
Vulkan® 1.3.280 - A Specification
The Khronos® Vulkan Working Group

Version 1.3.280, 2024-03-08 12:56:45Z: from git branch: github-main commit:
69ba4fefbafa045d0fd1b07060b768b3b1c115cc

Table of Contents
1. Preamble. 1

2. Introduction. 3

2.1. Document Conventions . 3

3. Fundamentals . 6

3.1. Host and Device Environment. 6

3.2. Execution Model . 6

3.3. Object Model . 8

3.4. Application Binary Interface . 12

3.5. Command Syntax and Duration . 13

3.6. Threading Behavior . 14

3.7. Valid Usage . 22

3.8. VkResult Return Codes . 29

3.9. Numeric Representation and Computation . 31

3.10. Fixed-Point Data Conversions . 33

3.11. Common Object Types. 34

3.12. API Name Aliases . 44

4. Initialization . 46

4.1. Command Function Pointers . 46

4.2. Instances . 49

5. Devices and Queues . 57

5.1. Physical Devices . 57

5.2. Devices . 88

5.3. Queues. 100

6. Command Buffers . 108

6.1. Command Buffer Lifecycle. 108

6.2. Command Pools . 110

6.3. Command Buffer Allocation and Management . 117

6.4. Command Buffer Recording . 121

6.5. Command Buffer Submission . 130

6.6. Queue Forward Progress . 147

6.7. Secondary Command Buffer Execution . 147

6.8. Command Buffer Device Mask . 153

7. Synchronization and Cache Control . 156

7.1. Execution and Memory Dependencies . 156

7.2. Implicit Synchronization Guarantees . 179

7.3. Fences . 181

7.4. Semaphores . 191

7.5. Events . 205

7.6. Pipeline Barriers. 228

7.7. Memory Barriers . 236

7.8. Wait Idle Operations . 268

7.9. Host Write Ordering Guarantees . 270

7.10. Synchronization and Multiple Physical Devices. 270

8. Render Pass . 272

8.1. Render Pass Objects . 285

8.2. Render Pass Creation. 287

8.3. Render Pass Compatibility . 333

8.4. Framebuffers. 334

8.5. Render Pass Load Operations . 343

8.6. Render Pass Store Operations . 344

8.7. Render Pass Multisample Resolve Operations . 346

8.8. Render Pass Commands . 347

8.9. Common Render Pass Data Races (Informative) . 368

9. Shaders . 370

9.1. Shader Modules . 370

9.2. Binding Shaders . 374

9.3. Shader Execution . 374

9.4. Shader Memory Access Ordering . 375

9.5. Shader Inputs and Outputs . 376

9.6. Vertex Shaders . 376

9.7. Tessellation Control Shaders . 376

9.8. Tessellation Evaluation Shaders . 377

9.9. Geometry Shaders . 377

9.10. Fragment Shaders . 378

9.11. Compute Shaders . 378

9.12. Interpolation Decorations . 378

9.13. Static Use . 379

9.14. Scope . 379

9.15. Group Operations. 384

9.16. Quad Group Operations . 385

9.17. Derivative Operations . 386

9.18. Helper Invocations. 387

10. Pipelines. 389

10.1. Multiple Pipeline Creation . 390

10.2. Compute Pipelines . 391

10.3. Graphics Pipelines . 401

10.4. Pipeline Destruction . 424

10.5. Pipeline Derivatives. 425

10.6. Pipeline Cache. 425

10.7. Specialization Constants. 434

10.8. Pipeline Binding . 437

10.9. Dynamic State . 439

10.10. Pipeline Creation Feedback . 440

11. Memory Allocation . 444

11.1. Host Memory. 444

11.2. Device Memory. 451

12. Resource Creation . 481

12.1. Buffers. 481

12.2. Buffer Views . 489

12.3. Images. 494

12.4. Image Layouts . 516

12.5. Image Views. 519

12.6. Resource Memory Association . 535

12.7. Resource Sharing Mode . 565

12.8. Memory Aliasing . 567

13. Samplers. 570

13.1. Sampler Y′CBCR Conversion . 580

14. Resource Descriptors . 588

14.1. Descriptor Types. 588

14.2. Descriptor Sets . 592

14.3. Physical Storage Buffer Access . 659

15. Shader Interfaces . 663

15.1. Shader Input and Output Interfaces . 663

15.2. Vertex Input Interface. 666

15.3. Fragment Output Interface . 667

15.4. Fragment Input Attachment Interface . 668

15.5. Shader Resource Interface. 669

15.6. Built-In Variables . 677

16. Image Operations. 701

16.1. Image Operations Overview . 701

16.2. Conversion Formulas . 704

16.3. Texel Input Operations . 706

16.4. Texel Output Operations. 723

16.5. Normalized Texel Coordinate Operations . 725

16.6. Unnormalized Texel Coordinate Operations . 731

16.7. Integer Texel Coordinate Operations . 733

16.8. Image Sample Operations . 733

16.9. Image Operation Steps . 737

16.10. Image Query Instructions . 737

17. Queries . 738

17.1. Query Pools . 738

17.2. Query Operation. 742

17.3. Occlusion Queries . 757

17.4. Pipeline Statistics Queries . 758

17.5. Timestamp Queries . 760

18. Clear Commands . 767

18.1. Clearing Images Outside a Render Pass Instance . 767

18.2. Clearing Images Inside a Render Pass Instance . 772

18.3. Clear Values . 776

18.4. Filling Buffers . 778

18.5. Updating Buffers . 780

19. Copy Commands. 783

19.1. Copying Data Between Buffers . 783

19.2. Copying Data Between Images . 789

19.3. Copying Data Between Buffers and Images . 807

19.4. Image Copies With Scaling. 831

19.5. Resolving Multisample Images . 845

20. Drawing Commands . 857

20.1. Primitive Topologies . 859

20.2. Primitive Order. 868

20.3. Programmable Primitive Shading . 869

21. Fixed-Function Vertex Processing . 947

21.1. Vertex Attributes . 947

21.2. Vertex Input Description . 951

21.3. Vertex Input Address Calculation. 959

22. Tessellation . 961

22.1. Tessellator . 961

22.2. Tessellator Patch Discard . 963

22.3. Tessellator Spacing . 964

22.4. Tessellation Primitive Ordering . 964

22.5. Tessellator Vertex Winding Order . 965

22.6. Triangle Tessellation . 965

22.7. Quad Tessellation . 967

22.8. Isoline Tessellation. 969

22.9. Tessellation Point Mode . 969

22.10. Tessellation Pipeline State . 969

23. Geometry Shading . 972

23.1. Geometry Shader Input Primitives . 972

23.2. Geometry Shader Output Primitives . 973

23.3. Multiple Invocations of Geometry Shaders . 973

23.4. Geometry Shader Primitive Ordering . 973

24. Fixed-Function Vertex Post-Processing. 974

24.1. Flat Shading . 974

24.2. Primitive Clipping . 974

24.3. Clipping Shader Outputs. 976

24.4. Coordinate Transformations . 977

24.5. Controlling the Viewport . 978

25. Rasterization . 987

25.1. Discarding Primitives Before Rasterization. 991

25.2. Rasterization Order . 992

25.3. Multisampling . 992

25.4. Sample Shading . 995

25.5. Points. 995

25.6. Line Segments . 996

25.7. Polygons . 1001

26. Fragment Operations . 1012

26.1. Scissor Test. 1013

26.2. Sample Mask Test. 1015

26.3. Fragment Shading . 1015

26.4. Multisample Coverage . 1016

26.5. Depth and Stencil Operations . 1017

26.6. Depth Bounds Test . 1019

26.7. Stencil Test . 1021

26.8. Depth Test . 1030

26.9. Sample Counting . 1034

26.10. Coverage Reduction. 1035

27. The Framebuffer . 1036

27.1. Blending . 1036

27.2. Logical Operations . 1044

27.3. Color Write Mask . 1045

28. Dispatching Commands . 1047

29. Sparse Resources . 1062

29.1. Sparse Resource Features . 1062

29.2. Sparse Buffers and Fully-Resident Images. 1063

29.3. Sparse Partially-Resident Buffers. 1064

29.4. Sparse Partially-Resident Images. 1064

29.5. Sparse Memory Aliasing. 1072

29.6. Sparse Resource Implementation Guidelines (Informative) . 1073

29.7. Sparse Resource API . 1075

30. Private Data. 1101

31. Extending Vulkan . 1107

31.1. Instance and Device Functionality . 1107

31.2. Core Versions . 1107

31.3. Layers . 1111

31.4. Extensions . 1115

31.5. Extension Dependencies . 1119

31.6. Compatibility Guarantees (Informative) . 1120

32. Features . 1125

32.1. Feature Requirements . 1174

32.2. Profile Features . 1176

33. Limits . 1179

33.1. Limit Requirements. 1207

33.2. Profile Limits. 1218

34. Formats . 1221

34.1. Format Definition. 1221

34.2. Format Properties . 1268

34.3. Required Format Support . 1279

35. Additional Capabilities . 1299

35.1. Additional Image Capabilities . 1299

35.2. Additional Buffer Capabilities. 1312

35.3. Optional Semaphore Capabilities. 1314

35.4. Optional Fence Capabilities . 1318

36. Debugging . 1323

36.1. Active Tooling Information . 1324

Appendix A: Vulkan Environment for SPIR-V. 1328

Versions and Formats . 1328

Capabilities . 1328

Validation Rules Within a Module. 1335

Precision and Operation of SPIR-V Instructions . 1350

Signedness of SPIR-V Image Accesses . 1356

Image Format and Type Matching. 1356

Compatibility Between SPIR-V Image Formats and Vulkan Formats . 1358

Appendix B: Memory Model . 1360

Agent. 1360

Memory Location . 1360

Allocation. 1360

Memory Operation . 1361

Reference. 1361

Program-Order . 1361

Scope. 1362

Atomic Operation . 1362

Scoped Modification Order . 1363

Memory Semantics . 1363

Release Sequence. 1365

Synchronizes-With . 1365

System-Synchronizes-With . 1367

Private vs. Non-Private. 1367

Inter-Thread-Happens-Before . 1367

Happens-Before . 1368

Availability and Visibility . 1368

Availability, Visibility, and Domain Operations . 1370

Availability and Visibility Semantics . 1371

Per-Instruction Availability and Visibility Semantics. 1371

Location-Ordered . 1372

Data Race . 1373

Visible-To . 1373

Acyclicity . 1373

Shader I/O . 1374

Deallocation . 1375

Descriptions (Informative) . 1375

Tessellation Output Ordering . 1376

Appendix C: Compressed Image Formats. 1377

Block-Compressed Image Formats . 1378

ETC Compressed Image Formats . 1379

ASTC Compressed Image Formats . 1380

Appendix D: Core Revisions (Informative) . 1382

Version 1.3 . 1382

Version 1.2 . 1391

Version 1.1 . 1399

Version 1.0 . 1410

Appendix E: Layers & Extensions (Informative) . 1425

Extension Dependencies . 1425

Extension Interactions . 1425

List of Extensions. 1426

Appendix F: Vulkan Roadmap Milestones . 1427

Roadmap 2022 . 1427

Roadmap 2024 . 1431

Appendix G: API Boilerplate . 1434

Vulkan Header Files . 1434

Window System-Specific Header Control (Informative) . 1438

Provisional Extension Header Control (Informative). 1440

Video Std Headers . 1440

Appendix H: Invariance . 1442

Repeatability. 1442

Multi-pass Algorithms . 1442

Invariance Rules . 1442

Tessellation Invariance . 1444

Appendix I: Lexicon. 1446

Glossary . 1446

Common Abbreviations . 1468

Prefixes . 1469

Appendix J: Credits (Informative) . 1471

Working Group Contributors to Vulkan. 1471

Other Credits. 1479

Chapter 1. Preamble
Copyright 2014-2024 The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos.
Except as described by these terms, it or any components may not be reproduced, republished,
distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the
express prior written permission of Khronos.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification
for any purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other
intellectual property rights are granted under these terms.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this Specification, including, without limitation: merchantability, fitness for a particular
purpose, non-infringement of any intellectual property, correctness, accuracy, completeness,
timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters,
Contributors or Members, or their respective partners, officers, directors, employees, agents or
representatives be liable for any damages, whether direct, indirect, special or consequential
damages for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

This Specification has been created under the Khronos Intellectual Property Rights Policy, which is
Attachment A of the Khronos Group Membership Agreement available at https://www.khronos.org/
files/member_agreement.pdf. Parties desiring to implement the Specification and make use of
Khronos trademarks in relation to that implementation, and receive reciprocal patent license
protection under the Khronos Intellectual Property Rights Policy must become Adopters and
confirm the implementation as conformant under the process defined by Khronos for this
Specification; see https://www.khronos.org/adopters.

This Specification contains substantially unmodified functionality from, and is a successor to,
Khronos specifications including OpenGL, OpenGL ES and OpenCL.

The Khronos Intellectual Property Rights Policy defines the terms 'Scope', 'Compliant Portion', and
'Necessary Patent Claims'.

Some parts of this Specification are purely informative and so are EXCLUDED the Scope of this
Specification. The Document Conventions section of the Introduction defines how these parts of the
Specification are identified.

Where this Specification uses technical terminology, defined in the Glossary or otherwise, that refer
to enabling technologies that are not expressly set forth in this Specification, those enabling
technologies are EXCLUDED from the Scope of this Specification. For clarity, enabling technologies
not disclosed with particularity in this Specification (e.g. semiconductor manufacturing technology,
hardware architecture, processor architecture or microarchitecture, memory architecture,
compiler technology, object oriented technology, basic operating system technology, compression
technology, algorithms, and so on) are NOT to be considered expressly set forth; only those
application program interfaces and data structures disclosed with particularity are included in the
Scope of this Specification.

1

https://www.khronos.org/files/member_agreement.pdf
https://www.khronos.org/files/member_agreement.pdf
https://www.khronos.org/adopters

For purposes of the Khronos Intellectual Property Rights Policy as it relates to the definition of
Necessary Patent Claims, all recommended or optional features, behaviors and functionality set
forth in this Specification, if implemented, are considered to be included as Compliant Portions.

Where this Specification identifies specific sections of external references, only those specifically
identified sections define normative functionality. The Khronos Intellectual Property Rights Policy
excludes external references to materials and associated enabling technology not created by
Khronos from the Scope of this Specification, and any licenses that may be required to implement
such referenced materials and associated technologies must be obtained separately and may
involve royalty payments.

Khronos and Vulkan are registered trademarks, and SPIR-V is a trademark of The Khronos Group
Inc. OpenCL is a trademark of Apple Inc., used under license by Khronos. OpenGL is a registered
trademark and the OpenGL ES logo is a trademark of Hewlett Packard Enterprise, used under
license by Khronos. ASTC is a trademark of ARM Holdings PLC. All other product names,
trademarks, and/or company names are used solely for identification and belong to their respective
owners.

2

Chapter 2. Introduction
This document, referred to as the “Vulkan Specification” or just the “Specification” hereafter,
describes the Vulkan Application Programming Interface (API). Vulkan is a C99 API designed for
explicit control of low-level graphics and compute functionality.

The canonical version of the Specification is available in the official Vulkan Registry
(https://registry.khronos.org/vulkan/). The source files used to generate the Vulkan specification are
stored in the Vulkan Documentation Repository (https://github.com/KhronosGroup/Vulkan-Docs).

The source repository additionally has a public issue tracker and allows the submission of pull
requests that improve the specification.

2.1. Document Conventions
The Vulkan specification is intended for use by both implementors of the API and application
developers seeking to make use of the API, forming a contract between these parties. Specification
text may address either party; typically the intended audience can be inferred from context, though
some sections are defined to address only one of these parties. (For example, Valid Usage sections
only address application developers). Any requirements, prohibitions, recommendations or options
defined by normative terminology are imposed only on the audience of that text.

Note

Structure and enumerated types defined in extensions that were promoted to core
in a later version of Vulkan are now defined in terms of the equivalent Vulkan
core interfaces. This affects the Vulkan Specification, the Vulkan header files, and
the corresponding XML Registry.

2.1.1. Ratification

Ratification of a Vulkan core version or extension is a status conferred by vote of the Khronos
Board of Promoters, bringing that core version or extension under the umbrella of the Khronos IP
Policy.

All Vulkan core versions and KHR extensions (including provisional specifications) are ratified, as
are some multi-vendor EXT extensions. Ratification status of extensions is described in the Layers &
Extensions (Informative) appendix.

Note

Ratification status is primarily of interest to IHVs developing GPU hardware and
Vulkan implementations

For developers, ratification does not necessarily mean that an extension is
“better”; has a more stable API; or is more widely supported than alternative ways
of achieving that functionality.

Interactions between ratified and non-ratified extensions are not themselves

3

http://www.open-std.org/jtc1/sc22/wg14/www/standards
https://registry.khronos.org/vulkan/
https://registry.khronos.org/vulkan/
https://github.com/KhronosGroup/Vulkan-Docs
https://github.com/KhronosGroup/Vulkan-Docs

ratified.

2.1.2. Informative Language

Some language in the specification is purely informative, intended to give background or
suggestions to implementors or developers.

If an entire chapter or section contains only informative language, its title will be suffixed with
“(Informative)”.

All NOTEs are implicitly informative.

2.1.3. Normative Terminology

Within this specification, the key words must, required, should, recommended, may, and
optional are to be interpreted as described in RFC 2119 - Key words for use in RFCs to Indicate
Requirement Levels (https://www.ietf.org/rfc/rfc2119.txt). The additional key word optionally is an
alternate form of optional, for use where grammatically appropriate.

These key words are highlighted in the specification for clarity. In text addressing application
developers, their use expresses requirements that apply to application behavior. In text addressing
implementors, their use expresses requirements that apply to implementations.

In text addressing application developers, the additional key words can and cannot are to be
interpreted as describing the capabilities of an application, as follows:

can

This word means that the application is able to perform the action described.

cannot

This word means that the API and/or the execution environment provide no mechanism through
which the application can express or accomplish the action described.

These key words are never used in text addressing implementors.

Note

There is an important distinction between cannot and must not, as used in this
Specification. Cannot means something the application literally is unable to
express or accomplish through the API, while must not means something that the
application is capable of expressing through the API, but that the consequences of
doing so are undefined and potentially unrecoverable for the implementation (see
Valid Usage).

Unless otherwise noted in the section heading, all sections and appendices in this document are
normative.

2.1.4. Technical Terminology

The Vulkan Specification makes use of common engineering and graphics terms such as Pipeline,

4

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

Shader, and Host to identify and describe Vulkan API constructs and their attributes, states, and
behaviors. The Glossary defines the basic meanings of these terms in the context of the
Specification. The Specification text provides fuller definitions of the terms and may elaborate,
extend, or clarify the Glossary definitions. When a term defined in the Glossary is used in
normative language within the Specification, the definitions within the Specification govern and
supersede any meanings the terms may have in other technical contexts (i.e. outside the
Specification).

2.1.5. Normative References

References to external documents are considered normative references if the Specification uses any
of the normative terms defined in Normative Terminology to refer to them or their requirements,
either as a whole or in part.

The following documents are referenced by normative sections of the specification:

IEEE. August, 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008.
https://dx.doi.org/10.1109/IEEESTD.2008.4610935 .

Andrew Garrard. Khronos Data Format Specification, version 1.3. https://registry.khronos.org/
DataFormat/specs/1.3/dataformat.1.3.html .

John Kessenich. SPIR-V Extended Instructions for GLSL, Version 1.00 (February 10, 2016).
https://registry.khronos.org/spir-v/ .

John Kessenich, Boaz Ouriel, and Raun Krisch. SPIR-V Specification, Version 1.5, Revision 3, Unified
(April 24, 2020). https://registry.khronos.org/spir-v/ .

ITU-T. H.264 Advanced Video Coding for Generic Audiovisual Services (August, 2021).
https://www.itu.int/rec/T-REC-H.264-202108-I/ .

ITU-T. H.265 High Efficiency Video Coding (August, 2021). https://www.itu.int/rec/T-REC-H.265-
202108-S/ .

Alliance for Open Media. AV1 Bitstream & Decoding Process Specification (January 8, 2019).
https://aomediacodec.github.io/av1-spec/av1-spec.pdf .

Jon Leech. The Khronos Vulkan API Registry (February 26, 2023). https://registry.khronos.org/
vulkan/specs/1.3/registry.html .

Jon Leech and Tobias Hector. Vulkan Documentation and Extensions: Procedures and Conventions
(February 26, 2023). https://registry.khronos.org/vulkan/specs/1.3/styleguide.html .

Architecture of the Vulkan Loader Interfaces (October, 2021). https://github.com/KhronosGroup/
Vulkan-Loader/blob/master/docs/LoaderInterfaceArchitecture.md .

5

https://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://registry.khronos.org/DataFormat/specs/1.3/dataformat.1.3.html
https://registry.khronos.org/DataFormat/specs/1.3/dataformat.1.3.html
https://registry.khronos.org/spir-v/
https://registry.khronos.org/spir-v/
https://www.itu.int/rec/T-REC-H.264-202108-I/
https://www.itu.int/rec/T-REC-H.265-202108-S/
https://www.itu.int/rec/T-REC-H.265-202108-S/
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://registry.khronos.org/vulkan/specs/1.3/registry.html
https://registry.khronos.org/vulkan/specs/1.3/registry.html
https://registry.khronos.org/vulkan/specs/1.3/styleguide.html
https://github.com/KhronosGroup/Vulkan-Loader/blob/master/docs/LoaderInterfaceArchitecture.md
https://github.com/KhronosGroup/Vulkan-Loader/blob/master/docs/LoaderInterfaceArchitecture.md

Chapter 3. Fundamentals
This chapter introduces fundamental concepts including the Vulkan architecture and execution
model, API syntax, queues, pipeline configurations, numeric representation, state and state queries,
and the different types of objects and shaders. It provides a framework for interpreting more
specific descriptions of commands and behavior in the remainder of the Specification.

3.1. Host and Device Environment
The Vulkan Specification assumes and requires: the following properties of the host environment
with respect to Vulkan implementations:

• The host must have runtime support for 8, 16, 32 and 64-bit signed and unsigned twos-
complement integers, all addressable at the granularity of their size in bytes.

• The host must have runtime support for 32- and 64-bit floating-point types satisfying the range
and precision constraints in the Floating Point Computation section.

• The representation and endianness of these types on the host must match the representation
and endianness of the same types on every physical device supported.

Note

Since a variety of data types and structures in Vulkan may be accessible by both
host and physical device operations, the implementation should be able to access
such data efficiently in both paths in order to facilitate writing portable and
performant applications.

3.2. Execution Model
This section outlines the execution model of a Vulkan system.

Vulkan exposes one or more devices, each of which exposes one or more queues which may process
work asynchronously to one another. The set of queues supported by a device is partitioned into
families. Each family supports one or more types of functionality and may contain multiple queues
with similar characteristics. Queues within a single family are considered compatible with one
another, and work produced for a family of queues can be executed on any queue within that
family. This specification defines the following types of functionality that queues may support:
graphics, compute, protected memory management, sparse memory management, and transfer.

Note

A single device may report multiple similar queue families rather than, or as well
as, reporting multiple members of one or more of those families. This indicates
that while members of those families have similar capabilities, they are not
directly compatible with one another.

Device memory is explicitly managed by the application. Each device may advertise one or more
heaps, representing different areas of memory. Memory heaps are either device-local or host-local,

6

but are always visible to the device. Further detail about memory heaps is exposed via memory
types available on that heap. Examples of memory areas that may be available on an
implementation include:

• device-local is memory that is physically connected to the device.

• device-local, host visible is device-local memory that is visible to the host.

• host-local, host visible is memory that is local to the host and visible to the device and host.

On other architectures, there may only be a single heap that can be used for any purpose.

3.2.1. Queue Operation

Vulkan queues provide an interface to the execution engines of a device. Commands for these
execution engines are recorded into command buffers ahead of execution time, and then submitted
to a queue for execution. Once submitted to a queue, command buffers will begin and complete
execution without further application intervention, though the order of this execution is dependent
on a number of implicit and explicit ordering constraints.

Work is submitted to queues using queue submission commands that typically take the form
vkQueue* (e.g. vkQueueSubmit , vkQueueBindSparse), and can take a list of semaphores upon which
to wait before work begins and a list of semaphores to signal once work has completed. The work
itself, as well as signaling and waiting on the semaphores are all queue operations. Queue
submission commands return control to the application once queue operations have been
submitted - they do not wait for completion.

There are no implicit ordering constraints between queue operations on different queues, or
between queues and the host, so these may operate in any order with respect to each other. Explicit
ordering constraints between different queues or with the host can be expressed with semaphores
and fences.

Command buffer submissions to a single queue respect submission order and other implicit
ordering guarantees, but otherwise may overlap or execute out of order. Other types of batches and
queue submissions against a single queue (e.g. sparse memory binding) have no implicit ordering
constraints with any other queue submission or batch. Additional explicit ordering constraints
between queue submissions and individual batches can be expressed with semaphores and fences.

Before a fence or semaphore is signaled, it is guaranteed that any previously submitted queue
operations have completed execution, and that memory writes from those queue operations are
available to future queue operations. Waiting on a signaled semaphore or fence guarantees that
previous writes that are available are also visible to subsequent commands.

Command buffer boundaries, both between primary command buffers of the same or different
batches or submissions as well as between primary and secondary command buffers, do not
introduce any additional ordering constraints. In other words, submitting the set of command
buffers (which can include executing secondary command buffers) between any semaphore or
fence operations execute the recorded commands as if they had all been recorded into a single
primary command buffer, except that the current state is reset on each boundary. Explicit ordering
constraints can be expressed with explicit synchronization primitives.

7

There are a few implicit ordering guarantees between commands within a command buffer, but
only covering a subset of execution. Additional explicit ordering constraints can be expressed with
the various explicit synchronization primitives.

Note

Implementations have significant freedom to overlap execution of work submitted
to a queue, and this is common due to deep pipelining and parallelism in Vulkan
devices.

Commands recorded in command buffers can perform actions, set state that persists across
commands, synchronize other commands, or indirectly launch other commands, with some
commands fulfilling several of these roles. The “Command Properties” section for each such
command lists which of these roles the command takes:

Action

Action commands perform operations that can update values in memory. E.g. draw commands,
dispatch commands.

State

State setting commands update the current state of a command buffer, affecting the operation of
future action commands.

Synchronization

Synchronization commands impose ordering constraints on action commands, by introducing
explicit execution and memory dependencies.

Indirection

Indirection commands execute other commands which were not directly recorded in the same
command buffer.

Note

In the absence of explicit synchronization or implicit ordering guarantees, action
commands may overlap execution or execute out of order, potentially leading to
data races. However, such reordering does not affect the current state observed by
any action command. Each action command uses the state in effect at the point
where the command occurs in the command buffer, regardless of when it is
executed.

3.3. Object Model
The devices, queues, and other entities in Vulkan are represented by Vulkan objects. At the API
level, all objects are referred to by handles. There are two classes of handles, dispatchable and non-
dispatchable. Dispatchable handle types are a pointer to an opaque type. This pointer may be used
by layers as part of intercepting API commands, and thus each API command takes a dispatchable
type as its first parameter. Each object of a dispatchable type must have a unique handle value
during its lifetime.

8

Non-dispatchable handle types are a 64-bit integer type whose meaning is implementation-
dependent. If the privateData feature is enabled for a VkDevice, each object of a non-dispatchable
type created on that device must have a handle value that is unique among objects created on that
device, for the duration of the object’s lifetime. Otherwise, non-dispatchable handles may encode
object information directly in the handle rather than acting as a reference to an underlying object,
and thus may not have unique handle values. If handle values are not unique, then destroying one
such handle must not cause identical handles of other types to become invalid, and must not cause
identical handles of the same type to become invalid if that handle value has been created more
times than it has been destroyed.

All objects created or allocated from a VkDevice (i.e. with a VkDevice as the first parameter) are
private to that device, and must not be used on other devices.

3.3.1. Object Lifetime

Objects are created or allocated by vkCreate* and vkAllocate* commands, respectively. Once an
object is created or allocated, its “structure” is considered to be immutable, though the contents of
certain object types is still free to change. Objects are destroyed or freed by vkDestroy* and vkFree*
commands, respectively.

Objects that are allocated (rather than created) take resources from an existing pool object or
memory heap, and when freed return resources to that pool or heap. While object creation and
destruction are generally expected to be low-frequency occurrences during runtime, allocating and
freeing objects can occur at high frequency. Pool objects help accommodate improved performance
of the allocations and frees.

It is an application’s responsibility to track the lifetime of Vulkan objects, and not to destroy them
while they are still in use.

The ownership of application-owned memory is immediately acquired by any Vulkan command it
is passed into. Ownership of such memory must be released back to the application at the end of
the duration of the command, so that the application can alter or free this memory as soon as all
the commands that acquired it have returned.

The following object types are consumed when they are passed into a Vulkan command and not
further accessed by the objects they are used to create. They must not be destroyed in the duration
of any API command they are passed into:

• VkShaderModule

• VkPipelineCache

A VkRenderPass or VkPipelineLayout object passed as a parameter to create another object is not
further accessed by that object after the duration of the command it is passed into. A VkRenderPass
used in a command buffer follows the rules described below.

VkDescriptorSetLayout objects may be accessed by commands that operate on descriptor sets
allocated using that layout, and those descriptor sets must not be updated with
vkUpdateDescriptorSets after the descriptor set layout has been destroyed. Otherwise, a
VkDescriptorSetLayout object passed as a parameter to create another object is not further accessed

9

by that object after the duration of the command it is passed into.

The application must not destroy any other type of Vulkan object until all uses of that object by the
device (such as via command buffer execution) have completed.

The following Vulkan objects must not be destroyed while any command buffers using the object
are in the pending state:

• VkEvent

• VkQueryPool

• VkBuffer

• VkBufferView

• VkImage

• VkImageView

• VkPipeline

• VkSampler

• VkSamplerYcbcrConversion

• VkDescriptorPool

• VkFramebuffer

• VkRenderPass

• VkCommandBuffer

• VkCommandPool

• VkDeviceMemory

• VkDescriptorSet

Destroying these objects will move any command buffers that are in the recording or executable
state, and are using those objects, to the invalid state.

The following Vulkan objects must not be destroyed while any queue is executing commands that
use the object:

• VkFence

• VkSemaphore

• VkCommandBuffer

• VkCommandPool

In general, objects can be destroyed or freed in any order, even if the object being freed is involved
in the use of another object (e.g. use of a resource in a view, use of a view in a descriptor set, use of
an object in a command buffer, binding of a memory allocation to a resource), as long as any object
that uses the freed object is not further used in any way except to be destroyed or to be reset in
such a way that it no longer uses the other object (such as resetting a command buffer). If the object
has been reset, then it can be used as if it never used the freed object. An exception to this is when

10

there is a parent/child relationship between objects. In this case, the application must not destroy a
parent object before its children, except when the parent is explicitly defined to free its children
when it is destroyed (e.g. for pool objects, as defined below).

VkCommandPool objects are parents of VkCommandBuffer objects. VkDescriptorPool objects are parents of
VkDescriptorSet objects. VkDevice objects are parents of many object types (all that take a VkDevice
as a parameter to their creation).

The following Vulkan objects have specific restrictions for when they can be destroyed:

• VkQueue objects cannot be explicitly destroyed. Instead, they are implicitly destroyed when the
VkDevice object they are retrieved from is destroyed.

• Destroying a pool object implicitly frees all objects allocated from that pool. Specifically,
destroying VkCommandPool frees all VkCommandBuffer objects that were allocated from it, and
destroying VkDescriptorPool frees all VkDescriptorSet objects that were allocated from it.

• VkDevice objects can be destroyed when all VkQueue objects retrieved from them are idle, and all
objects created from them have been destroyed.

◦ This includes the following objects:

▪ VkFence

▪ VkSemaphore

▪ VkEvent

▪ VkQueryPool

▪ VkBuffer

▪ VkBufferView

▪ VkImage

▪ VkImageView

▪ VkShaderModule

▪ VkPipelineCache

▪ VkPipeline

▪ VkPipelineLayout

▪ VkSampler

▪ VkSamplerYcbcrConversion

▪ VkDescriptorSetLayout

▪ VkDescriptorPool

▪ VkFramebuffer

▪ VkRenderPass

▪ VkCommandPool

▪ VkCommandBuffer

▪ VkDeviceMemory

11

• VkPhysicalDevice objects cannot be explicitly destroyed. Instead, they are implicitly destroyed
when the VkInstance object they are retrieved from is destroyed.

• VkInstance objects can be destroyed once all VkDevice objects created from any of its
VkPhysicalDevice objects have been destroyed.

3.3.2. External Object Handles

As defined above, the scope of object handles created or allocated from a VkDevice is limited to that
logical device. Objects which are not in scope are said to be external. To bring an external object
into scope, an external handle must be exported from the object in the source scope and imported
into the destination scope.

Note

The scope of external handles and their associated resources may vary according
to their type, but they can generally be shared across process and API boundaries.

3.4. Application Binary Interface
The mechanism by which Vulkan is made available to applications is platform- or implementation-
defined. On many platforms the C interface described in this Specification is provided by a shared
library. Since shared libraries can be changed independently of the applications that use them, they
present particular compatibility challenges, and this Specification places some requirements on
them.

Shared library implementations must use the default Application Binary Interface (ABI) of the
standard C compiler for the platform, or provide customized API headers that cause application
code to use the implementation’s non-default ABI. An ABI in this context means the size, alignment,
and layout of C data types; the procedure calling convention; and the naming convention for shared
library symbols corresponding to C functions. Customizing the calling convention for a platform is
usually accomplished by defining calling convention macros appropriately in vk_platform.h.

On platforms where Vulkan is provided as a shared library, library symbols beginning with “vk”
and followed by a digit or uppercase letter are reserved for use by the implementation.
Applications which use Vulkan must not provide definitions of these symbols. This allows the
Vulkan shared library to be updated with additional symbols for new API versions or extensions
without causing symbol conflicts with existing applications.

Shared library implementations should provide library symbols for commands in the highest
version of this Specification they support, and for Window System Integration extensions relevant
to the platform. They may also provide library symbols for commands defined by additional
extensions.

Note

These requirements and recommendations are intended to allow implementors to
take advantage of platform-specific conventions for SDKs, ABIs, library versioning
mechanisms, etc. while still minimizing the code changes necessary to port
applications or libraries between platforms. Platform vendors, or providers of the

12

de facto standard Vulkan shared library for a platform, are encouraged to
document what symbols the shared library provides and how it will be versioned
when new symbols are added.

Applications should only rely on shared library symbols for commands in the
minimum core version required by the application. vkGetInstanceProcAddr and
vkGetDeviceProcAddr should be used to obtain function pointers for commands in
core versions beyond the application’s minimum required version.

3.5. Command Syntax and Duration
The Specification describes Vulkan commands as functions or procedures using C99 syntax.
Language bindings for other languages such as C++ and JavaScript may allow for stricter parameter
passing, or object-oriented interfaces.

Vulkan uses the standard C types for the base type of scalar parameters (e.g. types from <stdint.h>),
with exceptions described below, or elsewhere in the text when appropriate:

VkBool32 represents boolean True and False values, since C does not have a sufficiently portable
built-in boolean type:

// Provided by VK_VERSION_1_0
typedef uint32_t VkBool32;

VK_TRUE represents a boolean True (unsigned integer 1) value, and VK_FALSE a boolean False
(unsigned integer 0) value.

All values returned from a Vulkan implementation in a VkBool32 will be either VK_TRUE or VK_FALSE.

Applications must not pass any other values than VK_TRUE or VK_FALSE into a Vulkan implementation
where a VkBool32 is expected.

VK_TRUE is a constant representing a VkBool32 True value.

#define VK_TRUE 1U

VK_FALSE is a constant representing a VkBool32 False value.

#define VK_FALSE 0U

VkDeviceSize represents device memory size and offset values:

// Provided by VK_VERSION_1_0
typedef uint64_t VkDeviceSize;

13

VkDeviceAddress represents device buffer address values:

// Provided by VK_VERSION_1_0
typedef uint64_t VkDeviceAddress;

Commands that create Vulkan objects are of the form vkCreate* and take Vk*CreateInfo structures
with the parameters needed to create the object. These Vulkan objects are destroyed with
commands of the form vkDestroy*.

The last in-parameter to each command that creates or destroys a Vulkan object is pAllocator. The
pAllocator parameter can be set to a non-NULL value such that allocations for the given object are
delegated to an application provided callback; refer to the Memory Allocation chapter for further
details.

Commands that allocate Vulkan objects owned by pool objects are of the form vkAllocate*, and take
Vk*AllocateInfo structures. These Vulkan objects are freed with commands of the form vkFree*.
These objects do not take allocators; if host memory is needed, they will use the allocator that was
specified when their parent pool was created.

Commands are recorded into a command buffer by calling API commands of the form vkCmd*. Each
such command may have different restrictions on where it can be used: in a primary and/or
secondary command buffer, inside and/or outside a render pass, and in one or more of the
supported queue types. These restrictions are documented together with the definition of each such
command.

The duration of a Vulkan command refers to the interval between calling the command and its
return to the caller.

3.5.1. Lifetime of Retrieved Results

Information is retrieved from the implementation with commands of the form vkGet* and
vkEnumerate*.

Unless otherwise specified for an individual command, the results are invariant; that is, they will
remain unchanged when retrieved again by calling the same command with the same parameters,
so long as those parameters themselves all remain valid.

3.6. Threading Behavior
Vulkan is intended to provide scalable performance when used on multiple host threads. All
commands support being called concurrently from multiple threads, but certain parameters, or
components of parameters are defined to be externally synchronized. This means that the caller
must guarantee that no more than one thread is using such a parameter at a given time.

More precisely, Vulkan commands use simple stores to update the state of Vulkan objects. A
parameter declared as externally synchronized may have its contents updated at any time during
the host execution of the command. If two commands operate on the same object and at least one of
the commands declares the object to be externally synchronized, then the caller must guarantee

14

not only that the commands do not execute simultaneously, but also that the two commands are
separated by an appropriate memory barrier (if needed).

Note

Memory barriers are particularly relevant for hosts based on the ARM CPU
architecture, which is more weakly ordered than many developers are accustomed
to from x86/x64 programming. Fortunately, most higher-level synchronization
primitives (like the pthread library) perform memory barriers as a part of mutual
exclusion, so mutexing Vulkan objects via these primitives will have the desired
effect.

Similarly the application must avoid any potential data hazard of application-owned memory that
has its ownership temporarily acquired by a Vulkan command. While the ownership of application-
owned memory remains acquired by a command the implementation may read the memory at any
point, and it may write non-const qualified memory at any point. Parameters referring to non-const
qualified application-owned memory are not marked explicitly as externally synchronized in the
Specification.

Many object types are immutable, meaning the objects cannot change once they have been created.
These types of objects never need external synchronization, except that they must not be destroyed
while they are in use on another thread. In certain special cases mutable object parameters are
internally synchronized, making external synchronization unnecessary. Any command parameters
that are not labeled as externally synchronized are either not mutated by the command or are
internally synchronized. Additionally, certain objects related to a command’s parameters (e.g.
command pools and descriptor pools) may be affected by a command, and must also be externally
synchronized. These implicit parameters are documented as described below.

Parameters of commands that are externally synchronized are listed below.

Externally Synchronized Parameters

• The instance parameter in vkDestroyInstance

• The device parameter in vkDestroyDevice

• The queue parameter in vkQueueSubmit

• The fence parameter in vkQueueSubmit

• The queue parameter in vkQueueWaitIdle

• The memory parameter in vkFreeMemory

• The memory parameter in vkMapMemory

• The memory parameter in vkUnmapMemory

• The buffer parameter in vkBindBufferMemory

• The image parameter in vkBindImageMemory

• The queue parameter in vkQueueBindSparse

• The fence parameter in vkQueueBindSparse

15

• The fence parameter in vkDestroyFence

• The semaphore parameter in vkDestroySemaphore

• The event parameter in vkDestroyEvent

• The event parameter in vkSetEvent

• The event parameter in vkResetEvent

• The queryPool parameter in vkDestroyQueryPool

• The buffer parameter in vkDestroyBuffer

• The bufferView parameter in vkDestroyBufferView

• The image parameter in vkDestroyImage

• The imageView parameter in vkDestroyImageView

• The shaderModule parameter in vkDestroyShaderModule

• The pipelineCache parameter in vkDestroyPipelineCache

• The dstCache parameter in vkMergePipelineCaches

• The pipeline parameter in vkDestroyPipeline

• The pipelineLayout parameter in vkDestroyPipelineLayout

• The sampler parameter in vkDestroySampler

• The descriptorSetLayout parameter in vkDestroyDescriptorSetLayout

• The descriptorPool parameter in vkDestroyDescriptorPool

• The descriptorPool parameter in vkResetDescriptorPool

• The descriptorPool member of the pAllocateInfo parameter in vkAllocateDescriptorSets

• The descriptorPool parameter in vkFreeDescriptorSets

• The framebuffer parameter in vkDestroyFramebuffer

• The renderPass parameter in vkDestroyRenderPass

• The commandPool parameter in vkDestroyCommandPool

• The commandPool parameter in vkResetCommandPool

• The commandPool member of the pAllocateInfo parameter in vkAllocateCommandBuffers

• The commandPool parameter in vkFreeCommandBuffers

• The commandBuffer parameter in vkBeginCommandBuffer

• The commandBuffer parameter in vkEndCommandBuffer

• The commandBuffer parameter in vkResetCommandBuffer

• The commandBuffer parameter in vkCmdBindPipeline

• The commandBuffer parameter in vkCmdSetViewport

• The commandBuffer parameter in vkCmdSetScissor

• The commandBuffer parameter in vkCmdSetLineWidth

• The commandBuffer parameter in vkCmdSetDepthBias

16

• The commandBuffer parameter in vkCmdSetBlendConstants

• The commandBuffer parameter in vkCmdSetDepthBounds

• The commandBuffer parameter in vkCmdSetStencilCompareMask

• The commandBuffer parameter in vkCmdSetStencilWriteMask

• The commandBuffer parameter in vkCmdSetStencilReference

• The commandBuffer parameter in vkCmdBindDescriptorSets

• The commandBuffer parameter in vkCmdBindIndexBuffer

• The commandBuffer parameter in vkCmdBindVertexBuffers

• The commandBuffer parameter in vkCmdDraw

• The commandBuffer parameter in vkCmdDrawIndexed

• The commandBuffer parameter in vkCmdDrawIndirect

• The commandBuffer parameter in vkCmdDrawIndexedIndirect

• The commandBuffer parameter in vkCmdDispatch

• The commandBuffer parameter in vkCmdDispatchIndirect

• The commandBuffer parameter in vkCmdCopyBuffer

• The commandBuffer parameter in vkCmdCopyImage

• The commandBuffer parameter in vkCmdBlitImage

• The commandBuffer parameter in vkCmdCopyBufferToImage

• The commandBuffer parameter in vkCmdCopyImageToBuffer

• The commandBuffer parameter in vkCmdUpdateBuffer

• The commandBuffer parameter in vkCmdFillBuffer

• The commandBuffer parameter in vkCmdClearColorImage

• The commandBuffer parameter in vkCmdClearDepthStencilImage

• The commandBuffer parameter in vkCmdClearAttachments

• The commandBuffer parameter in vkCmdResolveImage

• The commandBuffer parameter in vkCmdSetEvent

• The commandBuffer parameter in vkCmdResetEvent

• The commandBuffer parameter in vkCmdWaitEvents

• The commandBuffer parameter in vkCmdPipelineBarrier

• The commandBuffer parameter in vkCmdBeginQuery

• The commandBuffer parameter in vkCmdEndQuery

• The commandBuffer parameter in vkCmdResetQueryPool

• The commandBuffer parameter in vkCmdWriteTimestamp

• The commandBuffer parameter in vkCmdCopyQueryPoolResults

• The commandBuffer parameter in vkCmdPushConstants

17

• The commandBuffer parameter in vkCmdBeginRenderPass

• The commandBuffer parameter in vkCmdNextSubpass

• The commandBuffer parameter in vkCmdEndRenderPass

• The commandBuffer parameter in vkCmdExecuteCommands

• The commandBuffer parameter in vkCmdSetDeviceMask

• The commandBuffer parameter in vkCmdDispatchBase

• The commandPool parameter in vkTrimCommandPool

• The ycbcrConversion parameter in vkDestroySamplerYcbcrConversion

• The descriptorUpdateTemplate parameter in vkDestroyDescriptorUpdateTemplate

• The commandBuffer parameter in vkCmdDrawIndirectCount

• The commandBuffer parameter in vkCmdDrawIndexedIndirectCount

• The commandBuffer parameter in vkCmdBeginRenderPass2

• The commandBuffer parameter in vkCmdNextSubpass2

• The commandBuffer parameter in vkCmdEndRenderPass2

• The privateDataSlot parameter in vkDestroyPrivateDataSlot

• The commandBuffer parameter in vkCmdSetEvent2

• The commandBuffer parameter in vkCmdResetEvent2

• The commandBuffer parameter in vkCmdWaitEvents2

• The commandBuffer parameter in vkCmdPipelineBarrier2

• The commandBuffer parameter in vkCmdWriteTimestamp2

• The queue parameter in vkQueueSubmit2

• The fence parameter in vkQueueSubmit2

• The commandBuffer parameter in vkCmdCopyBuffer2

• The commandBuffer parameter in vkCmdCopyImage2

• The commandBuffer parameter in vkCmdCopyBufferToImage2

• The commandBuffer parameter in vkCmdCopyImageToBuffer2

• The commandBuffer parameter in vkCmdBlitImage2

• The commandBuffer parameter in vkCmdResolveImage2

• The commandBuffer parameter in vkCmdBeginRendering

• The commandBuffer parameter in vkCmdEndRendering

• The commandBuffer parameter in vkCmdSetCullMode

• The commandBuffer parameter in vkCmdSetFrontFace

• The commandBuffer parameter in vkCmdSetPrimitiveTopology

• The commandBuffer parameter in vkCmdSetViewportWithCount

• The commandBuffer parameter in vkCmdSetScissorWithCount

18

• The commandBuffer parameter in vkCmdBindVertexBuffers2

• The commandBuffer parameter in vkCmdSetDepthTestEnable

• The commandBuffer parameter in vkCmdSetDepthWriteEnable

• The commandBuffer parameter in vkCmdSetDepthCompareOp

• The commandBuffer parameter in vkCmdSetDepthBoundsTestEnable

• The commandBuffer parameter in vkCmdSetStencilTestEnable

• The commandBuffer parameter in vkCmdSetStencilOp

• The commandBuffer parameter in vkCmdSetRasterizerDiscardEnable

• The commandBuffer parameter in vkCmdSetDepthBiasEnable

• The commandBuffer parameter in vkCmdSetPrimitiveRestartEnable

For VkPipelineCache objects created with flags containing
VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT, the above table is extended with the
pipelineCache parameter to vkCreate*Pipelines being externally synchronized.

There are also a few instances where a command can take in a user allocated list whose contents
are externally synchronized parameters. In these cases, the caller must guarantee that at most one
thread is using a given element within the list at a given time. These parameters are listed below.

Externally Synchronized Parameter Lists

• Each element of the pFences parameter in vkResetFences

• Each element of the pDescriptorSets parameter in vkFreeDescriptorSets

• Each element of the pCommandBuffers parameter in vkFreeCommandBuffers

In addition, there are some implicit parameters that need to be externally synchronized. For
example, when a commandBuffer parameter needs to be externally synchronized, it implies that the
commandPool from which that command buffer was allocated also needs to be externally
synchronized. The implicit parameters and their associated object are listed below.

Implicit Externally Synchronized Parameters

• All VkPhysicalDevice objects enumerated from instance in vkDestroyInstance

• All VkQueue objects created from device in vkDestroyDevice

• All VkQueue objects created from device in vkDeviceWaitIdle

• Any VkDescriptorSet objects allocated from descriptorPool in vkResetDescriptorPool

• The VkCommandPool that commandBuffer was allocated from in vkBeginCommandBuffer

• The VkCommandPool that commandBuffer was allocated from in vkEndCommandBuffer

• The VkCommandPool that commandBuffer was allocated from in vkResetCommandBuffer

19

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindPipeline

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetViewport

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetScissor

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLineWidth

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBias

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetBlendConstants

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBounds

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetStencilCompareMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilWriteMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilReference

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindDescriptorSets

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindIndexBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindVertexBuffers

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDraw

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexed

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexedIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatch

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatchIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBlitImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBufferToImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImageToBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdUpdateBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdFillBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdClearColorImage

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdClearDepthStencilImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdClearAttachments

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResolveImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetEvent

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetEvent

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWaitEvents

20

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPipelineBarrier

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginQuery

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndQuery

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetQueryPool

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWriteTimestamp

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyQueryPoolResults

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPushConstants

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderPass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdNextSubpass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderPass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdExecuteCommands

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDeviceMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatchBase

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndirectCount

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdDrawIndexedIndirectCount

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderPass2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdNextSubpass2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderPass2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetEvent2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetEvent2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWaitEvents2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPipelineBarrier2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWriteTimestamp2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBuffer2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImage2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBufferToImage2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImageToBuffer2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBlitImage2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResolveImage2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRendering

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRendering

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetCullMode

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetFrontFace

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetPrimitiveTopology

21

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetViewportWithCount

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetScissorWithCount

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindVertexBuffers2

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthTestEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthWriteEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthCompareOp

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetDepthBoundsTestEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilTestEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilOp

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetRasterizerDiscardEnable

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBiasEnable

• The VkCommandPool that commandBuffer was allocated from, in
vkCmdSetPrimitiveRestartEnable

3.7. Valid Usage
Valid usage defines a set of conditions which must be met in order to achieve well-defined runtime
behavior in an application. These conditions depend only on Vulkan state, and the parameters or
objects whose usage is constrained by the condition.

The core layer assumes applications are using the API correctly. Except as documented elsewhere in
the Specification, the behavior of the core layer to an application using the API incorrectly is
undefined, and may include program termination. However, implementations must ensure that
incorrect usage by an application does not affect the integrity of the operating system, the Vulkan
implementation, or other Vulkan client applications in the system. In particular, any guarantees
made by an operating system about whether memory from one process can be visible to another
process or not must not be violated by a Vulkan implementation for any memory allocation.
Vulkan implementations are not required to make additional security or integrity guarantees
beyond those provided by the OS unless explicitly directed by the application’s use of a particular
feature or extension.

Note

For instance, if an operating system guarantees that data in all its memory
allocations are set to zero when newly allocated, the Vulkan implementation must
make the same guarantees for any allocations it controls (e.g. VkDeviceMemory).

Similarly, if an operating system guarantees that use-after-free of host allocations
will not result in values written by another process becoming visible, the same
guarantees must be made by the Vulkan implementation for device memory.

If the protectedMemory feature is supported, the implementation provides additional guarantees

22

when invalid usage occurs to prevent values in protected memory from being accessed or inferred
outside of protected operations, as described in Protected Memory Access Rules.

Some valid usage conditions have dependencies on runtime limits or feature availability. It is
possible to validate these conditions against Vulkan’s minimum supported values for these limits
and features, or some subset of other known values.

Valid usage conditions do not cover conditions where well-defined behavior (including returning
an error code) exists.

Valid usage conditions should apply to the command or structure where complete information
about the condition would be known during execution of an application. This is such that a
validation layer or linter can be written directly against these statements at the point they are
specified.

Note

This does lead to some non-obvious places for valid usage statements. For instance,
the valid values for a structure might depend on a separate value in the calling
command. In this case, the structure itself will not reference this valid usage as it is
impossible to determine validity from the structure that it is invalid - instead this
valid usage would be attached to the calling command.

Another example is draw state - the state setters are independent, and can cause a
legitimately invalid state configuration between draw calls; so the valid usage
statements are attached to the place where all state needs to be valid - at the
drawing command.

Valid usage conditions are described in a block labelled “Valid Usage” following each command or
structure they apply to.

3.7.1. Usage Validation

Vulkan is a layered API. The lowest layer is the core Vulkan layer, as defined by this Specification.
The application can use additional layers above the core for debugging, validation, and other
purposes.

One of the core principles of Vulkan is that building and submitting command buffers should be
highly efficient. Thus error checking and validation of state in the core layer is minimal, although
more rigorous validation can be enabled through the use of layers.

Validation of correct API usage is left to validation layers. Applications should be developed with
validation layers enabled, to help catch and eliminate errors. Once validated, released applications
should not enable validation layers by default.

3.7.2. Implicit Valid Usage

Some valid usage conditions apply to all commands and structures in the API, unless explicitly
denoted otherwise for a specific command or structure. These conditions are considered implicit,
and are described in a block labelled “Valid Usage (Implicit)” following each command or structure

23

they apply to. Implicit valid usage conditions are described in detail below.

Valid Usage for Object Handles

Any input parameter to a command that is an object handle must be a valid object handle, unless
otherwise specified. An object handle is valid if:

• It has been created or allocated by a previous, successful call to the API. Such calls are noted in
the Specification.

• It has not been deleted or freed by a previous call to the API. Such calls are noted in the
Specification.

• Any objects used by that object, either as part of creation or execution, must also be valid.

The reserved values VK_NULL_HANDLE and NULL can be used in place of valid non-dispatchable
handles and dispatchable handles, respectively, when explicitly called out in the Specification. Any
command that creates an object successfully must not return these values. It is valid to pass these
values to vkDestroy* or vkFree* commands, which will silently ignore these values.

Valid Usage for Pointers

Any parameter that is a pointer must be a valid pointer only if it is explicitly called out by a Valid
Usage statement.

A pointer is “valid” if it points at memory containing values of the number and type(s) expected by
the command, and all fundamental types accessed through the pointer (e.g. as elements of an array
or as members of a structure) satisfy the alignment requirements of the host processor.

Valid Usage for Strings

Any parameter that is a pointer to char must be a finite sequence of values terminated by a null
character, or if explicitly called out in the Specification, can be NULL.

Valid Usage for Enumerated Types

Any parameter of an enumerated type must be a valid enumerant for that type. Use of an
enumerant is valid if the following conditions are true:

• The enumerant is defined as part of the enumerated type.

• The enumerant is not a value suffixed with _MAX_ENUM.

◦ This value exists only to ensure that C enum types are 32 bits in size and must not be used by
applications.

• If the enumerant is used in a function that has a VkInstance as its first parameter and either:

◦ it was added by a core version that is supported (as reported by
vkEnumerateInstanceVersion) and the value of VkApplicationInfo::apiVersion is greater
than or equal to the version that added it; or

◦ it was added by an instance extension that was enabled for the instance.

• If the enumerant is used in a function that has a VkPhysicalDevice object as its first parameter

24

and either:

◦ it was added by a core version that is supported by that device (as reported by
VkPhysicalDeviceProperties::apiVersion);

◦ it was added by an instance extension that was enabled for the instance; or

◦ it was added by a device extension that is supported by that device.

• If the enumerant is used in a function that has any other dispatchable object as its first
parameter and either:

◦ it was added by a core version that is supported for the device (as reported by
VkPhysicalDeviceProperties::apiVersion); or

◦ it was added by a device extension that was enabled for the device.

Any enumerated type returned from a query command or otherwise output from Vulkan to the
application must not have a reserved value. Reserved values are values not defined by any
extension for that enumerated type.

Note

In some special cases, an enumerant is only meaningful if a feature defined by an
extension is also enabled, as well as the extension itself. The global “valid
enumerant” rule described here does not address such cases.

Note

This language is intended to accommodate cases such as “hidden” extensions
known only to driver internals, or layers enabling extensions without knowledge
of the application, without allowing return of values not defined by any extension.

Note

Application developers are encouraged to be careful when using switch statements
with Vulkan API enums. This is because new extensions can add new values to
existing enums. Using a default: statement within a switch may avoid future
compilation issues.

This is particularly true for enums such as VkDriverId, which may have values
added that do not belong to a corresponding new extension.

Valid Usage for Flags

A collection of flags is represented by a bitmask using the type VkFlags:

// Provided by VK_VERSION_1_0
typedef uint32_t VkFlags;

Bitmasks are passed to many commands and structures to compactly represent options, but
VkFlags is not used directly in the API. Instead, a Vk*Flags type which is an alias of VkFlags, and
whose name matches the corresponding Vk*FlagBits that are valid for that type, is used.

25

Any Vk*Flags member or parameter used in the API as an input must be a valid combination of bit
flags. A valid combination is either zero or the bitwise OR of valid bit flags.

An individual bit flag is valid for a Vk*Flags type if it would be a valid enumerant when used with
the equivalent Vk*FlagBits type, where the bits type is obtained by taking the flag type and
replacing the trailing Flags with FlagBits. For example, a flag value of type VkColorComponentFlags
must contain only bit flags defined by VkColorComponentFlagBits.

Any Vk*Flags member or parameter returned from a query command or otherwise output from
Vulkan to the application may contain bit flags undefined in its corresponding Vk*FlagBits type. An
application cannot rely on the state of these unspecified bits.

Only the low-order 31 bits (bit positions zero through 30) are available for use as flag bits.

Note

This restriction is due to poorly defined behavior by C compilers given a C
enumerant value of 0x80000000. In some cases adding this enumerant value may
increase the size of the underlying Vk*FlagBits type, breaking the ABI.

A collection of 64-bit flags is represented by a bitmask using the type VkFlags64:

// Provided by VK_VERSION_1_3
typedef uint64_t VkFlags64;

When the 31 bits available in VkFlags are insufficient, the VkFlags64 type can be passed to
commands and structures to represent up to 64 options. VkFlags64 is not used directly in the API.
Instead, a Vk*Flags2 type which is an alias of VkFlags64, and whose name matches the
corresponding Vk*FlagBits2 that are valid for that type, is used.

Any Vk*Flags2 member or parameter used in the API as an input must be a valid combination of bit
flags. A valid combination is either zero or the bitwise OR of valid bit flags.

An individual bit flag is valid for a Vk*Flags2 type if it would be a valid enumerant when used with
the equivalent Vk*FlagBits2 type, where the bits type is obtained by taking the flag type and
replacing the trailing Flags2 with FlagBits2. For example, a flag value of type VkAccessFlags2KHR
must contain only bit flags defined by VkAccessFlagBits2KHR.

Any Vk*Flags2 member or parameter returned from a query command or otherwise output from
Vulkan to the application may contain bit flags undefined in its corresponding Vk*FlagBits2 type.
An application cannot rely on the state of these unspecified bits.

Note

Both the Vk*FlagBits2 type, and the individual bits defined for that type, are
defined as uint64_t integers in the C API. This is in contrast to the 32-bit types,
where the Vk*FlagBits type is defined as a C enum and the individual bits as
enumerants belonging to that enum. As a result, there is less compile time type
checking possible for the 64-bit types. This is unavoidable since there is no
sufficiently portable way to define a 64-bit enum type in C99.

26

Valid Usage for Structure Types

Any parameter that is a structure containing a sType member must have a value of sType which is a
valid VkStructureType value matching the type of the structure.

Valid Usage for Structure Pointer Chains

Any parameter that is a structure containing a void* pNext member must have a value of pNext that
is either NULL, or is a pointer to a valid extending structure, containing sType and pNext members as
described in the Vulkan Documentation and Extensions document in the section “Extending
Structures”. The set of structures connected by pNext pointers is referred to as a pNext chain.

Each structure included in the pNext chain must be defined at runtime by either:

• a core version which is supported

• an extension which is enabled

• a supported device extension in the case of physical-device-level functionality added by the
device extension

Each type of extending structure must not appear more than once in a pNext chain, including any
aliases. This general rule may be explicitly overridden for specific structures.

Any component of the implementation (the loader, any enabled layers, and drivers) must skip over,
without processing (other than reading the sType and pNext members) any extending structures in
the chain not defined by core versions or extensions supported by that component.

As a convenience to implementations and layers needing to iterate through a structure pointer
chain, the Vulkan API provides two base structures. These structures allow for some type safety, and
can be used by Vulkan API functions that operate on generic inputs and outputs.

