameterized by the number of work-groups, such that the size of each group is
chosen by the runtime, or by the number of work-groups and number of work-items for users who need more
control.

The body of the outer parallel_for_work_group call consists of a lambda function or function object. The body
of this function object contains code that is executed only once for the entire work-group. If the code has no
side-effects and the compiler heuristic suggests it is more efficient to do so this code will be executed for each
work-item.

Within this region any variable declared will have the semantics of local memory, shared between all work-items
in the work-group. If the compiler can prove that an array of such variables is accessed only by a single work-item
throughout the lifetime of the work-group, for example if access is directly from the id of the work-item with no
transformation, then it can allocate the data in private memory or registers instead.

To guarantee use of private per-work-item memory, the private_memory class can be used to wrap the data. This
class very simply constructs private data for a given group across the entire group. The id of the current work-item
is passed to any access to grab the correct data.

The private_memory class has the following interface:

1 template <typename T, int Dimensions>

2 class private_memory {

3 public:

4 // Construct based directly off the number of work-items

5 private_memory(const group<Dimensions> &);

6
7 // Access the instance for the current work-item

8 T &operator()(const item<Dimensions> &id);

9 };

Private memory is allocated per underlying work-item, not per iteration of the parallel_for_work_item loop.

122

The number of instances of a private memory object is only under direct control if a work-group size is passed
to the parallel_for_work_group call. If the underlying work-group size is chosen by the runtime the number
of private memory instances is opaque to the program. Explicit private memory declarations should therefore be
used with care and with a full understanding of which instances of a parallel_for_work_item loop will share the
same underlying variable.

Private memory will be reused modulo the underlying work-group size in each dimension. For example, a 2x2
work-group will allocate 4 private memory variables and repeat them three times horizonally and twice vertically
in a 6x4 parallel_for_work_item loop.

Also within the lambda body can be a sequence of calls to parallel_for_work_item. At the edges of these inner
parallel executions the work-group synchronizes. As a result the pair of parallel_for_work_item calls in the
code below is equivalent to the parallel execution with a barrier in the earlier example.

1 auto command_group = [&](handler & cgh) {

2 // Issue 8 work-groups of 8 work-items each

3 cgh.parallel_for_work_group<class example_kernel>(

4 range<3>(2, 2, 2), range<3>(2, 2, 2), [=](group<3> myGroup) {

5
6 //[workgroup code]

7 int myLocal; // this variable shared between workitems

8 // this variable will be instantiated for each work-item separately

9 private_memory<int> myPrivate(myGroup);

10
11 // Issue parallel sets of work-items each sized using the runtime default

12 parallel_for_work_item(myGroup, [=](item<3> myItem) {

13 //[work-item code]

14 myPrivate(myItem) = 0;

15 });

16
17 // Carry private value across loops

18 parallel_for_work_item(myGroup, [=](item<3> myItem) {

19 //[work-item code]

20 output[myGroup.get_local_range()*myGroup.get()+myItem] =

21 myPrivate(myItem);

22 });

23 //[workgroup code]

24 });

25 });

It is valid to use more flexible dimensions of the work-item loops. In the following example we issue 8 work-
groups but let the runtime choose their size, by not passing a work-group size to the parallel_for_work_group
call. The parallel_for_work_item loops may also vary in size, with their execution ranges unrelated to the
dimensions of the work-group and the compiler generating an appropriate iteration space to fill the gap.

1 auto flexible_command_group = [&](handler & cgh) {

2 // Issue 1000 work-groups of 8 work-items each

3 cgh.parallel_for_work_group<class example_kernel>(

4 range<3>(2, 2, 2), [=](group<3> myGroup) {

5
6 // Launch a set of 8 work-items as requested in the parallel_for_work_group launch

7 parallel_for_work_item(myGroup, [=](item<3> myItem) {

8 //[work-item code]

123

9 });

10 // Launch 512 iterations that will map to the underlying 8

11 parallel_for_work_item(myGroup, range<3>(8, 8, 8), [=](item<3> myItem) {

12 //[work-item code]

13 });

14 //[workgroup code]

15 });

16 });

This interface offers a more intuitive way to tiling parallel programming paradigms. In summary, the hierarchi-
cal model allows a developer to distinguish the execution at work-group level and at work-item level using the
parallel_for_workgroup and the nested parallel_for_work_item functions. It also provides this visibility
to the compiler without the need for difficult loop fission such that a host execution may be more efficient.

3.5.3.4 Command group handler class

A command group handler object can only be constructed by the SYCL runtime. All of the accessors defined
in the command group scope take as a parameter an instance of the command group handler and all the kernel
invocation functions are methods of this class.

The constructors and methods of the command group handler class are listed in Tables 3.58 and 3.59.

1 namespace cl {

2 namespace sycl {

3
4 class handler_event {

5 public:

6 event get_kernel() const;

7 event get_complete() const;

8 event get_end() const;

9 }

10
11 class handler {

12 private:

13 // implementation defined constructor

14 handler(___unespecified___);

15
16 public:

17 handler(const handler& rhs);

18
19 void set_arg(int arg_index, accessor acc_obj);

20
21 template <typename T>

22 void set_arg(int arg_index, T scalar_value);

23
24 //In the case of a functor with a globally visible name

25 //the template parameter:"typename kernelName" can be ommitted

26 //and the kernelType can be used instead.

27 template <typename KernelName, class KernelType>

28 void single_task(KernelType);

29
30 //In the case of a functor with a globally visible name

124

31 //the template parameter:"typename kernelName" can be ommitted

32 //and the kernelType can be used instead.

33 template <typename KernelName, class KernelType>

34 void parallel_for(range<dimensions> numWorkItems, KernelType);

35
36 //In the case of a functor with a globally visible name

37 //the template parameter:"typename kernelName" can be ommitted

38 //and the kernelType can be used instead.

39 template <typename KernelName, class KernelType>

40 void parallel_for(range<dimensions> numWorkItems,

41 id<dimensions> workItemOffset, KernelType);

42
43 //In the case of a functor with a globally visible name

44 //the template parameter:"typename kernelName" can be ommitted

45 //and the kernelType can be used instead.

46 template <typename KernelName, class KernelType>

47 void parallel_for(nd_range<dimensions> executionRange, KernelType);

48
49 //In the case of a functor with a globally visible name

50 //the template parameter:"typename kernelName" can be ommitted

51 //and the kernelType can be used instead.

52 template <typename KernelName, class KernelType>

53 void parallel_for(nd_range<dimensions> numWorkItems,

54 id<dimensions> workItemOffset, KernelType);

55
56 //In the case of a functor with a globally visible name

57 //the template parameter:"typename kernelName" can be ommitted

58 //and the kernelType can be used instead.

59 template <class KernelName, class WorkgroupFunctionType>

60 void parallel_for_work_group(range<dimensions> numWorkGroups,

61 WorkgroupFunctionType);

62
63 //In the case of a functor with a globally visible name

64 //the template parameter:"typename kernelName" can be ommitted

65 //and the kernelType can be used instead.

66 template <class KernelName, class WorkgroupFunctionType>

67 void parallel_for_work_group(range<dimensions> numWorkGroups,

68 range<dimensions> workGroupSize,

69 WorkgroupFunctionType);

70
71 void single_task(kernel syclKernel);

72
73 void parallel_for(range<dimensions> numWorkItems, kernel syclKernel);

74
75 void parallel_for(nd_range<dimensions> ndRange, kernel syclKernel);

76
77 };

78 } // namespace sycl

79 } // namespace cl

Constructors Description
handler(const handler &rhs) Copy constructor of a command group han-

dler.
Table 3.58: Constructors for the command group handler class

125

Methods Description
void set_arg(int index, accessor & accObj) Set kernel args for an OpenCL kernel which

is used through the SYCL/OpenCL interop
interface. The index value specifies which
parameter of the OpenCL kernel is being
set and the accessor object, which OpenCL
buffer or image is going to be given as kernel
argument.

template <typename T>

void set_arg(int index, accessor & accObj)

Set kernel args for an OpenCL kernel which
is used through the SYCL/OpenCL interop-
erability interface. The index value speci-
fies which parameter of the OpenCL kernel
is being set and the accessor object, which
OpenCL buffer or image is going to be given
as kernel argument.

template <typename KernelName, class KernelType>

void single_task(KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor. If it is a
lambda function or the functor type is glob-
ally visible there is no need for the developer
to provide a kernel name type (typename
KernelName) for it, as described in 3.5.3

template <typename KernelName, class KernelType>

void parallel_for(

range<dimensions> numWorkItems, KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor, for the speci-
fied range and given an id or item for index-
ing in the indexing space defined by range.
If it is a lambda function or the if the functor
type is globally visible there is no need for
the developer to provide a kernel name type
(typename KernelName) for it, as described
in detail in 3.5.3

template <typename KernelName, class KernelType>

void parallel_for(

range<dimensions> numWorkItems,

id<dimensions> workItemOffset, KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor, for the speci-
fied range and offset and given an id or item
for indexing in the indexing space defined
by range. If it is a lambda function or the
if the functor type is globally visible there is
no need for the developer to provide a kernel
name type (typename KernelName) for it, as
described in detail in 3.5.3

template <typename KernelName, class KernelType>

void parallel_for(

nd_range<dimensions> executionRange, KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor, for the speci-
fied nd_range and given an nd_item for in-
dexing in the indexing space defined by the
nd_range. If it is a lambda function or the
if the functor type is globally visible there is
no need for the developer to provide a kernel
name type (typename KernelName) for it, as
described in detail in 3.5.3

Continued on next page
Table 3.59: Methods for the command group handler class

126

Methods Description
template <typename KernelName, class KernelType>

void parallel_for(

nd_range<dimensions> numWorkItems

id<dimensions> workItemOffset, KernelType)

Kernel invocation method of a kernel de-
fined as a lambda or functor, for the speci-
fied nd_range and given an nd_item for in-
dexing in the indexing space defined by the
nd_range. If it is a lambda function or the
if the functor type is globally visible there is
no need for the developer to provide a kernel
name type (typename KernelName) for it, as
described in detail in 3.5.3

template <class KernelName, class

WorkgroupFunctionType>

void parallel_for_work_group(

range<dimensions> numWorkGroups,

WorkgroupFunctionType)

Hierarchical kernel invocation method of
a kernel defined as a lambda encod-
ing the body of each work-group to
launch. May contain multiple kernel built-
in parallel_for_work_item functions rep-
resenting the execution on each work-item.
Launches num_work_groups work-groups of
runtime-defined size. Described in detail
in 3.5.3.

template <class KernelName, class

WorkgroupFunctionType>

void parallel_for_work_group(

range<dimensions> numWorkGroups,

range<dimensions> workGroupSize,

WorkgroupFunctionType)

Hierarchical kernel invocation method of
a kernel defined as a lambda encod-
ing the body of each work-group to
launch. May contain multiple kernel built-
in parallel_for_work_item functions rep-
resenting the execution on each work-item.
Launches num_work_groups work-groups of
work_group_size work-items each. De-
scribed in detail in 3.5.3.

void single_task(kernel syclKernel) Kernel invocation method of a kernel de-
fined as pointer to a kernel object, described
in detail in 3.5.3

void parallel_for(

range<dimensions> numWorkItems,

kernel sycl_kernel)

Kernel invocation method of a kernel de-
fined as pointer to a kernel object, for the
specified range and given an id or item for
indexing in the indexing space defined by
range, described in detail in 3.5.3

void parallel_for(

nd_range<dimensions> ndRange,

kernel syclKernel)

Kernel invocation method of a kernel de-
fined as pointer to a kernel object, for the
specified nd_range and given an nd_item for
indexing in the indexing space defined by
the nd_range, described in detail in 3.5.3

End of table
Table 3.59: Methods for the command group handler class

-In the case of OpenCL/SYCL interoperability the handler class provides a method for setting kernel arguments
for a kernel that is built from the OpenCL host interface or other libraries, like CLU. The developer may have
already set the kernel arguments or may choose to use this method, keeping in mind that this method is not thread
safe, as per the OpenCL specification.

127

3.5.4 Kernel class

The kernel class is an abstraction of a kernel object in SYCL. At the most common case the kernel object will
contain the compiled version of a kernel invoked inside a command group using one of the parallel interface
functions as described in 3.5.3. The SYCL runtime will create a kernel object, when it needs to enqueue the
kernel on a command queue.

In the case where a developer would like to pre-compile a kernel or compile and link it with an existing program,
then the kernel object will be created and contain that kernel using the program class, as defined in 3.5.5. An
both the above cases, the developer cannot instantiate a kernel object but can instantiate an object a functor
class that he could use or create a functor from a kernel method using C++11 features. The kernel class object
needs a parallel_for(...) invocation or an explicit compile_and_link() call through the program class, for this
compilation of the kernel to be triggered.

Finally, a kernel class instance may encapsulate an OpenCL kernel object that was created using the OpenCL C
interface and the arguments of the kernel already set. In this case since the developer is providing the cl kernel
object, this constructor is allowed to be used by the developer.

The kernel class also provides the interface for getting information from a kernel object. The kernel information
descriptor interface is described in C.5 and the description is in the table 3.62.

1 namespace cl {

2 namespace sycl {

3 class kernel {

4 private:

5 friend class program;

6
7 // The default object is not valid because there is no

8 // program or cl_kernel associated with it

9 kernel();

10
11 public:

12 kernel(const kernel& rhs);

13
14 kernel(cl_kernel openclKernelObejct);

15
16 cl_kernel get() const;

17
18 context get_context() const;

19
20 program get_program() const;

21
22 template <info::kernel param>

23 typename info::param_traits<info::kernel, param>::type

24 get_info() const;

25 };

26 } // namespace sycl

27 } // namespace cl

128

Constructor Description
kernel (cl_kernel openclKernelObj) Constructor for SYCL kernel class given an

OpenCL kernel object with set arguments,
valid for enqueuing. Retains a reference to
the cl_kernel object. Caller should release
the passed cl_kernel object when it is no
longer needed.

kernel (const kernel& rhs) Copy constructor for kernel class.
End of table

Table 3.60: kernel class constructors

Methods Description
cl_kernel get() Return the OpenCL kernel object for this

kernel. Retains a reference to the returned
cl_kernel object. Caller should release it
when finished.

context get_context() Return the context that this kernel is defined
for.

program get_program() Return the program that this kernel is part
of.

template <info::kernel param>

typename info::param_traits<

info::kernel, param>::type

get_info()const

Query information from the kernel object
using the info::kernel_info descriptor.

End of table
Table 3.61: Methods for the kernel class.

Kernel Descriptors Return type Description
info::kernel::function_name string_class Return the kernel function name.
info::kernel::num_args cl_uint Return the number of arguments to the ex-

tracted OpenCL C kernel.
info::kernel::reference_count cl_uint Return the reference count of the kernel object.
info::kernel::attributes string_class Return any attributes specified using the

__attribute__ qualifier with the kernel func-
tion declaration in the program source.

End of table
Table 3.62: Kernel class information descriptors.

3.5.5 Program class

A program contains one or more kernels and any functions or libraries necessary for the program’s execution. A
program will be enqueued inside a context and each of the kernels will be enqueued on a corresponding device.
Program class can be really useful for pre-compiling kernels and enqueuing them on multiple command groups.
It also allows usage of functions define in OpenCL kernels from SYCL kernels via compiling and linking them in

129

the same program object.

The program class provides an interface for getting information from a program object. The program information
descriptor interface is described in C.6 and the description is in the table 3.65.

1 namespace cl {

2 namespace sycl {

3 class program {

4 public:

5 // Create an empty program object

6 explicit program(const context& context);

7
8 // Create an empty program object

9 program(const context& context, vector_class<device> deviceList);

10
11 // Create a program object from a cl_program object

12 program(const context& context, cl_program clProgram);

13
14 // Create a program by linking a list of other programs

15 program(vector_class<program> programList, string_class linkOptions = "");

16
17 program(const program& rhs);

18
19 ∼program();

20
21 /* This obtains a SYCL program object from a SYCL kernel name

22 and compiles it ready to link */

23 template <typename kernelT>

24 void compile_from_kernel_name(string_class compileOptions = "");

25
26 /* This obtains a SYCL program object from a SYCL kernel name

27 and builds it ready-to-run */

28 template <typename kernelT>

29 void build_from_kernel_name(string_class compileOptions = "");

30
31 void link(string_class linkingOptions = "");

32
33 // Get a kernel from a given Name (Functor)

34 template <typename kernelT>

35 kernel get_kernel<kernelT>() const;

36
37 template <info::program param>

38 typename info::param_traits<info::program, param>::type

39 get_info() const;

40
41 vector_class<vector_class<char>> get_binaries() const;

42
43 vector_class<::size_t> get_binary_sizes() const;

44
45 vector_class<device> get_devices() const;

46
47 string_class get_build_options() const;

48
49 cl_program get() const;

50

130

51 bool is_linked() const;

52 };

53 } // namespace sycl

54 } // namespace cl

Constructors Description
explicit program (

const context & context)

Constructs an empty program object for con-
text for all associated devices with context.

program (

const context & context,

vector_class<device> deviceList)

Constructs an empty program object for all
the devices of device list associated with the
context.

program (

vector_class<program> programList,

string_class linkOptions="")

Constructs a program object for a list of
programs and links them together using the
linkOptions.

program (

const context & context,

cl_program clProgram)

Constructs a program object for an OpenCL
program object. Retains a reference to the
returned cl_program object. Calling context
should release it when finished.

program(const program& rhs); Copy constructor for the program class.
End of table

Table 3.63: Constructors for the program class

Methods Description
template<typename kernelT>

void compile_from_kernel_name(

string_class compileOptions="")

Compile the kernel defined to be of type ker-
neT into the program, with compile options
given by compile options”. The kernel can
be defined either as a functor of type kerneT
or as a lambda function which is named with
the class name kernelT. The program object
will need to be linked later.

template<typename kernelT>

void build_from_kernel_name(

string_class compileOptions="")

Build the kernel defined to be of type ker-
neT into the program, with compile options
given by compile options”. The kernel can
be defined either as a functor of type kerneT
or as a lambda function which is named with
the class name kernelT.

void link(string_class linking_options = "") Link all compiled programs that are added
in the program class.

template<info::program param>

typename info::param_traits<

info::program, param>::type

get_info()

Retrieve information of the built OpenCL
program object.

vector_class<char*> get_binaries()const Return the array of compiled binaries as-
sociated with the program, as compiled for
each device.

vector_class<device> get_devices()const Return the list of devices this program was
constructed against

Continued on next page
Table 3.64: Methods for the program class

131

Methods Description
string_class get_build_options()const Retrieve the set of build options of the pro-

gram. A program is created with one set of
build options.

cl_program get()const Return the OpenCL program object for this
program. Retains a reference to the returned
cl_program object. Caller should release it
when finished.

End of table
Table 3.64: Methods for the program class

Program Descriptors Return type Description
info::program::reference_count cl_uint Return the reference count of the kernel object.
info::program::context cl_context Return the context object this program is asso-

ciated with.
info::program::devices vector_class<

cl_device_id>

Return set of devices this program is built
against.

