Registered Extension Number

153

Revision

1

Ratification Status

Not ratified

Extension and Version Dependencies

None

Contact

Other Extension Metadata

Last Modified Date

2017-06-04

Contributors
  • Jeff Bolz, NVIDIA

Description

This extension allows multisample rendering with a raster and depth/stencil sample count that is larger than the color sample count. Rasterization and the results of the depth and stencil tests together determine the portion of a pixel that is “covered”. It can be useful to evaluate coverage at a higher frequency than color samples are stored. This coverage is then “reduced” to a collection of covered color samples, each having an opacity value corresponding to the fraction of the color sample covered. The opacity can optionally be blended into individual color samples.

Rendering with fewer color samples than depth/stencil samples greatly reduces the amount of memory and bandwidth consumed by the color buffer. However, converting the coverage values into opacity introduces artifacts where triangles share edges and may not be suitable for normal triangle mesh rendering.

One expected use case for this functionality is Stencil-then-Cover path rendering (similar to the OpenGL GL_NV_path_rendering extension). The stencil step determines the coverage (in the stencil buffer) for an entire path at the higher sample frequency, and then the cover step draws the path into the lower frequency color buffer using the coverage information to antialias path edges. With this two-step process, internal edges are fully covered when antialiasing is applied and there is no corruption on these edges.

The key features of this extension are:

  • It allows render pass and framebuffer objects to be created where the number of samples in the depth/stencil attachment in a subpass is a multiple of the number of samples in the color attachments in the subpass.

  • A coverage reduction step is added to Fragment Operations which converts a set of covered raster/depth/stencil samples to a set of color samples that perform blending and color writes. The coverage reduction step also includes an optional coverage modulation step, multiplying color values by a fractional opacity corresponding to the number of associated raster/depth/stencil samples covered.

New Structures

New Enums

New Bitmasks

New Enum Constants

  • VK_NV_FRAMEBUFFER_MIXED_SAMPLES_EXTENSION_NAME

  • VK_NV_FRAMEBUFFER_MIXED_SAMPLES_SPEC_VERSION

  • Extending VkStructureType:

    • VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_MODULATION_STATE_CREATE_INFO_NV

Version History

  • Revision 1, 2017-06-04 (Jeff Bolz)

    • Internal revisions

See Also

No cross-references are available

Document Notes

For more information, see the Vulkan Specification

This page is a generated document. Fixes and changes should be made to the generator scripts, not directly.

Copyright 2014-2024 The Khronos Group Inc.

SPDX-License-Identifier: CC-BY-4.0