C Specification

To dispatch ray tracing, with some parameters sourced on the device, use:

// Provided by VK_KHR_ray_tracing_pipeline
void vkCmdTraceRaysIndirectKHR(
    VkCommandBuffer                             commandBuffer,
    const VkStridedDeviceAddressRegionKHR*      pRaygenShaderBindingTable,
    const VkStridedDeviceAddressRegionKHR*      pMissShaderBindingTable,
    const VkStridedDeviceAddressRegionKHR*      pHitShaderBindingTable,
    const VkStridedDeviceAddressRegionKHR*      pCallableShaderBindingTable,
    VkDeviceAddress                             indirectDeviceAddress);

Parameters

Description

vkCmdTraceRaysIndirectKHR behaves similarly to vkCmdTraceRaysKHR except that the ray trace query dimensions are read by the device from indirectDeviceAddress during execution.

Valid Usage
  • VUID-vkCmdTraceRaysIndirectKHR-magFilter-04553
    If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR, reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-magFilter-09598
    If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-mipmapMode-04770
    If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR, reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-mipmapMode-09599
    If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-unnormalizedCoordinates-09635
    If a VkSampler created with unnormalizedCoordinates equal to VK_TRUE is used to sample a VkImageView as a result of this command, then the image view’s levelCount and layerCount must be 1

  • VUID-vkCmdTraceRaysIndirectKHR-unnormalizedCoordinates-09636
    If a VkSampler created with unnormalizedCoordinates equal to VK_TRUE is used to sample a VkImageView as a result of this command, then the image view’s viewType must be VK_IMAGE_VIEW_TYPE_1D or VK_IMAGE_VIEW_TYPE_2D

  • VUID-vkCmdTraceRaysIndirectKHR-None-06479
    If a VkImageView is sampled with depth comparison, the image view’s format features must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-None-02691
    If a VkImageView is accessed using atomic operations as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-None-07888
    If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic operations as a result of this command, then the storage texel buffer’s format features must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-None-02692
    If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

  • VUID-vkCmdTraceRaysIndirectKHR-None-02693
    If the VK_EXT_filter_cubic extension is not enabled and any VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, it must not have a VkImageViewType of VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

  • VUID-vkCmdTraceRaysIndirectKHR-filterCubic-02694
    Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command must have a VkImageViewType and format that supports cubic filtering, as specified by VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by vkGetPhysicalDeviceImageFormatProperties2

  • VUID-vkCmdTraceRaysIndirectKHR-filterCubicMinmax-02695
    Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this command must have a VkImageViewType and format that supports cubic filtering together with minmax filtering, as specified by VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by vkGetPhysicalDeviceImageFormatProperties2

  • VUID-vkCmdTraceRaysIndirectKHR-cubicRangeClamp-09212
    If the cubicRangeClamp feature is not enabled, then any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command must not have a VkSamplerReductionModeCreateInfo::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-reductionMode-09213
    Any VkImageView being sampled with a VkSamplerReductionModeCreateInfo::reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_RANGECLAMP_QCOM as a result of this command must sample with VK_FILTER_CUBIC_EXT

  • VUID-vkCmdTraceRaysIndirectKHR-selectableCubicWeights-09214
    If the selectableCubicWeights feature is not enabled, then any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command must have VkSamplerCubicWeightsCreateInfoQCOM::cubicWeights equal to VK_CUBIC_FILTER_WEIGHTS_CATMULL_ROM_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-flags-02696
    Any VkImage created with a VkImageCreateInfo::flags containing VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

  • VUID-vkCmdTraceRaysIndirectKHR-OpTypeImage-07027
    For any VkImageView being written as a storage image where the image format field of the OpTypeImage is Unknown, the view’s format features must contain VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-OpTypeImage-07028
    For any VkImageView being read as a storage image where the image format field of the OpTypeImage is Unknown, the view’s format features must contain VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-OpTypeImage-07029
    For any VkBufferView being written as a storage texel buffer where the image format field of the OpTypeImage is Unknown, the view’s buffer features must contain VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-OpTypeImage-07030
    Any VkBufferView being read as a storage texel buffer where the image format field of the OpTypeImage is Unknown then the view’s buffer features must contain VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