End of table
Table 3.65: Program class information descriptors.

Programs allow the developers to provide their own compilation and linking options and also compile and link on
demand one or multiple kernels. Compiler options allowed are described in the OpenCL specification [1, p. 145,
§ 5.6.4] and the linker options are described in [1, p. 148, § 5.6.5].

3.5.6 Defining kernels

In SYCL functions that are executed in parallel on a SYCL device are referred to as kernel functions. A kernel
containing such a kernel function is enqueued on a device queue in order to be executed on that particular device.
The return type of the kernel function is void, and all kernel accesses between host and device are defined using
the accessor class 3.4.6.

There are three ways of defining kernels, defining them as functors, as C++11 lambda functions or as OpenCL
cl_kernel objects. However, in the case of OpenCL kernels, the developer is expected to have created the kernel
and set the kernel arguments.

3.5.6.1 Defining kernels as functors

A kernel can be defined as a C++ functor. In this case, the kernel function is the function defined as operator()
in the normal C++ functor style. These functors provide the same functionality as any C++ functors, with the
restriction that they need to follow C++11 standard layout rules. The kernel function can be templated via tem-
plating the kernel functor class. The operator() function may take different parameters depending on the data
accesses that defined for the specific kernel.For details on restrictions for kernel naming issues, please refer to 5.2.

In the following example we define a trivial functor with no outputs and no accesses of host or pre-allocated

132

device data. The kernel is executed on a unary index space for the specific example, since its using single task at
its invocation.

1 class MyFunctor

2 {

3 float m_parameter;

4
5 public:

6 MyFunctor(float parameter):

7 m_parameter(parameter)

8 {

9 }

10
11 void operator() ()

12 {

13 // [kernel code]

14 }

15 };

16
17 void workFunction(float scalarValue)

18 {

19 MyFunctor myKernel(scalarValue);

20
21 queue.submit([&] (handler & cmdGroup) {

22 cmdgroup.single_task(myKernel);

23 });

24 }

3.5.6.2 Defining kernels as lambda functions

In C++11, functors can be defined using lambda functions. We allow lambda functions to define kernels in SYCL,
but we have an extra requirement to name lambda functions in order to enable the linking of the SYCL device
kernels with the host code to invoke them. The name of a lambda function in SYCL is a C++ class. If the
lambda function relies on template arguments, then the name of the lambda function must contain those template
arguments. The class used for the name of a lambda function is only used for naming purposes and is not required
to be defined.For details on restrictions for kernel naming issues, please refer to 5.2.

To invoke a C++11 lambda, the kernel name must be included explicitly by the user as a template parameter to
the kernel invoke function.

The kernel function for the lambda function is the lambda function itself. The kernel lambda must use copy for
all of its captures (i.e. [=]).

1 class MyKernel;

2
3 command_queue.submit([&](handler& cmdGroup) {

4 cmdgroup.single_task<class MyKernel>([=]() {

5 // [kernel code]

6 });

7 });

133

3.5.6.3 Defining kernels using program objects

In case the developer needs to specify compiler flags or special linkage options for a kernel, then a kernel object
can be used, as described in 3.5.5. The kernel is defined as a functor 3.5.6.1 or lambda function 3.5.6.2. The user
can obtain a program object for the kernel with the get_kernel method. This method is templated by the kernel
name, so that the user can specify the kernel whose associated kernel they wish to obtain.

In the following example, the kernel is defined as a lambda function. The example obtains the program object for
the lambda function kernel and then passes it to the parallel_for.

1 class MyKernel; // Forward declaration of the name of the lambda functor

2
3 cl::sycl::queue myQueue;

4 cl::sycl::program MyProgram(myQueue.get_context());

5
6 /* use the name of the kernel to obtain the associated program */

7 MyProgram.build_from_name<MyKernel>();

8
9 myQueue.submit([&](handler& commandGroup) {

10 commandgroup.parallel_for<class MyKernel>(

11 cl::sycl::nd_range<2>(4, 4),

12 MyProgram.get_kernel<MyKernel>(), // execute the kernel as compiled in MyProgram

13 ([=](cl::sycl::nd_item<2> index) {

14 //[kernel code]

15 }));

16 });

In the above example, the kernel function is defined in the parallel_for invocation as part of a lambda functor
which is named using the type of the forward declared class “myKernel”. The type of the functor and the program
object enable the compilation and linking of the kernel in the program class, a priori of its actual invocation as a
kernel object. For more details on the SYCL device compiler please refer to chapter 5.

In the next example, a SYCL kernel is linked with an existing pre-compiled OpenCL C program object to created
a combined program object, which is then called in a parallel_for.

1 class MyKernel; // Forward declaration of the name of the lambda functor

2
3 cl::sycl::queue myQueue;

4
5 // obtain an existing OpenCL C program object

6 cl_program myClProgram = ...;

7
8 // Create a SYCL program object from a cl_program object

9 cl::sycl::program myExternProgram(myQueue.get_context(), myClProgram);

10
11 // Release the program if we no longer need it as

12 // SYCL program retained a reference to it

13 clReleaseProgram(myClProgram);

14
15 // Add in the SYCL program object for our kernel

16 cl::sycl::program mySyclProgram(myQueue.get_context());

17 mySyclProgram.compile_from_kernel_name<MyKernel>("-my-compile-options");

134

18
19 // Link myClProgram with the SYCL program object

20 mySyclProgram.link(myExternProgram,"-my-link-options");

21
22 myQueue.submit([&](handler& commandgroup) {

23 commandgroup.parallel_for<class MyKernel>(

24 cl::sycl::nd_range<2>(4, 4),

25 myLinkedProgram.get_kernel<MyKernel>(), // execute the kernel as compiled in MyProgram

26 ([=](cl::sycl::nd_item<2> index) {

27 //[kernel code]

28 }));

29 });

3.5.6.4 Defining kernels using OpenCL C kernel objects

In OpenCL C [1] program and kernel objects can be created using the OpenCL C API, which is available in the
SYCL system. Interoperability of OpenCL C kernels and the SYCL system is achieved by allowing the creation
of a SYCL kernel object from an OpenCL kernel object.

The constructor using kernel objects from 3.60:

kernel::kernel(cl_kernel kernel)

creates a cl::sycl::kernel which can be enqueued using all the parallel_for functions which can enqueue
a kernel object. This way of defining kernels assumes the developer is using OpenCL C to create the kernel and
set the kernel arguments. The system assumes that the developer has already called set kernel arguments when
they are trying to enqueue the kernel. Buffers do give ownership to their accessors on specific contexts and the
developer can enqueue OpenCL kernels in the same way as enqueuing SYCL kernels. However, the system is
not responsible for data management at this point. Note that like all constructors from OpenCL API objects,
constructing a cl::sycl::kernel from a cl_kernel will retain a reference to the kernel and the user code should
call clReleaseKernel if the cl_kernel is no longer needed in the calling context.

3.5.7 Rules for parameter passing to kernels

In a case where a kernel is a C++ functor or C++11 lambda object, any values in the functor or captured in the
C++11 lambda object must be treated according to the following rules:

• Any accessor must be passed as an argument to the device kernel in a form that allows the device kernel to
access the data in the specified way. For OpenCL 1.0–1.2 class devices, this means that the argument must
be passed via clSetKernelArg and be compiled as a kernel parameter of the valid reference type. For
global shared data access, the parameter must be an OpenCL global pointer. For an accessor that specifies
OpenCL constant access, the parameter must be an OpenCL constant pointer. For images, the accessor
must be passed as an image_t and/or sampler.

• The SYCL runtime and compiler(s) must produce the necessary conversions to enable accessor arguments
from the host to be converted to the correct type of parameter on the device.

• A local accessor provides access to work-group-local memory. The accessor is not constructed with any

135

buffer, but instead constructed with a size and base data type. The runtime must ensure that the work-group-
local memory is allocated per work-group and available to be used by the kernel via the local accessor.

• C++ standard layout values must be passed by value to the kernel.

• C++ non-standard layout values must not be passed as arguments to a kernel that is compiled for a device.

• It is illegal to pass a buffer or image (instead of an accessor class) as an argument to a kernel. Generation
of a compiler error in this illegal case is optional.

• Sampler objects (cl::sycl::sampler) can be passed as parameters to kernels.

• It is illegal to pass a pointer or reference argument to a kernel. Generation of a compiler error in this illegal
case is optional.

• Any aggregate types such as structs or classes should follow the rules above recursively. It is not necessary
to separate struct or class members into separate OpenCL kernel parameters if all members of the aggregate
type are unaffected by the rules above.

3.6 Error handling

3.6.1 Error Handling Rules

Error handling in SYCL uses exceptions. If an error can be propagated at the point of calling a function, an
exception will be thrown and may be caught by the user using standard C++ exception handling mechanisms. For
example, any exception which is triggered from code executed on host is able to be propagated at the call site and
it will follow the standard C++ exception handling mechanisms.

SYCL applications are asynchronous in the sense that host and device code execution are executed asyn-
chronously. As a result of this, the errors that occur on a device cannot be propagated directly from the call
site, and they will not be detected until the error-causing task executes or tries to execute rather than been sched-
uled for execution. We refer to those errors as asynchronous errors. A good example of an asynchronous error, is
an out-of-bounds access error. In this case, if the kernel is enqueued on SYCL OpenCL device then the out-of-
bounds error is asynchronous with regards to the SYCL host application, as it is executed on the device. At the
latter, the standard exception mechanisms will not be available as this is an asynchronous error.

SYCL queues are by default asynchronous, as they schedule tasks on SYCL devices. The queue constructor can
optionally get an asychronous handler object, which can be a functor or lamdba function for receiving a list of
C++ exception objects when the waiting and exception handling methods are called on queues.

If an asynchronous error occurs in a queue that has no user-supplied asynchronous error handler object, then no
exception is thrown and the error is not available to the user in any specified way. Implementations may provide
extra debugging information to users to trap and handle asynchronous errors. If a synchronous error occurs in a
SYCL application and it is not handled, the application will exit abnormally.

If an error occurs when running or en-queuing a command group which has a secondary queue specified, then
the command group may be enqueued to the secondary queue instead of the primary queue. The error handling
in this case is also configured using the asynchronous handler object provided for both queues. If there is no
asynchronous handler object given on any of the queues, then no asynchronous error reporting is done and no

136

exceptions are thrown. If the primary queue fails and there is an asynchronous handler object given at this queue’s
construction, which populates the exception_list parameter, then any errors will be added and can be thrown
whenever the user chooses to handle those exceptions. Since there were errors on the primary queue and a
secondary queue was given then, the execution of the kernel is re-scheduled to the secondary queue and any error
reporting for the kernel execution on that queue, is done through that queue, in the same way as described above.
The secondary queue may fail as well, and the errors will be thrown if there is an asynchronous error handler
object and either wait_and_throw() or throw() are called on that queue. The command group functor handler
event returned by that function will be relevant to the queue where the kernel has been enqueued.

3.6.2 Exception Class Interface

typedef function_class<void(cl::sycl::exception_list)> async_handler;

namespace cl {

namespace sycl {

struct exception {

string_class what();

// returns associated context. nullptr if none

context get_context();

};

struct cl_exception : exception {

// thrown as a result of an OpenCL API error code

cl_int get_cl_code() const;

};

struct async_exception : exception {

// stored in an exception_list for asynchronous errors

};

class exception_list {

// Used as a container for a list of asynchronous exceptions

public:

typedef exception_ptr value_type;

typedef value_type& reference;

typedef const value_type& const_reference;

typedef size_t size_type;

typedef /*unspecified*/ iterator;

typedef /*unspecified*/ const_iterator;

size_t size() const;

iterator begin() const; // first asynchronous exception

iterator end() const; // refer to past-the-end last asynchronous exception

};

typedef /*unspecified*/ exception_ptr;

function_class<void(cl::sycl::exception_list)> async_handler;

class runtime_error : public exception;

137

class kernel_error : public runtime_error;

class accessor_error: public runtime_error;

class nd_range_error : public runtime_error;

class event_error : public runtime_error;

class invalid_parameter_error : public runtime_error;

class device_error : public exception;

class compile_program_error : public device_error;

class link_program_error : public device_error;

class invalid_object_error : public device_error;

class memory_allocation_error : public device_error;

class platform_error : public device_error;

class profiling_error : public device_error;

class feature_not_supported : public device_error;

} // namespace sycl

} // namespace cl

The cl_exception class is the exception thrown when the OpenCL API returns an error code. The OpenCL error
code can be queried with the get_cl_codemethod. The async_exception is stored in exception_list objects and
is generated when an asynchronous error occurs on a SYCL-managed context. The cl::sycl::exception_ptr
class is used to store cl::sycl::exception objects and allows exception objects to be transferred between threads.
It is equivalent to the std::exception_ptr class. The cl::sycl::exception_list class is also available.

The asynchronous handler object, async_handler, can be a function_class with an exception_list as a param-
eter. The asynchronous handler is an optional parameter to a constructor of the queue class and it is the only way
to handle asynchronous errors occurring on a SYCL device. The asynchronous handler may be a function class
that can be functor or lambda or function that can be given to the queue and it willbe executed on error. The
exception_list object is constructed from the SYCL runtime and is populated with the errors caught during the
execution of all the kernels running on the same queue.

Methods Description
string_class what() Returns a descriptive string for the error, if

available.
context get_context() Returns the context that caused the error.

Returns nullptr if not a buffer error.
End of table

Table 3.66: Methods of the exception class.

138

Methods Description
cl_int get_cl_code() Returns the OpenCL error code encapsu-

lated in the exception. Only valid for the
cl_exception subclass.

End of table
Table 3.67: Methods of the cl_exception class.

Methods Description
size_t size()const Returns the size of the list
iterator begin()const Returns an iterator to the beginning of the

list of asynchronous exceptions.
iterator end()const Returns an iterator to the end of the list of

asynchronous exceptions.
End of table

Table 3.68: Methods of the exception_list

Runtime Error Exception Type Description
kernel_error Error that occurred before or while enqueu-

ing the SYCL kernel.
nd_range_error Error regarding the cl::sycl::nd_range

specified for the SYCL kernel
accessor_error Error regarding the cl::sycl::accessor

objects defined.
event_error Error regarding associated cl::sycl::

event objects.
invalid_parameter_error Error regarding parameters to the SYCL ker-

nel, it may apply to any captured parameters
to the kernel lambda.

End of table
Table 3.69: Exceptions types that derive from the cl::sycl::
runtime_error class

Device Error Exception Type Description
compile_program_error Error while compiling the SYCL kernel to a

SYCL device.
link_program_error Error while linking the SYCL kernel to a

SYCL device.
invalid_object_error Error regarding any memory objects being

used inside the kernel
memory_allocation_error Error on memory allocation on the SYCL

device for a SYCL kernel.
device_error The SYCL device will trigger this exception

on error.
Continued on next page

Table 3.70: Exception types that derive from the cl::sycl::

device_error class

139

Device Error Exception Type Description
platform_error The SYCL platform will trigger this excep-

tion on error.
profiling_error The SYCL runtime will trigger this error if

there is an error when profiling info is en-
abled.

feature_not_supported Exception thrown when an optional feature
or extension is used in a kernel but its not
available on the device the SYCL kernel is
being enqueued on.

End of table
Table 3.70: Exception types that derive from the cl::sycl::

device_error class

3.7 Data types

SYCL as a C++11 programming model supports the C++11 ISO standard data types, and it also provides the
ability for all SYCL applications to be executed on SYCL compatible devices, OpenCL and host devices. The
scalar and vector data types that are supported by the SYCL system are defined below. More details about the
SYCL device compiler support for fundamental and OpenCL interoperability types are found in 5.5

3.7.1 Scalar data types

SYCL follows the C++11 standard in terms of fundamental scalar data types. All SYCL applications match those
data types and the size of those has to be matched in the SYCL application code for all available SYCL devices;
host and OpenCL devices.

SYCL Integral Data Types Description
char a signed 8-bit integer, as defined by the

C++11 ISO Standard
unsigned char an unsigned 8-bit integer, as defined by the

C++11 ISO Standard
short int a signed integer of at least 16-bits, as de-

fined by the C++11 ISO Standard
unsigned short int an unsigned integer of at least 16-bits, as

defined by the C++11 ISO Standard
int a signed integer of at least 16-bits, as de-

fined by the C++11 ISO Standard
unsigned int an unsigned integer of at least 16-bits, as

defined by the C++11 ISO Standard
long int a signed integer of at least 32-bits, as de-

fined by the C++11 ISO Standard
unsigned long int an unsigned integer of at least 32-bits, as

defined by the C++11 ISO Standard
Continued on next page

Table 3.71: SYCL compiler fundamental integral datatypes

140

SYCL Integral Data Types Description
long long int an integer of at least 64-bits, as defined by

the C++11 ISO Standard
unsigned long long int an unsigned integer of at least 64-bits, as

defined by the C++11 ISO Standard
size_t the unsigned integer type of the result of the

sizeof operator on host.
End of table

Table 3.71: SYCL compiler fundamental integral datatypes

SYCL Floating Point Data Types Description
float a 32-bit IEEE 754 floating-point value, as

defined by the C++11 ISO Standard
double a 64-bit IEEE 754 floating-point value, as

defined by the C++11 ISO Standard
half a 16-bit IEEE 754-2008 half-precision

floating-point value
End of table

Table 3.72: SYCL compiler fundamental floating point datatypes

The OpenCL C language standardc̃ite[par. 6.11]opencl-1.2 defines its own built-in scalar types, which are sup-
ported for interoperability between SYCL and OpenCL C applications through the interoperability data types.

SYCL Scalar Datatypes Description
cl::sycl::cl_bool A conditional data type which is either true

or false. The value true expands to the inte-
ger constant 1 and the value false expands to
the integer constant 0.

cl::sycl::cl_char a signed two’s complement 8-bit integer
cl::sycl::cl_uchar an unsigned 8-bit integer
cl::sycl::cl_short a signed two’s complement 16-bit integer
cl::sycl::cl_ushort an unsigned 16-bit integer
cl::sycl::cl_int a signed two’s complement 32-bit integer
cl::sycl::cl_uint an unsigned 32-bit integer
cl::sycl::cl_long A signed two’s complement 64-bit integer.
cl::sycl::cl_ulong An unsigned 64-bit integer.
cl::sycl::cl_float A 32-bit floating-point. The float data type

must conform to the IEEE 754 single preci-
sion storage format.

cl::sycl::cl_double A 64-bit floating-point. The double data
type must conform to the IEEE 754 double
precision storage format.

cl::sycl::cl_half A 16-bit floating-point. The half data type
must conform to the IEEE 754-2008 half
precision storage format.