The VkBaseInStructure structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBaseInStructure {
 VkStructureType sType;
 const struct VkBaseInStructure* pNext;
} VkBaseInStructure;

• sType is the structure type of the structure being iterated through.

• pNext is NULL or a pointer to the next structure in a structure chain.

VkBaseInStructure can be used to facilitate iterating through a read-only structure pointer chain.

The VkBaseOutStructure structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBaseOutStructure {
 VkStructureType sType;

27

 struct VkBaseOutStructure* pNext;
} VkBaseOutStructure;

• sType is the structure type of the structure being iterated through.

• pNext is NULL or a pointer to the next structure in a structure chain.

VkBaseOutStructure can be used to facilitate iterating through a structure pointer chain that returns
data back to the application.

Valid Usage for Nested Structures

The above conditions also apply recursively to members of structures provided as input to a
command, either as a direct argument to the command, or themselves a member of another
structure.

Specifics on valid usage of each command are covered in their individual sections.

Valid Usage for Extensions

Instance-level functionality or behavior added by an instance extension to the API must not be
used unless that extension is supported by the instance as determined by
vkEnumerateInstanceExtensionProperties, and that extension is enabled in VkInstanceCreateInfo.

Physical-device-level functionality or behavior added by an instance extension to the API must not
be used unless that extension is supported by the instance as determined by
vkEnumerateInstanceExtensionProperties, and that extension is enabled in VkInstanceCreateInfo.

Physical-device-level functionality or behavior added by a device extension to the API must not be
used unless the conditions described in Extending Physical Device Core Functionality are met.

Device-level functionality added by a device extension that is dispatched from a VkDevice, or from
a child object of a VkDevice must not be used unless that extension is supported by the device as
determined by vkEnumerateDeviceExtensionProperties, and that extension is enabled in
VkDeviceCreateInfo.

Valid Usage for Newer Core Versions

Instance-level functionality or behavior added by a new core version of the API must not be used
unless it is supported by the instance as determined by vkEnumerateInstanceVersion and the
specified version of VkApplicationInfo::apiVersion.

Physical-device-level functionality or behavior added by a new core version of the API must not be
used unless it is supported by the physical device as determined by VkPhysicalDeviceProperties
::apiVersion and the specified version of VkApplicationInfo::apiVersion.

Device-level functionality or behavior added by a new core version of the API must not be used
unless it is supported by the device as determined by VkPhysicalDeviceProperties::apiVersion and
the specified version of VkApplicationInfo::apiVersion.

28

3.8. VkResult Return Codes
While the core Vulkan API is not designed to capture incorrect usage, some circumstances still
require return codes. Commands in Vulkan return their status via return codes that are in one of
two categories:

• Successful completion codes are returned when a command needs to communicate success or
status information. All successful completion codes are non-negative values.

• Run time error codes are returned when a command needs to communicate a failure that could
only be detected at runtime. All runtime error codes are negative values.

All return codes in Vulkan are reported via VkResult return values. The possible codes are:

// Provided by VK_VERSION_1_0
typedef enum VkResult {
 VK_SUCCESS = 0,
 VK_NOT_READY = 1,
 VK_TIMEOUT = 2,
 VK_EVENT_SET = 3,
 VK_EVENT_RESET = 4,
 VK_INCOMPLETE = 5,
 VK_ERROR_OUT_OF_HOST_MEMORY = -1,
 VK_ERROR_OUT_OF_DEVICE_MEMORY = -2,
 VK_ERROR_INITIALIZATION_FAILED = -3,
 VK_ERROR_DEVICE_LOST = -4,
 VK_ERROR_MEMORY_MAP_FAILED = -5,
 VK_ERROR_LAYER_NOT_PRESENT = -6,
 VK_ERROR_EXTENSION_NOT_PRESENT = -7,
 VK_ERROR_FEATURE_NOT_PRESENT = -8,
 VK_ERROR_INCOMPATIBLE_DRIVER = -9,
 VK_ERROR_TOO_MANY_OBJECTS = -10,
 VK_ERROR_FORMAT_NOT_SUPPORTED = -11,
 VK_ERROR_FRAGMENTED_POOL = -12,
 VK_ERROR_UNKNOWN = -13,
 // Provided by VK_VERSION_1_1
 VK_ERROR_OUT_OF_POOL_MEMORY = -1000069000,
 // Provided by VK_VERSION_1_1
 VK_ERROR_INVALID_EXTERNAL_HANDLE = -1000072003,
 // Provided by VK_VERSION_1_2
 VK_ERROR_FRAGMENTATION = -1000161000,
 // Provided by VK_VERSION_1_2
 VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS = -1000257000,
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_COMPILE_REQUIRED = 1000297000,
} VkResult;

Success Codes

• VK_SUCCESS Command successfully completed

29

• VK_NOT_READY A fence or query has not yet completed

• VK_TIMEOUT A wait operation has not completed in the specified time

• VK_EVENT_SET An event is signaled

• VK_EVENT_RESET An event is unsignaled

• VK_INCOMPLETE A return array was too small for the result

• VK_PIPELINE_COMPILE_REQUIRED A requested pipeline creation would have required compilation,
but the application requested compilation to not be performed.

Error codes

• VK_ERROR_OUT_OF_HOST_MEMORY A host memory allocation has failed.

• VK_ERROR_OUT_OF_DEVICE_MEMORY A device memory allocation has failed.

• VK_ERROR_INITIALIZATION_FAILED Initialization of an object could not be completed for
implementation-specific reasons.

• VK_ERROR_DEVICE_LOST The logical or physical device has been lost. See Lost Device

• VK_ERROR_MEMORY_MAP_FAILED Mapping of a memory object has failed.

• VK_ERROR_LAYER_NOT_PRESENT A requested layer is not present or could not be loaded.

• VK_ERROR_EXTENSION_NOT_PRESENT A requested extension is not supported.

• VK_ERROR_FEATURE_NOT_PRESENT A requested feature is not supported.

• VK_ERROR_INCOMPATIBLE_DRIVER The requested version of Vulkan is not supported by the driver or
is otherwise incompatible for implementation-specific reasons.

• VK_ERROR_TOO_MANY_OBJECTS Too many objects of the type have already been created.

• VK_ERROR_FORMAT_NOT_SUPPORTED A requested format is not supported on this device.

• VK_ERROR_FRAGMENTED_POOL A pool allocation has failed due to fragmentation of the pool’s
memory. This must only be returned if no attempt to allocate host or device memory was made
to accommodate the new allocation. This should be returned in preference to
VK_ERROR_OUT_OF_POOL_MEMORY, but only if the implementation is certain that the pool allocation
failure was due to fragmentation.

• VK_ERROR_OUT_OF_POOL_MEMORY A pool memory allocation has failed. This must only be returned if
no attempt to allocate host or device memory was made to accommodate the new allocation. If
the failure was definitely due to fragmentation of the pool, VK_ERROR_FRAGMENTED_POOL should be
returned instead.

• VK_ERROR_INVALID_EXTERNAL_HANDLE An external handle is not a valid handle of the specified type.

• VK_ERROR_FRAGMENTATION A descriptor pool creation has failed due to fragmentation.

• VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS A buffer creation or memory allocation failed because
the requested address is not available.

• VK_ERROR_UNKNOWN An unknown error has occurred; either the application has provided invalid
input, or an implementation failure has occurred.

If a command returns a runtime error, unless otherwise specified any output parameters will have
undefined contents, except that if the output parameter is a structure with sType and pNext fields,

30

those fields will be unmodified. Any structures chained from pNext will also have undefined
contents, except that sType and pNext will be unmodified.

VK_ERROR_OUT_OF_*_MEMORY errors do not modify any currently existing Vulkan objects. Objects that
have already been successfully created can still be used by the application.

Note

As a general rule, Free, Release, and Reset commands do not return
VK_ERROR_OUT_OF_HOST_MEMORY, while any other command with a return code may
return it. Any exceptions from this rule are described for those commands.

VK_ERROR_UNKNOWN will be returned by an implementation when an unexpected error occurs that
cannot be attributed to valid behavior of the application and implementation. Under these
conditions, it may be returned from any command returning a VkResult.

Note

VK_ERROR_UNKNOWN is not expected to ever be returned if the application behavior is
valid, and if the implementation is bug-free. If VK_ERROR_UNKNOWN is received, the
application should be checked against the latest validation layers to verify correct
behavior as much as possible. If no issues are identified it could be an
implementation issue, and the implementor should be contacted for support.

Performance-critical commands generally do not have return codes. If a runtime error occurs in
such commands, the implementation will defer reporting the error until a specified point. For
commands that record into command buffers (vkCmd*) runtime errors are reported by
vkEndCommandBuffer.

3.9. Numeric Representation and Computation
Implementations normally perform computations in floating-point, and must meet the range and
precision requirements defined under “Floating-Point Computation” below.

These requirements only apply to computations performed in Vulkan operations outside of shader
execution, such as texture image specification and sampling, and per-fragment operations. Range
and precision requirements during shader execution differ and are specified by the Precision and
Operation of SPIR-V Instructions section.

In some cases, the representation and/or precision of operations is implicitly limited by the
specified format of vertex or texel data consumed by Vulkan. Specific floating-point formats are
described later in this section.

3.9.1. Floating-Point Computation

Most floating-point computation is performed in SPIR-V shader modules. The properties of
computation within shaders are constrained as defined by the Precision and Operation of SPIR-V
Instructions section.

Some floating-point computation is performed outside of shaders, such as viewport and depth

31

range calculations. For these computations, we do not specify how floating-point numbers are to be
represented, or the details of how operations on them are performed, but only place minimal
requirements on representation and precision as described in the remainder of this section.

We require simply that numbers’ floating-point parts contain enough bits and that their exponent
fields are large enough so that individual results of floating-point operations are accurate to about 1
part in 105. The maximum representable magnitude for all floating-point values must be at least 232.

x × 0 = 0 × x = 0 for any non-infinite and non-NaN x.

1 × x = x × 1 = x.

x + 0 = 0 + x = x.

00 = 1.

Occasionally, further requirements will be specified. Most single-precision floating-point formats
meet these requirements.

The special values Inf and -Inf encode values with magnitudes too large to be represented; the
special value NaN encodes “Not A Number” values resulting from undefined arithmetic operations
such as 0 / 0. Implementations may support Inf and NaN in their floating-point computations. Any
computation which does not support either Inf or NaN, for which that value is an input or output
will yield an undefined value.

3.9.2. Floating-Point Format Conversions

When a value is converted to a defined floating-point representation, finite values falling between
two representable finite values are rounded to one or the other. The rounding mode is not defined.
Finite values whose magnitude is larger than that of any representable finite value may be rounded
either to the closest representable finite value or to the appropriately signed infinity. For unsigned
destination formats any negative values are converted to zero. Positive infinity is converted to
positive infinity; negative infinity is converted to negative infinity in signed formats and to zero in
unsigned formats; and any NaN is converted to a NaN.

3.9.3. 16-Bit Floating-Point Numbers

16-bit floating point numbers are defined in the “16-bit floating point numbers” section of the
Khronos Data Format Specification.

3.9.4. Unsigned 11-Bit Floating-Point Numbers

Unsigned 11-bit floating point numbers are defined in the “Unsigned 11-bit floating point numbers”
section of the Khronos Data Format Specification.

32

3.9.5. Unsigned 10-Bit Floating-Point Numbers

Unsigned 10-bit floating point numbers are defined in the “Unsigned 10-bit floating point numbers”
section of the Khronos Data Format Specification.

3.9.6. General Requirements

Any representable floating-point value in the appropriate format is legal as input to a Vulkan
command that requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to Vulkan interruption or
termination. For example, providing a negative zero (where applicable) or a denormalized number
to a Vulkan command must yield deterministic results, while providing a NaN or Inf yields
unspecified results.

Some calculations require division. In such cases (including implied divisions performed by vector
normalization), division by zero produces an unspecified result but must not lead to Vulkan
interruption or termination.

3.10. Fixed-Point Data Conversions
When generic vertex attributes and pixel color or depth components are represented as integers,
they are often (but not always) considered to be normalized. Normalized integer values are treated
specially when being converted to and from floating-point values, and are usually referred to as
normalized fixed-point.

In the remainder of this section, b denotes the bit width of the fixed-point integer representation.
When the integer is one of the types defined by the API, b is the bit width of that type. When the
integer comes from an image containing color or depth component texels, b is the number of bits
allocated to that component in its specified image format.

The signed and unsigned fixed-point representations are assumed to be b-bit binary two’s-
complement integers and binary unsigned integers, respectively.

3.10.1. Conversion From Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0,1]. The conversion
from an unsigned normalized fixed-point value c to the corresponding floating-point value f is
defined as

Signed normalized fixed-point integers represent numbers in the range [-1,1]. The conversion from
a signed normalized fixed-point value c to the corresponding floating-point value f is performed
using

Only the range [-2b-1 + 1, 2b-1 - 1] is used to represent signed fixed-point values in the range [-1,1]. For

33

example, if b = 8, then the integer value -127 corresponds to -1.0 and the value 127 corresponds to
1.0. This equation is used everywhere that signed normalized fixed-point values are converted to
floating-point.

Note that while zero is exactly expressible in this representation, one value (-128 in the example) is
outside the representable range, and implementations must clamp it to -1.0. Where the value is
subject to further processing by the implementation, e.g. during texture filtering, values less than
-1.0 may be used but the result must be clamped before the value is returned to shaders.

3.10.2. Conversion From Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned normalized fixed-point
value c is defined by first clamping f to the range [0,1], then computing

c = convertFloatToUint(f × (2b - 1), b)

where convertFloatToUint(r,b) returns one of the two unsigned binary integer values with exactly b
bits which are closest to the floating-point value r. Implementations should round to nearest. If r is
equal to an integer, then that integer value must be returned. In particular, if f is equal to 0.0 or 1.0,
then c must be assigned 0 or 2b - 1, respectively.

The conversion from a floating-point value f to the corresponding signed normalized fixed-point
value c is performed by clamping f to the range [-1,1], then computing

c = convertFloatToInt(f × (2b-1 - 1), b)

where convertFloatToInt(r,b) returns one of the two signed two’s-complement binary integer
values with exactly b bits which are closest to the floating-point value r. Implementations should
round to nearest. If r is equal to an integer, then that integer value must be returned. In particular,
if f is equal to -1.0, 0.0, or 1.0, then c must be assigned -(2b-1 - 1), 0, or 2b-1 - 1, respectively.

This equation is used everywhere that floating-point values are converted to signed normalized
fixed-point.

3.11. Common Object Types
Some types of Vulkan objects are used in many different structures and command parameters, and
are described here. These types include offsets, extents, and rectangles.

3.11.1. Offsets

Offsets are used to describe a pixel location within an image or framebuffer, as an (x,y) location for
two-dimensional images, or an (x,y,z) location for three-dimensional images.

A two-dimensional offset is defined by the structure:

// Provided by VK_VERSION_1_0

34

typedef struct VkOffset2D {
 int32_t x;
 int32_t y;
} VkOffset2D;

• x is the x offset.

• y is the y offset.

A three-dimensional offset is defined by the structure:

// Provided by VK_VERSION_1_0
typedef struct VkOffset3D {
 int32_t x;
 int32_t y;
 int32_t z;
} VkOffset3D;

• x is the x offset.

• y is the y offset.

• z is the z offset.

3.11.2. Extents

Extents are used to describe the size of a rectangular region of pixels within an image or
framebuffer, as (width,height) for two-dimensional images, or as (width,height,depth) for three-
dimensional images.

A two-dimensional extent is defined by the structure:

// Provided by VK_VERSION_1_0
typedef struct VkExtent2D {
 uint32_t width;
 uint32_t height;
} VkExtent2D;

• width is the width of the extent.

• height is the height of the extent.

A three-dimensional extent is defined by the structure:

// Provided by VK_VERSION_1_0
typedef struct VkExtent3D {
 uint32_t width;
 uint32_t height;
 uint32_t depth;

35

} VkExtent3D;

• width is the width of the extent.

• height is the height of the extent.

• depth is the depth of the extent.

3.11.3. Rectangles

Rectangles are used to describe a specified rectangular region of pixels within an image or
framebuffer. Rectangles include both an offset and an extent of the same dimensionality, as
described above. Two-dimensional rectangles are defined by the structure

// Provided by VK_VERSION_1_0
typedef struct VkRect2D {
 VkOffset2D offset;
 VkExtent2D extent;
} VkRect2D;

• offset is a VkOffset2D specifying the rectangle offset.

• extent is a VkExtent2D specifying the rectangle extent.

3.11.4. Structure Types

Each value corresponds to a particular structure with a sType member with a matching name. As a
general rule, the name of each VkStructureType value is obtained by taking the name of the
structure, stripping the leading Vk, prefixing each capital letter with _, converting the entire
resulting string to upper case, and prefixing it with VK_STRUCTURE_TYPE_. For example, structures of
type VkImageCreateInfo correspond to a VkStructureType value of
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, and thus a structure of this type must have its sType member
set to this value before it is passed to the API.

The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and
VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for internal use by the loader, and do
not have corresponding Vulkan structures in this Specification.

Structure types supported by the Vulkan API include:

// Provided by VK_VERSION_1_0
typedef enum VkStructureType {
 VK_STRUCTURE_TYPE_APPLICATION_INFO = 0,
 VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO = 1,
 VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO = 2,
 VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO = 3,
 VK_STRUCTURE_TYPE_SUBMIT_INFO = 4,
 VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO = 5,
 VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE = 6,

36

 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO = 7,
 VK_STRUCTURE_TYPE_FENCE_CREATE_INFO = 8,
 VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO = 9,
 VK_STRUCTURE_TYPE_EVENT_CREATE_INFO = 10,
 VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO = 11,
 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO = 12,
 VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO = 13,
 VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO = 14,
 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO = 15,
 VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO = 16,
 VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO = 17,
 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO = 18,
 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO = 19,
 VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO = 20,
 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO = 21,
 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO = 22,
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO = 23,
 VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO = 24,
 VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO = 25,
 VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO = 26,
 VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO = 27,
 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO = 28,
 VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO = 29,
 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO = 30,
 VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO = 31,
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO = 32,
 VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO = 33,
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO = 34,
 VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET = 35,
 VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET = 36,
 VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO = 37,
 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO = 38,
 VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO = 39,
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO = 40,
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO = 41,
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO = 42,
 VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO = 43,
 VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER = 44,
 VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER = 45,
 VK_STRUCTURE_TYPE_MEMORY_BARRIER = 46,
 VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO = 47,
 VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO = 48,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES = 1000094000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO = 1000157000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO = 1000157001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES = 1000083000,
 // Provided by VK_VERSION_1_1

37

 VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS = 1000127000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO = 1000127001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO = 1000060000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO = 1000060003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO = 1000060004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO = 1000060005,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO = 1000060006,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO = 1000060013,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO = 1000060014,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES = 1000070000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO = 1000070001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2 = 1000146000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2 = 1000146001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2 = 1000146002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2 = 1000146003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2 = 1000146004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2 = 1000059000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2 = 1000059001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2 = 1000059002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2 = 1000059003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2 = 1000059004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2 = 1000059005,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2 = 1000059006,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2 = 1000059007,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2 = 1000059008,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES = 1000117000,

38

 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO = 1000117001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO = 1000117002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO =
1000117003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO = 1000053000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES = 1000053001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES = 1000053002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES = 1000120000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO = 1000145000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES = 1000145001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES = 1000145002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2 = 1000145003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO = 1000156000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO = 1000156001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO = 1000156002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO = 1000156003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES = 1000156004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES = 1000156005,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO = 1000085000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO = 1000071000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES = 1000071001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO = 1000071002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES = 1000071003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES = 1000071004,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO = 1000072000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO = 1000072001,

39

 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO = 1000072002,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO = 1000112000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES = 1000112001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO = 1000113000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO = 1000077000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO = 1000076000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES = 1000076001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES = 1000168000,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT = 1000168001,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES = 1000063000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES = 49,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES = 50,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES = 51,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES = 52,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO = 1000147000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2 = 1000109000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2 = 1000109001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2 = 1000109002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2 = 1000109003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2 = 1000109004,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO = 1000109005,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_END_INFO = 1000109006,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES = 1000177000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES = 1000196000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES = 1000180000,
 // Provided by VK_VERSION_1_2

40

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES = 1000082000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES = 1000197000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO = 1000161000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES = 1000161001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES = 1000161002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO =
1000161003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT =
1000161004,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES = 1000199000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE = 1000199001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES = 1000221000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO = 1000246000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES = 1000130000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO = 1000130001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES = 1000211000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES = 1000108000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO = 1000108001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO = 1000108002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO = 1000108003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES =
1000253000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES =
1000175000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES =
1000241000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT = 1000241001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT = 1000241002,
 // Provided by VK_VERSION_1_2

41

 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES = 1000261000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES = 1000207000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES = 1000207001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO = 1000207002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO = 1000207003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO = 1000207004,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_SEMAPHORE_SIGNAL_INFO = 1000207005,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES = 1000257000,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO = 1000244001,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO = 1000257002,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO = 1000257003,
 // Provided by VK_VERSION_1_2
 VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO = 1000257004,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES = 53,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES = 54,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PIPELINE_CREATION_FEEDBACK_CREATE_INFO = 1000192000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES =
1000215000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES = 1000245000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES =
1000276000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES = 1000295000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DEVICE_PRIVATE_DATA_CREATE_INFO = 1000295001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PRIVATE_DATA_SLOT_CREATE_INFO = 1000295002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES =
1000297000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_MEMORY_BARRIER_2 = 1000314000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2 = 1000314001,
 // Provided by VK_VERSION_1_3

42

 VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2 = 1000314002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DEPENDENCY_INFO = 1000314003,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_SUBMIT_INFO_2 = 1000314004,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO = 1000314005,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO = 1000314006,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES = 1000314007,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES =
1000325000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES = 1000335000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2 = 1000337000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2 = 1000337001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COPY_BUFFER_TO_IMAGE_INFO_2 = 1000337002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COPY_IMAGE_TO_BUFFER_INFO_2 = 1000337003,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2 = 1000337004,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_RESOLVE_IMAGE_INFO_2 = 1000337005,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_BUFFER_COPY_2 = 1000337006,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_IMAGE_COPY_2 = 1000337007,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_IMAGE_BLIT_2 = 1000337008,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_BUFFER_IMAGE_COPY_2 = 1000337009,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2 = 1000337010,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES = 1000225000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO =
1000225001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES = 1000225002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES = 1000138000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES = 1000138001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK = 1000138002,

43

 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO = 1000138003,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES =
1000066000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_RENDERING_INFO = 1000044000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO = 1000044001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO = 1000044002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES = 1000044003,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDERING_INFO = 1000044004,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES =
1000280000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES =
1000280001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES = 1000281001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3 = 1000360000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES = 1000413000,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES = 1000413001,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS = 1000413002,
 // Provided by VK_VERSION_1_3
 VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS = 1000413003,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES,
 // Provided by VK_VERSION_1_1
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES,
} VkStructureType;

3.12. API Name Aliases
A small number of APIs did not follow the naming conventions when initially defined. For
consistency, when we discover an API name that violates the naming conventions, we rename it in
the Specification, XML, and header files. For backwards compatibility, the original (incorrect) name
is retained as a “typo alias”. The alias is deprecated and should not be used, but will be retained
indefinitely.

44

Note

VK_STENCIL_FRONT_AND_BACK is an example of a typo alias. It was initially defined as
part of VkStencilFaceFlagBits. Once the naming inconsistency was noticed, it was
renamed to VK_STENCIL_FACE_FRONT_AND_BACK, and the old name was aliased to the
correct name.

45

Chapter 4. Initialization
Before using Vulkan, an application must initialize it by loading the Vulkan commands, and
creating a VkInstance object.

4.1. Command Function Pointers
Vulkan commands are not necessarily exposed by static linking on a platform. Commands to query
function pointers for Vulkan commands are described below.

Note

When extensions are promoted or otherwise incorporated into another extension
or Vulkan core version, command aliases may be included. Whilst the behavior of
each command alias is identical, the behavior of retrieving each alias’s function
pointer is not. A function pointer for a given alias can only be retrieved if the
extension or version that introduced that alias is supported and enabled,
irrespective of whether any other alias is available.

Function pointers for all Vulkan commands can be obtained by calling:

// Provided by VK_VERSION_1_0
PFN_vkVoidFunction vkGetInstanceProcAddr(
 VkInstance instance,
 const char* pName);

• instance is the instance that the function pointer will be compatible with, or NULL for commands
not dependent on any instance.

• pName is the name of the command to obtain.

vkGetInstanceProcAddr itself is obtained in a platform- and loader- specific manner. Typically, the
loader library will export this command as a function symbol, so applications can link against the
loader library, or load it dynamically and look up the symbol using platform-specific APIs.

The table below defines the various use cases for vkGetInstanceProcAddr and expected return value
(“fp” is “function pointer”) for each case. A valid returned function pointer (“fp”) must not be NULL.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the
command being queried before use.

Table 1. vkGetInstanceProcAddr behavior

instance pName return value

*1 NULL undefined

invalid non-NULL instance *1 undefined

NULL global command2 fp

46

instance pName return value

NULL vkGetInstanceProcAddr fp5

instance vkGetInstanceProcAddr fp

instance core dispatchable
command

fp3

instance enabled instance
extension dispatchable
command for instance

fp3

instance available device
extension4 dispatchable
command for instance

fp3

any other case, not covered above NULL

1

"*" means any representable value for the parameter (including valid values, invalid values, and
NULL).

2

The global commands are: vkEnumerateInstanceVersion,
vkEnumerateInstanceExtensionProperties, vkEnumerateInstanceLayerProperties, and
vkCreateInstance. Dispatchable commands are all other commands which are not global.

3

The returned function pointer must only be called with a dispatchable object (the first
parameter) that is instance or a child of instance, e.g. VkInstance, VkPhysicalDevice, VkDevice,
VkQueue, or VkCommandBuffer.

4

An “available device extension” is a device extension supported by any physical device
enumerated by instance.

5

Starting with Vulkan 1.2, vkGetInstanceProcAddr can resolve itself with a NULL instance pointer.

Valid Usage (Implicit)

• VUID-vkGetInstanceProcAddr-instance-parameter
If instance is not NULL, instance must be a valid VkInstance handle

• VUID-vkGetInstanceProcAddr-pName-parameter
pName must be a null-terminated UTF-8 string

In order to support systems with multiple Vulkan implementations, the function pointers returned
by vkGetInstanceProcAddr may point to dispatch code that calls a different real implementation for
different VkDevice objects or their child objects. The overhead of the internal dispatch for VkDevice

47

objects can be avoided by obtaining device-specific function pointers for any commands that use a
device or device-child object as their dispatchable object. Such function pointers can be obtained by
calling:

// Provided by VK_VERSION_1_0
PFN_vkVoidFunction vkGetDeviceProcAddr(
 VkDevice device,
 const char* pName);

The table below defines the various use cases for vkGetDeviceProcAddr and expected return value
(“fp” is “function pointer”) for each case. A valid returned function pointer (“fp”) must not be NULL.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the
command being queried before use. The function pointer must only be called with a dispatchable
object (the first parameter) that is device or a child of device.

Table 2. vkGetDeviceProcAddr behavior

device pName return value

NULL *1 undefined

invalid device *1 undefined

device NULL undefined

device requested core version2

device-level dispatchable
command3

fp4

device enabled extension
device-level dispatchable
command3

fp4

any other case, not covered above NULL

1

"*" means any representable value for the parameter (including valid values, invalid values, and
NULL).

2

Device-level commands which are part of the core version specified by VkApplicationInfo
::apiVersion when creating the instance will always return a valid function pointer. Core
commands beyond that version which are supported by the implementation may either return
NULL or a function pointer. If a function pointer is returned, it must not be called.

3

In this function, device-level excludes all physical-device-level commands.

4

The returned function pointer must only be called with a dispatchable object (the first
parameter) that is device or a child of device e.g. VkDevice, VkQueue, or VkCommandBuffer.

48

Valid Usage (Implicit)

• VUID-vkGetDeviceProcAddr-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceProcAddr-pName-parameter
pName must be a null-terminated UTF-8 string

The definition of PFN_vkVoidFunction is:

// Provided by VK_VERSION_1_0
typedef void (VKAPI_PTR *PFN_vkVoidFunction)(void);

This type is returned from command function pointer queries, and must be cast to an actual
command function pointer before use.

4.1.1. Extending Physical Device Core Functionality

New core physical-device-level functionality can be used when the physical-device version is
greater than or equal to the version of Vulkan that added the new functionality. The Vulkan version
supported by a physical device can be obtained by calling vkGetPhysicalDeviceProperties.

4.1.2. Extending Physical Device From Device Extensions

When the VK_KHR_get_physical_device_properties2 extension is enabled, or when both the instance
and the physical-device versions are at least 1.1, physical-device-level functionality of a device
extension can be used with a physical device if the corresponding extension is enumerated by
vkEnumerateDeviceExtensionProperties for that physical device, even before a logical device has
been created.

To obtain a function pointer for a physical-device-level command from a device extension, an
application can use vkGetInstanceProcAddr. This function pointer may point to dispatch code,
which calls a different real implementation for different VkPhysicalDevice objects. Applications
must not use a VkPhysicalDevice in any command added by an extension or core version that is not
supported by that physical device.

Device extensions may define structures that can be added to the pNext chain of physical-device-
level commands.

4.2. Instances
There is no global state in Vulkan and all per-application state is stored in a VkInstance object.
Creating a VkInstance object initializes the Vulkan library and allows the application to pass
information about itself to the implementation.

Instances are represented by VkInstance handles:

49

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkInstance)

To query the version of instance-level functionality supported by the implementation, call:

// Provided by VK_VERSION_1_1
VkResult vkEnumerateInstanceVersion(
 uint32_t* pApiVersion);

• pApiVersion is a pointer to a uint32_t, which is the version of Vulkan supported by instance-level
functionality, encoded as described in Version Numbers.

Note

The intended behaviour of vkEnumerateInstanceVersion is that an
implementation should not need to perform memory allocations and should
unconditionally return VK_SUCCESS. The loader, and any enabled layers, may return
VK_ERROR_OUT_OF_HOST_MEMORY in the case of a failed memory allocation.

Valid Usage (Implicit)

• VUID-vkEnumerateInstanceVersion-pApiVersion-parameter
pApiVersion must be a valid pointer to a uint32_t value

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

To create an instance object, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateInstance(
 const VkInstanceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkInstance* pInstance);

• pCreateInfo is a pointer to a VkInstanceCreateInfo structure controlling creation of the instance.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pInstance points a VkInstance handle in which the resulting instance is returned.

50

vkCreateInstance verifies that the requested layers exist. If not, vkCreateInstance will return
VK_ERROR_LAYER_NOT_PRESENT. Next vkCreateInstance verifies that the requested extensions are
supported (e.g. in the implementation or in any enabled instance layer) and if any requested
extension is not supported, vkCreateInstance must return VK_ERROR_EXTENSION_NOT_PRESENT. After
verifying and enabling the instance layers and extensions the VkInstance object is created and
returned to the application. If a requested extension is only supported by a layer, both the layer and
the extension need to be specified at vkCreateInstance time for the creation to succeed.

Valid Usage

• VUID-vkCreateInstance-ppEnabledExtensionNames-01388
All required extensions for each extension in the VkInstanceCreateInfo
::ppEnabledExtensionNames list must also be present in that list

Valid Usage (Implicit)

• VUID-vkCreateInstance-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkInstanceCreateInfo structure

• VUID-vkCreateInstance-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateInstance-pInstance-parameter
pInstance must be a valid pointer to a VkInstance handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_LAYER_NOT_PRESENT

• VK_ERROR_EXTENSION_NOT_PRESENT

• VK_ERROR_INCOMPATIBLE_DRIVER

The VkInstanceCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkInstanceCreateInfo {
 VkStructureType sType;

51

 const void* pNext;
 VkInstanceCreateFlags flags;
 const VkApplicationInfo* pApplicationInfo;
 uint32_t enabledLayerCount;
 const char* const* ppEnabledLayerNames;
 uint32_t enabledExtensionCount;
 const char* const* ppEnabledExtensionNames;
} VkInstanceCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkInstanceCreateFlagBits indicating the behavior of the instance.

• pApplicationInfo is NULL or a pointer to a VkApplicationInfo structure. If not NULL, this
information helps implementations recognize behavior inherent to classes of applications.
VkApplicationInfo is defined in detail below.

• enabledLayerCount is the number of global layers to enable.

• ppEnabledLayerNames is a pointer to an array of enabledLayerCount null-terminated UTF-8 strings
containing the names of layers to enable for the created instance. The layers are loaded in the
order they are listed in this array, with the first array element being the closest to the
application, and the last array element being the closest to the driver. See the Layers section for
further details.

• enabledExtensionCount is the number of global extensions to enable.

• ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8
strings containing the names of extensions to enable.

Valid Usage (Implicit)

• VUID-VkInstanceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO

• VUID-VkInstanceCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkInstanceCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkInstanceCreateInfo-pApplicationInfo-parameter
If pApplicationInfo is not NULL, pApplicationInfo must be a valid pointer to a valid
VkApplicationInfo structure

• VUID-VkInstanceCreateInfo-ppEnabledLayerNames-parameter
If enabledLayerCount is not 0, ppEnabledLayerNames must be a valid pointer to an array of
enabledLayerCount null-terminated UTF-8 strings

• VUID-VkInstanceCreateInfo-ppEnabledExtensionNames-parameter
If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a valid pointer to an
array of enabledExtensionCount null-terminated UTF-8 strings

52

// Provided by VK_VERSION_1_0
typedef enum VkInstanceCreateFlagBits {
} VkInstanceCreateFlagBits;

Note

All bits for this type are defined by extensions, and none of those extensions are
enabled in this build of the specification.

// Provided by VK_VERSION_1_0
typedef VkFlags VkInstanceCreateFlags;

VkInstanceCreateFlags is a bitmask type for setting a mask, but is currently reserved for future use.

The VkApplicationInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkApplicationInfo {
 VkStructureType sType;
 const void* pNext;
 const char* pApplicationName;
 uint32_t applicationVersion;
 const char* pEngineName;
 uint32_t engineVersion;
 uint32_t apiVersion;
} VkApplicationInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pApplicationName is NULL or is a pointer to a null-terminated UTF-8 string containing the name of
the application.

• applicationVersion is an unsigned integer variable containing the developer-supplied version
number of the application.

• pEngineName is NULL or is a pointer to a null-terminated UTF-8 string containing the name of the
engine (if any) used to create the application.

• engineVersion is an unsigned integer variable containing the developer-supplied version
number of the engine used to create the application.

• apiVersion must be the highest version of Vulkan that the application is designed to use,
encoded as described in Version Numbers. The patch version number specified in apiVersion is
ignored when creating an instance object. The variant version of the instance must match that
requested in apiVersion.

Vulkan 1.0 implementations were required to return VK_ERROR_INCOMPATIBLE_DRIVER if apiVersion
was larger than 1.0. Implementations that support Vulkan 1.1 or later must not return

53

VK_ERROR_INCOMPATIBLE_DRIVER for any value of apiVersion .

Note

Because Vulkan 1.0 implementations may fail with VK_ERROR_INCOMPATIBLE_DRIVER,
applications should determine the version of Vulkan available before calling
vkCreateInstance. If the vkGetInstanceProcAddr returns NULL for
vkEnumerateInstanceVersion, it is a Vulkan 1.0 implementation. Otherwise, the
application can call vkEnumerateInstanceVersion to determine the version of
Vulkan.

As long as the instance supports at least Vulkan 1.1, an application can use different versions of
Vulkan with an instance than it does with a device or physical device.

Note

The Khronos validation layers will treat apiVersion as the highest API version the
application targets, and will validate API usage against the minimum of that
version and the implementation version (instance or device, depending on
context). If an application tries to use functionality from a greater version than
this, a validation error will be triggered.

For example, if the instance supports Vulkan 1.1 and three physical devices
support Vulkan 1.0, Vulkan 1.1, and Vulkan 1.2, respectively, and if the application
sets apiVersion to 1.2, the application can use the following versions of Vulkan:

• Vulkan 1.0 can be used with the instance and with all physical devices.

• Vulkan 1.1 can be used with the instance and with the physical devices that
support Vulkan 1.1 and Vulkan 1.2.

• Vulkan 1.2 can be used with the physical device that supports Vulkan 1.2.

If we modify the above example so that the application sets apiVersion to 1.1, then
the application must not use Vulkan 1.2 functionality on the physical device that
supports Vulkan 1.2.

Note

Providing a NULL VkInstanceCreateInfo::pApplicationInfo or providing an
apiVersion of 0 is equivalent to providing an apiVersion of
VK_MAKE_API_VERSION(0,1,0,0).

Valid Usage

• VUID-VkApplicationInfo-apiVersion-04010
If apiVersion is not 0, then it must be greater than or equal to VK_API_VERSION_1_0

54

Valid Usage (Implicit)

• VUID-VkApplicationInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_APPLICATION_INFO

• VUID-VkApplicationInfo-pNext-pNext
pNext must be NULL

• VUID-VkApplicationInfo-pApplicationName-parameter
If pApplicationName is not NULL, pApplicationName must be a null-terminated UTF-8 string

• VUID-VkApplicationInfo-pEngineName-parameter
If pEngineName is not NULL, pEngineName must be a null-terminated UTF-8 string

To destroy an instance, call:

// Provided by VK_VERSION_1_0
void vkDestroyInstance(
 VkInstance instance,
 const VkAllocationCallbacks* pAllocator);

• instance is the handle of the instance to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyInstance-instance-00629
All child objects created using instance must have been destroyed prior to destroying
instance

• VUID-vkDestroyInstance-instance-00630
If VkAllocationCallbacks were provided when instance was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyInstance-instance-00631
If no VkAllocationCallbacks were provided when instance was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyInstance-instance-parameter
If instance is not NULL, instance must be a valid VkInstance handle

• VUID-vkDestroyInstance-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

55

Host Synchronization

• Host access to instance must be externally synchronized

• Host access to all VkPhysicalDevice objects enumerated from instance must be externally
synchronized

56

Chapter 5. Devices and Queues
Once Vulkan is initialized, devices and queues are the primary objects used to interact with a
Vulkan implementation.

Vulkan separates the concept of physical and logical devices. A physical device usually represents a
single complete implementation of Vulkan (excluding instance-level functionality) available to the
host, of which there are a finite number. A logical device represents an instance of that
implementation with its own state and resources independent of other logical devices.

Physical devices are represented by VkPhysicalDevice handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkPhysicalDevice)

5.1. Physical Devices
To retrieve a list of physical device objects representing the physical devices installed in the system,
call:

// Provided by VK_VERSION_1_0
VkResult vkEnumeratePhysicalDevices(
 VkInstance instance,
 uint32_t* pPhysicalDeviceCount,
 VkPhysicalDevice* pPhysicalDevices);

• instance is a handle to a Vulkan instance previously created with vkCreateInstance.

• pPhysicalDeviceCount is a pointer to an integer related to the number of physical devices
available or queried, as described below.

• pPhysicalDevices is either NULL or a pointer to an array of VkPhysicalDevice handles.

If pPhysicalDevices is NULL, then the number of physical devices available is returned in
pPhysicalDeviceCount. Otherwise, pPhysicalDeviceCount must point to a variable set by the user to
the number of elements in the pPhysicalDevices array, and on return the variable is overwritten
with the number of handles actually written to pPhysicalDevices. If pPhysicalDeviceCount is less
than the number of physical devices available, at most pPhysicalDeviceCount structures will be
written, and VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the
available physical devices were returned.

Valid Usage (Implicit)

• VUID-vkEnumeratePhysicalDevices-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkEnumeratePhysicalDevices-pPhysicalDeviceCount-parameter

57

pPhysicalDeviceCount must be a valid pointer to a uint32_t value

• VUID-vkEnumeratePhysicalDevices-pPhysicalDevices-parameter
If the value referenced by pPhysicalDeviceCount is not 0, and pPhysicalDevices is not NULL,
pPhysicalDevices must be a valid pointer to an array of pPhysicalDeviceCount
VkPhysicalDevice handles

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

To query general properties of physical devices once enumerated, call:

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceProperties(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceProperties* pProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pProperties is a pointer to a VkPhysicalDeviceProperties structure in which properties are
returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceProperties-pProperties-parameter
pProperties must be a valid pointer to a VkPhysicalDeviceProperties structure

The VkPhysicalDeviceProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPhysicalDeviceProperties {
 uint32_t apiVersion;
 uint32_t driverVersion;
 uint32_t vendorID;

58

 uint32_t deviceID;
 VkPhysicalDeviceType deviceType;
 char deviceName[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
 uint8_t pipelineCacheUUID[VK_UUID_SIZE];
 VkPhysicalDeviceLimits limits;
 VkPhysicalDeviceSparseProperties sparseProperties;
} VkPhysicalDeviceProperties;

• apiVersion is the version of Vulkan supported by the device, encoded as described in Version
Numbers.

• driverVersion is the vendor-specified version of the driver.

• vendorID is a unique identifier for the vendor (see below) of the physical device.

• deviceID is a unique identifier for the physical device among devices available from the vendor.

• deviceType is a VkPhysicalDeviceType specifying the type of device.

• deviceName is an array of VK_MAX_PHYSICAL_DEVICE_NAME_SIZE char containing a null-terminated
UTF-8 string which is the name of the device.

• pipelineCacheUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the device.

• limits is the VkPhysicalDeviceLimits structure specifying device-specific limits of the physical
device. See Limits for details.

• sparseProperties is the VkPhysicalDeviceSparseProperties structure specifying various sparse
related properties of the physical device. See Sparse Properties for details.

Note

The value of apiVersion may be different than the version returned by
vkEnumerateInstanceVersion; either higher or lower. In such cases, the
application must not use functionality that exceeds the version of Vulkan
associated with a given object. The pApiVersion parameter returned by
vkEnumerateInstanceVersion is the version associated with a VkInstance and its
children, except for a VkPhysicalDevice and its children.
VkPhysicalDeviceProperties::apiVersion is the version associated with a
VkPhysicalDevice and its children.

Note

The encoding of driverVersion is implementation-defined. It may not use the same
encoding as apiVersion. Applications should follow information from the vendor
on how to extract the version information from driverVersion.

On implementations that claim support for the Roadmap 2022 profile, the major and minor version
expressed by apiVersion must be at least Vulkan 1.3.

The vendorID and deviceID fields are provided to allow applications to adapt to device
characteristics that are not adequately exposed by other Vulkan queries.

59

Note

These may include performance profiles, hardware errata, or other
characteristics.

The vendor identified by vendorID is the entity responsible for the most salient characteristics of the
underlying implementation of the VkPhysicalDevice being queried.

Note

For example, in the case of a discrete GPU implementation, this should be the GPU
chipset vendor. In the case of a hardware accelerator integrated into a system-on-
chip (SoC), this should be the supplier of the silicon IP used to create the
accelerator.

If the vendor has a PCI vendor ID, the low 16 bits of vendorID must contain that PCI vendor ID, and
the remaining bits must be set to zero. Otherwise, the value returned must be a valid Khronos
vendor ID, obtained as described in the Vulkan Documentation and Extensions: Procedures and
Conventions document in the section “Registering a Vendor ID with Khronos”. Khronos vendor IDs
are allocated starting at 0x10000, to distinguish them from the PCI vendor ID namespace. Khronos
vendor IDs are symbolically defined in the VkVendorId type.

The vendor is also responsible for the value returned in deviceID. If the implementation is driven
primarily by a PCI device with a PCI device ID, the low 16 bits of deviceID must contain that PCI
device ID, and the remaining bits must be set to zero. Otherwise, the choice of what values to
return may be dictated by operating system or platform policies - but should uniquely identify
both the device version and any major configuration options (for example, core count in the case of
multicore devices).

Note

The same device ID should be used for all physical implementations of that device
version and configuration. For example, all uses of a specific silicon IP GPU version
and configuration should use the same device ID, even if those uses occur in
different SoCs.

Khronos vendor IDs which may be returned in VkPhysicalDeviceProperties::vendorID are:

// Provided by VK_VERSION_1_0
typedef enum VkVendorId {
 VK_VENDOR_ID_VIV = 0x10001,
 VK_VENDOR_ID_VSI = 0x10002,
 VK_VENDOR_ID_KAZAN = 0x10003,
 VK_VENDOR_ID_CODEPLAY = 0x10004,
 VK_VENDOR_ID_MESA = 0x10005,
 VK_VENDOR_ID_POCL = 0x10006,
 VK_VENDOR_ID_MOBILEYE = 0x10007,
} VkVendorId;

60

https://pcisig.com/membership/member-companies
https://pcisig.com/
https://pcisig.com/

Note

Khronos vendor IDs may be allocated by vendors at any time. Only the latest
canonical versions of this Specification, of the corresponding vk.xml API Registry,
and of the corresponding vulkan_core.h header file must contain all reserved
Khronos vendor IDs.

Only Khronos vendor IDs are given symbolic names at present. PCI vendor IDs
returned by the implementation can be looked up in the PCI-SIG database.

VK_MAX_PHYSICAL_DEVICE_NAME_SIZE is the length in char values of an array containing a physical
device name string, as returned in VkPhysicalDeviceProperties::deviceName.

#define VK_MAX_PHYSICAL_DEVICE_NAME_SIZE 256U

The physical device types which may be returned in VkPhysicalDeviceProperties::deviceType are:

// Provided by VK_VERSION_1_0
typedef enum VkPhysicalDeviceType {
 VK_PHYSICAL_DEVICE_TYPE_OTHER = 0,
 VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU = 1,
 VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU = 2,
 VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU = 3,
 VK_PHYSICAL_DEVICE_TYPE_CPU = 4,
} VkPhysicalDeviceType;

• VK_PHYSICAL_DEVICE_TYPE_OTHER - the device does not match any other available types.

• VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU - the device is typically one embedded in or tightly
coupled with the host.

• VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU - the device is typically a separate processor connected to
the host via an interlink.

• VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU - the device is typically a virtual node in a virtualization
environment.

• VK_PHYSICAL_DEVICE_TYPE_CPU - the device is typically running on the same processors as the host.

The physical device type is advertised for informational purposes only, and does not directly affect
the operation of the system. However, the device type may correlate with other advertised
properties or capabilities of the system, such as how many memory heaps there are.

To query general properties of physical devices once enumerated, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceProperties2(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceProperties2* pProperties);

61

• physicalDevice is the handle to the physical device whose properties will be queried.

• pProperties is a pointer to a VkPhysicalDeviceProperties2 structure in which properties are
returned.

Each structure in pProperties and its pNext chain contains members corresponding to
implementation-dependent properties, behaviors, or limits. vkGetPhysicalDeviceProperties2 fills in
each member to specify the corresponding value for the implementation.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceProperties2-pProperties-parameter
pProperties must be a valid pointer to a VkPhysicalDeviceProperties2 structure

The VkPhysicalDeviceProperties2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceProperties2 {
 VkStructureType sType;
 void* pNext;
 VkPhysicalDeviceProperties properties;
} VkPhysicalDeviceProperties2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• properties is a VkPhysicalDeviceProperties structure describing properties of the physical
device. This structure is written with the same values as if it were written by
vkGetPhysicalDeviceProperties.

The pNext chain of this structure is used to extend the structure with properties defined by
extensions.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2

• VUID-VkPhysicalDeviceProperties2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkPhysicalDeviceDepthStencilResolveProperties,
VkPhysicalDeviceDescriptorIndexingProperties, VkPhysicalDeviceDriverProperties,
VkPhysicalDeviceFloatControlsProperties, VkPhysicalDeviceIDProperties,
VkPhysicalDeviceInlineUniformBlockProperties,
VkPhysicalDeviceMaintenance3Properties, VkPhysicalDeviceMaintenance4Properties,

62

VkPhysicalDeviceMultiviewProperties, VkPhysicalDevicePointClippingProperties,
VkPhysicalDeviceProtectedMemoryProperties,
VkPhysicalDeviceSamplerFilterMinmaxProperties,
VkPhysicalDeviceShaderIntegerDotProductProperties,
VkPhysicalDeviceSubgroupProperties, VkPhysicalDeviceSubgroupSizeControlProperties,
VkPhysicalDeviceTexelBufferAlignmentProperties,
VkPhysicalDeviceTimelineSemaphoreProperties, VkPhysicalDeviceVulkan11Properties,
VkPhysicalDeviceVulkan12Properties, or VkPhysicalDeviceVulkan13Properties

• VUID-VkPhysicalDeviceProperties2-sType-unique
The sType value of each struct in the pNext chain must be unique

The VkPhysicalDeviceVulkan11Properties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkan11Properties {
 VkStructureType sType;
 void* pNext;
 uint8_t deviceUUID[VK_UUID_SIZE];
 uint8_t driverUUID[VK_UUID_SIZE];
 uint8_t deviceLUID[VK_LUID_SIZE];
 uint32_t deviceNodeMask;
 VkBool32 deviceLUIDValid;
 uint32_t subgroupSize;
 VkShaderStageFlags subgroupSupportedStages;
 VkSubgroupFeatureFlags subgroupSupportedOperations;
 VkBool32 subgroupQuadOperationsInAllStages;
 VkPointClippingBehavior pointClippingBehavior;
 uint32_t maxMultiviewViewCount;
 uint32_t maxMultiviewInstanceIndex;
 VkBool32 protectedNoFault;
 uint32_t maxPerSetDescriptors;
 VkDeviceSize maxMemoryAllocationSize;
} VkPhysicalDeviceVulkan11Properties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the device.

• driverUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the driver build in use by the device.

• deviceLUID is an array of VK_LUID_SIZE uint8_t values representing a locally unique identifier for
the device.

• deviceNodeMask is a uint32_t bitfield identifying the node within a linked device adapter
corresponding to the device.

63

• deviceLUIDValid is a boolean value that will be VK_TRUE if deviceLUID contains a valid LUID and
deviceNodeMask contains a valid node mask, and VK_FALSE if they do not.

• subgroupSize is the default number of invocations in each subgroup. subgroupSize is at least 1 if
any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT.
subgroupSize is a power-of-two.

• subgroupSupportedStages is a bitfield of VkShaderStageFlagBits describing the shader stages that
group operations with subgroup scope are supported in. subgroupSupportedStages will have the
VK_SHADER_STAGE_COMPUTE_BIT bit set if any of the physical device’s queues support
VK_QUEUE_COMPUTE_BIT.

• subgroupSupportedOperations is a bitmask of VkSubgroupFeatureFlagBits specifying the sets of
group operations with subgroup scope supported on this device. subgroupSupportedOperations
will have the VK_SUBGROUP_FEATURE_BASIC_BIT bit set if any of the physical device’s queues
support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT.

• subgroupQuadOperationsInAllStages is a boolean specifying whether quad group operations are
available in all stages, or are restricted to fragment and compute stages.

• pointClippingBehavior is a VkPointClippingBehavior value specifying the point clipping
behavior supported by the implementation.

• maxMultiviewViewCount is one greater than the maximum view index that can be used in a
subpass.

• maxMultiviewInstanceIndex is the maximum valid value of instance index allowed to be
generated by a drawing command recorded within a subpass of a multiview render pass
instance.

• protectedNoFault specifies how an implementation behaves when an application attempts to
write to unprotected memory in a protected queue operation, read from protected memory in
an unprotected queue operation, or perform a query in a protected queue operation. If this limit
is VK_TRUE, such writes will be discarded or have undefined values written, reads and queries
will return undefined values. If this limit is VK_FALSE, applications must not perform these
operations. See Protected Memory Access Rules for more information.

• maxPerSetDescriptors is a maximum number of descriptors (summed over all descriptor types)
in a single descriptor set that is guaranteed to satisfy any implementation-dependent
constraints on the size of a descriptor set itself. Applications can query whether a descriptor set
that goes beyond this limit is supported using vkGetDescriptorSetLayoutSupport.

• maxMemoryAllocationSize is the maximum size of a memory allocation that can be created, even
if there is more space available in the heap.

If the VkPhysicalDeviceVulkan11Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These properties correspond to Vulkan 1.1 functionality.

The members of VkPhysicalDeviceVulkan11Properties have the same values as the corresponding
members of VkPhysicalDeviceIDProperties, VkPhysicalDeviceSubgroupProperties,
VkPhysicalDevicePointClippingProperties, VkPhysicalDeviceMultiviewProperties,

64

VkPhysicalDeviceProtectedMemoryProperties, and VkPhysicalDeviceMaintenance3Properties.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan11Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES

The VkPhysicalDeviceVulkan12Properties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkan12Properties {
 VkStructureType sType;
 void* pNext;
 VkDriverId driverID;
 char driverName[VK_MAX_DRIVER_NAME_SIZE];
 char driverInfo[VK_MAX_DRIVER_INFO_SIZE];
 VkConformanceVersion conformanceVersion;
 VkShaderFloatControlsIndependence denormBehaviorIndependence;
 VkShaderFloatControlsIndependence roundingModeIndependence;
 VkBool32 shaderSignedZeroInfNanPreserveFloat16;
 VkBool32 shaderSignedZeroInfNanPreserveFloat32;
 VkBool32 shaderSignedZeroInfNanPreserveFloat64;
 VkBool32 shaderDenormPreserveFloat16;
 VkBool32 shaderDenormPreserveFloat32;
 VkBool32 shaderDenormPreserveFloat64;
 VkBool32 shaderDenormFlushToZeroFloat16;
 VkBool32 shaderDenormFlushToZeroFloat32;
 VkBool32 shaderDenormFlushToZeroFloat64;
 VkBool32 shaderRoundingModeRTEFloat16;
 VkBool32 shaderRoundingModeRTEFloat32;
 VkBool32 shaderRoundingModeRTEFloat64;
 VkBool32 shaderRoundingModeRTZFloat16;
 VkBool32 shaderRoundingModeRTZFloat32;
 VkBool32 shaderRoundingModeRTZFloat64;
 uint32_t maxUpdateAfterBindDescriptorsInAllPools;
 VkBool32
shaderUniformBufferArrayNonUniformIndexingNative;
 VkBool32
shaderSampledImageArrayNonUniformIndexingNative;
 VkBool32
shaderStorageBufferArrayNonUniformIndexingNative;
 VkBool32
shaderStorageImageArrayNonUniformIndexingNative;
 VkBool32
shaderInputAttachmentArrayNonUniformIndexingNative;
 VkBool32 robustBufferAccessUpdateAfterBind;
 VkBool32 quadDivergentImplicitLod;
 uint32_t maxPerStageDescriptorUpdateAfterBindSamplers;
 uint32_t

65

maxPerStageDescriptorUpdateAfterBindUniformBuffers;
 uint32_t
maxPerStageDescriptorUpdateAfterBindStorageBuffers;
 uint32_t
maxPerStageDescriptorUpdateAfterBindSampledImages;
 uint32_t
maxPerStageDescriptorUpdateAfterBindStorageImages;
 uint32_t
maxPerStageDescriptorUpdateAfterBindInputAttachments;
 uint32_t maxPerStageUpdateAfterBindResources;
 uint32_t maxDescriptorSetUpdateAfterBindSamplers;
 uint32_t
maxDescriptorSetUpdateAfterBindUniformBuffers;
 uint32_t
maxDescriptorSetUpdateAfterBindUniformBuffersDynamic;
 uint32_t
maxDescriptorSetUpdateAfterBindStorageBuffers;
 uint32_t
maxDescriptorSetUpdateAfterBindStorageBuffersDynamic;
 uint32_t maxDescriptorSetUpdateAfterBindSampledImages;
 uint32_t maxDescriptorSetUpdateAfterBindStorageImages;
 uint32_t
maxDescriptorSetUpdateAfterBindInputAttachments;
 VkResolveModeFlags supportedDepthResolveModes;
 VkResolveModeFlags supportedStencilResolveModes;
 VkBool32 independentResolveNone;
 VkBool32 independentResolve;
 VkBool32 filterMinmaxSingleComponentFormats;
 VkBool32 filterMinmaxImageComponentMapping;
 uint64_t maxTimelineSemaphoreValueDifference;
 VkSampleCountFlags framebufferIntegerColorSampleCounts;
} VkPhysicalDeviceVulkan12Properties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• driverID is a unique identifier for the driver of the physical device.

• driverName is an array of VK_MAX_DRIVER_NAME_SIZE char containing a null-terminated UTF-8 string
which is the name of the driver.

• driverInfo is an array of VK_MAX_DRIVER_INFO_SIZE char containing a null-terminated UTF-8 string
with additional information about the driver.

• conformanceVersion is the latest version of the Vulkan conformance test that the implementor
has successfully tested this driver against prior to release (see VkConformanceVersion).

• denormBehaviorIndependence is a VkShaderFloatControlsIndependence value indicating whether,
and how, denorm behavior can be set independently for different bit widths.

• roundingModeIndependence is a VkShaderFloatControlsIndependence value indicating whether,
and how, rounding modes can be set independently for different bit widths.

66

• shaderSignedZeroInfNanPreserveFloat16 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 16-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 16-bit floating-point types.

• shaderSignedZeroInfNanPreserveFloat32 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 32-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 32-bit floating-point types.

• shaderSignedZeroInfNanPreserveFloat64 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 64-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 64-bit floating-point types.

• shaderDenormPreserveFloat16 is a boolean value indicating whether denormals can be preserved
in 16-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 16-bit floating-point types.

• shaderDenormPreserveFloat32 is a boolean value indicating whether denormals can be preserved
in 32-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 32-bit floating-point types.

• shaderDenormPreserveFloat64 is a boolean value indicating whether denormals can be preserved
in 64-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 64-bit floating-point types.

• shaderDenormFlushToZeroFloat16 is a boolean value indicating whether denormals can be flushed
to zero in 16-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 16-bit floating-point types.

• shaderDenormFlushToZeroFloat32 is a boolean value indicating whether denormals can be flushed
to zero in 32-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 32-bit floating-point types.

• shaderDenormFlushToZeroFloat64 is a boolean value indicating whether denormals can be flushed
to zero in 64-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 64-bit floating-point types.

• shaderRoundingModeRTEFloat16 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 16-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 16-bit floating-point types.

• shaderRoundingModeRTEFloat32 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 32-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 32-bit floating-point types.

• shaderRoundingModeRTEFloat64 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 64-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 64-bit floating-point types.

• shaderRoundingModeRTZFloat16 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 16-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 16-bit floating-point types.

67

• shaderRoundingModeRTZFloat32 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 32-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 32-bit floating-point types.

• shaderRoundingModeRTZFloat64 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 64-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 64-bit floating-point types.

• maxUpdateAfterBindDescriptorsInAllPools is the maximum number of descriptors (summed over
all descriptor types) that can be created across all pools that are created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT bit set. Pool creation may fail when this limit
is exceeded, or when the space this limit represents is unable to satisfy a pool creation due to
fragmentation.

• shaderUniformBufferArrayNonUniformIndexingNative is a boolean value indicating whether
uniform buffer descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of uniform
buffers may execute multiple times in order to access all the descriptors.

• shaderSampledImageArrayNonUniformIndexingNative is a boolean value indicating whether
sampler and image descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of samplers or
images may execute multiple times in order to access all the descriptors.

• shaderStorageBufferArrayNonUniformIndexingNative is a boolean value indicating whether
storage buffer descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of storage buffers
may execute multiple times in order to access all the descriptors.

• shaderStorageImageArrayNonUniformIndexingNative is a boolean value indicating whether storage
image descriptors natively support nonuniform indexing. If this is VK_FALSE, then a single
dynamic instance of an instruction that nonuniformly indexes an array of storage images may
execute multiple times in order to access all the descriptors.

• shaderInputAttachmentArrayNonUniformIndexingNative is a boolean value indicating whether
input attachment descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of input
attachments may execute multiple times in order to access all the descriptors.

• robustBufferAccessUpdateAfterBind is a boolean value indicating whether robustBufferAccess
can be enabled on a device simultaneously with
descriptorBindingUniformBufferUpdateAfterBind, descriptorBindingStorageBufferUpdateAfterBind,
descriptorBindingUniformTexelBufferUpdateAfterBind, and/or
descriptorBindingStorageTexelBufferUpdateAfterBind. If this is VK_FALSE, then either
robustBufferAccess must be disabled or all of these update-after-bind features must be disabled.

