Vulkan Logo

Appendix A: Vulkan Environment for SPIR-V

Shaders for Vulkan are defined by the Khronos SPIR-V Specification as well as the Khronos SPIR-V Extended Instructions for GLSL Specification. This appendix defines additional SPIR-V requirements applying to Vulkan shaders.

Versions and Formats

A Vulkan 1.3 implementation must support the 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6 versions of SPIR-V and the 1.0 version of the SPIR-V Extended Instructions for GLSL.

A SPIR-V module passed into vkCreateShaderModule is interpreted as a series of 32-bit words in host endianness, with literal strings packed as described in section 2.2 of the SPIR-V Specification. The first few words of the SPIR-V module must be a magic number and a SPIR-V version number, as described in section 2.3 of the SPIR-V Specification.

Capabilities

The table below lists the set of SPIR-V capabilities that may be supported in Vulkan implementations. The application must not use any of these capabilities in SPIR-V passed to vkCreateShaderModule unless one of the following conditions is met for the VkDevice specified in the device parameter of vkCreateShaderModule:

  • The corresponding field in the table is blank.

  • Any corresponding Vulkan feature is enabled.

  • Any corresponding Vulkan extension is enabled.

  • Any corresponding Vulkan property is supported.

  • The corresponding core version is supported (as returned by VkPhysicalDeviceProperties::apiVersion).

Table 63. List of SPIR-V Capabilities and corresponding Vulkan features, extensions, or core version
SPIR-V OpCapability
                Vulkan feature, extension, or core version

Matrix
                VK_VERSION_1_0

Shader
                VK_VERSION_1_0

InputAttachment
                VK_VERSION_1_0

Sampled1D
                VK_VERSION_1_0

Image1D
                VK_VERSION_1_0

SampledBuffer
                VK_VERSION_1_0

ImageBuffer
                VK_VERSION_1_0

ImageQuery
                VK_VERSION_1_0

DerivativeControl
                VK_VERSION_1_0

Geometry
                VkPhysicalDeviceFeatures::geometryShader

Tessellation
                VkPhysicalDeviceFeatures::tessellationShader

Float64
                VkPhysicalDeviceFeatures::shaderFloat64

Int64
                VkPhysicalDeviceFeatures::shaderInt64

Int64Atomics
                VkPhysicalDeviceVulkan12Features::shaderBufferInt64Atomics
                VkPhysicalDeviceVulkan12Features::shaderSharedInt64Atomics

Int16
                VkPhysicalDeviceFeatures::shaderInt16

TessellationPointSize
                VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize

GeometryPointSize
                VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize

ImageGatherExtended
                VkPhysicalDeviceFeatures::shaderImageGatherExtended

StorageImageMultisample
                VkPhysicalDeviceFeatures::shaderStorageImageMultisample

UniformBufferArrayDynamicIndexing
                VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing

SampledImageArrayDynamicIndexing
                VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing

StorageBufferArrayDynamicIndexing
                VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing

StorageImageArrayDynamicIndexing
                VkPhysicalDeviceFeatures::shaderStorageImageArrayDynamicIndexing

ClipDistance
                VkPhysicalDeviceFeatures::shaderClipDistance

CullDistance
                VkPhysicalDeviceFeatures::shaderCullDistance

ImageCubeArray
                VkPhysicalDeviceFeatures::imageCubeArray

SampleRateShading
                VkPhysicalDeviceFeatures::sampleRateShading

SparseResidency
                VkPhysicalDeviceFeatures::shaderResourceResidency

MinLod
                VkPhysicalDeviceFeatures::shaderResourceMinLod

SampledCubeArray
                VkPhysicalDeviceFeatures::imageCubeArray

ImageMSArray
                VkPhysicalDeviceFeatures::shaderStorageImageMultisample

StorageImageExtendedFormats
                VK_VERSION_1_0

InterpolationFunction
                VkPhysicalDeviceFeatures::sampleRateShading

StorageImageReadWithoutFormat
                VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat
                VK_VERSION_1_3

StorageImageWriteWithoutFormat
                VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat
                VK_VERSION_1_3

MultiViewport
                VkPhysicalDeviceFeatures::multiViewport

DrawParameters
                VkPhysicalDeviceVulkan11Features::shaderDrawParameters
                VkPhysicalDeviceShaderDrawParametersFeatures::shaderDrawParameters

MultiView
                VkPhysicalDeviceVulkan11Features::multiview

DeviceGroup
                VK_VERSION_1_1

VariablePointersStorageBuffer
                VkPhysicalDeviceVulkan11Features::variablePointersStorageBuffer

VariablePointers
                VkPhysicalDeviceVulkan11Features::variablePointers

ShaderViewportIndex
                VkPhysicalDeviceVulkan12Features::shaderOutputViewportIndex

ShaderLayer
                VkPhysicalDeviceVulkan12Features::shaderOutputLayer

StorageBuffer16BitAccess
                VkPhysicalDeviceVulkan11Features::storageBuffer16BitAccess

UniformAndStorageBuffer16BitAccess
                VkPhysicalDeviceVulkan11Features::uniformAndStorageBuffer16BitAccess

StoragePushConstant16
                VkPhysicalDeviceVulkan11Features::storagePushConstant16

StorageInputOutput16
                VkPhysicalDeviceVulkan11Features::storageInputOutput16

GroupNonUniform
                VK_SUBGROUP_FEATURE_BASIC_BIT

GroupNonUniformVote
                VK_SUBGROUP_FEATURE_VOTE_BIT

GroupNonUniformArithmetic
                VK_SUBGROUP_FEATURE_ARITHMETIC_BIT

GroupNonUniformBallot
                VK_SUBGROUP_FEATURE_BALLOT_BIT

GroupNonUniformShuffle
                VK_SUBGROUP_FEATURE_SHUFFLE_BIT

GroupNonUniformShuffleRelative
                VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT

GroupNonUniformClustered
                VK_SUBGROUP_FEATURE_CLUSTERED_BIT

GroupNonUniformQuad
                VK_SUBGROUP_FEATURE_QUAD_BIT

ShaderNonUniform
                VK_VERSION_1_2

RuntimeDescriptorArray
                VkPhysicalDeviceVulkan12Features::runtimeDescriptorArray

InputAttachmentArrayDynamicIndexing
                VkPhysicalDeviceVulkan12Features::shaderInputAttachmentArrayDynamicIndexing

UniformTexelBufferArrayDynamicIndexing
                VkPhysicalDeviceVulkan12Features::shaderUniformTexelBufferArrayDynamicIndexing

StorageTexelBufferArrayDynamicIndexing
                VkPhysicalDeviceVulkan12Features::shaderStorageTexelBufferArrayDynamicIndexing

UniformBufferArrayNonUniformIndexing
                VkPhysicalDeviceVulkan12Features::shaderUniformBufferArrayNonUniformIndexing

SampledImageArrayNonUniformIndexing
                VkPhysicalDeviceVulkan12Features::shaderSampledImageArrayNonUniformIndexing

StorageBufferArrayNonUniformIndexing
                VkPhysicalDeviceVulkan12Features::shaderStorageBufferArrayNonUniformIndexing

StorageImageArrayNonUniformIndexing
                VkPhysicalDeviceVulkan12Features::shaderStorageImageArrayNonUniformIndexing

InputAttachmentArrayNonUniformIndexing
                VkPhysicalDeviceVulkan12Features::shaderInputAttachmentArrayNonUniformIndexing

UniformTexelBufferArrayNonUniformIndexing
                VkPhysicalDeviceVulkan12Features::shaderUniformTexelBufferArrayNonUniformIndexing

StorageTexelBufferArrayNonUniformIndexing
                VkPhysicalDeviceVulkan12Features::shaderStorageTexelBufferArrayNonUniformIndexing

Float16
                VkPhysicalDeviceVulkan12Features::shaderFloat16

Int8
                VkPhysicalDeviceVulkan12Features::shaderInt8

StorageBuffer8BitAccess
                VkPhysicalDeviceVulkan12Features::storageBuffer8BitAccess

UniformAndStorageBuffer8BitAccess
                VkPhysicalDeviceVulkan12Features::uniformAndStorageBuffer8BitAccess

StoragePushConstant8
                VkPhysicalDeviceVulkan12Features::storagePushConstant8

VulkanMemoryModel
                VkPhysicalDeviceVulkan12Features::vulkanMemoryModel

VulkanMemoryModelDeviceScope
                VkPhysicalDeviceVulkan12Features::vulkanMemoryModelDeviceScope