  • VUID-vkCmdTraceRaysIndirectKHR-None-08600
    For each set n that is statically used by a bound shader, a descriptor set must have been bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for set n, with the VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in [descriptorsets-compatibility]

  • VUID-vkCmdTraceRaysIndirectKHR-None-08601
    For each push constant that is statically used by a bound shader, a push constant value must have been set for the same pipeline bind point, with a VkPipelineLayout that is compatible for push constants, with the VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout array used to create the current VkShaderEXT , as described in [descriptorsets-compatibility]

  • VUID-vkCmdTraceRaysIndirectKHR-maintenance4-08602
    If the maintenance4 feature is not enabled, then for each push constant that is statically used by a bound shader, a push constant value must have been set for the same pipeline bind point, with a VkPipelineLayout that is compatible for push constants, with the VkPipelineLayout used to create the current VkPipeline or the VkDescriptorSetLayout and VkPushConstantRange arrays used to create the current VkShaderEXT , as described in [descriptorsets-compatibility]

  • VUID-vkCmdTraceRaysIndirectKHR-None-08114
    Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be valid as described by descriptor validity if they are statically used by the VkPipeline bound to the pipeline bind point used by this command and the bound VkPipeline was not created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

  • VUID-vkCmdTraceRaysIndirectKHR-None-08115
    If the descriptors used by the VkPipeline bound to the pipeline bind point were specified via vkCmdBindDescriptorSets, the bound VkPipeline must have been created without VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

  • VUID-vkCmdTraceRaysIndirectKHR-None-08116
    Descriptors in bound descriptor buffers, specified via vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by the VkPipeline bound to the pipeline bind point used by this command and the bound VkPipeline was created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

  • VUID-vkCmdTraceRaysIndirectKHR-None-08604
    Descriptors in bound descriptor buffers, specified via vkCmdSetDescriptorBufferOffsetsEXT, must be valid if they are dynamically used by any VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this command

  • VUID-vkCmdTraceRaysIndirectKHR-None-08117
    If the descriptors used by the VkPipeline bound to the pipeline bind point were specified via vkCmdSetDescriptorBufferOffsetsEXT, the bound VkPipeline must have been created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT

  • VUID-vkCmdTraceRaysIndirectKHR-None-08119
    If a descriptor is dynamically used with a VkPipeline created with VK_PIPELINE_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

  • VUID-vkCmdTraceRaysIndirectKHR-None-08605
    If a descriptor is dynamically used with a VkShaderEXT created with a VkDescriptorSetLayout that was created with VK_DESCRIPTOR_SET_LAYOUT_CREATE_DESCRIPTOR_BUFFER_BIT_EXT, the descriptor memory must be resident

  • VUID-vkCmdTraceRaysIndirectKHR-None-08606
    If the shaderObject feature is not enabled, a valid pipeline must be bound to the pipeline bind point used by this command

  • VUID-vkCmdTraceRaysIndirectKHR-None-08608
    If a pipeline is bound to the pipeline bind point used by this command, there must not have been any calls to dynamic state setting commands for any state not specified as dynamic in the VkPipeline object bound to the pipeline bind point used by this command, since that pipeline was bound

  • VUID-vkCmdTraceRaysIndirectKHR-None-08609
    If the VkPipeline object bound to the pipeline bind point used by this command or any VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this command accesses a VkSampler object that uses unnormalized coordinates, that sampler must not be used to sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

  • VUID-vkCmdTraceRaysIndirectKHR-None-08610
    If the VkPipeline object bound to the pipeline bind point used by this command or any VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this command accesses a VkSampler object that uses unnormalized coordinates, that sampler must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

  • VUID-vkCmdTraceRaysIndirectKHR-None-08611
    If the VkPipeline object bound to the pipeline bind point used by this command or any VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this command accesses a VkSampler object that uses unnormalized coordinates, that sampler must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD bias or any offset values, in any shader stage