• quadDivergentImplicitLod is a boolean value indicating whether implicit LOD calculations for
image operations have well-defined results when the image and/or sampler objects used for the
instruction are not uniform within a quad. See Derivative Image Operations.

• maxPerStageDescriptorUpdateAfterBindSamplers is similar to maxPerStageDescriptorSamplers but
counts descriptors from descriptor sets created with or without the

68

VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindUniformBuffers is similar to
maxPerStageDescriptorUniformBuffers but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindStorageBuffers is similar to
maxPerStageDescriptorStorageBuffers but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindSampledImages is similar to
maxPerStageDescriptorSampledImages but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindStorageImages is similar to
maxPerStageDescriptorStorageImages but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindInputAttachments is similar to
maxPerStageDescriptorInputAttachments but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageUpdateAfterBindResources is similar to maxPerStageResources but counts descriptors
from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindSamplers is similar to maxDescriptorSetSamplers but counts
descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindUniformBuffers is similar to maxDescriptorSetUniformBuffers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindUniformBuffersDynamic is similar to
maxDescriptorSetUniformBuffersDynamic but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set. While an
application can allocate dynamic uniform buffer descriptors from a pool created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT, bindings for these descriptors
must not be present in any descriptor set layout that includes bindings created with
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT.

• maxDescriptorSetUpdateAfterBindStorageBuffers is similar to maxDescriptorSetStorageBuffers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindStorageBuffersDynamic is similar to
maxDescriptorSetStorageBuffersDynamic but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set. While an
application can allocate dynamic storage buffer descriptors from a pool created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT, bindings for these descriptors
must not be present in any descriptor set layout that includes bindings created with
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT.

• maxDescriptorSetUpdateAfterBindSampledImages is similar to maxDescriptorSetSampledImages but

69

counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindStorageImages is similar to maxDescriptorSetStorageImages but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindInputAttachments is similar to maxDescriptorSetInputAttachments
but counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• supportedDepthResolveModes is a bitmask of VkResolveModeFlagBits indicating the set of
supported depth resolve modes. VK_RESOLVE_MODE_SAMPLE_ZERO_BIT must be included in the set
but implementations may support additional modes.

• supportedStencilResolveModes is a bitmask of VkResolveModeFlagBits indicating the set of
supported stencil resolve modes. VK_RESOLVE_MODE_SAMPLE_ZERO_BIT must be included in the set
but implementations may support additional modes. VK_RESOLVE_MODE_AVERAGE_BIT must not be
included in the set.

• independentResolveNone is VK_TRUE if the implementation supports setting the depth and stencil
resolve modes to different values when one of those modes is VK_RESOLVE_MODE_NONE. Otherwise
the implementation only supports setting both modes to the same value.

• independentResolve is VK_TRUE if the implementation supports all combinations of the supported
depth and stencil resolve modes, including setting either depth or stencil resolve mode to
VK_RESOLVE_MODE_NONE. An implementation that supports independentResolve must also support
independentResolveNone.

• filterMinmaxSingleComponentFormats is a boolean value indicating whether a minimum set of
required formats support min/max filtering.

• filterMinmaxImageComponentMapping is a boolean value indicating whether the implementation
supports non-identity component mapping of the image when doing min/max filtering.

• maxTimelineSemaphoreValueDifference indicates the maximum difference allowed by the
implementation between the current value of a timeline semaphore and any pending signal or
wait operations.

• framebufferIntegerColorSampleCounts is a bitmask of VkSampleCountFlagBits indicating the color
sample counts that are supported for all framebuffer color attachments with integer formats.

If the VkPhysicalDeviceVulkan12Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These properties correspond to Vulkan 1.2 functionality.

The members of VkPhysicalDeviceVulkan12Properties must have the same values as the
corresponding members of VkPhysicalDeviceDriverProperties,
VkPhysicalDeviceFloatControlsProperties, VkPhysicalDeviceDescriptorIndexingProperties,
VkPhysicalDeviceDepthStencilResolveProperties,
VkPhysicalDeviceSamplerFilterMinmaxProperties, and
VkPhysicalDeviceTimelineSemaphoreProperties.

70

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan12Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES

The VkPhysicalDeviceVulkan13Properties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceVulkan13Properties {
 VkStructureType sType;
 void* pNext;
 uint32_t minSubgroupSize;
 uint32_t maxSubgroupSize;
 uint32_t maxComputeWorkgroupSubgroups;
 VkShaderStageFlags requiredSubgroupSizeStages;
 uint32_t maxInlineUniformBlockSize;
 uint32_t maxPerStageDescriptorInlineUniformBlocks;
 uint32_t maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks;
 uint32_t maxDescriptorSetInlineUniformBlocks;
 uint32_t maxDescriptorSetUpdateAfterBindInlineUniformBlocks;
 uint32_t maxInlineUniformTotalSize;
 VkBool32 integerDotProduct8BitUnsignedAccelerated;
 VkBool32 integerDotProduct8BitSignedAccelerated;
 VkBool32 integerDotProduct8BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct4x8BitPackedUnsignedAccelerated;
 VkBool32 integerDotProduct4x8BitPackedSignedAccelerated;
 VkBool32 integerDotProduct4x8BitPackedMixedSignednessAccelerated;
 VkBool32 integerDotProduct16BitUnsignedAccelerated;
 VkBool32 integerDotProduct16BitSignedAccelerated;
 VkBool32 integerDotProduct16BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct32BitUnsignedAccelerated;
 VkBool32 integerDotProduct32BitSignedAccelerated;
 VkBool32 integerDotProduct32BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct64BitUnsignedAccelerated;
 VkBool32 integerDotProduct64BitSignedAccelerated;
 VkBool32 integerDotProduct64BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating8BitUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating8BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated;
 VkBool32

71

integerDotProductAccumulatingSaturating16BitUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating16BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating64BitUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating64BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated;
 VkDeviceSize storageTexelBufferOffsetAlignmentBytes;
 VkBool32 storageTexelBufferOffsetSingleTexelAlignment;
 VkDeviceSize uniformTexelBufferOffsetAlignmentBytes;
 VkBool32 uniformTexelBufferOffsetSingleTexelAlignment;
 VkDeviceSize maxBufferSize;
} VkPhysicalDeviceVulkan13Properties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minSubgroupSize is the minimum subgroup size supported by this device. minSubgroupSize is at
least one if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT. minSubgroupSize is a power-of-two. minSubgroupSize is less than or equal to
maxSubgroupSize. minSubgroupSize is less than or equal to subgroupSize.

• maxSubgroupSize is the maximum subgroup size supported by this device. maxSubgroupSize is at
least one if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT. maxSubgroupSize is a power-of-two. maxSubgroupSize is greater than or
equal to minSubgroupSize. maxSubgroupSize is greater than or equal to subgroupSize.

• maxComputeWorkgroupSubgroups is the maximum number of subgroups supported by the
implementation within a workgroup.

• requiredSubgroupSizeStages is a bitfield of what shader stages support having a required
subgroup size specified.

• maxInlineUniformBlockSize is the maximum size in bytes of an inline uniform block binding.

• maxPerStageDescriptorInlineUniformBlocks is the maximum number of inline uniform block
bindings that can be accessible to a single shader stage in a pipeline layout. Descriptor bindings
with a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit. Only
descriptor bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

• maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks is similar to

72

maxPerStageDescriptorInlineUniformBlocks but counts descriptor bindings from descriptor sets
created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetInlineUniformBlocks is the maximum number of inline uniform block bindings
that can be included in descriptor bindings in a pipeline layout across all pipeline shader stages
and descriptor set numbers. Descriptor bindings with a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit. Only descriptor bindings in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

• maxDescriptorSetUpdateAfterBindInlineUniformBlocks is similar to
maxDescriptorSetInlineUniformBlocks but counts descriptor bindings from descriptor sets
created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxInlineUniformTotalSize is the maximum total size in bytes of all inline uniform block
bindings, across all pipeline shader stages and descriptor set numbers, that can be included in a
pipeline layout. Descriptor bindings with a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit.

• integerDotProduct8BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for 8-
bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct8BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 8-bit
signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as defined
below.

• integerDotProduct8BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the support
for 8-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V instruction is
accelerated as defined below.

• integerDotProduct4x8BitPackedUnsignedAccelerated is a boolean that will be VK_TRUE if the
support for 8-bit unsigned dot product operations from operands packed into 32-bit integers
using the OpUDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct4x8BitPackedSignedAccelerated is a boolean that will be VK_TRUE if the support
for 8-bit signed dot product operations from operands packed into 32-bit integers using the
OpSDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct4x8BitPackedMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 8-bit mixed signedness dot product operations from operands packed into 32-bit
integers using the OpSUDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct16BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
16-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct16BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 16-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct16BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 16-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProduct32BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for

73

32-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct32BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 32-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct32BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 32-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProduct64BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
64-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct64BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 64-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct64BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 64-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 8-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitSignedAccelerated is a boolean that will be VK_TRUE
if the support for 8-bit signed accumulating saturating dot product operations using the
OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 8-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated is a boolean that will
be VK_TRUE if the support for 8-bit unsigned accumulating saturating dot product operations
from operands packed into 32-bit integers using the OpUDotAccSatKHR SPIR-V instruction is
accelerated as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated is a boolean that will be
VK_TRUE if the support for 8-bit signed accumulating saturating dot product operations from
operands packed into 32-bit integers using the OpSDotAccSatKHR SPIR-V instruction is accelerated
as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated is a boolean
that will be VK_TRUE if the support for 8-bit mixed signedness accumulating saturating dot
product operations from operands packed into 32-bit integers using the OpSUDotAccSatKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 16-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 16-bit signed accumulating saturating dot product operations using

74

the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 16-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 32-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 32-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 32-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 64-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 64-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 64-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• storageTexelBufferOffsetAlignmentBytes is a byte alignment that is sufficient for a storage texel
buffer of any format. The value must be a power of two.

• storageTexelBufferOffsetSingleTexelAlignment indicates whether single texel alignment is
sufficient for a storage texel buffer of any format.

• uniformTexelBufferOffsetAlignmentBytes is a byte alignment that is sufficient for a uniform texel
buffer of any format. The value must be a power of two.

• uniformTexelBufferOffsetSingleTexelAlignment indicates whether single texel alignment is
sufficient for a uniform texel buffer of any format.

• maxBufferSize is the maximum size VkBuffer that can be created.

If the VkPhysicalDeviceVulkan13Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These properties correspond to Vulkan 1.3 functionality.

The members of VkPhysicalDeviceVulkan13Properties must have the same values as the
corresponding members of VkPhysicalDeviceInlineUniformBlockProperties and
VkPhysicalDeviceSubgroupSizeControlProperties.

75

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan13Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES

The VkPhysicalDeviceIDProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceIDProperties {
 VkStructureType sType;
 void* pNext;
 uint8_t deviceUUID[VK_UUID_SIZE];
 uint8_t driverUUID[VK_UUID_SIZE];
 uint8_t deviceLUID[VK_LUID_SIZE];
 uint32_t deviceNodeMask;
 VkBool32 deviceLUIDValid;
} VkPhysicalDeviceIDProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the device.

• driverUUID is an array of VK_UUID_SIZE uint8_t values representing a universally unique
identifier for the driver build in use by the device.

• deviceLUID is an array of VK_LUID_SIZE uint8_t values representing a locally unique identifier for
the device.

• deviceNodeMask is a uint32_t bitfield identifying the node within a linked device adapter
corresponding to the device.

• deviceLUIDValid is a boolean value that will be VK_TRUE if deviceLUID contains a valid LUID and
deviceNodeMask contains a valid node mask, and VK_FALSE if they do not.

If the VkPhysicalDeviceIDProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

deviceUUID must be immutable for a given device across instances, processes, driver APIs, driver
versions, and system reboots.

Applications can compare the driverUUID value across instance and process boundaries, and can
make similar queries in external APIs to determine whether they are capable of sharing memory
objects and resources using them with the device.

deviceUUID and/or driverUUID must be used to determine whether a particular external object can
be shared between driver components, where such a restriction exists as defined in the
compatibility table for the particular object type:

76

• External memory handle types compatibility

• External semaphore handle types compatibility

• External fence handle types compatibility

If deviceLUIDValid is VK_FALSE, the values of deviceLUID and deviceNodeMask are undefined. If
deviceLUIDValid is VK_TRUE and Vulkan is running on the Windows operating system, the contents of
deviceLUID can be cast to an LUID object and must be equal to the locally unique identifier of a
IDXGIAdapter1 object that corresponds to physicalDevice. If deviceLUIDValid is VK_TRUE,
deviceNodeMask must contain exactly one bit. If Vulkan is running on an operating system that
supports the Direct3D 12 API and physicalDevice corresponds to an individual device in a linked
device adapter, deviceNodeMask identifies the Direct3D 12 node corresponding to physicalDevice.
Otherwise, deviceNodeMask must be 1.

Note

Although they have identical descriptions, VkPhysicalDeviceIDProperties
::deviceUUID may differ from VkPhysicalDeviceProperties2::pipelineCacheUUID. The
former is intended to identify and correlate devices across API and driver
boundaries, while the latter is used to identify a compatible device and driver
combination to use when serializing and de-serializing pipeline state.

Implementations should return deviceUUID values which are likely to be unique
even in the presence of multiple Vulkan implementations (such as a GPU driver
and a software renderer; two drivers for different GPUs; or the same Vulkan
driver running on two logically different devices).

Khronos' conformance testing is unable to guarantee that deviceUUID values are
actually unique, so implementors should make their own best efforts to ensure
this. In particular, hard-coded deviceUUID values, especially all-0 bits, should never
be used.

A combination of values unique to the vendor, the driver, and the hardware
environment can be used to provide a deviceUUID which is unique to a high degree
of certainty. Some possible inputs to such a computation are:

• Information reported by vkGetPhysicalDeviceProperties

• PCI device ID (if defined)

• PCI bus ID, or similar system configuration information.

• Driver binary checksums.

Note

While VkPhysicalDeviceIDProperties::deviceUUID is specified to remain consistent
across driver versions and system reboots, it is not intended to be usable as a
serializable persistent identifier for a device. It may change when a device is
physically added to, removed from, or moved to a different connector in a system
while that system is powered down. Further, there is no reasonable way to verify
with conformance testing that a given device retains the same UUID in a given

77

system across all driver versions supported in that system. While implementations
should make every effort to report consistent device UUIDs across driver versions,
applications should avoid relying on the persistence of this value for uses other
than identifying compatible devices for external object sharing purposes.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceIDProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES

VK_UUID_SIZE is the length in uint8_t values of an array containing a universally unique device or
driver build identifier, as returned in VkPhysicalDeviceIDProperties::deviceUUID and
VkPhysicalDeviceIDProperties::driverUUID.

#define VK_UUID_SIZE 16U

VK_LUID_SIZE is the length in uint8_t values of an array containing a locally unique device identifier,
as returned in VkPhysicalDeviceIDProperties::deviceLUID.

#define VK_LUID_SIZE 8U

The VkPhysicalDeviceDriverProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceDriverProperties {
 VkStructureType sType;
 void* pNext;
 VkDriverId driverID;
 char driverName[VK_MAX_DRIVER_NAME_SIZE];
 char driverInfo[VK_MAX_DRIVER_INFO_SIZE];
 VkConformanceVersion conformanceVersion;
} VkPhysicalDeviceDriverProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• driverID is a unique identifier for the driver of the physical device.

• driverName is an array of VK_MAX_DRIVER_NAME_SIZE char containing a null-terminated UTF-8 string
which is the name of the driver.

• driverInfo is an array of VK_MAX_DRIVER_INFO_SIZE char containing a null-terminated UTF-8 string
with additional information about the driver.

• conformanceVersion is the latest version of the Vulkan conformance test that the implementor
has successfully tested this driver against prior to release (see VkConformanceVersion).

78

If the VkPhysicalDeviceDriverProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

These are properties of the driver corresponding to a physical device.

driverID must be immutable for a given driver across instances, processes, driver versions, and
system reboots.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDriverProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES

Khronos driver IDs which may be returned in VkPhysicalDeviceDriverProperties::driverID are:

// Provided by VK_VERSION_1_2
typedef enum VkDriverId {
 VK_DRIVER_ID_AMD_PROPRIETARY = 1,
 VK_DRIVER_ID_AMD_OPEN_SOURCE = 2,
 VK_DRIVER_ID_MESA_RADV = 3,
 VK_DRIVER_ID_NVIDIA_PROPRIETARY = 4,
 VK_DRIVER_ID_INTEL_PROPRIETARY_WINDOWS = 5,
 VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA = 6,
 VK_DRIVER_ID_IMAGINATION_PROPRIETARY = 7,
 VK_DRIVER_ID_QUALCOMM_PROPRIETARY = 8,
 VK_DRIVER_ID_ARM_PROPRIETARY = 9,
 VK_DRIVER_ID_GOOGLE_SWIFTSHADER = 10,
 VK_DRIVER_ID_GGP_PROPRIETARY = 11,
 VK_DRIVER_ID_BROADCOM_PROPRIETARY = 12,
 VK_DRIVER_ID_MESA_LLVMPIPE = 13,
 VK_DRIVER_ID_MOLTENVK = 14,
 VK_DRIVER_ID_COREAVI_PROPRIETARY = 15,
 VK_DRIVER_ID_JUICE_PROPRIETARY = 16,
 VK_DRIVER_ID_VERISILICON_PROPRIETARY = 17,
 VK_DRIVER_ID_MESA_TURNIP = 18,
 VK_DRIVER_ID_MESA_V3DV = 19,
 VK_DRIVER_ID_MESA_PANVK = 20,
 VK_DRIVER_ID_SAMSUNG_PROPRIETARY = 21,
 VK_DRIVER_ID_MESA_VENUS = 22,
 VK_DRIVER_ID_MESA_DOZEN = 23,
 VK_DRIVER_ID_MESA_NVK = 24,
 VK_DRIVER_ID_IMAGINATION_OPEN_SOURCE_MESA = 25,
 VK_DRIVER_ID_MESA_AGXV = 26,
} VkDriverId;

Note

Khronos driver IDs may be allocated by vendors at any time. There may be

79

multiple driver IDs for the same vendor, representing different drivers (for e.g.
different platforms, proprietary or open source, etc.). Only the latest canonical
versions of this Specification, of the corresponding vk.xml API Registry, and of the
corresponding vulkan_core.h header file must contain all reserved Khronos driver
IDs.

Only driver IDs registered with Khronos are given symbolic names. There may be
unregistered driver IDs returned.

VK_MAX_DRIVER_NAME_SIZE is the length in char values of an array containing a driver name string, as
returned in VkPhysicalDeviceDriverProperties::driverName.

#define VK_MAX_DRIVER_NAME_SIZE 256U

VK_MAX_DRIVER_INFO_SIZE is the length in char values of an array containing a driver information
string, as returned in VkPhysicalDeviceDriverProperties::driverInfo.

#define VK_MAX_DRIVER_INFO_SIZE 256U

The conformance test suite version an implementation is compliant with is described with the
VkConformanceVersion structure:

// Provided by VK_VERSION_1_2
typedef struct VkConformanceVersion {
 uint8_t major;
 uint8_t minor;
 uint8_t subminor;
 uint8_t patch;
} VkConformanceVersion;

• major is the major version number of the conformance test suite.

• minor is the minor version number of the conformance test suite.

• subminor is the subminor version number of the conformance test suite.

• patch is the patch version number of the conformance test suite.

The VkPhysicalDeviceShaderIntegerDotProductProperties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceShaderIntegerDotProductProperties {
 VkStructureType sType;
 void* pNext;
 VkBool32 integerDotProduct8BitUnsignedAccelerated;
 VkBool32 integerDotProduct8BitSignedAccelerated;
 VkBool32 integerDotProduct8BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct4x8BitPackedUnsignedAccelerated;

80

 VkBool32 integerDotProduct4x8BitPackedSignedAccelerated;
 VkBool32 integerDotProduct4x8BitPackedMixedSignednessAccelerated;
 VkBool32 integerDotProduct16BitUnsignedAccelerated;
 VkBool32 integerDotProduct16BitSignedAccelerated;
 VkBool32 integerDotProduct16BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct32BitUnsignedAccelerated;
 VkBool32 integerDotProduct32BitSignedAccelerated;
 VkBool32 integerDotProduct32BitMixedSignednessAccelerated;
 VkBool32 integerDotProduct64BitUnsignedAccelerated;
 VkBool32 integerDotProduct64BitSignedAccelerated;
 VkBool32 integerDotProduct64BitMixedSignednessAccelerated;
 VkBool32 integerDotProductAccumulatingSaturating8BitUnsignedAccelerated;
 VkBool32 integerDotProductAccumulatingSaturating8BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating16BitUnsignedAccelerated;
 VkBool32 integerDotProductAccumulatingSaturating16BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitUnsignedAccelerated;
 VkBool32 integerDotProductAccumulatingSaturating32BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating64BitUnsignedAccelerated;
 VkBool32 integerDotProductAccumulatingSaturating64BitSignedAccelerated;
 VkBool32
integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated;
} VkPhysicalDeviceShaderIntegerDotProductProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• integerDotProduct8BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for 8-
bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct8BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 8-bit
signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as defined
below.

• integerDotProduct8BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the support
for 8-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V instruction is

81

accelerated as defined below.

• integerDotProduct4x8BitPackedUnsignedAccelerated is a boolean that will be VK_TRUE if the
support for 8-bit unsigned dot product operations from operands packed into 32-bit integers
using the OpUDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct4x8BitPackedSignedAccelerated is a boolean that will be VK_TRUE if the support
for 8-bit signed dot product operations from operands packed into 32-bit integers using the
OpSDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct4x8BitPackedMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 8-bit mixed signedness dot product operations from operands packed into 32-bit
integers using the OpSUDotKHR SPIR-V instruction is accelerated as defined below.

• integerDotProduct16BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
16-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct16BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 16-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct16BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 16-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProduct32BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
32-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct32BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 32-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct32BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 32-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProduct64BitUnsignedAccelerated is a boolean that will be VK_TRUE if the support for
64-bit unsigned dot product operations using the OpUDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct64BitSignedAccelerated is a boolean that will be VK_TRUE if the support for 64-
bit signed dot product operations using the OpSDotKHR SPIR-V instruction is accelerated as
defined below.

• integerDotProduct64BitMixedSignednessAccelerated is a boolean that will be VK_TRUE if the
support for 64-bit mixed signedness dot product operations using the OpSUDotKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 8-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitSignedAccelerated is a boolean that will be VK_TRUE
if the support for 8-bit signed accumulating saturating dot product operations using the

82

OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 8-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated is a boolean that will
be VK_TRUE if the support for 8-bit unsigned accumulating saturating dot product operations
from operands packed into 32-bit integers using the OpUDotAccSatKHR SPIR-V instruction is
accelerated as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated is a boolean that will be
VK_TRUE if the support for 8-bit signed accumulating saturating dot product operations from
operands packed into 32-bit integers using the OpSDotAccSatKHR SPIR-V instruction is accelerated
as defined below.

• integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated is a boolean
that will be VK_TRUE if the support for 8-bit mixed signedness accumulating saturating dot
product operations from operands packed into 32-bit integers using the OpSUDotAccSatKHR SPIR-V
instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 16-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 16-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 16-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 32-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 32-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 32-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitUnsignedAccelerated is a boolean that will be
VK_TRUE if the support for 64-bit unsigned accumulating saturating dot product operations using
the OpUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitSignedAccelerated is a boolean that will be
VK_TRUE if the support for 64-bit signed accumulating saturating dot product operations using
the OpSDotAccSatKHR SPIR-V instruction is accelerated as defined below.

• integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated is a boolean that will
be VK_TRUE if the support for 64-bit mixed signedness accumulating saturating dot product
operations using the OpSUDotAccSatKHR SPIR-V instruction is accelerated as defined below.

83

If the VkPhysicalDeviceShaderIntegerDotProductProperties structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

These are properties of the integer dot product acceleration information of a physical device.

Note

A dot product operation is deemed accelerated if its implementation provides a
performance advantage over application-provided code composed from
elementary instructions and/or other dot product instructions, either because the
implementation uses optimized machine code sequences whose generation from
application-provided code cannot be guaranteed or because it uses hardware
features that cannot otherwise be targeted from application-provided code.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderIntegerDotProductProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES

To query properties of queues available on a physical device, call:

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceQueueFamilyProperties(
 VkPhysicalDevice physicalDevice,
 uint32_t* pQueueFamilyPropertyCount,
 VkQueueFamilyProperties* pQueueFamilyProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pQueueFamilyPropertyCount is a pointer to an integer related to the number of queue families
available or queried, as described below.

• pQueueFamilyProperties is either NULL or a pointer to an array of VkQueueFamilyProperties
structures.

If pQueueFamilyProperties is NULL, then the number of queue families available is returned in
pQueueFamilyPropertyCount. Implementations must support at least one queue family. Otherwise,
pQueueFamilyPropertyCount must point to a variable set by the user to the number of elements in the
pQueueFamilyProperties array, and on return the variable is overwritten with the number of
structures actually written to pQueueFamilyProperties. If pQueueFamilyPropertyCount is less than the
number of queue families available, at most pQueueFamilyPropertyCount structures will be written.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceQueueFamilyProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceQueueFamilyProperties-pQueueFamilyPropertyCount-

84

parameter
pQueueFamilyPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceQueueFamilyProperties-pQueueFamilyProperties-parameter
If the value referenced by pQueueFamilyPropertyCount is not 0, and pQueueFamilyProperties
is not NULL, pQueueFamilyProperties must be a valid pointer to an array of
pQueueFamilyPropertyCount VkQueueFamilyProperties structures

The VkQueueFamilyProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkQueueFamilyProperties {
 VkQueueFlags queueFlags;
 uint32_t queueCount;
 uint32_t timestampValidBits;
 VkExtent3D minImageTransferGranularity;
} VkQueueFamilyProperties;

• queueFlags is a bitmask of VkQueueFlagBits indicating capabilities of the queues in this queue
family.

• queueCount is the unsigned integer count of queues in this queue family. Each queue family must
support at least one queue.

• timestampValidBits is the unsigned integer count of meaningful bits in the timestamps written
via vkCmdWriteTimestamp2 or vkCmdWriteTimestamp. The valid range for the count is 36 to
64 bits, or a value of 0, indicating no support for timestamps. Bits outside the valid range are
guaranteed to be zeros.

• minImageTransferGranularity is the minimum granularity supported for image transfer
operations on the queues in this queue family.

The value returned in minImageTransferGranularity has a unit of compressed texel blocks for images
having a block-compressed format, and a unit of texels otherwise.

Possible values of minImageTransferGranularity are:

• (0,0,0) specifies that only whole mip levels must be transferred using the image transfer
operations on the corresponding queues. In this case, the following restrictions apply to all
offset and extent parameters of image transfer operations:

◦ The x, y, and z members of a VkOffset3D parameter must always be zero.

◦ The width, height, and depth members of a VkExtent3D parameter must always match the
width, height, and depth of the image subresource corresponding to the parameter,
respectively.

• (Ax, Ay, Az) where Ax, Ay, and Az are all integer powers of two. In this case the following
restrictions apply to all image transfer operations:

◦ x, y, and z of a VkOffset3D parameter must be integer multiples of Ax, Ay, and Az,
respectively.

85

◦ width of a VkExtent3D parameter must be an integer multiple of Ax, or else x + width must
equal the width of the image subresource corresponding to the parameter.

◦ height of a VkExtent3D parameter must be an integer multiple of Ay, or else y + height must
equal the height of the image subresource corresponding to the parameter.

◦ depth of a VkExtent3D parameter must be an integer multiple of Az, or else z + depth must
equal the depth of the image subresource corresponding to the parameter.

◦ If the format of the image corresponding to the parameters is one of the block-compressed
formats then for the purposes of the above calculations the granularity must be scaled up
by the compressed texel block dimensions.

Queues supporting graphics and/or compute operations must report (1,1,1) in
minImageTransferGranularity, meaning that there are no additional restrictions on the granularity of
image transfer operations for these queues. Other queues supporting image transfer operations are
only required to support whole mip level transfers, thus minImageTransferGranularity for queues
belonging to such queue families may be (0,0,0).

The Device Memory section describes memory properties queried from the physical device.

For physical device feature queries see the Features chapter.

Bits which may be set in VkQueueFamilyProperties::queueFlags, indicating capabilities of queues in
a queue family are:

// Provided by VK_VERSION_1_0
typedef enum VkQueueFlagBits {
 VK_QUEUE_GRAPHICS_BIT = 0x00000001,
 VK_QUEUE_COMPUTE_BIT = 0x00000002,
 VK_QUEUE_TRANSFER_BIT = 0x00000004,
 VK_QUEUE_SPARSE_BINDING_BIT = 0x00000008,
 // Provided by VK_VERSION_1_1
 VK_QUEUE_PROTECTED_BIT = 0x00000010,
} VkQueueFlagBits;

• VK_QUEUE_GRAPHICS_BIT specifies that queues in this queue family support graphics operations.

• VK_QUEUE_COMPUTE_BIT specifies that queues in this queue family support compute operations.

• VK_QUEUE_TRANSFER_BIT specifies that queues in this queue family support transfer operations.

• VK_QUEUE_SPARSE_BINDING_BIT specifies that queues in this queue family support sparse memory
management operations (see Sparse Resources). If any of the sparse resource features are
enabled, then at least one queue family must support this bit.

• VK_QUEUE_PROTECTED_BIT specifies that queues in this queue family support the
VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT bit. (see Protected Memory). If the physical device
supports the protectedMemory feature, at least one of its queue families must support this bit.

If an implementation exposes any queue family that supports graphics operations, at least one
queue family of at least one physical device exposed by the implementation must support both
graphics and compute operations.

86

Furthermore, if the protectedMemory physical device feature is supported, then at least one queue
family of at least one physical device exposed by the implementation must support graphics
operations, compute operations, and protected memory operations.

Note

All commands that are allowed on a queue that supports transfer operations are
also allowed on a queue that supports either graphics or compute operations.
Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability
separately for that queue family is optional.

For further details see Queues.

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueueFlags;

VkQueueFlags is a bitmask type for setting a mask of zero or more VkQueueFlagBits.

To query properties of queues available on a physical device, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceQueueFamilyProperties2(
 VkPhysicalDevice physicalDevice,
 uint32_t* pQueueFamilyPropertyCount,
 VkQueueFamilyProperties2* pQueueFamilyProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pQueueFamilyPropertyCount is a pointer to an integer related to the number of queue families
available or queried, as described in vkGetPhysicalDeviceQueueFamilyProperties.

• pQueueFamilyProperties is either NULL or a pointer to an array of VkQueueFamilyProperties2
structures.

vkGetPhysicalDeviceQueueFamilyProperties2 behaves similarly to
vkGetPhysicalDeviceQueueFamilyProperties, with the ability to return extended information in a
pNext chain of output structures.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceQueueFamilyProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceQueueFamilyProperties2-pQueueFamilyPropertyCount-
parameter
pQueueFamilyPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceQueueFamilyProperties2-pQueueFamilyProperties-parameter
If the value referenced by pQueueFamilyPropertyCount is not 0, and pQueueFamilyProperties

87

is not NULL, pQueueFamilyProperties must be a valid pointer to an array of
pQueueFamilyPropertyCount VkQueueFamilyProperties2 structures

The VkQueueFamilyProperties2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkQueueFamilyProperties2 {
 VkStructureType sType;
 void* pNext;
 VkQueueFamilyProperties queueFamilyProperties;
} VkQueueFamilyProperties2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• queueFamilyProperties is a VkQueueFamilyProperties structure which is populated with the
same values as in vkGetPhysicalDeviceQueueFamilyProperties.

Valid Usage (Implicit)

• VUID-VkQueueFamilyProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2

• VUID-VkQueueFamilyProperties2-pNext-pNext
pNext must be NULL

5.2. Devices
Device objects represent logical connections to physical devices. Each device exposes a number of
queue families each having one or more queues. All queues in a queue family support the same
operations.

As described in Physical Devices, a Vulkan application will first query for all physical devices in a
system. Each physical device can then be queried for its capabilities, including its queue and queue
family properties. Once an acceptable physical device is identified, an application will create a
corresponding logical device. The created logical device is then the primary interface to the
physical device.

How to enumerate the physical devices in a system and query those physical devices for their
queue family properties is described in the Physical Device Enumeration section above.

A single logical device can be created from multiple physical devices, if those physical devices
belong to the same device group. A device group is a set of physical devices that support accessing
each other’s memory and recording a single command buffer that can be executed on all the
physical devices. Device groups are enumerated by calling vkEnumeratePhysicalDeviceGroups, and
a logical device is created from a subset of the physical devices in a device group by passing the
physical devices through VkDeviceGroupDeviceCreateInfo. For two physical devices to be in the

88

same device group, they must support identical extensions, features, and properties.

Note

Physical devices in the same device group must be so similar because there are no
rules for how different features/properties would interact. They must return the
same values for nearly every invariant vkGetPhysicalDevice* feature, property,
capability, etc., but could potentially differ for certain queries based on things like
having a different display connected, or a different compositor. The specification
does not attempt to enumerate which state is in each category, because such a list
would quickly become out of date.

To retrieve a list of the device groups present in the system, call:

// Provided by VK_VERSION_1_1
VkResult vkEnumeratePhysicalDeviceGroups(
 VkInstance instance,
 uint32_t* pPhysicalDeviceGroupCount,
 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties);

• instance is a handle to a Vulkan instance previously created with vkCreateInstance.

• pPhysicalDeviceGroupCount is a pointer to an integer related to the number of device groups
available or queried, as described below.

• pPhysicalDeviceGroupProperties is either NULL or a pointer to an array of
VkPhysicalDeviceGroupProperties structures.

If pPhysicalDeviceGroupProperties is NULL, then the number of device groups available is returned in
pPhysicalDeviceGroupCount. Otherwise, pPhysicalDeviceGroupCount must point to a variable set by the
user to the number of elements in the pPhysicalDeviceGroupProperties array, and on return the
variable is overwritten with the number of structures actually written to
pPhysicalDeviceGroupProperties. If pPhysicalDeviceGroupCount is less than the number of device
groups available, at most pPhysicalDeviceGroupCount structures will be written, and VK_INCOMPLETE
will be returned instead of VK_SUCCESS, to indicate that not all the available device groups were
returned.

Every physical device must be in exactly one device group.

Valid Usage (Implicit)

• VUID-vkEnumeratePhysicalDeviceGroups-instance-parameter
instance must be a valid VkInstance handle

• VUID-vkEnumeratePhysicalDeviceGroups-pPhysicalDeviceGroupCount-parameter
pPhysicalDeviceGroupCount must be a valid pointer to a uint32_t value

• VUID-vkEnumeratePhysicalDeviceGroups-pPhysicalDeviceGroupProperties-parameter
If the value referenced by pPhysicalDeviceGroupCount is not 0, and
pPhysicalDeviceGroupProperties is not NULL, pPhysicalDeviceGroupProperties must be a

89

valid pointer to an array of pPhysicalDeviceGroupCount VkPhysicalDeviceGroupProperties
structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

The VkPhysicalDeviceGroupProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceGroupProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t physicalDeviceCount;
 VkPhysicalDevice physicalDevices[VK_MAX_DEVICE_GROUP_SIZE];
 VkBool32 subsetAllocation;
} VkPhysicalDeviceGroupProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• physicalDeviceCount is the number of physical devices in the group.

• physicalDevices is an array of VK_MAX_DEVICE_GROUP_SIZE VkPhysicalDevice handles representing
all physical devices in the group. The first physicalDeviceCount elements of the array will be
valid.

• subsetAllocation specifies whether logical devices created from the group support allocating
device memory on a subset of devices, via the deviceMask member of the
VkMemoryAllocateFlagsInfo. If this is VK_FALSE, then all device memory allocations are made
across all physical devices in the group. If physicalDeviceCount is 1, then subsetAllocation must
be VK_FALSE.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceGroupProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES

• VUID-VkPhysicalDeviceGroupProperties-pNext-pNext

90

pNext must be NULL

VK_MAX_DEVICE_GROUP_SIZE is the length of an array containing VkPhysicalDevice handle values
representing all physical devices in a group, as returned in VkPhysicalDeviceGroupProperties
::physicalDevices.

#define VK_MAX_DEVICE_GROUP_SIZE 32U

5.2.1. Device Creation

Logical devices are represented by VkDevice handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkDevice)

A logical device is created as a connection to a physical device. To create a logical device, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateDevice(
 VkPhysicalDevice physicalDevice,
 const VkDeviceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDevice* pDevice);

• physicalDevice must be one of the device handles returned from a call to
vkEnumeratePhysicalDevices (see Physical Device Enumeration).

• pCreateInfo is a pointer to a VkDeviceCreateInfo structure containing information about how to
create the device.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDevice is a pointer to a handle in which the created VkDevice is returned.

vkCreateDevice verifies that extensions and features requested in the ppEnabledExtensionNames and
pEnabledFeatures members of pCreateInfo, respectively, are supported by the implementation. If any
requested extension is not supported, vkCreateDevice must return VK_ERROR_EXTENSION_NOT_PRESENT.
If any requested feature is not supported, vkCreateDevice must return
VK_ERROR_FEATURE_NOT_PRESENT. Support for extensions can be checked before creating a device by
querying vkEnumerateDeviceExtensionProperties. Support for features can similarly be checked
by querying vkGetPhysicalDeviceFeatures.

After verifying and enabling the extensions the VkDevice object is created and returned to the
application.

Multiple logical devices can be created from the same physical device. Logical device creation may
fail due to lack of device-specific resources (in addition to other errors). If that occurs,

91

vkCreateDevice will return VK_ERROR_TOO_MANY_OBJECTS.

Valid Usage

• VUID-vkCreateDevice-ppEnabledExtensionNames-01387
All required device extensions for each extension in the VkDeviceCreateInfo
::ppEnabledExtensionNames list must also be present in that list

Valid Usage (Implicit)

• VUID-vkCreateDevice-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkCreateDevice-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDeviceCreateInfo structure

• VUID-vkCreateDevice-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDevice-pDevice-parameter
pDevice must be a valid pointer to a VkDevice handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_EXTENSION_NOT_PRESENT

• VK_ERROR_FEATURE_NOT_PRESENT

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_DEVICE_LOST

The VkDeviceCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDeviceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDeviceCreateFlags flags;

92

 uint32_t queueCreateInfoCount;
 const VkDeviceQueueCreateInfo* pQueueCreateInfos;
 uint32_t enabledLayerCount;
 const char* const* ppEnabledLayerNames;
 uint32_t enabledExtensionCount;
 const char* const* ppEnabledExtensionNames;
 const VkPhysicalDeviceFeatures* pEnabledFeatures;
} VkDeviceCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• queueCreateInfoCount is the unsigned integer size of the pQueueCreateInfos array. Refer to the
Queue Creation section below for further details.

• pQueueCreateInfos is a pointer to an array of VkDeviceQueueCreateInfo structures describing the
queues that are requested to be created along with the logical device. Refer to the Queue
Creation section below for further details.

• enabledLayerCount is deprecated and ignored.

• ppEnabledLayerNames is deprecated and ignored. See Device Layer Deprecation.

• enabledExtensionCount is the number of device extensions to enable.

• ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8
strings containing the names of extensions to enable for the created device. See the Extensions
section for further details.

• pEnabledFeatures is NULL or a pointer to a VkPhysicalDeviceFeatures structure containing
boolean indicators of all the features to be enabled. Refer to the Features section for further
details.

Valid Usage

• VUID-VkDeviceCreateInfo-queueFamilyIndex-02802
The queueFamilyIndex member of each element of pQueueCreateInfos must be unique
within pQueueCreateInfos , except that two members can share the same queueFamilyIndex
if one describes protected-capable queues and one describes queues that are not
protected-capable

• VUID-VkDeviceCreateInfo-pQueueCreateInfos-06755
If multiple elements of pQueueCreateInfos share the same queueFamilyIndex, the sum of
their queueCount members must be less than or equal to the queueCount member of the
VkQueueFamilyProperties structure, as returned by
vkGetPhysicalDeviceQueueFamilyProperties in the
pQueueFamilyProperties[queueFamilyIndex]

• VUID-VkDeviceCreateInfo-pNext-00373
If the pNext chain includes a VkPhysicalDeviceFeatures2 structure, then pEnabledFeatures
must be NULL

93

• VUID-VkDeviceCreateInfo-pNext-02829
If the pNext chain includes a VkPhysicalDeviceVulkan11Features structure, then it must
not include a VkPhysicalDevice16BitStorageFeatures,
VkPhysicalDeviceMultiviewFeatures, VkPhysicalDeviceVariablePointersFeatures,
VkPhysicalDeviceProtectedMemoryFeatures,
VkPhysicalDeviceSamplerYcbcrConversionFeatures, or
VkPhysicalDeviceShaderDrawParametersFeatures structure

• VUID-VkDeviceCreateInfo-pNext-02830
If the pNext chain includes a VkPhysicalDeviceVulkan12Features structure, then it must
not include a VkPhysicalDevice8BitStorageFeatures,
VkPhysicalDeviceShaderAtomicInt64Features,
VkPhysicalDeviceShaderFloat16Int8Features,
VkPhysicalDeviceDescriptorIndexingFeatures,
VkPhysicalDeviceScalarBlockLayoutFeatures,
VkPhysicalDeviceImagelessFramebufferFeatures,
VkPhysicalDeviceUniformBufferStandardLayoutFeatures,
VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures,
VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures,
VkPhysicalDeviceHostQueryResetFeatures,
VkPhysicalDeviceTimelineSemaphoreFeatures,
VkPhysicalDeviceBufferDeviceAddressFeatures, or
VkPhysicalDeviceVulkanMemoryModelFeatures structure

• VUID-VkDeviceCreateInfo-pNext-06532
If the pNext chain includes a VkPhysicalDeviceVulkan13Features structure, then it must
not include a VkPhysicalDeviceDynamicRenderingFeatures,
VkPhysicalDeviceImageRobustnessFeatures,
VkPhysicalDeviceInlineUniformBlockFeatures, VkPhysicalDeviceMaintenance4Features,
VkPhysicalDevicePipelineCreationCacheControlFeatures,
VkPhysicalDevicePrivateDataFeatures,
VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures,
VkPhysicalDeviceShaderIntegerDotProductFeatures,
VkPhysicalDeviceShaderTerminateInvocationFeatures,
VkPhysicalDeviceSubgroupSizeControlFeatures,
VkPhysicalDeviceSynchronization2Features,
VkPhysicalDeviceTextureCompressionASTCHDRFeatures, or
VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures structure

Valid Usage (Implicit)

• VUID-VkDeviceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO

• VUID-VkDeviceCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceGroupDeviceCreateInfo,
VkDevicePrivateDataCreateInfo, VkPhysicalDevice16BitStorageFeatures,

94

VkPhysicalDevice8BitStorageFeatures, VkPhysicalDeviceBufferDeviceAddressFeatures,
VkPhysicalDeviceDescriptorIndexingFeatures,
VkPhysicalDeviceDynamicRenderingFeatures, VkPhysicalDeviceFeatures2,
VkPhysicalDeviceHostQueryResetFeatures, VkPhysicalDeviceImageRobustnessFeatures,
VkPhysicalDeviceImagelessFramebufferFeatures,
VkPhysicalDeviceInlineUniformBlockFeatures, VkPhysicalDeviceMaintenance4Features,
VkPhysicalDeviceMultiviewFeatures,
VkPhysicalDevicePipelineCreationCacheControlFeatures,
VkPhysicalDevicePrivateDataFeatures, VkPhysicalDeviceProtectedMemoryFeatures,
VkPhysicalDeviceSamplerYcbcrConversionFeatures,
VkPhysicalDeviceScalarBlockLayoutFeatures,
VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures,
VkPhysicalDeviceShaderAtomicInt64Features,
VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures,
VkPhysicalDeviceShaderDrawParametersFeatures,
VkPhysicalDeviceShaderFloat16Int8Features,
VkPhysicalDeviceShaderIntegerDotProductFeatures,
VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures,
VkPhysicalDeviceShaderTerminateInvocationFeatures,
VkPhysicalDeviceSubgroupSizeControlFeatures,
VkPhysicalDeviceSynchronization2Features,
VkPhysicalDeviceTextureCompressionASTCHDRFeatures,
VkPhysicalDeviceTimelineSemaphoreFeatures,
VkPhysicalDeviceUniformBufferStandardLayoutFeatures,
VkPhysicalDeviceVariablePointersFeatures, VkPhysicalDeviceVulkan11Features,
VkPhysicalDeviceVulkan12Features, VkPhysicalDeviceVulkan13Features,
VkPhysicalDeviceVulkanMemoryModelFeatures, or
VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures

• VUID-VkDeviceCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique, with the exception of
structures of type VkDevicePrivateDataCreateInfo

• VUID-VkDeviceCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkDeviceCreateInfo-pQueueCreateInfos-parameter
pQueueCreateInfos must be a valid pointer to an array of queueCreateInfoCount valid
VkDeviceQueueCreateInfo structures

• VUID-VkDeviceCreateInfo-ppEnabledLayerNames-parameter
If enabledLayerCount is not 0, ppEnabledLayerNames must be a valid pointer to an array of
enabledLayerCount null-terminated UTF-8 strings

• VUID-VkDeviceCreateInfo-ppEnabledExtensionNames-parameter
If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a valid pointer to an
array of enabledExtensionCount null-terminated UTF-8 strings

• VUID-VkDeviceCreateInfo-pEnabledFeatures-parameter
If pEnabledFeatures is not NULL, pEnabledFeatures must be a valid pointer to a valid
VkPhysicalDeviceFeatures structure

95

• VUID-VkDeviceCreateInfo-queueCreateInfoCount-arraylength
queueCreateInfoCount must be greater than 0

// Provided by VK_VERSION_1_0
typedef VkFlags VkDeviceCreateFlags;

VkDeviceCreateFlags is a bitmask type for setting a mask, but is currently reserved for future use.

A logical device can be created that connects to one or more physical devices by adding a
VkDeviceGroupDeviceCreateInfo structure to the pNext chain of VkDeviceCreateInfo. The
VkDeviceGroupDeviceCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupDeviceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t physicalDeviceCount;
 const VkPhysicalDevice* pPhysicalDevices;
} VkDeviceGroupDeviceCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• physicalDeviceCount is the number of elements in the pPhysicalDevices array.

• pPhysicalDevices is a pointer to an array of physical device handles belonging to the same
device group.

The elements of the pPhysicalDevices array are an ordered list of the physical devices that the
logical device represents. These must be a subset of a single device group, and need not be in the
same order as they were enumerated. The order of the physical devices in the pPhysicalDevices
array determines the device index of each physical device, with element i being assigned a device
index of i. Certain commands and structures refer to one or more physical devices by using device
indices or device masks formed using device indices.

A logical device created without using VkDeviceGroupDeviceCreateInfo, or with physicalDeviceCount
equal to zero, is equivalent to a physicalDeviceCount of one and pPhysicalDevices pointing to the
physicalDevice parameter to vkCreateDevice. In particular, the device index of that physical device
is zero.

Valid Usage

• VUID-VkDeviceGroupDeviceCreateInfo-pPhysicalDevices-00375
Each element of pPhysicalDevices must be unique

• VUID-VkDeviceGroupDeviceCreateInfo-pPhysicalDevices-00376
All elements of pPhysicalDevices must be in the same device group as enumerated by

96

vkEnumeratePhysicalDeviceGroups

• VUID-VkDeviceGroupDeviceCreateInfo-physicalDeviceCount-00377
If physicalDeviceCount is not 0, the physicalDevice parameter of vkCreateDevice must be
an element of pPhysicalDevices

Valid Usage (Implicit)

• VUID-VkDeviceGroupDeviceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO

• VUID-VkDeviceGroupDeviceCreateInfo-pPhysicalDevices-parameter
If physicalDeviceCount is not 0, pPhysicalDevices must be a valid pointer to an array of
physicalDeviceCount valid VkPhysicalDevice handles

To reserve private data storage slots, add a VkDevicePrivateDataCreateInfo structure to the pNext
chain of the VkDeviceCreateInfo structure. Reserving slots in this manner is not strictly necessary,
but doing so may improve performance.

// Provided by VK_VERSION_1_3
typedef struct VkDevicePrivateDataCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t privateDataSlotRequestCount;
} VkDevicePrivateDataCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• privateDataSlotRequestCount is the amount of slots to reserve.

Valid Usage (Implicit)

• VUID-VkDevicePrivateDataCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_PRIVATE_DATA_CREATE_INFO

5.2.2. Device Use

The following is a high-level list of VkDevice uses along with references on where to find more
information:

• Creation of queues. See the Queues section below for further details.

• Creation and tracking of various synchronization constructs. See Synchronization and Cache
Control for further details.

• Allocating, freeing, and managing memory. See Memory Allocation and Resource Creation for

97

further details.

• Creation and destruction of command buffers and command buffer pools. See Command
Buffers for further details.

• Creation, destruction, and management of graphics state. See Pipelines and Resource
Descriptors, among others, for further details.

5.2.3. Lost Device

A logical device may become lost for a number of implementation-specific reasons, indicating that
pending and future command execution may fail and cause resources and backing memory to
become undefined.

Note

Typical reasons for device loss will include things like execution timing out (to
prevent denial of service), power management events, platform resource
management, implementation errors.

Applications not adhering to valid usage may also result in device loss being
reported, however this is not guaranteed. Even if device loss is reported, the
system may be in an unrecoverable state, and further usage of the API is still
considered invalid.

When this happens, certain commands will return VK_ERROR_DEVICE_LOST. After any such event, the
logical device is considered lost. It is not possible to reset the logical device to a non-lost state,
however the lost state is specific to a logical device (VkDevice), and the corresponding physical
device (VkPhysicalDevice) may be otherwise unaffected.

In some cases, the physical device may also be lost, and attempting to create a new logical device
will fail, returning VK_ERROR_DEVICE_LOST. This is usually indicative of a problem with the underlying
implementation, or its connection to the host. If the physical device has not been lost, and a new
logical device is successfully created from that physical device, it must be in the non-lost state.

Note

Whilst logical device loss may be recoverable, in the case of physical device loss, it
is unlikely that an application will be able to recover unless additional, unaffected
physical devices exist on the system. The error is largely informational and
intended only to inform the user that a platform issue has occurred, and should be
investigated further. For example, underlying hardware may have developed a
fault or become physically disconnected from the rest of the system. In many
cases, physical device loss may cause other more serious issues such as the
operating system crashing; in which case it may not be reported via the Vulkan
API.

When a device is lost, its child objects are not implicitly destroyed and their handles are still valid.
Those objects must still be destroyed before their parents or the device can be destroyed (see the
Object Lifetime section). The host address space corresponding to device memory mapped using
vkMapMemory is still valid, and host memory accesses to these mapped regions are still valid, but

98

the contents are undefined. It is still legal to call any API command on the device and child objects.

Once a device is lost, command execution may fail, and certain commands that return a VkResult
may return VK_ERROR_DEVICE_LOST. These commands can be identified by the inclusion of
VK_ERROR_DEVICE_LOST in the Return Codes section for each command. Commands that do not allow
runtime errors must still operate correctly for valid usage and, if applicable, return valid data.

Commands that wait indefinitely for device execution (namely vkDeviceWaitIdle, vkQueueWaitIdle,
vkWaitForFences with a maximum timeout, and vkGetQueryPoolResults with the
VK_QUERY_RESULT_WAIT_BIT bit set in flags) must return in finite time even in the case of a lost device,
and return either VK_SUCCESS or VK_ERROR_DEVICE_LOST. For any command that may return
VK_ERROR_DEVICE_LOST, for the purpose of determining whether a command buffer is in the pending
state, or whether resources are considered in-use by the device, a return value of
VK_ERROR_DEVICE_LOST is equivalent to VK_SUCCESS.

The content of any external memory objects that have been exported from or imported to a lost
device become undefined. Objects on other logical devices or in other APIs which are associated
with the same underlying memory resource as the external memory objects on the lost device are
unaffected other than their content becoming undefined. The layout of subresources of images on
other logical devices that are bound to VkDeviceMemory objects associated with the same underlying
memory resources as external memory objects on the lost device becomes
VK_IMAGE_LAYOUT_UNDEFINED.

The state of VkSemaphore objects on other logical devices created by importing a semaphore payload
with temporary permanence which was exported from the lost device is undefined. The state of
VkSemaphore objects on other logical devices that permanently share a semaphore payload with a
VkSemaphore object on the lost device is undefined, and remains undefined following any
subsequent signal operations. Implementations must ensure pending and subsequently submitted
wait operations on such semaphores behave as defined in Semaphore State Requirements For Wait
Operations for external semaphores not in a valid state for a wait operation.

5.2.4. Device Destruction

To destroy a device, call:

// Provided by VK_VERSION_1_0
void vkDestroyDevice(
 VkDevice device,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

To ensure that no work is active on the device, vkDeviceWaitIdle can be used to gate the
destruction of the device. Prior to destroying a device, an application is responsible for
destroying/freeing any Vulkan objects that were created using that device as the first parameter of
the corresponding vkCreate* or vkAllocate* command.

99

Note

The lifetime of each of these objects is bound by the lifetime of the VkDevice object.
Therefore, to avoid resource leaks, it is critical that an application explicitly free
all of these resources prior to calling vkDestroyDevice.

Valid Usage

• VUID-vkDestroyDevice-device-05137
All child objects created on device must have been destroyed prior to destroying device

• VUID-vkDestroyDevice-device-00379
If VkAllocationCallbacks were provided when device was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyDevice-device-00380
If no VkAllocationCallbacks were provided when device was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroyDevice-device-parameter
If device is not NULL, device must be a valid VkDevice handle

• VUID-vkDestroyDevice-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

Host Synchronization

• Host access to device must be externally synchronized

• Host access to all VkQueue objects created from device must be externally synchronized

5.3. Queues

5.3.1. Queue Family Properties

As discussed in the Physical Device Enumeration section above, the
vkGetPhysicalDeviceQueueFamilyProperties command is used to retrieve details about the queue
families and queues supported by a device.

Each index in the pQueueFamilyProperties array returned by
vkGetPhysicalDeviceQueueFamilyProperties describes a unique queue family on that physical
device. These indices are used when creating queues, and they correspond directly with the
queueFamilyIndex that is passed to the vkCreateDevice command via the VkDeviceQueueCreateInfo
structure as described in the Queue Creation section below.

100

Grouping of queue families within a physical device is implementation-dependent.

Note

The general expectation is that a physical device groups all queues of matching
capabilities into a single family. However, while implementations should do this, it
is possible that a physical device may return two separate queue families with the
same capabilities.

Once an application has identified a physical device with the queue(s) that it desires to use, it will
create those queues in conjunction with a logical device. This is described in the following section.

5.3.2. Queue Creation

Creating a logical device also creates the queues associated with that device. The queues to create
are described by a set of VkDeviceQueueCreateInfo structures that are passed to vkCreateDevice in
pQueueCreateInfos.

Queues are represented by VkQueue handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkQueue)

The VkDeviceQueueCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDeviceQueueCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDeviceQueueCreateFlags flags;
 uint32_t queueFamilyIndex;
 uint32_t queueCount;
 const float* pQueuePriorities;
} VkDeviceQueueCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask indicating behavior of the queues.

• queueFamilyIndex is an unsigned integer indicating the index of the queue family in which to
create the queues on this device. This index corresponds to the index of an element of the
pQueueFamilyProperties array that was returned by vkGetPhysicalDeviceQueueFamilyProperties.

• queueCount is an unsigned integer specifying the number of queues to create in the queue family
indicated by queueFamilyIndex, and with the behavior specified by flags.

• pQueuePriorities is a pointer to an array of queueCount normalized floating point values,
specifying priorities of work that will be submitted to each created queue. See Queue Priority
for more information.

101

Valid Usage

• VUID-VkDeviceQueueCreateInfo-queueFamilyIndex-00381
queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties

• VUID-VkDeviceQueueCreateInfo-queueCount-00382
queueCount must be less than or equal to the queueCount member of the
VkQueueFamilyProperties structure, as returned by
vkGetPhysicalDeviceQueueFamilyProperties in the
pQueueFamilyProperties[queueFamilyIndex]

• VUID-VkDeviceQueueCreateInfo-pQueuePriorities-00383
Each element of pQueuePriorities must be between 0.0 and 1.0 inclusive

• VUID-VkDeviceQueueCreateInfo-flags-02861
If the protectedMemory feature is not enabled, the VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT bit
of flags must not be set

• VUID-VkDeviceQueueCreateInfo-flags-06449
If flags includes VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT, queueFamilyIndex must be the
index of a queue family that includes the VK_QUEUE_PROTECTED_BIT capability

Valid Usage (Implicit)

• VUID-VkDeviceQueueCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO

• VUID-VkDeviceQueueCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkDeviceQueueCreateInfo-flags-parameter
flags must be a valid combination of VkDeviceQueueCreateFlagBits values

• VUID-VkDeviceQueueCreateInfo-pQueuePriorities-parameter
pQueuePriorities must be a valid pointer to an array of queueCount float values

• VUID-VkDeviceQueueCreateInfo-queueCount-arraylength
queueCount must be greater than 0

Bits which can be set in VkDeviceQueueCreateInfo::flags, specifying usage behavior of a queue,
are:

// Provided by VK_VERSION_1_1
typedef enum VkDeviceQueueCreateFlagBits {
 // Provided by VK_VERSION_1_1
 VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT = 0x00000001,
} VkDeviceQueueCreateFlagBits;

• VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT specifies that the device queue is a protected-capable

102

queue.

// Provided by VK_VERSION_1_0
typedef VkFlags VkDeviceQueueCreateFlags;

VkDeviceQueueCreateFlags is a bitmask type for setting a mask of zero or more
VkDeviceQueueCreateFlagBits.

To retrieve a handle to a VkQueue object, call:

// Provided by VK_VERSION_1_0
void vkGetDeviceQueue(
 VkDevice device,
 uint32_t queueFamilyIndex,
 uint32_t queueIndex,
 VkQueue* pQueue);

• device is the logical device that owns the queue.

• queueFamilyIndex is the index of the queue family to which the queue belongs.

• queueIndex is the index within this queue family of the queue to retrieve.

• pQueue is a pointer to a VkQueue object that will be filled with the handle for the requested
queue.

vkGetDeviceQueue must only be used to get queues that were created with the flags parameter of
VkDeviceQueueCreateInfo set to zero. To get queues that were created with a non-zero flags
parameter use vkGetDeviceQueue2.

Valid Usage

• VUID-vkGetDeviceQueue-queueFamilyIndex-00384
queueFamilyIndex must be one of the queue family indices specified when device was
created, via the VkDeviceQueueCreateInfo structure

• VUID-vkGetDeviceQueue-queueIndex-00385
queueIndex must be less than the value of VkDeviceQueueCreateInfo::queueCount for the
queue family indicated by queueFamilyIndex when device was created

• VUID-vkGetDeviceQueue-flags-01841
VkDeviceQueueCreateInfo::flags must have been set to zero when device was created

Valid Usage (Implicit)

• VUID-vkGetDeviceQueue-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceQueue-pQueue-parameter

103

pQueue must be a valid pointer to a VkQueue handle

To retrieve a handle to a VkQueue object with specific VkDeviceQueueCreateFlags creation flags,
call:

// Provided by VK_VERSION_1_1
void vkGetDeviceQueue2(
 VkDevice device,
 const VkDeviceQueueInfo2* pQueueInfo,
 VkQueue* pQueue);

• device is the logical device that owns the queue.

• pQueueInfo is a pointer to a VkDeviceQueueInfo2 structure, describing parameters of the device
queue to be retrieved.

• pQueue is a pointer to a VkQueue object that will be filled with the handle for the requested
queue.