End of table
Table 3.73: SYCL compiler OpenCL interoperability scalar datatypes

141

3.7.2 Vector types

SYCL provides a templated cross-platform vector type that works efficiently on SYCL devices as well as in host
C++ code. This type allows sharing of vectors between the host and its SYCL devices. The vector supports
methods that allow construction of a new vector from a swizzeled set of component elements. The vector are
defined in Table 3.75 and Table 3.76

An overview of the interface provided for the vec class is the following, for the full interface please refer to B.5.

namespace cl {

namespace sycl {

template <typename dataT, int numElements>

class vec {

public:

typedef dataT element_type;

//Underlying OpenCL type

typedef __undefined__ vector_t;

vec();

explicit vec(const dataT &arg);

vec(const T0 &arg0... args);

vec(const vec<dataT, numElements> &rhs);

size_t get_count();

size_t get_size();

template <typename asDataT, int width>

vec<asDataT, width> as() const;

// genvector is a generic typename for describing

// all OpenCL/SYCL types.

operator __genvector__() const;

// Swizzle methods (see notes)

swizzled_vec<T, out_dims> swizzle<elem s1, ...>();

#ifdef SYCL_SIMPLE_SWIZZLES

swizzled_vec<T, 4> xyzw();

...

#endif // #ifdef SYCL_SIMPLE_SWIZZLES

};

} // namespace sycl

} // namespace cl

vec<typename T, int dims> is a vector type that compiles down to the OpenCL built-in vector types on OpenCL
devices where possible and provides compatible support on the host. The vec class is templated on its number of
dimensions and its element type. The dimensions parameter, dims, can be one of: 1, 2, 3, 4, 8 or 16. Any other
value should produce a compilation failure. The element type parameter, T, must be one of the basic scalar types
supported in device code.

142

The SYCL library provides typedefs for: char, unsigned char, short, unsigned short, int, unsigned int, long
long, unsigned long long, float and double in all valid sizes. These vector typedefs are named TypenameSize,

for example: longlong2 is a vector of two long long integer elements, mapping to vec<long long int, 2>.

The SYCL library also provides the OpenCL interoperability types which are referred to in the document with the
generic name genvector. The following table 3.74 is showing the the types that are available and are represented
for brevity in the specification as a generic and not an actualy SYCL type genvector.

Generic type name Description
genvector

cl::sycl::cl_float2, cl::sycl::

cl_float3, cl::sycl::cl_float4, cl::

sycl::cl_float8, cl::sycl::cl_float16

cl::sycl::cl_double2, cl::sycl::

cl_double3, cl::sycl::cl_double4,

cl::sycl::cl_double8, cl::sycl::

cl_double16

cl::sycl::cl_char2, cl::sycl::

cl_char3, cl::sycl::cl_char4, cl::

sycl::cl_char8, cl::sycl::cl_char16

cl::sycl::cl_uchar2, cl::sycl::

cl_uchar3, cl::sycl::cl_uchar4, cl::

sycl::cl_uchar8, cl::sycl::cl_uchar16

cl::sycl::cl_short2, cl::sycl::

cl_short3, cl::sycl::cl_short4, cl::

sycl::cl_short8, cl::sycl::cl_short16

cl::sycl::cl_ushort2, cl::sycl::

cl_ushort3, cl::sycl::cl_ushort4,

cl::sycl::cl_ushort8, cl::sycl::

cl_ushort16

cl::sycl::cl_uint2, cl::sycl::

cl_uint3, cl::sycl::cl_uint4, cl::

sycl::cl_uint8, cl::sycl::cl_uint16

cl::sycl::cl_int2, cl::sycl::cl_int3,

cl::sycl::cl_int4, cl::sycl::cl_int8

, cl::sycl::cl_int16

cl::sycl::cl_ulong2, cl::sycl::

cl_ulong3, cl::sycl::cl_ulong4, cl::

sycl::cl_ulong8, cl::sycl::cl_ulong16

cl::sycl::cl_long2, cl::sycl::

cl_long3, cl::sycl::cl_long4, cl::

sycl::cl_long8, cl::sycl::cl_long16

End of table
Table 3.74: Generic type name description for genVector, which serves
as a description for all valid types of OpenCL/SYCL interoperability vec-
tors.

swizzled_vec<T, out_dims> vec<T, in_dims>::swizzle<elem s1, elem s2...> () returns a tem-
porary object representing a swizzled set of the original vector’s member elements. The number of s1, s2 param-

143

eters is the same as out_dims. All s1, s2 parameters must be integer constants from zero to in_dims-1. The
swizzled vector may be used as a source (r-value) and destination (l-value). In order to enable the r-value and
l-value swizzling to work, this returns an intermediate swizzled-vector class, which can be implicitly converted to
a vector (r-value evaluation) or assigned to.

If the user #defines the macro SYCL_SIMPLE_SWIZZLES before #include <cl/sycl.hpp>, then swizzle
functions are defined for every combination of swizzles for 2D, 3D and 4D vectors only. The swizzle functions
take the form:

swizzled_vec<T, out_dims> vec<T, in_dims>::xyzw();

swizzled_vec<T, out_dims> vec<T, in_dims>::rgba();

where, as above, the number of elem::x, elem::y, elem::z, elem::w or elem::r, elem::g, elem::b,
elem::a letters is the same as out_dims. All elem::x, elem::y, elem::z, elem::w or elem::r, elem::g,
elem::b, elem::a parameters must be letters from the sets first in_dims letters in “xyzw” or “rgba”.

Swizzle letters may be repeated or re-ordered. For example, from a vector containins integers [0, 1, 2, 3], vec.
xxzy() would return a vector of [0, 0, 2, 1].

Constructors Description
vec<T, dims>() Default construct a vector with element type

T and with dims dimensions by default con-
struction of each of its elements.

explicit vec<T, dims>(const T &arg) Construct a vector of element type T and
dims dimensions by setting each value to arg
by assignment.

vec<T, dims> (

const T &element_0,

const T &element_1,

. . . ,

const T &element_dims-1)

Construct a vector with element type T and
with dims dimensions out of dims initial val-
ues.

vec<T, dims>(const &vec<T, dims>) Construct a vector of element type T and
dims dimensions by copy from another sim-
ilar vector.

End of table
Table 3.75: Constructors for the vec class

Methods Description
size_t get_count() Returns the number of elements of the vec-

tor.
size_t get_size() Returns the size of the vector.
template<typename asDataT, int width>

vec<asDataT,width> as()const

Re-interpret the vec<dataT,numElements>
to vec<asDataT,width> type.

Continued on next page
Table 3.76: Methods for the vec class

144

Methods Description
operator genvector()const Converts a vec<dataT,numElements> to the

corresponding OpenCL vector, generically
named openclVector1 of the same type and
width.

operator vec<dataT,numElements>(genvector clVector)

const

Assignment operator that takes an OpenCL
vector instance, which one of openclVector,
and converts it to the corresponding SYCL
vec<dataT,numElements> type.

vec<dataT, numElements> operator+(

const vec<dataT, numElements> &rhs)

Construct vector from the sum of the respec-
tive elements of the current vector and rhs.

vec<dataT, numElements> operator+(

const dataT &rhs)

Construct vector by adding rhs to each ele-
ment of the current vector.

vec<dataT, numElements> operator-(

const vec<dataT, numElements> &rhs)

Construct vector by subtracting the elements
of rhs from the respective elements of the
current vector.

vec<dataT, numElements> operator-(

const dataT &rhs)

Construct vector by subtracting rhs from
each element of the current vector.

vec<dataT, numElements> operator*(

const vec<dataT, numElements> &rhs)

Construct vector from the product of the ele-
ments of the current vector by the respective
elements of rhs.

vec<dataT, numElements> operator*(

const dataT &rhs)

Construct vector by multiplying each ele-
ment of the current vector by rhs.

vec<dataT, numElements> operator/(

const vec<dataT, numElements> &rhs)

Construct vector from the division of the el-
ements of the current vector by the elements
of rhs.

vec<dataT, numElements> operator/(

const dataT &rhs)

Construct vector by dividing each element
of the current vector by rhs.

vec<dataT, numElements> operator%(

const vec<dataT, numElements> &rhs)

Construct vector from the modulo of the ele-
ments of the current vector and the elements
of rhs.

vec<dataT, numElements> operator%(

const dataT &rhs)

Construct vector by calculating the remain-
der of each element of the current vector and
rhs.

vec<dataT, numElements> operator++(); Prefix increment by one for every element
of the vector.

vec<dataT, numElements> operator++(int); Post-fix increment by one for every element
of the vector.

vec<dataT, numElements> operator--(); Prefix decrement by one for every element
of the vector.

vec<dataT, numElements> operator--(int); Post-fix decrement by one for every element
of the vector.

vec<dataT, numElements> operator|(

const vec<dataT, numElements> &rhs)

Construct vector from the bitwise OR of the
respective elements of the current vector and
rhs.

vec<dataT, numElements> operator|(

const dataT &rhs)

Construct vector by applying the bitwise OR
of each element of the current vector and rhs.

Continued on next page
Table 3.76: Methods for the vec class

1This is not actual SYCL type, the genvector type is described in table 3.74

145

Methods Description
vec<dataT, numElements> operatorˆ(

const vec<dataT, numElements> &rhs)

Construct vector from the bitwise AND of
the respective elements of the current vector
and rhs.

vec<dataT, numElements> operatorˆ(

const dataT &rhs)

Construct vector by applying the bitwise
AND of each element of the current vector
and rhs.

vec<dataT, numElements> operator&&(

const vec<dataT, numElements> &rhs)

Construct vector from the logical AND of
the respective elements of the current vector
and rhs.

vec<dataT, numElements> operator&&(

const dataT &rhs)

Construct vector by applying the logical
AND of each element of the current vector
and rhs.

vec<dataT, numElements> operator||(

const vec<dataT, numElements> &rhs)

Construct vector from the logical OR of the
respective elements of the current vector and
rhs.

vec<dataT, numElements> operator||(

const dataT &rhs)

Construct vector by applying the logical OR
of each element of the current vector and rhs.

vec<dataT, numElements> operator>>(

const vec<dataT, numElements> &rhs)

Construct vector from the outcome of shift-
ing right the respective elements of the cur-
rent vector by rhs.

vec<dataT, numElements> operator>>(

const dataT &rhs)

Construct vector by shifting right each ele-
ment of the current vector by rhs.

vec<dataT, numElements> operator<<(

const vec<dataT, numElements> &rhs)

Construct vector from the outcome of shift-
ing left the respective elements of the current
vector by rhs.

vec<dataT, numElements> operator<<(

const dataT &rhs)

Construct vector by shifting left each ele-
ment of the current vector by rhs.

vec<dataT, numElements> operator∼() Construct vector from the outcome of ap-
plying bitwise not to the respective elements
of the current vector.

vec<dataT, numElements> operator!() Construct vector from the outcome of ap-
plying logical not to the respective elements
of the current vector.

vec<dataT, numElements> operator+=(

const vec<dataT, numElements> &rhs)

Add each element of rhs to the respective el-
ement of the current vector in-place.

vec<dataT, numElements> operator+=(

const dataT &rhs)

Add rhs in-place to each element of the cur-
rent vector.

vec<dataT, numElements> operator-=(

const vec<dataT, numElements> &rhs)

Subtract each element of rhs from the re-
spective element of the current vector in-
place.

vec<dataT, numElements> operator-=(

const dataT &rhs)

Subtract rhs in-place from each element of
the current vector.

vec<dataT, numElements> operator*=(

const vec<dataT, numElements> &rhs)

Multiple each element of the current vector
by the respective element of rhs in-place.

vec<dataT, numElements> operator*=(

const dataT &rhs)

Multiple in-place each element of the cur-
rent vector by rhs.

Continued on next page
Table 3.76: Methods for the vec class

146

Methods Description
vec<dataT, numElements> operator/=(

const vec<dataT, numElements> &rhs)

Divide each element of the current vector in-
place by the respective element of rhs.

vec<dataT, numElements> operator/=(

const dataT &rhs)

Divide in-place each element of the current
vector by rhs.

vec<dataT, numElements> operator|=(

const vec<dataT, numElements> &rhs)

Bitwise OR of each element of the current
vector in-place by the respective element of
rhs.

vec<dataT, numElements> operator|=(

const dataT &rhs)

Bitwise OR in-place each element of the cur-
rent vector by rhs.

vec<dataT, numElements> operatorˆ=(

const vec<dataT, numElements> &rhs)

Bitwise and of each element of the current
vector in-place by the respective element of
rhs.

vec<dataT, numElements> operatorˆ=(

const dataT &rhs)

Bitwise AND in-place each element of the
current vector by rhs.

vec<dataT, numElements> operator<<=(

const vec<dataT, numElements> &rhs)

Shift left each element of the current vector
in-place by the respective element of rhs.

vec<dataT, numElements> operator<<=(

const dataT &rhs)

Shift left in-place each element of the cur-
rent vector by rhs.

vec<dataT, numElements> operator>>=(

const vec<dataT, numElements> &rhs)

Shift right each element of the current vector
in-place by the respective element of rhs.

vec<dataT, numElements> operator>>=(

const dataT &rhs)

Shift right in-place each element of the cur-
rent vector by rhs.

vec<dataT, numElements> operator&=(

const vec<dataT, numElements> &rhs)

Bitwise and of each element of the current
vector in-place by the respective element of
rhs.

vec<dataT, numElements> operator&=(

const dataT &rhs)

Bitwise AND in-place each element of the
current vector by rhs.

vec<dataT, numElements> operator%=(

const vec<dataT, numElements> &rhs)

Remainder of each element of the current
vector in-place by the respective element of
rhs.

vec<dataT, numElements> operator%=(

const dataT &rhs)

Remainder in-place each element of the cur-
rent vector by rhs.

vec<dataT, numElements> &operator=(

const vec<dataT, numElements> &rhs)

Update each element of the current vector
with the respective element of rhs and return
a reference to the current vector.

vec<dataT, numElements> &operator=(

const dataT &rhs)

Update each element of the current vector
with rhs and return a reference to the current
vector.

bool operator==(const vec<dataT, numElements> &rhs)

const

Return true if all elements of rhs compare
equal to the respective element of the current
vector.

bool operator!=(const vec<dataT, numElements> &rhs)

const

Return true if any one element of rhs does
not compare equal to the respective element
of the current vector.

End of table
Table 3.76: Methods for the vec class

147

3.8 Synchronization and atomics

The SYCL specification offers the same set of synchronization operations that are available to OpenCL C pro-
grams, for compatibility and portability across OpenCL devices. The available features are:

• Accessor classes: Accessor classes specify acquisition and release of buffer and image data structures to
provide points at which underlying queue synchronization primitives must be generated.

• Atomic operations: OpenCL 1.2 devices only support the equivalent of relaxed C++ atomics and SYCL
uses the C++11 library syntax to make this available. This is provided for forward compatibility with future
SYCL versions.

• Barriers: Barrier primitives are made available to synchronize sets of work-items within individual work-
groups. They are exposed through the nd_item class that abstracts the current point in the overall iteration
space.

• Hierarchical parallel dispatch: In the hierarchical parallelism model of describing computations, synchro-
nization within the work-group is made explicit through multiple instances of the parallel_for_work_item
function call, rather than through the use of explicit barrier operations.

Barriers may provide ordering semantics over the local address space, global address space or both. All memory
operations initiated before the barrier in the specified address space(s) will be completed before any memory
operation after the barrier. Address spaces are described using the fence_space enum class:

namespace cl {

namespace sycl {

namespace access {

enum class fence_space : char {

local_space,

global_space,

global_and_local

}; // enum class address_space

} // namepaces access

} // namespace sycl

} // namespace cl

The SYCL specification provides atomic operations based on the C++11 library syntax. The only available
ordering, due to constraints of the OpenCL 1.2 memory model, is memory_order_relaxed. No default order
is supported because a default order would imply sequential consistency. The SYCL atomic library may map
directly to the underlying C++11 library in host code, and must interact safely with the host C++11 atomic library
when used in host code. The SYCL library must be used in device code to ensure that only the limited subset of
functionality is available. SYCL 1.2 device compilers should give a compilation error on use of the std::atomic
classes and functions in device code. Only atomic<int>, atomic<unsigned int> and atomic<float> types are
available in SYCL 1.2. Only the exchange operation is available for float atomics.

No construction of atomic objects is possible in SYCL 1.2. All atomic objects must be obtained by-reference
from an accessor (see Section 3.4.6.3).

The atomic types are defined as follows, and methods are listed in Table 3.77:

namespace cl {

148

namespace sycl {

template <typename T>

class atomic<T> {

public:

// Constructors

atomic() = delete;

// Methods

// Only memory_order_relaxed is supported in SYCL 1.2

void store(T operand, std::memory_order = std::memory_order_relaxed);

void store(T operand, std::memory_order = std::memory_order_relaxed) volatile;

T load(memory_order = std::memory_order_relaxed) const;

T load(memory_order = std::memory_order_relaxed) const volatile;

T exchange(T operand, std::memory_order = std::memory_order_relaxed);

T exchange(T operand, std::memory_order = std::memory_order_relaxed) volatile;

T compare_exchange_strong(T* expected, T desired, std::memory_order success,

std::memory_order fail);

T compare_exchange_strong(T* expected, T desired, std::memory_order success,

std::memory_order fail) volatile;

T fetch_add(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_add(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

T fetch_sub(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_sub(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

T fetch_and(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_and(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

T fetch_or(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_or(T operand, std::memory_order = std::memory_order_relaxed) volatile;

T fetch_xor(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_xor(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

// Additional functionality provided beyond that of C++11

T fetch_min(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_min(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

T fetch_max(T operand, std::memory_order = std::memory_order_relaxed);

T fetch_max(T operand,

std::memory_order = std::memory_order_relaxed) volatile;

};

typedef atomic<int> atomic_int;

typedef atomic<unsigned int> atomic_uint;

typedef atomic<float> atomic_float;

} // namespace sycl

149

} // namespace cl

As well as the methods, a matching set of operations on atomic types is provided by the SYCL library. As in the
previous case, the only available memory order in SYCL 1.2 is memory_order_relaxed. The global functions are
as follows and described in Table 3.78.

namespace cl {

namespace sycl {

template <class T>

T atomic_load_explicit(atomic<T>* object,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_load_explicit(volatile atomic<T>* object,

std::memory_order = std::memory_order_relaxed);

template <class T>

void atomic_store_explicit(atomic<T>* object, T,

std::memory_order = std::memory_order_relaxed);

template <class T>

void atomic_store_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_exchange_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_exchange_explicit(volatile atomic<T>* object, T,

std::memory_order = std::memory_order_relaxed);

template <class T>

bool atomic_compare_exchange_strong_explicit(atomic<T>* object, T* expected,

T desired,

std::memory_order success,

std::memory_order fail);

template <class T>

bool atomic_compare_exchange_strong_explicit(volatile atomic<T>*, T*, T,

std::memory_order success,

std::memory_order fail);

template <class T>

T atomic_fetch_add_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_add_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_sub_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_sub_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

150

T atomic_fetch_and_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_and_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_or_explicit(atomic<T>*, T, std::memory_order);

template <class T>

T atomic_fetch_or_explicit(volatile atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_xor_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_xor_explicit(volatile atomic<T>*, T,

std::memory_order = std::memory_order_relaxed);

// Additional functionality beyond that provided by C++11

template <class T>

T atomic_fetch_min_explicit(atomic<T>* object, T operand,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_min_explicit(volatile atomic<T>* object, T,

std::memory_order = std::memory_order_relaxed);

template <class T>

T atomic_fetch_max_explicit(atomic<T>* object, T operand, std::memory_order);

template <class T>

T atomic_fetch_max_explicit(volatile atomic<T>* object, T operand,

std::memory_order);

} // namespace sycl

} // namespace cl

The atomic operations and methods behave as described in the C++11 specification, barring the restrictions dis-
cussed above. Note that car must be taken when using compare_exchange_strong to perform many of the opera-
tions that would be expected of it in standard CPU code due to the lack of forward progress guarantees between
work-items in SYCL. No work-item may be dependent on another work-item to make progress if the code is to
be portable.

