Registered Extension Number

483

Revision

1

Ratification Status

Ratified

Extension and Version Dependencies

     VK_KHR_get_physical_device_properties2
     or
     Version 1.1
and
     VK_KHR_dynamic_rendering
     or
     Version 1.3

API Interactions

  • Interacts with VK_VERSION_1_1

  • Interacts with VK_VERSION_1_3

  • Interacts with VK_EXT_fragment_density_map

  • Interacts with VK_EXT_mesh_shader

  • Interacts with VK_EXT_subgroup_size_control

  • Interacts with VK_KHR_device_group

  • Interacts with VK_KHR_fragment_shading_rate

  • Interacts with VK_NV_clip_space_w_scaling

  • Interacts with VK_NV_coverage_reduction_mode

  • Interacts with VK_NV_fragment_coverage_to_color

  • Interacts with VK_NV_framebuffer_mixed_samples

  • Interacts with VK_NV_mesh_shader

  • Interacts with VK_NV_representative_fragment_test

  • Interacts with VK_NV_shading_rate_image

  • Interacts with VK_NV_viewport_swizzle == Contact

  • Daniel Story daniel-story

Extension Proposal

Other Extension Metadata

Last Modified Date

2023-03-30

Interactions and External Dependencies
IP Status

No known IP claims.

Contributors
  • Piers Daniell, NVIDIA

  • Sandy Jamieson, Nintendo

  • Žiga Markuš, LunarG

  • Tobias Hector, AMD

  • Alex Walters, Imagination

  • Shahbaz Youssefi, Google

  • Ralph Potter, Samsung

  • Jan-Harald Fredriksen, ARM

  • Connor Abott, Valve

  • Arseny Kapoulkine, Roblox

  • Patrick Doane, Activision

  • Jeff Leger, Qualcomm

  • Stu Smith, AMD

  • Chris Glover, Google

  • Ricardo Garcia, Igalia

  • Faith Ekstrand, Collabora

  • Timur Kristóf, Valve

  • Constantine Shablya, Collabora

  • Daniel Koch, NVIDIA

  • Alyssa Rosenzweig, Collabora

  • Mike Blumenkrantz, Valve

  • Samuel Pitoiset, Valve

  • Qun Lin, AMD

  • Spencer Fricke, LunarG

  • Soroush Faghihi Kashani, Imagination

Description

This extension introduces a new VkShaderEXT object type which represents a single compiled shader stage. Shader objects provide a more flexible alternative to VkPipeline objects, which may be helpful in certain use cases.

New Object Types

New Commands

If VK_NV_clip_space_w_scaling is supported:

If VK_NV_shading_rate_image is supported:

If VK_NV_viewport_swizzle is supported:

New Structures

New Enums

New Bitmasks

New Enum Constants

  • VK_EXT_SHADER_OBJECT_EXTENSION_NAME

  • VK_EXT_SHADER_OBJECT_SPEC_VERSION

  • Extending VkObjectType:

    • VK_OBJECT_TYPE_SHADER_EXT

  • Extending VkResult:

    • VK_ERROR_INCOMPATIBLE_SHADER_BINARY_EXT

  • Extending VkStructureType:

    • VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_FEATURES_EXT

    • VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_PROPERTIES_EXT

    • VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT

    • VK_STRUCTURE_TYPE_SHADER_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT

    • VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT

    • VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT

If VK_EXT_fragment_density_map is supported:

  • Extending VkShaderCreateFlagBitsEXT:

    • VK_SHADER_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT

    • VK_SHADER_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT

If VK_KHR_device_group or Version 1.1 is supported:

If VK_KHR_fragment_shading_rate is supported:

Examples

Example 1

Create linked pair of vertex and fragment shaders.