Valid Usage (Implicit)

• VUID-vkGetDeviceQueue2-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceQueue2-pQueueInfo-parameter
pQueueInfo must be a valid pointer to a valid VkDeviceQueueInfo2 structure

• VUID-vkGetDeviceQueue2-pQueue-parameter
pQueue must be a valid pointer to a VkQueue handle

The VkDeviceQueueInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceQueueInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkDeviceQueueCreateFlags flags;
 uint32_t queueFamilyIndex;
 uint32_t queueIndex;
} VkDeviceQueueInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure. The pNext chain of
VkDeviceQueueInfo2 can be used to provide additional device queue parameters to
vkGetDeviceQueue2.

• flags is a VkDeviceQueueCreateFlags value indicating the flags used to create the device queue.

• queueFamilyIndex is the index of the queue family to which the queue belongs.

104

• queueIndex is the index of the queue to retrieve from within the set of queues that share both the
queue family and flags specified.

The queue returned by vkGetDeviceQueue2 must have the same flags value from this structure as
that used at device creation time in a VkDeviceQueueCreateInfo structure.

Note

Normally, if you create both protected-capable and non-protected-capable queues
with the same family, they are treated as separate lists of queues and queueIndex is
relative to the start of the list of queues specified by both queueFamilyIndex and
flags. However, for historical reasons, some implementations may exhibit
different behavior. These divergent implementations instead concatenate the lists
of queues and treat queueIndex as relative to the start of the first list of queues with
the given queueFamilyIndex. This only matters in cases where an application has
created both protected-capable and non-protected-capable queues from the same
queue family.

For such divergent implementations, the maximum value of queueIndex is equal to
the sum of VkDeviceQueueCreateInfo::queueCount minus one, for all
VkDeviceQueueCreateInfo structures that share a common queueFamilyIndex.

Such implementations will return NULL for either the protected or unprotected
queues when calling vkGetDeviceQueue2 with queueIndex in the range zero to
VkDeviceQueueCreateInfo::queueCount minus one. In cases where these
implementations returned NULL, the corresponding queues are instead located in
the extended range described in the preceding two paragraphs.

This behaviour will not be observed on any driver that has passed Vulkan
conformance test suite version 1.3.3.0, or any subsequent version. This
information can be found by querying VkPhysicalDeviceDriverProperties
::conformanceVersion.

Valid Usage

• VUID-VkDeviceQueueInfo2-queueFamilyIndex-01842
queueFamilyIndex must be one of the queue family indices specified when device was
created, via the VkDeviceQueueCreateInfo structure

• VUID-VkDeviceQueueInfo2-flags-06225
flags must be equal to VkDeviceQueueCreateInfo::flags for a VkDeviceQueueCreateInfo
structure for the queue family indicated by queueFamilyIndex when device was created

• VUID-VkDeviceQueueInfo2-queueIndex-01843
queueIndex must be less than VkDeviceQueueCreateInfo::queueCount for the corresponding
queue family and flags indicated by queueFamilyIndex and flags when device was created

105

Valid Usage (Implicit)

• VUID-VkDeviceQueueInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2

• VUID-VkDeviceQueueInfo2-pNext-pNext
pNext must be NULL

• VUID-VkDeviceQueueInfo2-flags-parameter
flags must be a valid combination of VkDeviceQueueCreateFlagBits values

5.3.3. Queue Family Index

The queue family index is used in multiple places in Vulkan in order to tie operations to a specific
family of queues.

When retrieving a handle to the queue via vkGetDeviceQueue, the queue family index is used to
select which queue family to retrieve the VkQueue handle from as described in the previous section.

When creating a VkCommandPool object (see Command Pools), a queue family index is specified in the
VkCommandPoolCreateInfo structure. Command buffers from this pool can only be submitted on
queues corresponding to this queue family.

When creating VkImage (see Images) and VkBuffer (see Buffers) resources, a set of queue families is
included in the VkImageCreateInfo and VkBufferCreateInfo structures to specify the queue families
that can access the resource.

When inserting a VkBufferMemoryBarrier or VkImageMemoryBarrier (see Pipeline Barriers), a
source and destination queue family index is specified to allow the ownership of a buffer or image
to be transferred from one queue family to another. See the Resource Sharing section for details.

5.3.4. Queue Priority

Each queue is assigned a priority, as set in the VkDeviceQueueCreateInfo structures when creating
the device. The priority of each queue is a normalized floating point value between 0.0 and 1.0,
which is then translated to a discrete priority level by the implementation. Higher values indicate a
higher priority, with 0.0 being the lowest priority and 1.0 being the highest.

Within the same device, queues with higher priority may be allotted more processing time than
queues with lower priority. The implementation makes no guarantees with regards to ordering or
scheduling among queues with the same priority, other than the constraints defined by any explicit
synchronization primitives. The implementation makes no guarantees with regards to queues
across different devices.

An implementation may allow a higher-priority queue to starve a lower-priority queue on the same
VkDevice until the higher-priority queue has no further commands to execute. The relationship of
queue priorities must not cause queues on one VkDevice to starve queues on another VkDevice.

No specific guarantees are made about higher priority queues receiving more processing time or

106

better quality of service than lower priority queues.

5.3.5. Queue Submission

Work is submitted to a queue via queue submission commands such as vkQueueSubmit2 or
vkQueueSubmit. Queue submission commands define a set of queue operations to be executed by
the underlying physical device, including synchronization with semaphores and fences.

Submission commands take as parameters a target queue, zero or more batches of work, and an
optional fence to signal upon completion. Each batch consists of three distinct parts:

1. Zero or more semaphores to wait on before execution of the rest of the batch.

◦ If present, these describe a semaphore wait operation.

2. Zero or more work items to execute.

◦ If present, these describe a queue operation matching the work described.

3. Zero or more semaphores to signal upon completion of the work items.

◦ If present, these describe a semaphore signal operation.

If a fence is present in a queue submission, it describes a fence signal operation.

All work described by a queue submission command must be submitted to the queue before the
command returns.

Sparse Memory Binding

In Vulkan it is possible to sparsely bind memory to buffers and images as described in the Sparse
Resource chapter. Sparse memory binding is a queue operation. A queue whose flags include the
VK_QUEUE_SPARSE_BINDING_BIT must be able to support the mapping of a virtual address to a physical
address on the device. This causes an update to the page table mappings on the device. This update
must be synchronized on a queue to avoid corrupting page table mappings during execution of
graphics commands. By binding the sparse memory resources on queues, all commands that are
dependent on the updated bindings are synchronized to only execute after the binding is updated.
See the Synchronization and Cache Control chapter for how this synchronization is accomplished.

5.3.6. Queue Destruction

Queues are created along with a logical device during vkCreateDevice. All queues associated with a
logical device are destroyed when vkDestroyDevice is called on that device.

107

Chapter 6. Command Buffers
Command buffers are objects used to record commands which can be subsequently submitted to a
device queue for execution. There are two levels of command buffers - primary command buffers,
which can execute secondary command buffers, and which are submitted to queues, and secondary
command buffers, which can be executed by primary command buffers, and which are not directly
submitted to queues.

Command buffers are represented by VkCommandBuffer handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_HANDLE(VkCommandBuffer)

Recorded commands include commands to bind pipelines and descriptor sets to the command
buffer, commands to modify dynamic state, commands to draw (for graphics rendering),
commands to dispatch (for compute), commands to execute secondary command buffers (for
primary command buffers only), commands to copy buffers and images, and other commands.

Each command buffer manages state independently of other command buffers. There is no
inheritance of state across primary and secondary command buffers, or between secondary
command buffers. When a command buffer begins recording, all state in that command buffer is
undefined. When secondary command buffer(s) are recorded to execute on a primary command
buffer, the secondary command buffer inherits no state from the primary command buffer, and all
state of the primary command buffer is undefined after an execute secondary command buffer
command is recorded. There is one exception to this rule - if the primary command buffer is inside
a render pass instance, then the render pass and subpass state is not disturbed by executing
secondary command buffers. For state dependent commands (such as draws and dispatches), any
state consumed by those commands must not be undefined.

Unless otherwise specified, and without explicit synchronization, the various commands submitted
to a queue via command buffers may execute in arbitrary order relative to each other, and/or
concurrently. Also, the memory side effects of those commands may not be directly visible to other
commands without explicit memory dependencies. This is true within a command buffer, and
across command buffers submitted to a given queue. See the synchronization chapter for
information on implicit and explicit synchronization between commands.

6.1. Command Buffer Lifecycle
Each command buffer is always in one of the following states:

Initial

When a command buffer is allocated, it is in the initial state. Some commands are able to reset a
command buffer (or a set of command buffers) back to this state from any of the executable,
recording or invalid state. Command buffers in the initial state can only be moved to the
recording state, or freed.

108

Recording

vkBeginCommandBuffer changes the state of a command buffer from the initial state to the
recording state. Once a command buffer is in the recording state, vkCmd* commands can be used
to record to the command buffer.

Executable

vkEndCommandBuffer ends the recording of a command buffer, and moves it from the
recording state to the executable state. Executable command buffers can be submitted, reset, or
recorded to another command buffer.

Pending

Queue submission of a command buffer changes the state of a command buffer from the
executable state to the pending state. Whilst in the pending state, applications must not attempt
to modify the command buffer in any way - as the device may be processing the commands
recorded to it. Once execution of a command buffer completes, the command buffer either
reverts back to the executable state, or if it was recorded with
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, it moves to the invalid state. A synchronization
command should be used to detect when this occurs.

Invalid

Some operations, such as modifying or deleting a resource that was used in a command
recorded to a command buffer, will transition the state of that command buffer into the invalid
state. Command buffers in the invalid state can only be reset or freed.

Initial

Recording

Pending Executable

Invalid

Allocate

Begin

End

Submission

Completion

Completion with
One Time Submit

Reset Reset

Invalidate

Figure 1. Lifecycle of a command buffer

Any given command that operates on a command buffer has its own requirements on what state a
command buffer must be in, which are detailed in the valid usage constraints for that command.

Resetting a command buffer is an operation that discards any previously recorded commands and
puts a command buffer in the initial state. Resetting occurs as a result of vkResetCommandBuffer or
vkResetCommandPool, or as part of vkBeginCommandBuffer (which additionally puts the
command buffer in the recording state).

Secondary command buffers can be recorded to a primary command buffer via

109

vkCmdExecuteCommands. This partially ties the lifecycle of the two command buffers together - if
the primary is submitted to a queue, both the primary and any secondaries recorded to it move to
the pending state. Once execution of the primary completes, so it does for any secondary recorded
within it. After all executions of each command buffer complete, they each move to their
appropriate completion state (either to the executable state or the invalid state, as specified above).

If a secondary moves to the invalid state or the initial state, then all primary buffers it is recorded in
move to the invalid state. A primary moving to any other state does not affect the state of a
secondary recorded in it.

Note

Resetting or freeing a primary command buffer removes the lifecycle linkage to all
secondary command buffers that were recorded into it.

6.2. Command Pools
Command pools are opaque objects that command buffer memory is allocated from, and which
allow the implementation to amortize the cost of resource creation across multiple command
buffers. Command pools are externally synchronized, meaning that a command pool must not be
used concurrently in multiple threads. That includes use via recording commands on any
command buffers allocated from the pool, as well as operations that allocate, free, and reset
command buffers or the pool itself.

Command pools are represented by VkCommandPool handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkCommandPool)

To create a command pool, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateCommandPool(
 VkDevice device,
 const VkCommandPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkCommandPool* pCommandPool);

• device is the logical device that creates the command pool.

• pCreateInfo is a pointer to a VkCommandPoolCreateInfo structure specifying the state of the
command pool object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pCommandPool is a pointer to a VkCommandPool handle in which the created pool is returned.

110

Valid Usage

• VUID-vkCreateCommandPool-queueFamilyIndex-01937
pCreateInfo->queueFamilyIndex must be the index of a queue family available in the
logical device device

Valid Usage (Implicit)

• VUID-vkCreateCommandPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateCommandPool-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkCommandPoolCreateInfo structure

• VUID-vkCreateCommandPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateCommandPool-pCommandPool-parameter
pCommandPool must be a valid pointer to a VkCommandPool handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandPoolCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkCommandPoolCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandPoolCreateFlags flags;
 uint32_t queueFamilyIndex;
} VkCommandPoolCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkCommandPoolCreateFlagBits indicating usage behavior for the pool and
command buffers allocated from it.

111

• queueFamilyIndex designates a queue family as described in section Queue Family Properties. All
command buffers allocated from this command pool must be submitted on queues from the
same queue family.

Valid Usage

• VUID-VkCommandPoolCreateInfo-flags-02860
If the protectedMemory feature is not enabled, the VK_COMMAND_POOL_CREATE_PROTECTED_BIT bit
of flags must not be set

Valid Usage (Implicit)

• VUID-VkCommandPoolCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO

• VUID-VkCommandPoolCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkCommandPoolCreateInfo-flags-parameter
flags must be a valid combination of VkCommandPoolCreateFlagBits values

Bits which can be set in VkCommandPoolCreateInfo::flags, specifying usage behavior for a
command pool, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandPoolCreateFlagBits {
 VK_COMMAND_POOL_CREATE_TRANSIENT_BIT = 0x00000001,
 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT = 0x00000002,
 // Provided by VK_VERSION_1_1
 VK_COMMAND_POOL_CREATE_PROTECTED_BIT = 0x00000004,
} VkCommandPoolCreateFlagBits;

• VK_COMMAND_POOL_CREATE_TRANSIENT_BIT specifies that command buffers allocated from the pool
will be short-lived, meaning that they will be reset or freed in a relatively short timeframe. This
flag may be used by the implementation to control memory allocation behavior within the pool.

• VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT allows any command buffer allocated from a
pool to be individually reset to the initial state; either by calling vkResetCommandBuffer, or via
the implicit reset when calling vkBeginCommandBuffer. If this flag is not set on a pool, then
vkResetCommandBuffer must not be called for any command buffer allocated from that pool.

• VK_COMMAND_POOL_CREATE_PROTECTED_BIT specifies that command buffers allocated from the pool
are protected command buffers.

// Provided by VK_VERSION_1_0
typedef VkFlags VkCommandPoolCreateFlags;

112

VkCommandPoolCreateFlags is a bitmask type for setting a mask of zero or more
VkCommandPoolCreateFlagBits.

To trim a command pool, call:

// Provided by VK_VERSION_1_1
void vkTrimCommandPool(
 VkDevice device,
 VkCommandPool commandPool,
 VkCommandPoolTrimFlags flags);

• device is the logical device that owns the command pool.

• commandPool is the command pool to trim.

• flags is reserved for future use.

Trimming a command pool recycles unused memory from the command pool back to the system.
Command buffers allocated from the pool are not affected by the command.

Note

This command provides applications with some control over the internal memory
allocations used by command pools.

Unused memory normally arises from command buffers that have been recorded
and later reset, such that they are no longer using the memory. On reset, a
command buffer can return memory to its command pool, but the only way to
release memory from a command pool to the system requires calling
vkResetCommandPool, which cannot be executed while any command buffers
from that pool are still in use. Subsequent recording operations into command
buffers will reuse this memory but since total memory requirements fluctuate
over time, unused memory can accumulate.

In this situation, trimming a command pool may be useful to return unused
memory back to the system, returning the total outstanding memory allocated by
the pool back to a more “average” value.

Implementations utilize many internal allocation strategies that make it
impossible to guarantee that all unused memory is released back to the system. For
instance, an implementation of a command pool may involve allocating memory
in bulk from the system and sub-allocating from that memory. In such an
implementation any live command buffer that holds a reference to a bulk
allocation would prevent that allocation from being freed, even if only a small
proportion of the bulk allocation is in use.

In most cases trimming will result in a reduction in allocated but unused memory,
but it does not guarantee the “ideal” behavior.

Trimming may be an expensive operation, and should not be called frequently.
Trimming should be treated as a way to relieve memory pressure after

113

application-known points when there exists enough unused memory that the cost
of trimming is “worth” it.

Valid Usage (Implicit)

• VUID-vkTrimCommandPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkTrimCommandPool-commandPool-parameter
commandPool must be a valid VkCommandPool handle

• VUID-vkTrimCommandPool-flags-zerobitmask
flags must be 0

• VUID-vkTrimCommandPool-commandPool-parent
commandPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to commandPool must be externally synchronized

// Provided by VK_VERSION_1_1
typedef VkFlags VkCommandPoolTrimFlags;

VkCommandPoolTrimFlags is a bitmask type for setting a mask, but is currently reserved for future use.

To reset a command pool, call:

// Provided by VK_VERSION_1_0
VkResult vkResetCommandPool(
 VkDevice device,
 VkCommandPool commandPool,
 VkCommandPoolResetFlags flags);

• device is the logical device that owns the command pool.

• commandPool is the command pool to reset.

• flags is a bitmask of VkCommandPoolResetFlagBits controlling the reset operation.

Resetting a command pool recycles all of the resources from all of the command buffers allocated
from the command pool back to the command pool. All command buffers that have been allocated
from the command pool are put in the initial state.

Any primary command buffer allocated from another VkCommandPool that is in the recording or
executable state and has a secondary command buffer allocated from commandPool recorded into it,
becomes invalid.

114

Valid Usage

• VUID-vkResetCommandPool-commandPool-00040
All VkCommandBuffer objects allocated from commandPool must not be in the pending state

Valid Usage (Implicit)

• VUID-vkResetCommandPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetCommandPool-commandPool-parameter
commandPool must be a valid VkCommandPool handle

• VUID-vkResetCommandPool-flags-parameter
flags must be a valid combination of VkCommandPoolResetFlagBits values

• VUID-vkResetCommandPool-commandPool-parent
commandPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to commandPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Bits which can be set in vkResetCommandPool::flags, controlling the reset operation, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandPoolResetFlagBits {
 VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT = 0x00000001,
} VkCommandPoolResetFlagBits;

• VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT specifies that resetting a command pool recycles
all of the resources from the command pool back to the system.

// Provided by VK_VERSION_1_0
typedef VkFlags VkCommandPoolResetFlags;

115

VkCommandPoolResetFlags is a bitmask type for setting a mask of zero or more
VkCommandPoolResetFlagBits.

To destroy a command pool, call:

// Provided by VK_VERSION_1_0
void vkDestroyCommandPool(
 VkDevice device,
 VkCommandPool commandPool,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the command pool.

• commandPool is the handle of the command pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

When a pool is destroyed, all command buffers allocated from the pool are freed.

Any primary command buffer allocated from another VkCommandPool that is in the recording or
executable state and has a secondary command buffer allocated from commandPool recorded into it,
becomes invalid.

Valid Usage

• VUID-vkDestroyCommandPool-commandPool-00041
All VkCommandBuffer objects allocated from commandPool must not be in the pending state

• VUID-vkDestroyCommandPool-commandPool-00042
If VkAllocationCallbacks were provided when commandPool was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyCommandPool-commandPool-00043
If no VkAllocationCallbacks were provided when commandPool was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyCommandPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyCommandPool-commandPool-parameter
If commandPool is not VK_NULL_HANDLE, commandPool must be a valid VkCommandPool
handle

• VUID-vkDestroyCommandPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyCommandPool-commandPool-parent
If commandPool is a valid handle, it must have been created, allocated, or retrieved from

116

device

Host Synchronization

• Host access to commandPool must be externally synchronized

6.3. Command Buffer Allocation and Management
To allocate command buffers, call:

// Provided by VK_VERSION_1_0
VkResult vkAllocateCommandBuffers(
 VkDevice device,
 const VkCommandBufferAllocateInfo* pAllocateInfo,
 VkCommandBuffer* pCommandBuffers);

• device is the logical device that owns the command pool.

• pAllocateInfo is a pointer to a VkCommandBufferAllocateInfo structure describing parameters
of the allocation.

• pCommandBuffers is a pointer to an array of VkCommandBuffer handles in which the resulting
command buffer objects are returned. The array must be at least the length specified by the
commandBufferCount member of pAllocateInfo. Each allocated command buffer begins in the
initial state.

vkAllocateCommandBuffers can be used to allocate multiple command buffers. If the allocation of any
of those command buffers fails, the implementation must free all successfully allocated command
buffer objects from this command, set all entries of the pCommandBuffers array to NULL and return the
error.

Note

Filling pCommandBuffers with NULL values on failure is an exception to the default
error behavior that output parameters will have undefined contents.

When command buffers are first allocated, they are in the initial state.

Valid Usage (Implicit)

• VUID-vkAllocateCommandBuffers-device-parameter
device must be a valid VkDevice handle

• VUID-vkAllocateCommandBuffers-pAllocateInfo-parameter
pAllocateInfo must be a valid pointer to a valid VkCommandBufferAllocateInfo structure

• VUID-vkAllocateCommandBuffers-pCommandBuffers-parameter
pCommandBuffers must be a valid pointer to an array of pAllocateInfo->commandBufferCount

117

VkCommandBuffer handles

• VUID-vkAllocateCommandBuffers-pAllocateInfo::commandBufferCount-arraylength
pAllocateInfo->commandBufferCount must be greater than 0

Host Synchronization

• Host access to pAllocateInfo->commandPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkCommandBufferAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandPool commandPool;
 VkCommandBufferLevel level;
 uint32_t commandBufferCount;
} VkCommandBufferAllocateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• commandPool is the command pool from which the command buffers are allocated.

• level is a VkCommandBufferLevel value specifying the command buffer level.

• commandBufferCount is the number of command buffers to allocate from the pool.

Valid Usage (Implicit)

• VUID-VkCommandBufferAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO

• VUID-VkCommandBufferAllocateInfo-pNext-pNext
pNext must be NULL

• VUID-VkCommandBufferAllocateInfo-commandPool-parameter

118

commandPool must be a valid VkCommandPool handle

• VUID-VkCommandBufferAllocateInfo-level-parameter
level must be a valid VkCommandBufferLevel value

Possible values of VkCommandBufferAllocateInfo::level, specifying the command buffer level, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandBufferLevel {
 VK_COMMAND_BUFFER_LEVEL_PRIMARY = 0,
 VK_COMMAND_BUFFER_LEVEL_SECONDARY = 1,
} VkCommandBufferLevel;

• VK_COMMAND_BUFFER_LEVEL_PRIMARY specifies a primary command buffer.

• VK_COMMAND_BUFFER_LEVEL_SECONDARY specifies a secondary command buffer.

To reset a command buffer, call:

// Provided by VK_VERSION_1_0
VkResult vkResetCommandBuffer(
 VkCommandBuffer commandBuffer,
 VkCommandBufferResetFlags flags);

• commandBuffer is the command buffer to reset. The command buffer can be in any state other
than pending, and is moved into the initial state.

• flags is a bitmask of VkCommandBufferResetFlagBits controlling the reset operation.

Any primary command buffer that is in the recording or executable state and has commandBuffer
recorded into it, becomes invalid.

Valid Usage

• VUID-vkResetCommandBuffer-commandBuffer-00045
commandBuffer must not be in the pending state

• VUID-vkResetCommandBuffer-commandBuffer-00046
commandBuffer must have been allocated from a pool that was created with the
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT

Valid Usage (Implicit)

• VUID-vkResetCommandBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkResetCommandBuffer-flags-parameter
flags must be a valid combination of VkCommandBufferResetFlagBits values

119

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Bits which can be set in vkResetCommandBuffer::flags, controlling the reset operation, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandBufferResetFlagBits {
 VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT = 0x00000001,
} VkCommandBufferResetFlagBits;

• VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT specifies that most or all memory resources
currently owned by the command buffer should be returned to the parent command pool. If
this flag is not set, then the command buffer may hold onto memory resources and reuse them
when recording commands. commandBuffer is moved to the initial state.

// Provided by VK_VERSION_1_0
typedef VkFlags VkCommandBufferResetFlags;

VkCommandBufferResetFlags is a bitmask type for setting a mask of zero or more
VkCommandBufferResetFlagBits.

To free command buffers, call:

// Provided by VK_VERSION_1_0
void vkFreeCommandBuffers(
 VkDevice device,
 VkCommandPool commandPool,
 uint32_t commandBufferCount,
 const VkCommandBuffer* pCommandBuffers);

• device is the logical device that owns the command pool.

• commandPool is the command pool from which the command buffers were allocated.

120

• commandBufferCount is the length of the pCommandBuffers array.

• pCommandBuffers is a pointer to an array of handles of command buffers to free.

Any primary command buffer that is in the recording or executable state and has any element of
pCommandBuffers recorded into it, becomes invalid.

Valid Usage

• VUID-vkFreeCommandBuffers-pCommandBuffers-00047
All elements of pCommandBuffers must not be in the pending state

• VUID-vkFreeCommandBuffers-pCommandBuffers-00048
pCommandBuffers must be a valid pointer to an array of commandBufferCount VkCommandBuffer
handles, each element of which must either be a valid handle or NULL

Valid Usage (Implicit)

• VUID-vkFreeCommandBuffers-device-parameter
device must be a valid VkDevice handle

• VUID-vkFreeCommandBuffers-commandPool-parameter
commandPool must be a valid VkCommandPool handle

• VUID-vkFreeCommandBuffers-commandBufferCount-arraylength
commandBufferCount must be greater than 0

• VUID-vkFreeCommandBuffers-commandPool-parent
commandPool must have been created, allocated, or retrieved from device

• VUID-vkFreeCommandBuffers-pCommandBuffers-parent
Each element of pCommandBuffers that is a valid handle must have been created, allocated,
or retrieved from commandPool

Host Synchronization

• Host access to commandPool must be externally synchronized

• Host access to each member of pCommandBuffers must be externally synchronized

6.4. Command Buffer Recording
To begin recording a command buffer, call:

// Provided by VK_VERSION_1_0
VkResult vkBeginCommandBuffer(
 VkCommandBuffer commandBuffer,
 const VkCommandBufferBeginInfo* pBeginInfo);

121

• commandBuffer is the handle of the command buffer which is to be put in the recording state.

• pBeginInfo is a pointer to a VkCommandBufferBeginInfo structure defining additional
information about how the command buffer begins recording.

Valid Usage

• VUID-vkBeginCommandBuffer-commandBuffer-00049
commandBuffer must not be in the recording or pending state

• VUID-vkBeginCommandBuffer-commandBuffer-00050
If commandBuffer was allocated from a VkCommandPool which did not have the
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, commandBuffer must be in the
initial state

• VUID-vkBeginCommandBuffer-commandBuffer-00051
If commandBuffer is a secondary command buffer, the pInheritanceInfo member of
pBeginInfo must be a valid VkCommandBufferInheritanceInfo structure

• VUID-vkBeginCommandBuffer-commandBuffer-00052
If commandBuffer is a secondary command buffer and either the occlusionQueryEnable
member of the pInheritanceInfo member of pBeginInfo is VK_FALSE, or the
occlusionQueryPrecise feature is not enabled, then pBeginInfo->pInheritanceInfo-
>queryFlags must not contain VK_QUERY_CONTROL_PRECISE_BIT

• VUID-vkBeginCommandBuffer-commandBuffer-02840
If commandBuffer is a primary command buffer, then pBeginInfo->flags must not set both
the VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT and the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flags

Valid Usage (Implicit)

• VUID-vkBeginCommandBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkBeginCommandBuffer-pBeginInfo-parameter
pBeginInfo must be a valid pointer to a valid VkCommandBufferBeginInfo structure

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

122

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferBeginInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkCommandBufferBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandBufferUsageFlags flags;
 const VkCommandBufferInheritanceInfo* pInheritanceInfo;
} VkCommandBufferBeginInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkCommandBufferUsageFlagBits specifying usage behavior for the
command buffer.

• pInheritanceInfo is a pointer to a VkCommandBufferInheritanceInfo structure, used if
commandBuffer is a secondary command buffer. If this is a primary command buffer, then this
value is ignored.

Valid Usage

• VUID-VkCommandBufferBeginInfo-flags-09123
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the VkCommandPool
that commandBuffer was allocated from must support graphics operations

• VUID-VkCommandBufferBeginInfo-flags-00055
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the framebuffer
member of pInheritanceInfo must be either VK_NULL_HANDLE, or a valid VkFramebuffer
that is compatible with the renderPass member of pInheritanceInfo

• VUID-VkCommandBufferBeginInfo-flags-09240
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT and the
dynamicRendering feature is not enabled, the renderPass member of pInheritanceInfo must
not be VK_NULL_HANDLE

• VUID-VkCommandBufferBeginInfo-flags-06002
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT and the renderPass
member of pInheritanceInfo is VK_NULL_HANDLE, the pNext chain of pInheritanceInfo

123

must include a VkCommandBufferInheritanceRenderingInfo structure

• VUID-VkCommandBufferBeginInfo-flags-06000
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT and the renderPass
member of pInheritanceInfo is not VK_NULL_HANDLE, the renderPass member of
pInheritanceInfo must be a valid VkRenderPass

• VUID-VkCommandBufferBeginInfo-flags-06001
If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT and the renderPass
member of pInheritanceInfo is not VK_NULL_HANDLE, the subpass member of
pInheritanceInfo must be a valid subpass index within the renderPass member of
pInheritanceInfo

Valid Usage (Implicit)

• VUID-VkCommandBufferBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO

• VUID-VkCommandBufferBeginInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkDeviceGroupCommandBufferBeginInfo

• VUID-VkCommandBufferBeginInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkCommandBufferBeginInfo-flags-parameter
flags must be a valid combination of VkCommandBufferUsageFlagBits values

Bits which can be set in VkCommandBufferBeginInfo::flags, specifying usage behavior for a
command buffer, are:

// Provided by VK_VERSION_1_0
typedef enum VkCommandBufferUsageFlagBits {
 VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT = 0x00000001,
 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT = 0x00000002,
 VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT = 0x00000004,
} VkCommandBufferUsageFlagBits;

• VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT specifies that each recording of the command
buffer will only be submitted once, and the command buffer will be reset and recorded again
between each submission.

• VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a secondary command buffer
is considered to be entirely inside a render pass. If this is a primary command buffer, then this
bit is ignored.

• VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT specifies that a command buffer can be
resubmitted to any queue of the same queue family while it is in the pending state, and recorded
into multiple primary command buffers.

124

// Provided by VK_VERSION_1_0
typedef VkFlags VkCommandBufferUsageFlags;

VkCommandBufferUsageFlags is a bitmask type for setting a mask of zero or more
VkCommandBufferUsageFlagBits.

If the command buffer is a secondary command buffer, then the VkCommandBufferInheritanceInfo
structure defines any state that will be inherited from the primary command buffer:

// Provided by VK_VERSION_1_0
typedef struct VkCommandBufferInheritanceInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderPass renderPass;
 uint32_t subpass;
 VkFramebuffer framebuffer;
 VkBool32 occlusionQueryEnable;
 VkQueryControlFlags queryFlags;
 VkQueryPipelineStatisticFlags pipelineStatistics;
} VkCommandBufferInheritanceInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• renderPass is a VkRenderPass object defining which render passes the VkCommandBuffer will be
compatible with and can be executed within.

• subpass is the index of the subpass within the render pass instance that the VkCommandBuffer will
be executed within.

• framebuffer can refer to the VkFramebuffer object that the VkCommandBuffer will be rendering to
if it is executed within a render pass instance. It can be VK_NULL_HANDLE if the framebuffer is
not known.

Note

Specifying the exact framebuffer that the secondary command buffer will be
executed with may result in better performance at command buffer execution
time.

• occlusionQueryEnable specifies whether the command buffer can be executed while an
occlusion query is active in the primary command buffer. If this is VK_TRUE, then this command
buffer can be executed whether the primary command buffer has an occlusion query active or
not. If this is VK_FALSE, then the primary command buffer must not have an occlusion query
active.

• queryFlags specifies the query flags that can be used by an active occlusion query in the
primary command buffer when this secondary command buffer is executed. If this value
includes the VK_QUERY_CONTROL_PRECISE_BIT bit, then the active query can return boolean results

125

or actual sample counts. If this bit is not set, then the active query must not use the
VK_QUERY_CONTROL_PRECISE_BIT bit.

• pipelineStatistics is a bitmask of VkQueryPipelineStatisticFlagBits specifying the set of
pipeline statistics that can be counted by an active query in the primary command buffer when
this secondary command buffer is executed. If this value includes a given bit, then this
command buffer can be executed whether the primary command buffer has a pipeline
statistics query active that includes this bit or not. If this value excludes a given bit, then the
active pipeline statistics query must not be from a query pool that counts that statistic.

If the VkCommandBuffer will not be executed within a render pass instance, or if the render pass
instance was begun with vkCmdBeginRendering, renderPass, subpass, and framebuffer are ignored.

Valid Usage

• VUID-VkCommandBufferInheritanceInfo-occlusionQueryEnable-00056
If the inheritedQueries feature is not enabled, occlusionQueryEnable must be VK_FALSE

• VUID-VkCommandBufferInheritanceInfo-queryFlags-00057
If the inheritedQueries feature is enabled, queryFlags must be a valid combination of
VkQueryControlFlagBits values

• VUID-VkCommandBufferInheritanceInfo-queryFlags-02788
If the inheritedQueries feature is not enabled, queryFlags must be 0

• VUID-VkCommandBufferInheritanceInfo-pipelineStatistics-02789
If the pipelineStatisticsQuery feature is enabled, pipelineStatistics must be a valid
combination of VkQueryPipelineStatisticFlagBits values

• VUID-VkCommandBufferInheritanceInfo-pipelineStatistics-00058
If the pipelineStatisticsQuery feature is not enabled, pipelineStatistics must be 0

Valid Usage (Implicit)

• VUID-VkCommandBufferInheritanceInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO

• VUID-VkCommandBufferInheritanceInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkCommandBufferInheritanceRenderingInfo

• VUID-VkCommandBufferInheritanceInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkCommandBufferInheritanceInfo-commonparent
Both of framebuffer, and renderPass that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

Note

On some implementations, not using the

126

VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT bit enables command buffers to be
patched in-place if needed, rather than creating a copy of the command buffer.

If a command buffer is in the invalid, or executable state, and the command buffer was allocated
from a command pool with the VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
vkBeginCommandBuffer implicitly resets the command buffer, behaving as if vkResetCommandBuffer had
been called with VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. After the implicit reset,
commandBuffer is moved to the recording state.

The VkCommandBufferInheritanceRenderingInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCommandBufferInheritanceRenderingInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderingFlags flags;
 uint32_t viewMask;
 uint32_t colorAttachmentCount;
 const VkFormat* pColorAttachmentFormats;
 VkFormat depthAttachmentFormat;
 VkFormat stencilAttachmentFormat;
 VkSampleCountFlagBits rasterizationSamples;
} VkCommandBufferInheritanceRenderingInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure

• flags is a bitmask of VkRenderingFlagBits used by the render pass instance.

• viewMask is the view mask used for rendering.

• colorAttachmentCount is the number of color attachments specified in the render pass instance.

• pColorAttachmentFormats is a pointer to an array of VkFormat values defining the format of color
attachments.

• depthAttachmentFormat is a VkFormat value defining the format of the depth attachment.

• stencilAttachmentFormat is a VkFormat value defining the format of the stencil attachment.

• rasterizationSamples is a VkSampleCountFlagBits specifying the number of samples used in
rasterization.

If the pNext chain of VkCommandBufferInheritanceInfo includes a
VkCommandBufferInheritanceRenderingInfo structure, then that structure controls parameters of
dynamic render pass instances that the VkCommandBuffer can be executed within. If
VkCommandBufferInheritanceInfo::renderPass is not VK_NULL_HANDLE, or
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT is not specified in VkCommandBufferBeginInfo
::flags, parameters of this structure are ignored.

If colorAttachmentCount is 0 and the variableMultisampleRate feature is enabled,
rasterizationSamples is ignored.

127

If depthAttachmentFormat, stencilAttachmentFormat, or any element of pColorAttachmentFormats is
VK_FORMAT_UNDEFINED, it indicates that the corresponding attachment is unused within the render
pass and writes to those attachments are discarded.

Valid Usage

• VUID-VkCommandBufferInheritanceRenderingInfo-colorAttachmentCount-06004
If colorAttachmentCount is not 0, rasterizationSamples must be a valid
VkSampleCountFlagBits value

• VUID-VkCommandBufferInheritanceRenderingInfo-variableMultisampleRate-06005
If the variableMultisampleRate feature is not enabled, rasterizationSamples must be a
valid VkSampleCountFlagBits value

• VUID-VkCommandBufferInheritanceRenderingInfo-depthAttachmentFormat-06540
If depthAttachmentFormat is not VK_FORMAT_UNDEFINED, it must be a format that includes a
depth component

• VUID-VkCommandBufferInheritanceRenderingInfo-depthAttachmentFormat-06007
If depthAttachmentFormat is not VK_FORMAT_UNDEFINED, it must be a format with potential
format features that include VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkCommandBufferInheritanceRenderingInfo-pColorAttachmentFormats-06492
If any element of pColorAttachmentFormats is not VK_FORMAT_UNDEFINED, it must be a format
with potential format features that include VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkCommandBufferInheritanceRenderingInfo-stencilAttachmentFormat-06541
If stencilAttachmentFormat is not VK_FORMAT_UNDEFINED, it must be a format that includes a
stencil aspect

• VUID-VkCommandBufferInheritanceRenderingInfo-stencilAttachmentFormat-06199
If stencilAttachmentFormat is not VK_FORMAT_UNDEFINED, it must be a format with potential
format features that include VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkCommandBufferInheritanceRenderingInfo-depthAttachmentFormat-06200
If depthAttachmentFormat is not VK_FORMAT_UNDEFINED and stencilAttachmentFormat is not
VK_FORMAT_UNDEFINED, depthAttachmentFormat must equal stencilAttachmentFormat

• VUID-VkCommandBufferInheritanceRenderingInfo-multiview-06008
If the multiview feature is not enabled, viewMask must be 0

• VUID-VkCommandBufferInheritanceRenderingInfo-viewMask-06009
The index of the most significant bit in viewMask must be less than maxMultiviewViewCount

Valid Usage (Implicit)

• VUID-VkCommandBufferInheritanceRenderingInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDERING_INFO

• VUID-VkCommandBufferInheritanceRenderingInfo-flags-parameter
flags must be a valid combination of VkRenderingFlagBits values

• VUID-VkCommandBufferInheritanceRenderingInfo-pColorAttachmentFormats-parameter

128

If colorAttachmentCount is not 0, pColorAttachmentFormats must be a valid pointer to an
array of colorAttachmentCount valid VkFormat values

• VUID-VkCommandBufferInheritanceRenderingInfo-depthAttachmentFormat-parameter
depthAttachmentFormat must be a valid VkFormat value

• VUID-VkCommandBufferInheritanceRenderingInfo-stencilAttachmentFormat-parameter
stencilAttachmentFormat must be a valid VkFormat value

• VUID-VkCommandBufferInheritanceRenderingInfo-rasterizationSamples-parameter
If rasterizationSamples is not 0, rasterizationSamples must be a valid
VkSampleCountFlagBits value

Once recording starts, an application records a sequence of commands (vkCmd*) to set state in the
command buffer, draw, dispatch, and other commands.

To complete recording of a command buffer, call:

// Provided by VK_VERSION_1_0
VkResult vkEndCommandBuffer(
 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer to complete recording.

The command buffer must have been in the recording state, and, if successful, is moved to the
executable state.

If there was an error during recording, the application will be notified by an unsuccessful return
code returned by vkEndCommandBuffer, and the command buffer will be moved to the invalid state.

Valid Usage

• VUID-vkEndCommandBuffer-commandBuffer-00059
commandBuffer must be in the recording state

• VUID-vkEndCommandBuffer-commandBuffer-00060
If commandBuffer is a primary command buffer, there must not be an active render pass
instance

• VUID-vkEndCommandBuffer-commandBuffer-00061
All queries made active during the recording of commandBuffer must have been made
inactive

Valid Usage (Implicit)

• VUID-vkEndCommandBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

129

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

When a command buffer is in the executable state, it can be submitted to a queue for execution.

6.5. Command Buffer Submission

Note

Submission can be a high overhead operation, and applications should attempt to
batch work together into as few calls to vkQueueSubmit or vkQueueSubmit2 as
possible.

To submit command buffers to a queue, call:

// Provided by VK_VERSION_1_3
VkResult vkQueueSubmit2(
 VkQueue queue,
 uint32_t submitCount,
 const VkSubmitInfo2* pSubmits,
 VkFence fence);

• queue is the queue that the command buffers will be submitted to.

• submitCount is the number of elements in the pSubmits array.

• pSubmits is a pointer to an array of VkSubmitInfo2 structures, each specifying a command
buffer submission batch.

• fence is an optional handle to a fence to be signaled once all submitted command buffers have
completed execution. If fence is not VK_NULL_HANDLE, it defines a fence signal operation.

vkQueueSubmit2 is a queue submission command, with each batch defined by an element of pSubmits.

Semaphore operations submitted with vkQueueSubmit2 have additional ordering constraints

130

compared to other submission commands, with dependencies involving previous and subsequent
queue operations. Information about these additional constraints can be found in the semaphore
section of the synchronization chapter.

If any command buffer submitted to this queue is in the executable state, it is moved to the pending
state. Once execution of all submissions of a command buffer complete, it moves from the pending
state, back to the executable state. If a command buffer was recorded with the
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT flag, it instead moves back to the invalid state.

If vkQueueSubmit2 fails, it may return VK_ERROR_OUT_OF_HOST_MEMORY or VK_ERROR_OUT_OF_DEVICE_MEMORY.
If it does, the implementation must ensure that the state and contents of any resources or
synchronization primitives referenced by the submitted command buffers and any semaphores
referenced by pSubmits is unaffected by the call or its failure. If vkQueueSubmit2 fails in such a way
that the implementation is unable to make that guarantee, the implementation must return
VK_ERROR_DEVICE_LOST. See Lost Device.

Valid Usage

• VUID-vkQueueSubmit2-fence-04894
If fence is not VK_NULL_HANDLE, fence must be unsignaled

• VUID-vkQueueSubmit2-fence-04895
If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue
command that has not yet completed execution on that queue

• VUID-vkQueueSubmit2-synchronization2-03866
The synchronization2 feature must be enabled

• VUID-vkQueueSubmit2-commandBuffer-03867
If a command recorded into the commandBuffer member of any element of the
pCommandBufferInfos member of any element of pSubmits referenced a VkEvent, that event
must not be referenced by a command that has been submitted to another queue and is
still in the pending state

• VUID-vkQueueSubmit2-semaphore-03868
The semaphore member of any binary semaphore element of the pSignalSemaphoreInfos
member of any element of pSubmits must be unsignaled when the semaphore signal
operation it defines is executed on the device

• VUID-vkQueueSubmit2-stageMask-03869
The stageMask member of any element of the pSignalSemaphoreInfos member of any
element of pSubmits must only include pipeline stages that are supported by the queue
family which queue belongs to

• VUID-vkQueueSubmit2-stageMask-03870
The stageMask member of any element of the pWaitSemaphoreInfos member of any element
of pSubmits must only include pipeline stages that are supported by the queue family
which queue belongs to

• VUID-vkQueueSubmit2-semaphore-03871
When a semaphore wait operation for a binary semaphore is executed, as defined by the
semaphore member of any element of the pWaitSemaphoreInfos member of any element of

131

pSubmits, there must be no other queues waiting on the same semaphore

• VUID-vkQueueSubmit2-semaphore-03873
The semaphore member of any element of the pWaitSemaphoreInfos member of any element
of pSubmits that was created with a VkSemaphoreTypeKHR of VK_SEMAPHORE_TYPE_BINARY_KHR
must reference a semaphore signal operation that has been submitted for execution and
any semaphore signal operations on which it depends must have also been submitted for
execution

• VUID-vkQueueSubmit2-commandBuffer-03874
The commandBuffer member of any element of the pCommandBufferInfos member of any
element of pSubmits must be in the pending or executable state

• VUID-vkQueueSubmit2-commandBuffer-03875
If a command recorded into the commandBuffer member of any element of the
pCommandBufferInfos member of any element of pSubmits was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the pending state

• VUID-vkQueueSubmit2-commandBuffer-03876
Any secondary command buffers recorded into the commandBuffer member of any element
of the pCommandBufferInfos member of any element of pSubmits must be in the pending or
executable state

• VUID-vkQueueSubmit2-commandBuffer-03877
If any secondary command buffers recorded into the commandBuffer member of any
element of the pCommandBufferInfos member of any element of pSubmits was not recorded
with the VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the pending
state

• VUID-vkQueueSubmit2-commandBuffer-03878
The commandBuffer member of any element of the pCommandBufferInfos member of any
element of pSubmits must have been allocated from a VkCommandPool that was created for
the same queue family queue belongs to

• VUID-vkQueueSubmit2-commandBuffer-03879
If a command recorded into the commandBuffer member of any element of the
pCommandBufferInfos member of any element of pSubmits includes a Queue Family
Ownership Transfer Acquire Operation, there must exist a previously submitted Queue
Family Ownership Transfer Release Operation on a queue in the queue family identified
by the acquire operation, with parameters matching the acquire operation as defined in
the definition of such acquire operations, and which happens before the acquire
operation

• VUID-vkQueueSubmit2-queue-06447
If queue was not created with VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT, the flags member of
any element of pSubmits must not include VK_SUBMIT_PROTECTED_BIT_KHR

Valid Usage (Implicit)

• VUID-vkQueueSubmit2-queue-parameter
queue must be a valid VkQueue handle

132

• VUID-vkQueueSubmit2-pSubmits-parameter
If submitCount is not 0, pSubmits must be a valid pointer to an array of submitCount valid
VkSubmitInfo2 structures

• VUID-vkQueueSubmit2-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-vkQueueSubmit2-commonparent
Both of fence, and queue that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to fence must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

- - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkSubmitInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkSubmitInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkSubmitFlags flags;
 uint32_t waitSemaphoreInfoCount;
 const VkSemaphoreSubmitInfo* pWaitSemaphoreInfos;
 uint32_t commandBufferInfoCount;
 const VkCommandBufferSubmitInfo* pCommandBufferInfos;
 uint32_t signalSemaphoreInfoCount;

133

 const VkSemaphoreSubmitInfo* pSignalSemaphoreInfos;
} VkSubmitInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkSubmitFlagBits.

• waitSemaphoreInfoCount is the number of elements in pWaitSemaphoreInfos.

• pWaitSemaphoreInfos is a pointer to an array of VkSemaphoreSubmitInfo structures defining
semaphore wait operations.

• commandBufferInfoCount is the number of elements in pCommandBufferInfos and the number of
command buffers to execute in the batch.

• pCommandBufferInfos is a pointer to an array of VkCommandBufferSubmitInfo structures
describing command buffers to execute in the batch.

• signalSemaphoreInfoCount is the number of elements in pSignalSemaphoreInfos.

• pSignalSemaphoreInfos is a pointer to an array of VkSemaphoreSubmitInfo describing
semaphore signal operations.

Valid Usage

• VUID-VkSubmitInfo2-flags-03886
If flags includes VK_SUBMIT_PROTECTED_BIT, all elements of pCommandBuffers must be
protected command buffers

• VUID-VkSubmitInfo2-flags-03887
If flags does not include VK_SUBMIT_PROTECTED_BIT, each element of pCommandBuffers must
not be a protected command buffer

• VUID-VkSubmitInfo2KHR-commandBuffer-06192
If any commandBuffer member of an element of pCommandBufferInfos contains any resumed
render pass instances, they must be suspended by a render pass instance earlier in
submission order within pCommandBufferInfos

• VUID-VkSubmitInfo2KHR-commandBuffer-06010
If any commandBuffer member of an element of pCommandBufferInfos contains any
suspended render pass instances, they must be resumed by a render pass instance later
in submission order within pCommandBufferInfos

• VUID-VkSubmitInfo2KHR-commandBuffer-06011
If any commandBuffer member of an element of pCommandBufferInfos contains any
suspended render pass instances, there must be no action or synchronization commands
between that render pass instance and the render pass instance that resumes it

• VUID-VkSubmitInfo2KHR-commandBuffer-06012
If any commandBuffer member of an element of pCommandBufferInfos contains any
suspended render pass instances, there must be no render pass instances between that
render pass instance and the render pass instance that resumes it

134

Valid Usage (Implicit)

• VUID-VkSubmitInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBMIT_INFO_2

• VUID-VkSubmitInfo2-pNext-pNext
pNext must be NULL

• VUID-VkSubmitInfo2-flags-parameter
flags must be a valid combination of VkSubmitFlagBits values

• VUID-VkSubmitInfo2-pWaitSemaphoreInfos-parameter
If waitSemaphoreInfoCount is not 0, pWaitSemaphoreInfos must be a valid pointer to an array
of waitSemaphoreInfoCount valid VkSemaphoreSubmitInfo structures

• VUID-VkSubmitInfo2-pCommandBufferInfos-parameter
If commandBufferInfoCount is not 0, pCommandBufferInfos must be a valid pointer to an array
of commandBufferInfoCount valid VkCommandBufferSubmitInfo structures

• VUID-VkSubmitInfo2-pSignalSemaphoreInfos-parameter
If signalSemaphoreInfoCount is not 0, pSignalSemaphoreInfos must be a valid pointer to an
array of signalSemaphoreInfoCount valid VkSemaphoreSubmitInfo structures

Bits which can be set in VkSubmitInfo2::flags, specifying submission behavior, are:

// Provided by VK_VERSION_1_3
typedef enum VkSubmitFlagBits {
 VK_SUBMIT_PROTECTED_BIT = 0x00000001,
 VK_SUBMIT_PROTECTED_BIT_KHR = VK_SUBMIT_PROTECTED_BIT,
} VkSubmitFlagBits;

• VK_SUBMIT_PROTECTED_BIT specifies that this batch is a protected submission.

// Provided by VK_VERSION_1_3
typedef VkFlags VkSubmitFlags;

VkSubmitFlags is a bitmask type for setting a mask of zero or more VkSubmitFlagBits.

The VkSemaphoreSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkSemaphoreSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 uint64_t value;
 VkPipelineStageFlags2 stageMask;
 uint32_t deviceIndex;

135

} VkSemaphoreSubmitInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is a VkSemaphore affected by this operation.

• value is ignored.

• stageMask is a VkPipelineStageFlags2 mask of pipeline stages which limit the first
synchronization scope of a semaphore signal operation, or second synchronization scope of a
semaphore wait operation as described in the semaphore wait operation and semaphore signal
operation sections of the synchronization chapter.

• deviceIndex is the index of the device within a device group that executes the semaphore wait or
signal operation.

Whether this structure defines a semaphore wait or signal operation is defined by how it is used.

Valid Usage

• VUID-VkSemaphoreSubmitInfo-stageMask-03929
If the geometryShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkSemaphoreSubmitInfo-stageMask-03930
If the tessellationShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSemaphoreSubmitInfo-device-03888
If the device that semaphore was created on is not a device group, deviceIndex must be 0

• VUID-VkSemaphoreSubmitInfo-device-03889
If the device that semaphore was created on is a device group, deviceIndex must be a valid
device index

Valid Usage (Implicit)

• VUID-VkSemaphoreSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO

• VUID-VkSemaphoreSubmitInfo-pNext-pNext
pNext must be NULL

• VUID-VkSemaphoreSubmitInfo-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-VkSemaphoreSubmitInfo-stageMask-parameter
stageMask must be a valid combination of VkPipelineStageFlagBits2 values

136

The VkCommandBufferSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCommandBufferSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandBuffer commandBuffer;
 uint32_t deviceMask;
} VkCommandBufferSubmitInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• commandBuffer is a VkCommandBuffer to be submitted for execution.

• deviceMask is a bitmask indicating which devices in a device group execute the command buffer.
A deviceMask of 0 is equivalent to setting all bits corresponding to valid devices in the group to 1.

Valid Usage

• VUID-VkCommandBufferSubmitInfo-commandBuffer-03890
commandBuffer must not have been allocated with VK_COMMAND_BUFFER_LEVEL_SECONDARY

• VUID-VkCommandBufferSubmitInfo-deviceMask-03891
If deviceMask is not 0, it must be a valid device mask

Valid Usage (Implicit)

• VUID-VkCommandBufferSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO

• VUID-VkCommandBufferSubmitInfo-pNext-pNext
pNext must be NULL

• VUID-VkCommandBufferSubmitInfo-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

To submit command buffers to a queue, call:

// Provided by VK_VERSION_1_0
VkResult vkQueueSubmit(
 VkQueue queue,
 uint32_t submitCount,
 const VkSubmitInfo* pSubmits,
 VkFence fence);

• queue is the queue that the command buffers will be submitted to.

137

• submitCount is the number of elements in the pSubmits array.

• pSubmits is a pointer to an array of VkSubmitInfo structures, each specifying a command buffer
submission batch.

• fence is an optional handle to a fence to be signaled once all submitted command buffers have
completed execution. If fence is not VK_NULL_HANDLE, it defines a fence signal operation.

vkQueueSubmit is a queue submission command, with each batch defined by an element of pSubmits.
Batches begin execution in the order they appear in pSubmits, but may complete out of order.

Fence and semaphore operations submitted with vkQueueSubmit have additional ordering
constraints compared to other submission commands, with dependencies involving previous and
subsequent queue operations. Information about these additional constraints can be found in the
semaphore and fence sections of the synchronization chapter.

Details on the interaction of pWaitDstStageMask with synchronization are described in the
semaphore wait operation section of the synchronization chapter.

The order that batches appear in pSubmits is used to determine submission order, and thus all the
implicit ordering guarantees that respect it. Other than these implicit ordering guarantees and any
explicit synchronization primitives, these batches may overlap or otherwise execute out of order.

If any command buffer submitted to this queue is in the executable state, it is moved to the pending
state. Once execution of all submissions of a command buffer complete, it moves from the pending
state, back to the executable state. If a command buffer was recorded with the
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT flag, it instead moves to the invalid state.

If vkQueueSubmit fails, it may return VK_ERROR_OUT_OF_HOST_MEMORY or VK_ERROR_OUT_OF_DEVICE_MEMORY.
If it does, the implementation must ensure that the state and contents of any resources or
synchronization primitives referenced by the submitted command buffers and any semaphores
referenced by pSubmits is unaffected by the call or its failure. If vkQueueSubmit fails in such a way
that the implementation is unable to make that guarantee, the implementation must return
VK_ERROR_DEVICE_LOST. See Lost Device.

Valid Usage

• VUID-vkQueueSubmit-fence-00063
If fence is not VK_NULL_HANDLE, fence must be unsignaled

• VUID-vkQueueSubmit-fence-00064
If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue
command that has not yet completed execution on that queue

• VUID-vkQueueSubmit-pCommandBuffers-00065
Any calls to vkCmdSetEvent, vkCmdResetEvent or vkCmdWaitEvents that have been
recorded into any of the command buffer elements of the pCommandBuffers member of any
element of pSubmits, must not reference any VkEvent that is referenced by any of those
commands in a command buffer that has been submitted to another queue and is still in
the pending state

• VUID-vkQueueSubmit-pWaitDstStageMask-00066

138

Any stage flag included in any element of the pWaitDstStageMask member of any element
of pSubmits must be a pipeline stage supported by one of the capabilities of queue, as
specified in the table of supported pipeline stages

• VUID-vkQueueSubmit-pSignalSemaphores-00067
Each binary semaphore element of the pSignalSemaphores member of any element of
pSubmits must be unsignaled when the semaphore signal operation it defines is executed
on the device

• VUID-vkQueueSubmit-pWaitSemaphores-00068
When a semaphore wait operation referring to a binary semaphore defined by any
element of the pWaitSemaphores member of any element of pSubmits executes on queue,
there must be no other queues waiting on the same semaphore

• VUID-vkQueueSubmit-pWaitSemaphores-03238
All elements of the pWaitSemaphores member of all elements of pSubmits created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY must reference a semaphore signal
operation that has been submitted for execution and any semaphore signal operations on
which it depends must have also been submitted for execution

• VUID-vkQueueSubmit-pCommandBuffers-00070
Each element of the pCommandBuffers member of each element of pSubmits must be in the
pending or executable state

• VUID-vkQueueSubmit-pCommandBuffers-00071
If any element of the pCommandBuffers member of any element of pSubmits was not
recorded with the VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the
pending state

• VUID-vkQueueSubmit-pCommandBuffers-00072
Any secondary command buffers recorded into any element of the pCommandBuffers
member of any element of pSubmits must be in the pending or executable state

• VUID-vkQueueSubmit-pCommandBuffers-00073
If any secondary command buffers recorded into any element of the pCommandBuffers
member of any element of pSubmits was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, it must not be in the pending state

• VUID-vkQueueSubmit-pCommandBuffers-00074
Each element of the pCommandBuffers member of each element of pSubmits must have been
allocated from a VkCommandPool that was created for the same queue family queue belongs
to

• VUID-vkQueueSubmit-pSubmits-02207
If any element of pSubmits->pCommandBuffers includes a Queue Family Ownership Transfer
Acquire Operation, there must exist a previously submitted Queue Family Ownership
Transfer Release Operation on a queue in the queue family identified by the acquire
operation, with parameters matching the acquire operation as defined in the definition of
such acquire operations, and which happens-before the acquire operation

• VUID-vkQueueSubmit-pSubmits-02808
Any resource created with VK_SHARING_MODE_EXCLUSIVE that is read by an operation
specified by pSubmits must not be owned by any queue family other than the one which
queue belongs to, at the time it is executed

139

• VUID-vkQueueSubmit-pSubmits-04626
Any resource created with VK_SHARING_MODE_CONCURRENT that is accessed by an operation
specified by pSubmits must have included the queue family of queue at resource creation
time

• VUID-vkQueueSubmit-queue-06448
If queue was not created with VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT, there must be no
element of pSubmits that includes a VkProtectedSubmitInfo structure in its pNext chain
with protectedSubmit equal to VK_TRUE

Valid Usage (Implicit)

• VUID-vkQueueSubmit-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueueSubmit-pSubmits-parameter
If submitCount is not 0, pSubmits must be a valid pointer to an array of submitCount valid
VkSubmitInfo structures

• VUID-vkQueueSubmit-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-vkQueueSubmit-commonparent
Both of fence, and queue that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to fence must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

- - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

140

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const VkSemaphore* pWaitSemaphores;
 const VkPipelineStageFlags* pWaitDstStageMask;
 uint32_t commandBufferCount;
 const VkCommandBuffer* pCommandBuffers;
 uint32_t signalSemaphoreCount;
 const VkSemaphore* pSignalSemaphores;
} VkSubmitInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreCount is the number of semaphores upon which to wait before executing the
command buffers for the batch.

• pWaitSemaphores is a pointer to an array of VkSemaphore handles upon which to wait before the
command buffers for this batch begin execution. If semaphores to wait on are provided, they
define a semaphore wait operation.

• pWaitDstStageMask is a pointer to an array of pipeline stages at which each corresponding
semaphore wait will occur.

• commandBufferCount is the number of command buffers to execute in the batch.

• pCommandBuffers is a pointer to an array of VkCommandBuffer handles to execute in the batch.

• signalSemaphoreCount is the number of semaphores to be signaled once the commands specified
in pCommandBuffers have completed execution.

• pSignalSemaphores is a pointer to an array of VkSemaphore handles which will be signaled when
the command buffers for this batch have completed execution. If semaphores to be signaled are
provided, they define a semaphore signal operation.

The order that command buffers appear in pCommandBuffers is used to determine submission order,
and thus all the implicit ordering guarantees that respect it. Other than these implicit ordering
guarantees and any explicit synchronization primitives, these command buffers may overlap or
otherwise execute out of order.