DenormPreserve
                VkPhysicalDeviceVulkan12Properties::shaderDenormPreserveFloat16
                VkPhysicalDeviceVulkan12Properties::shaderDenormPreserveFloat32
                VkPhysicalDeviceVulkan12Properties::shaderDenormPreserveFloat64

DenormFlushToZero
                VkPhysicalDeviceVulkan12Properties::shaderDenormFlushToZeroFloat16
                VkPhysicalDeviceVulkan12Properties::shaderDenormFlushToZeroFloat32
                VkPhysicalDeviceVulkan12Properties::shaderDenormFlushToZeroFloat64

SignedZeroInfNanPreserve
                VkPhysicalDeviceVulkan12Properties::shaderSignedZeroInfNanPreserveFloat16
                VkPhysicalDeviceVulkan12Properties::shaderSignedZeroInfNanPreserveFloat32
                VkPhysicalDeviceVulkan12Properties::shaderSignedZeroInfNanPreserveFloat64

RoundingModeRTE
                VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTEFloat16
                VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTEFloat32
                VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTEFloat64

RoundingModeRTZ
                VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTZFloat16
                VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTZFloat32
                VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTZFloat64

PhysicalStorageBufferAddresses
                VkPhysicalDeviceVulkan12Features::bufferDeviceAddress

DemoteToHelperInvocationEXT
                VkPhysicalDeviceVulkan13Features::shaderDemoteToHelperInvocation

DotProductInputAllKHR
                VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct

DotProductInput4x8BitKHR
                VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct

DotProductInput4x8BitPackedKHR
                VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct

DotProductKHR
                VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct

The application must not pass a SPIR-V module containing any of the following to vkCreateShaderModule:

  • any OpCapability not listed above,

  • an unsupported capability, or

  • a capability which corresponds to a Vulkan feature or extension which has not been enabled.

SPIR-V Extensions

The following table lists SPIR-V extensions that implementations may support. The application must not pass a SPIR-V module to vkCreateShaderModule that uses the following SPIR-V extensions unless one of the following conditions is met for the VkDevice specified in the device parameter of vkCreateShaderModule:

  • Any corresponding Vulkan extension is enabled.

  • The corresponding core version is supported (as returned by VkPhysicalDeviceProperties::apiVersion).

Table 64. List of SPIR-V Extensions and corresponding Vulkan extensions or core version
SPIR-V OpExtension
                Vulkan extension or core version

SPV_KHR_variable_pointers
                VK_VERSION_1_1

SPV_KHR_shader_draw_parameters
                VK_VERSION_1_1

SPV_KHR_8bit_storage
                VK_VERSION_1_2

SPV_KHR_16bit_storage
                VK_VERSION_1_1

SPV_KHR_float_controls
                VK_VERSION_1_2

SPV_KHR_storage_buffer_storage_class
                VK_VERSION_1_1

SPV_EXT_shader_viewport_index_layer
                VK_VERSION_1_2

SPV_EXT_descriptor_indexing
                VK_VERSION_1_2

SPV_KHR_vulkan_memory_model
                VK_VERSION_1_2

SPV_KHR_physical_storage_buffer
                VK_VERSION_1_2

SPV_EXT_demote_to_helper_invocation
                VK_VERSION_1_3

SPV_KHR_non_semantic_info
                VK_VERSION_1_3

SPV_KHR_terminate_invocation
                VK_VERSION_1_3

SPV_KHR_multiview
                VK_VERSION_1_1

SPV_KHR_subgroup_uniform_control_flow
                VK_VERSION_1_3

SPV_KHR_integer_dot_product
                VK_VERSION_1_3

SPV_KHR_device_group
                VK_VERSION_1_1

Validation Rules Within a Module

A SPIR-V module passed to vkCreateShaderModule must conform to the following rules:

Standalone SPIR-V Validation

The following rules can be validated with only the SPIR-V module itself. They do not depend on knowledge of the implementation and its capabilities or knowledge of runtime information, such as enabled features.

Valid Usage
  • VUID-StandaloneSpirv-None-04633
    Every entry point must have no return value and accept no arguments

  • VUID-StandaloneSpirv-None-04634
    The static function-call graph for an entry point must not contain cycles; that is, static recursion is not allowed

  • VUID-StandaloneSpirv-None-04635
    The Logical or PhysicalStorageBuffer64 addressing model must be selected

  • VUID-StandaloneSpirv-None-04636
    Scope for execution must be limited to Workgroup or Subgroup

  • VUID-StandaloneSpirv-None-04637
    If the Scope for execution is Workgroup, then it must only be used in the task, mesh, tessellation control, or compute Execution Model

  • VUID-StandaloneSpirv-None-04638
    Scope for memory must be limited to Device, QueueFamily, Workgroup, ShaderCallKHR, Subgroup, or Invocation

  • VUID-StandaloneSpirv-ExecutionModel-07320
    If the Execution Model is TessellationControl, and the MemoryModel is GLSL450, the Scope for memory must not be Workgroup

  • VUID-StandaloneSpirv-None-07321
    If the Scope for memory is Workgroup, then it must only be used in the task, mesh, tessellation control, or compute Execution Model

  • VUID-StandaloneSpirv-None-04640
    If the Scope for memory is ShaderCallKHR, then it must only be used in ray generation, intersection, closest hit, any-hit, miss, and callable Execution Model

  • VUID-StandaloneSpirv-None-04641
    If the Scope for memory is Invocation, then memory semantics must be None

  • VUID-StandaloneSpirv-None-04642
    Scope for group operations must be limited to Subgroup

  • VUID-StandaloneSpirv-SubgroupVoteKHR-07951
    If none of the SubgroupVoteKHR, GroupNonUniform, or SubgroupBallotKHR capabilities are declared, Scope for memory must not be Subgroup

  • VUID-StandaloneSpirv-None-04643
    Storage Class must be limited to UniformConstant, Input, Uniform, Output, Workgroup, Private, Function, PushConstant, Image, StorageBuffer, RayPayloadKHR, IncomingRayPayloadKHR, HitAttributeKHR, CallableDataKHR, IncomingCallableDataKHR, ShaderRecordBufferKHR, PhysicalStorageBuffer, or TileImageEXT

  • VUID-StandaloneSpirv-None-04644
    If the Storage Class is Output, then it must not be used in the GlCompute, RayGenerationKHR, IntersectionKHR, AnyHitKHR, ClosestHitKHR, MissKHR, or CallableKHR Execution Model

  • VUID-StandaloneSpirv-None-04645
    If the Storage Class is Workgroup, then it must only be used in the task, mesh, or compute Execution Model

  • VUID-StandaloneSpirv-None-08720
    If the Storage Class is TileImageEXT, then it must only be used in the fragment execution model

  • VUID-StandaloneSpirv-OpAtomicStore-04730
    OpAtomicStore must not use Acquire, AcquireRelease, or SequentiallyConsistent memory semantics

  • VUID-StandaloneSpirv-OpAtomicLoad-04731
    OpAtomicLoad must not use Release, AcquireRelease, or SequentiallyConsistent memory semantics

  • VUID-StandaloneSpirv-OpMemoryBarrier-04732
    OpMemoryBarrier must use one of Acquire, Release, AcquireRelease, or SequentiallyConsistent memory semantics

  • VUID-StandaloneSpirv-OpMemoryBarrier-04733
    OpMemoryBarrier must include at least one Storage Class

  • VUID-StandaloneSpirv-OpControlBarrier-04650
    If the semantics for OpControlBarrier includes one of Acquire, Release, AcquireRelease, or SequentiallyConsistent memory semantics, then it must include at least one Storage Class

  • VUID-StandaloneSpirv-OpVariable-04651
    Any OpVariable with an Initializer operand must have Output, Private, Function, or Workgroup as its Storage Class operand

  • VUID-StandaloneSpirv-OpVariable-04734
    Any OpVariable with an Initializer operand and Workgroup as its Storage Class operand must use OpConstantNull as the initializer

  • VUID-StandaloneSpirv-OpReadClockKHR-04652
    Scope for OpReadClockKHR must be limited to Subgroup or Device

  • VUID-StandaloneSpirv-OriginLowerLeft-04653
    The OriginLowerLeft Execution Mode must not be used; fragment entry points must declare OriginUpperLeft

  • VUID-StandaloneSpirv-PixelCenterInteger-04654
    The PixelCenterInteger Execution Mode must not be used (pixels are always centered at half-integer coordinates)

  • VUID-StandaloneSpirv-UniformConstant-04655
    Any variable in the UniformConstant Storage Class must be typed as either OpTypeImage, OpTypeSampler, OpTypeSampledImage, OpTypeAccelerationStructureKHR, or an array of one of these types

  • VUID-StandaloneSpirv-Uniform-06807
    Any variable in the Uniform or StorageBuffer Storage Class must be typed as OpTypeStruct or an array of this type