// Logical device created with the shaderObject feature enabled
VkDevice device;

// SPIR-V shader code for a vertex shader, along with its size in bytes
void* pVertexSpirv;
size_t vertexSpirvSize;

// SPIR-V shader code for a fragment shader, along with its size in bytes
void* pFragmentSpirv;
size_t fragmentSpirvSize;

// Descriptor set layout compatible with the shaders
VkDescriptorSetLayout descriptorSetLayout;

VkShaderCreateInfoEXT shaderCreateInfos[2] =
{
    {
        .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
        .pNext = NULL,
        .flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT,
        .stage = VK_SHADER_STAGE_VERTEX_BIT,
        .nextStage = VK_SHADER_STAGE_FRAGMENT_BIT,
        .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
        .codeSize = vertexSpirvSize,
        .pCode = pVertexSpirv,
        .pName = "main",
        .setLayoutCount = 1,
        .pSetLayouts = &descriptorSetLayout;
        .pushConstantRangeCount = 0,
        .pPushConstantRanges = NULL,
        .pSpecializationInfo = NULL
    },
    {
        .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
        .pNext = NULL,
        .flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT,
        .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
        .nextStage = 0,
        .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
        .codeSize = fragmentSpirvSize,
        .pCode = pFragmentSpirv,
        .pName = "main",
        .setLayoutCount = 1,
        .pSetLayouts = &descriptorSetLayout;
        .pushConstantRangeCount = 0,
        .pPushConstantRanges = NULL,
        .pSpecializationInfo = NULL
    }
};

VkResult result;
VkShaderEXT shaders[2];

result = vkCreateShadersEXT(device, 2, &shaderCreateInfos, NULL, shaders);
if (result != VK_SUCCESS)
{
    // Handle error
}

Later, during command buffer recording, bind the linked shaders and draw.

// Command buffer in the recording state
VkCommandBuffer commandBuffer;

// Vertex and fragment shader objects created above
VkShaderEXT shaders[2];

// Assume vertex buffers, descriptor sets, etc. have been bound, and existing
// state setting commands have been called to set all required state

const VkShaderStageFlagBits stages[2] =
{
    VK_SHADER_STAGE_VERTEX_BIT,
    VK_SHADER_STAGE_FRAGMENT_BIT
};

// Bind linked shaders
vkCmdBindShadersEXT(commandBuffer, 2, stages, shaders);

// Equivalent to the previous line. Linked shaders can be bound one at a time,
// in any order:
// vkCmdBindShadersEXT(commandBuffer, 1, &stages[1], &shaders[1]);
// vkCmdBindShadersEXT(commandBuffer, 1, &stages[0], &shaders[0]);

// The above is sufficient to draw if the device was created with the
// tessellationShader and geometryShader features disabled. Otherwise, since
// those stages should not execute, vkCmdBindShadersEXT() must be called at
// least once with each of their stages in pStages before drawing:

const VkShaderStageFlagBits unusedStages[3] =
{
    VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
    VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
    VK_SHADER_STAGE_GEOMETRY_BIT
};

// NULL pShaders is equivalent to an array of stageCount VK_NULL_HANDLE values,
// meaning no shaders are bound to those stages, and that any previously bound
// shaders are unbound
vkCmdBindShadersEXT(commandBuffer, 3, unusedStages, NULL);

// Graphics shader objects may only be used to draw inside dynamic render pass
// instances begun with vkCmdBeginRendering(), assume one has already been begun

// Draw a triangle
vkCmdDraw(commandBuffer, 3, 1, 0, 0);

Example 2

Create unlinked vertex, geometry, and fragment shaders.

// Logical device created with the shaderObject feature enabled
VkDevice device;

// SPIR-V shader code for vertex shaders, along with their sizes in bytes
void* pVertexSpirv[2];
size_t vertexSpirvSize[2];

// SPIR-V shader code for a geometry shader, along with its size in bytes
void pGeometrySpirv;
size_t geometrySpirvSize;

// SPIR-V shader code for fragment shaders, along with their sizes in bytes
void* pFragmentSpirv[2];
size_t fragmentSpirvSize[2];

// Descriptor set layout compatible with the shaders
VkDescriptorSetLayout descriptorSetLayout;