Valid Usage

• VUID-VkSubmitInfo-pWaitDstStageMask-04090

141

If the geometryShader feature is not enabled, pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-VkSubmitInfo-pWaitDstStageMask-04091
If the tessellationShader feature is not enabled, pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubmitInfo-pWaitDstStageMask-03937
If the synchronization2 feature is not enabled, pWaitDstStageMask must not be 0

• VUID-VkSubmitInfo-pCommandBuffers-00075
Each element of pCommandBuffers must not have been allocated with
VK_COMMAND_BUFFER_LEVEL_SECONDARY

• VUID-VkSubmitInfo-pWaitDstStageMask-00078
Each element of pWaitDstStageMask must not include VK_PIPELINE_STAGE_HOST_BIT

• VUID-VkSubmitInfo-pWaitSemaphores-03239
If any element of pWaitSemaphores or pSignalSemaphores was created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE, then the pNext chain must include a
VkTimelineSemaphoreSubmitInfo structure

• VUID-VkSubmitInfo-pNext-03240
If the pNext chain of this structure includes a VkTimelineSemaphoreSubmitInfo structure
and any element of pWaitSemaphores was created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE, then its waitSemaphoreValueCount member must equal
waitSemaphoreCount

• VUID-VkSubmitInfo-pNext-03241
If the pNext chain of this structure includes a VkTimelineSemaphoreSubmitInfo structure
and any element of pSignalSemaphores was created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE, then its signalSemaphoreValueCount member must equal
signalSemaphoreCount

• VUID-VkSubmitInfo-pSignalSemaphores-03242
For each element of pSignalSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pSignalSemaphoreValues must have a value greater
than the current value of the semaphore when the semaphore signal operation is
executed

• VUID-VkSubmitInfo-pWaitSemaphores-03243
For each element of pWaitSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pWaitSemaphoreValues must have a value which does
not differ from the current value of the semaphore or the value of any outstanding
semaphore wait or signal operation on that semaphore by more than
maxTimelineSemaphoreValueDifference

• VUID-VkSubmitInfo-pSignalSemaphores-03244
For each element of pSignalSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pSignalSemaphoreValues must have a value which does

142

not differ from the current value of the semaphore or the value of any outstanding
semaphore wait or signal operation on that semaphore by more than
maxTimelineSemaphoreValueDifference

• VUID-VkSubmitInfo-pNext-04120
If the pNext chain of this structure does not include a VkProtectedSubmitInfo structure with
protectedSubmit set to VK_TRUE, then each element of the pCommandBuffers array must be an
unprotected command buffer

• VUID-VkSubmitInfo-pNext-04148
If the pNext chain of this structure includes a VkProtectedSubmitInfo structure with
protectedSubmit set to VK_TRUE, then each element of the pCommandBuffers array must be a
protected command buffer

• VUID-VkSubmitInfo-pCommandBuffers-06193
If pCommandBuffers contains any resumed render pass instances, they must be suspended
by a render pass instance earlier in submission order within pCommandBuffers

• VUID-VkSubmitInfo-pCommandBuffers-06014
If pCommandBuffers contains any suspended render pass instances, they must be resumed
by a render pass instance later in submission order within pCommandBuffers

• VUID-VkSubmitInfo-pCommandBuffers-06015
If pCommandBuffers contains any suspended render pass instances, there must be no action
or synchronization commands executed in a primary or secondary command buffer
between that render pass instance and the render pass instance that resumes it

• VUID-VkSubmitInfo-pCommandBuffers-06016
If pCommandBuffers contains any suspended render pass instances, there must be no
render pass instances between that render pass instance and the render pass instance
that resumes it

Valid Usage (Implicit)

• VUID-VkSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBMIT_INFO

• VUID-VkSubmitInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceGroupSubmitInfo,
VkProtectedSubmitInfo, or VkTimelineSemaphoreSubmitInfo

• VUID-VkSubmitInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSubmitInfo-pWaitSemaphores-parameter
If waitSemaphoreCount is not 0, pWaitSemaphores must be a valid pointer to an array of
waitSemaphoreCount valid VkSemaphore handles

• VUID-VkSubmitInfo-pWaitDstStageMask-parameter
If waitSemaphoreCount is not 0, pWaitDstStageMask must be a valid pointer to an array of
waitSemaphoreCount valid combinations of VkPipelineStageFlagBits values

143

• VUID-VkSubmitInfo-pCommandBuffers-parameter
If commandBufferCount is not 0, pCommandBuffers must be a valid pointer to an array of
commandBufferCount valid VkCommandBuffer handles

• VUID-VkSubmitInfo-pSignalSemaphores-parameter
If signalSemaphoreCount is not 0, pSignalSemaphores must be a valid pointer to an array of
signalSemaphoreCount valid VkSemaphore handles

• VUID-VkSubmitInfo-commonparent
Each of the elements of pCommandBuffers, the elements of pSignalSemaphores, and the
elements of pWaitSemaphores that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

To specify the values to use when waiting for and signaling semaphores created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE, add a VkTimelineSemaphoreSubmitInfo
structure to the pNext chain of the VkSubmitInfo structure when using vkQueueSubmit or the
VkBindSparseInfo structure when using vkQueueBindSparse . The VkTimelineSemaphoreSubmitInfo
structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkTimelineSemaphoreSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreValueCount;
 const uint64_t* pWaitSemaphoreValues;
 uint32_t signalSemaphoreValueCount;
 const uint64_t* pSignalSemaphoreValues;
} VkTimelineSemaphoreSubmitInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreValueCount is the number of semaphore wait values specified in
pWaitSemaphoreValues.

• pWaitSemaphoreValues is a pointer to an array of waitSemaphoreValueCount values for the
corresponding semaphores in VkSubmitInfo::pWaitSemaphores to wait for.

• signalSemaphoreValueCount is the number of semaphore signal values specified in
pSignalSemaphoreValues.

• pSignalSemaphoreValues is a pointer to an array signalSemaphoreValueCount values for the
corresponding semaphores in VkSubmitInfo::pSignalSemaphores to set when signaled.

If the semaphore in VkSubmitInfo::pWaitSemaphores or VkSubmitInfo::pSignalSemaphores
corresponding to an entry in pWaitSemaphoreValues or pSignalSemaphoreValues respectively was not
created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE, the implementation must ignore
the value in the pWaitSemaphoreValues or pSignalSemaphoreValues entry.

144

Valid Usage (Implicit)

• VUID-VkTimelineSemaphoreSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO

• VUID-VkTimelineSemaphoreSubmitInfo-pWaitSemaphoreValues-parameter
If waitSemaphoreValueCount is not 0, and pWaitSemaphoreValues is not NULL,
pWaitSemaphoreValues must be a valid pointer to an array of waitSemaphoreValueCount
uint64_t values

• VUID-VkTimelineSemaphoreSubmitInfo-pSignalSemaphoreValues-parameter
If signalSemaphoreValueCount is not 0, and pSignalSemaphoreValues is not NULL,
pSignalSemaphoreValues must be a valid pointer to an array of signalSemaphoreValueCount
uint64_t values

If the pNext chain of VkSubmitInfo includes a VkProtectedSubmitInfo structure, then the structure
indicates whether the batch is protected. The VkProtectedSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkProtectedSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 VkBool32 protectedSubmit;
} VkProtectedSubmitInfo;

• protectedSubmit specifies whether the batch is protected. If protectedSubmit is VK_TRUE, the batch
is protected. If protectedSubmit is VK_FALSE, the batch is unprotected. If the VkSubmitInfo::pNext
chain does not include this structure, the batch is unprotected.

Valid Usage (Implicit)

• VUID-VkProtectedSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO

If the pNext chain of VkSubmitInfo includes a VkDeviceGroupSubmitInfo structure, then that structure
includes device indices and masks specifying which physical devices execute semaphore operations
and command buffers.

The VkDeviceGroupSubmitInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupSubmitInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const uint32_t* pWaitSemaphoreDeviceIndices;
 uint32_t commandBufferCount;

145

 const uint32_t* pCommandBufferDeviceMasks;
 uint32_t signalSemaphoreCount;
 const uint32_t* pSignalSemaphoreDeviceIndices;
} VkDeviceGroupSubmitInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreCount is the number of elements in the pWaitSemaphoreDeviceIndices array.

• pWaitSemaphoreDeviceIndices is a pointer to an array of waitSemaphoreCount device indices
indicating which physical device executes the semaphore wait operation in the corresponding
element of VkSubmitInfo::pWaitSemaphores.

• commandBufferCount is the number of elements in the pCommandBufferDeviceMasks array.

• pCommandBufferDeviceMasks is a pointer to an array of commandBufferCount device masks indicating
which physical devices execute the command buffer in the corresponding element of
VkSubmitInfo::pCommandBuffers. A physical device executes the command buffer if the
corresponding bit is set in the mask.

• signalSemaphoreCount is the number of elements in the pSignalSemaphoreDeviceIndices array.

• pSignalSemaphoreDeviceIndices is a pointer to an array of signalSemaphoreCount device indices
indicating which physical device executes the semaphore signal operation in the corresponding
element of VkSubmitInfo::pSignalSemaphores.

If this structure is not present, semaphore operations and command buffers execute on device
index zero.

Valid Usage

• VUID-VkDeviceGroupSubmitInfo-waitSemaphoreCount-00082
waitSemaphoreCount must equal VkSubmitInfo::waitSemaphoreCount

• VUID-VkDeviceGroupSubmitInfo-commandBufferCount-00083
commandBufferCount must equal VkSubmitInfo::commandBufferCount

• VUID-VkDeviceGroupSubmitInfo-signalSemaphoreCount-00084
signalSemaphoreCount must equal VkSubmitInfo::signalSemaphoreCount

• VUID-VkDeviceGroupSubmitInfo-pWaitSemaphoreDeviceIndices-00085
All elements of pWaitSemaphoreDeviceIndices and pSignalSemaphoreDeviceIndices must be
valid device indices

• VUID-VkDeviceGroupSubmitInfo-pCommandBufferDeviceMasks-00086
All elements of pCommandBufferDeviceMasks must be valid device masks

Valid Usage (Implicit)

• VUID-VkDeviceGroupSubmitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO

146

• VUID-VkDeviceGroupSubmitInfo-pWaitSemaphoreDeviceIndices-parameter
If waitSemaphoreCount is not 0, pWaitSemaphoreDeviceIndices must be a valid pointer to an
array of waitSemaphoreCount uint32_t values

• VUID-VkDeviceGroupSubmitInfo-pCommandBufferDeviceMasks-parameter
If commandBufferCount is not 0, pCommandBufferDeviceMasks must be a valid pointer to an
array of commandBufferCount uint32_t values

• VUID-VkDeviceGroupSubmitInfo-pSignalSemaphoreDeviceIndices-parameter
If signalSemaphoreCount is not 0, pSignalSemaphoreDeviceIndices must be a valid pointer to
an array of signalSemaphoreCount uint32_t values

6.6. Queue Forward Progress
When using binary semaphores, the application must ensure that command buffer submissions
will be able to complete without any subsequent operations by the application on any queue. After
any call to vkQueueSubmit (or other queue operation), for every queued wait on a semaphore created
with a VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY there must be a prior signal of that
semaphore that will not be consumed by a different wait on the semaphore.

When using timeline semaphores, wait-before-signal behavior is well-defined and applications can
submit work via vkQueueSubmit defining a timeline semaphore wait operation before submitting a
corresponding semaphore signal operation. For each timeline semaphore wait operation defined by
a call to vkQueueSubmit, the application must ensure that a corresponding semaphore signal
operation is executed before forward progress can be made.

If a command buffer submission waits for any events to be signaled, the application must ensure
that command buffer submissions will be able to complete without any subsequent operations by
the application. Events signaled by the host must be signaled before the command buffer waits on
those events.

Note

The ability for commands to wait on the host to set an events was originally added
to allow low-latency updates to resources between host and device. However, to
ensure quality of service, implementations would necessarily detect extended
stalls in execution and timeout after a short period. As this period is not defined in
the Vulkan specification, it is impossible to correctly validate any application with
any wait period. Since the original users of this functionality were highly limited
and platform-specific, this functionality is now considered defunct and should not
be used.

6.7. Secondary Command Buffer Execution
Secondary command buffers must not be directly submitted to a queue. To record a secondary
command buffer to execute as part of a primary command buffer, call:

// Provided by VK_VERSION_1_0

147

void vkCmdExecuteCommands(
 VkCommandBuffer commandBuffer,
 uint32_t commandBufferCount,
 const VkCommandBuffer* pCommandBuffers);

• commandBuffer is a handle to a primary command buffer that the secondary command buffers
are executed in.

• commandBufferCount is the length of the pCommandBuffers array.

• pCommandBuffers is a pointer to an array of commandBufferCount secondary command buffer
handles, which are recorded to execute in the primary command buffer in the order they are
listed in the array.

If any element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, and it was recorded into any other primary
command buffer which is currently in the executable or recording state, that primary command
buffer becomes invalid.

Valid Usage

• VUID-vkCmdExecuteCommands-pCommandBuffers-00088
Each element of pCommandBuffers must have been allocated with a level of
VK_COMMAND_BUFFER_LEVEL_SECONDARY

• VUID-vkCmdExecuteCommands-pCommandBuffers-00089
Each element of pCommandBuffers must be in the pending or executable state

• VUID-vkCmdExecuteCommands-pCommandBuffers-00091
If any element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not be in the pending state

• VUID-vkCmdExecuteCommands-pCommandBuffers-00092
If any element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not have already been
recorded to commandBuffer

• VUID-vkCmdExecuteCommands-pCommandBuffers-00093
If any element of pCommandBuffers was not recorded with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT flag, it must not appear more than once in
pCommandBuffers

• VUID-vkCmdExecuteCommands-pCommandBuffers-00094
Each element of pCommandBuffers must have been allocated from a VkCommandPool that was
created for the same queue family as the VkCommandPool from which commandBuffer was
allocated

• VUID-vkCmdExecuteCommands-pCommandBuffers-00096
If vkCmdExecuteCommands is being called within a render pass instance, each element of
pCommandBuffers must have been recorded with the
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

• VUID-vkCmdExecuteCommands-pCommandBuffers-00099

148

If vkCmdExecuteCommands is being called within a render pass instance, and any element of
pCommandBuffers was recorded with VkCommandBufferInheritanceInfo::framebuffer not
equal to VK_NULL_HANDLE, that VkFramebuffer must match the VkFramebuffer used in the
current render pass instance

• VUID-vkCmdExecuteCommands-contents-06018
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRenderPass, its contents parameter must have been set to
VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS

• VUID-vkCmdExecuteCommands-pCommandBuffers-06019
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRenderPass, each element of pCommandBuffers must have been recorded with
VkCommandBufferInheritanceInfo::subpass set to the index of the subpass which the
given command buffer will be executed in

• VUID-vkCmdExecuteCommands-pBeginInfo-06020
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRenderPass, the render passes specified in the pBeginInfo->pInheritanceInfo-
>renderPass members of the vkBeginCommandBuffer commands used to begin recording
each element of pCommandBuffers must be compatible with the current render pass

• VUID-vkCmdExecuteCommands-pCommandBuffers-00100
If vkCmdExecuteCommands is not being called within a render pass instance, each element of
pCommandBuffers must not have been recorded with the
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

• VUID-vkCmdExecuteCommands-commandBuffer-00101
If the inheritedQueries feature is not enabled, commandBuffer must not have any queries
active

• VUID-vkCmdExecuteCommands-commandBuffer-00102
If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo
::occlusionQueryEnable set to VK_TRUE

• VUID-vkCmdExecuteCommands-commandBuffer-00103
If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo
::queryFlags having all bits set that are set for the query

• VUID-vkCmdExecuteCommands-commandBuffer-00104
If commandBuffer has a VK_QUERY_TYPE_PIPELINE_STATISTICS query active, then each element
of pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo
::pipelineStatistics having all bits set that are set in the VkQueryPool the query uses

• VUID-vkCmdExecuteCommands-pCommandBuffers-00105
Each element of pCommandBuffers must not begin any query types that are active in
commandBuffer

• VUID-vkCmdExecuteCommands-commandBuffer-07594
commandBuffer must not have any queries other than VK_QUERY_TYPE_OCCLUSION and
VK_QUERY_TYPE_PIPELINE_STATISTICS active

149

• VUID-vkCmdExecuteCommands-commandBuffer-01820
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
each element of pCommandBuffers must be a protected command buffer

• VUID-vkCmdExecuteCommands-commandBuffer-01821
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
each element of pCommandBuffers must be an unprotected command buffer

• VUID-vkCmdExecuteCommands-commandBuffer-06533
If vkCmdExecuteCommands is being called within a render pass instance and any recorded
command in commandBuffer in the current subpass will write to an image subresource as
an attachment, commands recorded in elements of pCommandBuffers must not read from
the memory backing that image subresource in any other way

• VUID-vkCmdExecuteCommands-commandBuffer-06534
If vkCmdExecuteCommands is being called within a render pass instance and any recorded
command in commandBuffer in the current subpass will read from an image subresource
used as an attachment in any way other than as an attachment, commands recorded in
elements of pCommandBuffers must not write to that image subresource as an attachment

• VUID-vkCmdExecuteCommands-pCommandBuffers-06535
If vkCmdExecuteCommands is being called within a render pass instance and any recorded
command in a given element of pCommandBuffers will write to an image subresource as an
attachment, commands recorded in elements of pCommandBuffers at a higher index must
not read from the memory backing that image subresource in any other way

• VUID-vkCmdExecuteCommands-pCommandBuffers-06536
If vkCmdExecuteCommands is being called within a render pass instance and any recorded
command in a given element of pCommandBuffers will read from an image subresource
used as an attachment in any way other than as an attachment, commands recorded in
elements of pCommandBuffers at a higher index must not write to that image subresource
as an attachment

• VUID-vkCmdExecuteCommands-pCommandBuffers-06021
If pCommandBuffers contains any suspended render pass instances, there must be no action
or synchronization commands between that render pass instance and any render pass
instance that resumes it

• VUID-vkCmdExecuteCommands-pCommandBuffers-06022
If pCommandBuffers contains any suspended render pass instances, there must be no
render pass instances between that render pass instance and any render pass instance
that resumes it

• VUID-vkCmdExecuteCommands-flags-06024
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, its VkRenderingInfo::flags parameter must have included
VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT

• VUID-vkCmdExecuteCommands-pBeginInfo-06025
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, the render passes specified in the pBeginInfo->pInheritanceInfo-
>renderPass members of the vkBeginCommandBuffer commands used to begin recording
each element of pCommandBuffers must be VK_NULL_HANDLE

150

• VUID-vkCmdExecuteCommands-flags-06026
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, the flags member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be equal to the VkRenderingInfo::flags parameter to
vkCmdBeginRendering, excluding VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT

• VUID-vkCmdExecuteCommands-colorAttachmentCount-06027
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, the colorAttachmentCount member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be equal to the VkRenderingInfo::colorAttachmentCount parameter
to vkCmdBeginRendering

• VUID-vkCmdExecuteCommands-imageView-06028
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, if the imageView member of an element of the VkRenderingInfo
::pColorAttachments parameter to vkCmdBeginRendering is not VK_NULL_HANDLE, the
corresponding element of the pColorAttachmentFormats member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be equal to the format used to create that image view

• VUID-vkCmdExecuteCommands-imageView-07606
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, if the imageView member of an element of the VkRenderingInfo
::pColorAttachments parameter to vkCmdBeginRendering is VK_NULL_HANDLE, the
corresponding element of the pColorAttachmentFormats member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteCommands-pDepthAttachment-06029
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, if the VkRenderingInfo::pDepthAttachment->imageView parameter to
vkCmdBeginRendering is not VK_NULL_HANDLE, the value of the depthAttachmentFormat
member of the VkCommandBufferInheritanceRenderingInfo structure included in the
pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording
each element of pCommandBuffers must be equal to the format used to create that image
view

• VUID-vkCmdExecuteCommands-pStencilAttachment-06030
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, if the VkRenderingInfo::pStencilAttachment->imageView parameter
to vkCmdBeginRendering is not VK_NULL_HANDLE, the value of the
stencilAttachmentFormat member of the VkCommandBufferInheritanceRenderingInfo
structure included in the pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo
used to begin recording each element of pCommandBuffers must be equal to the format used
to create that image view

151

• VUID-vkCmdExecuteCommands-pDepthAttachment-06774
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the VkRenderingInfo::pDepthAttachment->imageView parameter
to vkCmdBeginRendering was VK_NULL_HANDLE, the value of the depthAttachmentFormat
member of the VkCommandBufferInheritanceRenderingInfo structure included in the
pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording
each element of pCommandBuffers must be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteCommands-pStencilAttachment-06775
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering and the VkRenderingInfo::pStencilAttachment->imageView
parameter to vkCmdBeginRendering was VK_NULL_HANDLE, the value of the
stencilAttachmentFormat member of the VkCommandBufferInheritanceRenderingInfo
structure included in the pNext chain of VkCommandBufferBeginInfo::pInheritanceInfo
used to begin recording each element of pCommandBuffers must be VK_FORMAT_UNDEFINED

• VUID-vkCmdExecuteCommands-viewMask-06031
If vkCmdExecuteCommands is being called within a render pass instance begun with
vkCmdBeginRendering, the viewMask member of the
VkCommandBufferInheritanceRenderingInfo structure included in the pNext chain of
VkCommandBufferBeginInfo::pInheritanceInfo used to begin recording each element of
pCommandBuffers must be equal to the VkRenderingInfo::viewMask parameter to
vkCmdBeginRendering

• VUID-vkCmdExecuteCommands-commandBuffer-09375
commandBuffer must not be a secondary command buffer

Valid Usage (Implicit)

• VUID-vkCmdExecuteCommands-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdExecuteCommands-pCommandBuffers-parameter
pCommandBuffers must be a valid pointer to an array of commandBufferCount valid
VkCommandBuffer handles

• VUID-vkCmdExecuteCommands-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdExecuteCommands-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdExecuteCommands-commandBufferCount-arraylength
commandBufferCount must be greater than 0

• VUID-vkCmdExecuteCommands-commonparent
Both of commandBuffer, and the elements of pCommandBuffers must have been created,
allocated, or retrieved from the same VkDevice

152

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Transfer
Graphics
Compute

Indirection

6.8. Command Buffer Device Mask
Each command buffer has a piece of state storing the current device mask of the command buffer.
This mask controls which physical devices within the logical device all subsequent commands will
execute on, including state-setting commands, action commands, and synchronization commands.

Scissor and viewport state (excluding the count of each) can be set to different values on each
physical device (only when set as dynamic state), and each physical device will render using its
local copy of the state. Other state is shared between physical devices, such that all physical devices
use the most recently set values for the state. However, when recording an action command that
uses a piece of state, the most recent command that set that state must have included all physical
devices that execute the action command in its current device mask.

The command buffer’s device mask is orthogonal to the pCommandBufferDeviceMasks member of
VkDeviceGroupSubmitInfo. Commands only execute on a physical device if the device index is set
in both device masks.

If the pNext chain of VkCommandBufferBeginInfo includes a VkDeviceGroupCommandBufferBeginInfo
structure, then that structure includes an initial device mask for the command buffer.

The VkDeviceGroupCommandBufferBeginInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupCommandBufferBeginInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t deviceMask;
} VkDeviceGroupCommandBufferBeginInfo;

• sType is a VkStructureType value identifying this structure.

153

• pNext is NULL or a pointer to a structure extending this structure.

• deviceMask is the initial value of the command buffer’s device mask.

The initial device mask also acts as an upper bound on the set of devices that can ever be in the
device mask in the command buffer.

If this structure is not present, the initial value of a command buffer’s device mask is set to include
all physical devices in the logical device when the command buffer begins recording.

Valid Usage

• VUID-VkDeviceGroupCommandBufferBeginInfo-deviceMask-00106
deviceMask must be a valid device mask value

• VUID-VkDeviceGroupCommandBufferBeginInfo-deviceMask-00107
deviceMask must not be zero

Valid Usage (Implicit)

• VUID-VkDeviceGroupCommandBufferBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO

To update the current device mask of a command buffer, call:

// Provided by VK_VERSION_1_1
void vkCmdSetDeviceMask(
 VkCommandBuffer commandBuffer,
 uint32_t deviceMask);

• commandBuffer is command buffer whose current device mask is modified.

• deviceMask is the new value of the current device mask.

deviceMask is used to filter out subsequent commands from executing on all physical devices whose
bit indices are not set in the mask, except commands beginning a render pass instance, commands
transitioning to the next subpass in the render pass instance, and commands ending a render pass
instance, which always execute on the set of physical devices whose bit indices are included in the
deviceMask member of the VkDeviceGroupRenderPassBeginInfo structure passed to the command
beginning the corresponding render pass instance.

Valid Usage

• VUID-vkCmdSetDeviceMask-deviceMask-00108
deviceMask must be a valid device mask value

• VUID-vkCmdSetDeviceMask-deviceMask-00109
deviceMask must not be zero

154

• VUID-vkCmdSetDeviceMask-deviceMask-00110
deviceMask must not include any set bits that were not in the
VkDeviceGroupCommandBufferBeginInfo::deviceMask value when the command buffer
began recording

• VUID-vkCmdSetDeviceMask-deviceMask-00111
If vkCmdSetDeviceMask is called inside a render pass instance, deviceMask must not include
any set bits that were not in the VkDeviceGroupRenderPassBeginInfo::deviceMask value
when the render pass instance began recording

Valid Usage (Implicit)

• VUID-vkCmdSetDeviceMask-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDeviceMask-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDeviceMask-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, compute,
or transfer operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics
Compute
Transfer

State

155

Chapter 7. Synchronization and Cache
Control
Synchronization of access to resources is primarily the responsibility of the application in Vulkan.
The order of execution of commands with respect to the host and other commands on the device
has few implicit guarantees, and needs to be explicitly specified. Memory caches and other
optimizations are also explicitly managed, requiring that the flow of data through the system is
largely under application control.

Whilst some implicit guarantees exist between commands, five explicit synchronization
mechanisms are exposed by Vulkan:

Fences

Fences can be used to communicate to the host that execution of some task on the device has
completed, controlling resource access between host and device.

Semaphores

Semaphores can be used to control resource access across multiple queues.

Events

Events provide a fine-grained synchronization primitive which can be signaled either within a
command buffer or by the host, and can be waited upon within a command buffer or queried
on the host. Events can be used to control resource access within a single queue.

Pipeline Barriers

Pipeline barriers also provide synchronization control within a command buffer, but at a single
point, rather than with separate signal and wait operations. Pipeline barriers can be used to
control resource access within a single queue.

Render Pass Objects

Render pass objects provide a synchronization framework for rendering tasks, built upon the
concepts in this chapter. Many cases that would otherwise need an application to use other
synchronization primitives can be expressed more efficiently as part of a render pass. Render
pass objects can be used to control resource access within a single queue.

7.1. Execution and Memory Dependencies
An operation is an arbitrary amount of work to be executed on the host, a device, or an external
entity such as a presentation engine. Synchronization commands introduce explicit execution
dependencies, and memory dependencies between two sets of operations defined by the command’s
two synchronization scopes.

The synchronization scopes define which other operations a synchronization command is able to
create execution dependencies with. Any type of operation that is not in a synchronization
command’s synchronization scopes will not be included in the resulting dependency. For example,
for many synchronization commands, the synchronization scopes can be limited to just operations
executing in specific pipeline stages, which allows other pipeline stages to be excluded from a

156

dependency. Other scoping options are possible, depending on the particular command.

An execution dependency is a guarantee that for two sets of operations, the first set must happen-
before the second set. If an operation happens-before another operation, then the first operation
must complete before the second operation is initiated. More precisely:

• Let Ops1 and Ops2 be separate sets of operations.

• Let Sync be a synchronization command.

• Let Scope1st and Scope2nd be the synchronization scopes of Sync.

• Let ScopedOps1 be the intersection of sets Ops1 and Scope1st.

• Let ScopedOps2 be the intersection of sets Ops2 and Scope2nd.

• Submitting Ops1, Sync and Ops2 for execution, in that order, will result in execution
dependency ExeDep between ScopedOps1 and ScopedOps2.

• Execution dependency ExeDep guarantees that ScopedOps1 happen-before ScopedOps2.

An execution dependency chain is a sequence of execution dependencies that form a happens-before
relation between the first dependency’s ScopedOps1 and the final dependency’s ScopedOps2. For
each consecutive pair of execution dependencies, a chain exists if the intersection of Scope2nd in the
first dependency and Scope1st in the second dependency is not an empty set. The formation of a
single execution dependency from an execution dependency chain can be described by substituting
the following in the description of execution dependencies:

• Let Sync be a set of synchronization commands that generate an execution dependency chain.

• Let Scope1st be the first synchronization scope of the first command in Sync.

• Let Scope2nd be the second synchronization scope of the last command in Sync.

Execution dependencies alone are not sufficient to guarantee that values resulting from writes in
one set of operations can be read from another set of operations.

Three additional types of operations are used to control memory access. Availability operations
cause the values generated by specified memory write accesses to become available to a memory
domain for future access. Any available value remains available until a subsequent write to the
same memory location occurs (whether it is made available or not) or the memory is freed. Memory
domain operations cause writes that are available to a source memory domain to become available
to a destination memory domain (an example of this is making writes available to the host domain
available to the device domain). Visibility operations cause values available to a memory domain to
become visible to specified memory accesses.

Availability, visibility, memory domains, and memory domain operations are formally defined in
the Availability and Visibility section of the Memory Model chapter. Which API operations perform
each of these operations is defined in Availability, Visibility, and Domain Operations.

A memory dependency is an execution dependency which includes availability and visibility
operations such that:

• The first set of operations happens-before the availability operation.

157

• The availability operation happens-before the visibility operation.

• The visibility operation happens-before the second set of operations.

Once written values are made visible to a particular type of memory access, they can be read or
written by that type of memory access. Most synchronization commands in Vulkan define a
memory dependency.

The specific memory accesses that are made available and visible are defined by the access scopes
of a memory dependency. Any type of access that is in a memory dependency’s first access scope
and occurs in ScopedOps1 is made available. Any type of access that is in a memory dependency’s
second access scope and occurs in ScopedOps2 has any available writes made visible to it. Any type
of operation that is not in a synchronization command’s access scopes will not be included in the
resulting dependency.

A memory dependency enforces availability and visibility of memory accesses and execution order
between two sets of operations. Adding to the description of execution dependency chains:

• Let MemOps1 be the set of memory accesses performed by ScopedOps1.

• Let MemOps2 be the set of memory accesses performed by ScopedOps2.

• Let AccessScope1st be the first access scope of the first command in the Sync chain.

• Let AccessScope2nd be the second access scope of the last command in the Sync chain.

• Let ScopedMemOps1 be the intersection of sets MemOps1 and AccessScope1st.

• Let ScopedMemOps2 be the intersection of sets MemOps2 and AccessScope2nd.

• Submitting Ops1, Sync, and Ops2 for execution, in that order, will result in a memory
dependency MemDep between ScopedOps1 and ScopedOps2.

• Memory dependency MemDep guarantees that:

◦ Memory writes in ScopedMemOps1 are made available.

◦ Available memory writes, including those from ScopedMemOps1, are made visible to
ScopedMemOps2.

Note

Execution and memory dependencies are used to solve data hazards, i.e. to ensure
that read and write operations occur in a well-defined order. Write-after-read
hazards can be solved with just an execution dependency, but read-after-write and
write-after-write hazards need appropriate memory dependencies to be included
between them. If an application does not include dependencies to solve these
hazards, the results and execution orders of memory accesses are undefined.

7.1.1. Image Layout Transitions

Image subresources can be transitioned from one layout to another as part of a memory
dependency (e.g. by using an image memory barrier). When a layout transition is specified in a
memory dependency, it happens-after the availability operations in the memory dependency, and
happens-before the visibility operations. Image layout transitions may perform read and write

158

accesses on all memory bound to the image subresource range, so applications must ensure that all
memory writes have been made available before a layout transition is executed. Available memory
is automatically made visible to a layout transition, and writes performed by a layout transition are
automatically made available.

Layout transitions always apply to a particular image subresource range, and specify both an old
layout and new layout. The old layout must either be VK_IMAGE_LAYOUT_UNDEFINED, or match the
current layout of the image subresource range. If the old layout matches the current layout of the
image subresource range, the transition preserves the contents of that range. If the old layout is
VK_IMAGE_LAYOUT_UNDEFINED, the contents of that range may be discarded.

Note

Image layout transitions with VK_IMAGE_LAYOUT_UNDEFINED allow the implementation
to discard the image subresource range, which can provide performance or power
benefits. Tile-based architectures may be able to avoid flushing tile data to
memory, and immediate style renderers may be able to achieve fast metadata
clears to reinitialize frame buffer compression state, or similar.

If the contents of an attachment are not needed after a render pass completes,
then applications should use VK_ATTACHMENT_STORE_OP_DONT_CARE.

As image layout transitions may perform read and write accesses on the memory bound to the
image, if the image subresource affected by the layout transition is bound to peer memory for any
device in the current device mask then the memory heap the bound memory comes from must
support the VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT and VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT
capabilities as returned by vkGetDeviceGroupPeerMemoryFeatures.

Note

Applications must ensure that layout transitions happen-after all operations
accessing the image with the old layout, and happen-before any operations that
will access the image with the new layout. Layout transitions are potentially
read/write operations, so not defining appropriate memory dependencies to
guarantee this will result in a data race.

Image layout transitions interact with memory aliasing.

Layout transitions that are performed via image memory barriers execute in their entirety in
submission order, relative to other image layout transitions submitted to the same queue, including
those performed by render passes. In effect there is an implicit execution dependency from each
such layout transition to all layout transitions previously submitted to the same queue.

7.1.2. Pipeline Stages

The work performed by an action command consists of multiple operations, which are performed
as a sequence of logically independent steps known as pipeline stages. The exact pipeline stages
executed depend on the particular command that is used, and current command buffer state when
the command was recorded.

159

Note

Operations performed by synchronization commands (e.g. availability and
visibility operations) are not executed by a defined pipeline stage. However other
commands can still synchronize with them by using the synchronization scopes to
create a dependency chain.

Execution of operations across pipeline stages must adhere to implicit ordering guarantees,
particularly including pipeline stage order. Otherwise, execution across pipeline stages may
overlap or execute out of order with regards to other stages, unless otherwise enforced by an
execution dependency.

Several of the synchronization commands include pipeline stage parameters, restricting the
synchronization scopes for that command to just those stages. This allows fine grained control over
the exact execution dependencies and accesses performed by action commands. Implementations
should use these pipeline stages to avoid unnecessary stalls or cache flushing.

Bits which can be set in a VkPipelineStageFlags2 mask, specifying stages of execution, are:

// Provided by VK_VERSION_1_3
// Flag bits for VkPipelineStageFlagBits2
typedef VkFlags64 VkPipelineStageFlagBits2;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_NONE = 0ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_NONE_KHR = 0ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT =
0x00000001ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT_KHR =
0x00000001ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT =
0x00000002ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT_KHR =
0x00000002ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT =
0x00000004ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT_KHR =
0x00000004ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT =
0x00000008ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT_KHR =
0x00000008ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT_KHR = 0x00000010ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT_KHR = 0x00000020ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT =
0x00000040ULL;

160

static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT_KHR =
0x00000040ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT =
0x00000080ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR =
0x00000080ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT =
0x00000100ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT_KHR
= 0x00000100ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT =
0x00000200ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT_KHR
= 0x00000200ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
= 0x00000400ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT_KHR = 0x00000400ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT =
0x00000800ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT_KHR =
0x00000800ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT =
0x00001000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT_KHR =
0x00001000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TRANSFER_BIT =
0x00001000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_TRANSFER_BIT_KHR =
0x00001000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT =
0x00002000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT_KHR =
0x00002000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_HOST_BIT = 0x00004000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_HOST_BIT_KHR =
0x00004000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT =
0x00008000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT_KHR =
0x00008000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT =
0x00010000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR =
0x00010000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COPY_BIT = 0x100000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_COPY_BIT_KHR =
0x100000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_RESOLVE_BIT =
0x200000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_RESOLVE_BIT_KHR =

161

0x200000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_BLIT_BIT = 0x400000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_BLIT_BIT_KHR =
0x400000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_CLEAR_BIT = 0x800000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_CLEAR_BIT_KHR =
0x800000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT =
0x1000000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT_KHR =
0x1000000000ULL;
static const VkPipelineStageFlagBits2 VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT =
0x2000000000ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT_KHR = 0x2000000000ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT = 0x4000000000ULL;
static const VkPipelineStageFlagBits2
VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT_KHR = 0x4000000000ULL;

• VK_PIPELINE_STAGE_2_NONE specifies no stages of execution.

• VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT specifies the stage of the pipeline where indirect
command parameters are consumed.

• VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT specifies the stage of the pipeline where index buffers are
consumed.

• VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT specifies the stage of the pipeline where vertex
buffers are consumed.

• VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT is equivalent to the logical OR of:

◦ VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT

◦ VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT

• VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT specifies the vertex shader stage.

• VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT specifies the tessellation control shader
stage.

• VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT specifies the tessellation evaluation
shader stage.

• VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT specifies the geometry shader stage.

• VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT is equivalent to specifying all supported
pre-rasterization shader stages:

◦ VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

162

• VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT specifies the fragment shader stage.

• VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where early
fragment tests (depth and stencil tests before fragment shading) are performed. This stage also
includes render pass load operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where late
fragment tests (depth and stencil tests after fragment shading) are performed. This stage also
includes render pass store operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT specifies the stage of the pipeline where final
color values are output from the pipeline. This stage includes blending, logic operations, render
pass load and store operations for color attachments, render pass multisample resolve
operations, and vkCmdClearAttachments.

• VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT specifies the compute shader stage.

• VK_PIPELINE_STAGE_2_HOST_BIT specifies a pseudo-stage indicating execution on the host of
reads/writes of device memory. This stage is not invoked by any commands recorded in a
command buffer.

• VK_PIPELINE_STAGE_2_COPY_BIT specifies the execution of all copy commands, including
vkCmdCopyQueryPoolResults.

• VK_PIPELINE_STAGE_2_BLIT_BIT specifies the execution of vkCmdBlitImage.

• VK_PIPELINE_STAGE_2_RESOLVE_BIT specifies the execution of vkCmdResolveImage.

• VK_PIPELINE_STAGE_2_CLEAR_BIT specifies the execution of clear commands, with the exception of
vkCmdClearAttachments.

• VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT is equivalent to specifying all of:

◦ VK_PIPELINE_STAGE_2_COPY_BIT

◦ VK_PIPELINE_STAGE_2_BLIT_BIT

◦ VK_PIPELINE_STAGE_2_RESOLVE_BIT

◦ VK_PIPELINE_STAGE_2_CLEAR_BIT

• VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT specifies the execution of all graphics pipeline stages, and
is equivalent to the logical OR of:

◦ VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT

◦ VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT

◦ VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT

◦ VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT

163

• VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT specifies all operations performed by all commands
supported on the queue it is used with.

• VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with
VkAccessFlags2 set to 0 when specified in the second synchronization scope, but equivalent to
VK_PIPELINE_STAGE_2_NONE in the first scope.

• VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT
with VkAccessFlags2 set to 0 when specified in the first synchronization scope, but equivalent to
VK_PIPELINE_STAGE_2_NONE in the second scope.

Note

The TOP and BOTTOM pipeline stages are deprecated, and applications should prefer
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT and VK_PIPELINE_STAGE_2_NONE.

Note

The VkPipelineStageFlags2 bitmask goes beyond the 31 individual bit flags
allowable within a C99 enum, which is how VkPipelineStageFlagBits is defined.
The first 31 values are common to both, and are interchangeable.

VkPipelineStageFlags2 is a bitmask type for setting a mask of zero or more VkPipelineStageFlagBits2
flags:

// Provided by VK_VERSION_1_3
typedef VkFlags64 VkPipelineStageFlags2;

Bits which can be set in a VkPipelineStageFlags mask, specifying stages of execution, are:

// Provided by VK_VERSION_1_0
typedef enum VkPipelineStageFlagBits {
 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,
 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,
 VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,
 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,
 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,
 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,
 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,
 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,
 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,
 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,
 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,
 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,
 VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,
 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,
 VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,
 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,
 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,
 // Provided by VK_VERSION_1_3

164

 VK_PIPELINE_STAGE_NONE = 0,
} VkPipelineStageFlagBits;

These values all have the same meaning as the equivalently named values for
VkPipelineStageFlags2.

• VK_PIPELINE_STAGE_NONE specifies no stages of execution.

• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT specifies the stage of the pipeline where VkDrawIndirect* /
VkDispatchIndirect* / VkTraceRaysIndirect* data structures are consumed.

• VK_PIPELINE_STAGE_VERTEX_INPUT_BIT specifies the stage of the pipeline where vertex and index
buffers are consumed.

• VK_PIPELINE_STAGE_VERTEX_SHADER_BIT specifies the vertex shader stage.

• VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT specifies the tessellation control shader
stage.

• VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT specifies the tessellation evaluation
shader stage.

• VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT specifies the geometry shader stage.

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT specifies the fragment shader stage.

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where early
fragment tests (depth and stencil tests before fragment shading) are performed. This stage also
includes render pass load operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT specifies the stage of the pipeline where late
fragment tests (depth and stencil tests after fragment shading) are performed. This stage also
includes render pass store operations for framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT specifies the stage of the pipeline after blending
where the final color values are output from the pipeline. This stage includes blending, logic
operations, render pass load and store operations for color attachments, render pass
multisample resolve operations, and vkCmdClearAttachments.

• VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT specifies the execution of a compute shader.

• VK_PIPELINE_STAGE_TRANSFER_BIT specifies the following commands:

◦ All copy commands, including vkCmdCopyQueryPoolResults

◦ vkCmdBlitImage2 and vkCmdBlitImage

◦ vkCmdResolveImage2 and vkCmdResolveImage

◦ All clear commands, with the exception of vkCmdClearAttachments

• VK_PIPELINE_STAGE_HOST_BIT specifies a pseudo-stage indicating execution on the host of
reads/writes of device memory. This stage is not invoked by any commands recorded in a
command buffer.

• VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT specifies the execution of all graphics pipeline stages, and is
equivalent to the logical OR of:

◦ VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

165

◦ VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

◦ VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

◦ VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT

◦ VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

◦ VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

◦ VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

◦ VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

◦ VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

• VK_PIPELINE_STAGE_ALL_COMMANDS_BIT specifies all operations performed by all commands
supported on the queue it is used with.

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT is equivalent to VK_PIPELINE_STAGE_ALL_COMMANDS_BIT with
VkAccessFlags set to 0 when specified in the second synchronization scope, but specifies no
stage of execution when specified in the first scope.

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT is equivalent to VK_PIPELINE_STAGE_ALL_COMMANDS_BIT with
VkAccessFlags set to 0 when specified in the first synchronization scope, but specifies no stage
of execution when specified in the second scope.

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineStageFlags;

VkPipelineStageFlags is a bitmask type for setting a mask of zero or more VkPipelineStageFlagBits.

If a synchronization command includes a source stage mask, its first synchronization scope only
includes execution of the pipeline stages specified in that mask and any logically earlier stages. Its
first access scope only includes memory accesses performed by pipeline stages explicitly specified
in the source stage mask.

If a synchronization command includes a destination stage mask, its second synchronization scope
only includes execution of the pipeline stages specified in that mask and any logically later stages.
Its second access scope only includes memory accesses performed by pipeline stages explicitly
specified in the destination stage mask.

Note

Note that access scopes do not interact with the logically earlier or later stages for
either scope - only the stages the app specifies are considered part of each access
scope.

Certain pipeline stages are only available on queues that support a particular set of operations. The
following table lists, for each pipeline stage flag, which queue capability flag must be supported by
the queue. When multiple flags are enumerated in the second column of the table, it means that the
pipeline stage is supported on the queue if it supports any of the listed capability flags. For further
details on queue capabilities see Physical Device Enumeration and Queues.

166

Table 3. Supported pipeline stage flags

Pipeline stage flag Required queue capability
flag

VK_PIPELINE_STAGE_2_NONE None required

VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT None required

VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT VK_QUEUE_COMPUTE_BIT

VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT None required

VK_PIPELINE_STAGE_2_HOST_BIT None required

VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT None required

VK_PIPELINE_STAGE_2_COPY_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_RESOLVE_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_BLIT_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_CLEAR_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT VK_QUEUE_GRAPHICS_BIT

Pipeline stages that execute as a result of a command logically complete execution in a specific
order, such that completion of a logically later pipeline stage must not happen-before completion of

167

a logically earlier stage. This means that including any stage in the source stage mask for a
particular synchronization command also implies that any logically earlier stages are included in
Scope1st for that command.

Similarly, initiation of a logically earlier pipeline stage must not happen-after initiation of a
logically later pipeline stage. Including any given stage in the destination stage mask for a
particular synchronization command also implies that any logically later stages are included in
Scope2nd for that command.

Note

Implementations may not support synchronization at every pipeline stage for
every synchronization operation. If a pipeline stage that an implementation does
not support synchronization for appears in a source stage mask, it may substitute
any logically later stage in its place for the first synchronization scope. If a pipeline
stage that an implementation does not support synchronization for appears in a
destination stage mask, it may substitute any logically earlier stage in its place for
the second synchronization scope.

For example, if an implementation is unable to signal an event immediately after
vertex shader execution is complete, it may instead signal the event after color
attachment output has completed.

If an implementation makes such a substitution, it must not affect the semantics of
execution or memory dependencies or image and buffer memory barriers.

Graphics pipelines are executable on queues supporting VK_QUEUE_GRAPHICS_BIT. Stages executed by
graphics pipelines can only be specified in commands recorded for queues supporting
VK_QUEUE_GRAPHICS_BIT.

The graphics pipeline executes the following stages, with the logical ordering of the stages matching
the order specified here:

• VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT

• VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT

• VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT

• VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT

• VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT

• VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT

For the compute pipeline, the following stages occur in this order:

168

• VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT

For the transfer pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_2_TRANSFER_BIT

For host operations, only one pipeline stage occurs, so no order is guaranteed:

• VK_PIPELINE_STAGE_2_HOST_BIT

7.1.3. Access Types

Memory in Vulkan can be accessed from within shader invocations and via some fixed-function
stages of the pipeline. The access type is a function of the descriptor type used, or how a fixed-
function stage accesses memory.

Some synchronization commands take sets of access types as parameters to define the access
scopes of a memory dependency. If a synchronization command includes a source access mask, its
first access scope only includes accesses via the access types specified in that mask. Similarly, if a
synchronization command includes a destination access mask, its second access scope only includes
accesses via the access types specified in that mask.

Bits which can be set in the srcAccessMask and dstAccessMask members of VkMemoryBarrier2KHR,
VkImageMemoryBarrier2KHR, and VkBufferMemoryBarrier2KHR, specifying access behavior, are:

// Provided by VK_VERSION_1_3
// Flag bits for VkAccessFlagBits2
typedef VkFlags64 VkAccessFlagBits2;
static const VkAccessFlagBits2 VK_ACCESS_2_NONE = 0ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_NONE_KHR = 0ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT = 0x00000001ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT_KHR =
0x00000001ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INDEX_READ_BIT = 0x00000002ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INDEX_READ_BIT_KHR = 0x00000002ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT = 0x00000004ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT_KHR =
0x00000004ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_UNIFORM_READ_BIT = 0x00000008ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_UNIFORM_READ_BIT_KHR = 0x00000008ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT = 0x00000010ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT_KHR =
0x00000010ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_READ_BIT = 0x00000020ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_READ_BIT_KHR = 0x00000020ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_WRITE_BIT = 0x00000040ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_WRITE_BIT_KHR = 0x00000040ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT = 0x00000080ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT_KHR =

169

0x00000080ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT = 0x00000100ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT_KHR =
0x00000100ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT =
0x00000200ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT_KHR =
0x00000200ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT =
0x00000400ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT_KHR =
0x00000400ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFER_READ_BIT = 0x00000800ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFER_READ_BIT_KHR = 0x00000800ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFER_WRITE_BIT = 0x00001000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_TRANSFER_WRITE_BIT_KHR = 0x00001000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_HOST_READ_BIT = 0x00002000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_HOST_READ_BIT_KHR = 0x00002000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_HOST_WRITE_BIT = 0x00004000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_HOST_WRITE_BIT_KHR = 0x00004000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_MEMORY_READ_BIT = 0x00008000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_MEMORY_READ_BIT_KHR = 0x00008000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_MEMORY_WRITE_BIT = 0x00010000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_MEMORY_WRITE_BIT_KHR = 0x00010000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_SAMPLED_READ_BIT = 0x100000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_SAMPLED_READ_BIT_KHR =
0x100000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_STORAGE_READ_BIT = 0x200000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_STORAGE_READ_BIT_KHR =
0x200000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT = 0x400000000ULL;
static const VkAccessFlagBits2 VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT_KHR =
0x400000000ULL;

• VK_ACCESS_2_NONE specifies no accesses.

• VK_ACCESS_2_MEMORY_READ_BIT specifies all read accesses. It is always valid in any access mask,
and is treated as equivalent to setting all READ access flags that are valid where it is used.

• VK_ACCESS_2_MEMORY_WRITE_BIT specifies all write accesses. It is always valid in any access mask,
and is treated as equivalent to setting all WRITE access flags that are valid where it is used.

• VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT specifies read access to command data read from
indirect buffers as part of an indirect drawing or dispatch command. Such access occurs in the
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT pipeline stage.

• VK_ACCESS_2_INDEX_READ_BIT specifies read access to an index buffer as part of an indexed
drawing command, bound by vkCmdBindIndexBuffer. Such access occurs in the
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT pipeline stage.

• VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT specifies read access to a vertex buffer as part of a
drawing command, bound by vkCmdBindVertexBuffers. Such access occurs in the

170

VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT pipeline stage.

• VK_ACCESS_2_UNIFORM_READ_BIT specifies read access to a uniform buffer in any shader pipeline
stage.

• VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT specifies read access to an input attachment within a
render pass during fragment shading. Such access occurs in the
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT pipeline stage.

• VK_ACCESS_2_SHADER_SAMPLED_READ_BIT specifies read access to a uniform texel buffer or sampled
image in any shader pipeline stage.

• VK_ACCESS_2_SHADER_STORAGE_READ_BIT specifies read access to a storage buffer, physical storage
buffer, storage texel buffer, or storage image in any shader pipeline stage.

• VK_ACCESS_2_SHADER_READ_BIT is equivalent to the logical OR of:

◦ VK_ACCESS_2_SHADER_SAMPLED_READ_BIT

◦ VK_ACCESS_2_SHADER_STORAGE_READ_BIT

• VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT specifies write access to a storage buffer, physical storage
buffer, storage texel buffer, or storage image in any shader pipeline stage.

• VK_ACCESS_2_SHADER_WRITE_BIT is equivalent to VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT.

• VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT specifies read access to a color attachment, such as via
blending, logic operations or certain render pass load operations. Such access occurs in the
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

• VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT specifies write access to a color attachment during a
render pass or via certain render pass load, store, and multisample resolve operations. Such
access occurs in the VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

• VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT specifies read access to a depth/stencil
attachment, via depth or stencil operations or certain render pass load operations. Such access
occurs in the VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT or
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT pipeline stages.

• VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT specifies write access to a depth/stencil
attachment, via depth or stencil operations or certain render pass load and store operations.
Such access occurs in the VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT or
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT pipeline stages.

• VK_ACCESS_2_TRANSFER_READ_BIT specifies read access to an image or buffer in a copy operation.
Such access occurs in the VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT, or
VK_PIPELINE_STAGE_2_RESOLVE_BIT pipeline stages.

• VK_ACCESS_2_TRANSFER_WRITE_BIT specifies write access to an image or buffer in a clear or copy
operation. Such access occurs in the VK_PIPELINE_STAGE_2_COPY_BIT,
VK_PIPELINE_STAGE_2_BLIT_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT, or
VK_PIPELINE_STAGE_2_RESOLVE_BIT pipeline stages.

• VK_ACCESS_2_HOST_READ_BIT specifies read access by a host operation. Accesses of this type are not
performed through a resource, but directly on memory. Such access occurs in the
VK_PIPELINE_STAGE_2_HOST_BIT pipeline stage.

• VK_ACCESS_2_HOST_WRITE_BIT specifies write access by a host operation. Accesses of this type are

171

not performed through a resource, but directly on memory. Such access occurs in the
VK_PIPELINE_STAGE_2_HOST_BIT pipeline stage.

Note

In situations where an application wishes to select all access types for a given set
of pipeline stages, VK_ACCESS_2_MEMORY_READ_BIT or VK_ACCESS_2_MEMORY_WRITE_BIT
can be used. This is particularly useful when specifying stages that only have a
single access type.

Note

The VkAccessFlags2 bitmask goes beyond the 31 individual bit flags allowable
within a C99 enum, which is how VkAccessFlagBits is defined. The first 31 values
are common to both, and are interchangeable.

VkAccessFlags2 is a bitmask type for setting a mask of zero or more VkAccessFlagBits2:

// Provided by VK_VERSION_1_3
typedef VkFlags64 VkAccessFlags2;

Bits which can be set in the srcAccessMask and dstAccessMask members of VkSubpassDependency,
VkMemoryBarrier, VkBufferMemoryBarrier, and VkImageMemoryBarrier, specifying access
behavior, are:

// Provided by VK_VERSION_1_0
typedef enum VkAccessFlagBits {
 VK_ACCESS_INDIRECT_COMMAND_READ_BIT = 0x00000001,
 VK_ACCESS_INDEX_READ_BIT = 0x00000002,
 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT = 0x00000004,
 VK_ACCESS_UNIFORM_READ_BIT = 0x00000008,
 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT = 0x00000010,
 VK_ACCESS_SHADER_READ_BIT = 0x00000020,
 VK_ACCESS_SHADER_WRITE_BIT = 0x00000040,
 VK_ACCESS_COLOR_ATTACHMENT_READ_BIT = 0x00000080,
 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT = 0x00000100,
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT = 0x00000200,
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT = 0x00000400,
 VK_ACCESS_TRANSFER_READ_BIT = 0x00000800,
 VK_ACCESS_TRANSFER_WRITE_BIT = 0x00001000,
 VK_ACCESS_HOST_READ_BIT = 0x00002000,
 VK_ACCESS_HOST_WRITE_BIT = 0x00004000,
 VK_ACCESS_MEMORY_READ_BIT = 0x00008000,
 VK_ACCESS_MEMORY_WRITE_BIT = 0x00010000,
 // Provided by VK_VERSION_1_3
 VK_ACCESS_NONE = 0,
} VkAccessFlagBits;

These values all have the same meaning as the equivalently named values for VkAccessFlags2.

172

• VK_ACCESS_NONE specifies no accesses.

• VK_ACCESS_MEMORY_READ_BIT specifies all read accesses. It is always valid in any access mask, and
is treated as equivalent to setting all READ access flags that are valid where it is used.

• VK_ACCESS_MEMORY_WRITE_BIT specifies all write accesses. It is always valid in any access mask,
and is treated as equivalent to setting all WRITE access flags that are valid where it is used.

• VK_ACCESS_INDIRECT_COMMAND_READ_BIT specifies read access to indirect command data read as
part of an indirect drawing or dispatching command. Such access occurs in the
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT pipeline stage.

• VK_ACCESS_INDEX_READ_BIT specifies read access to an index buffer as part of an indexed drawing
command, bound by vkCmdBindIndexBuffer. Such access occurs in the
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT pipeline stage.

• VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT specifies read access to a vertex buffer as part of a
drawing command, bound by vkCmdBindVertexBuffers. Such access occurs in the
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT pipeline stage.

• VK_ACCESS_UNIFORM_READ_BIT specifies read access to a uniform buffer in any shader pipeline
stage.

• VK_ACCESS_INPUT_ATTACHMENT_READ_BIT specifies read access to an input attachment within a
render pass during fragment shading. Such access occurs in the
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT pipeline stage.

• VK_ACCESS_SHADER_READ_BIT specifies read access to a uniform texel buffer, sampled image,
storage buffer, physical storage buffer, storage texel buffer, or storage image in any shader
pipeline stage.

• VK_ACCESS_SHADER_WRITE_BIT specifies write access to a storage buffer, physical storage buffer,
storage texel buffer, or storage image in any shader pipeline stage.

• VK_ACCESS_COLOR_ATTACHMENT_READ_BIT specifies read access to a color attachment, such as via
blending, logic operations or certain render pass load operations. Such access occurs in the
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

• VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT specifies write access to a color, resolve, or depth/stencil
resolve attachment during a render pass or via certain render pass load and store operations.
Such access occurs in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT specifies read access to a depth/stencil
attachment, via depth or stencil operations or certain render pass load operations. Such access
occurs in the VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT or
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stages.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT specifies write access to a depth/stencil
attachment, via depth or stencil operations or certain render pass load and store operations.
Such access occurs in the VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT or
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stages.

• VK_ACCESS_TRANSFER_READ_BIT specifies read access to an image or buffer in a copy operation.
Such access occurs in the VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT pipeline stage.

• VK_ACCESS_TRANSFER_WRITE_BIT specifies write access to an image or buffer in a clear or copy
operation. Such access occurs in the VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT pipeline stage.

173

• VK_ACCESS_HOST_READ_BIT specifies read access by a host operation. Accesses of this type are not
performed through a resource, but directly on memory. Such access occurs in the
VK_PIPELINE_STAGE_HOST_BIT pipeline stage.

• VK_ACCESS_HOST_WRITE_BIT specifies write access by a host operation. Accesses of this type are not
performed through a resource, but directly on memory. Such access occurs in the
VK_PIPELINE_STAGE_HOST_BIT pipeline stage.

Certain access types are only performed by a subset of pipeline stages. Any synchronization
command that takes both stage masks and access masks uses both to define the access scopes - only
the specified access types performed by the specified stages are included in the access scope. An
application must not specify an access flag in a synchronization command if it does not include a
pipeline stage in the corresponding stage mask that is able to perform accesses of that type. The
following table lists, for each access flag, which pipeline stages can perform that type of access.

Table 4. Supported access types

Access flag Supported pipeline stages

VK_ACCESS_2_NONE Any

VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT,

VK_ACCESS_2_INDEX_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT

VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT

VK_ACCESS_2_UNIFORM_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,

VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,

VK_ACCESS_2_SHADER_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,

174

Access flag Supported pipeline stages

VK_ACCESS_2_SHADER_WRITE_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,

VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BI
T

VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BI
T

VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT

VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT

VK_ACCESS_2_TRANSFER_READ_BIT VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_COPY_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT,
VK_PIPELINE_STAGE_2_BLIT_BIT,

VK_ACCESS_2_TRANSFER_WRITE_BIT VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT,
VK_PIPELINE_STAGE_2_COPY_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT,
VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_CLEAR_BIT,

VK_ACCESS_2_HOST_READ_BIT VK_PIPELINE_STAGE_2_HOST_BIT

VK_ACCESS_2_HOST_WRITE_BIT VK_PIPELINE_STAGE_2_HOST_BIT

VK_ACCESS_2_MEMORY_READ_BIT Any

VK_ACCESS_2_MEMORY_WRITE_BIT Any

VK_ACCESS_2_SHADER_SAMPLED_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,

175

Access flag Supported pipeline stages

VK_ACCESS_2_SHADER_STORAGE_READ_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,

VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADE
R_BIT,
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SH
ADER_BIT,
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT,
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,

// Provided by VK_VERSION_1_0
typedef VkFlags VkAccessFlags;

VkAccessFlags is a bitmask type for setting a mask of zero or more VkAccessFlagBits.

If a memory object does not have the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property, then
vkFlushMappedMemoryRanges must be called in order to guarantee that writes to the memory
object from the host are made available to the host domain, where they can be further made
available to the device domain via a domain operation. Similarly,
vkInvalidateMappedMemoryRanges must be called to guarantee that writes which are available to
the host domain are made visible to host operations.

If the memory object does have the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property flag, writes to
the memory object from the host are automatically made available to the host domain. Similarly,
writes made available to the host domain are automatically made visible to the host.

Note

Queue submission commands automatically perform a domain operation from
host to device for all writes performed before the command executes, so in most
cases an explicit memory barrier is not needed for this case. In the few
circumstances where a submit does not occur between the host write and the
device read access, writes can be made available by using an explicit memory
barrier.

7.1.4. Framebuffer Region Dependencies

Pipeline stages that operate on, or with respect to, the framebuffer are collectively the framebuffer-
space pipeline stages. These stages are:

176

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

For these pipeline stages, an execution or memory dependency from the first set of operations to
the second set can either be a single framebuffer-global dependency, or split into multiple
framebuffer-local dependencies. A dependency with non-framebuffer-space pipeline stages is
neither framebuffer-global nor framebuffer-local.