Methods Description
void store(T operand, std::memory_order = std::

memory_order_relaxed);

Atomically store operand in *this.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

T load(memory_order = std::memory_order_relaxed)

const;

Atomically load the current value of *this
and return the value before the call.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

Continued on next page
Table 3.77: Methods available on an object of type atomic<T>.

151

Methods Description
T exchange(T operand, std::memory_order = std::

memory_order_relaxed);

Atomically replace *this with operand.
Return the original value of object.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

T compare_exchange_strong(

T& expected,

T desired,

std::memory_order success,

std::memory_order fail);

Atomically compare the value of *this
against expected. If equal replace *this
with desired otherwise store the original

value of *this in *expected. Returns true if
the comparison succeeded.
Both memory orders must be
memory_order_relaxed. T must be int
or unsigned int.

T fetch_add(T operand, std::memory_order = std::

memory_order_relaxed);

Atomically add operand to *this. Store the
result in *this and return the value before
the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

T fetch_sub(T operand, std::memory_order order); Atomically subtract operand from *this

. Store the result in *this and return
the value before the call. order must be
memory_order_relaxed. T must be int or
unsigned int.

T fetch_and(T operand, std::memory_order order); Atomically perform a bitwise and of
operand and *this. Store the result in *this
and return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

T fetch_or(T operand, std::memory_order order); Atomically perform a bitwise or of operand
and *this. Store the result in *this and

return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

T fetch_xor(T operand, std::memory_order order); Atomically perform a bitwise exclusive-or
of operand and *this. Store the result in *
this and return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

T fetch_min(T operand, std::memory_order order); Atomically compute the minimum of
operand and *this. Store the result in *this
and return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

T fetch_max(T operand, std::memory_order order); Atomically compute the maximum of
operand and *this. Store the result in *this
and return the value before the call.
order must be memory_order_relaxed. T
must be int or unsigned int.

End of table
Table 3.77: Methods available on an object of type atomic<T>.

152

Functions Description
template<class T> T atomic_load_explicit(

atomic<T>* object,

std::memory_order order);

Atomically load the current value of object
and return that value.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

template<class T> void atomic_store_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically store operand in object.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

template<class T>

T atomic_exchange_explicit(

atomic<T>* object, T operand,

std::memory_order order);

Atomically replace object with operand.
Return the original value of object.
T may be int, unsigned int or float. order
must be memory_order_relaxed.

template<class T>

bool atomic_compare_exchange_strong_explicit(

atomic<T>* object,

T* expected,

T desired, std::memory order success,
std::memory_order fail);

Atomically compare the value of object
against expected. If equal replace object

with desired. Otherwise store the original
value of object in expected. Returns true if
the comparison succeeded.
Both memory orders must be
memory_order_relaxed. T must be int
or unsigned int.

template<class T> T atomic_fetch_add_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically add operand to object. Store
the result in object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_sub_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically subtract operand from object.
Store the result in object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_and_explicit(

atomic<T>* operand,

T object,

std::memory_order order);

Atomically perform a bitwise and of
operand and object. Store the result in
object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_or_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically perform a bitwise or of operand
and object. Store the result in object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_xor_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically perform a bitwise exclusive-or
of operand and object. Store the result in
object.
order must be memory_order_relaxed. T
must be int or unsigned int.

template<class T> T atomic_fetch_min_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically compute the minimum of
operand and object. Store the result in
object.
order must be memory_order_relaxed. T
must be int or unsigned int.

Continued on next page
Table 3.78: Global functions available on atomic types.

153

Functions Description
template<class T> T atomic_fetch_max_explicit(

atomic<T>* object,

T operand,

std::memory_order order);

Atomically compute the maximum
of operand and object. Store the
result in object. order must be
memory_order_relaxed. T must be int
or unsigned int.

End of table
Table 3.78: Global functions available on atomic types.

3.9 Stream class

SYCL stream class is available in SYCL instead of the printf() function in order to support C++ classes and
structs and some commonly used stream output manipulators used in C++.

The cl::sycl::stream object can be used in order to output a sequence of characters on standard output. The
stream object can be default constructed inside a command group scope and it can also have implementation
defined constructors for output size and width.

Stream Operators Description
cl::sycl::stream= operator for assigning a stream to another.
cl::sycl::operator<< operator for outputting a sequence of charac-

ter or structs on standard output. All SYCL
vector classes and id structs can be passed in
this operator.

cl::sycl::endl method that adds an end of line character to
the output

cl::sycl::hex Display the output in hexadecimal base
cl::sycl::oct Display the output in octal base
cl::sycl::setw Sets the field width of the output
cl::sycl::precision Sets the decimal precision for the output
cl::sycl::scientific Set the notation of the floating-point values

as the C++ scientific notation
cl::sycl::fixed Set the notation of the floating-point values

as the C++ fixed notation
cl::sycl::hexfloat Displays the floating point values in hex-

adecimal format
cl::sycl::defaultfloat Displays the floating point values in the de-

fault notation.

The usage of the cl::sycl::stream object is not recommend for performance critical applications, as optimiza-
tion levels for streaming operations are implementation defined, and the corresponding implementation documen-
tation should be consulted.

154

3.10 SYCL built-in functions for SYCL host and device

SYCL kernels may execute on any SYCL device- OpenCL device or SYCL host, which requires that the functions
used in the kernels to be compiled and linked for both device and host. In the SYCL system the OpenCL built-ins
are available for the SYCL host and device within the cl::sycl namespace, although, their semantics may be
different. This section follows the OpenCL 1.2 specification document [1, ch. 6.12] and describes the behavior of
these functions for SYCL host and device.

The SYCL built-in functions are available throughout the SYCL application, and depending where they execute,
they are either implemented using their host implementation or the device implementation. The SYCL system
guarantees that all of the built-in functions fulfill the same requirements for both host and device.

3.10.1 Description of the built-in types available for SYCL host
and device

All the OpenCL built-in types are available in the namespace cl::sycl. For the purposes of this document we use
type names for describing sets of SYCL valid types. The type names themselves are not valid SYCL types, but
they represent a set of valid types, as defined in tables 3.80.

In the OpenCL 1.2 specification document [1, ch. 6.12.1] in Table 6.7 the work-item functions are defined where
they provide the size of the enqueued kernel NDRange. These functions are available in SYCL through the item
and group classes see sections 3.5.1.4, 3.5.1.5 and 3.5.1.6.

Generic type name Description
floatn cl::sycl::float2, cl::sycl::float3,

cl::sycl::float4, cl::sycl::float8,

cl::sycl::float16

genfloatf float, floatn

doublen cl::sycl::double2, cl::sycl::double3

, cl::sycl::double4, cl::sycl::

double8, cl::sycl::double16

genfloatd double, doublen

genfloat float, floatn

double, doublen

sgenfloat float, double It is a scalar type that
matches the corresponding vector type
floatn or doublen.

charn cl::sycl::char2, cl::sycl::char3, cl

::sycl::char4, cl::sycl::char8, cl::

sycl::char16

ucharn cl::sycl::uchar2, cl::sycl::uchar3,

cl::sycl::uchar4, cl::sycl::uchar8,

cl::sycl::uchar16

genchar char, charn

ugenchar unsigned char, ugenchar

Continued on next page
Table 3.80: Generic type name description, which serves as a description
for all valid types of parameters to kernel functions. [1]

155

Generic type name Description
shortn cl::sycl::short2, cl::sycl::short3,

cl::sycl::short4, cl::sycl::short8,

cl::sycl::shor16

genshort short, shortn

ushortn cl::sycl::ushort2, cl::sycl::ushort3

, cl::sycl::ushort4, cl::sycl::

ushort8, cl::sycl::ushor16

ugenshort unsigned short, ugenshort

uintn cl::sycl::uint2, cl::sycl::uint3, cl

::sycl::uint4, cl::sycl::uint8, cl::

sycl::uint16

ugenint int, uintn

intn cl::sycl::int2, cl::sycl::int3, cl::

sycl::int4, cl::sycl::int8, cl::sycl

::int16

genint int, intn

ulonglongn cl::sycl::ulonglong2, cl::sycl::

ulonglong3, cl::sycl::ulonglong4,

cl::sycl::ulonglong8, cl::sycl::

ulonglong16

ugenlonglong unsigned long long int, ulonglongn

longlongn cl::sycl::longlong2, cl::sycl::

longlong3, cl::sycl::longlong4, cl::

sycl::longlong8, cl::sycl::longlong16

genlonglong long long int, longlongn

geninteger genchar, ugenchar, genshort,

ugenshort, genint, ugenint,

genlonglong, ugenlonglong

sgeninteger char,short, int, long long int,

unsigned char, unsigned short,

unsigned int, unsigned long long int

ugeninteger uchar, ucharn, ushort, ushortn, uint

, uintn, ulonglong, ulonglongn

gentype char, charn, uchar, ucharn, short,

shortn, ushort, ushortn, int, intn,

uint, uintn, longlong, longlongn,

ulonglong, ulonglongn, float, floatn,

double, doublen.

End of table
Table 3.80: Generic type name description, which serves as a description
for all valid types of parameters to kernel functions. [1]

156

3.10.2 Work-item functions

In the OpenCL 1.2 specification document [1, ch. 6.12.1] in Table 6.7 the work-item functions are defined where
they provide the size of the enqueued kernel NDRange. These functions are available in SYCL through the
nd_item and group classes see section 3.5.1.5 and 3.5.1.6.

3.10.3 Math functions

In SYCL the OpenCL math functions are available in the namespace cl::sycl on host and device with the same
precision guarantees as defined in the OpenCL 1.2 specification document [1, ch. 7] for host and device. For a
SYCL platform the numerical requirements for host need to match the numerical requirements of the OpenCL
math built-in functions. The built-in functions can take as input float or optionally double and their vec counter-
parts, for dimensions 2, 3, 4, 8 and 16. On the host the vector types are going to be using the vec class and on an
OpenCL device are going to be using the corresponding OpenCL vector types.

The built-in functions available for SYCL host and device with the same precision requirements for both host and
device, are described in table 3.81.

Math Function Description
genfloat acos (genfloat x) Inverse cosine function.
genfloat acosh (genfloat x) Inverse hyperbolic cosine.
genfloat acospi (genfloat x) Compute acosx/π
genfloat asin (genfloat x) Inverse sine function.
genfloat asinh (genfloat x) Inverse hyperbolic sine.
genfloat asinpi (genfloat x) Compute asinx/π
genfloat atan (genfloat y_over_x) Inverse tangent function.
genfloat atan2 (genfloat y, genfloat x) Compute atan(y / x).
genfloat atanh (genfloat x) Hyperbolic inverse tangent.
genfloat atanpi (genfloat x) Compute atan (x) / π.
genfloat atan2pi (genfloat y, genfloat x) Compute atan2 (y, x) / π.
genfloat cbrt (genfloat x) Compute cube-root.
genfloat ceil (genfloat x) Round to integral value using the round to

positive infinity rounding mode.
genfloat copysign (genfloat x, genfloat y) Returns x with its sign changed to match the

sign of y.
genfloat cos (genfloat x) Compute cosine.
genfloat cosh (genfloat x) Compute hyperbolic cosine.
genfloat cospi (genfloat x) Compute cos (πx).
genfloat erfc (genfloat x) Complementary error function.
genfloat erf (genfloat x) Error function encountered in integrating the

normal distribution.
genfloat exp (genfloat x) Compute the base-e exponential of x.
genfloat exp2 (genfloat x) Exponential base 2 function.
genfloat exp10 (genfloat x) Exponential base 10 function.
genfloat expm1 (genfloat x) Compute exp (x) − 1.0.

Continued on next page
Table 3.81: Math functions which work on SYCL Host and device. They
correspond to Table 6.7 of the OpenCL 1.2 specification [1]

157

Math Function Description
genfloat fabs (genfloat x) Compute absolute value of a floating-point

number.
genfloat fdim (genfloat x, genfloat y) x − y if x > y,+0 if x is less than or equal to

y.
genfloat floor (genfloat x) Round to integral value using the round to

negative infinity rounding mode.
genfloat fma (genfloat a, genfloat b, genfloat c) Returns the correctly rounded floating-point

representation of the sum of c with the in-
finitely precise product of a and b. Round-
ing of intermediate products shall not oc-
cur. Edge case behavior is per the IEEE 754-
2008 standard.

genfloat fmax (genfloat x, genfloat y)

genfloat fmax (genfloat x, sgenfloat y)

Returns y if x < y, otherwise it returns x.
If one argument is a NaN, fmax() returns
the other argument. If both arguments are
NaNs, fmax() returns a NaN.

genfloat fmin (genfloat x, genfloat y)

genfloat fmin (genfloat x, sgenfloat y)

Returns y if y < x, otherwise it returns x.
If one argument is a NaN, fmin() returns
the other argument. If both arguments are
NaNs, fmin() returns a NaN.

genfloat fmod (genfloat x, genfloat y) Modulus. Returns xy ∗ trunc(x/y).
floatn fract (floatn x, intn *iptr)

float fract (float x, int * iptr)

Returns fmin(x − floor (x), 0x1.fffffep-1f).
floor(x) is returned in iptr.

doublen frexp (doublen x, intn *exp)

double frexp (double x, int * exp)

Extract mantissa and exponent from x. For
each component the mantissa returned is a
float with magnitude in the interval [1/2, 1)
or 0. Each component of x equals mantissa
returned * 2exp.

genfloat hypot (genfloat x, genfloat y) Compute the value of the square root of x2+
y2 without undue overflow or underflow.

int logb (float x)

intn ilogb (genfloat x)

int logb (double x)

intn logb (doublen x)

Return the exponent as an integer value.

genfloat ldexp (genfloat x, genint k)

floatn ldexp (floatn x, int k)

doublen ldexp (doublen x, int k)

Multiply x by 2 to the power k.

genfloat lgamma (genfloat x) Log gamma function. Returns the natu-
ral logarithm of the absolute value of the
gamma function. The sign of the gamma
function is returned in the signp argument of
lgamma r.

genfloat lgamma_r (genfloat x, genint *signp) Log gamma function. Returns the natu-
ral logarithm of the absolute value of the
gamma function. The sign of the gamma
function is returned in the signp argument of
lgamma r.

Continued on next page
Table 3.81: Math functions which work on SYCL Host and device. They
correspond to Table 6.7 of the OpenCL 1.2 specification [1]

158

Math Function Description
genfloat log (genfloat) Compute natural logarithm.
genfloat log2 (genfloat) Compute a base 2 logarithm.
genfloat log10 (genfloat) Compute a base 10 logarithm.
genfloat log1p (genfloat x) Compute loge(1.0 + x).
genfloat logb (genfloat x) Compute the exponent of x, which is the

integral part of logr (|x|).
genfloat mad (genfloat a,genfloat b, genfloat c) mad approximates a * b + c. Whether or

how the product of a * b is rounded and
how supernormal or subnormal intermediate
products are handled is not defined. mad is
intended to be used where speed is preferred
over accuracy.

genfloat maxmag (genfloat x, genfloat y) Returns x if |x| > |y|, y if |y| > |x|, otherwise
fmax(x, y).

genfloat minmag (genfloat x, genfloat y) Returns x if |x| < |y|, y if |y| < |x|, otherwise
fmin(x, y).

genfloat modf (genfloat x, genfloat *iptr) Decompose a floating-point number. The
modf function breaks the argument x into in-
tegral and fractional parts, each of which has
the same sign as the argument. It stores the
integral part in the object pointed to by iptr.

floatn nan (unintn nancode)

float nan (unsigned int nancode)

doublen nan (ulonglongn nancode)

double nan (unsigned long long int nancode)

Returns a quiet NaN. The nancode may be
placed in the significand of the resulting
NaN.

genfloat nextafter (genfloat x, genfloat y) Computes the next representable single-
precision floating-point value following x in
the direction of y. Thus, if y is less than x,
nextafter() returns the largest representable
floating-point number less than x.

genfloat pow (genfloat x, genfloat y) Compute x to the power y.
genfloat pown (genfloat x, genint y) Compute x to the power y, where y is an

integer.
genfloat powr (genfloat x, genfloat y) Compute x to the power y, where x >= 0.
genfloat remainder (genfloat x, genfloat y) Compute the value r such that r = x - n*y,

where n is the integer nearest the exact value
of x/y. If there are two integers closest to x/y,
n shall be the even one. If r is zero, it is given
the same sign as x.

Continued on next page
Table 3.81: Math functions which work on SYCL Host and device. They
correspond to Table 6.7 of the OpenCL 1.2 specification [1]

159

Math Function Description
genfloat remquo (genfloat x, genfloat y, genint *quo

)

The remquo function computes the value r
such that r = x - k*y, where k is the inte-
ger nearest the exact value of x/y. If there
are two integers closest to x/y, k shall be the
even one. If r is zero, it is given the same
sign as x. This is the same value that is re-
turned by the remainder function. remquo
also calculates the lower seven bits of the in-
tegral quotient x/y, and gives that value the
same sign as x/y. It stores this signed value
in the object pointed to by quo.

genfloat rint (genfloat) Round to integral value (using round to
nearest even rounding mode) in floating-
point format. Refer to section 7.1 of the
OpenCL 1.2 specification document [1] for
description of rounding modes.

genfloat rootn (genfloat x, genint y) Compute x to the power 1/y.
genfloat round (genfloat x) Return the integral value nearest to x round-

ing halfway cases away from zero, regard-
less of the current rounding direction.

genfloat rsqrt (genfloat) Compute inverse square root.
genfloat sin (genfloat) Compute sine.
genfloat sincos (genfloat x, genfloat *cosval) Compute sine and cosine of x. The com-

puted sine is the return value and computed
cosine is returned in cosval.

genfloat sinh (genfloat x) Compute hyperbolic sine.
genfloat sinpi (genfloat x) Compute sin (π x).
genfloat sqrt (genfloat x) Compute square root.
genfloat tan (genfloat x) Compute tangent.
genfloat tanh (genfloat x) Compute hyperbolic tangent.
genfloat tanpi (genfloat x) Compute tan (π x).
genfloat tgamma (genfloat x) Compute the gamma function.
genfloat trunc (genfloat x) Round to integral value using the round to

zero rounding mode.
End of table

Table 3.81: Math functions which work on SYCL Host and device. They
correspond to Table 6.7 of the OpenCL 1.2 specification [1]

In SYCL the implementation defined precision math functions are defined in the namespace cl::sycl::native. The
functions that are available within this namespace are specified in tables 3.82.