  • VUID-StandaloneSpirv-PushConstant-06808
    Any variable in the PushConstant Storage Class must be typed as OpTypeStruct

  • VUID-StandaloneSpirv-OpTypeImage-04656
    OpTypeImage must declare a scalar 32-bit float, 64-bit integer, or 32-bit integer type for the “Sampled Type” (RelaxedPrecision can be applied to a sampling instruction and to the variable holding the result of a sampling instruction)

  • VUID-StandaloneSpirv-OpTypeImage-04657
    OpTypeImage must have a “Sampled” operand of 1 (sampled image) or 2 (storage image)

  • VUID-StandaloneSpirv-OpTypeSampledImage-06671
    OpTypeSampledImage must have a OpTypeImage with a “Sampled” operand of 1 (sampled image)

  • VUID-StandaloneSpirv-Image-04965
    The SPIR-V Type of the Image Format operand of an OpTypeImage must match the Sampled Type, as defined in Image Format and Type Matching

  • VUID-StandaloneSpirv-OpImageTexelPointer-04658
    If an OpImageTexelPointer is used in an atomic operation, the image type of the image parameter to OpImageTexelPointer must have an image format of R64i, R64ui, R32f, R32i, or R32ui

  • VUID-StandaloneSpirv-OpImageQuerySizeLod-04659
    OpImageQuerySizeLod, OpImageQueryLod, and OpImageQueryLevels must only consume an “Image” operand whose type has its “Sampled” operand set to 1

  • VUID-StandaloneSpirv-OpTypeImage-09638
    An OpTypeImage must not have a “Dim” operand of Rect

  • VUID-StandaloneSpirv-OpTypeImage-06214
    An OpTypeImage with a “Dim” operand of SubpassData must have an “Arrayed” operand of 0 (non-arrayed) and a “Sampled” operand of 2 (storage image)

  • VUID-StandaloneSpirv-SubpassData-04660
    The (u,v) coordinates used for a SubpassData must be the <id> of a constant vector (0,0).

  • VUID-StandaloneSpirv-OpTypeImage-06924
    Objects of types OpTypeImage, OpTypeSampler, OpTypeSampledImage, OpTypeAccelerationStructureKHR, and arrays of these types must not be stored to or modified

  • VUID-StandaloneSpirv-Uniform-06925
    Any variable in the Uniform Storage Class decorated as Block must not be stored to or modified

  • VUID-StandaloneSpirv-Offset-04663
    Image operand Offset must only be used with OpImage*Gather instructions

  • VUID-StandaloneSpirv-Offset-04865
    Any image instruction which uses an Offset, ConstOffset, or ConstOffsets image operand, must only consume a “Sampled Image” operand whose type has its “Sampled” operand set to 1

  • VUID-StandaloneSpirv-OpImageGather-04664
    The “Component” operand of OpImageGather, and OpImageSparseGather must be the <id> of a constant instruction

  • VUID-StandaloneSpirv-OpImage-04777
    OpImage*Dref* instructions must not consume an image whose Dim is 3D

  • VUID-StandaloneSpirv-None-04667
    Structure types must not contain opaque types

  • VUID-StandaloneSpirv-BuiltIn-04668
    Any BuiltIn decoration not listed in Built-In Variables must not be used

  • VUID-StandaloneSpirv-Location-06672
    The Location or Component decorations must only be used with the Input, Output, RayPayloadKHR, IncomingRayPayloadKHR, HitAttributeKHR, HitObjectAttributeNV, CallableDataKHR, IncomingCallableDataKHR, or ShaderRecordBufferKHR storage classes

  • VUID-StandaloneSpirv-Location-04915
    The Location or Component decorations must not be used with BuiltIn

  • VUID-StandaloneSpirv-Location-04916
    The Location decorations must be used on user-defined variables

  • VUID-StandaloneSpirv-Location-04917
    If a user-defined variable is not a pointer to a Block decorated OpTypeStruct, then the OpVariable must have a Location decoration

  • VUID-StandaloneSpirv-Location-04918
    If a user-defined variable has a Location decoration, and the variable is a pointer to a OpTypeStruct, then the members of that structure must not have Location decorations

  • VUID-StandaloneSpirv-Location-04919
    If a user-defined variable does not have a Location decoration, and the variable is a pointer to a Block decorated OpTypeStruct, then each member of the struct must have a Location decoration

  • VUID-StandaloneSpirv-Component-04920
    The Component decoration value must not be greater than 3

  • VUID-StandaloneSpirv-Component-04921
    If the Component decoration is used on an OpVariable that has a OpTypeVector type with a Component Type with a Width that is less than or equal to 32, the sum of its Component Count and the Component decoration value must be less than or equal to 4

  • VUID-StandaloneSpirv-Component-04922
    If the Component decoration is used on an OpVariable that has a OpTypeVector type with a Component Type with a Width that is equal to 64, the sum of two times its Component Count and the Component decoration value must be less than or equal to 4

  • VUID-StandaloneSpirv-Component-04923
    The Component decorations value must not be 1 or 3 for scalar or two-component 64-bit data types

  • VUID-StandaloneSpirv-Component-04924
    The Component decorations must not be used with any type that is not a scalar or vector, or an array of such a type

  • VUID-StandaloneSpirv-Component-07703
    The Component decorations must not be used for a 64-bit vector type with more than two components

  • VUID-StandaloneSpirv-Input-09557
    The pointers of any Input or Output Interface user-defined variables must not contain any PhysicalStorageBuffer Storage Class pointers

  • VUID-StandaloneSpirv-GLSLShared-04669
    The GLSLShared and GLSLPacked decorations must not be used

  • VUID-StandaloneSpirv-Flat-04670
    The Flat, NoPerspective, Sample, and Centroid decorations must only be used on variables with the Output or Input Storage Class

  • VUID-StandaloneSpirv-Flat-06201
    The Flat, NoPerspective, Sample, and Centroid decorations must not be used on variables with the Output storage class in a fragment shader

  • VUID-StandaloneSpirv-Flat-06202
    The Flat, NoPerspective, Sample, and Centroid decorations must not be used on variables with the Input storage class in a vertex shader

  • VUID-StandaloneSpirv-PerVertexKHR-06777
    The PerVertexKHR decoration must only be used on variables with the Input Storage Class in a fragment shader

  • VUID-StandaloneSpirv-Flat-04744
    Any variable with integer or double-precision floating-point type and with Input Storage Class in a fragment shader, must be decorated Flat

  • VUID-StandaloneSpirv-ViewportRelativeNV-04672
    The ViewportRelativeNV decoration must only be used on a variable decorated with Layer in the vertex, tessellation evaluation, or geometry shader stages

  • VUID-StandaloneSpirv-ViewportRelativeNV-04673
    The ViewportRelativeNV decoration must not be used unless a variable decorated with one of ViewportIndex or ViewportMaskNV is also statically used by the same OpEntryPoint

  • VUID-StandaloneSpirv-ViewportMaskNV-04674
    The ViewportMaskNV and ViewportIndex decorations must not both be statically used by one or more OpEntryPoint’s that form the pre-rasterization shader stages of a graphics pipeline

  • VUID-StandaloneSpirv-FPRoundingMode-04675
    Rounding modes other than round-to-nearest-even and round-towards-zero must not be used for the FPRoundingMode decoration

  • VUID-StandaloneSpirv-Invariant-04677
    Variables decorated with Invariant and variables with structure types that have any members decorated with Invariant must be in the Output or Input Storage Class, Invariant used on an Input Storage Class variable or structure member has no effect

  • VUID-StandaloneSpirv-VulkanMemoryModel-04678
    If the VulkanMemoryModel capability is not declared, the Volatile decoration must be used on any variable declaration that includes one of the SMIDNV, WarpIDNV, SubgroupSize, SubgroupLocalInvocationId, SubgroupEqMask, SubgroupGeMask, SubgroupGtMask, SubgroupLeMask, or SubgroupLtMask BuiltIn decorations when used in the ray generation, closest hit, miss, intersection, or callable shaders, or with the RayTmaxKHR Builtin decoration when used in an intersection shader

  • VUID-StandaloneSpirv-VulkanMemoryModel-04679
    If the VulkanMemoryModel capability is declared, the OpLoad instruction must use the Volatile memory semantics when it accesses into any variable that includes one of the SMIDNV, WarpIDNV, SubgroupSize, SubgroupLocalInvocationId, SubgroupEqMask, SubgroupGeMask, SubgroupGtMask, SubgroupLeMask, or SubgroupLtMask BuiltIn decorations when used in the ray generation, closest hit, miss, intersection, or callable shaders, or with the RayTmaxKHR Builtin decoration when used in an intersection shader