A framebuffer region is a set of sample (x, y, layer, sample) coordinates that is a subset of the entire
framebuffer.

Both synchronization scopes of a framebuffer-local dependency include only the operations
performed within corresponding framebuffer regions (as defined below). No ordering guarantees
are made between different framebuffer regions for a framebuffer-local dependency.

Both synchronization scopes of a framebuffer-global dependency include operations on all
framebuffer-regions.

If the first synchronization scope includes operations on pixels/fragments with N samples and the
second synchronization scope includes operations on pixels/fragments with M samples, where N
does not equal M, then a framebuffer region containing all samples at a given (x, y, layer)
coordinate in the first synchronization scope corresponds to a region containing all samples at the
same coordinate in the second synchronization scope. In other words, it is a pixel granularity
dependency. If N equals M, then a framebuffer region containing a single (x, y, layer, sample)
coordinate in the first synchronization scope corresponds to a region containing the same sample
at the same coordinate in the second synchronization scope. In other words, it is a sample
granularity dependency.

Note

Since fragment shader invocations are not specified to run in any particular
groupings, the size of a framebuffer region is implementation-dependent, not
known to the application, and must be assumed to be no larger than specified
above.

Note

Practically, the pixel vs. sample granularity dependency means that if an input
attachment has a different number of samples than the pipeline’s
rasterizationSamples, then a fragment can access any sample in the input
attachment’s pixel even if it only uses framebuffer-local dependencies. If the input
attachment has the same number of samples, then the fragment can only access
the covered samples in its input SampleMask (i.e. the fragment operations happen-
after a framebuffer-local dependency for each sample the fragment covers). To
access samples that are not covered, a framebuffer-global dependency is required.

If a synchronization command includes a dependencyFlags parameter, and specifies the

177

VK_DEPENDENCY_BY_REGION_BIT flag, then it defines framebuffer-local dependencies for the
framebuffer-space pipeline stages in that synchronization command, for all framebuffer regions. If
no dependencyFlags parameter is included, or the VK_DEPENDENCY_BY_REGION_BIT flag is not specified,
then a framebuffer-global dependency is specified for those stages. The
VK_DEPENDENCY_BY_REGION_BIT flag does not affect the dependencies between non-framebuffer-space
pipeline stages, nor does it affect the dependencies between framebuffer-space and non-
framebuffer-space pipeline stages.

Note

Framebuffer-local dependencies are more efficient for most architectures;
particularly tile-based architectures - which can keep framebuffer-regions entirely
in on-chip registers and thus avoid external bandwidth across such a dependency.
Including a framebuffer-global dependency in your rendering will usually force all
implementations to flush data to memory, or to a higher level cache, breaking any
potential locality optimizations.

7.1.5. View-Local Dependencies

In a render pass instance that has multiview enabled, dependencies can be either view-local or
view-global.

A view-local dependency only includes operations from a single source view from the source
subpass in the first synchronization scope, and only includes operations from a single destination
view from the destination subpass in the second synchronization scope. A view-global dependency
includes all views in the view mask of the source and destination subpasses in the corresponding
synchronization scopes.

If a synchronization command includes a dependencyFlags parameter and specifies the
VK_DEPENDENCY_VIEW_LOCAL_BIT flag, then it defines view-local dependencies for that synchronization
command, for all views. If no dependencyFlags parameter is included or the
VK_DEPENDENCY_VIEW_LOCAL_BIT flag is not specified, then a view-global dependency is specified.

7.1.6. Device-Local Dependencies

Dependencies can be either device-local or non-device-local. A device-local dependency acts as
multiple separate dependencies, one for each physical device that executes the synchronization
command, where each dependency only includes operations from that physical device in both
synchronization scopes. A non-device-local dependency is a single dependency where both
synchronization scopes include operations from all physical devices that participate in the
synchronization command. For subpass dependencies, all physical devices in the
VkDeviceGroupRenderPassBeginInfo::deviceMask participate in the dependency, and for pipeline
barriers all physical devices that are set in the command buffer’s current device mask participate
in the dependency.

If a synchronization command includes a dependencyFlags parameter and specifies the
VK_DEPENDENCY_DEVICE_GROUP_BIT flag, then it defines a non-device-local dependency for that
synchronization command. If no dependencyFlags parameter is included or the
VK_DEPENDENCY_DEVICE_GROUP_BIT flag is not specified, then it defines device-local dependencies for

178

that synchronization command, for all participating physical devices.

Semaphore and event dependencies are device-local and only execute on the one physical device
that performs the dependency.

7.2. Implicit Synchronization Guarantees
A small number of implicit ordering guarantees are provided by Vulkan, ensuring that the order in
which commands are submitted is meaningful, and avoiding unnecessary complexity in common
operations.

Submission order is a fundamental ordering in Vulkan, giving meaning to the order in which action
and synchronization commands are recorded and submitted to a single queue. Explicit and implicit
ordering guarantees between commands in Vulkan all work on the premise that this ordering is
meaningful. This order does not itself define any execution or memory dependencies;
synchronization commands and other orderings within the API use this ordering to define their
scopes.

Submission order for any given set of commands is based on the order in which they were
recorded to command buffers and then submitted. This order is determined as follows:

1. The initial order is determined by the order in which vkQueueSubmit and vkQueueSubmit2
commands are executed on the host, for a single queue, from first to last.

2. The order in which VkSubmitInfo structures are specified in the pSubmits parameter of
vkQueueSubmit, or in which VkSubmitInfo2 structures are specified in the pSubmits parameter
of vkQueueSubmit2, from lowest index to highest.

3. The order in which command buffers are specified in the pCommandBuffers member of
VkSubmitInfo or VkSubmitInfo2 from lowest index to highest.

4. The order in which commands outside of a render pass were recorded to a command buffer on
the host, from first to last.

5. The order in which commands inside a single subpass were recorded to a command buffer on
the host, from first to last.

Note

When using a render pass object with multiple subpasses, commands in different
subpasses have no defined submission order relative to each other, regardless of
the order in which the subpasses were recorded. Commands within a subpass are
still ordered relative to other commands in the same subpass, and those outside of
the render pass.

State commands do not execute any operations on the device, instead they set the state of the
command buffer when they execute on the host, in the order that they are recorded. Action
commands consume the current state of the command buffer when they are recorded, and will
execute state changes on the device as required to match the recorded state.

The order of primitives passing through the graphics pipeline and image layout transitions as part
of an image memory barrier provide additional guarantees based on submission order.

179

Execution of pipeline stages within a given command also has a loose ordering, dependent only on
a single command.

Signal operation order is a fundamental ordering in Vulkan, giving meaning to the order in which
semaphore and fence signal operations occur when submitted to a single queue. The signal
operation order for queue operations is determined as follows:

1. The initial order is determined by the order in which vkQueueSubmit and vkQueueSubmit2
commands are executed on the host, for a single queue, from first to last.

2. The order in which VkSubmitInfo structures are specified in the pSubmits parameter of
vkQueueSubmit, or in which VkSubmitInfo2 structures are specified in the pSubmits parameter
of vkQueueSubmit2, from lowest index to highest.

3. The fence signal operation defined by the fence parameter of a vkQueueSubmit or
vkQueueSubmit2 or vkQueueBindSparse command is ordered after all semaphore signal
operations defined by that command.

Semaphore signal operations defined by a single VkSubmitInfo or VkSubmitInfo2 or
VkBindSparseInfo structure are unordered with respect to other semaphore signal operations
defined within the same structure.

The vkSignalSemaphore command does not execute on a queue but instead performs the signal
operation from the host. The semaphore signal operation defined by executing a
vkSignalSemaphore command happens-after the vkSignalSemaphore command is invoked and
happens-before the command returns.

Note

When signaling timeline semaphores, it is the responsibility of the application to
ensure that they are ordered such that the semaphore value is strictly increasing.
Because the first synchronization scope for a semaphore signal operation contains
all semaphore signal operations which occur earlier in submission order, all
semaphore signal operations contained in any given batch are guaranteed to
happen-after all semaphore signal operations contained in any previous batches.
However, no ordering guarantee is provided between the semaphore signal
operations defined within a single batch. This, combined with the requirement
that timeline semaphore values strictly increase, means that it is invalid to signal
the same timeline semaphore twice within a single batch.

If an application wishes to ensure that some semaphore signal operation happens-
after some other semaphore signal operation, it can submit a separate batch
containing only semaphore signal operations, which will happen-after the
semaphore signal operations in any earlier batches.

When signaling a semaphore from the host, the only ordering guarantee is that the
signal operation happens-after when vkSignalSemaphore is called and happens-
before it returns. Therefore, it is invalid to call vkSignalSemaphore while there are
any outstanding signal operations on that semaphore from any queue submissions
unless those queue submissions have some dependency which ensures that they
happen-after the host signal operation. One example of this would be if the

180

pending signal operation is, itself, waiting on the same semaphore at a lower value
and the call to vkSignalSemaphore signals that lower value. Furthermore, if there
are two or more processes or threads signaling the same timeline semaphore from
the host, the application must ensure that the vkSignalSemaphore with the lower
semaphore value returns before vkSignalSemaphore is called with the higher value.

7.3. Fences
Fences are a synchronization primitive that can be used to insert a dependency from a queue to the
host. Fences have two states - signaled and unsignaled. A fence can be signaled as part of the
execution of a queue submission command. Fences can be unsignaled on the host with
vkResetFences. Fences can be waited on by the host with the vkWaitForFences command, and the
current state can be queried with vkGetFenceStatus.

The internal data of a fence may include a reference to any resources and pending work associated
with signal or unsignal operations performed on that fence object, collectively referred to as the
fence’s payload. Mechanisms to import and export that internal data to and from fences are
provided below. These mechanisms indirectly enable applications to share fence state between two
or more fences and other synchronization primitives across process and API boundaries.

Fences are represented by VkFence handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFence)

To create a fence, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateFence(
 VkDevice device,
 const VkFenceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFence* pFence);

• device is the logical device that creates the fence.

• pCreateInfo is a pointer to a VkFenceCreateInfo structure containing information about how the
fence is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFence is a pointer to a handle in which the resulting fence object is returned.

Valid Usage (Implicit)

• VUID-vkCreateFence-device-parameter
device must be a valid VkDevice handle

181

• VUID-vkCreateFence-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkFenceCreateInfo structure

• VUID-vkCreateFence-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateFence-pFence-parameter
pFence must be a valid pointer to a VkFence handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFenceCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkFenceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkFenceCreateFlags flags;
} VkFenceCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkFenceCreateFlagBits specifying the initial state and behavior of the
fence.

Valid Usage (Implicit)

• VUID-VkFenceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO

• VUID-VkFenceCreateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkExportFenceCreateInfo

• VUID-VkFenceCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkFenceCreateInfo-flags-parameter
flags must be a valid combination of VkFenceCreateFlagBits values

182

// Provided by VK_VERSION_1_0
typedef enum VkFenceCreateFlagBits {
 VK_FENCE_CREATE_SIGNALED_BIT = 0x00000001,
} VkFenceCreateFlagBits;

• VK_FENCE_CREATE_SIGNALED_BIT specifies that the fence object is created in the signaled state.
Otherwise, it is created in the unsignaled state.

// Provided by VK_VERSION_1_0
typedef VkFlags VkFenceCreateFlags;

VkFenceCreateFlags is a bitmask type for setting a mask of zero or more VkFenceCreateFlagBits.

To create a fence whose payload can be exported to external handles, add a
VkExportFenceCreateInfo structure to the pNext chain of the VkFenceCreateInfo structure. The
VkExportFenceCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExportFenceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalFenceHandleTypeFlags handleTypes;
} VkExportFenceCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is a bitmask of VkExternalFenceHandleTypeFlagBits specifying one or more fence
handle types the application can export from the resulting fence. The application can request
multiple handle types for the same fence.

Valid Usage

• VUID-VkExportFenceCreateInfo-handleTypes-01446
The bits in handleTypes must be supported and compatible, as reported by
VkExternalFenceProperties

Valid Usage (Implicit)

• VUID-VkExportFenceCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO

• VUID-VkExportFenceCreateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalFenceHandleTypeFlagBits values

183

To destroy a fence, call:

// Provided by VK_VERSION_1_0
void vkDestroyFence(
 VkDevice device,
 VkFence fence,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the fence.

• fence is the handle of the fence to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyFence-fence-01120
All queue submission commands that refer to fence must have completed execution

• VUID-vkDestroyFence-fence-01121
If VkAllocationCallbacks were provided when fence was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyFence-fence-01122
If no VkAllocationCallbacks were provided when fence was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroyFence-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyFence-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-vkDestroyFence-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyFence-fence-parent
If fence is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to fence must be externally synchronized

To query the status of a fence from the host, call:

184

// Provided by VK_VERSION_1_0
VkResult vkGetFenceStatus(
 VkDevice device,
 VkFence fence);

• device is the logical device that owns the fence.

• fence is the handle of the fence to query.

Upon success, vkGetFenceStatus returns the status of the fence object, with the following return
codes:

Table 5. Fence Object Status Codes

Status Meaning

VK_SUCCESS The fence specified by fence is
signaled.

VK_NOT_READY The fence specified by fence is
unsignaled.

VK_ERROR_DEVICE_LOST The device has been lost. See Lost
Device.

If a queue submission command is pending execution, then the value returned by this command
may immediately be out of date.

If the device has been lost (see Lost Device), vkGetFenceStatus may return any of the above status
codes. If the device has been lost and vkGetFenceStatus is called repeatedly, it will eventually return
either VK_SUCCESS or VK_ERROR_DEVICE_LOST.

Valid Usage (Implicit)

• VUID-vkGetFenceStatus-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetFenceStatus-fence-parameter
fence must be a valid VkFence handle

• VUID-vkGetFenceStatus-fence-parent
fence must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_NOT_READY

185

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To set the state of fences to unsignaled from the host, call:

// Provided by VK_VERSION_1_0
VkResult vkResetFences(
 VkDevice device,
 uint32_t fenceCount,
 const VkFence* pFences);

• device is the logical device that owns the fences.

• fenceCount is the number of fences to reset.

• pFences is a pointer to an array of fence handles to reset.

If any member of pFences currently has its payload imported with temporary permanence, that
fence’s prior permanent payload is first restored. The remaining operations described therefore
operate on the restored payload.

When vkResetFences is executed on the host, it defines a fence unsignal operation for each fence,
which resets the fence to the unsignaled state.

If any member of pFences is already in the unsignaled state when vkResetFences is executed, then
vkResetFences has no effect on that fence.

Valid Usage

• VUID-vkResetFences-pFences-01123
Each element of pFences must not be currently associated with any queue command that
has not yet completed execution on that queue

Valid Usage (Implicit)

• VUID-vkResetFences-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetFences-pFences-parameter
pFences must be a valid pointer to an array of fenceCount valid VkFence handles

• VUID-vkResetFences-fenceCount-arraylength
fenceCount must be greater than 0

• VUID-vkResetFences-pFences-parent
Each element of pFences must have been created, allocated, or retrieved from device

186

Host Synchronization

• Host access to each member of pFences must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_DEVICE_MEMORY

When a fence is submitted to a queue as part of a queue submission command, it defines a memory
dependency on the batches that were submitted as part of that command, and defines a fence signal
operation which sets the fence to the signaled state.

The first synchronization scope includes every batch submitted in the same queue submission
command. Fence signal operations that are defined by vkQueueSubmit or vkQueueSubmit2
additionally include in the first synchronization scope all commands that occur earlier in
submission order. Fence signal operations that are defined by vkQueueSubmit or vkQueueSubmit2
or vkQueueBindSparse additionally include in the first synchronization scope any semaphore and
fence signal operations that occur earlier in signal operation order.

The second synchronization scope only includes the fence signal operation.

The first access scope includes all memory access performed by the device.

The second access scope is empty.

To wait for one or more fences to enter the signaled state on the host, call:

// Provided by VK_VERSION_1_0
VkResult vkWaitForFences(
 VkDevice device,
 uint32_t fenceCount,
 const VkFence* pFences,
 VkBool32 waitAll,
 uint64_t timeout);

• device is the logical device that owns the fences.

• fenceCount is the number of fences to wait on.

• pFences is a pointer to an array of fenceCount fence handles.

• waitAll is the condition that must be satisfied to successfully unblock the wait. If waitAll is
VK_TRUE, then the condition is that all fences in pFences are signaled. Otherwise, the condition is
that at least one fence in pFences is signaled.

187

• timeout is the timeout period in units of nanoseconds. timeout is adjusted to the closest value
allowed by the implementation-dependent timeout accuracy, which may be substantially longer
than one nanosecond, and may be longer than the requested period.

If the condition is satisfied when vkWaitForFences is called, then vkWaitForFences returns
immediately. If the condition is not satisfied at the time vkWaitForFences is called, then
vkWaitForFences will block and wait until the condition is satisfied or the timeout has expired,
whichever is sooner.

If timeout is zero, then vkWaitForFences does not wait, but simply returns the current state of the
fences. VK_TIMEOUT will be returned in this case if the condition is not satisfied, even though no
actual wait was performed.

If the condition is satisfied before the timeout has expired, vkWaitForFences returns VK_SUCCESS.
Otherwise, vkWaitForFences returns VK_TIMEOUT after the timeout has expired.

If device loss occurs (see Lost Device) before the timeout has expired, vkWaitForFences must return
in finite time with either VK_SUCCESS or VK_ERROR_DEVICE_LOST.

Note

While we guarantee that vkWaitForFences must return in finite time, no guarantees
are made that it returns immediately upon device loss. However, the client can
reasonably expect that the delay will be on the order of seconds and that calling
vkWaitForFences will not result in a permanently (or seemingly permanently) dead
process.

Valid Usage (Implicit)

• VUID-vkWaitForFences-device-parameter
device must be a valid VkDevice handle

• VUID-vkWaitForFences-pFences-parameter
pFences must be a valid pointer to an array of fenceCount valid VkFence handles

• VUID-vkWaitForFences-fenceCount-arraylength
fenceCount must be greater than 0

• VUID-vkWaitForFences-pFences-parent
Each element of pFences must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_TIMEOUT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

188

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

An execution dependency is defined by waiting for a fence to become signaled, either via
vkWaitForFences or by polling on vkGetFenceStatus.

The first synchronization scope includes only the fence signal operation.

The second synchronization scope includes the host operations of vkWaitForFences or
vkGetFenceStatus indicating that the fence has become signaled.

Note

Signaling a fence and waiting on the host does not guarantee that the results of
memory accesses will be visible to the host, as the access scope of a memory
dependency defined by a fence only includes device access. A memory barrier or
other memory dependency must be used to guarantee this. See the description of
host access types for more information.

7.3.1. Importing Fence Payloads

Applications can import a fence payload into an existing fence using an external fence handle. The
effects of the import operation will be either temporary or permanent, as specified by the
application. If the import is temporary, the fence will be restored to its permanent state the next
time that fence is passed to vkResetFences.

Note

Restoring a fence to its prior permanent payload is a distinct operation from
resetting a fence payload. See vkResetFences for more detail.

Performing a subsequent temporary import on a fence before resetting it has no effect on this
requirement; the next unsignal of the fence must still restore its last permanent state. A permanent
payload import behaves as if the target fence was destroyed, and a new fence was created with the
same handle but the imported payload. Because importing a fence payload temporarily or
permanently detaches the existing payload from a fence, similar usage restrictions to those applied
to vkDestroyFence are applied to any command that imports a fence payload. Which of these import
types is used is referred to as the import operation’s permanence. Each handle type supports either
one or both types of permanence.

The implementation must perform the import operation by either referencing or copying the
payload referred to by the specified external fence handle, depending on the handle’s type. The
import method used is referred to as the handle type’s transference. When using handle types with
reference transference, importing a payload to a fence adds the fence to the set of all fences sharing
that payload. This set includes the fence from which the payload was exported. Fence signaling,
waiting, and resetting operations performed on any fence in the set must behave as if the set were
a single fence. Importing a payload using handle types with copy transference creates a duplicate
copy of the payload at the time of import, but makes no further reference to it. Fence signaling,
waiting, and resetting operations performed on the target of copy imports must not affect any

189

other fence or payload.

Export operations have the same transference as the specified handle type’s import operations.
Additionally, exporting a fence payload to a handle with copy transference has the same side effects
on the source fence’s payload as executing a fence reset operation. If the fence was using a
temporarily imported payload, the fence’s prior permanent payload will be restored.

External synchronization allows implementations to modify an object’s internal state, i.e. payload,
without internal synchronization. However, for fences sharing a payload across processes,
satisfying the external synchronization requirements of VkFence parameters as if all fences in the
set were the same object is sometimes infeasible. Satisfying valid usage constraints on the state of a
fence would similarly require impractical coordination or levels of trust between processes.
Therefore, these constraints only apply to a specific fence handle, not to its payload. For distinct
fence objects which share a payload:

• If multiple commands which queue a signal operation, or which unsignal a fence, are called
concurrently, behavior will be as if the commands were called in an arbitrary sequential order.

• If a queue submission command is called with a fence that is sharing a payload, and the payload
is already associated with another queue command that has not yet completed execution, either
one or both of the commands will cause the fence to become signaled when they complete
execution.

• If a fence payload is reset while it is associated with a queue command that has not yet
completed execution, the payload will become unsignaled, but may become signaled again
when the command completes execution.

• In the preceding cases, any of the devices associated with the fences sharing the payload may be
lost, or any of the queue submission or fence reset commands may return
VK_ERROR_INITIALIZATION_FAILED.

Other than these non-deterministic results, behavior is well defined. In particular:

• The implementation must not crash or enter an internally inconsistent state where future valid
Vulkan commands might cause undefined results,

• Timeouts on future wait commands on fences sharing the payload must be effective.

Note

These rules allow processes to synchronize access to shared memory without
trusting each other. However, such processes must still be cautious not to use the
shared fence for more than synchronizing access to the shared memory. For
example, a process should not use a fence with shared payload to tell when
commands it submitted to a queue have completed and objects used by those
commands may be destroyed, since the other process can accidentally or
maliciously cause the fence to signal before the commands actually complete.

When a fence is using an imported payload, its VkExportFenceCreateInfo::handleTypes value is
specified when creating the fence from which the payload was exported, rather than specified
when creating the fence. Additionally, VkExternalFenceProperties::exportFromImportedHandleTypes
restricts which handle types can be exported from such a fence based on the specific handle type

190

used to import the current payload.

When importing a fence payload, it is the responsibility of the application to ensure the external
handles meet all valid usage requirements. However, implementations must perform sufficient
validation of external handles to ensure that the operation results in a valid fence which will not
cause program termination, device loss, queue stalls, host thread stalls, or corruption of other
resources when used as allowed according to its import parameters. If the external handle
provided does not meet these requirements, the implementation must fail the fence payload import
operation with the error code VK_ERROR_INVALID_EXTERNAL_HANDLE.

7.4. Semaphores
Semaphores are a synchronization primitive that can be used to insert a dependency between
queue operations or between a queue operation and the host. Binary semaphores have two states -
signaled and unsignaled. Timeline semaphores have a strictly increasing 64-bit unsigned integer
payload and are signaled with respect to a particular reference value. A semaphore can be signaled
after execution of a queue operation is completed, and a queue operation can wait for a semaphore
to become signaled before it begins execution. A timeline semaphore can additionally be signaled
from the host with the vkSignalSemaphore command and waited on from the host with the
vkWaitSemaphores command.

The internal data of a semaphore may include a reference to any resources and pending work
associated with signal or unsignal operations performed on that semaphore object, collectively
referred to as the semaphore’s payload. Mechanisms to import and export that internal data to and
from semaphores are provided below. These mechanisms indirectly enable applications to share
semaphore state between two or more semaphores and other synchronization primitives across
process and API boundaries.

Semaphores are represented by VkSemaphore handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSemaphore)

To create a semaphore, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateSemaphore(
 VkDevice device,
 const VkSemaphoreCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSemaphore* pSemaphore);

• device is the logical device that creates the semaphore.

• pCreateInfo is a pointer to a VkSemaphoreCreateInfo structure containing information about
how the semaphore is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

191

• pSemaphore is a pointer to a handle in which the resulting semaphore object is returned.

Valid Usage (Implicit)

• VUID-vkCreateSemaphore-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateSemaphore-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkSemaphoreCreateInfo structure

• VUID-vkCreateSemaphore-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateSemaphore-pSemaphore-parameter
pSemaphore must be a valid pointer to a VkSemaphore handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkSemaphoreCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSemaphoreCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphoreCreateFlags flags;
} VkSemaphoreCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

Valid Usage (Implicit)

• VUID-VkSemaphoreCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO

• VUID-VkSemaphoreCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either

192

NULL or a pointer to a valid instance of VkExportSemaphoreCreateInfo or
VkSemaphoreTypeCreateInfo

• VUID-VkSemaphoreCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSemaphoreCreateInfo-flags-zerobitmask
flags must be 0

// Provided by VK_VERSION_1_0
typedef VkFlags VkSemaphoreCreateFlags;

VkSemaphoreCreateFlags is a bitmask type for setting a mask, but is currently reserved for future use.

The VkSemaphoreTypeCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSemaphoreTypeCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphoreType semaphoreType;
 uint64_t initialValue;
} VkSemaphoreTypeCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphoreType is a VkSemaphoreType value specifying the type of the semaphore.

• initialValue is the initial payload value if semaphoreType is VK_SEMAPHORE_TYPE_TIMELINE.

To create a semaphore of a specific type, add a VkSemaphoreTypeCreateInfo structure to the
VkSemaphoreCreateInfo::pNext chain.

If no VkSemaphoreTypeCreateInfo structure is included in the pNext chain of VkSemaphoreCreateInfo,
then the created semaphore will have a default VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY.

Valid Usage

• VUID-VkSemaphoreTypeCreateInfo-timelineSemaphore-03252
If the timelineSemaphore feature is not enabled, semaphoreType must not equal
VK_SEMAPHORE_TYPE_TIMELINE

• VUID-VkSemaphoreTypeCreateInfo-semaphoreType-03279
If semaphoreType is VK_SEMAPHORE_TYPE_BINARY, initialValue must be zero

193

Valid Usage (Implicit)

• VUID-VkSemaphoreTypeCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO

• VUID-VkSemaphoreTypeCreateInfo-semaphoreType-parameter
semaphoreType must be a valid VkSemaphoreType value

Possible values of VkSemaphoreTypeCreateInfo::semaphoreType, specifying the type of a semaphore,
are:

// Provided by VK_VERSION_1_2
typedef enum VkSemaphoreType {
 VK_SEMAPHORE_TYPE_BINARY = 0,
 VK_SEMAPHORE_TYPE_TIMELINE = 1,
} VkSemaphoreType;

• VK_SEMAPHORE_TYPE_BINARY specifies a binary semaphore type that has a boolean payload
indicating whether the semaphore is currently signaled or unsignaled. When created, the
semaphore is in the unsignaled state.

• VK_SEMAPHORE_TYPE_TIMELINE specifies a timeline semaphore type that has a strictly increasing 64-
bit unsigned integer payload indicating whether the semaphore is signaled with respect to a
particular reference value. When created, the semaphore payload has the value given by the
initialValue field of VkSemaphoreTypeCreateInfo.

To create a semaphore whose payload can be exported to external handles, add a
VkExportSemaphoreCreateInfo structure to the pNext chain of the VkSemaphoreCreateInfo
structure. The VkExportSemaphoreCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExportSemaphoreCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalSemaphoreHandleTypeFlags handleTypes;
} VkExportSemaphoreCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is a bitmask of VkExternalSemaphoreHandleTypeFlagBits specifying one or more
semaphore handle types the application can export from the resulting semaphore. The
application can request multiple handle types for the same semaphore.

Valid Usage

• VUID-VkExportSemaphoreCreateInfo-handleTypes-01124

194

The bits in handleTypes must be supported and compatible, as reported by
VkExternalSemaphoreProperties

Valid Usage (Implicit)

• VUID-VkExportSemaphoreCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO

• VUID-VkExportSemaphoreCreateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalSemaphoreHandleTypeFlagBits
values

To destroy a semaphore, call:

// Provided by VK_VERSION_1_0
void vkDestroySemaphore(
 VkDevice device,
 VkSemaphore semaphore,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the semaphore.

• semaphore is the handle of the semaphore to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroySemaphore-semaphore-05149
All submitted batches that refer to semaphore must have completed execution

• VUID-vkDestroySemaphore-semaphore-01138
If VkAllocationCallbacks were provided when semaphore was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroySemaphore-semaphore-01139
If no VkAllocationCallbacks were provided when semaphore was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroySemaphore-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroySemaphore-semaphore-parameter
If semaphore is not VK_NULL_HANDLE, semaphore must be a valid VkSemaphore handle

• VUID-vkDestroySemaphore-pAllocator-parameter

195

If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroySemaphore-semaphore-parent
If semaphore is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to semaphore must be externally synchronized

7.4.1. Semaphore Signaling

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be
signaled, it defines a memory dependency on the batch, and defines semaphore signal operations
which set the semaphores to the signaled state.

In case of semaphores created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE the
semaphore is considered signaled with respect to the counter value set to be signaled as specified in
VkTimelineSemaphoreSubmitInfo or VkSemaphoreSignalInfo.

The first synchronization scope includes every command submitted in the same batch. In the case
of vkQueueSubmit2, the first synchronization scope is limited to the pipeline stage specified by
VkSemaphoreSubmitInfo::stageMask. Semaphore signal operations that are defined by
vkQueueSubmit or vkQueueSubmit2 additionally include all commands that occur earlier in
submission order. Semaphore signal operations that are defined by vkQueueSubmit or
vkQueueSubmit2 or vkQueueBindSparse additionally include in the first synchronization scope any
semaphore and fence signal operations that occur earlier in signal operation order.

The second synchronization scope includes only the semaphore signal operation.

The first access scope includes all memory access performed by the device.

The second access scope is empty.

7.4.2. Semaphore Waiting

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be
waited on, it defines a memory dependency between prior semaphore signal operations and the
batch, and defines semaphore wait operations.

Such semaphore wait operations set the semaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_BINARY to the unsignaled state. In case of semaphores created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE a prior semaphore signal operation defines a
memory dependency with a semaphore wait operation if the value the semaphore is signaled with
is greater than or equal to the value the semaphore is waited with, thus the semaphore will
continue to be considered signaled with respect to the counter value waited on as specified in
VkTimelineSemaphoreSubmitInfo.

196

The first synchronization scope includes all semaphore signal operations that operate on
semaphores waited on in the same batch, and that happen-before the wait completes.

The second synchronization scope includes every command submitted in the same batch. In the
case of vkQueueSubmit, the second synchronization scope is limited to operations on the pipeline
stages determined by the destination stage mask specified by the corresponding element of
pWaitDstStageMask. In the case of vkQueueSubmit2, the second synchronization scope is limited to
the pipeline stage specified by VkSemaphoreSubmitInfo::stageMask. Also, in the case of either
vkQueueSubmit2 or vkQueueSubmit, the second synchronization scope additionally includes all
commands that occur later in submission order.

The first access scope is empty.

The second access scope includes all memory access performed by the device.

The semaphore wait operation happens-after the first set of operations in the execution
dependency, and happens-before the second set of operations in the execution dependency.

Note

Unlike timeline semaphores, fences or events, the act of waiting for a binary
semaphore also unsignals that semaphore. Applications must ensure that between
two such wait operations, the semaphore is signaled again, with execution
dependencies used to ensure these occur in order. Binary semaphore waits and
signals should thus occur in discrete 1:1 pairs.

7.4.3. Semaphore State Requirements for Wait Operations

Before waiting on a semaphore, the application must ensure the semaphore is in a valid state for a
wait operation. Specifically, when a semaphore wait operation is submitted to a queue:

• A binary semaphore must be signaled, or have an associated semaphore signal operation that is
pending execution.

• Any semaphore signal operations on which the pending binary semaphore signal operation
depends must also be completed or pending execution.

• There must be no other queue waiting on the same binary semaphore when the operation
executes.

7.4.4. Host Operations on Semaphores

In addition to semaphore signal operations and semaphore wait operations submitted to device
queues, timeline semaphores support the following host operations:

• Query the current counter value of the semaphore using the vkGetSemaphoreCounterValue
command.

• Wait for a set of semaphores to reach particular counter values using the vkWaitSemaphores
command.

• Signal the semaphore with a particular counter value from the host using the

197

vkSignalSemaphore command.

To query the current counter value of a semaphore created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE from the host, call:

// Provided by VK_VERSION_1_2
VkResult vkGetSemaphoreCounterValue(
 VkDevice device,
 VkSemaphore semaphore,
 uint64_t* pValue);

• device is the logical device that owns the semaphore.

• semaphore is the handle of the semaphore to query.

• pValue is a pointer to a 64-bit integer value in which the current counter value of the semaphore
is returned.

Note

If a queue submission command is pending execution, then the value returned by
this command may immediately be out of date.

Valid Usage

• VUID-vkGetSemaphoreCounterValue-semaphore-03255
semaphore must have been created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE

Valid Usage (Implicit)

• VUID-vkGetSemaphoreCounterValue-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetSemaphoreCounterValue-semaphore-parameter
semaphore must be a valid VkSemaphore handle

• VUID-vkGetSemaphoreCounterValue-pValue-parameter
pValue must be a valid pointer to a uint64_t value

• VUID-vkGetSemaphoreCounterValue-semaphore-parent
semaphore must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

198

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To wait for a set of semaphores created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE to
reach particular counter values on the host, call:

// Provided by VK_VERSION_1_2
VkResult vkWaitSemaphores(
 VkDevice device,
 const VkSemaphoreWaitInfo* pWaitInfo,
 uint64_t timeout);

• device is the logical device that owns the semaphores.

• pWaitInfo is a pointer to a VkSemaphoreWaitInfo structure containing information about the
wait condition.

• timeout is the timeout period in units of nanoseconds. timeout is adjusted to the closest value
allowed by the implementation-dependent timeout accuracy, which may be substantially longer
than one nanosecond, and may be longer than the requested period.

If the condition is satisfied when vkWaitSemaphores is called, then vkWaitSemaphores returns
immediately. If the condition is not satisfied at the time vkWaitSemaphores is called, then
vkWaitSemaphores will block and wait until the condition is satisfied or the timeout has expired,
whichever is sooner.

If timeout is zero, then vkWaitSemaphores does not wait, but simply returns information about the
current state of the semaphores. VK_TIMEOUT will be returned in this case if the condition is not
satisfied, even though no actual wait was performed.

If the condition is satisfied before the timeout has expired, vkWaitSemaphores returns VK_SUCCESS.
Otherwise, vkWaitSemaphores returns VK_TIMEOUT after the timeout has expired.

If device loss occurs (see Lost Device) before the timeout has expired, vkWaitSemaphores must return
in finite time with either VK_SUCCESS or VK_ERROR_DEVICE_LOST.

Valid Usage (Implicit)

• VUID-vkWaitSemaphores-device-parameter
device must be a valid VkDevice handle

• VUID-vkWaitSemaphores-pWaitInfo-parameter
pWaitInfo must be a valid pointer to a valid VkSemaphoreWaitInfo structure

199

Return Codes

Success

• VK_SUCCESS

• VK_TIMEOUT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkSemaphoreWaitInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSemaphoreWaitInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphoreWaitFlags flags;
 uint32_t semaphoreCount;
 const VkSemaphore* pSemaphores;
 const uint64_t* pValues;
} VkSemaphoreWaitInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkSemaphoreWaitFlagBits specifying additional parameters for the
semaphore wait operation.

• semaphoreCount is the number of semaphores to wait on.

• pSemaphores is a pointer to an array of semaphoreCount semaphore handles to wait on.

• pValues is a pointer to an array of semaphoreCount timeline semaphore values.

Valid Usage

• VUID-VkSemaphoreWaitInfo-pSemaphores-03256
All of the elements of pSemaphores must reference a semaphore that was created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE

Valid Usage (Implicit)

• VUID-VkSemaphoreWaitInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO

• VUID-VkSemaphoreWaitInfo-pNext-pNext

200

pNext must be NULL

• VUID-VkSemaphoreWaitInfo-flags-parameter
flags must be a valid combination of VkSemaphoreWaitFlagBits values

• VUID-VkSemaphoreWaitInfo-pSemaphores-parameter
pSemaphores must be a valid pointer to an array of semaphoreCount valid VkSemaphore
handles

• VUID-VkSemaphoreWaitInfo-pValues-parameter
pValues must be a valid pointer to an array of semaphoreCount uint64_t values

• VUID-VkSemaphoreWaitInfo-semaphoreCount-arraylength
semaphoreCount must be greater than 0

Bits which can be set in VkSemaphoreWaitInfo::flags, specifying additional parameters of a
semaphore wait operation, are:

// Provided by VK_VERSION_1_2
typedef enum VkSemaphoreWaitFlagBits {
 VK_SEMAPHORE_WAIT_ANY_BIT = 0x00000001,
} VkSemaphoreWaitFlagBits;

• VK_SEMAPHORE_WAIT_ANY_BIT specifies that the semaphore wait condition is that at least one of the
semaphores in VkSemaphoreWaitInfo::pSemaphores has reached the value specified by the
corresponding element of VkSemaphoreWaitInfo::pValues. If VK_SEMAPHORE_WAIT_ANY_BIT is not set,
the semaphore wait condition is that all of the semaphores in VkSemaphoreWaitInfo::pSemaphores
have reached the value specified by the corresponding element of VkSemaphoreWaitInfo::pValues.

// Provided by VK_VERSION_1_2
typedef VkFlags VkSemaphoreWaitFlags;

VkSemaphoreWaitFlags is a bitmask type for setting a mask of zero or more
VkSemaphoreWaitFlagBits.

To signal a semaphore created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE with a
particular counter value, on the host, call:

// Provided by VK_VERSION_1_2
VkResult vkSignalSemaphore(
 VkDevice device,
 const VkSemaphoreSignalInfo* pSignalInfo);

• device is the logical device that owns the semaphore.

• pSignalInfo is a pointer to a VkSemaphoreSignalInfo structure containing information about the
signal operation.

When vkSignalSemaphore is executed on the host, it defines and immediately executes a semaphore

201

signal operation which sets the timeline semaphore to the given value.

The first synchronization scope is defined by the host execution model, but includes execution of
vkSignalSemaphore on the host and anything that happened-before it.

The second synchronization scope is empty.

Valid Usage (Implicit)

• VUID-vkSignalSemaphore-device-parameter
device must be a valid VkDevice handle

• VUID-vkSignalSemaphore-pSignalInfo-parameter
pSignalInfo must be a valid pointer to a valid VkSemaphoreSignalInfo structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkSemaphoreSignalInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSemaphoreSignalInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphore semaphore;
 uint64_t value;
} VkSemaphoreSignalInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• semaphore is the handle of the semaphore to signal.

• value is the value to signal.

Valid Usage

• VUID-VkSemaphoreSignalInfo-semaphore-03257
semaphore must have been created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE

202

• VUID-VkSemaphoreSignalInfo-value-03258
value must have a value greater than the current value of the semaphore

• VUID-VkSemaphoreSignalInfo-value-03259
value must be less than the value of any pending semaphore signal operations

• VUID-VkSemaphoreSignalInfo-value-03260
value must have a value which does not differ from the current value of the semaphore
or the value of any outstanding semaphore wait or signal operation on semaphore by more
than maxTimelineSemaphoreValueDifference

Valid Usage (Implicit)

• VUID-VkSemaphoreSignalInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SEMAPHORE_SIGNAL_INFO

• VUID-VkSemaphoreSignalInfo-pNext-pNext
pNext must be NULL

• VUID-VkSemaphoreSignalInfo-semaphore-parameter
semaphore must be a valid VkSemaphore handle

7.4.5. Importing Semaphore Payloads

Applications can import a semaphore payload into an existing semaphore using an external
semaphore handle. The effects of the import operation will be either temporary or permanent, as
specified by the application. If the import is temporary, the implementation must restore the
semaphore to its prior permanent state after submitting the next semaphore wait operation.
Performing a subsequent temporary import on a semaphore before performing a semaphore wait
has no effect on this requirement; the next wait submitted on the semaphore must still restore its
last permanent state. A permanent payload import behaves as if the target semaphore was
destroyed, and a new semaphore was created with the same handle but the imported payload.
Because importing a semaphore payload temporarily or permanently detaches the existing payload
from a semaphore, similar usage restrictions to those applied to vkDestroySemaphore are applied to
any command that imports a semaphore payload. Which of these import types is used is referred to
as the import operation’s permanence. Each handle type supports either one or both types of
permanence.

The implementation must perform the import operation by either referencing or copying the
payload referred to by the specified external semaphore handle, depending on the handle’s type.
The import method used is referred to as the handle type’s transference. When using handle types
with reference transference, importing a payload to a semaphore adds the semaphore to the set of
all semaphores sharing that payload. This set includes the semaphore from which the payload was
exported. Semaphore signaling and waiting operations performed on any semaphore in the set
must behave as if the set were a single semaphore. Importing a payload using handle types with
copy transference creates a duplicate copy of the payload at the time of import, but makes no
further reference to it. Semaphore signaling and waiting operations performed on the target of
copy imports must not affect any other semaphore or payload.

203

Export operations have the same transference as the specified handle type’s import operations.
Additionally, exporting a semaphore payload to a handle with copy transference has the same side
effects on the source semaphore’s payload as executing a semaphore wait operation. If the
semaphore was using a temporarily imported payload, the semaphore’s prior permanent payload
will be restored.

External synchronization allows implementations to modify an object’s internal state, i.e. payload,
without internal synchronization. However, for semaphores sharing a payload across processes,
satisfying the external synchronization requirements of VkSemaphore parameters as if all
semaphores in the set were the same object is sometimes infeasible. Satisfying the wait operation
state requirements would similarly require impractical coordination or levels of trust between
processes. Therefore, these constraints only apply to a specific semaphore handle, not to its
payload. For distinct semaphore objects which share a payload, if the semaphores are passed to
separate queue submission commands concurrently, behavior will be as if the commands were
called in an arbitrary sequential order. If the wait operation state requirements are violated for the
shared payload by a queue submission command, or if a signal operation is queued for a shared
payload that is already signaled or has a pending signal operation, effects must be limited to one or
more of the following:

• Returning VK_ERROR_INITIALIZATION_FAILED from the command which resulted in the violation.

• Losing the logical device on which the violation occurred immediately or at a future time,
resulting in a VK_ERROR_DEVICE_LOST error from subsequent commands, including the one
causing the violation.

• Continuing execution of the violating command or operation as if the semaphore wait
completed successfully after an implementation-dependent timeout. In this case, the state of the
payload becomes undefined, and future operations on semaphores sharing the payload will be
subject to these same rules. The semaphore must be destroyed or have its payload replaced by
an import operation to again have a well-defined state.

Note

These rules allow processes to synchronize access to shared memory without
trusting each other. However, such processes must still be cautious not to use the
shared semaphore for more than synchronizing access to the shared memory. For
example, a process should not use a shared semaphore as part of an execution
dependency chain that, when complete, leads to objects being destroyed, if it does
not trust other processes sharing the semaphore payload.

When a semaphore is using an imported payload, its VkExportSemaphoreCreateInfo::handleTypes
value is specified when creating the semaphore from which the payload was exported, rather than
specified when creating the semaphore. Additionally, VkExternalSemaphoreProperties
::exportFromImportedHandleTypes restricts which handle types can be exported from such a
semaphore based on the specific handle type used to import the current payload.

When importing a semaphore payload, it is the responsibility of the application to ensure the
external handles meet all valid usage requirements. However, implementations must perform
sufficient validation of external handles to ensure that the operation results in a valid semaphore
which will not cause program termination, device loss, queue stalls, or corruption of other

204

resources when used as allowed according to its import parameters, and excepting those side
effects allowed for violations of the valid semaphore state for wait operations rules. If the external
handle provided does not meet these requirements, the implementation must fail the semaphore
payload import operation with the error code VK_ERROR_INVALID_EXTERNAL_HANDLE.

In addition, when importing a semaphore payload that is not compatible with the payload type
corresponding to the VkSemaphoreType the semaphore was created with, the implementation may
fail the semaphore payload import operation with the error code VK_ERROR_INVALID_EXTERNAL_HANDLE.

Note

As the introduction of the external semaphore handle type
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT predates that of timeline
semaphores, support for importing semaphore payloads from external handles of
that type into semaphores created (implicitly or explicitly) with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY is preserved for backwards
compatibility. However, applications should prefer importing such handle types
into semaphores created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE.

7.5. Events
Events are a synchronization primitive that can be used to insert a fine-grained dependency
between commands submitted to the same queue, or between the host and a queue. Events must
not be used to insert a dependency between commands submitted to different queues. Events have
two states - signaled and unsignaled. An application can signal or unsignal an event either on the
host or on the device. A device can be made to wait for an event to become signaled before
executing further operations. No command exists to wait for an event to become signaled on the
host, but the current state of an event can be queried.

Events are represented by VkEvent handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkEvent)

To create an event, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateEvent(
 VkDevice device,
 const VkEventCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkEvent* pEvent);

• device is the logical device that creates the event.

• pCreateInfo is a pointer to a VkEventCreateInfo structure containing information about how the
event is to be created.

205

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pEvent is a pointer to a handle in which the resulting event object is returned.

When created, the event object is in the unsignaled state.

Valid Usage

Valid Usage (Implicit)

• VUID-vkCreateEvent-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateEvent-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkEventCreateInfo structure

• VUID-vkCreateEvent-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateEvent-pEvent-parameter
pEvent must be a valid pointer to a VkEvent handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkEventCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkEventCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkEventCreateFlags flags;
} VkEventCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkEventCreateFlagBits defining additional creation parameters.

206

Valid Usage (Implicit)

• VUID-VkEventCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EVENT_CREATE_INFO

• VUID-VkEventCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkEventCreateInfo-flags-parameter
flags must be a valid combination of VkEventCreateFlagBits values

// Provided by VK_VERSION_1_0
typedef enum VkEventCreateFlagBits {
 // Provided by VK_VERSION_1_3
 VK_EVENT_CREATE_DEVICE_ONLY_BIT = 0x00000001,
} VkEventCreateFlagBits;

• VK_EVENT_CREATE_DEVICE_ONLY_BIT specifies that host event commands will not be used with this
event.

// Provided by VK_VERSION_1_0
typedef VkFlags VkEventCreateFlags;

VkEventCreateFlags is a bitmask type for setting a mask of VkEventCreateFlagBits.

To destroy an event, call:

// Provided by VK_VERSION_1_0
void vkDestroyEvent(
 VkDevice device,
 VkEvent event,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the event.

• event is the handle of the event to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyEvent-event-01145
All submitted commands that refer to event must have completed execution

• VUID-vkDestroyEvent-event-01146
If VkAllocationCallbacks were provided when event was created, a compatible set of
callbacks must be provided here

207

• VUID-vkDestroyEvent-event-01147
If no VkAllocationCallbacks were provided when event was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroyEvent-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyEvent-event-parameter
If event is not VK_NULL_HANDLE, event must be a valid VkEvent handle

• VUID-vkDestroyEvent-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyEvent-event-parent
If event is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

To query the state of an event from the host, call:

// Provided by VK_VERSION_1_0
VkResult vkGetEventStatus(
 VkDevice device,
 VkEvent event);

• device is the logical device that owns the event.

• event is the handle of the event to query.

Upon success, vkGetEventStatus returns the state of the event object with the following return codes:

Table 6. Event Object Status Codes

Status Meaning

VK_EVENT_SET The event specified by event is
signaled.

VK_EVENT_RESET The event specified by event is
unsignaled.

If a vkCmdSetEvent or vkCmdResetEvent command is in a command buffer that is in the pending state,
then the value returned by this command may immediately be out of date.

208

The state of an event can be updated by the host. The state of the event is immediately changed,
and subsequent calls to vkGetEventStatus will return the new state. If an event is already in the
requested state, then updating it to the same state has no effect.

Valid Usage

• VUID-vkGetEventStatus-event-03940
event must not have been created with VK_EVENT_CREATE_DEVICE_ONLY_BIT

Valid Usage (Implicit)

• VUID-vkGetEventStatus-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetEventStatus-event-parameter
event must be a valid VkEvent handle

• VUID-vkGetEventStatus-event-parent
event must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_EVENT_SET

• VK_EVENT_RESET

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To set the state of an event to signaled from the host, call:

// Provided by VK_VERSION_1_0
VkResult vkSetEvent(
 VkDevice device,
 VkEvent event);

• device is the logical device that owns the event.

• event is the event to set.

When vkSetEvent is executed on the host, it defines an event signal operation which sets the event
to the signaled state.

209

If event is already in the signaled state when vkSetEvent is executed, then vkSetEvent has no effect,
and no event signal operation occurs.

Note

If a command buffer is waiting for an event to be signaled from the host, the
application must signal the event before submitting the command buffer, as
described in the queue forward progress section.

Valid Usage

• VUID-vkSetEvent-event-03941
event must not have been created with VK_EVENT_CREATE_DEVICE_ONLY_BIT

• VUID-vkSetEvent-event-09543
event must not be waited on by a command buffer in the pending state

Valid Usage (Implicit)

• VUID-vkSetEvent-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetEvent-event-parameter
event must be a valid VkEvent handle

• VUID-vkSetEvent-event-parent
event must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To set the state of an event to unsignaled from the host, call:

// Provided by VK_VERSION_1_0
VkResult vkResetEvent(

210

 VkDevice device,
 VkEvent event);

• device is the logical device that owns the event.

• event is the event to reset.

When vkResetEvent is executed on the host, it defines an event unsignal operation which resets the
event to the unsignaled state.

If event is already in the unsignaled state when vkResetEvent is executed, then vkResetEvent has no
effect, and no event unsignal operation occurs.

Valid Usage

• VUID-vkResetEvent-event-03821
There must be an execution dependency between vkResetEvent and the execution of any
vkCmdWaitEvents that includes event in its pEvents parameter

• VUID-vkResetEvent-event-03822
There must be an execution dependency between vkResetEvent and the execution of any
vkCmdWaitEvents2 that includes event in its pEvents parameter

• VUID-vkResetEvent-event-03823
event must not have been created with VK_EVENT_CREATE_DEVICE_ONLY_BIT

Valid Usage (Implicit)

• VUID-vkResetEvent-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetEvent-event-parameter
event must be a valid VkEvent handle

• VUID-vkResetEvent-event-parent
event must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

Return Codes

Success

• VK_SUCCESS

211

Failure

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The state of an event can also be updated on the device by commands inserted in command
buffers.

To signal an event from a device, call:

// Provided by VK_VERSION_1_3
void vkCmdSetEvent2(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 const VkDependencyInfo* pDependencyInfo);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be signaled.

• pDependencyInfo is a pointer to a VkDependencyInfo structure defining the first scopes of this
operation.

When vkCmdSetEvent2 is submitted to a queue, it defines the first half of memory dependencies
defined by pDependencyInfo, as well as an event signal operation which sets the event to the signaled
state. A memory dependency is defined between the event signal operation and commands that
occur earlier in submission order.

The first synchronization scope and access scope are defined by the union of all the memory
dependencies defined by pDependencyInfo, and are applied to all operations that occur earlier in
submission order. Queue family ownership transfers and image layout transitions defined by
pDependencyInfo are also included in the first scopes.

The second synchronization scope includes only the event signal operation, and any queue family
ownership transfers and image layout transitions defined by pDependencyInfo.

The second access scope includes only queue family ownership transfers and image layout
transitions.

Future vkCmdWaitEvents2 commands rely on all values of each element in pDependencyInfo
matching exactly with those used to signal the corresponding event. vkCmdWaitEvents must not be
used to wait on the result of a signal operation defined by vkCmdSetEvent2.

Note

The extra information provided by vkCmdSetEvent2 compared to vkCmdSetEvent
allows implementations to more efficiently schedule the operations required to
satisfy the requested dependencies. With vkCmdSetEvent, the full dependency
information is not known until vkCmdWaitEvents is recorded, forcing
implementations to insert the required operations at that point and not before.

If event is already in the signaled state when vkCmdSetEvent2 is executed on the device, then

212

vkCmdSetEvent2 has no effect, no event signal operation occurs, and no dependency is generated.

Valid Usage

• VUID-vkCmdSetEvent2-synchronization2-03824
The synchronization2 feature must be enabled

• VUID-vkCmdSetEvent2-dependencyFlags-03825
The dependencyFlags member of pDependencyInfo must be 0

• VUID-vkCmdSetEvent2-srcStageMask-09391
The srcStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must not include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-vkCmdSetEvent2-dstStageMask-09392
The dstStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must not include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-vkCmdSetEvent2-commandBuffer-03826
The current device mask of commandBuffer must include exactly one physical device

• VUID-vkCmdSetEvent2-srcStageMask-03827
The srcStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must only include pipeline stages
valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

• VUID-vkCmdSetEvent2-dstStageMask-03828
The dstStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must only include pipeline stages
valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

Valid Usage (Implicit)

• VUID-vkCmdSetEvent2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetEvent2-event-parameter
event must be a valid VkEvent handle

• VUID-vkCmdSetEvent2-pDependencyInfo-parameter
pDependencyInfo must be a valid pointer to a valid VkDependencyInfo structure

• VUID-vkCmdSetEvent2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetEvent2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

213

• VUID-vkCmdSetEvent2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdSetEvent2-commonparent
Both of commandBuffer, and event must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics
Compute

Synchronization

The VkDependencyInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkDependencyInfo {
 VkStructureType sType;
 const void* pNext;
 VkDependencyFlags dependencyFlags;
 uint32_t memoryBarrierCount;
 const VkMemoryBarrier2* pMemoryBarriers;
 uint32_t bufferMemoryBarrierCount;
 const VkBufferMemoryBarrier2* pBufferMemoryBarriers;
 uint32_t imageMemoryBarrierCount;
 const VkImageMemoryBarrier2* pImageMemoryBarriers;
} VkDependencyInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dependencyFlags is a bitmask of VkDependencyFlagBits specifying how execution and memory
dependencies are formed.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier2 structures defining memory
dependencies between any memory accesses.

214

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier2 structures defining
memory dependencies between buffer ranges.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier2 structures defining
memory dependencies between image subresources.

This structure defines a set of memory dependencies, as well as queue family ownership transfer
operations and image layout transitions.

Each member of pMemoryBarriers, pBufferMemoryBarriers, and pImageMemoryBarriers defines a
separate memory dependency.

Valid Usage (Implicit)

• VUID-VkDependencyInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEPENDENCY_INFO

• VUID-VkDependencyInfo-pNext-pNext
pNext must be NULL

• VUID-VkDependencyInfo-dependencyFlags-parameter
dependencyFlags must be a valid combination of VkDependencyFlagBits values

• VUID-VkDependencyInfo-pMemoryBarriers-parameter
If memoryBarrierCount is not 0, pMemoryBarriers must be a valid pointer to an array of
memoryBarrierCount valid VkMemoryBarrier2 structures

• VUID-VkDependencyInfo-pBufferMemoryBarriers-parameter
If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a valid pointer to an
array of bufferMemoryBarrierCount valid VkBufferMemoryBarrier2 structures

• VUID-VkDependencyInfo-pImageMemoryBarriers-parameter
If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a valid pointer to an
array of imageMemoryBarrierCount valid VkImageMemoryBarrier2 structures

To set the state of an event to signaled from a device, call:

// Provided by VK_VERSION_1_0
void vkCmdSetEvent(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 VkPipelineStageFlags stageMask);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be signaled.

• stageMask specifies the source stage mask used to determine the first synchronization scope.

215

vkCmdSetEvent behaves identically to vkCmdSetEvent2, except that it does not define an access
scope, and must only be used with vkCmdWaitEvents, not vkCmdWaitEvents2.

Valid Usage

• VUID-vkCmdSetEvent-stageMask-04090
If the geometryShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdSetEvent-stageMask-04091
If the tessellationShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdSetEvent-stageMask-03937
If the synchronization2 feature is not enabled, stageMask must not be 0

• VUID-vkCmdSetEvent-stageMask-06457
Any pipeline stage included in stageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdSetEvent-stageMask-01149
stageMask must not include VK_PIPELINE_STAGE_HOST_BIT

• VUID-vkCmdSetEvent-commandBuffer-01152
The current device mask of commandBuffer must include exactly one physical device

Valid Usage (Implicit)

• VUID-vkCmdSetEvent-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetEvent-event-parameter
event must be a valid VkEvent handle

• VUID-vkCmdSetEvent-stageMask-parameter
stageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdSetEvent-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetEvent-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdSetEvent-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdSetEvent-commonparent
Both of commandBuffer, and event must have been created, allocated, or retrieved from the
same VkDevice

216

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics
Compute

Synchronization

To unsignal the event from a device, call:

// Provided by VK_VERSION_1_3
void vkCmdResetEvent2(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 VkPipelineStageFlags2 stageMask);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be unsignaled.

• stageMask is a VkPipelineStageFlags2 mask of pipeline stages used to determine the first
synchronization scope.

When vkCmdResetEvent2 is submitted to a queue, it defines an execution dependency on
commands that were submitted before it, and defines an event unsignal operation which resets the
event to the unsignaled state.

The first synchronization scope includes all commands that occur earlier in submission order. The
synchronization scope is limited to operations by stageMask or stages that are logically earlier than
stageMask.

The second synchronization scope includes only the event unsignal operation.

If event is already in the unsignaled state when vkCmdResetEvent2 is executed on the device, then
this command has no effect, no event unsignal operation occurs, and no execution dependency is
generated.

Valid Usage

• VUID-vkCmdResetEvent2-stageMask-03929
If the geometryShader feature is not enabled, stageMask must not contain

217

VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-vkCmdResetEvent2-stageMask-03930
If the tessellationShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdResetEvent2-synchronization2-03829
The synchronization2 feature must be enabled

• VUID-vkCmdResetEvent2-stageMask-03830
stageMask must not include VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-vkCmdResetEvent2-event-03831
There must be an execution dependency between vkCmdResetEvent2 and the execution of
any vkCmdWaitEvents that includes event in its pEvents parameter

• VUID-vkCmdResetEvent2-event-03832
There must be an execution dependency between vkCmdResetEvent2 and the execution of
any vkCmdWaitEvents2 that includes event in its pEvents parameter

• VUID-vkCmdResetEvent2-commandBuffer-03833
commandBuffer’s current device mask must include exactly one physical device

Valid Usage (Implicit)

• VUID-vkCmdResetEvent2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResetEvent2-event-parameter
event must be a valid VkEvent handle

• VUID-vkCmdResetEvent2-stageMask-parameter
stageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-vkCmdResetEvent2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResetEvent2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdResetEvent2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdResetEvent2-commonparent
Both of commandBuffer, and event must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

218

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics
Compute

Synchronization

To set the state of an event to unsignaled from a device, call:

// Provided by VK_VERSION_1_0
void vkCmdResetEvent(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 VkPipelineStageFlags stageMask);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be unsignaled.

• stageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask used to
determine when the event is unsignaled.

vkCmdResetEvent behaves identically to vkCmdResetEvent2.

Valid Usage

• VUID-vkCmdResetEvent-stageMask-04090
If the geometryShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdResetEvent-stageMask-04091
If the tessellationShader feature is not enabled, stageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdResetEvent-stageMask-03937
If the synchronization2 feature is not enabled, stageMask must not be 0

• VUID-vkCmdResetEvent-stageMask-06458
Any pipeline stage included in stageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdResetEvent-stageMask-01153

219

stageMask must not include VK_PIPELINE_STAGE_HOST_BIT

• VUID-vkCmdResetEvent-event-03834
There must be an execution dependency between vkCmdResetEvent and the execution of
any vkCmdWaitEvents that includes event in its pEvents parameter

• VUID-vkCmdResetEvent-event-03835
There must be an execution dependency between vkCmdResetEvent and the execution of
any vkCmdWaitEvents2 that includes event in its pEvents parameter

• VUID-vkCmdResetEvent-commandBuffer-01157
commandBuffer’s current device mask must include exactly one physical device

Valid Usage (Implicit)

• VUID-vkCmdResetEvent-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResetEvent-event-parameter
event must be a valid VkEvent handle

• VUID-vkCmdResetEvent-stageMask-parameter
stageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdResetEvent-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResetEvent-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdResetEvent-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdResetEvent-commonparent
Both of commandBuffer, and event must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

220

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics
Compute

Synchronization

To wait for one or more events to enter the signaled state on a device, call:

// Provided by VK_VERSION_1_3
void vkCmdWaitEvents2(
 VkCommandBuffer commandBuffer,
 uint32_t eventCount,
 const VkEvent* pEvents,
 const VkDependencyInfo* pDependencyInfos);

• commandBuffer is the command buffer into which the command is recorded.