  • VUID-vkCmdTraceRaysIndirectKHR-None-08607
    If the shaderObject is enabled, either a valid pipeline must be bound to the pipeline bind point used by this command, or a valid combination of valid and VK_NULL_HANDLE shader objects must be bound to every supported shader stage corresponding to the pipeline bind point used by this command

  • VUID-vkCmdTraceRaysIndirectKHR-uniformBuffers-06935
    If any stage of the VkPipeline object bound to the pipeline bind point used by this command accesses a uniform buffer, and that stage was created without enabling either VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for uniformBuffers, and the robustBufferAccess feature is not enabled, that stage must not access values outside of the range of the buffer as specified in the descriptor set bound to the same pipeline bind point

  • VUID-vkCmdTraceRaysIndirectKHR-None-08612
    If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this command accesses a uniform buffer, it must not access values outside of the range of the buffer as specified in the descriptor set bound to the same pipeline bind point

  • VUID-vkCmdTraceRaysIndirectKHR-storageBuffers-06936
    If any stage of the VkPipeline object bound to the pipeline bind point used by this command accesses a storage buffer, and that stage was created without enabling either VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_EXT or VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT for storageBuffers, and the robustBufferAccess feature is not enabled, that stage must not access values outside of the range of the buffer as specified in the descriptor set bound to the same pipeline bind point

  • VUID-vkCmdTraceRaysIndirectKHR-None-08613
    If the robustBufferAccess feature is not enabled, and any VkShaderEXT bound to a stage corresponding to the pipeline bind point used by this command accesses a storage buffer, it must not access values outside of the range of the buffer as specified in the descriptor set bound to the same pipeline bind point

  • VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-02707
    If commandBuffer is an unprotected command buffer and protectedNoFault is not supported, any resource accessed by bound shaders must not be a protected resource

  • VUID-vkCmdTraceRaysIndirectKHR-None-06550
    If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′CBCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample* instructions

  • VUID-vkCmdTraceRaysIndirectKHR-ConstOffset-06551
    If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′CBCR conversion, that object must not use the ConstOffset and Offset operands

  • VUID-vkCmdTraceRaysIndirectKHR-viewType-07752
    If a VkImageView is accessed as a result of this command, then the image view’s viewType must match the Dim operand of the OpTypeImage as described in [textures-operation-validation]

  • VUID-vkCmdTraceRaysIndirectKHR-format-07753
    If a VkImageView is accessed as a result of this command, then the numeric type of the image view’s format and the Sampled Type operand of the OpTypeImage must match

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageWrite-08795
    If a VkImageView created with a format other than VK_FORMAT_A8_UNORM_KHR is accessed using OpImageWrite as a result of this command, then the Type of the Texel operand of that instruction must have at least as many components as the image view’s format

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageWrite-08796
    If a VkImageView created with the format VK_FORMAT_A8_UNORM_KHR is accessed using OpImageWrite as a result of this command, then the Type of the Texel operand of that instruction must have four components

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageWrite-04469
    If a VkBufferView is accessed using OpImageWrite as a result of this command, then the Type of the Texel operand of that instruction must have at least as many components as the buffer view’s format

  • VUID-vkCmdTraceRaysIndirectKHR-SampledType-04470
    If a VkImageView with a VkFormat that has a 64-bit component width is accessed as a result of this command, the SampledType of the OpTypeImage operand of that instruction must have a Width of 64

  • VUID-vkCmdTraceRaysIndirectKHR-SampledType-04471
    If a VkImageView with a VkFormat that has a component width less than 64-bit is accessed as a result of this command, the SampledType of the OpTypeImage operand of that instruction must have a Width of 32

  • VUID-vkCmdTraceRaysIndirectKHR-SampledType-04472
    If a VkBufferView with a VkFormat that has a 64-bit component width is accessed as a result of this command, the SampledType of the OpTypeImage operand of that instruction must have a Width of 64

  • VUID-vkCmdTraceRaysIndirectKHR-SampledType-04473
    If a VkBufferView with a VkFormat that has a component width less than 64-bit is accessed as a result of this command, the SampledType of the OpTypeImage operand of that instruction must have a Width of 32