  • VUID-StandaloneSpirv-OpTypeRuntimeArray-04680
    OpTypeRuntimeArray must only be used for:

    • the last member of a Block-decorated OpTypeStruct in StorageBuffer or PhysicalStorageBuffer storage Storage Class

    • BufferBlock-decorated OpTypeStruct in the Uniform storage Storage Class

    • the outermost dimension of an arrayed variable in the StorageBuffer, Uniform, or UniformConstant storage Storage Class

    • variables in the NodePayloadAMDX storage Storage Class when the CoalescingAMDX Execution Mode is specified

  • VUID-StandaloneSpirv-Function-04681
    A type T that is an array sized with a specialization constant must neither be, nor be contained in, the type T2 of a variable V, unless either: a) T is equal to T2, b) V is declared in the Function, or Private Storage Class, c) V is a non-Block variable in the Workgroup Storage Class, or d) V is an interface variable with an additional level of arrayness, as described in interface matching, and T is the member type of the array type T2

  • VUID-StandaloneSpirv-OpControlBarrier-04682
    If OpControlBarrier is used in ray generation, intersection, any-hit, closest hit, miss, fragment, vertex, tessellation evaluation, or geometry shaders, the execution Scope must be Subgroup

  • VUID-StandaloneSpirv-LocalSize-06426
    For each compute shader entry point, either a LocalSize or LocalSizeId Execution Mode, or an object decorated with the WorkgroupSize decoration must be specified

  • VUID-StandaloneSpirv-DerivativeGroupQuadsNV-04684
    For compute shaders using the DerivativeGroupQuadsNV execution mode, the first two dimensions of the local workgroup size must be a multiple of two

  • VUID-StandaloneSpirv-DerivativeGroupLinearNV-04778
    For compute shaders using the DerivativeGroupLinearNV execution mode, the product of the dimensions of the local workgroup size must be a multiple of four

  • VUID-StandaloneSpirv-OpGroupNonUniformBallotBitCount-04685
    If OpGroupNonUniformBallotBitCount is used, the group operation must be limited to Reduce, InclusiveScan, or ExclusiveScan

  • VUID-StandaloneSpirv-None-04686
    The Pointer operand of all atomic instructions must have a Storage Class limited to Uniform, Workgroup, Image, StorageBuffer, PhysicalStorageBuffer, or TaskPayloadWorkgroupEXT

  • VUID-StandaloneSpirv-Offset-04687
    Output variables or block members decorated with Offset that have a 64-bit type, or a composite type containing a 64-bit type, must specify an Offset value aligned to a 8 byte boundary

  • VUID-StandaloneSpirv-Offset-04689
    The size of any output block containing any member decorated with Offset that is a 64-bit type must be a multiple of 8

  • VUID-StandaloneSpirv-Offset-04690
    The first member of an output block specifying a Offset decoration must specify a Offset value that is aligned to an 8 byte boundary if that block contains any member decorated with Offset and is a 64-bit type

  • VUID-StandaloneSpirv-Offset-04691
    Output variables or block members decorated with Offset that have a 32-bit type, or a composite type contains a 32-bit type, must specify an Offset value aligned to a 4 byte boundary

  • VUID-StandaloneSpirv-Offset-04692
    Output variables, blocks or block members decorated with Offset must only contain base types that have components that are either 32-bit or 64-bit in size

  • VUID-StandaloneSpirv-Offset-04716
    Only variables or block members in the output interface decorated with Offset can be captured for transform feedback, and those variables or block members must also be decorated with XfbBuffer and XfbStride, or inherit XfbBuffer and XfbStride decorations from a block containing them

  • VUID-StandaloneSpirv-XfbBuffer-04693
    All variables or block members in the output interface of the entry point being compiled decorated with a specific XfbBuffer value must all be decorated with identical XfbStride values

  • VUID-StandaloneSpirv-Stream-04694
    If any variables or block members in the output interface of the entry point being compiled are decorated with Stream, then all variables belonging to the same XfbBuffer must specify the same Stream value

  • VUID-StandaloneSpirv-XfbBuffer-04696
    For any two variables or block members in the output interface of the entry point being compiled with the same XfbBuffer value, the ranges determined by the Offset decoration and the size of the type must not overlap

  • VUID-StandaloneSpirv-XfbBuffer-04697
    All block members in the output interface of the entry point being compiled that are in the same block and have a declared or inherited XfbBuffer decoration must specify the same XfbBuffer value

  • VUID-StandaloneSpirv-RayPayloadKHR-04698
    RayPayloadKHR Storage Class must only be used in ray generation, closest hit or miss shaders

  • VUID-StandaloneSpirv-IncomingRayPayloadKHR-04699
    IncomingRayPayloadKHR Storage Class must only be used in closest hit, any-hit, or miss shaders

  • VUID-StandaloneSpirv-IncomingRayPayloadKHR-04700
    There must be at most one variable with the IncomingRayPayloadKHR Storage Class in the input interface of an entry point

  • VUID-StandaloneSpirv-HitAttributeKHR-04701
    HitAttributeKHR Storage Class must only be used in intersection, any-hit, or closest hit shaders

  • VUID-StandaloneSpirv-HitAttributeKHR-04702
    There must be at most one variable with the HitAttributeKHR Storage Class in the input interface of an entry point

  • VUID-StandaloneSpirv-HitAttributeKHR-04703
    A variable with HitAttributeKHR Storage Class must only be written to in an intersection shader

  • VUID-StandaloneSpirv-CallableDataKHR-04704
    CallableDataKHR Storage Class must only be used in ray generation, closest hit, miss, and callable shaders

  • VUID-StandaloneSpirv-IncomingCallableDataKHR-04705
    IncomingCallableDataKHR Storage Class must only be used in callable shaders

  • VUID-StandaloneSpirv-IncomingCallableDataKHR-04706
    There must be at most one variable with the IncomingCallableDataKHR Storage Class in the input interface of an entry point

  • VUID-StandaloneSpirv-ShaderRecordBufferKHR-07119
    ShaderRecordBufferKHR Storage Class must only be used in ray generation, intersection, any-hit, closest hit, callable, or miss shaders

  • VUID-StandaloneSpirv-Base-07650
    The Base operand of OpPtrAccessChain must have a storage class of Workgroup, StorageBuffer, or PhysicalStorageBuffer

  • VUID-StandaloneSpirv-Base-07651
    If the Base operand of OpPtrAccessChain has a Workgroup Storage Class, then the VariablePointers capability must be declared

  • VUID-StandaloneSpirv-Base-07652
    If the Base operand of OpPtrAccessChain has a StorageBuffer Storage Class, then the VariablePointers or VariablePointersStorageBuffer capability must be declared

  • VUID-StandaloneSpirv-PhysicalStorageBuffer64-04708
    If the PhysicalStorageBuffer64 addressing model is enabled, all instructions that support memory access operands and that use a physical pointer must include the Aligned operand

  • VUID-StandaloneSpirv-PhysicalStorageBuffer64-04709
    If the PhysicalStorageBuffer64 addressing model is enabled, any access chain instruction that accesses into a RowMajor matrix must only be used as the Pointer operand to OpLoad or OpStore

  • VUID-StandaloneSpirv-PhysicalStorageBuffer64-04710
    If the PhysicalStorageBuffer64 addressing model is enabled, OpConvertUToPtr and OpConvertPtrToU must use an integer type whose Width is 64

  • VUID-StandaloneSpirv-OpTypeForwardPointer-04711
    OpTypeForwardPointer must have a Storage Class of PhysicalStorageBuffer

  • VUID-StandaloneSpirv-None-04745
    All block members in a variable with a Storage Class of PushConstant declared as an array must only be accessed by dynamically uniform indices

  • VUID-StandaloneSpirv-OpVariable-06673
    There must not be more than one OpVariable in the PushConstant Storage Class listed in the Interface for each OpEntryPoint

  • VUID-StandaloneSpirv-OpEntryPoint-06674
    Each OpEntryPoint must not statically use more than one OpVariable in the PushConstant Storage Class

  • VUID-StandaloneSpirv-OpEntryPoint-08721
    Each OpEntryPoint must not have more than one Input variable assigned the same Component word inside a Location slot, either explicitly or implicitly

  • VUID-StandaloneSpirv-OpEntryPoint-08722
    Each OpEntryPoint must not have more than one Output variable assigned the same Component word inside a Location slot, either explicitly or implicitly

  • VUID-StandaloneSpirv-Result-04780
    The Result Type operand of any OpImageRead or OpImageSparseRead instruction must be a vector of four components