• eventCount is the length of the pEvents array.

• pEvents is a pointer to an array of eventCount events to wait on.

• pDependencyInfos is a pointer to an array of eventCount VkDependencyInfo structures, defining
the second synchronization scope.

When vkCmdWaitEvents2 is submitted to a queue, it inserts memory dependencies according to the
elements of pDependencyInfos and each corresponding element of pEvents. vkCmdWaitEvents2 must
not be used to wait on event signal operations occurring on other queues, or signal operations
executed by vkCmdSetEvent.

The first synchronization scope and access scope of each memory dependency defined by any
element i of pDependencyInfos are applied to operations that occurred earlier in submission order
than the last event signal operation on element i of pEvents.

Signal operations for an event at index i are only included if:

• The event was signaled by a vkCmdSetEvent2 command that occurred earlier in submission
order with a dependencyInfo parameter exactly equal to the element of pDependencyInfos at index
i ; or

• The event was created without VK_EVENT_CREATE_DEVICE_ONLY_BIT, and the first synchronization
scope defined by the element of pDependencyInfos at index i only includes host operations
(VK_PIPELINE_STAGE_2_HOST_BIT).

The second synchronization scope and access scope of each memory dependency defined by any
element i of pDependencyInfos are applied to operations that occurred later in submission order
than vkCmdWaitEvents2.

 Note

221

vkCmdWaitEvents2 is used with vkCmdSetEvent2 to define a memory dependency
between two sets of action commands, roughly in the same way as pipeline
barriers, but split into two commands such that work between the two may
execute unhindered.

Note

Applications should be careful to avoid race conditions when using events. There
is no direct ordering guarantee between vkCmdSetEvent2 and vkCmdResetEvent2,
vkCmdResetEvent, or vkCmdSetEvent. Another execution dependency (e.g. a
pipeline barrier or semaphore with VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT) is
needed to prevent such a race condition.

Valid Usage

• VUID-vkCmdWaitEvents2-synchronization2-03836
The synchronization2 feature must be enabled

• VUID-vkCmdWaitEvents2-pEvents-03837
Members of pEvents must not have been signaled by vkCmdSetEvent

• VUID-vkCmdWaitEvents2-pEvents-03838
For any element i of pEvents, if that event is signaled by vkCmdSetEvent2, that command’s
dependencyInfo parameter must be exactly equal to the ith element of pDependencyInfos

• VUID-vkCmdWaitEvents2-pEvents-03839
For any element i of pEvents, if that event is signaled by vkSetEvent, barriers in the ith
element of pDependencyInfos must include only host operations in their first
synchronization scope

• VUID-vkCmdWaitEvents2-pEvents-03840
For any element i of pEvents, if barriers in the ith element of pDependencyInfos include only
host operations, the ith element of pEvents must be signaled before vkCmdWaitEvents2 is
executed

• VUID-vkCmdWaitEvents2-pEvents-03841
For any element i of pEvents, if barriers in the ith element of pDependencyInfos do not
include host operations, the ith element of pEvents must be signaled by a corresponding
vkCmdSetEvent2 that occurred earlier in submission order

• VUID-vkCmdWaitEvents2-srcStageMask-03842
The srcStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfos must either include only pipeline
stages valid for the queue family that was used to create the command pool that
commandBuffer was allocated from

• VUID-vkCmdWaitEvents2-dstStageMask-03843
The dstStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfos must only include pipeline stages
valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

222

• VUID-vkCmdWaitEvents2-dependencyFlags-03844
If vkCmdWaitEvents2 is being called inside a render pass instance, the srcStageMask member
of any element of the pMemoryBarriers, pBufferMemoryBarriers, or pImageMemoryBarriers
members of pDependencyInfos must not include VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-vkCmdWaitEvents2-commandBuffer-03846
commandBuffer’s current device mask must include exactly one physical device

Valid Usage (Implicit)

• VUID-vkCmdWaitEvents2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWaitEvents2-pEvents-parameter
pEvents must be a valid pointer to an array of eventCount valid VkEvent handles

• VUID-vkCmdWaitEvents2-pDependencyInfos-parameter
pDependencyInfos must be a valid pointer to an array of eventCount valid
VkDependencyInfo structures

• VUID-vkCmdWaitEvents2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWaitEvents2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdWaitEvents2-eventCount-arraylength
eventCount must be greater than 0

• VUID-vkCmdWaitEvents2-commonparent
Both of commandBuffer, and the elements of pEvents must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics
Compute

Synchronization

223

To wait for one or more events to enter the signaled state on a device, call:

// Provided by VK_VERSION_1_0
void vkCmdWaitEvents(
 VkCommandBuffer commandBuffer,
 uint32_t eventCount,
 const VkEvent* pEvents,
 VkPipelineStageFlags srcStageMask,
 VkPipelineStageFlags dstStageMask,
 uint32_t memoryBarrierCount,
 const VkMemoryBarrier* pMemoryBarriers,
 uint32_t bufferMemoryBarrierCount,
 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
 uint32_t imageMemoryBarrierCount,
 const VkImageMemoryBarrier* pImageMemoryBarriers);

• commandBuffer is the command buffer into which the command is recorded.

• eventCount is the length of the pEvents array.

• pEvents is a pointer to an array of event object handles to wait on.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

vkCmdWaitEvents is largely similar to vkCmdWaitEvents2, but can only wait on signal operations
defined by vkCmdSetEvent. As vkCmdSetEvent does not define any access scopes, vkCmdWaitEvents
defines the first access scope for each event signal operation in addition to its own access scopes.

Note

Since vkCmdSetEvent does not have any dependency information beyond a stage
mask, implementations do not have the same opportunity to perform availability
and visibility operations or image layout transitions in advance as they do with
vkCmdSetEvent2 and vkCmdWaitEvents2.

When vkCmdWaitEvents is submitted to a queue, it defines a memory dependency between prior
event signal operations on the same queue or the host, and subsequent commands. vkCmdWaitEvents
must not be used to wait on event signal operations occurring on other queues.

The first synchronization scope only includes event signal operations that operate on members of
pEvents, and the operations that happened-before the event signal operations. Event signal

224

operations performed by vkCmdSetEvent that occur earlier in submission order are included in the
first synchronization scope, if the logically latest pipeline stage in their stageMask parameter is
logically earlier than or equal to the logically latest pipeline stage in srcStageMask. Event signal
operations performed by vkSetEvent are only included in the first synchronization scope if
VK_PIPELINE_STAGE_HOST_BIT is included in srcStageMask.

The second synchronization scope includes all commands that occur later in submission order. The
second synchronization scope is limited to operations on the pipeline stages determined by the
destination stage mask specified by dstStageMask.

The first access scope is limited to accesses in the pipeline stages determined by the source stage
mask specified by srcStageMask. Within that, the first access scope only includes the first access
scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers
arrays, which each define a set of memory barriers. If no memory barriers are specified, then the
first access scope includes no accesses.

The second access scope is limited to accesses in the pipeline stages determined by the destination
stage mask specified by dstStageMask. Within that, the second access scope only includes the second
access scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and
pImageMemoryBarriers arrays, which each define a set of memory barriers. If no memory barriers
are specified, then the second access scope includes no accesses.

Valid Usage

• VUID-vkCmdWaitEvents-srcStageMask-04090
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdWaitEvents-srcStageMask-04091
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWaitEvents-srcStageMask-03937
If the synchronization2 feature is not enabled, srcStageMask must not be 0

• VUID-vkCmdWaitEvents-dstStageMask-04090
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdWaitEvents-dstStageMask-04091
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWaitEvents-dstStageMask-03937
If the synchronization2 feature is not enabled, dstStageMask must not be 0

• VUID-vkCmdWaitEvents-srcAccessMask-02815
The srcAccessMask member of each element of pMemoryBarriers must only include access
flags that are supported by one or more of the pipeline stages in srcStageMask, as specified

225

in the table of supported access types

• VUID-vkCmdWaitEvents-dstAccessMask-02816
The dstAccessMask member of each element of pMemoryBarriers must only include access
flags that are supported by one or more of the pipeline stages in dstStageMask, as specified
in the table of supported access types

• VUID-vkCmdWaitEvents-pBufferMemoryBarriers-02817
For any element of pBufferMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its srcQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its srcAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in srcStageMask, as specified in the table of supported access
types

• VUID-vkCmdWaitEvents-pBufferMemoryBarriers-02818
For any element of pBufferMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its dstQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its dstAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in dstStageMask, as specified in the table of supported access
types

• VUID-vkCmdWaitEvents-pImageMemoryBarriers-02819
For any element of pImageMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its srcQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its srcAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in srcStageMask, as specified in the table of supported access
types

• VUID-vkCmdWaitEvents-pImageMemoryBarriers-02820
For any element of pImageMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its dstQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its dstAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in dstStageMask, as specified in the table of supported access
types

• VUID-vkCmdWaitEvents-srcStageMask-06459
Any pipeline stage included in srcStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdWaitEvents-dstStageMask-06460
Any pipeline stage included in dstStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdWaitEvents-srcStageMask-01158
srcStageMask must be the bitwise OR of the stageMask parameter used in previous calls to

226

vkCmdSetEvent with any of the elements of pEvents and VK_PIPELINE_STAGE_HOST_BIT if any
of the elements of pEvents was set using vkSetEvent

• VUID-vkCmdWaitEvents-srcStageMask-07308
If vkCmdWaitEvents is being called inside a render pass instance, srcStageMask must not
include VK_PIPELINE_STAGE_HOST_BIT

• VUID-vkCmdWaitEvents-srcQueueFamilyIndex-02803
The srcQueueFamilyIndex and dstQueueFamilyIndex members of any element of
pBufferMemoryBarriers or pImageMemoryBarriers must be equal

• VUID-vkCmdWaitEvents-commandBuffer-01167
commandBuffer’s current device mask must include exactly one physical device

• VUID-vkCmdWaitEvents-pEvents-03847
Elements of pEvents must not have been signaled by vkCmdSetEvent2

Valid Usage (Implicit)

• VUID-vkCmdWaitEvents-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWaitEvents-pEvents-parameter
pEvents must be a valid pointer to an array of eventCount valid VkEvent handles

• VUID-vkCmdWaitEvents-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdWaitEvents-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdWaitEvents-pMemoryBarriers-parameter
If memoryBarrierCount is not 0, pMemoryBarriers must be a valid pointer to an array of
memoryBarrierCount valid VkMemoryBarrier structures

• VUID-vkCmdWaitEvents-pBufferMemoryBarriers-parameter
If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a valid pointer to an
array of bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

• VUID-vkCmdWaitEvents-pImageMemoryBarriers-parameter
If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a valid pointer to an
array of imageMemoryBarrierCount valid VkImageMemoryBarrier structures

• VUID-vkCmdWaitEvents-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWaitEvents-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdWaitEvents-eventCount-arraylength
eventCount must be greater than 0

• VUID-vkCmdWaitEvents-commonparent
Both of commandBuffer, and the elements of pEvents must have been created, allocated, or

227

retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics
Compute

Synchronization

7.6. Pipeline Barriers
To record a pipeline barrier, call:

// Provided by VK_VERSION_1_3
void vkCmdPipelineBarrier2(
 VkCommandBuffer commandBuffer,
 const VkDependencyInfo* pDependencyInfo);

• commandBuffer is the command buffer into which the command is recorded.

• pDependencyInfo is a pointer to a VkDependencyInfo structure defining the scopes of this
operation.

When vkCmdPipelineBarrier2 is submitted to a queue, it defines memory dependencies between
commands that were submitted to the same queue before it, and those submitted to the same queue
after it.

The first synchronization scope and access scope of each memory dependency defined by
pDependencyInfo are applied to operations that occurred earlier in submission order.

The second synchronization scope and access scope of each memory dependency defined by
pDependencyInfo are applied to operations that occurred later in submission order.

If vkCmdPipelineBarrier2 is recorded within a render pass instance, the synchronization scopes are
limited to a subset of operations within the same subpass or render pass instance.

228

Valid Usage

• VUID-vkCmdPipelineBarrier2-None-07889
If vkCmdPipelineBarrier2 is called within a render pass instance using a VkRenderPass
object, the render pass must have been created with at least one subpass dependency that
expresses a dependency from the current subpass to itself, does not include
VK_DEPENDENCY_BY_REGION_BIT if this command does not, does not include
VK_DEPENDENCY_VIEW_LOCAL_BIT if this command does not, and has synchronization scopes
and access scopes that are all supersets of the scopes defined in this command

• VUID-vkCmdPipelineBarrier2-bufferMemoryBarrierCount-01178
If vkCmdPipelineBarrier2 is called within a render pass instance using a VkRenderPass
object, it must not include any buffer memory barriers

• VUID-vkCmdPipelineBarrier2-image-04073
If vkCmdPipelineBarrier2 is called within a render pass instance using a VkRenderPass
object, the image member of any image memory barrier included in this command must
be an attachment used in the current subpass both as an input attachment, and as either a
color, or depth/stencil attachment

• VUID-vkCmdPipelineBarrier2-oldLayout-01181
If vkCmdPipelineBarrier2 is called within a render pass instance, the oldLayout and
newLayout members of any image memory barrier included in this command must be
equal

• VUID-vkCmdPipelineBarrier2-srcQueueFamilyIndex-01182
If vkCmdPipelineBarrier2 is called within a render pass instance, the srcQueueFamilyIndex
and dstQueueFamilyIndex members of any memory barrier included in this command
must be equal

• VUID-vkCmdPipelineBarrier2-None-07890
If vkCmdPipelineBarrier2 is called within a render pass instance, and the source stage
masks of any memory barriers include framebuffer-space stages, destination stage masks
of all memory barriers must only include framebuffer-space stages

• VUID-vkCmdPipelineBarrier2-dependencyFlags-07891
If vkCmdPipelineBarrier2 is called within a render pass instance, and the source stage
masks of any memory barriers include framebuffer-space stages, then dependencyFlags
must include VK_DEPENDENCY_BY_REGION_BIT

• VUID-vkCmdPipelineBarrier2-None-07892
If vkCmdPipelineBarrier2 is called within a render pass instance, the source and
destination stage masks of any memory barriers must only include graphics pipeline
stages

• VUID-vkCmdPipelineBarrier2-dependencyFlags-01186
If vkCmdPipelineBarrier2 is called outside of a render pass instance, the dependency flags
must not include VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-vkCmdPipelineBarrier2-None-07893
If vkCmdPipelineBarrier2 is called inside a render pass instance, and there is more than
one view in the current subpass, dependency flags must include
VK_DEPENDENCY_VIEW_LOCAL_BIT

229

• VUID-vkCmdPipelineBarrier2-None-09553
vkCmdPipelineBarrier2 must not be called within a render pass instance started with
vkCmdBeginRendering

• VUID-vkCmdPipelineBarrier2-synchronization2-03848
The synchronization2 feature must be enabled

• VUID-vkCmdPipelineBarrier2-srcStageMask-03849
The srcStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must only include pipeline stages
valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

• VUID-vkCmdPipelineBarrier2-dstStageMask-03850
The dstStageMask member of any element of the pMemoryBarriers, pBufferMemoryBarriers,
or pImageMemoryBarriers members of pDependencyInfo must only include pipeline stages
valid for the queue family that was used to create the command pool that commandBuffer
was allocated from

Valid Usage (Implicit)

• VUID-vkCmdPipelineBarrier2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPipelineBarrier2-pDependencyInfo-parameter
pDependencyInfo must be a valid pointer to a valid VkDependencyInfo structure

• VUID-vkCmdPipelineBarrier2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdPipelineBarrier2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Transfer
Graphics
Compute

Synchronization

230

To record a pipeline barrier, call:

// Provided by VK_VERSION_1_0
void vkCmdPipelineBarrier(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlags srcStageMask,
 VkPipelineStageFlags dstStageMask,
 VkDependencyFlags dependencyFlags,
 uint32_t memoryBarrierCount,
 const VkMemoryBarrier* pMemoryBarriers,
 uint32_t bufferMemoryBarrierCount,
 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
 uint32_t imageMemoryBarrierCount,
 const VkImageMemoryBarrier* pImageMemoryBarriers);

• commandBuffer is the command buffer into which the command is recorded.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stages.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stages.

• dependencyFlags is a bitmask of VkDependencyFlagBits specifying how execution and memory
dependencies are formed.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

vkCmdPipelineBarrier operates almost identically to vkCmdPipelineBarrier2, except that the scopes
and barriers are defined as direct parameters rather than being defined by a VkDependencyInfo.

When vkCmdPipelineBarrier is submitted to a queue, it defines a memory dependency between
commands that were submitted to the same queue before it, and those submitted to the same queue
after it.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the first synchronization
scope includes all commands that occur earlier in submission order. If vkCmdPipelineBarrier was
recorded inside a render pass instance, the first synchronization scope includes only commands
that occur earlier in submission order within the same subpass. In either case, the first
synchronization scope is limited to operations on the pipeline stages determined by the source
stage mask specified by srcStageMask.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the second synchronization
scope includes all commands that occur later in submission order. If vkCmdPipelineBarrier was
recorded inside a render pass instance, the second synchronization scope includes only commands
that occur later in submission order within the same subpass. In either case, the second

231

synchronization scope is limited to operations on the pipeline stages determined by the destination
stage mask specified by dstStageMask.

The first access scope is limited to accesses in the pipeline stages determined by the source stage
mask specified by srcStageMask. Within that, the first access scope only includes the first access
scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers
arrays, which each define a set of memory barriers. If no memory barriers are specified, then the
first access scope includes no accesses.

The second access scope is limited to accesses in the pipeline stages determined by the destination
stage mask specified by dstStageMask. Within that, the second access scope only includes the second
access scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and
pImageMemoryBarriers arrays, which each define a set of memory barriers. If no memory barriers
are specified, then the second access scope includes no accesses.

If dependencyFlags includes VK_DEPENDENCY_BY_REGION_BIT, then any dependency between
framebuffer-space pipeline stages is framebuffer-local - otherwise it is framebuffer-global.

Valid Usage

• VUID-vkCmdPipelineBarrier-srcStageMask-04090
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdPipelineBarrier-srcStageMask-04091
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdPipelineBarrier-srcStageMask-03937
If the synchronization2 feature is not enabled, srcStageMask must not be 0

• VUID-vkCmdPipelineBarrier-dstStageMask-04090
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdPipelineBarrier-dstStageMask-04091
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdPipelineBarrier-dstStageMask-03937
If the synchronization2 feature is not enabled, dstStageMask must not be 0

• VUID-vkCmdPipelineBarrier-srcAccessMask-02815
The srcAccessMask member of each element of pMemoryBarriers must only include access
flags that are supported by one or more of the pipeline stages in srcStageMask, as specified
in the table of supported access types

• VUID-vkCmdPipelineBarrier-dstAccessMask-02816
The dstAccessMask member of each element of pMemoryBarriers must only include access
flags that are supported by one or more of the pipeline stages in dstStageMask, as specified

232

in the table of supported access types

• VUID-vkCmdPipelineBarrier-pBufferMemoryBarriers-02817
For any element of pBufferMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its srcQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its srcAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in srcStageMask, as specified in the table of supported access
types

• VUID-vkCmdPipelineBarrier-pBufferMemoryBarriers-02818
For any element of pBufferMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its dstQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its dstAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in dstStageMask, as specified in the table of supported access
types

• VUID-vkCmdPipelineBarrier-pImageMemoryBarriers-02819
For any element of pImageMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its srcQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its srcAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in srcStageMask, as specified in the table of supported access
types

• VUID-vkCmdPipelineBarrier-pImageMemoryBarriers-02820
For any element of pImageMemoryBarriers, if its srcQueueFamilyIndex and
dstQueueFamilyIndex members are equal, or if its dstQueueFamilyIndex is the queue family
index that was used to create the command pool that commandBuffer was allocated from,
then its dstAccessMask member must only contain access flags that are supported by one
or more of the pipeline stages in dstStageMask, as specified in the table of supported access
types

• VUID-vkCmdPipelineBarrier-None-07889
If vkCmdPipelineBarrier is called within a render pass instance using a VkRenderPass
object, the render pass must have been created with at least one subpass dependency that
expresses a dependency from the current subpass to itself, does not include
VK_DEPENDENCY_BY_REGION_BIT if this command does not, does not include
VK_DEPENDENCY_VIEW_LOCAL_BIT if this command does not, and has synchronization scopes
and access scopes that are all supersets of the scopes defined in this command

• VUID-vkCmdPipelineBarrier-bufferMemoryBarrierCount-01178
If vkCmdPipelineBarrier is called within a render pass instance using a VkRenderPass
object, it must not include any buffer memory barriers

• VUID-vkCmdPipelineBarrier-image-04073
If vkCmdPipelineBarrier is called within a render pass instance using a VkRenderPass
object, the image member of any image memory barrier included in this command must
be an attachment used in the current subpass both as an input attachment, and as either a
color, or depth/stencil attachment

233

• VUID-vkCmdPipelineBarrier-oldLayout-01181
If vkCmdPipelineBarrier is called within a render pass instance, the oldLayout and
newLayout members of any image memory barrier included in this command must be
equal

• VUID-vkCmdPipelineBarrier-srcQueueFamilyIndex-01182
If vkCmdPipelineBarrier is called within a render pass instance, the srcQueueFamilyIndex
and dstQueueFamilyIndex members of any memory barrier included in this command
must be equal

• VUID-vkCmdPipelineBarrier-None-07890
If vkCmdPipelineBarrier is called within a render pass instance, and the source stage masks
of any memory barriers include framebuffer-space stages, destination stage masks of all
memory barriers must only include framebuffer-space stages

• VUID-vkCmdPipelineBarrier-dependencyFlags-07891
If vkCmdPipelineBarrier is called within a render pass instance, and the source stage masks
of any memory barriers include framebuffer-space stages, then dependencyFlags must
include VK_DEPENDENCY_BY_REGION_BIT

• VUID-vkCmdPipelineBarrier-None-07892
If vkCmdPipelineBarrier is called within a render pass instance, the source and destination
stage masks of any memory barriers must only include graphics pipeline stages

• VUID-vkCmdPipelineBarrier-dependencyFlags-01186
If vkCmdPipelineBarrier is called outside of a render pass instance, the dependency flags
must not include VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-vkCmdPipelineBarrier-None-07893
If vkCmdPipelineBarrier is called inside a render pass instance, and there is more than one
view in the current subpass, dependency flags must include VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-vkCmdPipelineBarrier-None-09553
vkCmdPipelineBarrier must not be called within a render pass instance started with
vkCmdBeginRendering

• VUID-vkCmdPipelineBarrier-srcStageMask-06461
Any pipeline stage included in srcStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

• VUID-vkCmdPipelineBarrier-dstStageMask-06462
Any pipeline stage included in dstStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo structure that was used to create the VkCommandPool that
commandBuffer was allocated from, as specified in the table of supported pipeline stages

Valid Usage (Implicit)

• VUID-vkCmdPipelineBarrier-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

234

• VUID-vkCmdPipelineBarrier-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdPipelineBarrier-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-vkCmdPipelineBarrier-dependencyFlags-parameter
dependencyFlags must be a valid combination of VkDependencyFlagBits values

• VUID-vkCmdPipelineBarrier-pMemoryBarriers-parameter
If memoryBarrierCount is not 0, pMemoryBarriers must be a valid pointer to an array of
memoryBarrierCount valid VkMemoryBarrier structures

• VUID-vkCmdPipelineBarrier-pBufferMemoryBarriers-parameter
If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a valid pointer to an
array of bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

• VUID-vkCmdPipelineBarrier-pImageMemoryBarriers-parameter
If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a valid pointer to an
array of imageMemoryBarrierCount valid VkImageMemoryBarrier structures

• VUID-vkCmdPipelineBarrier-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdPipelineBarrier-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Transfer
Graphics
Compute

Synchronization

Bits which can be set in vkCmdPipelineBarrier::dependencyFlags, specifying how execution and
memory dependencies are formed, are:

// Provided by VK_VERSION_1_0
typedef enum VkDependencyFlagBits {
 VK_DEPENDENCY_BY_REGION_BIT = 0x00000001,

235

 // Provided by VK_VERSION_1_1
 VK_DEPENDENCY_DEVICE_GROUP_BIT = 0x00000004,
 // Provided by VK_VERSION_1_1
 VK_DEPENDENCY_VIEW_LOCAL_BIT = 0x00000002,
} VkDependencyFlagBits;

• VK_DEPENDENCY_BY_REGION_BIT specifies that dependencies will be framebuffer-local.

• VK_DEPENDENCY_VIEW_LOCAL_BIT specifies that dependencies will be view-local.

• VK_DEPENDENCY_DEVICE_GROUP_BIT specifies that dependencies are non-device-local.

// Provided by VK_VERSION_1_0
typedef VkFlags VkDependencyFlags;

VkDependencyFlags is a bitmask type for setting a mask of zero or more VkDependencyFlagBits.

7.7. Memory Barriers
Memory barriers are used to explicitly control access to buffer and image subresource ranges.
Memory barriers are used to transfer ownership between queue families, change image layouts,
and define availability and visibility operations. They explicitly define the access types and buffer
and image subresource ranges that are included in the access scopes of a memory dependency that
is created by a synchronization command that includes them.

7.7.1. Global Memory Barriers

Global memory barriers apply to memory accesses involving all memory objects that exist at the
time of its execution.

The VkMemoryBarrier2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkMemoryBarrier2 {
 VkStructureType sType;
 const void* pNext;
 VkPipelineStageFlags2 srcStageMask;
 VkAccessFlags2 srcAccessMask;
 VkPipelineStageFlags2 dstStageMask;
 VkAccessFlags2 dstAccessMask;
} VkMemoryBarrier2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the first
synchronization scope.

236

• srcAccessMask is a VkAccessFlags2 mask of access flags to be included in the first access scope.

• dstStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the second
synchronization scope.

• dstAccessMask is a VkAccessFlags2 mask of access flags to be included in the second access scope.

This structure defines a memory dependency affecting all device memory.

The first synchronization scope and access scope described by this structure include only
operations and memory accesses specified by srcStageMask and srcAccessMask.

The second synchronization scope and access scope described by this structure include only
operations and memory accesses specified by dstStageMask and dstAccessMask.

Valid Usage

• VUID-VkMemoryBarrier2-srcStageMask-03929
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkMemoryBarrier2-srcStageMask-03930
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03900
If srcAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03901
If srcAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03902
If srcAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03903
If srcAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03904
If srcAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

237

• VUID-VkMemoryBarrier2-srcAccessMask-03905
If srcAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-03906
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-03907
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-07454
If srcAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-03909
If srcAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-srcAccessMask-03910
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03911
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03912
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03913
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03914
If srcAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03915

238

If srcAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03916
If srcAccessMask includes VK_ACCESS_2_HOST_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkMemoryBarrier2-srcAccessMask-03917
If srcAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkMemoryBarrier2-dstStageMask-03929
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkMemoryBarrier2-dstStageMask-03930
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03900
If dstAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03901
If dstAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03902
If dstAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03903
If dstAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03904
If dstAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-03905
If dstAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

239

• VUID-VkMemoryBarrier2-dstAccessMask-03906
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-03907
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-07454
If dstAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-03909
If dstAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkMemoryBarrier2-dstAccessMask-03910
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03911
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03912
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03913
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03914
If dstAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03915
If dstAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

240

• VUID-VkMemoryBarrier2-dstAccessMask-03916
If dstAccessMask includes VK_ACCESS_2_HOST_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkMemoryBarrier2-dstAccessMask-03917
If dstAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

Valid Usage (Implicit)

• VUID-VkMemoryBarrier2-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_BARRIER_2

• VUID-VkMemoryBarrier2-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkMemoryBarrier2-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkMemoryBarrier2-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkMemoryBarrier2-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits2 values

The VkMemoryBarrier structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryBarrier {
 VkStructureType sType;
 const void* pNext;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
} VkMemoryBarrier;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

The first access scope is limited to access types in the source access mask specified by srcAccessMask.

The second access scope is limited to access types in the destination access mask specified by
dstAccessMask.

Valid Usage (Implicit)

• VUID-VkMemoryBarrier-sType-sType

241

sType must be VK_STRUCTURE_TYPE_MEMORY_BARRIER

• VUID-VkMemoryBarrier-pNext-pNext
pNext must be NULL

• VUID-VkMemoryBarrier-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits values

• VUID-VkMemoryBarrier-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits values

7.7.2. Buffer Memory Barriers

Buffer memory barriers only apply to memory accesses involving a specific buffer range. That is, a
memory dependency formed from a buffer memory barrier is scoped to access via the specified
buffer range. Buffer memory barriers can also be used to define a queue family ownership transfer
for the specified buffer range.

The VkBufferMemoryBarrier2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkBufferMemoryBarrier2 {
 VkStructureType sType;
 const void* pNext;
 VkPipelineStageFlags2 srcStageMask;
 VkAccessFlags2 srcAccessMask;
 VkPipelineStageFlags2 dstStageMask;
 VkAccessFlags2 dstAccessMask;
 uint32_t srcQueueFamilyIndex;
 uint32_t dstQueueFamilyIndex;
 VkBuffer buffer;
 VkDeviceSize offset;
 VkDeviceSize size;
} VkBufferMemoryBarrier2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the first
synchronization scope.

• srcAccessMask is a VkAccessFlags2 mask of access flags to be included in the first access scope.

• dstStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the second
synchronization scope.

• dstAccessMask is a VkAccessFlags2 mask of access flags to be included in the second access scope.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

• buffer is a handle to the buffer whose backing memory is affected by the barrier.

242

• offset is an offset in bytes into the backing memory for buffer; this is relative to the base offset
as bound to the buffer (see vkBindBufferMemory).

• size is a size in bytes of the affected area of backing memory for buffer, or VK_WHOLE_SIZE to use
the range from offset to the end of the buffer.

This structure defines a memory dependency limited to a range of a buffer, and can define a queue
family ownership transfer operation for that range.

The first synchronization scope and access scope described by this structure include only
operations and memory accesses specified by srcStageMask and srcAccessMask.

The second synchronization scope and access scope described by this structure include only
operations and memory accesses specified by dstStageMask and dstAccessMask.

Both access scopes are limited to only memory accesses to buffer in the range defined by offset and
size.

If buffer was created with VK_SHARING_MODE_EXCLUSIVE, and srcQueueFamilyIndex is not equal to
dstQueueFamilyIndex, this memory barrier defines a queue family ownership transfer operation.
When executed on a queue in the family identified by srcQueueFamilyIndex, this barrier defines a
queue family release operation for the specified buffer range, and the second synchronization and
access scopes do not synchronize operations on that queue. When executed on a queue in the
family identified by dstQueueFamilyIndex, this barrier defines a queue family acquire operation for
the specified buffer range, and the first synchronization and access scopes do not synchronize
operations on that queue.

A queue family ownership transfer operation is also defined if the values are not equal, and either
is one of the special queue family values reserved for external memory ownership transfers, as
described in Queue Family Ownership Transfer. A queue family release operation is defined when
dstQueueFamilyIndex is one of those values, and a queue family acquire operation is defined when
srcQueueFamilyIndex is one of those values.

Valid Usage

• VUID-VkBufferMemoryBarrier2-srcStageMask-03929
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkBufferMemoryBarrier2-srcStageMask-03930
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03900
If srcAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03901
If srcAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, srcStageMask must include

243

VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03902
If srcAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03903
If srcAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03904
If srcAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03905
If srcAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03906
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03907
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-07454
If srcAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03909
If srcAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03910
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03911
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

244

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03912
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03913
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03914
If srcAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03915
If srcAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03916
If srcAccessMask includes VK_ACCESS_2_HOST_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkBufferMemoryBarrier2-srcAccessMask-03917
If srcAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkBufferMemoryBarrier2-dstStageMask-03929
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkBufferMemoryBarrier2-dstStageMask-03930
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03900
If dstAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03901
If dstAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03902
If dstAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, dstStageMask must

245

include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03903
If dstAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03904
If dstAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03905
If dstAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03906
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03907
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-07454
If dstAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03909
If dstAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03910
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03911
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03912
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or

246

VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03913
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03914
If dstAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03915
If dstAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03916
If dstAccessMask includes VK_ACCESS_2_HOST_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkBufferMemoryBarrier2-dstAccessMask-03917
If dstAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkBufferMemoryBarrier2-offset-01187
offset must be less than the size of buffer

• VUID-VkBufferMemoryBarrier2-size-01188
If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• VUID-VkBufferMemoryBarrier2-size-01189
If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to than the size of
buffer minus offset

• VUID-VkBufferMemoryBarrier2-buffer-01931
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBufferMemoryBarrier2-buffer-09095
If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, srcQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, or a valid queue family

• VUID-VkBufferMemoryBarrier2-buffer-09096
If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, or a valid queue family

• VUID-VkBufferMemoryBarrier2-srcQueueFamilyIndex-04087
If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, at least one of
srcQueueFamilyIndex or dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

247

• VUID-VkBufferMemoryBarrier2-None-09097
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is not greater
than or equal to Version 1.1, srcQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier2-None-09098
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is not greater
than or equal to Version 1.1, dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier2-srcStageMask-03851
If either srcStageMask or dstStageMask includes VK_PIPELINE_STAGE_2_HOST_BIT,
srcQueueFamilyIndex and dstQueueFamilyIndex must be equal

Valid Usage (Implicit)

• VUID-VkBufferMemoryBarrier2-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2

• VUID-VkBufferMemoryBarrier2-pNext-pNext
pNext must be NULL

• VUID-VkBufferMemoryBarrier2-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkBufferMemoryBarrier2-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkBufferMemoryBarrier2-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkBufferMemoryBarrier2-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkBufferMemoryBarrier2-buffer-parameter
buffer must be a valid VkBuffer handle

The VkBufferMemoryBarrier structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferMemoryBarrier {
 VkStructureType sType;
 const void* pNext;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
 uint32_t srcQueueFamilyIndex;
 uint32_t dstQueueFamilyIndex;
 VkBuffer buffer;
 VkDeviceSize offset;
 VkDeviceSize size;
} VkBufferMemoryBarrier;

• sType is a VkStructureType value identifying this structure.

248

• pNext is NULL or a pointer to a structure extending this structure.

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

• buffer is a handle to the buffer whose backing memory is affected by the barrier.

• offset is an offset in bytes into the backing memory for buffer; this is relative to the base offset
as bound to the buffer (see vkBindBufferMemory).

• size is a size in bytes of the affected area of backing memory for buffer, or VK_WHOLE_SIZE to use
the range from offset to the end of the buffer.

The first access scope is limited to access to memory through the specified buffer range, via access
types in the source access mask specified by srcAccessMask. If srcAccessMask includes
VK_ACCESS_HOST_WRITE_BIT, a memory domain operation is performed where available memory in
the host domain is also made available to the device domain.

The second access scope is limited to access to memory through the specified buffer range, via
access types in the destination access mask specified by dstAccessMask. If dstAccessMask includes
VK_ACCESS_HOST_WRITE_BIT or VK_ACCESS_HOST_READ_BIT, a memory domain operation is performed
where available memory in the device domain is also made available to the host domain.

Note

When VK_MEMORY_PROPERTY_HOST_COHERENT_BIT is used, available memory in host
domain is automatically made visible to host domain, and any host write is
automatically made available to host domain.

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family release operation for the
specified buffer range, and the second access scope includes no access, as if dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family acquire operation for the
specified buffer range, and the first access scope includes no access, as if srcAccessMask was 0.

Valid Usage

• VUID-VkBufferMemoryBarrier-offset-01187
offset must be less than the size of buffer

• VUID-VkBufferMemoryBarrier-size-01188
If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• VUID-VkBufferMemoryBarrier-size-01189
If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to than the size of
buffer minus offset

• VUID-VkBufferMemoryBarrier-buffer-01931

249

If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBufferMemoryBarrier-buffer-09095
If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, srcQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, or a valid queue family

• VUID-VkBufferMemoryBarrier-buffer-09096
If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, or a valid queue family

• VUID-VkBufferMemoryBarrier-srcQueueFamilyIndex-04087
If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, at least one of
srcQueueFamilyIndex or dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier-None-09097
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is not greater
than or equal to Version 1.1, srcQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier-None-09098
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is not greater
than or equal to Version 1.1, dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier-None-09049
If buffer was created with a sharing mode of VK_SHARING_MODE_CONCURRENT, at least one of
srcQueueFamilyIndex and dstQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED

• VUID-VkBufferMemoryBarrier-None-09050
If buffer was created with a sharing mode of VK_SHARING_MODE_CONCURRENT,
srcQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED or VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkBufferMemoryBarrier-None-09051
If buffer was created with a sharing mode of VK_SHARING_MODE_CONCURRENT,
dstQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED or VK_QUEUE_FAMILY_EXTERNAL

Valid Usage (Implicit)

• VUID-VkBufferMemoryBarrier-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER

• VUID-VkBufferMemoryBarrier-pNext-pNext
pNext must be NULL

• VUID-VkBufferMemoryBarrier-buffer-parameter
buffer must be a valid VkBuffer handle

VK_WHOLE_SIZE is a special value indicating that the entire remaining length of a buffer following a
given offset should be used. It can be specified for VkBufferMemoryBarrier::size and other
structures.

250

#define VK_WHOLE_SIZE (~0ULL)

7.7.3. Image Memory Barriers

Image memory barriers only apply to memory accesses involving a specific image subresource
range. That is, a memory dependency formed from an image memory barrier is scoped to access
via the specified image subresource range. Image memory barriers can also be used to define
image layout transitions or a queue family ownership transfer for the specified image subresource
range.

The VkImageMemoryBarrier2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkImageMemoryBarrier2 {
 VkStructureType sType;
 const void* pNext;
 VkPipelineStageFlags2 srcStageMask;
 VkAccessFlags2 srcAccessMask;
 VkPipelineStageFlags2 dstStageMask;
 VkAccessFlags2 dstAccessMask;
 VkImageLayout oldLayout;
 VkImageLayout newLayout;
 uint32_t srcQueueFamilyIndex;
 uint32_t dstQueueFamilyIndex;
 VkImage image;
 VkImageSubresourceRange subresourceRange;
} VkImageMemoryBarrier2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the first
synchronization scope.

• srcAccessMask is a VkAccessFlags2 mask of access flags to be included in the first access scope.

• dstStageMask is a VkPipelineStageFlags2 mask of pipeline stages to be included in the second
synchronization scope.

• dstAccessMask is a VkAccessFlags2 mask of access flags to be included in the second access scope.

• oldLayout is the old layout in an image layout transition.

• newLayout is the new layout in an image layout transition.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

• image is a handle to the image affected by this barrier.

• subresourceRange describes the image subresource range within image that is affected by this

251

barrier.

This structure defines a memory dependency limited to an image subresource range, and can
define a queue family ownership transfer operation and image layout transition for that
subresource range.

The first synchronization scope and access scope described by this structure include only
operations and memory accesses specified by srcStageMask and srcAccessMask.

The second synchronization scope and access scope described by this structure include only
operations and memory accesses specified by dstStageMask and dstAccessMask.

Both access scopes are limited to only memory accesses to image in the subresource range defined
by subresourceRange.

If image was created with VK_SHARING_MODE_EXCLUSIVE, and srcQueueFamilyIndex is not equal to
dstQueueFamilyIndex, this memory barrier defines a queue family ownership transfer operation.
When executed on a queue in the family identified by srcQueueFamilyIndex, this barrier defines a
queue family release operation for the specified image subresource range, and the second
synchronization and access scopes do not synchronize operations on that queue. When executed on
a queue in the family identified by dstQueueFamilyIndex, this barrier defines a queue family acquire
operation for the specified image subresource range, and the first synchronization and access
scopes do not synchronize operations on that queue.

A queue family ownership transfer operation is also defined if the values are not equal, and either
is one of the special queue family values reserved for external memory ownership transfers, as
described in Queue Family Ownership Transfer. A queue family release operation is defined when
dstQueueFamilyIndex is one of those values, and a queue family acquire operation is defined when
srcQueueFamilyIndex is one of those values.

If oldLayout is not equal to newLayout, then the memory barrier defines an image layout transition
for the specified image subresource range. If this memory barrier defines a queue family
ownership transfer operation, the layout transition is only executed once between the queues.

Note

When the old and new layout are equal, the layout values are ignored - data is
preserved no matter what values are specified, or what layout the image is
currently in.

If image has a multi-planar format and the image is disjoint, then including
VK_IMAGE_ASPECT_COLOR_BIT in the aspectMask member of subresourceRange is equivalent to including
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, and (for three-plane formats only)
VK_IMAGE_ASPECT_PLANE_2_BIT.

Valid Usage

• VUID-VkImageMemoryBarrier2-srcStageMask-03929
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

252

• VUID-VkImageMemoryBarrier2-srcStageMask-03930
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03900
If srcAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03901
If srcAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03902
If srcAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03903
If srcAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03904
If srcAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03905
If srcAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03906
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03907
If srcAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-07454
If srcAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03909

253

If srcAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-srcAccessMask-03910
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03911
If srcAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, srcStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03912
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03913
If srcAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, srcStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03914
If srcAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03915
If srcAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03916
If srcAccessMask includes VK_ACCESS_2_HOST_READ_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkImageMemoryBarrier2-srcAccessMask-03917
If srcAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, srcStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkImageMemoryBarrier2-dstStageMask-03929
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-VkImageMemoryBarrier2-dstStageMask-03930
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or

254

VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03900
If dstAccessMask includes VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03901
If dstAccessMask includes VK_ACCESS_2_INDEX_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT, VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT,
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03902
If dstAccessMask includes VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT,
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03903
If dstAccessMask includes VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_2_SUBPASS_SHADER_BIT_HUAWEI, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03904
If dstAccessMask includes VK_ACCESS_2_UNIFORM_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03905
If dstAccessMask includes VK_ACCESS_2_SHADER_SAMPLED_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03906
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03907
If dstAccessMask includes VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or
one of the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-07454
If dstAccessMask includes VK_ACCESS_2_SHADER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

• VUID-VkImageMemoryBarrier2-dstAccessMask-03909
If dstAccessMask includes VK_ACCESS_2_SHADER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, or one of
the VK_PIPELINE_STAGE_*_SHADER_BIT stages

255

• VUID-VkImageMemoryBarrier2-dstAccessMask-03910
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03911
If dstAccessMask includes VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, dstStageMask must
include VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03912
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03913
If dstAccessMask includes VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, dstStageMask
must include VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03914
If dstAccessMask includes VK_ACCESS_2_TRANSFER_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, or
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03915
If dstAccessMask includes VK_ACCESS_2_TRANSFER_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_COPY_BIT, VK_PIPELINE_STAGE_2_BLIT_BIT,
VK_PIPELINE_STAGE_2_RESOLVE_BIT, VK_PIPELINE_STAGE_2_CLEAR_BIT,
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03916
If dstAccessMask includes VK_ACCESS_2_HOST_READ_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkImageMemoryBarrier2-dstAccessMask-03917
If dstAccessMask includes VK_ACCESS_2_HOST_WRITE_BIT, dstStageMask must include
VK_PIPELINE_STAGE_2_HOST_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01208
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01209
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL then image must have been created
with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

256

• VUID-VkImageMemoryBarrier2-oldLayout-01210
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01211
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01212
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_TRANSFER_SRC_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01213
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_TRANSFER_DST_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01197
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, oldLayout must be
VK_IMAGE_LAYOUT_UNDEFINED or the current layout of the image subresources affected by the
barrier

• VUID-VkImageMemoryBarrier2-newLayout-01198
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, newLayout must not be
VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkImageMemoryBarrier2-oldLayout-01658
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL then image must have been
created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-oldLayout-01659
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL then image must have been
created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04065
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL then image must have been created with at least
one of VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

257

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04066
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04067
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then image must have been created with at
least one of VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04068
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• VUID-VkImageMemoryBarrier2-synchronization2-07793
If the synchronization2 feature is not enabled, oldLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkImageMemoryBarrier2-synchronization2-07794
If the synchronization2 feature is not enabled, newLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-03938
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, image must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-03939
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL, image must have been created with at least one of
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier2-image-09117
If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, srcQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, or a valid queue family

• VUID-VkImageMemoryBarrier2-image-09118
If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, or a valid queue family

• VUID-VkImageMemoryBarrier2-srcQueueFamilyIndex-04070
If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, at least one of
srcQueueFamilyIndex or dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

258

• VUID-VkImageMemoryBarrier2-None-09119
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is not greater
than or equal to Version 1.1, srcQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier2-None-09120
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is not greater
than or equal to Version 1.1, dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier2-subresourceRange-01486
subresourceRange.baseMipLevel must be less than the mipLevels specified in
VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier2-subresourceRange-01724
If subresourceRange.levelCount is not VK_REMAINING_MIP_LEVELS,
subresourceRange.baseMipLevel + subresourceRange.levelCount must be less than or equal
to the mipLevels specified in VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier2-subresourceRange-01488
subresourceRange.baseArrayLayer must be less than the arrayLayers specified in
VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier2-subresourceRange-01725
If subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS,
subresourceRange.baseArrayLayer + subresourceRange.layerCount must be less than or
equal to the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier2-image-01932
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkImageMemoryBarrier2-image-09241
If image has a color format that is single-plane, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier2-image-09242
If image has a color format and is not disjoint, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier2-image-01672
If image has a multi-planar format and the image is disjoint, then the aspectMask member
of subresourceRange must include at least one multi-planar aspect mask bit or
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier2-image-03320
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is not enabled, then the aspectMask member of
subresourceRange must include both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkImageMemoryBarrier2-image-03319
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is enabled, then the aspectMask member of
subresourceRange must include either or both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

259

• VUID-VkImageMemoryBarrier2-aspectMask-08702
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_DEPTH_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL
or VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkImageMemoryBarrier2-aspectMask-08703
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_STENCIL_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkImageMemoryBarrier2-subresourceRange-09601
subresourceRange.aspectMask must be valid for the format the image was created with

• VUID-VkImageMemoryBarrier2-srcStageMask-03854
If either srcStageMask or dstStageMask includes VK_PIPELINE_STAGE_2_HOST_BIT,
srcQueueFamilyIndex and dstQueueFamilyIndex must be equal

• VUID-VkImageMemoryBarrier2-srcStageMask-03855
If srcStageMask includes VK_PIPELINE_STAGE_2_HOST_BIT, and srcQueueFamilyIndex and
dstQueueFamilyIndex define a queue family ownership transfer or oldLayout and newLayout
define an image layout transition, oldLayout must be one of
VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_UNDEFINED, or VK_IMAGE_LAYOUT_GENERAL

Valid Usage (Implicit)

• VUID-VkImageMemoryBarrier2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2

• VUID-VkImageMemoryBarrier2-pNext-pNext
pNext must be NULL

• VUID-VkImageMemoryBarrier2-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkImageMemoryBarrier2-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkImageMemoryBarrier2-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits2 values

• VUID-VkImageMemoryBarrier2-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits2 values

• VUID-VkImageMemoryBarrier2-oldLayout-parameter
oldLayout must be a valid VkImageLayout value

• VUID-VkImageMemoryBarrier2-newLayout-parameter
newLayout must be a valid VkImageLayout value

• VUID-VkImageMemoryBarrier2-image-parameter
image must be a valid VkImage handle

• VUID-VkImageMemoryBarrier2-subresourceRange-parameter
subresourceRange must be a valid VkImageSubresourceRange structure

260

The VkImageMemoryBarrier structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageMemoryBarrier {
 VkStructureType sType;
 const void* pNext;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
 VkImageLayout oldLayout;
 VkImageLayout newLayout;
 uint32_t srcQueueFamilyIndex;
 uint32_t dstQueueFamilyIndex;
 VkImage image;
 VkImageSubresourceRange subresourceRange;
} VkImageMemoryBarrier;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• oldLayout is the old layout in an image layout transition.

• newLayout is the new layout in an image layout transition.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer.

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer.

• image is a handle to the image affected by this barrier.

• subresourceRange describes the image subresource range within image that is affected by this
barrier.

The first access scope is limited to access to memory through the specified image subresource
range, via access types in the source access mask specified by srcAccessMask. If srcAccessMask
includes VK_ACCESS_HOST_WRITE_BIT, memory writes performed by that access type are also made
visible, as that access type is not performed through a resource.

The second access scope is limited to access to memory through the specified image subresource
range, via access types in the destination access mask specified by dstAccessMask. If dstAccessMask
includes VK_ACCESS_HOST_WRITE_BIT or VK_ACCESS_HOST_READ_BIT, available memory writes are also
made visible to accesses of those types, as those access types are not performed through a resource.

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family release operation for the
specified image subresource range, and the second access scope includes no access, as if
dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family acquire operation for the

261

specified image subresource range, and the first access scope includes no access, as if srcAccessMask
was 0.

If the synchronization2 feature is not enabled or oldLayout is not equal to newLayout, oldLayout and
newLayout define an image layout transition for the specified image subresource range.

Note

If the synchronization2 feature is enabled, when the old and new layout are equal,
the layout values are ignored - data is preserved no matter what values are
specified, or what layout the image is currently in.

If image has a multi-planar format and the image is disjoint, then including
VK_IMAGE_ASPECT_COLOR_BIT in the aspectMask member of subresourceRange is equivalent to including
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, and (for three-plane formats only)
VK_IMAGE_ASPECT_PLANE_2_BIT.

Valid Usage

• VUID-VkImageMemoryBarrier-oldLayout-01208
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01209
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL then image must have been created
with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01210
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01211
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01212
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_TRANSFER_SRC_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01213
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer

262

or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_TRANSFER_DST_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01197
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, oldLayout must be
VK_IMAGE_LAYOUT_UNDEFINED or the current layout of the image subresources affected by the
barrier

• VUID-VkImageMemoryBarrier-newLayout-01198
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, newLayout must not be
VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkImageMemoryBarrier-oldLayout-01658
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL then image must have been
created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-oldLayout-01659
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL then image must have been
created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04065
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL then image must have been created with at least
one of VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04066
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04067
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then image must have been created with at
least one of VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04068
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL then image must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

263

• VUID-VkImageMemoryBarrier-synchronization2-07793
If the synchronization2 feature is not enabled, oldLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkImageMemoryBarrier-synchronization2-07794
If the synchronization2 feature is not enabled, newLayout must not be
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR or VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-03938
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, image must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT or VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-03939
If srcQueueFamilyIndex and dstQueueFamilyIndex define a queue family ownership transfer
or oldLayout and newLayout define an image layout transition, and oldLayout or newLayout is
VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL, image must have been created with at least one of
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageMemoryBarrier-image-09117
If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, srcQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, or a valid queue family

• VUID-VkImageMemoryBarrier-image-09118
If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are not equal, dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_EXTERNAL, or a valid queue family

• VUID-VkImageMemoryBarrier-srcQueueFamilyIndex-04070
If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, at least one of
srcQueueFamilyIndex or dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier-None-09119
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is not greater
than or equal to Version 1.1, srcQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier-None-09120
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is not greater
than or equal to Version 1.1, dstQueueFamilyIndex must not be VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier-subresourceRange-01486
subresourceRange.baseMipLevel must be less than the mipLevels specified in
VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier-subresourceRange-01724
If subresourceRange.levelCount is not VK_REMAINING_MIP_LEVELS,
subresourceRange.baseMipLevel + subresourceRange.levelCount must be less than or equal
to the mipLevels specified in VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier-subresourceRange-01488
subresourceRange.baseArrayLayer must be less than the arrayLayers specified in

264

VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier-subresourceRange-01725
If subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS,
subresourceRange.baseArrayLayer + subresourceRange.layerCount must be less than or
equal to the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-VkImageMemoryBarrier-image-01932
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkImageMemoryBarrier-image-09241
If image has a color format that is single-plane, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier-image-09242
If image has a color format and is not disjoint, then the aspectMask member of
subresourceRange must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier-image-01672
If image has a multi-planar format and the image is disjoint, then the aspectMask member
of subresourceRange must include at least one multi-planar aspect mask bit or
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageMemoryBarrier-image-03320
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is not enabled, then the aspectMask member of
subresourceRange must include both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkImageMemoryBarrier-image-03319
If image has a depth/stencil format with both depth and stencil and the
separateDepthStencilLayouts feature is enabled, then the aspectMask member of
subresourceRange must include either or both VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkImageMemoryBarrier-aspectMask-08702
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_DEPTH_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL
or VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkImageMemoryBarrier-aspectMask-08703
If the aspectMask member of subresourceRange includes VK_IMAGE_ASPECT_STENCIL_BIT,
oldLayout and newLayout must not be one of VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkImageMemoryBarrier-subresourceRange-09601
subresourceRange.aspectMask must be valid for the format the image was created with

• VUID-VkImageMemoryBarrier-None-09052
If image was created with a sharing mode of VK_SHARING_MODE_CONCURRENT, at least one of
srcQueueFamilyIndex and dstQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED

• VUID-VkImageMemoryBarrier-None-09053
If image was created with a sharing mode of VK_SHARING_MODE_CONCURRENT,

265

srcQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED or VK_QUEUE_FAMILY_EXTERNAL

• VUID-VkImageMemoryBarrier-None-09054
If image was created with a sharing mode of VK_SHARING_MODE_CONCURRENT,
dstQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED or VK_QUEUE_FAMILY_EXTERNAL

Valid Usage (Implicit)

• VUID-VkImageMemoryBarrier-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER

• VUID-VkImageMemoryBarrier-pNext-pNext
pNext must be NULL

• VUID-VkImageMemoryBarrier-oldLayout-parameter
oldLayout must be a valid VkImageLayout value

• VUID-VkImageMemoryBarrier-newLayout-parameter
newLayout must be a valid VkImageLayout value

• VUID-VkImageMemoryBarrier-image-parameter
image must be a valid VkImage handle

• VUID-VkImageMemoryBarrier-subresourceRange-parameter
subresourceRange must be a valid VkImageSubresourceRange structure

7.7.4. Queue Family Ownership Transfer

Resources created with a VkSharingMode of VK_SHARING_MODE_EXCLUSIVE must have their ownership
explicitly transferred from one queue family to another in order to access their content in a well-
defined manner on a queue in a different queue family.

The special queue family index VK_QUEUE_FAMILY_IGNORED indicates that a queue family parameter or
member is ignored.

#define VK_QUEUE_FAMILY_IGNORED (~0U)

Resources shared with external APIs or instances using external memory must also explicitly
manage ownership transfers between local and external queues (or equivalent constructs in
external APIs) regardless of the VkSharingMode specified when creating them.

The special queue family index VK_QUEUE_FAMILY_EXTERNAL represents any queue external to the
resource’s current Vulkan instance, as long as the queue uses the same underlying device group or
physical device, and the same driver version as the resource’s VkDevice, as indicated by
VkPhysicalDeviceIDProperties::deviceUUID and VkPhysicalDeviceIDProperties::driverUUID.

#define VK_QUEUE_FAMILY_EXTERNAL (~1U)

266

If memory dependencies are correctly expressed between uses of such a resource between two
queues in different families, but no ownership transfer is defined, the contents of that resource are
undefined for any read accesses performed by the second queue family.

Note

If an application does not need the contents of a resource to remain valid when
transferring from one queue family to another, then the ownership transfer
should be skipped.

A queue family ownership transfer consists of two distinct parts:

1. Release exclusive ownership from the source queue family

2. Acquire exclusive ownership for the destination queue family

An application must ensure that these operations occur in the correct order by defining an
execution dependency between them, e.g. using a semaphore.

A release operation is used to release exclusive ownership of a range of a buffer or image
subresource range. A release operation is defined by executing a buffer memory barrier (for a
buffer range) or an image memory barrier (for an image subresource range) using a pipeline
barrier command, on a queue from the source queue family. The srcQueueFamilyIndex parameter of
the barrier must be set to the source queue family index, and the dstQueueFamilyIndex parameter to
the destination queue family index. dstAccessMask is ignored for such a barrier, such that no
visibility operation is executed - the value of this mask does not affect the validity of the barrier.
The release operation happens-after the availability operation, and happens-before operations
specified in the second synchronization scope of the calling command.

An acquire operation is used to acquire exclusive ownership of a range of a buffer or image
subresource range. An acquire operation is defined by executing a buffer memory barrier (for a
buffer range) or an image memory barrier (for an image subresource range) using a pipeline
barrier command, on a queue from the destination queue family. The buffer range or image
subresource range specified in an acquire operation must match exactly that of a previous release
operation. The srcQueueFamilyIndex parameter of the barrier must be set to the source queue family
index, and the dstQueueFamilyIndex parameter to the destination queue family index. srcAccessMask
is ignored for such a barrier, such that no availability operation is executed - the value of this mask
does not affect the validity of the barrier. The acquire operation happens-after operations in the
first synchronization scope of the calling command, and happens-before the visibility operation.

Note

Whilst it is not invalid to provide destination or source access masks for memory
barriers used for release or acquire operations, respectively, they have no practical
effect. Access after a release operation has undefined results, and so visibility for
those accesses has no practical effect. Similarly, write access before an acquire
operation will produce undefined results for future access, so availability of those
writes has no practical use. In an earlier version of the specification, these were
required to match on both sides - but this was subsequently relaxed. These masks
should be set to 0.

267

If the transfer is via an image memory barrier, and an image layout transition is desired, then the
values of oldLayout and newLayout in the release operation's memory barrier must be equal to
values of oldLayout and newLayout in the acquire operation's memory barrier. Although the image
layout transition is submitted twice, it will only be executed once. A layout transition specified in
this way happens-after the release operation and happens-before the acquire operation.

If the values of srcQueueFamilyIndex and dstQueueFamilyIndex are equal, no ownership transfer is
performed, and the barrier operates as if they were both set to VK_QUEUE_FAMILY_IGNORED.

Queue family ownership transfers may perform read and write accesses on all memory bound to
the image subresource or buffer range, so applications must ensure that all memory writes have
been made available before a queue family ownership transfer is executed. Available memory is
automatically made visible to queue family release and acquire operations, and writes performed
by those operations are automatically made available.

Once a queue family has acquired ownership of a buffer range or image subresource range of a
VK_SHARING_MODE_EXCLUSIVE resource, its contents are undefined to other queue families unless
ownership is transferred. The contents of any portion of another resource which aliases memory
that is bound to the transferred buffer or image subresource range are undefined after a release or
acquire operation.

Note

Because events cannot be used directly for inter-queue synchronization, and
because vkCmdSetEvent does not have the queue family index or memory barrier
parameters needed by a release operation, the release and acquire operations of a
queue family ownership transfer can only be performed using
vkCmdPipelineBarrier.

7.8. Wait Idle Operations
To wait on the host for the completion of outstanding queue operations for a given queue, call:

// Provided by VK_VERSION_1_0
VkResult vkQueueWaitIdle(
 VkQueue queue);

• queue is the queue on which to wait.

vkQueueWaitIdle is equivalent to having submitted a valid fence to every previously executed queue
submission command that accepts a fence, then waiting for all of those fences to signal using
vkWaitForFences with an infinite timeout and waitAll set to VK_TRUE.

Valid Usage (Implicit)

• VUID-vkQueueWaitIdle-queue-parameter
queue must be a valid VkQueue handle

268

Host Synchronization

• Host access to queue must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

- - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To wait on the host for the completion of outstanding queue operations for all queues on a given
logical device, call:

// Provided by VK_VERSION_1_0
VkResult vkDeviceWaitIdle(
 VkDevice device);

• device is the logical device to idle.

vkDeviceWaitIdle is equivalent to calling vkQueueWaitIdle for all queues owned by device.