VkShaderCreateInfoEXT shaderCreateInfos[5] =
{
    // Stage order does not matter
    {
        .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
        .pNext = NULL,
        .flags = 0,
        .stage = VK_SHADER_STAGE_GEOMETRY_BIT,
        .nextStage = VK_SHADER_STAGE_FRAGMENT_BIT,
        .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
        .codeSize = pGeometrySpirv,
        .pCode = geometrySpirvSize,
        .pName = "main",
        .setLayoutCount = 1,
        .pSetLayouts = &descriptorSetLayout;
        .pushConstantRangeCount = 0,
        .pPushConstantRanges = NULL,
        .pSpecializationInfo = NULL
    },
    {
        .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
        .pNext = NULL,
        .flags = 0,
        .stage = VK_SHADER_STAGE_VERTEX_BIT,
        .nextStage = VK_SHADER_STAGE_GEOMETRY_BIT,
        .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
        .codeSize = vertexSpirvSize[0],
        .pCode = pVertexSpirv[0],
        .pName = "main",
        .setLayoutCount = 1,
        .pSetLayouts = &descriptorSetLayout;
        .pushConstantRangeCount = 0,
        .pPushConstantRanges = NULL,
        .pSpecializationInfo = NULL
    },
    {
        .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
        .pNext = NULL,
        .flags = 0,
        .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
        .nextStage = 0,
        .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
        .codeSize = fragmentSpirvSize[0],
        .pCode = pFragmentSpirv[0],
        .pName = "main",
        .setLayoutCount = 1,
        .pSetLayouts = &descriptorSetLayout;
        .pushConstantRangeCount = 0,
        .pPushConstantRanges = NULL,
        .pSpecializationInfo = NULL
    },
    {
        .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
        .pNext = NULL,
        .flags = 0,
        .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
        .nextStage = 0,
        .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
        .codeSize = fragmentSpirvSize[1],
        .pCode = pFragmentSpirv[1],
        .pName = "main",
        .setLayoutCount = 1,
        .pSetLayouts = &descriptorSetLayout;
        .pushConstantRangeCount = 0,
        .pPushConstantRanges = NULL,
        .pSpecializationInfo = NULL
    },
    {
        .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT,
        .pNext = NULL,
        .flags = 0,
        .stage = VK_SHADER_STAGE_VERTEX_BIT,
        // Suppose we want this vertex shader to be able to be followed by
        // either a geometry shader or fragment shader:
        .nextStage = VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
        .codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT,
        .codeSize = vertexSpirvSize[1],
        .pCode = pVertexSpirv[1],
        .pName = "main",
        .setLayoutCount = 1,
        .pSetLayouts = &descriptorSetLayout;
        .pushConstantRangeCount = 0,
        .pPushConstantRanges = NULL,
        .pSpecializationInfo = NULL
    }
};

VkResult result;
VkShaderEXT shaders[5];

result = vkCreateShadersEXT(device, 5, &shaderCreateInfos, NULL, shaders);
if (result != VK_SUCCESS)
{
    // Handle error
}

Later, during command buffer recording, bind the linked shaders in different combinations and draw.

// Command buffer in the recording state
VkCommandBuffer commandBuffer;

// Vertex, geometry, and fragment shader objects created above
VkShaderEXT shaders[5];

// Assume vertex buffers, descriptor sets, etc. have been bound, and existing
// state setting commands have been called to set all required state

const VkShaderStageFlagBits stages[3] =
{
    // Any order is allowed
    VK_SHADER_STAGE_FRAGMENT_BIT,
    VK_SHADER_STAGE_VERTEX_BIT,
    VK_SHADER_STAGE_GEOMETRY_BIT,
};

VkShaderEXT bindShaders[3] =
{
    shaders[2], // FS
    shaders[1], // VS
    shaders[0]  // GS
};

// Bind unlinked shaders
vkCmdBindShadersEXT(commandBuffer, 3, stages, bindShaders);