  • VUID-StandaloneSpirv-Base-04781
    The Base operand of any OpBitCount, OpBitReverse, OpBitFieldInsert, OpBitFieldSExtract, or OpBitFieldUExtract instruction must be a 32-bit integer scalar or a vector of 32-bit integers

  • VUID-StandaloneSpirv-PushConstant-06675
    Any variable in the PushConstant or StorageBuffer storage class must be decorated as Block

  • VUID-StandaloneSpirv-Uniform-06676
    Any variable in the Uniform Storage Class must be decorated as Block or BufferBlock

  • VUID-StandaloneSpirv-UniformConstant-06677
    Any variable in the UniformConstant, StorageBuffer, or Uniform Storage Class must be decorated with DescriptorSet and Binding

  • VUID-StandaloneSpirv-InputAttachmentIndex-06678
    Variables decorated with InputAttachmentIndex must be in the UniformConstant Storage Class

  • VUID-StandaloneSpirv-DescriptorSet-06491
    If a variable is decorated by DescriptorSet or Binding, the Storage Class must correspond to an entry in Shader Resource and Storage Class Correspondence

  • VUID-StandaloneSpirv-Input-06778
    Variables with a Storage Class of Input in a fragment shader stage that are decorated with PerVertexKHR must be declared as arrays

  • VUID-StandaloneSpirv-MeshEXT-07102
    The module must not contain both an entry point that uses the TaskEXT or MeshEXT Execution Model and an entry point that uses the TaskNV or MeshNV Execution Model

  • VUID-StandaloneSpirv-MeshEXT-07106
    In mesh shaders using the MeshEXT Execution Model OpSetMeshOutputsEXT must be called before any outputs are written

  • VUID-StandaloneSpirv-MeshEXT-07107
    In mesh shaders using the MeshEXT Execution Model all variables declared as output must not be read from

  • VUID-StandaloneSpirv-MeshEXT-07108
    In mesh shaders using the MeshEXT Execution Model for OpSetMeshOutputsEXT instructions, the “Vertex Count” and “Primitive Count” operands must not depend on ViewIndex

  • VUID-StandaloneSpirv-MeshEXT-07109
    In mesh shaders using the MeshEXT Execution Model variables decorated with PrimitivePointIndicesEXT, PrimitiveLineIndicesEXT, or PrimitiveTriangleIndicesEXT declared as an array must not be accessed by indices that depend on ViewIndex

  • VUID-StandaloneSpirv-MeshEXT-07110
    In mesh shaders using the MeshEXT Execution Model any values stored in variables decorated with PrimitivePointIndicesEXT, PrimitiveLineIndicesEXT, or PrimitiveTriangleIndicesEXT must not depend on ViewIndex

  • VUID-StandaloneSpirv-MeshEXT-07111
    In mesh shaders using the MeshEXT Execution Model variables in workgroup or private Storage Class declared as or containing a composite type must not be accessed by indices that depend on ViewIndex

  • VUID-StandaloneSpirv-MeshEXT-07330
    In mesh shaders using the MeshEXT Execution Model the OutputVertices Execution Mode must be greater than 0

  • VUID-StandaloneSpirv-MeshEXT-07331
    In mesh shaders using the MeshEXT Execution Model the OutputPrimitivesEXT Execution Mode must be greater than 0

  • VUID-StandaloneSpirv-Input-07290
    Variables with a Storage Class of Input or Output and a type of OpTypeBool must be decorated with the BuiltIn decoration

  • VUID-StandaloneSpirv-TileImageEXT-08723
    The tile image variable declarations must obey the constraints on the TileImageEXT Storage Class and the Location decoration described in Fragment Tile Image Interface

  • VUID-StandaloneSpirv-None-08724
    The TileImageEXT Storage Class must only be used for declaring tile image variables

  • VUID-StandaloneSpirv-Pointer-08973
    The Storage Class of the Pointer operand to OpCooperativeMatrixLoadKHR or OpCooperativeMatrixStoreKHR must be limited to Workgroup, StorageBuffer, or PhysicalStorageBuffer

Runtime SPIR-V Validation

The following rules must be validated at runtime. These rules depend on knowledge of the implementation and its capabilities and knowledge of runtime information, such as enabled features.

Valid Usage
  • VUID-RuntimeSpirv-vulkanMemoryModel-06265
    If vulkanMemoryModel is enabled and vulkanMemoryModelDeviceScope is not enabled, Device memory scope must not be used

  • VUID-RuntimeSpirv-vulkanMemoryModel-06266
    If vulkanMemoryModel is not enabled, QueueFamily memory scope must not be used

  • VUID-RuntimeSpirv-None-09558
    Any variable created with a “Type” of OpTypeImage that has a “Dim” operand of SubpassData must be decorated with InputAttachmentIndex

  • VUID-RuntimeSpirv-apiVersion-07952
    If VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.3, and shaderStorageImageWriteWithoutFormat is not enabled, any variable created with a “Type” of OpTypeImage that has a “Sampled” operand of 2 and an “Image Format” operand of Unknown must be decorated with NonWritable

  • VUID-RuntimeSpirv-apiVersion-07953
    If VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.3, and shaderStorageImageReadWithoutFormat is not enabled, any variable created with a “Type” of OpTypeImage that has a “Sampled” operand of 2 and an “Image Format” operand of Unknown must be decorated with NonReadable

  • VUID-RuntimeSpirv-OpImageWrite-07112
    OpImageWrite to any Image whose Image Format is not Unknown must have the Texel operand contain at least as many components as the corresponding VkFormat as given in the SPIR-V Image Format compatibility table

  • VUID-RuntimeSpirv-Location-06272
    The sum of Location and the number of locations the variable it decorates consumes must be less than or equal to the value for the matching Execution Model defined in Shader Input and Output Locations

  • VUID-RuntimeSpirv-Location-06428
    The maximum number of storage buffers, storage images, and output Location decorated color attachments written to in the Fragment Execution Model must be less than or equal to maxFragmentCombinedOutputResources

  • VUID-RuntimeSpirv-NonUniform-06274
    If an instruction loads from or stores to a resource (including atomics and image instructions) and the resource descriptor being accessed is not dynamically uniform, then the operand corresponding to that resource (e.g. the pointer or sampled image operand) must be decorated with NonUniform

  • VUID-RuntimeSpirv-None-06275
    shaderSubgroupExtendedTypes must be enabled for group operations to use 8-bit integer, 16-bit integer, 64-bit integer, 16-bit floating-point, and vectors of these types

  • VUID-RuntimeSpirv-subgroupBroadcastDynamicId-06276
    If subgroupBroadcastDynamicId is VK_TRUE, and the shader module version is 1.5 or higher, the “Index” for OpGroupNonUniformQuadBroadcast must be dynamically uniform within the derivative group. Otherwise, “Index” must be a constant

  • VUID-RuntimeSpirv-subgroupBroadcastDynamicId-06277
    If subgroupBroadcastDynamicId is VK_TRUE, and the shader module version is 1.5 or higher, the “Id” for OpGroupNonUniformBroadcast must be dynamically uniform within the subgroup. Otherwise, “Id” must be a constant

  • VUID-RuntimeSpirv-denormBehaviorIndependence-06289
    If denormBehaviorIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY, then the entry point must use the same denormals Execution Mode for both 16-bit and 64-bit floating-point types

  • VUID-RuntimeSpirv-denormBehaviorIndependence-06290
    If denormBehaviorIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE, then the entry point must use the same denormals Execution Mode for all floating-point types

  • VUID-RuntimeSpirv-roundingModeIndependence-06291
    If roundingModeIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY, then the entry point must use the same rounding Execution Mode for both 16-bit and 64-bit floating-point types

  • VUID-RuntimeSpirv-roundingModeIndependence-06292
    If roundingModeIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE, then the entry point must use the same rounding Execution Mode for all floating-point types

  • VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat16-06293
    If shaderSignedZeroInfNanPreserveFloat16 is VK_FALSE, then SignedZeroInfNanPreserve for 16-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat32-06294
    If shaderSignedZeroInfNanPreserveFloat32 is VK_FALSE, then SignedZeroInfNanPreserve for 32-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat64-06295
    If shaderSignedZeroInfNanPreserveFloat64 is VK_FALSE, then SignedZeroInfNanPreserve for 64-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderDenormPreserveFloat16-06296
    If shaderDenormPreserveFloat16 is VK_FALSE, then DenormPreserve for 16-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderDenormPreserveFloat32-06297
    If shaderDenormPreserveFloat32 is VK_FALSE, then DenormPreserve for 32-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderDenormPreserveFloat64-06298
    If shaderDenormPreserveFloat64 is VK_FALSE, then DenormPreserve for 64-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat16-06299
    If shaderDenormFlushToZeroFloat16 is VK_FALSE, then DenormFlushToZero for 16-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat32-06300
    If shaderDenormFlushToZeroFloat32 is VK_FALSE, then DenormFlushToZero for 32-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat64-06301
    If shaderDenormFlushToZeroFloat64 is VK_FALSE, then DenormFlushToZero for 64-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderRoundingModeRTEFloat16-06302
    If shaderRoundingModeRTEFloat16 is VK_FALSE, then RoundingModeRTE for 16-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderRoundingModeRTEFloat32-06303
    If shaderRoundingModeRTEFloat32 is VK_FALSE, then RoundingModeRTE for 32-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderRoundingModeRTEFloat64-06304
    If shaderRoundingModeRTEFloat64 is VK_FALSE, then RoundingModeRTE for 64-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderRoundingModeRTZFloat16-06305
    If shaderRoundingModeRTZFloat16 is VK_FALSE, then RoundingModeRTZ for 16-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderRoundingModeRTZFloat32-06306
    If shaderRoundingModeRTZFloat32 is VK_FALSE, then RoundingModeRTZ for 32-bit floating-point type must not be used

  • VUID-RuntimeSpirv-shaderRoundingModeRTZFloat64-06307
    If shaderRoundingModeRTZFloat64 is VK_FALSE, then RoundingModeRTZ for 64-bit floating-point type must not be used

  • VUID-RuntimeSpirv-PhysicalStorageBuffer64-06314
    If the PhysicalStorageBuffer64 addressing model is enabled any load or store through a physical pointer type must be aligned to a multiple of the size of the largest scalar type in the pointed-to type

  • VUID-RuntimeSpirv-PhysicalStorageBuffer64-06315
    If the PhysicalStorageBuffer64 addressing model is enabled the pointer value of a memory access instruction must be at least as aligned as specified by the Aligned memory access operand

  • VUID-RuntimeSpirv-DescriptorSet-06323
    DescriptorSet and Binding decorations must obey the constraints on Storage Class, type, and descriptor type described in DescriptorSet and Binding Assignment

  • VUID-RuntimeSpirv-NonWritable-06340
    If fragmentStoresAndAtomics is not enabled, then all storage image, storage texel buffer, and storage buffer variables in the fragment stage must be decorated with the NonWritable decoration

  • VUID-RuntimeSpirv-NonWritable-06341
    If vertexPipelineStoresAndAtomics is not enabled, then all storage image, storage texel buffer, and storage buffer variables in the vertex, tessellation, and geometry stages must be decorated with the NonWritable decoration

  • VUID-RuntimeSpirv-None-06342
    If subgroupQuadOperationsInAllStages is VK_FALSE, then quad subgroup operations must not be used except for in fragment and compute stages

  • VUID-RuntimeSpirv-None-06343
    Group operations with subgroup scope must not be used if the shader stage is not in subgroupSupportedStages

  • VUID-RuntimeSpirv-Offset-06344
    The first element of the Offset operand of InterpolateAtOffset must be greater than or equal to:
    fragwidth × minInterpolationOffset
    where fragwidth is the width of the current fragment in pixels

  • VUID-RuntimeSpirv-Offset-06345
    The first element of the Offset operand of InterpolateAtOffset must be less than or equal to
    fragwidth × (maxInterpolationOffset + ULP ) - ULP
    where fragwidth is the width of the current fragment in pixels and ULP = 1 / 2^subPixelInterpolationOffsetBits^

  • VUID-RuntimeSpirv-Offset-06346
    The second element of the Offset operand of InterpolateAtOffset must be greater than or equal to
    fragheight × minInterpolationOffset
    where fragheight is the height of the current fragment in pixels

  • VUID-RuntimeSpirv-Offset-06347
    The second element of the Offset operand of InterpolateAtOffset must be less than or equal to
    fragheight × (maxInterpolationOffset + ULP ) - ULP
    where fragheight is the height of the current fragment in pixels and ULP = 1 / 2^subPixelInterpolationOffsetBits^

  • VUID-RuntimeSpirv-x-06429
    In compute shaders using the GLCompute Execution Model the x size in LocalSize or LocalSizeId must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupSize[0]

  • VUID-RuntimeSpirv-y-06430
    In compute shaders using the GLCompute Execution Model the y size in LocalSize or LocalSizeId must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupSize[1]

  • VUID-RuntimeSpirv-z-06431
    In compute shaders using the GLCompute Execution Model the z size in LocalSize or LocalSizeId must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupSize[2]

  • VUID-RuntimeSpirv-x-06432
    In compute shaders using the GLCompute Execution Model the product of x size, y size, and z size in LocalSize or LocalSizeId must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupInvocations

  • VUID-RuntimeSpirv-LocalSizeId-06434
    If Execution Mode LocalSizeId is used, maintenance4 must be enabled

  • VUID-RuntimeSpirv-maintenance4-06817
    If maintenance4 is not enabled, any OpTypeVector output interface variables must not have a higher Component Count than a matching OpTypeVector input interface variable

  • VUID-RuntimeSpirv-OpEntryPoint-08743
    Any user-defined variables shared between the OpEntryPoint of two shader stages, and declared with Input as its Storage Class for the subsequent shader stage, must have all Location slots and Component words declared in the preceding shader stage’s OpEntryPoint with Output as the Storage Class

  • VUID-RuntimeSpirv-OpEntryPoint-07754
    Any user-defined variables between the OpEntryPoint of two shader stages must have the same type and width for each Component

  • VUID-RuntimeSpirv-OpVariable-08746
    Any OpVariable, Block-decorated OpTypeStruct, or Block-decorated OpTypeStruct members shared between the OpEntryPoint of two shader stages must have matching decorations as defined in interface matching

  • VUID-RuntimeSpirv-Workgroup-06530
    The sum of size in bytes for variables and padding in the Workgroup Storage Class in the GLCompute Execution Model must be less than or equal to maxComputeSharedMemorySize

  • VUID-RuntimeSpirv-shaderZeroInitializeWorkgroupMemory-06372
    If shaderZeroInitializeWorkgroupMemory is not enabled, any OpVariable with Workgroup as its Storage Class must not have an Initializer operand

  • VUID-RuntimeSpirv-OpImage-06376
    If an OpImage*Gather operation has an image operand of Offset, ConstOffset, or ConstOffsets the offset value must be greater than or equal to minTexelGatherOffset

  • VUID-RuntimeSpirv-OpImage-06377
    If an OpImage*Gather operation has an image operand of Offset, ConstOffset, or ConstOffsets the offset value must be less than or equal to maxTexelGatherOffset

  • VUID-RuntimeSpirv-OpImageSample-06435
    If an OpImageSample* or OpImageFetch* operation has an image operand of ConstOffset then the offset value must be greater than or equal to minTexelOffset

  • VUID-RuntimeSpirv-OpImageSample-06436
    If an OpImageSample* or OpImageFetch* operation has an image operand of ConstOffset then the offset value must be less than or equal to maxTexelOffset

  • VUID-RuntimeSpirv-samples-08725
    If an OpTypeImage has an MS operand 0, its bound image must have been created with VkImageCreateInfo::samples as VK_SAMPLE_COUNT_1_BIT

  • VUID-RuntimeSpirv-samples-08726
    If an OpTypeImage has an MS operand 1, its bound image must not have been created with VkImageCreateInfo::samples as VK_SAMPLE_COUNT_1_BIT

  • VUID-RuntimeSpirv-OpEntryPoint-08727
    Each OpEntryPoint must not have more than one variable decorated with InputAttachmentIndex per image aspect of the attachment image bound to it, either explicitly or implicitly as described by input attachment interface

  • VUID-RuntimeSpirv-MeshEXT-09218
    In mesh shaders using the MeshEXT or MeshNV Execution Model and the OutputPoints Execution Mode, if the number of output points is greater than 0, a PointSize decorated variable must be written to for each output point

  • VUID-RuntimeSpirv-protectedNoFault-09645
    If protectedNoFault is not supported, the Storage Class of the PhysicalStorageBuffer must not be used if the buffer being accessed is protected

Precision and Operation of SPIR-V Instructions

The following rules apply to half, single, and double-precision floating point instructions:

  • Positive and negative infinities and positive and negative zeros are generated as dictated by IEEE 754, but subject to the precisions allowed in the following table.

  • Dividing a non-zero by a zero results in the appropriately signed IEEE 754 infinity.

  • Signaling NaNs are not required to be generated and exceptions are never raised. Signaling NaN may be converted to quiet NaNs values by any floating point instruction.