  • VUID-vkCmdTraceRaysIndirectKHR-sparseImageInt64Atomics-04474
    If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions through an OpTypeImage with a SampledType with a Width of 64 by this command

  • VUID-vkCmdTraceRaysIndirectKHR-sparseImageInt64Atomics-04475
    If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions through an OpTypeImage with a SampledType with a Width of 64 by this command

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageWeightedSampleQCOM-06971
    If OpImageWeightedSampleQCOM is used to sample a VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_2_WEIGHT_SAMPLED_IMAGE_BIT_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageWeightedSampleQCOM-06972
    If OpImageWeightedSampleQCOM uses a VkImageView as a sample weight image as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_2_WEIGHT_IMAGE_BIT_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageBoxFilterQCOM-06973
    If OpImageBoxFilterQCOM is used to sample a VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_2_BOX_FILTER_SAMPLED_BIT_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchSSDQCOM-06974
    If OpImageBlockMatchSSDQCOM is used to read from an VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchSADQCOM-06975
    If OpImageBlockMatchSADQCOM is used to read from an VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchSADQCOM-06976
    If OpImageBlockMatchSADQCOM or OpImageBlockMatchSSDQCOM is used to read from a reference image as result of this command, then the specified reference coordinates must not fail integer texel coordinate validation

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageWeightedSampleQCOM-06977
    If OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this command, then the sampler must have been created with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageWeightedSampleQCOM-06978
    If any command other than OpImageWeightedSampleQCOM, OpImageBoxFilterQCOM, OpImageBlockMatchWindowSSDQCOM, OpImageBlockMatchWindowSADQCOM, OpImageBlockMatchGatherSSDQCOM, OpImageBlockMatchGatherSADQCOM, OpImageBlockMatchSSDQCOM, or OpImageBlockMatchSADQCOM uses a VkSampler as a result of this command, then the sampler must not have been created with VK_SAMPLER_CREATE_IMAGE_PROCESSING_BIT_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchWindow-09215
    If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to read from an VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_2_BLOCK_MATCHING_BIT_QCOM

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchWindow-09216
    If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM instruction is used to read from an VkImageView as a result of this command, then the image view’s format must be a single-component format

  • VUID-vkCmdTraceRaysIndirectKHR-OpImageBlockMatchWindow-09217
    If a OpImageBlockMatchWindow*QCOM or OpImageBlockMatchGather*QCOM read from a reference image as result of this command, then the specified reference coordinates must not fail integer texel coordinate validation

  • VUID-vkCmdTraceRaysIndirectKHR-None-07288
    Any shader invocation executed by this command must terminate

  • VUID-vkCmdTraceRaysIndirectKHR-None-09600
    If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLE_WEIGHT_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_BLOCK_MATCH_IMAGE_QCOM, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a result of this command, the image subresource identified by that descriptor must be in the image layout identified when the descriptor was written

  • VUID-vkCmdTraceRaysIndirectKHR-None-03429
    Any shader group handle referenced by this call must have been queried from the currently bound ray tracing pipeline

  • VUID-vkCmdTraceRaysIndirectKHR-None-09458
    If the bound ray tracing pipeline state was created with the VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR dynamic state enabled then vkCmdSetRayTracingPipelineStackSizeKHR must have been called in the current command buffer prior to this trace command

  • VUID-vkCmdTraceRaysIndirectKHR-maxPipelineRayRecursionDepth-03679
    This command must not cause a shader call instruction to be executed from a shader invocation with a recursion depth greater than the value of maxPipelineRayRecursionDepth used to create the bound ray tracing pipeline

  • VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-03635
    commandBuffer must not be a protected command buffer

  • VUID-vkCmdTraceRaysIndirectKHR-size-04023
    The size member of pRayGenShaderBindingTable must be equal to its stride member

  • VUID-vkCmdTraceRaysIndirectKHR-pRayGenShaderBindingTable-03680
    If the buffer from which pRayGenShaderBindingTable->deviceAddress was queried is non-sparse then it must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdTraceRaysIndirectKHR-pRayGenShaderBindingTable-03681
    The buffer from which the pRayGenShaderBindingTable->deviceAddress is queried must have been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