Native Math Function Description
genfloat cos (genfloat x) Compute cosine over an implementation-

defined range. The maximum error is
implementation-defined.

Continued on next page
Table 3.82: Native functions which work on SYCL Host and device, are
available in the cl::sycl::native namespace. They correspond to Table 6.9
of the OpenCL 1.2 specification [1]

160

Native Math Function Description
genfloat divide (genfloat x, genfloat y) Compute x / y over an implementation-

defined range. The maximum error is
implementation-defined.

genfloat exp (genfloat x) Compute the base- e exponential of x over
an implementation-defined range. The max-
imum error is implementation-defined.

genfloat exp2 (genfloat x) Compute the base- 2 exponential of x over
an implementation-defined range. The max-
imum error is implementation-defined.

genfloat exp10 (genfloat x) Compute the base- 10 exponential of x over
an implementation-defined range. The max-
imum error is implementation-defined.

genfloat log (genfloat x) Compute natural logarithm over an imple-
mentation defined range. The maximum er-
ror is implementation-defined.

genfloat log2 (genfloat x) Compute a base 2 logarithm over an
implementation-defined range. The maxi-
mum error is implementation-defined.

genfloat log10 (genfloat x) Compute a base 10 logarithm over an
implementation-defined range. The maxi-
mum error is implementation-defined.

genfloat powr (genfloat x, genfloat y) Compute x to the power y, where
x >= 0. The range of x and y are
implementation-defined. The maximum er-
ror is implementation-defined.

genfloat recip (genfloat x) Compute reciprocal over an
implementation-defined range. The
maximum error is implementation-defined.

genfloat rsqrt (genfloat x) Compute inverse square root over an
implementation-defined range. The maxi-
mum error is implementation-defined.

genfloat sin (genfloat x) Compute sine over an implementation-
defined range. The maximum error is
implementation-defined.

genfloat sqrt (genfloat x) Compute square root over an
implementation-defined range. The
maximum error is implementation-defined.

genfloat tan (genfloat x) Compute tangent over an implementation-
defined range. The maximum error is
implementation-defined.

End of table
Table 3.82: Native functions which work on SYCL Host and device, are
available in the cl::sycl::native namespace. They correspond to Table 6.9
of the OpenCL 1.2 specification [1]

161

3.10.4 Integer functions

In SYCL the OpenCL integer math functions are available in the namespace cl::sycl on host and device as defined
in the OpenCL 1.2 specification document [1, par. 6.12.3]. The built-in functions can take as input char, unsigned
char, short, unsigned short, int, unsigned int, long long int, unsigned long long int and their vec counterparts, for
dimensions 2, 3, 4, 8 and 16. On the host the vector types are going to be using the vec class and on an OpenCL
device are going to be using the corresponding OpenCL vector types. The supported integer math functions are
described in tables 3.83.

Integer Function Description
ugeninteger abs (geninteger x) Returns |x|.
ugeninteger abs_diff (geninteger x, geninteger y) Returns |x − y| without modulo overflow.
geninteger add_sat (geninteger x, geninteger y) Returns x + y and saturates the result.
geninteger hadd (geninteger x, geninteger y) Returns (x+ y) >> 1. The intermediate sum

does not modulo overflow.
geninteger rhadd (geninteger x, geninteger y) Returns (x + y + 1) >> 1. The intermediate

sum does not modulo overflow.
geninteger clamp (geninteger x,

sgeninteger minval, sgeninteger maxval)

Returns min(max(x, minval), maxval). Re-
sults are undefined if minval > maxval.

geninteger clz (geninteger x) Returns the number of leading 0-bits in x,
starting at the most significant bit position.

geninteger clamp (geninteger x,

geninteger minval, geninteger maxval)

Returns min(max(x, minval), maxval). Re-
sults are undefined if minval > maxval.

geninteger mad_hi (

geninteger a, geninteger b, geninteger c)

Returns mul hi(a, b) + c.

geninteger mad_sat (geninteger a,

geninteger b, geninteger c)

Returns a * b + c and saturates the result.

geninteger max (geninteger x, geninteger y)

geninteger max (geninteger x, sgeninteger y)

Returns y if x < y, otherwise it returns x.

geninteger min (geninteger x, geninteger y)

geninteger min (geninteger x, sgeninteger y)

Returns y if y < x, otherwise it returns x.

geninteger mul_hi (geninteger x, geninteger y) Computes x * y and returns the high half of
the product of x and y.

geninteger rotate (geninteger v, geninteger i) For each element in v, the bits are shifted
left by the number of bits given by the corre-
sponding element in i (subject to usual shift
modulo rules described in section 6.3). Bits
shifted off the left side of the element are
shifted back in from the right.

geninteger sub_sat (geninteger x, geninteger y) Returns x − y and saturates the result.
shortn upsample (charn hi, ucharn lo) result[i] = ((short)hi[i] << 8)|lo[i]
ushortn upsample (ucharn hi, ucharn lo) result[i] = ((ushort)hi[i] << 8)|lo[i]
intn upsample (shortn hi, ushortn lo) result[i] = ((int)hi[i] << 16)|lo[i]
uintn upsample (ushortn hi, ushortn lo) result[i] = ((uint)hi[i] << 16)|lo[i]
longlongn upsample (intn hi, uintn lo) result[i] = ((long)hi[i] << 32)|lo[i]
ulonglongn upsample (uintn hi, uintn lo) result[i] = ((ulong)hi[i] << 32)|lo[i]
geninteger popcount (geninteger x) Returns the number of non-zero bits in x.

Continued on next page
Table 3.83: Integer functions which work on SYCL Host and device, are
available in the cl::sycl namespace. They correspond to Table 6.10 of the
OpenCL 1.2 specification [1]

162

Integer Function Description
intn mad24 (intn x, intn y, intn z)

uintn mad24 (uintn x, uintn y, uintn z)

Multipy two 24-bit integer values x and y
and add the 32-bit integer result to the 32-
bit integer z. Refer to definition of mul24 to
see how the 24-bit integer multiplication is
performed.

intn mul24 (intn x, intn y)

uintn mul24 (uintn x, uintn y)

Multiply two 24-bit integer values x and y. x
and y are 32-bit integers but only the low 24-
bits are used to perform the multiplication.
mul24 should only be used when values in
x and y are in the range [- 223, 223-1] if x
and y are signed integers and in the range [0,
224-1] if x and y are unsigned integers. If x
and y are not in this range, the multiplication
result is implementation-defined.

End of table
Table 3.83: Integer functions which work on SYCL Host and device, are
available in the cl::sycl namespace. They correspond to Table 6.10 of the
OpenCL 1.2 specification [1]

3.10.5 Common functions

In SYCL the OpenCL common functions are available in the namespace cl::sycl on host and device as defined in
the OpenCL 1.2 specification document [1, par. 6.12.4]. Description is in table 3.84. The built-in functions can
take as input float or optionally double and their vec counterparts, for dimensions 2, 3, 4, 8 and 16. On the host the
vector types are going to be using the vec class and on an OpenCL device are going to be using the corresponding
OpenCL vector types.

Common Function Description
genfloat clamp (genfloat x, genfloat minval,

genfloat maxval)

floatn clamp (floatn x, float minval, float maxval

)

doublen clamp (doublen x, double minval, double

maxval)

Returns fmin(fmax(x, minval), maxval). Re-
sults are undefined if minval > maxval.

genfloat degrees (genfloat radians) Converts radians to degrees, i.e.(180/π) ∗
radians.

genfloat max (genfloat x, genfloat y)

genfloatf max (genfloatf x, float y)

genfloatd max (genfloatd x, double y)

Returns y if x < y, otherwise it returns x. If
x or y are infinite or NaN, the return values
are undefined.

genfloat min (genfloat x, genfloat y)

genfloatf min (genfloatf x, float y)

genfloatd min (genfloatd x, double y)

Returns y if y < x, otherwise it returns x. If
x or y are infinite or NaN, the return values
are undefined.

Continued on next page
Table 3.84: Common functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.12
of the OpenCL 1.2 specification [1]

163

Common Function Description
genfloat mix (genfloat x, genfloat y, genfloat a)

genfloatf mix (genfloatf x, genfloatf y, float a)

genfloatd mix (genfloatd x, genfloatd y, double a)

Returns the linear blend of x&y imple-
mented as: x+(y−x)∗a. a must be a value in
the range 0.0 ... 1.0. If a is not in the range
0.0 ... 1.0, the return values are undefined.

genfloat radians (genfloat degrees) Converts degrees to radians, i.e. (π/180) ∗
degrees.

genfloat step (genfloat edge, genfloat x)

genfloatf step (float edge, genfloatf x)

genfloatd step (double edge, genfloatd x)

Returns 0.0 if x < edge, otherwise it returns
1.0.

genfloat smoothstep (genfloat edge0, genfloat edge1,

genfloat x)

genfloatf smoothstep (float edge0, float edge1,

genfloatf x)

genfloatd smoothstep (double edge0, double edge1,

genfloatd x)

Returns 0.0 if x <= edge0 and 1.0 if x >=
edge1 and performs smooth Hermite inter-
polation between 0 and 1 when edge0 <
x < edge1. This is useful in cases where
you would want a threshold function with a
smooth transition.
This is equivalent to:
gentype t;

t = clamp ((x <= edge0)/ (edge1 >=

edge0), 0, 1);

return t * t * (3 - 2 * t);

Results are undefined if edge0 >= edge1 or
if x, edge0 or edge1 is a NaN.

genfloat sign (genfloat x) Returns 1.0 if x > 0, −0.0 if x = −0.0, +0.0
if x = +0.0, or −1.0 if x < 0. Returns 0.0 if
x is a NaN.

End of table
Table 3.84: Common functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.12
of the OpenCL 1.2 specification [1]

3.10.6 Geometric Functions

In SYCL the OpenCL geometric functions are available in the namespace cl::sycl on host and device as defined in
the OpenCL 1.2 specification document [1, par. 6.12.5]. The built-in functions can take as input float or optionally
double and their vec counterparts, for dimensions 2, 3, 4, 8 and 16. On the host the vector types are going to be
using the vec class and on an OpenCL device are going to be using the corresponding OpenCL vector types. All
of the geometric functions are using round-to-nearest-even rounding mode. Tables 3.85 contain all the definitions
of supported geometric functions.

Geometric Function Description
float4 cross (float4 p0, float4 p1)

float3 cross (float3 p0, float3 p1)

double4 cross (double4 p0, double4 p1)

double3 cross (double3 p0, double3 p1)

Returns the cross product of p0.xyz and
p1.xyz. The w component of float4 result
returned will be 0.0.

Continued on next page
Table 3.85: Geometric functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.13
of the OpenCL 1.2 specification [1]164

Geometric Function Description
float dot (floatn p0, floatn p1)

double dot (doublen p0, doublen p1)

Compute dot product.

float distance (floatn p0, floatn p1)

double distance (doublen p0, doublen p1)

Returns the distance between p0 and p1.
This is calculated as length(p0 − p1).

float length (floatn p)

double length (doublen p)

Return the length of vector p, i.e.,√
p.x2 + p.y2 + ...

floatn normalize (floatn p)

doublen normalize (doublen p)

Returns a vector in the same direction as p
but with a length of 1.

float fast_distance (floatn p0, floatn p1) Returns f astlength(p0 − p1).
float fast_length (floatn p) Returns the length of vector p computed

as: sqrt((half)(pow(p.x,2)+ pow(p.y,2)
+ ...))

floatn fast_normalize (floatn p) Returns a vector in the same direction as
p but with a length of 1. fast normalize is
computed as: p * rsqrt((half)(pow(p.x
,2)+ pow(p.y,2)+ ...))

The result shall be within 8192 ulps error
from the infinitely precise result of if (all
(p == 0.0f))

result = p;

else

result = p / sqrt (pow(p.x,2)+ pow(p.

y,2)+ ...);

with the following exceptions:
1. If the sum of squares is greater

than FLT MAX then the value of the
floating-point values in the result vec-
tor are undefined.

2. If the sum of squares is less than
FLT MIN then the implementation
may return back p.

3. If the device is in “denorms are
flushed to zero” mode, individual
operand elements with magnitude less
than sqrt(FLTM IN) may be flushed to
zero before proceeding with the calcu-
lation.

End of table
Table 3.85: Geometric functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.13
of the OpenCL 1.2 specification [1]

165

3.10.7 Relational functions

In SYCL the OpenCL relational functions are available in the namespace cl::sycl on host and device as defined
in the OpenCL 1.2 specification document [1, par. 6.12.6]. The built-in functions can take as input char, unsigned
char, short, unsigned short, int, unsigned int, long, unsigned long, float or optionally double and their vec coun-
terparts, for dimensions 2,3,4,8, and 16. On the host the vector types are going to be using the vec class and on
an OpenCL device are going to be using the corresponding OpenCL vector types. The relational operators are
available in both host and device, these relational functions are provided in addition to the the operators and will
return 0 if the conditional is false and 1 otherwise. The available built-in functions are described in tables 3.86

Relational Function Description
int isequal (float x, float y)

intn isequal (floatn x, floatn y)

longlong isequal (double x, double y)

longlongn isequal (doublen x, doublen y)

Returns the component-wise compare of
x == y.

int isnotequal (float x, float y)

intn isnotequal (floatn x, floatn y)

longlong isnotequal (double x, double y)

longlongn isnotequal (doublen x, doublen y)

Returns the component-wise compare of
x! = y.

int isgreater (float x, float y)

intn isgreater (floatn x, floatn y)

longlong isgreater (double x, double y)

longlongn isgreater (doublen x, doublen y)

Returns the component-wise compare of x >
y.

int isgreaterequal (float x, float y)

intn isgreaterequal (floatn x, floatn y)

longlong isgreaterequal (double x, double y)

longlongn isgreaterequal (doublen x, doublen y)

Returns the component-wise compare of
x >= y.

int isless (float x, float y)

intn isless (floatn x, floatn y)

longlong isless (double x, double y)

longlongn isless (doublen x, doublen y)

Returns the component-wise compare of x <
y.

int islessequal (float x, float y)

intn islessequal (floatn x, floatn y)

longlong islessequal (double x, double y)

longlongn islessequal (doublen x, doublen y)

Returns the component-wise compare of
x <= y.

int islessgreater (float x, float y)

intn islessgreater (floatn x, floatn y)

longlong islessgreater (double x, double y)

longlongn islessgreater (doublen x, doublen y)

Returns the component-wise compare of
(x < y)||(x > y).

int isfinite (float)

intn isfinite (floatn)

longlong isfinite (double)

longlongn isfinite (doublen)

Test for finite value.

int isinf (float)

intn isinf (floatn)

longlong isinf (double)

longlongn isinf (doublen)

Test for infinity value (positive or negative) .

Continued on next page
Table 3.86: Relational functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.14
of the OpenCL 1.2 specification [1]

166

Relational Function Description
int isnan (float)

intn isnan (floatn)

longlong isnan (double)

longlongn isnan (doublen)

Test for a NaN.

int isnormal (float)

intn isnormal (floatn)

longlong isnormal (double)

longlongn isnormal (doublen)

Test for a normal value.

int isordered (float x, float y)

intn isordered (floatn x, floatn y)

longlong isordered (double x, double y)

longlongn isordered (doublen x, doublen y)

Test if arguments are ordered. isordered()
takes arguments x and y, and returns the re-
sult isequal(x, x) && isequal(y, y).

int isunordered (float x, float y)

intn isunordered (floatn x, floatn y)

longlong isunordered (double x, double y)

longlongn isunordered (doublen x, doublen y)

Test if arguments are unordered.
isunordered() takes arguments x and y,
returning non-zero if x or y is NaN, and
zero otherwise.

int signbit (float)

intn signbit (floatn)

longlong signbit (double)

longlongn signbit (doublen)

Test for sign bit. The scalar version of the
function returns a 1 if the sign bit in the float
is set else returns 0.
The vector version of the function returns
the following for each component in floatn:
-1 (i.e all bits set) if the sign bit in the float
is set else returns 0.

int any (geninteger x) Returns 1 if the most significant bit in any
component of x is set; otherwise returns 0.

int all (ugeninteger x) Returns 1 if the most significant bit in all
components of x is set; otherwise returns 0.

gentype bitselect (gentype a, gentype b, gentype c) Each bit of the result is the corresponding
bit of a if the corresponding bit of c is 0.
Otherwise it is the corresponding bit of b.

gentype select (gentype a, gentype b, geninteger c) For each component of a vector type:
result[i] = (MSB of c[i] is set)? b[i

] : a[i].

For a scalar type:
result = c ? b : a.
geninteger must have the same number of
elements and bits as gentype.

End of table
Table 3.86: Relational functions which work on SYCL Host and device,
are available in the cl::sycl namespace. They correspond to Table 6.14
of the OpenCL 1.2 specification [1]

3.10.8 Vector data and store functions

The functionality from the OpenCL functions as defined in in the OpenCL 1.2 specification document [1, par.
6.12.7] is available in SYCL through the vec class in section 3.7.2.

167

3.10.9 Synchronization Functions

In SYCL the OpenCL synchronization functions are available through the item class 3.5.1.4, as they are applied
to work-item for local or global address spaces. Please see 3.55.

3.10.10 printf function

The functionality of the printf function is covered by the cl::cycle::stream class 3.9, which has the capability
to print to standard output all the SYCL classes and primitives and covers the capabilities defined in the OpenCL
1.2 specification document [1, par. 6.12.13].

168

4. SYCL Support of Non-Core OpenCL Features

OpenCL apart from core features that are supported in every platform, has optional features as well as extensions
that are only supported in some platforms. The optional features, as described in the specification [1], and the
OpenCL “khr” extensions, as described in the extension specification [2], are supported by the SYCL framework,
but the ability to use them is completely dependent on the underlying OpenCL platforms. A SYCL implementation
may support some vendor extensions in order to enable optimizations on certain platforms.

All OpenCL extensions are available through SYCL interoperability with OpenCL C, so all the extensions can be
used through the OpenCL API as described in the extensions specification [2].

When running command groups on the host device, not all extensions are required to be available. The extensions
available for the host are available to query in the same way as for SYCL devices, see Table 3.5.

4.1 Enable extensions in a SYCL kernel

In order to enable extensions in an OpenCL kernel the following compiler directive is used:

#pragma OPENCL EXTENSION <extension_name> : <behaviour>

The keyword extension name can be:

• all, which refers to all the extensions available on a platform

• an extension name from the available extensions on a platform.