  • By default, the implementation may perform optimizations on half, single, or double-precision floating-point instructions that ignore sign of a zero, or assume that arguments and results are not NaNs or infinities. If the entry point is declared with the SignedZeroInfNanPreserve Execution Mode, then NaNs, infinities, and the sign of zero must not be ignored.

    • The following core SPIR-V instructions must respect the SignedZeroInfNanPreserve Execution Mode: OpPhi, OpSelect, OpReturnValue, OpVectorExtractDynamic, OpVectorInsertDynamic, OpVectorShuffle, OpCompositeConstruct, OpCompositeExtract, OpCompositeInsert, OpCopyObject, OpTranspose, OpFConvert, OpFNegate, OpFAdd, OpFSub, OpFMul, OpStore. This Execution Mode must also be respected by OpLoad except for loads from the Input Storage Class in the fragment shader stage with the floating-point result type. Other SPIR-V instructions may also respect the SignedZeroInfNanPreserve Execution Mode.

  • The following instructions must not flush denormalized values: OpConstant, OpConstantComposite, OpSpecConstant, OpSpecConstantComposite, OpLoad, OpStore, OpBitcast, OpPhi, OpSelect, OpFunctionCall, OpReturnValue, OpVectorExtractDynamic, OpVectorInsertDynamic, OpVectorShuffle, OpCompositeConstruct, OpCompositeExtract, OpCompositeInsert, OpCopyMemory, OpCopyObject.

  • Denormalized values are supported.

    • By default, any half, single, or double-precision denormalized value input into a shader or potentially generated by any instruction (except those listed above) or any extended instructions for GLSL in a shader may be flushed to zero.

    • If the entry point is declared with the DenormFlushToZero Execution Mode then for the affected instructions the denormalized result must be flushed to zero and the denormalized operands may be flushed to zero. Denormalized values obtained via unpacking an integer into a vector of values with smaller bit width and interpreting those values as floating-point numbers must be flushed to zero.

    • The following core SPIR-V instructions must respect the DenormFlushToZero Execution Mode: OpSpecConstantOp (with opcode OpFConvert), OpFConvert, OpFNegate, OpFAdd, OpFSub, OpFMul, OpFDiv, OpFRem, OpFMod, OpVectorTimesScalar, OpMatrixTimesScalar, OpVectorTimesMatrix, OpMatrixTimesVector, OpMatrixTimesMatrix, OpOuterProduct, OpDot; and the following extended instructions for GLSL: Round, RoundEven, Trunc, FAbs, Floor, Ceil, Fract, Radians, Degrees, Sin, Cos, Tan, Asin, Acos, Atan, Sinh, Cosh, Tanh, Asinh, Acosh, Atanh, Atan2, Pow, Exp, Log, Exp2, Log2, Sqrt, InverseSqrt, Determinant, MatrixInverse, Modf, ModfStruct, FMin, FMax, FClamp, FMix, Step, SmoothStep, Fma, UnpackHalf2x16, UnpackDouble2x32, Length, Distance, Cross, Normalize, FaceForward, Reflect, Refract, NMin, NMax, NClamp. Other SPIR-V instructions (except those excluded above) may also flush denormalized values.

    • The following core SPIR-V instructions must respect the DenormPreserve Execution Mode: OpTranspose, OpSpecConstantOp, OpFConvert, OpFNegate, OpFAdd, OpFSub, OpFMul, OpVectorTimesScalar, OpMatrixTimesScalar, OpVectorTimesMatrix, OpMatrixTimesVector, OpMatrixTimesMatrix, OpOuterProduct, OpDot, OpFOrdEqual, OpFUnordEqual, OpFOrdNotEqual, OpFUnordNotEqual, OpFOrdLessThan, OpFUnordLessThan, OpFOrdGreaterThan, OpFUnordGreaterThan, OpFOrdLessThanEqual, OpFUnordLessThanEqual, OpFOrdGreaterThanEqual, OpFUnordGreaterThanEqual; and the following extended instructions for GLSL: FAbs, FSign, Radians, Degrees, FMin, FMax, FClamp, FMix, Fma, PackHalf2x16, PackDouble2x32, UnpackHalf2x16, UnpackDouble2x32, NMin, NMax, NClamp. Other SPIR-V instructions may also preserve denorm values.

The precision of double-precision instructions is at least that of single precision.

The precision of individual operations is defined in Precision of Individual Operations. Subject to the constraints below, however, implementations may reorder or combine operations, resulting in expressions exhibiting different precisions than might be expected from the constituent operations.

Evaluation of Expressions

Implementations may rearrange floating-point operations using any of the mathematical properties governing the expressions in precise arithmetic, even where the floating- point operations do not share these properties. This includes, but is not limited to, associativity and distributivity, and may involve a different number of rounding steps than would occur if the operations were not rearranged. In shaders that use the SignedZeroInfNanPreserve Execution Mode the values must be preserved if they are generated after any rearrangement but the Execution Mode does not change which rearrangements are valid. This rearrangement can be prevented for particular operations by using the NoContraction decoration.

Note

For example, in the absence of the NoContraction decoration implementations are allowed to implement a + b - a and as b. The SignedZeroInfNanPreserve does not prevent these transformations, even though they may overflow to infinity or NaN when evaluated in floating-point.

If the NoContraction decoration is applied then operations may not be rearranged, so, for example, a + a - a must account for possible overflow to infinity. If infinities are not preserved then the expression may be replaced with a, since the replacement is exact when overflow does not occur and infinities may be replaced with undefined values. If both NoContraction and SignedZeroInfNanPreserve are used then the result must be infinity for sufficiently large a.

Precision of Individual Operations

The precision of individual operations is defined either in terms of rounding (correctly rounded), as an error bound in ULP, or as inherited from a formula as follows:

Correctly Rounded

Operations described as “correctly rounded” will return the infinitely precise result, x, rounded so as to be representable in floating-point. The rounding mode is not specified, unless the entry point is declared with the RoundingModeRTE or the RoundingModeRTZ Execution Mode. These execution modes affect only correctly rounded SPIR-V instructions. These execution modes do not affect OpQuantizeToF16. If the rounding mode is not specified then this rounding is implementation specific, subject to the following rules. If x is exactly representable then x will be returned. Otherwise, either the floating-point value closest to and no less than x or the value closest to and no greater than x will be returned.

ULP

Where an error bound of n ULP (units in the last place) is given, for an operation with infinitely precise result x the value returned must be in the range [x - n × ulp(x), x + n × ulp(x)]. The function ulp(x) is defined as follows:

If there exist non-equal, finite floating-point numbers a and b such that a ≤ x ≤ b then ulp(x) is the minimum possible distance between such numbers, . If such numbers do not exist then ulp(x) is defined to be the difference between the two non-equal, finite floating-point numbers nearest to x.

Where the range of allowed return values includes any value of magnitude larger than that of the largest representable finite floating-point number, operations may, additionally, return either an infinity of the appropriate sign or the finite number with the largest magnitude of the appropriate sign. If the infinitely precise result of the operation is not mathematically defined then the value returned is undefined.

Inherited From …​

Where an operation’s precision is described as being inherited from a formula, the result returned must be at least as accurate as the result of computing an approximation to x using a formula equivalent to the given formula applied to the supplied inputs. Specifically, the formula given may be transformed using the mathematical associativity, commutativity and distributivity of the operators involved to yield an equivalent formula. The SPIR-V precision rules, when applied to each such formula and the given input values, define a range of permitted values. If NaN is one of the permitted values then the operation may return any result, otherwise let the largest permitted value in any of the ranges be Fmax and the smallest be Fmin. The operation must return a value in the range [x - E, x + E] where . If the entry point is declared with the DenormFlushToZero execution mode, then any intermediate denormal value(s) while evaluating the formula may be flushed to zero. Denormal final results must be flushed to zero. If the entry point is declared with the DenormPreserve Execution Mode, then denormals must be preserved throughout the formula.

For half- (16 bit) and single- (32 bit) precision instructions, precisions are required to be at least as follows:

Table 65. Precision of core SPIR-V Instructions
Instruction Single precision, unless decorated with RelaxedPrecision Half precision

OpFAdd

Correctly rounded.

OpFSub

Correctly rounded.

OpFMul, OpVectorTimesScalar, OpMatrixTimesScalar

Correctly rounded.

OpDot(x, y)

Inherited from .

OpFOrdEqual, OpFUnordEqual

Correct result.

OpFOrdLessThan, OpFUnordLessThan

Correct result.

OpFOrdGreaterThan, OpFUnordGreaterThan

Correct result.

OpFOrdLessThanEqual, OpFUnordLessThanEqual

Correct result.

OpFOrdGreaterThanEqual, OpFUnordGreaterThanEqual

Correct result.