  • VUID-vkCmdTraceRaysIndirectKHR-pRayGenShaderBindingTable-03682
    pRayGenShaderBindingTable->deviceAddress must be a multiple of VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

  • VUID-vkCmdTraceRaysIndirectKHR-pMissShaderBindingTable-03683
    If the buffer from which pMissShaderBindingTable->deviceAddress was queried is non-sparse then it must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdTraceRaysIndirectKHR-pMissShaderBindingTable-03684
    The buffer from which the pMissShaderBindingTable->deviceAddress is queried must have been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

  • VUID-vkCmdTraceRaysIndirectKHR-pMissShaderBindingTable-03685
    pMissShaderBindingTable->deviceAddress must be a multiple of VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

  • VUID-vkCmdTraceRaysIndirectKHR-stride-03686
    pMissShaderBindingTable->stride must be a multiple of VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

  • VUID-vkCmdTraceRaysIndirectKHR-stride-04029
    pMissShaderBindingTable->stride must be less than or equal to VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

  • VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-03687
    If the buffer from which pHitShaderBindingTable->deviceAddress was queried is non-sparse then it must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-03688
    The buffer from which the pHitShaderBindingTable->deviceAddress is queried must have been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

  • VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-03689
    pHitShaderBindingTable->deviceAddress must be a multiple of VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

  • VUID-vkCmdTraceRaysIndirectKHR-stride-03690
    pHitShaderBindingTable->stride must be a multiple of VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

  • VUID-vkCmdTraceRaysIndirectKHR-stride-04035
    pHitShaderBindingTable->stride must be less than or equal to VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

  • VUID-vkCmdTraceRaysIndirectKHR-pCallableShaderBindingTable-03691
    If the buffer from which pCallableShaderBindingTable->deviceAddress was queried is non-sparse then it must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdTraceRaysIndirectKHR-pCallableShaderBindingTable-03692
    The buffer from which the pCallableShaderBindingTable->deviceAddress is queried must have been created with the VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR usage flag

  • VUID-vkCmdTraceRaysIndirectKHR-pCallableShaderBindingTable-03693
    pCallableShaderBindingTable->deviceAddress must be a multiple of VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupBaseAlignment

  • VUID-vkCmdTraceRaysIndirectKHR-stride-03694
    pCallableShaderBindingTable->stride must be a multiple of VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment

  • VUID-vkCmdTraceRaysIndirectKHR-stride-04041
    pCallableShaderBindingTable->stride must be less than or equal to VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxShaderGroupStride

  • VUID-vkCmdTraceRaysIndirectKHR-flags-03696
    If the currently bound ray tracing pipeline was created with flags that included VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR, pHitShaderBindingTable->deviceAddress must not be zero

  • VUID-vkCmdTraceRaysIndirectKHR-flags-03697
    If the currently bound ray tracing pipeline was created with flags that included VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR, pHitShaderBindingTable->deviceAddress must not be zero

  • VUID-vkCmdTraceRaysIndirectKHR-flags-03511
    If the currently bound ray tracing pipeline was created with flags that included VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_MISS_SHADERS_BIT_KHR, the shader group handle identified by pMissShaderBindingTable->deviceAddress must not be set to zero

  • VUID-vkCmdTraceRaysIndirectKHR-flags-03512
    If the currently bound ray tracing pipeline was created with flags that included VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR, entries in the table identified by pHitShaderBindingTable->deviceAddress accessed as a result of this command in order to execute an any-hit shader must not be set to zero

  • VUID-vkCmdTraceRaysIndirectKHR-flags-03513
    If the currently bound ray tracing pipeline was created with flags that included VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_CLOSEST_HIT_SHADERS_BIT_KHR, entries in the table identified by pHitShaderBindingTable->deviceAddress accessed as a result of this command in order to execute a closest hit shader must not be set to zero