They keyword behaviour can be:

• enable: it will enable the extension specified by extension name if it is available on the platform or other-
wise it triggers a compiler warning. If all is specified in the extension name then it will enable all extensions
available.

• disable: it will disable all or any extension provided in the extension name.

The following table 4.1 summarizes the levels of SYCL support to the API extensions for OpenCL 1.2 [?]. These
extensions can be supported using OpenCL/SYCL interoperability API or by the extended SYCL API calls. This
only applies for using them in the framework and only for devices that are supporting these extensions.

Continued on next page
Table 4.1: SYCL support for OpenCL 1.2 API extensions.

169

Extension Support using
SYCL/OpenCL
API

Support using
SYCL API

Extension Support using
SYCL/OpenCL
API

Support using
SYCL API

cl_khr_int64_base_atomics Yes Yes
cl_khr_int64_extended_atomics Yes Yes
cl_khr_fp16 Yes Yes
cl_khr_3d_image_writes Yes Yes
cl_khr_gl_sharing Yes Yes
cl_apple_gl_sharing Yes Yes
cl_khr_d3d10_sharing Yes No
cl_khr_d3d11_sharing Yes No
cl_khr_dx9_media_sharing Yes No

End of table
Table 4.1: SYCL support for OpenCL 1.2 API extensions.

4.2 Half Precision Floating-Point

The half precision floating-point data scalar and vector types are supported in the SYCL system. The SYCL host
device supports those types, however they are optional on an OpenCL device and the developer always needs to
check whether the device the kernel is going to run on has the corresponding extension.

The extension name is cl_khr_fp16 and it needs to be used in order to enable the usage of the half data type on
an SYCL OpenCL device.

The half type class, along with any OpenCL macros and definitions, is defined in the namespace cl::sycl as
half. The vector type of half is supported sizes 2, 3, 4, 8 and 16 using the SYCL vectors (§ 3.7.2) along with all
the methods supported for vectors.

The conversion rules follows the same rules as in the OpenCL 1.2 extensions specification [2, par. 9.5.1].

The math, common, geometric and relational functions can take cl::SYCL ::opencl::half as a type as they are
defined in [2, par. 9.5.2, 9.5.3, 9.5.4, 9.5.5]. The valid type for the functions defined for half is described by the
generic type name genhalf is described in table 4.2.

Generic type name Description
genhalf cl::sycl::half, cl::sycl::half2, cl

::sycl::half3, cl::sycl::half4, cl::

sycl::half8, cl::sycl::half16

End of table
Table 4.2: Generic type name description for all valid types of kernel
function parameters. [1]

170

The elementary floating-point functions available for SYCL host and device is extended to allow half as input. If
the half type is given as a parameter then the allowed error in ULP(Unit in the Last Place) is less than 8192. They
correspond to Table 6.9 of the OpenCL 1.2 specification [1]

Math function Description
genhalf cos (genhalf x) Compute cosine. x must be in the range -

216 to +216.
genhalf divide (genhalf x, genhalf y) Compute x / y.
genhalf exp (genhalf x) Compute the base- e exponential of x.
genhalf exp2 (genhalf x) Compute the base- 2 exponential of x.
genhalf exp10 (genhalf x) Compute the base- 10 exponential of x.
genhalf log (genhalf x) Compute natural logarithm.
genhalf log2 (genhalf x) Compute a base 2 logarithm.
genhalf log10 (genhalf x) Compute a base 10 logarithm.
genhalf powr (genhalf x, genhalf y) Compute x to the power y, where x >= 0.
genhalf recip (genhalf x) Compute reciprocal.
genhalf rsqrt (genhalf x) Compute inverse square root.
genhalf sin (genhalf x) Compute sine. x must be in the range -216

to +216.
genhalf sqrt (genhalf x) Compute square root.
genhalf tan (genhalf x) Compute tangent. x must be in the range -

216 to +216.
End of table

Table 4.3: Extended elementary functions which work on SYCL host
and device.

4.3 Writing to 3D image memory objects

The accessor class for target access::target::image in SYCL support methods for writing 3D image mem-
ory objects, but this functionality is only allowed on a device if the extension cl_khr_3d_image_writes is
supported on that device.

4.4 Interoperability with OpenGL

OpenCL has a standard extension that allows interoperability with OpenGL objects. The features described in this
section are only defined within SYCL if the underlying OpenCL implementation supports the OpenCL/OpenGL
interoperability extension (cl_khr_gl_sharing).

4.4.1 OpenCL/OpenGL extensions to the context class

If the cl_khr_gl_sharing extension is present then the developer can create an OpenCL context from an
OpenGL context by providing the corresponding attribute names and values to properties for the devices cho-
sen by device selector. Table 3.8 has the additions shown on Table 4.5.

171

cl context properties flag Description
CL_GL_CONTEXT_KHR OpenGL context handle (default: 0)
CL_EGL_DISPLAY_KHR CGL share group handle (default: 0)
CL_GLX_DISPLAY_KHR EGLDisplay handle (default: EGL_NO_-

DISPLAY)
CL_WGL_HDC_KHR X handle (default: None)
CL_CGL_SHAREGROUP_KHR HDC handle (default: 0)

End of table
Table 4.4: Additional optional properties for creating context for
SYCL/OpenGL sharing.

The following table 4.5 describes the additional methods of the context class defined for the OpenCL/OpenGL
interop that are also available for SYCL/OpenGL interop. If the OpenGL extensions are not available then their
behavior is implementation defined.

Methods Description
device get_gl_current_device () Returns the OpenGL enabled device in the

current context.
vector_class<device> get_gl_context_devices () Returns the OpenGL supported devices in

this context.
End of table

Table 4.5: Extended context class interface.

The SYCL extension for creating OpenCL context from an OpenGL context is based on the OpenCL extension
specification and all the capabilities and restrictions are based on it and developers and implementers are advised
to refer to [2, sec. 9.6].

4.4.2 Sharing SYCL/OpenGL memory objects

It is possible to share objects between SYCL and OpenGL, if the corresponding OpenCL platform extensions for
these are available on available platforms. OpenCL memory objects based on OpenGL objects can only be created
only if the OpenCL context is created from an OpenGL share group object or context. As the latter are OS specific,
the OpenCL extensions are platform specific as well. In MacOS X the extension cl_apple_gl_sharing needs
to be available for this functionality. If it is Windows/Linux/Unix, then the extension cl_khr_gl_sharing needs
to be available. All the OpenGL objects within the shared group used for the creation of the context can be used
apart from the default OpenGL objects.

Any of the buffers or images created through SYCL using the shared group objects for OpenGL are invalid if the
corresponding OpenGL context is destroyed through usage of the OpenGL API. If buffers or images are used after
the destruction of the corresponding OpenGL context then the behaviour of the system is undefined.

172

4.4.2.1 SYCL/OpenGL extensions to SYCL buffer

A SYCL buffer can be created from an OpenGL buffer object but the lifetime of the SYCL buffer is bound to
the lifetime of the OpenCL context given in order to create the buffer. The GL buffer has to be created a priori
using the OpenGL API, although it doesn’t need to be initialized. If the OpenGL buffer object is destroyed or
otherwise manipulated through the OpenGL API, before its usage through SYCL is completed, then the behaviour
is undefined.

The functionality of the buffer and the accessor class is retained as for any other SYCL buffer defined in this
system.

Constructor Description
template <typename T, int dimensions = 1>

buffer(context &clGlContext, GLuint glBufferObj)

Constructs a buffer from a Open-
CL/OpenGL interop context and a
gl_buffer object.

End of table
Table 4.6: Extended constructors for the buffer class.

The extended methods of the buffer class, which have defined only when behavior when the OpenGL extensions
are available on device, otherwise its undefined.

Method Description
cl_gl_object_type get_gl_info (GLuint glBufferObj) Returns the cl gl object type of the under-

lying OpenGL buffer.
End of table

Table 4.7: Extended buffer class interface

4.4.2.2 SYCL/OpenGL extensions to SYCL image

A SYCL image can be created from an OpenGL buffer, from an OpenGL texture or from an OpenGL renderbuffer.
However, the lifetime of the SYCL image is bound to the lifetime of the OpenCL/OpenGL context given in order
to create the image and the OpenGL object’s lifetime. The GL buffer, texture or renderbuffer has to be created
a priori via the OpenGL API, although it doesn’t need to be initialized. If the OpenGL object is destroyed or
otherwise manipulated through the OpenGL API before its usage through SYCL is completed, then the behaviour
is undefined.

Constructor Description
template<int dimensions = 1>

image(context &clGlContext, GLuint glBufferObj)

Creates an 1-D Image from an OpenGL
buffer object.

template<int dimensions = 2>

image(context &clGlContext, GLuint

glRenderbufferObj)

Create a 2-D image from an OpenGL ren-
derbuffer object.

Continued on next page
Table 4.8: Additional optional image class constructors.

173

Constructor Description
template<int dimensions = 1>

image(context &clGlContext, GLenum textureTarget

, GLuint glTexture, GLint glMiplevel)

Creates a 1-D image from an OpenGL tex-
ture object with given textureTarget and
mipmap level. The textureTarget can be one
of the following:
• GL_TEXTURE_1D
• GL_TEXTURE_1D_ARRAY
• GL_TEXTURE_BUFFER

template<int dimensions = 2>

image(context &clGlContext, GLenum textureTarget

, GLuint glTexture, GLint glMiplevel)

Creates a 2-D image from an OpenGL tex-
ture object with given textureTarget and
mipmap level. The textureTarget can be one
of the following:
• GL_TEXTURE_2D
• GL_TEXTURE_2D_ARRAY
• GL_TEXTURE_CUBE_MAP_-
POSITIVE_X

• GL_TEXTURE_CUBE_MAP_-
POSITIVE_Y

• GL_TEXTURE_CUBE_MAP_-
POSITIVE_Z

• GL_TEXTURE_CUBE_MAP_-
NEGATIVE_X

• GL_TEXTURE_CUBE_MAP_-
NEGATIVE_Y

• GL_TEXTURE_CUBE_MAP_-
NEGATIVE_Z

• GL_TEXTURE_RECTANGLE

template<int dimensions = 3>

image(context &clGlContext, GLenum textureTarget

, GLuint glTexture, GLint glMiplevel)

Creates a 3-D image from an OpenGL tex-
ture object with given textureTarget and
mipmap level. The textureTarget can be one
of the following:
• GL_TEXTURE_3D

End of table
Table 4.8: Additional optional image class constructors.

Method Description
GLenum get_gl_texture_target () Returns the OpenGL texture target corre-

sponding to the underlying texture which the
context was created with.

GLint get_gl_mipmap_level () Returns the mipmap level of the underlying
texture.

End of table
Table 4.9: Additional optional image class method.

174

The texture provided has to be an OpenGL texture created through the OpenGL API and has to be a valid 1D,
2D, 3D texture or 1D array, 2D array texture or a cubemap, rectangle or buffer texture object. The format and the
dimensions provided for the miplevel of the texture are used to create the OpenCL image object. The format of the
OpenGL texture or renderbuffer object needs to match the format of the OpenCL image format. The compatible
formats are specified in Table 9.4 of the OpenCL 1.2 extensions document [2, par. 9.7.3.1] and are also included in
Table 4.10. If the texture or renderbuffer has a different format than the ones specified in 4.10, it is not guaranteed
that the image created will be mapped to the the original texture.

OpenGL internal format Corresponding OpenCL image format
(channel order, channel data type)

GL_RGBA8 CL_RGBA, CL_UNORM_INT8,
CL_BGRA, CL_UNORM_INT8

GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV CL_RGBA, CL_UNORM_INT8
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV CL_BGRA, CL_UNORM_INT8
GL_RGBA16 CL_RGBA, CL_UNORM_INT16
GL_RGBA8I, GL_RGBA8I_EXT CL_RGBA, CL_SIGNED_INT8
GL_RGBA16I, GL_RGBA16I_EXT CL_RGBA, CL_SIGNED_INT16
GL_RGBA32I, GL_RGBA32I_EXT CL_RGBA, CL_SIGNED_INT32
GL_RGBA8UI, GL_RGBA8UI_EXT CL_RGBA, CL_UNSIGNED_INT8
GL_RGBA16UI, GL_RGBA16UI_EXT CL_RGBA, CL_UNSIGNED_INT16
GL_RGBA32UI, GL_RGBA32UI_EXT CL_RGBA, CL_UNSIGNED_INT32
GL_RGBA16F, GL_RGBA16F_ARB CL_RGBA, CL_HALF_FLOAT
GL_RGBA32F, GL_RGBA32F_ARB CL_RGBA, CL_FLOAT

End of table
Table 4.10: Mapping of GL internal format to CL image format (refer-
ence: [2, table 9.4])

4.4.2.3 SYCL/OpenGL extensions to SYCL accessors

In order for SYCL to support the OpenCL/OpenGL interoperability, the classes for buffers and images have to
be extended so that the OpenCL memory objects to be created from OpenGL objects. This extension, apart from
restrictions on the creation and the life-time of the OpenCL objects, also requires that before the usage of any
of these objects in an OpenCL command queue an acquire command has to be enqueued first. In SYCL, the
accessor classes make sure that the data are made available on a device. For this extension the SYCL kernel has
to capture and through the accessor classes acquire any targets that are declared as interoperability targets.

The required extension for the accessor class are shown on Table 4.11.

Enumerator access::target values Description
acces::target::cl_gl_buffer access buffer which is created from an

OpenGL buffer
access::target::cl_gl_image access an image or that is created from an

OpenGL shared object
End of table

Table 4.11: Enumerator description for access::target

175

The SYCL system is responsible for synchronizing the OpenCL and OpenGL objects in use inside a command_-
group when the SYCL API is used and given that all the accessors for the buffers and images are marked as the
interoperability targets.

4.4.2.4 SYCL/OpenGL extensions to SYCL events

In the case where the extension cl_khr_gl_event is available on a platform, the functionality for creating
synchronizing OpenCL events with OpenGL events is available and the event class is extended to include them.

A SYCL event can be constructed from an OpenGL sync object with the extensions to the event class shown on
Table 4.12.

Constructor Description
event(context &clGlContext, GL_sync syncObj) Creates an event which enables waiting on

events to also include synchronization with
OpenGL objects that are shared using the
OpenCL/OpenGL context

End of table
Table 4.12: Additional optional class constructors for event class.

Method Description
GL_sync get_gl_info () Returns GL sync object.

End of table
Table 4.13: Additional optional class method for event class.

The specification of the underlying OpenCL/OpenGL interoperability system for synchronizing OpenCL event
with OpenGL sync objects is in the OpenCL extensions specification [2, sec. 9.8].

4.4.2.5 Extension for depth and depth-stencil images

The extension cl_khr_depth_images adds support for depth images and the extension cl_khr_gl_depth_-
images allows sharing between OpenCL depth images and OpenGL depth or depth-stencil textures. The SYCL
system doesn’t add any additional functionality towards this extension and follows the OpenCL 1.2 Specification
[2, sec. 9.12] for depth and depth-Stencil images extension. All the image class constructors and methods of the
SYCL API as described in Table 3.23 and 3.24 on page 74 are extended to enable the use of the same API when
this extension is present. The API is able to support the type image2d_depth_t and image2d_array_depth_t.
The OpenCL C API defined in [2, sec. 9.12] can be used as well with all the rules that apply for SYCL/OpenCL
C interoperability.

176

5. SYCL Device Compiler

This section specifies the requirements of the SYCL device compiler. Most features described in this section
relate to underlying OpenCL capabilities of target devices and limiting the requirements of device code to ensure
portability.

5.1 Offline compilation of SYCL source files

There are two alternatives for a SYCL device compiler: a shared source device compiler and a single-source
device compiler.

A SYCL shared source device compiler takes in a C++ source file, extracts only the SYCL kernels and outputs
the device code in a form that can be enqueued from host code by the associated SYCL runtime. How the SYCL
runtime invokes the kernels is implementation defined, but a typical approach is for a device compiler to produce
a header file with the compiled kernel contained within it. By providing a command-line option to the host
compiler, it would cause the implementation’s SYCL header files to #include the generated header file. The
SYCL specification has been written to allow this as an implementation approach in order to allow shared-source
compilation. However, any of the mechanisms needed from the SYCL compiler, the SYCL runtime and build
system are implementation defined, as they can vary depending on the platform and approach.

A SYCL single-source device compiler takes in a C++ source file and compiles both host and device code at the
same time. This specification specifies how a SYCL single-source device compiler parses and outputs device code
for kernels, but does not specify the host compilation.

5.2 Naming of kernels

SYCL kernels are extracted from C++ source files and stored in an implementation- defined format. In the case of
the shared-source compilation model, the kernels have to be uniquely identified by both host and device compiler.
This is required in order for the host runtime to be able to load the kernel by using the OpenCL host runtime
interface.

From this requirement the following rules apply for naming the kernels:

• The kernel name is a C++ typename.

• The kernel needs to have a globally-visible name. In the case of a functor, the name can be the typename
of the functor, as long as it is globally-visible. In the case where it isn’t, a globally-visible name has to be
provided, as template parameter to the kernel invoking interface, as described in 3.5.3. In C++11, lambdas1

do not have a globally-visible name, so a globally-visible typename has to be provided in the kernel invoking

1C++14 lambdas have the same naming rules as C++11 lambdas.

177

interface, as described in 3.5.3.

• The kernel name has to be a unique identifier in the program.

In both single-source and shared-source implementations, a device compiler should detect the kernel invocations
(e.g. parallel_for<kernelname>) in the source code and compile the enclosed kernels, storing them with their
associated type name.

The format of the kernel and the compilation techniques are implementation defined. The interface between the
compiler and the runtime for extracting and executing SYCL kernels on the device is implementation defined.

5.3 Language restrictions for kernels

The extracted SYCL kernels need to be compiled by an OpenCL online or offline compiler and be executed by
the OpenCL 1.2 runtime. The extracted kernels need to be OpenCL 1.2 compliant kernels and as such there are
certain restrictions that apply to them.

The following restrictions are applied to device functions and kernels:

• Structures containing pointers may be shared but the value of any pointer passed between SYCL devices or
between the host and a SYCL device is undefined.

• Memory storage allocation is not allowed in kernels, all memory allocation for the device is done on host,
using accessor classes. Consequently, the default allocation operator new overloads that allocate storage
are disallowed in a SYCL kernel. The placement new operator and any user-defined overloads that do not
allocate storage are permitted.

• No virtual methods are allowed to be called in a SYCL kernel or any functions called by the kernel.

• No function pointers are allowed to be called in a SYCL kernel or any functions called by the kernel.

• No class with a vtable can be used in a SYCL kernel or any code included in the kernel.

• RTTI is disabled inside kernels.

• Exception-handling cannot be used inside a SYCL kernel or any code called from the kernel.

• Recursion is not allowed in a SYCL kernel or any code called from the kernel.

• Global variables are not allowed to be used in kernel code.