// Assume the tessellationShader feature is disabled, so vkCmdBindShadersEXT()
// need not have been called with either tessellation stage

// Graphics shader objects may only be used to draw inside dynamic render pass
// instances begun with vkCmdBeginRendering(), assume one has already been begun

// Draw a triangle
vkCmdDraw(commandBuffer, 3, 1, 0, 0);

// Bind a different unlinked fragment shader
const VkShaderStageFlagBits fragmentStage = VK_SHADER_STAGE_FRAGMENT_BIT;
vkCmdBindShadersEXT(commandBuffer, 1, &fragmentStage, &shaders[3]);

// Draw another triangle
vkCmdDraw(commandBuffer, 3, 1, 0, 0);

// Bind a different unlinked vertex shader
const VkShaderStageFlagBits vertexStage = VK_SHADER_STAGE_VERTEX_BIT;
vkCmdBindShadersEXT(commandBuffer, 1, &vertexStage, &shaders[4]);

// Draw another triangle
vkCmdDraw(commandBuffer, 3, 1, 0, 0);

Version History

  • Revision 1, 2023-03-30 (Daniel Story)

    • Initial draft

See Also

VkColorBlendAdvancedEXT, VkColorBlendEquationEXT, VkPhysicalDeviceShaderObjectFeaturesEXT, VkPhysicalDeviceShaderObjectPropertiesEXT, VkShaderCodeTypeEXT, VkShaderCreateFlagBitsEXT, VkShaderCreateFlagsEXT, VkShaderCreateInfoEXT, VkShaderEXT, VkShaderRequiredSubgroupSizeCreateInfoEXT, VkVertexInputAttributeDescription2EXT, VkVertexInputBindingDescription2EXT, vkCmdBindShadersEXT, vkCmdBindVertexBuffers2EXT, vkCmdSetAlphaToCoverageEnableEXT, vkCmdSetAlphaToOneEnableEXT, vkCmdSetColorBlendAdvancedEXT, vkCmdSetColorBlendEnableEXT, vkCmdSetColorBlendEquationEXT, vkCmdSetColorWriteMaskEXT, vkCmdSetConservativeRasterizationModeEXT, vkCmdSetCullModeEXT, vkCmdSetDepthBiasEnableEXT, vkCmdSetDepthBoundsTestEnableEXT, vkCmdSetDepthClampEnableEXT, vkCmdSetDepthClipEnableEXT, vkCmdSetDepthClipNegativeOneToOneEXT, vkCmdSetDepthCompareOpEXT, vkCmdSetDepthTestEnableEXT, vkCmdSetDepthWriteEnableEXT, vkCmdSetExtraPrimitiveOverestimationSizeEXT, vkCmdSetFrontFaceEXT, vkCmdSetLineRasterizationModeEXT, vkCmdSetLineStippleEnableEXT, vkCmdSetLogicOpEXT, vkCmdSetLogicOpEnableEXT, vkCmdSetPatchControlPointsEXT, vkCmdSetPolygonModeEXT, vkCmdSetPrimitiveRestartEnableEXT, vkCmdSetPrimitiveTopologyEXT, vkCmdSetProvokingVertexModeEXT, vkCmdSetRasterizationSamplesEXT, vkCmdSetRasterizationStreamEXT, vkCmdSetRasterizerDiscardEnableEXT, vkCmdSetSampleLocationsEnableEXT, vkCmdSetSampleMaskEXT, vkCmdSetScissorWithCountEXT, vkCmdSetStencilOpEXT, vkCmdSetStencilTestEnableEXT, vkCmdSetTessellationDomainOriginEXT, vkCmdSetVertexInputEXT, vkCmdSetViewportWithCountEXT, vkCreateShadersEXT, vkDestroyShaderEXT, vkGetShaderBinaryDataEXT

Document Notes

For more information, see the Vulkan Specification

This page is a generated document. Fixes and changes should be made to the generator scripts, not directly.

Copyright 2014-2023 The Khronos Group Inc.

SPDX-License-Identifier: CC-BY-4.0