  • VUID-vkCmdTraceRaysIndirectKHR-flags-03514
    If the currently bound ray tracing pipeline was created with flags that included VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_INTERSECTION_SHADERS_BIT_KHR, entries in the table identified by pHitShaderBindingTable->deviceAddress accessed as a result of this command in order to execute an intersection shader must not be set to zero

  • VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-04735
    Any non-zero hit shader group entries in the table identified by pHitShaderBindingTable->deviceAddress accessed by this call from a geometry with a geometryType of VK_GEOMETRY_TYPE_TRIANGLES_KHR must have been created with VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR

  • VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-04736
    Any non-zero hit shader group entries in the table identified by pHitShaderBindingTable->deviceAddress accessed by this call from a geometry with a geometryType of VK_GEOMETRY_TYPE_AABBS_KHR must have been created with VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR

  • VUID-vkCmdTraceRaysIndirectKHR-indirectDeviceAddress-03632
    If the buffer from which indirectDeviceAddress was queried is non-sparse then it must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdTraceRaysIndirectKHR-indirectDeviceAddress-03633
    The buffer from which indirectDeviceAddress was queried must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

  • VUID-vkCmdTraceRaysIndirectKHR-indirectDeviceAddress-03634
    indirectDeviceAddress must be a multiple of 4

  • VUID-vkCmdTraceRaysIndirectKHR-indirectDeviceAddress-03636
    All device addresses between indirectDeviceAddress and indirectDeviceAddress + sizeof(VkTraceRaysIndirectCommandKHR) - 1 must be in the buffer device address range of the same buffer

  • VUID-vkCmdTraceRaysIndirectKHR-rayTracingPipelineTraceRaysIndirect-03637
    The rayTracingPipelineTraceRaysIndirect feature must be enabled

  • VUID-vkCmdTraceRaysIndirectKHR-rayTracingMotionBlurPipelineTraceRaysIndirect-04951
    If the bound ray tracing pipeline was created with VK_PIPELINE_CREATE_RAY_TRACING_ALLOW_MOTION_BIT_NV VkPhysicalDeviceRayTracingMotionBlurFeaturesNV::rayTracingMotionBlurPipelineTraceRaysIndirect feature must be enabled

Valid Usage (Implicit)
  • VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-parameter
    commandBuffer must be a valid VkCommandBuffer handle

  • VUID-vkCmdTraceRaysIndirectKHR-pRaygenShaderBindingTable-parameter
    pRaygenShaderBindingTable must be a valid pointer to a valid VkStridedDeviceAddressRegionKHR structure

  • VUID-vkCmdTraceRaysIndirectKHR-pMissShaderBindingTable-parameter
    pMissShaderBindingTable must be a valid pointer to a valid VkStridedDeviceAddressRegionKHR structure

  • VUID-vkCmdTraceRaysIndirectKHR-pHitShaderBindingTable-parameter
    pHitShaderBindingTable must be a valid pointer to a valid VkStridedDeviceAddressRegionKHR structure

  • VUID-vkCmdTraceRaysIndirectKHR-pCallableShaderBindingTable-parameter
    pCallableShaderBindingTable must be a valid pointer to a valid VkStridedDeviceAddressRegionKHR structure

  • VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-recording
    commandBuffer must be in the recording state

  • VUID-vkCmdTraceRaysIndirectKHR-commandBuffer-cmdpool
    The VkCommandPool that commandBuffer was allocated from must support compute operations

  • VUID-vkCmdTraceRaysIndirectKHR-renderpass
    This command must only be called outside of a render pass instance

  • VUID-vkCmdTraceRaysIndirectKHR-videocoding
    This command must only be called outside of a video coding scope

Host Synchronization
  • Host access to commandBuffer must be externally synchronized

  • Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties
Command Buffer Levels Render Pass Scope Video Coding Scope Supported Queue Types Command Type

Primary
Secondary

Outside

Outside

Compute

Action

See Also

Document Notes

For more information, see the Vulkan Specification

This page is extracted from the Vulkan Specification. Fixes and changes should be made to the Specification, not directly.

Copyright 2014-2024 The Khronos Group Inc.

SPDX-License-Identifier: CC-BY-4.0