• Non-const static member variables are not allowed to be used in kernel code.

• The rules for kernels apply to both the kernel functors themselves and all functions, operators, methods,
constructors and destructors called by the kernel. This means that kernels can only use library functions that
have been adapted to work with SYCL. Implementations are not required to support any library routines in
kernels beyond those explicitly mentioned as usable in kernels in this spec. Developers should refer to the
SYCL built-in functions in 3.10 to find functions that are specified to be usable in kernels.

178

5.4 Compilation of functions

The SYCL device compiler parses an entire C++ source file supplied by the user. This also includes C++ header
files, using #include directives. From this source file, the SYCL device compiler must compile kernels for the
device, as well as any functions that the kernels call.

In SYCL, kernels are invoked using a kernel invoke function (e.g. parallel_for). The kernel invoke functions
are templated by their kernel parameter, which is a function object (either a functor or a lambda). The code inside
the function object that is invoked as a kernel is called the “kernel function”. The “kernel function” must always
return void. Any function called by the kernel function is compiled for device and called a “device function”.
Recursively, any function called by a device function is itself compiled as a device function.

For example, this source code shows three functions and a kernel invoke with comments explaining which func-
tions need to be compiled for device.

void f ()

{

// function "f" is not compiled for device

single_task<class kernel_name>([=] ()

{

// This code compiled for device

g (); // this line forces "g" to be compiled for device

});

}

void g ()

{

// called from kernel, so "g" is compiled for device

}

void h ()

{

// not called from a device function, so not compiled for device

}

In order for the SYCL device compiler to correctly compile device functions, all functions in the source file,
whether device functions or not, must be syntactically correct functions according to this specification. A syntac-
tically correct function is a function that matches at least the C++11 specification, plus any extensions from the
C++14 specification.

5.5 Built-in scalar data types

In a SYCL device compiler, the standard C++ fundamental types, including int, short, long, long long int
need to be configured so that the device definitions of those types match the host definitions of those types. A
device compiler may have this preconfigured so that it can match them based on the definitions of those types on
the platform. Or there may be a necessity for a device compiler command-line option to ensure the types are the
same.

179

The standard C++ fixed width types, e.g. int8_t, int16_t, int32_t,int64_t, should have the same size as defined
by the C++ standard for host and device.

SYCL Scalar Datatypes Description
char a signed 8-bit integer.
unsigned char an unsigned 8-bit integer.
short int a signed integer of at least 16 bits and whose

size must match the definition on the host.
unsigned short int an unsigned integer of at least 16 bits and

whose size must match the definition on the
host.

int a signed integer of at least 16 bits and whose
size must match the definition on the host.

unsigned int an unsigned integer of at least 16 bits and
whose size must match the definition on the
host.

long int a signed integer of at least 32 bits and whose
size must match the definition on the host.

unsigned long int an unsigned integer of at least 32 bits and
whose size must match the definition on the
host.

long long int an integer of at least 64 bits and whose size
must match the definition on the host.

unsigned long long int an unsigned integer of at least 64 bits and
whose size must match the definition on the
host.

float a 32-bit IEEE 754 floating-point value.
double a 64-bit IEEE 754 floating-point value.
half a 16-bit IEEE 754-2008 half-precision

floating-point value.
size_t the unsigned integer type of the result of the

sizeof operator on host.
End of table

Table 5.1: SYCL compiler fundamental scalar datatypes

The SYCL device compiler also supports the OpenCL C scalar types which map to the OpenCL C language
fundamental scalar datatypes 3.73.

5.6 Preprocessor directives and macros

The standard C++ preprocessing directives and macros are supported.

• CL_SYCL_LANGUAGE_VERSION substitutes an integer reflecting the version number of the SYCL language
being supported by the device compiler. The version of SYCL defined in this document will have CL_-
SYCL_LANGUAGE_VERSION substitute the integer 120;

180

• __FAST_RELAXED_MATH__ is used to determine if the -cl-fast-relaxed-math optimization option is
specified in the build options given to the SYCL device compiler. This is an integer constant of 1 if the
option is specified and undefined otherwise;

• __SYCL_DEVICE_ONLY__ is defined to 1 if the source file is being compiled with a SYCL device compiler
which does not produce host binary;

• __SYCL_SINGLE_SOURCE__ is defined to 1 if the source file is being compiled with a SYCL single-source
compiler which produces host as well as device binary;

• __SYCL_TARGET_SPIR__ is defined to 1 if the source file is being compiled with a SYCL compiler which
is producing OpenCL SPIR binary.

• SYCL_EXTERNAL is a macro which enables external linkage of SYCL functions and methods to be included
in a SYCL kernel. For more details see 5.9.1

5.7 Attributes

The attribute syntax defined in the OpenCL C specification is supported in SYCL.

The vec_type_hint, work_group_size_hint and reqd_work_group_size kernel attributes in OpenCL C
apply to kernel functions, but this is not syntactically possible in SYCL. In SYCL, these attributes are legal on
device functions and their specification is propagated down to any caller of those device functions, such that the
kernel attributes are the sum of all the kernel attributes of all device functions called. If there are any conflicts
between different kernel attributes, then the behaviour is undefined.

5.8 Address-space deduction

In SYCL, there are several different types of pointer, or reference:

• Accessors give access to shared data. They can be bound to a memory object in a command group and
passed into a kernel. Accessors are used in scheduling of kernels to define ordering. Accessors to buffers
have a compile-time OpenCL address space based on their access mode.

• Explicit pointer classes (e.g. global_ptr) contain an OpenCL address space. This allows the compiler to
determine whether the pointer references global, local, constant or private memory.

• C++ pointer and reference types (e.g. int*) are allowed within SYCL kernels. They can be constructed
from the address of local variables, from explicit pointer classes, or from accessors. In all cases, a SYCL
device compiler will need to auto-deduce the address space.

Inside kernels, conversions between accessors to buffers, explicit pointer classes and C++ pointers are allowed as
long as they reference the same datatype and have compatible qualifiers and address spaces.

If a kernel function or device function contains a pointer or reference type, then address-space deduction must be
attempted using the following rules:

• If a an explicit pointer class is converted into a C++ pointer value, then the C++ pointer value will have the

181

address space of the explicit pointer class.

• If a variable is declared as a pointer type, but initialized in its declaration to a pointer value with an already-
deduced address space, then that variable will have the same address space as its initializer.

• If a function parameter is declared as a pointer type, and the argument is a pointer value with a deduced
address space, then the function will be compiled as if the parameter had the same address space as its
argument. It is legal for a function to be called in different places with different address spaces for its
arguments: in this case the function is said to be “duplicated” and compiled multiple times. Each duplicated
instance of the function must compile legally in order to have defined behavior.

• The rules for pointer types also apply to reference types. i.e. a reference variable takes its address space
from its initializer. A function with a reference parameter takes its address space from its argument.

• If no other rule above can be applied to a declaration of a pointer, then it is assumed to be in the private
address space. This default assumption is expected to change to be the generic address space for OpenCL
versions that support the generic address space.

It is illegal to assign a pointer value of one address space to a pointer variable of a different address space.

5.9 SYCL offline linking

5.9.1 SYCL functions and methods linkage

The default behavior in SYCL applications is that all the definitions and declarations of the functions and methods
are available to the SYCL compiler, in the same translation unit. When this is not the case, all the symbols that
need to be exported to a SYCL library or from a C++ library to a SYCL application need to be defined using the
macro: SYCL_EXTERNAL.

The SYCL_EXTERNAL macro is implementation defined. It is the only requirement in the SYCL system for any
function or method to be able to be linked against a SYCL application or library. The SYCL linkage mechanism
is implementation defined, but the existence of the macro is required across all implementations.

5.9.2 Offline linking with OpenCL C libraries

The SYCL system supports external offline linking of OpenCL C libraries with a SYCL application. An OpenCL
C function can be included and used in a SYCL program by defining it as an extern "C" function and adding
the OpenCL library to the SYCL program. Any kernel which uses the external function needs to be included in a
SYCL program which is linked against the OpenCL C library.

The data types for SYCL/OpenCL C interoperability are defined in 3.73. Only those data types can be used in
the extern "C" declaration. These data types are invalid in an OpenCL C kernel, but these should be used in case
of interop with a SYCL kernel and can be converted to and from the C++ fundamental types that are the default
types in SYCL. The underlying OpenCL built-in types for pointers and vectors are defined as typedefs within the
SYCL vec and explicit pointer types. The vec class contains a vector_t typedef for the underlying OpenCL
C data type, while the explicit pointer classes contain a pointer_t typedef for the underling OpenCL C pointer
type.

182

A. Glossary

The purpose of this glossary is to define the key concepts involved in specifying OpenCL SYCL. This section
includes definitions of terminology used throughout the specification document.

Accessor: An accessor is an interface which allows a kernel function to access data maintained by a buffer.

Application scope: The application scope is the normal C++ source code in the application, outside of command
groups and kernels.

Buffer: A buffer is an interface which maintains an area of memory which is to be accessed by a kernel function.
It represents storage of data only, with access to that data achieved via accessors. The storage is managed
by the SYCL runtime, but may involve OpenCL buffers.

Barrier: SYCL barriers are the same as OpenCL barriers. In SYCL, OpenCL’s command-queue-barriers are
created automatically on demand by the SYCL runtime to ensure kernels are executed in a semantically-
correct order across multiple OpenCL contexts and queues. OpenCL’s work-group barriers are available as
an intrinsic function (same as in OpenCL) or generated automatically by SYCL’s hierarchical parallel-for
loops.

Command Group Functor: All of the OpenCL commands, memory object creation, copying, mapping and
synchronization operations to correctly execute a kernel on a device are defined in a functor and called
a command group functor. Command group functors executed in different threads are added to queues
atomically, so it is safe to submit command group functors operating on shared queues, buffers and images.

Command Group Scope: The command group scope is the scope defined by the command group functor.

Command Queue: SYCL’s command queues abstrac the OpenCL command queue functionality and add a
SYCL-specific host command queue, which executes SYCL kernels on the host.

Constant Memory: “ A region of global memory that remains constant during the execution of a kernel. The
host allocates and initializes memory objects placed into constant memory.” As defined in [1, p.15]

Device: SYCL’s devices encapsulate OpenCL devices and add support for executing SYCL kernels on host.

Device Compiler: A SYCL device compiler is a compiler that is capable of taking in C++ source code containing
SYCL kernels and outputting a binary object suitable for executing on an OpenCL device.

Functor: Functors are a concept from C++. An alternative name for functions in C++ is “function object”. A
functor is a C++ class with an operator() method that enables the object to be executed in a way that looks
like a function call, but where the object itself is also passed in as a parameter.

Global ID: As in OpenCL, a global ID is used to uniquely identify a work-item and is derived from the number
of global work-items specified when executing a kernel. A global ID is an N-dimensional value that starts
at (0, 0, ...0).

Global Memory: As in OpenCL, global memory is a memory region accessible to all work-items executing in a

183

context. Buffers are mapped or copied into global memory for individual contexts inside the SYCL runtime
in order to enable accessors within command groups to give access to buffers from kernels.

Group ID: As in OpenCL, SYCL kernels execute in work groups. The group ID is the ID of the work group that
a work item is executing within.

Group Range: A group range is the range specifying the size of the work group.

Host: As in OpenCL, the host is the system that executes the SYCL API and the rest of the application.

Host pointer: A pointer to memory that is in the virtual address space on the host.

ID: An id is a one, two or three dimensional vector of integers. There are several different types of ID in SYCL:
global ID, local ID, group ID. These different IDs are used to define work items

Image: Images in SYCL, like buffers, are abstractions of the OpenCL equivalent. As in OpenCL, an image stores
a two- or three-dimensional structured array. The SYCL runtime will map or copy images to OpenCL
images in OpenCL contexts in order to execute semantically correct kernels in different OpenCL contexts.
Images are also accessible on the host via the various SYCL accessors available.

Implementation defined: Behavior that is explicitly allowed to vary between conforming implementations of
SYCL. A SYCL implementer is required to document the implementation defined behavior.

Item ID: An item id is an interface used to retrieve the global id, group id and local id of a work item.

Kernel: A SYCL kernel is a C++ functor or lambda function that is compiled to execute on a device. There are
several ways to define SYCL kernels defined in the SYCL specification. It is also possible in SYCL to use
OpenCL kernels as specified in the OpenCL specification. Kernels can execute on either an OpenCL device
or on the host.

Kernel Name: A kernel name is a class type that is used to assign a name to the kernel function, used to link the
host system with the kernel object output by the device compiler.

Kernel Scope: The scope inside the kernel functor or lambda is called kernel scope. Also, any function or method
called from the kernel is also compiled in kernel scope. The kernel scope allows C++ language extensions
as well as restrictions to reflect the capabilities of OpenCL devices. The extensions and restrictions are
defined in the SYCL device compiler specification.

Local ID: A local id is an id which specifies a work items location within a group range.

Local Memory: As in OpenCL, local memory is a memory region associated with a work-group and accessible
only by work-items in that work-group.

NDRange: An NDRange consists of two vectors of integers of one, two or three-dimensions that define the total
number of work items to execute as well as the size of the work groups that the work items are to be
executed within.

Platform: A platform in SYCL is encapsulates an OpenCL platform as defined in the OpenCL specification.

Private Memory: As in OpenCL, private memory is a region of memory private to a work-item. Variables
defined in one work-items private memory are not visible to another work-item.

Program Object: A program object in SYCL is an OpenCL program object encapsulated in A SYCL class. It
contains OpenCL kernels and functions compiled to execute on OpenCL devices. A program object can be

184

generated from SYCL C++ kernels by the SYCL runtime, or obtained from an OpenCL implementation.

Shared Source Build System: A shared source build system means that a single source file passed through both
a host compiler and one or more device compilers. This enables multiple devices, instruction sets and binary
formats to be produced from the same source code and integrated into the same piece of software.

SYCL Runtime: A SYCL runtime is an implementation of the SYCL runtime specification. The SYCL runtime
manages the different OpenCL platforms, devices, contexts as well as the mapping or copying of data
between host and OpenCL contexts to enable semantically correct execution of SYCL kernels.

Work-Group: A work group is an OpenCL work group, defined in OpenCL as a collection of related work-items
that execute on a single compute unit. The work-items in the group execute the same kernel and share local
memory and work-group barriers.

Work-Item: A work item is an OpenCL work item, defined in OpenCL as one of a collection of parallel execu-
tions of a kernel invoked on a device by a command. A work-item is execute by one or more processing
elements as part of a work-group executing on a compute unit. A work-item is distinguished from other
executions within the collection by its global ID and local ID.

185

B. Interface of SYCL Classes in Full

B.1 Explicit pointer classes

The explicit pointer classes global_ptr, local_ptr, private_ptr and constant_ptr are defined in 3.4.7.1. The
available functions for these classes in full are the following:

namespace cl {

namespace sycl {

template <typename ElementType>

class global_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions

typedef __undefined__ pointer_t;

global_ptr(pointer_t); // global pointer

template <access::mode Mode>

global_ptr(accessor<ElementType, 1, Mode, global_buffer>);

global_ptr(const global_ptr&);

∼global_ptr();

ElementType& operator*();

ElementType& operator[](size_t i);

// implementation defined implicit conversion

// to OpenCL C pointer types.

operator pointer_t();

};

template <typename ElementType>

class constant_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions

typedef __undefined__ pointer_t;

constant_ptr(pointer_t); // constant pointer

template <access::mode Mode>

constant_ptr(accessor<ElementType, 1, Mode, constant_buffer>);

186

ElementType& operator*();

ElementType& operator[](size_t i);

// implementation defined implicit conversion

// to OpenCL C pointer types.

operator pointer_t();

};

template <typename ElementType>

class local_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions

typedef __undefined__ pointer_t;

local_ptr(pointer_t); // local pointer

template <access::mode Mode>

local_ptr(accessor<ElementType, 1, Mode, local_buffer>);

ElementType& operator*();

ElementType& operator[](size_t i);

// implementation defined implicit conversion

// to OpenCL C pointer types.

operator pointer_t();

};

template <typename ElementType>

class private_ptr {

public:

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions

typedef __undefined__ pointer_t;

private_ptr(pointer_t); // private pointer

ElementType& operator*();

ElementType& operator[](size_t i);

// implementation defined implicit conversion

// to OpenCL C pointer types.

operator pointer_t();

};

} // namespace sycl

} // namespace cl

template <typename ElementType>

bool operator==(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

187

bool operator<(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const global_ptr<ElementType>& lhs,

const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator!=(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator==(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>=(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const global_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<=(nullptr_t lhs, const global_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const constant_ptr<ElementType>& lhs,

const constant_ptr<ElementType>& rhs);

188

template <typename ElementType>

bool operator!=(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator!=(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator==(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>=(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const constant_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<=(nullptr_t lhs, const constant_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const local_ptr<ElementType>& lhs,

const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator!=(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator==(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const local_ptr<ElementType>& lhs, nullptr_t rhs);

189

template <typename ElementType>

bool operator>(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>=(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const local_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<=(nullptr_t lhs, const local_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<=(const private_ptr<ElementType>& lhs,

const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator!=(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator!=(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator==(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator==(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator<(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

bool operator>=(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator>=(nullptr_t lhs, const private_ptr<ElementType>& rhs);

template <typename ElementType>

190

bool operator<=(const private_ptr<ElementType>& lhs, nullptr_t rhs);

template <typename ElementType>

bool operator<=(nullptr_t lhs, const private_ptr<ElementType>& rhs);

B.2 Multi pointer pointer class

The multi_ptr class is defined in 3.4.7.2. The available functions for this class in full is the following:

namespace cl {

namespace sycl {

namespace access {

enum class address_space : int {

global_space,

local_space,

constant_space,

private_space

};

} // namespace access

template <typename ElementType, access::address_space Space>

class multi_ptr {

public :

// Implementation defined pointer type that corresponds to the SYCL/OpenCL

// interoperability type for OpenCL C functions

typedef __undefined__ pointer_t;

const address_space space;

multi_ptr(pointer_t);

multi_ptr(const multi_ptr&);

∼multi_ptr();

ElementType &operator*();

ElementType &operator[](size_t i);

// Only if Space == global_space

operator global_ptr<ElementType>();

global_ptr<ElementType> pointer();

// Only if Space == local_space

operator local_ptr<ElementType>();

local_ptr<ElementType> pointer();

// Only if Space == constant_space

operator constant_ptr<ElementType>();

constant_ptr<ElementType> pointer();

// Only if Space == private_space

operator private_ptr<ElementType>();

private_ptr<ElementType> pointer();

};

191

template <typename ElementType, access::address_space Space>

multi_ptr<ElementType, Space> make_ptr(pointer_t);