OpFDiv(x,y)

2.5 ULP for |y| in the range [2-126, 2126].

2.5 ULP for |y| in the range [2-14, 214].

OpFRem(x,y)

Inherited from x - y × trunc(x/y).

OpFMod(x,y)

Inherited from x - y × floor(x/y).

conversions between types

Correctly rounded.

Note

The OpFRem and OpFMod instructions use cheap approximations of remainder, and the error can be large due to the discontinuity in trunc() and floor(). This can produce mathematically unexpected results in some cases, such as FMod(x,x) computing x rather than 0, and can also cause the result to have a different sign than the infinitely precise result.

Table 66. Precision of GLSL.std.450 Instructions
Instruction Single precision, unless decorated with RelaxedPrecision Half precision

fma()

Inherited from OpFMul followed by OpFAdd.

exp(x), exp2(x)

ULP.

ULP.

log(), log2()

3 ULP outside the range . Absolute error < inside the range .

3 ULP outside the range . Absolute error < inside the range .

pow(x, y)

Inherited from exp2(y × log2(x)).

sqrt()

Inherited from 1.0 / inversesqrt().

inversesqrt()

2 ULP.

radians(x)

Inherited from , where is a correctly rounded approximation to .

degrees(x)

Inherited from , where is a correctly rounded approximation to .

sin()

Absolute error inside the range .

Absolute error inside the range .

cos()

Absolute error inside the range .

Absolute error inside the range .

tan()

Inherited from .

asin(x)

Inherited from .

acos(x)

Inherited from .

atan(), atan2()

4096 ULP

5 ULP.

sinh(x)

Inherited from .

cosh(x)

Inherited from .

tanh()

Inherited from .

asinh(x)

Inherited from .

acosh(x)

Inherited from .

atanh(x)

Inherited from .

frexp()

Correctly rounded.

ldexp()

Correctly rounded.

length(x)

Inherited from .

distance(x, y)

Inherited from .

cross()

Inherited from OpFSub(OpFMul, OpFMul).

normalize(x)

Inherited from .

faceforward(N, I, NRef)

Inherited from dot(NRef, I) < 0.0 ? N : -N.

reflect(x, y)

Inherited from x - 2.0 × dot(y, x) × y.

refract(I, N, eta)

Inherited from k < 0.0 ? 0.0 : eta × I - (eta × dot(N, I) + sqrt(k)) × N, where k = 1 - eta × eta × (1.0 - dot(N, I) × dot(N, I)).

round

Correctly rounded.

roundEven

Correctly rounded.

trunc

Correctly rounded.

fabs

Correctly rounded.

fsign

Correctly rounded.

floor

Correctly rounded.

ceil

Correctly rounded.

fract

Correctly rounded.

modf

Correctly rounded.

fmin

Correctly rounded.

fmax

Correctly rounded.

fclamp

Correctly rounded.

fmix(x, y, a)

Inherited from .

step

Correctly rounded.

smoothStep(edge0, edge1, x)

Inherited from , where .

nmin

Correctly rounded.

nmax

Correctly rounded.

nclamp

Correctly rounded.

GLSL.std.450 extended instructions specifically defined in terms of the above instructions inherit the above errors. GLSL.std.450 extended instructions not listed above and not defined in terms of the above have undefined precision.

For the OpSRem and OpSMod instructions, if either operand is negative the result is undefined.

Note

While the OpSRem and OpSMod instructions are supported by the Vulkan environment, they require non-negative values and thus do not enable additional functionality beyond what OpUMod provides.

Signedness of SPIR-V Image Accesses

SPIR-V associates a signedness with all integer image accesses. This is required in certain parts of the SPIR-V and the Vulkan image access pipeline to ensure defined results. The signedness is determined from a combination of the access instruction’s Image Operands and the underlying image’s Sampled Type as follows:

  1. If the instruction’s Image Operands contains the SignExtend operand then the access is signed.

  2. If the instruction’s Image Operands contains the ZeroExtend operand then the access is unsigned.

  3. Otherwise, the image accesses signedness matches that of the Sampled Type of the OpTypeImage being accessed.

Image Format and Type Matching

When specifying the Image Format of an OpTypeImage, the converted bit width and type, as shown in the table below, must match the Sampled Type. The signedness must match the signedness of any access to the image.

Note

Formatted accesses are always converted from a shader readable type to the resource’s format or vice versa via Format Conversion for reads and Texel Output Format Conversion for writes. As such, the bit width and format below do not necessarily match 1:1 with what might be expected for some formats.

For a given Image Format, the Sampled Type must be the type described in the Type column of the below table, with its Literal Width set to that in the Bit Width column. Every access that is made to the image must have a signedness equal to that in the Signedness column (where applicable).

Image Format Type-Declaration instructions Bit Width Signedness

Unknown

Any

Any

Any

Rgba32f

OpTypeFloat

32

N/A

Rg32f

R32f

Rgba16f

Rg16f

R16f

Rgba16

Rg16

R16

Rgba16Snorm

Rg16Snorm

R16Snorm

Rgb10A2

R11fG11fB10f

Rgba8

Rg8

R8

Rgba8Snorm

Rg8Snorm

R8Snorm

Rgba32i

OpTypeInt

32

1

Rg32i

R32i

Rgba16i

Rg16i

R16i

Rgba8i

Rg8i

R8i

Rgba32ui

0

Rg32ui

R32ui

Rgba16ui

Rg16ui

R16ui

Rgb10a2ui

Rgba8ui

Rg8ui

R8ui

R64i

OpTypeInt

64

1

R64ui

0

The SPIR-V Type is defined by an instruction in SPIR-V, declared with the Type-Declaration Instruction, Bit Width, and Signedness from above.

Compatibility Between SPIR-V Image Formats and Vulkan Formats

SPIR-V Image Format values are compatible with VkFormat values as defined below:

Table 67. SPIR-V and Vulkan Image Format Compatibility
SPIR-V Image Format Compatible Vulkan Format

Unknown

Any

R8

VK_FORMAT_R8_UNORM

R8Snorm

VK_FORMAT_R8_SNORM

R8ui

VK_FORMAT_R8_UINT

R8i

VK_FORMAT_R8_SINT

Rg8

VK_FORMAT_R8G8_UNORM

Rg8Snorm

VK_FORMAT_R8G8_SNORM

Rg8ui

VK_FORMAT_R8G8_UINT

Rg8i

VK_FORMAT_R8G8_SINT

Rgba8

VK_FORMAT_R8G8B8A8_UNORM

Rgba8Snorm

VK_FORMAT_R8G8B8A8_SNORM

Rgba8ui

VK_FORMAT_R8G8B8A8_UINT

Rgba8i

VK_FORMAT_R8G8B8A8_SINT

Rgb10A2

VK_FORMAT_A2B10G10R10_UNORM_PACK32

Rgb10a2ui

VK_FORMAT_A2B10G10R10_UINT_PACK32

R16

VK_FORMAT_R16_UNORM

R16Snorm

VK_FORMAT_R16_SNORM

R16ui

VK_FORMAT_R16_UINT

R16i

VK_FORMAT_R16_SINT

R16f

VK_FORMAT_R16_SFLOAT

Rg16

VK_FORMAT_R16G16_UNORM

Rg16Snorm

VK_FORMAT_R16G16_SNORM

Rg16ui

VK_FORMAT_R16G16_UINT

Rg16i

VK_FORMAT_R16G16_SINT

Rg16f

VK_FORMAT_R16G16_SFLOAT

Rgba16

VK_FORMAT_R16G16B16A16_UNORM

Rgba16Snorm

VK_FORMAT_R16G16B16A16_SNORM

Rgba16ui

VK_FORMAT_R16G16B16A16_UINT

Rgba16i

VK_FORMAT_R16G16B16A16_SINT

Rgba16f

VK_FORMAT_R16G16B16A16_SFLOAT

R32ui

VK_FORMAT_R32_UINT

R32i

VK_FORMAT_R32_SINT

R32f

VK_FORMAT_R32_SFLOAT

Rg32ui

VK_FORMAT_R32G32_UINT

Rg32i

VK_FORMAT_R32G32_SINT

Rg32f

VK_FORMAT_R32G32_SFLOAT

Rgba32ui

VK_FORMAT_R32G32B32A32_UINT

Rgba32i

VK_FORMAT_R32G32B32A32_SINT

Rgba32f

VK_FORMAT_R32G32B32A32_SFLOAT

R64ui

VK_FORMAT_R64_UINT

R64i

VK_FORMAT_R64_SINT

R11fG11fB10f

VK_FORMAT_B10G11R11_UFLOAT_PACK32