} // namespace sycl

} // namespace cl

template <typename ElementType, access::address_space Space>

bool operator==(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator!=(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator<(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator>(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator<=(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator>=(const multi_ptr<ElementType, Space>& lhs,

const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator!=(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator!=(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator==(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator==(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator>(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator>(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator<(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator<(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator>=(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator>=(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

template <typename ElementType, access::address_space Space>

bool operator<=(const multi_ptr<ElementType, Space>& lhs, nullptr_t rhs);

template <typename ElementType, access::address_space Space>

bool operator<=(nullptr_t lhs, const multi_ptr<ElementType, Space>& rhs);

B.3 range class

The range class is defined in 3.5.1.1. The available functions for this class in full is the following:

192

namespace cl {

namespace sycl {

template <size_t dimensions>

struct range {

range(const range<dimensions> &);

range(size_t x); // When dimensions==1

range(size_t x, size_t y); // When dimensions==2

range(size_t x, size_t y, size_t z); // When dimensions==3

size_t get(int dimension) const;

size_t &operator[](int dimension);

range &operator=(const range &rhs);

range &operator+=(const range &rhs);

range &operator*=(const range &rhs);

range &operator/=(const range &rhs);

range &operator%=(const range &rhs);

range &operator>>=(const range &rhs);

range &operator<<=(const range &rhs);

range &operator&=(const range &rhs);

range &operatorˆ=(const range &rhs);

range &operator|=(const range &rhs);

size_t size() const;

};

template <size_t dimensions>

bool operator==(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator!=(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator>(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator<(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator<=(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

bool operator>=(const range<dimensions> &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator*(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator/(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator+(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator-(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator%(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

193

range<dimensions> operator<<(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator>>(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator&(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator|(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator||(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator&&(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operatorˆ(const range<dimensions> &a,

const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator*(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator*(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator/(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator/(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator+(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator+(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator-(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator-(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator%(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator%(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator<<(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator<<(const range<dimensions> &a, const size_t &b);

template <size_t dimensions>

range<dimensions> operator>>(const size_t &a, const range<dimensions> &b);

template <size_t dimensions>

range<dimensions> operator>>(const range<dimensions> &a, const size_t &b);

} // sycl

} // cl

194

B.4 id class

The id class is defined in 3.5.1.3. The available functions for this class in full is the following:

namespace cl {

namespace sycl {

template <size_t dimensions>

struct id {

id(size_t x); // When dimensions==1

id(size_t x, size_t y); // When dimensions==2

id(size_t x, size_t y , size_t z); // When dimensions==3

id(const id<dimensions> & rhs);

id(const range<dimensions> & rangeSize);

id(const item<dimensions> & rhs);

size_t get(int dimension) const;

size_t &operator[](int dimension);

operator size_t(); // When dimensions==1

id &operator=(const id & rhs);

id &operator+=(const id & rhs);

id &operator*=(const id & rhs);

id &operator/=(const id & rhs);

id &operator%=(const id & rhs);

id &operator>>=(const id & rhs);

id &operator<<=(const id & rhs);

id &operator&=(const id & rhs);

id &operatorˆ=(const id & rhs);

id &operator|=(const id & rhs);

};

template <size_t dimensions>

bool operator==(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator!=(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator>(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator<(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator<=(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

bool operator>=(const id<dimensions> &a, const id<dimensions> &)b;

template <size_t dimensions>

id<dimensions> operator*(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator/(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator+(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator-(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator%(const id<dimensions> &a, const id<dimensions> &b);

195

template <size_t dimensions>

id<dimensions> operator<<(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator>>(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator&(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator|(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operatorˆ(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator&&(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator||(const id<dimensions> &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator*(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator*(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator/(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator/(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator+(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator+(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator-(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator-(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator%(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator%(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator<<(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator<<(const id<dimensions> &a, const size_t &b);

template <size_t dimensions>

id<dimensions> operator>>(const size_t &a, const id<dimensions> &b);

template <size_t dimensions>

id<dimensions> operator>>(const id<dimensions> &a, const size_t &b);

} // namespace sycl

} // namespace cl

B.5 vec class

The vec class is defined in 3.7.2. The available functions for this class in full is the following:

namespace cl {

namespace sycl {

196

template <typename dataT, int numElements>

class vec {

public:

typedef dataT element_type;

//Underlying OpenCL type

typedef __undefined__ vector_t;

vec();

explicit vec(const dataT &arg);

vec(const T0 &arg0... args);

vec(const vec<dataT, numElements> &rhs);

size_t get_count();

size_t get_size();

template <typename asDataT, int width>

vec<asDataT, width> as() const;

// genvector is a generic typename for describing

// all OpenCL/SYCL types.

operator __genvector__() const;

// arithmetic operators

vec operator+(const vec &rhs) const;

vec operator-(const vec &rhs) const;

vec operator*(const vec &rhs) const;

vec operator/(const vec &rhs) const;

vec operator%(const vec &rhs) const;

vec operator++(const vec &rhs) const;

vec operator++();

vec operator++(int);

vec operator--();

vec operator--(int);

vec operator+(const dataT &rhs) const;

vec operator-(const dataT &rhs) const;

vec operator*(const dataT &rhs) const;

vec operator/(const dataT &rhs) const;

vec operator%(const dataT &rhs) const;

// bitwise and logical operators

vec operator|(const vec &rhs) const;

vec operator|(const dataT &rhs) const;

vec operatorˆ(const vec &rhs) const;

vec operatorˆ(const dataT &rhs) const;

vec operator&&(const vec<dataT, numElements> &rhs) const;

vec operator&&(const dataT &rhs) const;

vec operator||(const vec<dataT, numElements> &rhs) const;

vec operator||(const dataT &rhs) const;

vec operator>>(const vec<dataT, numElements> &rhs) const;

vec operator>>(const dataT &rhs) const;

vec operator<<(const vec &rhs) const;

197

vec operator<<(const dataT &rhs) const;

vec operator∼();

vec operator!();

// assignment operators

vec operator+=(const vec &rhs);

vec operator+=(const dataT &rhs);

vec operator-=(const vec &rhs);

vec operator-=(const dataT &rhs);

vec operator*=(const vec &rhs);

vec operator*=(const dataT &rhs);

vec operator/=(const vec &rhs);

vec operator/=(const dataT rhs);

vec operator|=(const vec &rhs);

vec operator|=(const dataT &rhs);

vec operatorˆ=(const vec &rhs);

vec operatorˆ=(const dataT &rhs);

vec operator<<=(const vec &rhs);

vec operator<<=(const dataT &rhs);

vec operator>>=(const vec &rhs);

vec operator>>=(const dataT &rhs);

vec operator&=(const vec &rhs);

vec operator&=(const dataT &rhs);

vec &operator=(const vec &rhs);

vec &operator=(const dataT &rhs);

vec &operator%=(const vec &rhs);

vec &operator%=(const dataT &rhs);

// relational operators

vec<int, numElements> operator==(const vec &rhs) const;

vec<int, numElements> operator!=(const vec &rhs) const;

vec<int, numElements> operator<=(const vec &rhs) const;

vec<int, numElements> operator>=(const vec &rhs) const;

vec<int, numElements> operator>(const vec &rhs) const;

vec<int, numElements> operator<(const vec &rhs) const;

// Swizzle methods (see notes)

swizzled_vec<T, out_dims> swizzle<elem s1, ...>();

#ifdef SYCL_SIMPLE_SWIZZLES

swizzled_vec<T, 4> xyzw();

...

#endif // #ifdef SYCL_SIMPLE_SWIZZLES

};

} // namespace sycl

} // namespace cl

198

C. Interface of Memory Object Information Descriptors

The purpose of this chapter is to include all the headers of the Memory Object Descriptors, which are described
in detail in Chapter 3, for platform, context, device, and queue.

C.1 Platform Information Descriptors

The following interface includes all the information descriptors for the platform class as described in table 3.6.

namespace cl {

namespace sycl {

namespace info {

enum class platform : unsigned int {

profile,

version,

name,

vendor,

extensions

};

}

C.2 Context Information Descriptors

The following interface includes all the information descriptors for the context class as described in table 3.9.

namespace cl {

namespace sycl {

namespace info {

bool gl_context_interop;

enum class context : int {

reference_count,

num_devices,

gl_interop

};

} // info

} // sycl

} // cl

199

C.3 Device Information Descriptors

The following interface includes all the information descriptors for the device class as described in table 3.12.

namespace cl {

namespace sycl {

namespace info {

unsigned int device_fp_config;

unsigned int device_exec_capabilities;

unsigned int device_queue_properties;

enum class device_type : unsigned int {

cpu,

gpu,

accelerator,

custom,

defaults,

host,

all

};

enum class device : int {

device_type,

vendor_id,

max_compute_units,

max_work_item_dimensions,

max_work_item_sizes,

max_work_group_size,

preferred_vector_width_char,

preferred_vector_width_short,

preferred_vector_width_int,

preferred_vector_width_long_long,

preferred_vector_width_float,

preferred_vector_width_double,

preferred_vector_width_half,

native_vector_witdth_char,

native_vector_witdth_short,

native_vector_witdth_int,

native_vector_witdth_long_long,

native_vector_witdth_float,

native_vector_witdth_double,

native_vector_witdth_half,

max_clock_frequency,

address_bits,

max_mem_alloc_size,

image_support,

max_read_image_args,

max_write_image_args,

image2d_max_height,

image2d_max_width,

image3d_max_height,

200

image3d_max_widht,

image3d_mas_depth,

image_max_buffer_size,

image_max_array_size,

max_samplers,

max_parameter_size,

mem_base_addr_align,

single_fp_config,

double_fp_config,

global_mem_cache_type,

global_mem_cache_line_size,

global_mem_cache_size,

global_mem_size,

max_constant_buffer_size,

max_constant_args,

local_mem_type,

local_mem_size,

error_correction_support,

host_unified_memory,

profiling_timer_resolution,

endian_little,

is_available,

is_compiler_available,

is_linker_available,

execution_capabilities,

queue_properties,

built_in_kernels,

platform,

name,

vendor,

driver_version,

profile,

device_version,

opencl_version,

extensions,

printf_buffer_size,

preferred_interop_user_sync,

parent_device,

partition_max_sub_devices,

partition_properties,

partition_affinity_domain,

partition_type,

reference_count

};

enum class device_partition_property : int {

unsupported,

partition_equally,

partition_by_counts,

partition_by_affinity_domain,

partition_affinity_domain_next_partitionable

};

enum class device_affinity_domain : int {

unsupported,

201

numa,

L4_cache,

L3_cache,

L2_cache,

next_partitionable

};

enum class device_partition_type : int {

no_partition,

numa,

L4_cache,

L3_cache,

L2_cache,

L1_cache

};

enum class local_mem_type : int {

none,

local,

global

};

enum class fp_config : int {

denorm,

inf_nan,

round_to_nearest,

round_to_zero,

round_to_inf,

fma,

correctly_rounded_divide_sqrt,

soft_float

};

enum class global_mem_cache_type : int {

none,

read_only,

write_only

};

enum class device_execution_capabilities : unsigned int {

exec_kernel,

exec_native_kernel

};

} // namespace info

} // namespace sycl

} // namespace cl

C.4 Queue Information Descriptors

The following interface includes all the information descriptors for the queue class as described in table 3.15.

202

namespace cl {

namespace sycl {

namespace info {

bool queue_profiling;

enum class queue : int {

context,

device,

reference_count,

properties

};

} // namespace info

} // namespace sycl

} // namespace cl

C.5 Kernel Information Descriptors

The following interface includes all the information descriptors for the kernel class as described in table 3.62.

namespace cl {

namespace sycl {

namespace info {

enum class kernel: int {

function_name,

num_args,

reference_count,

attributes

};

} // namespace info

} // namespace sycl

} // namespace cl

C.6 Program Information Descriptors

The following interface includes all the information descriptors for the program class as described in table 3.65.

namespace cl {

namespace sycl {

namespace info {

enum class program: int {

reference_count,

context,

devices

};

} // namespace info

} // namespace sycl

} // namespace cl

203

C.7 Event Information Descriptors

The following interface includes all the information descriptors for the event class as described in table 3.62 and
table 3.19.

namespace cl {

namespace sycl {

namespace info {

enum class event: int {

command_type,

command_execution_status,

reference_count

};

enum class event_profiling : int {

command_queued,

command_submit,

command_start,

command_end

};

} // namespace info

} // namespace sycl

} // namespace cl

204

References

[1] Khronos OpenCL Working Group, The OpenCL Specification, version 1.2.19, 2012. [Online]. Available:
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

[2] ——, The OpenCL Extension Specification, version 1.2.19, 2012. [Online]. Available: http:
//www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf

205

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf

	1 Introduction
	2 SYCL Architecture
	2.1 Overview
	2.2 The SYCL Platform Model
	2.2.1 Platform Mixed Version Support

	2.3 SYCL Execution Model
	2.3.1 Execution Model: Queues, Command Groups and Contexts

	2.4 Memory Model
	2.4.1 Access to memory
	2.4.2 Memory consistency
	2.4.3 Atomic operations

	2.5 The SYCL programming model
	2.5.1 Basic data parallel kernels
	2.5.2 Work-group data parallel kernels
	2.5.3 Hierarchical data parallel kernels
	2.5.4 Kernels that are not launched over parallel instances
	2.5.5 Synchronization
	2.5.6 Error handling
	2.5.7 Scheduling of kernels and data movement
	2.5.8 Managing object lifetimes
	2.5.9 Device discovery and selection
	2.5.10 Interfacing with OpenCL

	2.6 Anatomy of a SYCL application
	2.7 Memory objects
	2.8 SYCL for OpenCL Framework
	2.9 SYCL device compiler
	2.9.1 Building a SYCL program
	2.9.2 Naming of kernels

	2.10 Language restrictions in kernels
	2.10.1 SYCL Linker
	2.10.2 Functions and datatypes available in kernels

	2.11 Execution of kernels on the SYCL host device
	2.12 Example SYCL application

	3 SYCL Programming Interface
	3.1 Header files and namespaces
	3.2 C++ Standard library classes required for the interface
	3.3 SYCL runtime classes
	3.3.1 Device selection class
	3.3.2 Platform class
	3.3.2.1 Platform information descriptors

	3.3.3 Context class
	3.3.3.1 Context interface
	3.3.3.2 Context information descriptors

	3.3.4 Device class
	3.3.4.1 Device interface
	3.3.4.2 Device information descriptors

	3.3.5 Queue class
	3.3.5.1 Queue interface
	3.3.5.2 Queue information descriptors
	3.3.5.3 Queue error handling

	3.3.6 Event class for OpenCL interoperability
	3.3.6.1 Event information and profiling descriptors

	3.4 Data access and storage in SYCL
	3.4.1 Host allocation
	3.4.1.1 Default Allocators
	3.4.1.2 Map Allocator

	3.4.2 Buffers
	3.4.2.1 Buffer Interface
	3.4.2.2 Buffer Synchronization Rules

	3.4.3 Images
	3.4.3.1 Image Interface
	3.4.3.2 Image Synchronization Rules

	3.4.4 Sharing Host Memory With The SYCL Data Management Classes
	3.4.4.1 Default behavior
	3.4.4.2 SYCL ownership of the host memory
	3.4.4.3 Shared SYCL ownership of the host memory

	3.4.5 Synchronisation Primitives
	3.4.6 Accessors
	3.4.6.1 Access modes
	3.4.6.2 Access targets
	3.4.6.3 Accessor class
	3.4.6.4 Buffer accessors
	3.4.6.5 Image accessors
	3.4.6.6 Local accessors
	3.4.6.7 Host accessors
	3.4.6.8 Accessor capabilities and restrictions

	3.4.7 Address space classes
	3.4.7.1 Explicit pointer classes
	3.4.7.2 Multi-pointer class

	3.4.8 Samplers

	3.5 Expressing parallelism through kernels
	3.5.1 Ranges and index space identifiers
	3.5.1.1 range class
	3.5.1.2 nd_range class
	3.5.1.3 id class
	3.5.1.4 item class
	3.5.1.5 nd_item class
	3.5.1.6 group class

	3.5.2 Command group scope
	3.5.3 SYCL functions for invoking kernels
	3.5.3.1 single_task invoke
	3.5.3.2 parallel_for invoke
	3.5.3.3 Parallel For hierarchical invoke
	3.5.3.4 Command group handler class

	3.5.4 Kernel class
	3.5.5 Program class
	3.5.6 Defining kernels
	3.5.6.1 Defining kernels as functors
	3.5.6.2 Defining kernels as lambda functions
	3.5.6.3 Defining kernels using program objects
	3.5.6.4 Defining kernels using OpenCL C kernel objects

	3.5.7 Rules for parameter passing to kernels

	3.6 Error handling
	3.6.1 Error Handling Rules
	3.6.2 Exception Class Interface

	3.7 Data types
	3.7.1 Scalar data types
	3.7.2 Vector types

	3.8 Synchronization and atomics
	3.9 Stream class
	3.10 SYCL built-in functions for SYCL host and device
	3.10.1 Description of the built-in types available for SYCL host and device
	3.10.2 Work-item functions
	3.10.3 Math functions
	3.10.4 Integer functions
	3.10.5 Common functions
	3.10.6 Geometric Functions
	3.10.7 Relational functions
	3.10.8 Vector data and store functions
	3.10.9 Synchronization Functions
	3.10.10 printf function

	4 SYCL Support of Non-Core OpenCL Features
	4.1 Enable extensions in a SYCL kernel
	4.2 Half Precision Floating-Point
	4.3 Writing to 3D image memory objects
	4.4 Interoperability with OpenGL
	4.4.1 OpenCL/OpenGL extensions to the context class
	4.4.2 Sharing SYCL/OpenGL memory objects
	4.4.2.1 SYCL/OpenGL extensions to SYCL buffer
	4.4.2.2 SYCL/OpenGL extensions to SYCL image
	4.4.2.3 SYCL/OpenGL extensions to SYCL accessors
	4.4.2.4 SYCL/OpenGL extensions to SYCL events
	4.4.2.5 Extension for depth and depth-stencil images

	5 SYCL Device Compiler
	5.1 Offline compilation of SYCL source files
	5.2 Naming of kernels
	5.3 Language restrictions for kernels
	5.4 Compilation of functions
	5.5 Built-in scalar data types
	5.6 Preprocessor directives and macros
	5.7 Attributes
	5.8 Address-space deduction
	5.9 SYCL offline linking
	5.9.1 SYCL functions and methods linkage
	5.9.2 Offline linking with OpenCL C libraries

	A Glossary
	B Interface of SYCL Classes in Full
	B.1 Explicit pointer classes
	B.2 Multi pointer pointer class
	B.3 range class
	B.4 id class
	B.5 vec class

	C Interface of Memory Object Information Descriptors
	C.1 Platform Information Descriptors
	C.2 Context Information Descriptors
	C.3 Device Information Descriptors
	C.4 Queue Information Descriptors
	C.5 Kernel Information Descriptors
	C.6 Program Information Descriptors
	C.7 Event Information Descriptors

	References