Valid Usage (Implicit)

• VUID-vkDeviceWaitIdle-device-parameter
device must be a valid VkDevice handle

Host Synchronization

• Host access to all VkQueue objects created from device must be externally synchronized

269

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

7.9. Host Write Ordering Guarantees
When batches of command buffers are submitted to a queue via a queue submission command, it
defines a memory dependency with prior host operations, and execution of command buffers
submitted to the queue.

The first synchronization scope includes execution of vkQueueSubmit on the host and anything
that happened-before it, as defined by the host memory model.

Note

Some systems allow writes that do not directly integrate with the host memory
model; these have to be synchronized by the application manually. One example of
this is non-temporal store instructions on x86; to ensure these happen-before
submission, applications should call _mm_sfence().

The second synchronization scope includes all commands submitted in the same queue submission,
and all commands that occur later in submission order.

The first access scope includes all host writes to mappable device memory that are available to the
host memory domain.

The second access scope includes all memory access performed by the device.

7.10. Synchronization and Multiple Physical Devices
If a logical device includes more than one physical device, then fences, semaphores, and events all
still have a single instance of the signaled state.

A fence becomes signaled when all physical devices complete the necessary queue operations.

Semaphore wait and signal operations all include a device index that is the sole physical device that
performs the operation. These indices are provided in the VkDeviceGroupSubmitInfo and
VkDeviceGroupBindSparseInfo structures. Semaphores are not exclusively owned by any physical
device. For example, a semaphore can be signaled by one physical device and then waited on by a
different physical device.

270

An event can only be waited on by the same physical device that signaled it (or the host).

271

Chapter 8. Render Pass
Draw commands must be recorded within a render pass instance. Each render pass instance
defines a set of image resources, referred to as attachments, used during rendering.

To begin a render pass instance, call:

// Provided by VK_VERSION_1_3
void vkCmdBeginRendering(
 VkCommandBuffer commandBuffer,
 const VkRenderingInfo* pRenderingInfo);

• commandBuffer is the command buffer in which to record the command.

• pRenderingInfo is a pointer to a VkRenderingInfo structure specifying details of the render pass
instance to begin.

After beginning a render pass instance, the command buffer is ready to record draw commands.

If pRenderingInfo->flags includes VK_RENDERING_RESUMING_BIT then this render pass is resumed from
a render pass instance that has been suspended earlier in submission order.

Valid Usage

• VUID-vkCmdBeginRendering-dynamicRendering-06446
The dynamicRendering feature must be enabled

• VUID-vkCmdBeginRendering-commandBuffer-06068
If commandBuffer is a secondary command buffer, pRenderingInfo->flags must not include
VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT

• VUID-vkCmdBeginRendering-pRenderingInfo-09588
If pRenderingInfo->pDepthAttachment is not NULL and pRenderingInfo->pDepthAttachment-
>imageView is not VK_NULL_HANDLE, pRenderingInfo->pDepthAttachment->imageView must
be in the layout specified by pRenderingInfo->pDepthAttachment->imageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09589
If pRenderingInfo->pDepthAttachment is not NULL, pRenderingInfo->pDepthAttachment-
>imageView is not VK_NULL_HANDLE, pRenderingInfo->pDepthAttachment->imageResolveMode
is not VK_RESOLVE_MODE_NONE, and pRenderingInfo->pDepthAttachment->resolveImageView is
not VK_NULL_HANDLE, pRenderingInfo->pDepthAttachment->resolveImageView must be in
the layout specified by pRenderingInfo->pDepthAttachment->resolveImageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09590
If pRenderingInfo->pStencilAttachment is not NULL and pRenderingInfo-
>pStencilAttachment->imageView is not VK_NULL_HANDLE, pRenderingInfo-
>pStencilAttachment->imageView must be in the layout specified by pRenderingInfo-
>pStencilAttachment->imageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09591

272

If pRenderingInfo->pStencilAttachment is not NULL, pRenderingInfo->pStencilAttachment-
>imageView is not VK_NULL_HANDLE, pRenderingInfo->pStencilAttachment-
>imageResolveMode is not VK_RESOLVE_MODE_NONE, and pRenderingInfo->pStencilAttachment-
>resolveImageView is not VK_NULL_HANDLE, pRenderingInfo->pStencilAttachment-
>resolveImageView must be in the layout specified by pRenderingInfo->pStencilAttachment-
>resolveImageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09592
For any element of pRenderingInfo->pColorAttachments, if imageView is not
VK_NULL_HANDLE, that image view must be in the layout specified by imageLayout

• VUID-vkCmdBeginRendering-pRenderingInfo-09593
For any element of pRenderingInfo->pColorAttachments, if imageView is not
VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE, and resolveImageView is
not VK_NULL_HANDLE, resolveImageView must be in the layout specified by
resolveImageLayout

Valid Usage (Implicit)

• VUID-vkCmdBeginRendering-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginRendering-pRenderingInfo-parameter
pRenderingInfo must be a valid pointer to a valid VkRenderingInfo structure

• VUID-vkCmdBeginRendering-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginRendering-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginRendering-renderpass
This command must only be called outside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics Action
State

273

The VkRenderingInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkRenderingInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderingFlags flags;
 VkRect2D renderArea;
 uint32_t layerCount;
 uint32_t viewMask;
 uint32_t colorAttachmentCount;
 const VkRenderingAttachmentInfo* pColorAttachments;
 const VkRenderingAttachmentInfo* pDepthAttachment;
 const VkRenderingAttachmentInfo* pStencilAttachment;
} VkRenderingInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkRenderingFlagBits.

• renderArea is the render area that is affected by the render pass instance.

• layerCount is the number of layers rendered to in each attachment when viewMask is 0.

• viewMask is the view mask indicating the indices of attachment layers that will be rendered
when it is not 0.

• colorAttachmentCount is the number of elements in pColorAttachments.

• pColorAttachments is a pointer to an array of colorAttachmentCount VkRenderingAttachmentInfo
structures describing any color attachments used.

• pDepthAttachment is a pointer to a VkRenderingAttachmentInfo structure describing a depth
attachment.

• pStencilAttachment is a pointer to a VkRenderingAttachmentInfo structure describing a stencil
attachment.

If viewMask is not 0, multiview is enabled.

If there is an instance of VkDeviceGroupRenderPassBeginInfo included in the pNext chain and its
deviceRenderAreaCount member is not 0, then renderArea is ignored, and the render area is defined
per-device by that structure.

Each element of the pColorAttachments array corresponds to an output location in the shader, i.e. if
the shader declares an output variable decorated with a Location value of X, then it uses the
attachment provided in pColorAttachments[X]. If the imageView member of any element of
pColorAttachments is VK_NULL_HANDLE, writes to the corresponding location by a fragment are
discarded.

274

Valid Usage

• VUID-VkRenderingInfo-viewMask-06069
If viewMask is 0, layerCount must not be 0

• VUID-VkRenderingInfo-multisampledRenderToSingleSampled-06857
imageView members of pDepthAttachment, pStencilAttachment, and elements of
pColorAttachments that are not VK_NULL_HANDLE must have been created with the same
sampleCount

• VUID-VkRenderingInfo-imageView-09429
imageView members of elements of pColorAttachments that are not VK_NULL_HANDLE
must have been created with the same sampleCount

• VUID-VkRenderingInfo-None-08994
If VkDeviceGroupRenderPassBeginInfo::deviceRenderAreaCount is 0,
renderArea.extent.width must be greater than 0

• VUID-VkRenderingInfo-None-08995
If VkDeviceGroupRenderPassBeginInfo::deviceRenderAreaCount is 0,
renderArea.extent.height must be greater than 0

• VUID-VkRenderingInfo-pNext-06077
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.x must be greater than or
equal to 0

• VUID-VkRenderingInfo-pNext-06078
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.y must be greater than or
equal to 0

• VUID-VkRenderingInfo-pNext-07815
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, the sum of renderArea.extent.width and
renderArea.offset.x must be less than or equal to maxFramebufferWidth

• VUID-VkRenderingInfo-pNext-07816
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, the sum of renderArea.extent.height and
renderArea.offset.y must be less than or equal to maxFramebufferHeight

• VUID-VkRenderingInfo-pNext-06079
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, the width of the imageView member of any
element of pColorAttachments, pDepthAttachment, or pStencilAttachment that is not
VK_NULL_HANDLE must be greater than or equal to renderArea.offset.x +
renderArea.extent.width

• VUID-VkRenderingInfo-pNext-06080
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, the height of the imageView member of any
element of pColorAttachments, pDepthAttachment, or pStencilAttachment that is not

275

VK_NULL_HANDLE must be greater than or equal to renderArea.offset.y +
renderArea.extent.height

• VUID-VkRenderingInfo-pNext-06083
If the pNext chain contains VkDeviceGroupRenderPassBeginInfo, the width of the
imageView member of any element of pColorAttachments, pDepthAttachment, or
pStencilAttachment that is not VK_NULL_HANDLE must be greater than or equal to the
sum of the offset.x and extent.width members of each element of pDeviceRenderAreas

• VUID-VkRenderingInfo-pNext-06084
If the pNext chain contains VkDeviceGroupRenderPassBeginInfo, the height of the
imageView member of any element of pColorAttachments, pDepthAttachment, or
pStencilAttachment that is not VK_NULL_HANDLE must be greater than or equal to the
sum of the offset.y and extent.height members of each element of pDeviceRenderAreas

• VUID-VkRenderingInfo-pDepthAttachment-06085
If neither pDepthAttachment or pStencilAttachment are NULL and the imageView member of
either structure is not VK_NULL_HANDLE, the imageView member of each structure must
be the same

• VUID-VkRenderingInfo-pDepthAttachment-06086
If neither pDepthAttachment or pStencilAttachment are NULL, and the resolveMode member of
each is not VK_RESOLVE_MODE_NONE, the resolveImageView member of each structure must be
the same

• VUID-VkRenderingInfo-colorAttachmentCount-06087
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, that imageView must have been created with
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkRenderingInfo-colorAttachmentCount-09476
If colorAttachmentCount is not 0 and there is an element of pColorAttachments with its
imageView member not VK_NULL_HANDLE, and its resolveMode member not set to
VK_RESOLVE_MODE_NONE, the resolveImageView member of that element of pColorAttachments
must have been created with VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkRenderingInfo-pDepthAttachment-06547
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->imageView must have been created with a format that includes a depth
component

• VUID-VkRenderingInfo-pDepthAttachment-06088
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->imageView must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkRenderingInfo-pDepthAttachment-09477
If pDepthAttachment is not NULL and pDepthAttachment->resolveMode is not
VK_RESOLVE_MODE_NONE, pDepthAttachment->resolveImageView must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkRenderingInfo-pStencilAttachment-06548
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->imageView must have been created with a format

276

that includes a stencil aspect

• VUID-VkRenderingInfo-pStencilAttachment-06089
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->imageView must have been created with a stencil
usage including VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkRenderingInfo-pStencilAttachment-09478
If pStencilAttachment is not NULL and pStencilAttachment->resolveMode is not
VK_RESOLVE_MODE_NONE, pStencilAttachment->resolveImageView must have been created with
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkRenderingInfo-colorAttachmentCount-06090
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, the layout member of that element of
pColorAttachments must not be VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06091
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, if the resolveMode member of that element of
pColorAttachments is not VK_RESOLVE_MODE_NONE, its resolveImageLayout member must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-06092
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->layout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-06093
If pDepthAttachment is not NULL, pDepthAttachment->imageView is not VK_NULL_HANDLE, and
pDepthAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pDepthAttachment-
>resolveImageLayout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-06094
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->layout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-06095
If pStencilAttachment is not NULL, pStencilAttachment->imageView is not VK_NULL_HANDLE,
and pStencilAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pStencilAttachment-
>resolveImageLayout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06096
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, the layout member of that element of
pColorAttachments must not be
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06097
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, if the resolveMode member of that element of

277

pColorAttachments is not VK_RESOLVE_MODE_NONE, its resolveImageLayout member must not be
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-06098
If pDepthAttachment is not NULL, pDepthAttachment->imageView is not VK_NULL_HANDLE, and
pDepthAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pDepthAttachment-
>resolveImageLayout must not be
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-06099
If pStencilAttachment is not NULL, pStencilAttachment->imageView is not VK_NULL_HANDLE,
and pStencilAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pStencilAttachment-
>resolveImageLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06100
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, the layout member of that element of
pColorAttachments must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-colorAttachmentCount-06101
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, if the resolveMode member of that element of
pColorAttachments is not VK_RESOLVE_MODE_NONE, its resolveImageLayout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-07732
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->layout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pDepthAttachment-07733
If pDepthAttachment is not NULL, pDepthAttachment->imageView is not VK_NULL_HANDLE, and
pDepthAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pDepthAttachment-
>resolveImageLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-07734
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->layout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkRenderingInfo-pStencilAttachment-07735
If pStencilAttachment is not NULL, pStencilAttachment->imageView is not VK_NULL_HANDLE,
and pStencilAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pStencilAttachment-
>resolveImageLayout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

278

• VUID-VkRenderingInfo-pDepthAttachment-06102
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->resolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedDepthResolveModes

• VUID-VkRenderingInfo-pStencilAttachment-06103
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->resolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedStencilResolveModes

• VUID-VkRenderingInfo-pDepthAttachment-06104
If pDepthAttachment or pStencilAttachment are both not NULL, pDepthAttachment->imageView
and pStencilAttachment->imageView are both not VK_NULL_HANDLE, and
VkPhysicalDeviceDepthStencilResolveProperties::independentResolveNone is VK_FALSE, the
resolveMode of both structures must be the same value

• VUID-VkRenderingInfo-pDepthAttachment-06105
If pDepthAttachment or pStencilAttachment are both not NULL, pDepthAttachment->imageView
and pStencilAttachment->imageView are both not VK_NULL_HANDLE,
VkPhysicalDeviceDepthStencilResolveProperties::independentResolve is VK_FALSE, and the
resolveMode of neither structure is VK_RESOLVE_MODE_NONE, the resolveMode of both structures
must be the same value

• VUID-VkRenderingInfo-colorAttachmentCount-06106
colorAttachmentCount must be less than or equal to VkPhysicalDeviceLimits
::maxColorAttachments

• VUID-VkRenderingInfo-multiview-06127
If the multiview feature is not enabled, viewMask must be 0

• VUID-VkRenderingInfo-viewMask-06128
The index of the most significant bit in viewMask must be less than maxMultiviewViewCount

• VUID-VkRenderingInfo-None-09044
Valid attachments specified by this structure must not be bound to memory locations that
are bound to any other valid attachments specified by this structure

• VUID-VkRenderingInfo-colorAttachmentCount-09479
If colorAttachmentCount is not 0 and the imageView member of an element of
pColorAttachments is not VK_NULL_HANDLE, that imageView must have been created with
the identity swizzle

• VUID-VkRenderingInfo-colorAttachmentCount-09480
If colorAttachmentCount is not 0, and there is an element of pColorAttachments with its
imageView member not set to VK_NULL_HANDLE and its resolveMode member not set to
VK_RESOLVE_MODE_NONE, the resolveImageView member of that element of pColorAttachments
must have been created with the identity swizzle

• VUID-VkRenderingInfo-pDepthAttachment-09481
If pDepthAttachment is not NULL and pDepthAttachment->imageView is not VK_NULL_HANDLE,
pDepthAttachment->imageView must have been created with the identity swizzle

• VUID-VkRenderingInfo-pDepthAttachment-09482
If pDepthAttachment is not NULL, pDepthAttachment->imageView is not VK_NULL_HANDLE, and

279

pDepthAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pDepthAttachment-
>resolveImageView must have been created with the identity swizzle

• VUID-VkRenderingInfo-pStencilAttachment-09483
If pStencilAttachment is not NULL and pStencilAttachment->imageView is not
VK_NULL_HANDLE, pStencilAttachment->imageView must have been created with the
identity swizzle

• VUID-VkRenderingInfo-pStencilAttachment-09484
If pStencilAttachment is not NULL, pStencilAttachment->imageView is not VK_NULL_HANDLE,
and pStencilAttachment->resolveMode is not VK_RESOLVE_MODE_NONE, pStencilAttachment-
>resolveImageView must have been created with the identity swizzle

Valid Usage (Implicit)

• VUID-VkRenderingInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDERING_INFO

• VUID-VkRenderingInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkDeviceGroupRenderPassBeginInfo

• VUID-VkRenderingInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkRenderingInfo-flags-parameter
flags must be a valid combination of VkRenderingFlagBits values

• VUID-VkRenderingInfo-pColorAttachments-parameter
If colorAttachmentCount is not 0, pColorAttachments must be a valid pointer to an array of
colorAttachmentCount valid VkRenderingAttachmentInfo structures

• VUID-VkRenderingInfo-pDepthAttachment-parameter
If pDepthAttachment is not NULL, pDepthAttachment must be a valid pointer to a valid
VkRenderingAttachmentInfo structure

• VUID-VkRenderingInfo-pStencilAttachment-parameter
If pStencilAttachment is not NULL, pStencilAttachment must be a valid pointer to a valid
VkRenderingAttachmentInfo structure

Bits which can be set in VkRenderingInfo::flags describing additional properties of the render pass
are:

// Provided by VK_VERSION_1_3
typedef enum VkRenderingFlagBits {
 VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT = 0x00000001,
 VK_RENDERING_SUSPENDING_BIT = 0x00000002,
 VK_RENDERING_RESUMING_BIT = 0x00000004,
 VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT_KHR =
VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT,
 VK_RENDERING_SUSPENDING_BIT_KHR = VK_RENDERING_SUSPENDING_BIT,
 VK_RENDERING_RESUMING_BIT_KHR = VK_RENDERING_RESUMING_BIT,

280

} VkRenderingFlagBits;

• VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT specifies that draw calls for the render
pass instance will be recorded in secondary command buffers.

• VK_RENDERING_RESUMING_BIT specifies that the render pass instance is resuming an earlier
suspended render pass instance.

• VK_RENDERING_SUSPENDING_BIT specifies that the render pass instance will be suspended.

The contents of pRenderingInfo must match between suspended render pass instances and the
render pass instances that resume them, other than the presence or absence of the
VK_RENDERING_RESUMING_BIT, VK_RENDERING_SUSPENDING_BIT, and
VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT flags. No action or synchronization
commands, or other render pass instances, are allowed between suspending and resuming render
pass instances.

// Provided by VK_VERSION_1_3
typedef VkFlags VkRenderingFlags;

VkRenderingFlags is a bitmask type for setting a mask of zero or more VkRenderingFlagBits.

The VkRenderingAttachmentInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkRenderingAttachmentInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageView imageView;
 VkImageLayout imageLayout;
 VkResolveModeFlagBits resolveMode;
 VkImageView resolveImageView;
 VkImageLayout resolveImageLayout;
 VkAttachmentLoadOp loadOp;
 VkAttachmentStoreOp storeOp;
 VkClearValue clearValue;
} VkRenderingAttachmentInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imageView is the image view that will be used for rendering.

• imageLayout is the layout that imageView will be in during rendering.

• resolveMode is a VkResolveModeFlagBits value defining how data written to imageView will be
resolved into resolveImageView.

• resolveImageView is an image view used to write resolved data at the end of rendering.

• resolveImageLayout is the layout that resolveImageView will be in during rendering.

281

• loadOp is a VkAttachmentLoadOp value defining the load operation for the attachment.

• storeOp is a VkAttachmentStoreOp value defining the store operation for the attachment.

• clearValue is a VkClearValue structure defining values used to clear imageView when loadOp is
VK_ATTACHMENT_LOAD_OP_CLEAR.

Values in imageView are loaded and stored according to the values of loadOp and storeOp, within the
render area for each device specified in VkRenderingInfo. If imageView is VK_NULL_HANDLE, other
members of this structure are ignored; writes to this attachment will be discarded, and no load,
store, or multisample resolve operations will be performed.

If resolveMode is VK_RESOLVE_MODE_NONE, then resolveImageView is ignored. If resolveMode is not
VK_RESOLVE_MODE_NONE, and resolveImageView is not VK_NULL_HANDLE, a render pass multisample
resolve operation is defined for the attachment subresource.

Note

The resolve mode and store operation are independent; it is valid to write both
resolved and unresolved values, and equally valid to discard the unresolved
values while writing the resolved ones.

Store and resolve operations are only performed at the end of a render pass instance that does not
specify the VK_RENDERING_SUSPENDING_BIT_KHR flag.

Load operations are only performed at the beginning of a render pass instance that does not specify
the VK_RENDERING_RESUMING_BIT_KHR flag.

Image contents at the end of a suspended render pass instance remain defined for access by a
resuming render pass instance.

Valid Usage

• VUID-VkRenderingAttachmentInfo-imageView-06129
If imageView is not VK_NULL_HANDLE and has a non-integer color format, resolveMode
must be VK_RESOLVE_MODE_NONE or VK_RESOLVE_MODE_AVERAGE_BIT

• VUID-VkRenderingAttachmentInfo-imageView-06130
If imageView is not VK_NULL_HANDLE and has an integer color format, resolveMode must
be VK_RESOLVE_MODE_NONE or VK_RESOLVE_MODE_SAMPLE_ZERO_BIT

• VUID-VkRenderingAttachmentInfo-imageView-06861
imageView must not have a sample count of VK_SAMPLE_COUNT_1_BIT if all of the following
hold:

◦ imageView is not VK_NULL_HANDLE

◦ resolveMode is not VK_RESOLVE_MODE_NONE

• VUID-VkRenderingAttachmentInfo-imageView-06862
resolveImageView must not be VK_NULL_HANDLE if all of the following hold:

◦ imageView is not VK_NULL_HANDLE

◦ resolveMode is not VK_RESOLVE_MODE_NONE

282

• VUID-VkRenderingAttachmentInfo-imageView-06864
If imageView is not VK_NULL_HANDLE, resolveImageView is not VK_NULL_HANDLE, and
resolveMode is not VK_RESOLVE_MODE_NONE, resolveImageView must have a sample count of
VK_SAMPLE_COUNT_1_BIT

• VUID-VkRenderingAttachmentInfo-imageView-06865
If imageView is not VK_NULL_HANDLE, resolveImageView is not VK_NULL_HANDLE, and
resolveMode is not VK_RESOLVE_MODE_NONE, imageView and resolveImageView must have the
same VkFormat

• VUID-VkRenderingAttachmentInfo-imageView-06135
If imageView is not VK_NULL_HANDLE, imageLayout must not be VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkRenderingAttachmentInfo-imageView-06136
If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkRenderingAttachmentInfo-imageView-06137
If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderingAttachmentInfo-imageView-06142
If imageView is not VK_NULL_HANDLE and resolveMode is not VK_RESOLVE_MODE_NONE,
resolveImageLayout must not be VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR

Valid Usage (Implicit)

• VUID-VkRenderingAttachmentInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO

• VUID-VkRenderingAttachmentInfo-pNext-pNext
pNext must be NULL

• VUID-VkRenderingAttachmentInfo-imageView-parameter
If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• VUID-VkRenderingAttachmentInfo-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

• VUID-VkRenderingAttachmentInfo-resolveMode-parameter
If resolveMode is not 0, resolveMode must be a valid VkResolveModeFlagBits value

• VUID-VkRenderingAttachmentInfo-resolveImageView-parameter
If resolveImageView is not VK_NULL_HANDLE, resolveImageView must be a valid
VkImageView handle

• VUID-VkRenderingAttachmentInfo-resolveImageLayout-parameter

283

resolveImageLayout must be a valid VkImageLayout value

• VUID-VkRenderingAttachmentInfo-loadOp-parameter
loadOp must be a valid VkAttachmentLoadOp value

• VUID-VkRenderingAttachmentInfo-storeOp-parameter
storeOp must be a valid VkAttachmentStoreOp value

• VUID-VkRenderingAttachmentInfo-clearValue-parameter
clearValue must be a valid VkClearValue union

• VUID-VkRenderingAttachmentInfo-commonparent
Both of imageView, and resolveImageView that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

To end a render pass instance, call:

// Provided by VK_VERSION_1_3
void vkCmdEndRendering(
 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer in which to record the command.

If the value of pRenderingInfo->flags used to begin this render pass instance included
VK_RENDERING_SUSPENDING_BIT, then this render pass is suspended and will be resumed later in
submission order.

Valid Usage

• VUID-vkCmdEndRendering-None-06161
The current render pass instance must have been begun with vkCmdBeginRendering

• VUID-vkCmdEndRendering-commandBuffer-06162
The current render pass instance must have been begun in commandBuffer

• VUID-vkCmdEndRendering-None-06999
If vkCmdBeginQuery* was called within the render pass, the corresponding vkCmdEndQuery*
must have been called subsequently within the same subpass

Valid Usage (Implicit)

• VUID-vkCmdEndRendering-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndRendering-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndRendering-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

284

• VUID-vkCmdEndRendering-renderpass
This command must only be called inside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Inside Graphics Action
State

Note

For more complex rendering graphs, it is possible to pre-define a static render pass
object, which as well as allowing draw commands, allows the definition of
framebuffer-local dependencies between multiple subpasses. These objects have a
lot of setup cost compared to vkCmdBeginRendering, but use of subpass
dependencies can confer important performance benefits on some devices.

8.1. Render Pass Objects
A render pass object represents a collection of attachments, subpasses, and dependencies between
the subpasses, and describes how the attachments are used over the course of the subpasses.

Render passes are represented by VkRenderPass handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkRenderPass)

An attachment description describes the properties of an attachment including its format, sample
count, and how its contents are treated at the beginning and end of each render pass instance.

A subpass represents a phase of rendering that reads and writes a subset of the attachments in a
render pass. Rendering commands are recorded into a particular subpass of a render pass instance.

A subpass description describes the subset of attachments that is involved in the execution of a
subpass. Each subpass can read from some attachments as input attachments, write to some as
color attachments or depth/stencil attachments, and perform multisample resolve operations to
resolve attachments. A subpass description can also include a set of preserve attachments, which are

285

attachments that are not read or written by the subpass but whose contents must be preserved
throughout the subpass.

A subpass uses an attachment if the attachment is a color, depth/stencil, resolve, depth/stencil
resolve, or input attachment for that subpass (as determined by the pColorAttachments,
pDepthStencilAttachment, pResolveAttachments, VkSubpassDescriptionDepthStencilResolve
::pDepthStencilResolveAttachment, and pInputAttachments members of VkSubpassDescription,
respectively). A subpass does not use an attachment if that attachment is preserved by the subpass.
The first use of an attachment is in the lowest numbered subpass that uses that attachment.
Similarly, the last use of an attachment is in the highest numbered subpass that uses that
attachment.

The subpasses in a render pass all render to the same dimensions, and fragments for pixel
(x,y,layer) in one subpass can only read attachment contents written by previous subpasses at that
same (x,y,layer) location.

Note

By describing a complete set of subpasses in advance, render passes provide the
implementation an opportunity to optimize the storage and transfer of attachment
data between subpasses.

In practice, this means that subpasses with a simple framebuffer-space
dependency may be merged into a single tiled rendering pass, keeping the
attachment data on-chip for the duration of a render pass instance. However, it is
also quite common for a render pass to only contain a single subpass.

Subpass dependencies describe execution and memory dependencies between subpasses.

A subpass dependency chain is a sequence of subpass dependencies in a render pass, where the
source subpass of each subpass dependency (after the first) equals the destination subpass of the
previous dependency.

Execution of subpasses may overlap or execute out of order with regards to other subpasses, unless
otherwise enforced by an execution dependency. Each subpass only respects submission order for
commands recorded in the same subpass, and the vkCmdBeginRenderPass and
vkCmdEndRenderPass commands that delimit the render pass - commands within other subpasses
are not included. This affects most other implicit ordering guarantees.

A render pass describes the structure of subpasses and attachments independent of any specific
image views for the attachments. The specific image views that will be used for the attachments,
and their dimensions, are specified in VkFramebuffer objects. Framebuffers are created with respect
to a specific render pass that the framebuffer is compatible with (see Render Pass Compatibility).
Collectively, a render pass and a framebuffer define the complete render target state for one or
more subpasses as well as the algorithmic dependencies between the subpasses.

The various pipeline stages of the drawing commands for a given subpass may execute
concurrently and/or out of order, both within and across drawing commands, whilst still respecting
pipeline order. However for a given (x,y,layer,sample) sample location, certain per-sample
operations are performed in rasterization order.

286

VK_ATTACHMENT_UNUSED is a constant indicating that a render pass attachment is not used.

#define VK_ATTACHMENT_UNUSED (~0U)

8.2. Render Pass Creation
To create a render pass, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateRenderPass(
 VkDevice device,
 const VkRenderPassCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkRenderPass* pRenderPass);

• device is the logical device that creates the render pass.

• pCreateInfo is a pointer to a VkRenderPassCreateInfo structure describing the parameters of the
render pass.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pRenderPass is a pointer to a VkRenderPass handle in which the resulting render pass object is
returned.

Valid Usage (Implicit)

• VUID-vkCreateRenderPass-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateRenderPass-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkRenderPassCreateInfo structure

• VUID-vkCreateRenderPass-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateRenderPass-pRenderPass-parameter
pRenderPass must be a valid pointer to a VkRenderPass handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

287

The VkRenderPassCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkRenderPassCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderPassCreateFlags flags;
 uint32_t attachmentCount;
 const VkAttachmentDescription* pAttachments;
 uint32_t subpassCount;
 const VkSubpassDescription* pSubpasses;
 uint32_t dependencyCount;
 const VkSubpassDependency* pDependencies;
} VkRenderPassCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• attachmentCount is the number of attachments used by this render pass.

• pAttachments is a pointer to an array of attachmentCount VkAttachmentDescription structures
describing the attachments used by the render pass.

• subpassCount is the number of subpasses to create.

• pSubpasses is a pointer to an array of subpassCount VkSubpassDescription structures describing
each subpass.

• dependencyCount is the number of memory dependencies between pairs of subpasses.

• pDependencies is a pointer to an array of dependencyCount VkSubpassDependency structures
describing dependencies between pairs of subpasses.

Note

Care should be taken to avoid a data race here; if any subpasses access
attachments with overlapping memory locations, and one of those accesses is a
write, a subpass dependency needs to be included between them.

Valid Usage

• VUID-VkRenderPassCreateInfo-attachment-00834
If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or any element of pPreserveAttachments
in any element of pSubpasses is not VK_ATTACHMENT_UNUSED, then it must be less than
attachmentCount

• VUID-VkRenderPassCreateInfo-pAttachments-00836
For any member of pAttachments with a loadOp equal to VK_ATTACHMENT_LOAD_OP_CLEAR, the
first use of that attachment must not specify a layout equal to

288

VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderPassCreateInfo-pAttachments-02511
For any member of pAttachments with a stencilLoadOp equal to
VK_ATTACHMENT_LOAD_OP_CLEAR, the first use of that attachment must not specify a layout
equal to VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderPassCreateInfo-pAttachments-01566
For any member of pAttachments with a loadOp equal to VK_ATTACHMENT_LOAD_OP_CLEAR, the
first use of that attachment must not specify a layout equal to
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkRenderPassCreateInfo-pAttachments-01567
For any member of pAttachments with a stencilLoadOp equal to
VK_ATTACHMENT_LOAD_OP_CLEAR, the first use of that attachment must not specify a layout
equal to VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderPassCreateInfo-pNext-01926
If the pNext chain includes a VkRenderPassInputAttachmentAspectCreateInfo structure,
the subpass member of each element of its pAspectReferences member must be less than
subpassCount

• VUID-VkRenderPassCreateInfo-pNext-01927
If the pNext chain includes a VkRenderPassInputAttachmentAspectCreateInfo structure,
the inputAttachmentIndex member of each element of its pAspectReferences member must
be less than the value of inputAttachmentCount in the element of pSubpasses identified by
its subpass member

• VUID-VkRenderPassCreateInfo-pNext-01963
If the pNext chain includes a VkRenderPassInputAttachmentAspectCreateInfo structure,
for any element of the pInputAttachments member of any element of pSubpasses where the
attachment member is not VK_ATTACHMENT_UNUSED, the aspectMask member of the
corresponding element of VkRenderPassInputAttachmentAspectCreateInfo
::pAspectReferences must only include aspects that are present in images of the format
specified by the element of pAttachments at attachment

• VUID-VkRenderPassCreateInfo-pNext-01928
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, and its
subpassCount member is not zero, that member must be equal to the value of subpassCount

• VUID-VkRenderPassCreateInfo-pNext-01929
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, if its
dependencyCount member is not zero, it must be equal to dependencyCount

• VUID-VkRenderPassCreateInfo-pNext-01930
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, for each non-
zero element of pViewOffsets, the srcSubpass and dstSubpass members of pDependencies at
the same index must not be equal

• VUID-VkRenderPassCreateInfo-pNext-02512
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, for any element
of pDependencies with a dependencyFlags member that does not include

289

VK_DEPENDENCY_VIEW_LOCAL_BIT, the corresponding element of the pViewOffsets member of
that VkRenderPassMultiviewCreateInfo instance must be 0

• VUID-VkRenderPassCreateInfo-pNext-02513
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, elements of its
pViewMasks member must either all be 0, or all not be 0

• VUID-VkRenderPassCreateInfo-pNext-02514
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, and each
element of its pViewMasks member is 0, the dependencyFlags member of each element of
pDependencies must not include VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-VkRenderPassCreateInfo-pNext-02515
If the pNext chain includes a VkRenderPassMultiviewCreateInfo structure, and each
element of its pViewMasks member is 0, its correlationMaskCount member must be 0

• VUID-VkRenderPassCreateInfo-pDependencies-00837
For any element of pDependencies, if the srcSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the srcStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the source
subpass

• VUID-VkRenderPassCreateInfo-pDependencies-00838
For any element of pDependencies, if the dstSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the dstStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the destination
subpass

• VUID-VkRenderPassCreateInfo-pDependencies-06866
For any element of pDependencies, if its srcSubpass is not VK_SUBPASS_EXTERNAL, it must be
less than subpassCount

• VUID-VkRenderPassCreateInfo-pDependencies-06867
For any element of pDependencies, if its dstSubpass is not VK_SUBPASS_EXTERNAL, it must be
less than subpassCount

Valid Usage (Implicit)

• VUID-VkRenderPassCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO

• VUID-VkRenderPassCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkRenderPassInputAttachmentAspectCreateInfo or
VkRenderPassMultiviewCreateInfo

• VUID-VkRenderPassCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkRenderPassCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkRenderPassCreateInfo-pAttachments-parameter

290

If attachmentCount is not 0, pAttachments must be a valid pointer to an array of
attachmentCount valid VkAttachmentDescription structures

• VUID-VkRenderPassCreateInfo-pSubpasses-parameter
pSubpasses must be a valid pointer to an array of subpassCount valid
VkSubpassDescription structures

• VUID-VkRenderPassCreateInfo-pDependencies-parameter
If dependencyCount is not 0, pDependencies must be a valid pointer to an array of
dependencyCount valid VkSubpassDependency structures

• VUID-VkRenderPassCreateInfo-subpassCount-arraylength
subpassCount must be greater than 0

Bits which can be set in VkRenderPassCreateInfo::flags, describing additional properties of the
render pass, are:

// Provided by VK_VERSION_1_0
typedef enum VkRenderPassCreateFlagBits {
} VkRenderPassCreateFlagBits;

Note

All bits for this type are defined by extensions, and none of those extensions are
enabled in this build of the specification.

// Provided by VK_VERSION_1_0
typedef VkFlags VkRenderPassCreateFlags;

VkRenderPassCreateFlags is a bitmask type for setting a mask of zero or more
VkRenderPassCreateFlagBits.

If the VkRenderPassCreateInfo::pNext chain includes a VkRenderPassMultiviewCreateInfo structure,
then that structure includes an array of view masks, view offsets, and correlation masks for the
render pass.

The VkRenderPassMultiviewCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkRenderPassMultiviewCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t subpassCount;
 const uint32_t* pViewMasks;
 uint32_t dependencyCount;
 const int32_t* pViewOffsets;
 uint32_t correlationMaskCount;
 const uint32_t* pCorrelationMasks;

291

} VkRenderPassMultiviewCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• subpassCount is zero or the number of subpasses in the render pass.

• pViewMasks is a pointer to an array of subpassCount view masks, where each mask is a bitfield of
view indices describing which views rendering is broadcast to in each subpass, when multiview
is enabled. If subpassCount is zero, each view mask is treated as zero.

• dependencyCount is zero or the number of dependencies in the render pass.

• pViewOffsets is a pointer to an array of dependencyCount view offsets, one for each dependency. If
dependencyCount is zero, each dependency’s view offset is treated as zero. Each view offset
controls which views in the source subpass the views in the destination subpass depend on.

• correlationMaskCount is zero or the number of correlation masks.

• pCorrelationMasks is a pointer to an array of correlationMaskCount view masks indicating sets of
views that may be more efficient to render concurrently.

When a subpass uses a non-zero view mask, multiview functionality is considered to be enabled.
Multiview is all-or-nothing for a render pass - that is, either all subpasses must have a non-zero
view mask (though some subpasses may have only one view) or all must be zero. Multiview causes
all drawing and clear commands in the subpass to behave as if they were broadcast to each view,
where a view is represented by one layer of the framebuffer attachments. All draws and clears are
broadcast to each view index whose bit is set in the view mask. The view index is provided in the
ViewIndex shader input variable, and color, depth/stencil, and input attachments all read/write the
layer of the framebuffer corresponding to the view index.

If the view mask is zero for all subpasses, multiview is considered to be disabled and all drawing
commands execute normally, without this additional broadcasting.

Some implementations may not support multiview in conjunction with geometry shaders or
tessellation shaders.

When multiview is enabled, the VK_DEPENDENCY_VIEW_LOCAL_BIT bit in a dependency can be used to
express a view-local dependency, meaning that each view in the destination subpass depends on a
single view in the source subpass. Unlike pipeline barriers, a subpass dependency can potentially
have a different view mask in the source subpass and the destination subpass. If the dependency is
view-local, then each view (dstView) in the destination subpass depends on the view dstView +
pViewOffsets[dependency] in the source subpass. If there is not such a view in the source subpass,
then this dependency does not affect that view in the destination subpass. If the dependency is not
view-local, then all views in the destination subpass depend on all views in the source subpass, and
the view offset is ignored. A non-zero view offset is not allowed in a self-dependency.

The elements of pCorrelationMasks are a set of masks of views indicating that views in the same
mask may exhibit spatial coherency between the views, making it more efficient to render them
concurrently. Correlation masks must not have a functional effect on the results of the multiview
rendering.

292

When multiview is enabled, at the beginning of each subpass all non-render pass state is undefined.
In particular, each time vkCmdBeginRenderPass or vkCmdNextSubpass is called the graphics
pipeline must be bound, any relevant descriptor sets or vertex/index buffers must be bound, and
any relevant dynamic state or push constants must be set before they are used.

Valid Usage

• VUID-VkRenderPassMultiviewCreateInfo-pCorrelationMasks-00841
Each view index must not be set in more than one element of pCorrelationMasks

• VUID-VkRenderPassMultiviewCreateInfo-multiview-06555
If the multiview feature is not enabled, each element of pViewMasks must be 0

• VUID-VkRenderPassMultiviewCreateInfo-pViewMasks-06697
The index of the most significant bit in each element of pViewMasks must be less than
maxMultiviewViewCount

Valid Usage (Implicit)

• VUID-VkRenderPassMultiviewCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO

• VUID-VkRenderPassMultiviewCreateInfo-pViewMasks-parameter
If subpassCount is not 0, pViewMasks must be a valid pointer to an array of subpassCount
uint32_t values

• VUID-VkRenderPassMultiviewCreateInfo-pViewOffsets-parameter
If dependencyCount is not 0, pViewOffsets must be a valid pointer to an array of
dependencyCount int32_t values

• VUID-VkRenderPassMultiviewCreateInfo-pCorrelationMasks-parameter
If correlationMaskCount is not 0, pCorrelationMasks must be a valid pointer to an array of
correlationMaskCount uint32_t values

The VkAttachmentDescription structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkAttachmentDescription {
 VkAttachmentDescriptionFlags flags;
 VkFormat format;
 VkSampleCountFlagBits samples;
 VkAttachmentLoadOp loadOp;
 VkAttachmentStoreOp storeOp;
 VkAttachmentLoadOp stencilLoadOp;
 VkAttachmentStoreOp stencilStoreOp;
 VkImageLayout initialLayout;
 VkImageLayout finalLayout;
} VkAttachmentDescription;

293

• flags is a bitmask of VkAttachmentDescriptionFlagBits specifying additional properties of the
attachment.

• format is a VkFormat value specifying the format of the image view that will be used for the
attachment.

• samples is a VkSampleCountFlagBits value specifying the number of samples of the image.

• loadOp is a VkAttachmentLoadOp value specifying how the contents of color and depth
components of the attachment are treated at the beginning of the subpass where it is first used.

• storeOp is a VkAttachmentStoreOp value specifying how the contents of color and depth
components of the attachment are treated at the end of the subpass where it is last used.

• stencilLoadOp is a VkAttachmentLoadOp value specifying how the contents of stencil
components of the attachment are treated at the beginning of the subpass where it is first used.

• stencilStoreOp is a VkAttachmentStoreOp value specifying how the contents of stencil
components of the attachment are treated at the end of the last subpass where it is used.

• initialLayout is the layout the attachment image subresource will be in when a render pass
instance begins.

• finalLayout is the layout the attachment image subresource will be transitioned to when a
render pass instance ends.

If the attachment uses a color format, then loadOp and storeOp are used, and stencilLoadOp and
stencilStoreOp are ignored. If the format has depth and/or stencil components, loadOp and storeOp
apply only to the depth data, while stencilLoadOp and stencilStoreOp define how the stencil data is
handled. loadOp and stencilLoadOp define the load operations for the attachment. storeOp and
stencilStoreOp define the store operations for the attachment. If an attachment is not used by any
subpass, loadOp, storeOp, stencilStoreOp, and stencilLoadOp will be ignored for that attachment, and
no load or store ops will be performed. However, any transition specified by initialLayout and
finalLayout will still be executed.

If flags includes VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, then the attachment is treated as if it
shares physical memory with another attachment in the same render pass. This information limits
the ability of the implementation to reorder certain operations (like layout transitions and the
loadOp) such that it is not improperly reordered against other uses of the same physical memory via
a different attachment. This is described in more detail below.

If a render pass uses multiple attachments that alias the same device memory, those attachments
must each include the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bit in their attachment description
flags. Attachments aliasing the same memory occurs in multiple ways:

• Multiple attachments being assigned the same image view as part of framebuffer creation.

• Attachments using distinct image views that correspond to the same image subresource of an
image.

• Attachments using views of distinct image subresources which are bound to overlapping
memory ranges.

Note

294

Render passes must include subpass dependencies (either directly or via a subpass
dependency chain) between any two subpasses that operate on the same
attachment or aliasing attachments and those subpass dependencies must include
execution and memory dependencies separating uses of the aliases, if at least one
of those subpasses writes to one of the aliases. These dependencies must not
include the VK_DEPENDENCY_BY_REGION_BIT if the aliases are views of distinct image
subresources which overlap in memory.

Multiple attachments that alias the same memory must not be used in a single subpass. A given
attachment index must not be used multiple times in a single subpass, with one exception: two
subpass attachments can use the same attachment index if at least one use is as an input
attachment and neither use is as a resolve or preserve attachment. In other words, the same view
can be used simultaneously as an input and color or depth/stencil attachment, but must not be
used as multiple color or depth/stencil attachments nor as resolve or preserve attachments.

If a set of attachments alias each other, then all except the first to be used in the render pass must
use an initialLayout of VK_IMAGE_LAYOUT_UNDEFINED, since the earlier uses of the other aliases make
their contents undefined. Once an alias has been used and a different alias has been used after it,
the first alias must not be used in any later subpasses. However, an application can assign the same
image view to multiple aliasing attachment indices, which allows that image view to be used
multiple times even if other aliases are used in between.

Note

Once an attachment needs the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bit, there
should be no additional cost of introducing additional aliases, and using these
additional aliases may allow more efficient clearing of the attachments on
multiple uses via VK_ATTACHMENT_LOAD_OP_CLEAR.

Valid Usage

• VUID-VkAttachmentDescription-format-06699
If format includes a color or depth component and loadOp is VK_ATTACHMENT_LOAD_OP_LOAD,
then initialLayout must not be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription-finalLayout-00843
finalLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkAttachmentDescription-format-03280
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03281
If format is a depth/stencil format, initialLayout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription-format-03282
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or

295

VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03283
If format is a depth/stencil format, finalLayout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription-format-06487
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription-format-06488
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription-separateDepthStencilLayouts-03284
If the separateDepthStencilLayouts feature is not enabled, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentDescription-separateDepthStencilLayouts-03285
If the separateDepthStencilLayouts feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentDescription-format-03286
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03287
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-06906
If format is a depth/stencil format which includes both depth and stencil components,
initialLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-06907
If format is a depth/stencil format which includes both depth and stencil components,
finalLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03290
If format is a depth/stencil format which includes only the depth component,
initialLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

296

• VUID-VkAttachmentDescription-format-03291
If format is a depth/stencil format which includes only the depth component, finalLayout
must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-samples-08745
samples must be a valid VkSampleCountFlagBits value that is set in
imageCreateSampleCounts (as defined in Image Creation Limits) for the given format

• VUID-VkAttachmentDescription-format-06698
format must not be VK_FORMAT_UNDEFINED

• VUID-VkAttachmentDescription-format-06700
If format includes a stencil component and stencilLoadOp is VK_ATTACHMENT_LOAD_OP_LOAD,
then initialLayout must not be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription-format-03292
If format is a depth/stencil format which includes only the stencil component,
initialLayout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-03293
If format is a depth/stencil format which includes only the stencil component, finalLayout
must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-06242
If format is a depth/stencil format which includes both depth and stencil components,
initialLayout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription-format-06243
If format is a depth/stencil format which includes both depth and stencil components,
finalLayout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

Valid Usage (Implicit)

• VUID-VkAttachmentDescription-flags-parameter
flags must be a valid combination of VkAttachmentDescriptionFlagBits values

• VUID-VkAttachmentDescription-format-parameter
format must be a valid VkFormat value

• VUID-VkAttachmentDescription-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-VkAttachmentDescription-loadOp-parameter
loadOp must be a valid VkAttachmentLoadOp value

• VUID-VkAttachmentDescription-storeOp-parameter
storeOp must be a valid VkAttachmentStoreOp value

• VUID-VkAttachmentDescription-stencilLoadOp-parameter

297

stencilLoadOp must be a valid VkAttachmentLoadOp value

• VUID-VkAttachmentDescription-stencilStoreOp-parameter
stencilStoreOp must be a valid VkAttachmentStoreOp value

• VUID-VkAttachmentDescription-initialLayout-parameter
initialLayout must be a valid VkImageLayout value

• VUID-VkAttachmentDescription-finalLayout-parameter
finalLayout must be a valid VkImageLayout value

Bits which can be set in VkAttachmentDescription::flags, describing additional properties of the
attachment, are:

// Provided by VK_VERSION_1_0
typedef enum VkAttachmentDescriptionFlagBits {
 VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT = 0x00000001,
} VkAttachmentDescriptionFlagBits;

• VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT specifies that the attachment aliases the same device
memory as other attachments.

// Provided by VK_VERSION_1_0
typedef VkFlags VkAttachmentDescriptionFlags;

VkAttachmentDescriptionFlags is a bitmask type for setting a mask of zero or more
VkAttachmentDescriptionFlagBits.

The VkRenderPassInputAttachmentAspectCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkRenderPassInputAttachmentAspectCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t aspectReferenceCount;
 const VkInputAttachmentAspectReference* pAspectReferences;
} VkRenderPassInputAttachmentAspectCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• aspectReferenceCount is the number of elements in the pAspectReferences array.

• pAspectReferences is a pointer to an array of aspectReferenceCount
VkInputAttachmentAspectReference structures containing a mask describing which aspect(s)
can be accessed for a given input attachment within a given subpass.

To specify which aspects of an input attachment can be read, add a

298

VkRenderPassInputAttachmentAspectCreateInfo structure to the pNext chain of the
VkRenderPassCreateInfo structure:

An application can access any aspect of an input attachment that does not have a specified aspect
mask in the pAspectReferences array. Otherwise, an application must not access aspect(s) of an
input attachment other than those in its specified aspect mask.

Valid Usage (Implicit)

• VUID-VkRenderPassInputAttachmentAspectCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO

• VUID-VkRenderPassInputAttachmentAspectCreateInfo-pAspectReferences-parameter
pAspectReferences must be a valid pointer to an array of aspectReferenceCount valid
VkInputAttachmentAspectReference structures

• VUID-VkRenderPassInputAttachmentAspectCreateInfo-aspectReferenceCount-arraylength
aspectReferenceCount must be greater than 0

The VkInputAttachmentAspectReference structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkInputAttachmentAspectReference {
 uint32_t subpass;
 uint32_t inputAttachmentIndex;
 VkImageAspectFlags aspectMask;
} VkInputAttachmentAspectReference;

• subpass is an index into the pSubpasses array of the parent VkRenderPassCreateInfo structure.

• inputAttachmentIndex is an index into the pInputAttachments of the specified subpass.

• aspectMask is a mask of which aspect(s) can be accessed within the specified subpass.

This structure specifies an aspect mask for a specific input attachment of a specific subpass in the
render pass.

subpass and inputAttachmentIndex index into the render pass as:

pCreateInfo->pSubpasses[subpass].pInputAttachments[inputAttachmentIndex]

Valid Usage

• VUID-VkInputAttachmentAspectReference-aspectMask-01964
aspectMask must not include VK_IMAGE_ASPECT_METADATA_BIT

299

Valid Usage (Implicit)

• VUID-VkInputAttachmentAspectReference-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkInputAttachmentAspectReference-aspectMask-requiredbitmask
aspectMask must not be 0

The VkSubpassDescription structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSubpassDescription {
 VkSubpassDescriptionFlags flags;
 VkPipelineBindPoint pipelineBindPoint;
 uint32_t inputAttachmentCount;
 const VkAttachmentReference* pInputAttachments;
 uint32_t colorAttachmentCount;
 const VkAttachmentReference* pColorAttachments;
 const VkAttachmentReference* pResolveAttachments;
 const VkAttachmentReference* pDepthStencilAttachment;
 uint32_t preserveAttachmentCount;
 const uint32_t* pPreserveAttachments;
} VkSubpassDescription;

• flags is a bitmask of VkSubpassDescriptionFlagBits specifying usage of the subpass.

• pipelineBindPoint is a VkPipelineBindPoint value specifying the pipeline type supported for this
subpass.

• inputAttachmentCount is the number of input attachments.

• pInputAttachments is a pointer to an array of VkAttachmentReference structures defining the
input attachments for this subpass and their layouts.

• colorAttachmentCount is the number of color attachments.

• pColorAttachments is a pointer to an array of colorAttachmentCount VkAttachmentReference
structures defining the color attachments for this subpass and their layouts.

• pResolveAttachments is NULL or a pointer to an array of colorAttachmentCount
VkAttachmentReference structures defining the resolve attachments for this subpass and their
layouts.

• pDepthStencilAttachment is a pointer to a VkAttachmentReference structure specifying the
depth/stencil attachment for this subpass and its layout.

• preserveAttachmentCount is the number of preserved attachments.

• pPreserveAttachments is a pointer to an array of preserveAttachmentCount render pass attachment
indices identifying attachments that are not used by this subpass, but whose contents must be
preserved throughout the subpass.

Each element of the pInputAttachments array corresponds to an input attachment index in a

300

fragment shader, i.e. if a shader declares an image variable decorated with a InputAttachmentIndex
value of X, then it uses the attachment provided in pInputAttachments[X]. Input attachments must
also be bound to the pipeline in a descriptor set. If the attachment member of any element of
pInputAttachments is VK_ATTACHMENT_UNUSED, the application must not read from the corresponding
input attachment index. Fragment shaders can use subpass input variables to access the contents of
an input attachment at the fragment’s (x, y, layer) framebuffer coordinates.

Each element of the pColorAttachments array corresponds to an output location in the shader, i.e. if
the shader declares an output variable decorated with a Location value of X, then it uses the
attachment provided in pColorAttachments[X]. If the attachment member of any element of
pColorAttachments is VK_ATTACHMENT_UNUSED, then writes to the corresponding location by a fragment
shader are discarded.

If pResolveAttachments is not NULL, each of its elements corresponds to a color attachment (the
element in pColorAttachments at the same index), and a multisample resolve operation is defined for
each attachment unless the resolve attachment index is VK_ATTACHMENT_UNUSED.

Similarly, if VkSubpassDescriptionDepthStencilResolve::pDepthStencilResolveAttachment is not NULL
and does not have the value VK_ATTACHMENT_UNUSED, it corresponds to the depth/stencil attachment in
pDepthStencilAttachment, and multisample resolve operation for depth and stencil are defined by
VkSubpassDescriptionDepthStencilResolve::depthResolveMode and
VkSubpassDescriptionDepthStencilResolve::stencilResolveMode, respectively. If
VkSubpassDescriptionDepthStencilResolve::depthResolveMode is VK_RESOLVE_MODE_NONE or the
pDepthStencilResolveAttachment does not have a depth aspect, no resolve operation is performed for
the depth attachment. If VkSubpassDescriptionDepthStencilResolve::stencilResolveMode is
VK_RESOLVE_MODE_NONE or the pDepthStencilResolveAttachment does not have a stencil aspect, no
resolve operation is performed for the stencil attachment.

If pDepthStencilAttachment is NULL, or if its attachment index is VK_ATTACHMENT_UNUSED, it indicates that
no depth/stencil attachment will be used in the subpass.

The contents of an attachment within the render area become undefined at the start of a subpass S
if all of the following conditions are true:

• The attachment is used as a color, depth/stencil, or resolve attachment in any subpass in the
render pass.

• There is a subpass S1 that uses or preserves the attachment, and a subpass dependency from S1

to S.

• The attachment is not used or preserved in subpass S.

Once the contents of an attachment become undefined in subpass S, they remain undefined for
subpasses in subpass dependency chains starting with subpass S until they are written again.
However, they remain valid for subpasses in other subpass dependency chains starting with
subpass S1 if those subpasses use or preserve the attachment.

Valid Usage

• VUID-VkSubpassDescription-attachment-06912

301

If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription-attachment-06913
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-attachment-06914
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-attachment-06915
If the attachment member of pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED, ts layout
member must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-attachment-06916
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription-attachment-06917
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription-attachment-06918
If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription-attachment-06919
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-attachment-06920
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription-pipelineBindPoint-04952
pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-VkSubpassDescription-colorAttachmentCount-00845

302

colorAttachmentCount must be less than or equal to VkPhysicalDeviceLimits
::maxColorAttachments

• VUID-VkSubpassDescription-loadOp-00846
If the first use of an attachment in this render pass is as an input attachment, and the
attachment is not also used as a color or depth/stencil attachment in the same subpass,
then loadOp must not be VK_ATTACHMENT_LOAD_OP_CLEAR

• VUID-VkSubpassDescription-pResolveAttachments-00847
If pResolveAttachments is not NULL, for each resolve attachment that is not
VK_ATTACHMENT_UNUSED, the corresponding color attachment must not be
VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription-pResolveAttachments-00848
If pResolveAttachments is not NULL, for each resolve attachment that is not
VK_ATTACHMENT_UNUSED, the corresponding color attachment must not have a sample count
of VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescription-pResolveAttachments-00849
If pResolveAttachments is not NULL, each resolve attachment that is not
VK_ATTACHMENT_UNUSED must have a sample count of VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescription-pResolveAttachments-00850
If pResolveAttachments is not NULL, each resolve attachment that is not
VK_ATTACHMENT_UNUSED must have the same VkFormat as its corresponding color
attachment

• VUID-VkSubpassDescription-pColorAttachments-09430
All attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have the
same sample count

• VUID-VkSubpassDescription-pInputAttachments-02647
All attachments in pInputAttachments that are not VK_ATTACHMENT_UNUSED must have image
formats whose potential format features contain at least
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescription-pColorAttachments-02648
All attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have image
formats whose potential format features contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkSubpassDescription-pResolveAttachments-02649
All attachments in pResolveAttachments that are not VK_ATTACHMENT_UNUSED must have
image formats whose potential format features contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkSubpassDescription-pDepthStencilAttachment-02650
If pDepthStencilAttachment is not NULL and the attachment is not VK_ATTACHMENT_UNUSED then
it must have an image format whose potential format features contain
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescription-pDepthStencilAttachment-01418
If pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED and any attachments in
pColorAttachments are not VK_ATTACHMENT_UNUSED, they must have the same sample count

303

• VUID-VkSubpassDescription-attachment-00853
Each element of pPreserveAttachments must not be VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription-pPreserveAttachments-00854
Each element of pPreserveAttachments must not also be an element of any other member
of the subpass description

• VUID-VkSubpassDescription-layout-02519
If any attachment is used by more than one VkAttachmentReference member, then each
use must use the same layout

• VUID-VkSubpassDescription-pDepthStencilAttachment-04438
pDepthStencilAttachment and pColorAttachments must not contain references to the same
attachment

Valid Usage (Implicit)

• VUID-VkSubpassDescription-flags-zerobitmask
flags must be 0

• VUID-VkSubpassDescription-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-VkSubpassDescription-pInputAttachments-parameter
If inputAttachmentCount is not 0, pInputAttachments must be a valid pointer to an array of
inputAttachmentCount valid VkAttachmentReference structures

• VUID-VkSubpassDescription-pColorAttachments-parameter
If colorAttachmentCount is not 0, pColorAttachments must be a valid pointer to an array of
colorAttachmentCount valid VkAttachmentReference structures

• VUID-VkSubpassDescription-pResolveAttachments-parameter
If colorAttachmentCount is not 0, and pResolveAttachments is not NULL, pResolveAttachments
must be a valid pointer to an array of colorAttachmentCount valid VkAttachmentReference
structures

• VUID-VkSubpassDescription-pDepthStencilAttachment-parameter
If pDepthStencilAttachment is not NULL, pDepthStencilAttachment must be a valid pointer to
a valid VkAttachmentReference structure

• VUID-VkSubpassDescription-pPreserveAttachments-parameter
If preserveAttachmentCount is not 0, pPreserveAttachments must be a valid pointer to an
array of preserveAttachmentCount uint32_t values

Bits which can be set in VkSubpassDescription::flags, specifying usage of the subpass, are:

// Provided by VK_VERSION_1_0
typedef enum VkSubpassDescriptionFlagBits {
} VkSubpassDescriptionFlagBits;

 Note

304

All bits for this type are defined by extensions, and none of those extensions are
enabled in this build of the specification.

// Provided by VK_VERSION_1_0
typedef VkFlags VkSubpassDescriptionFlags;

VkSubpassDescriptionFlags is a bitmask type for setting a mask of zero or more
VkSubpassDescriptionFlagBits.

The VkAttachmentReference structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkAttachmentReference {
 uint32_t attachment;
 VkImageLayout layout;
} VkAttachmentReference;

• attachment is either an integer value identifying an attachment at the corresponding index in
VkRenderPassCreateInfo::pAttachments, or VK_ATTACHMENT_UNUSED to signify that this attachment is
not used.

• layout is a VkImageLayout value specifying the layout the attachment uses during the subpass.

Valid Usage

• VUID-VkAttachmentReference-layout-03077
If attachment is not VK_ATTACHMENT_UNUSED, layout must not be VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_PREINITIALIZED, or VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

• VUID-VkAttachmentReference-separateDepthStencilLayouts-03313
If the separateDepthStencilLayouts feature is not enabled, and attachment is not
VK_ATTACHMENT_UNUSED, layout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

Valid Usage (Implicit)

• VUID-VkAttachmentReference-layout-parameter
layout must be a valid VkImageLayout value

VK_SUBPASS_EXTERNAL is a special subpass index value expanding synchronization scope outside a
subpass. It is described in more detail by VkSubpassDependency.

#define VK_SUBPASS_EXTERNAL (~0U)

305

The VkSubpassDependency structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSubpassDependency {
 uint32_t srcSubpass;
 uint32_t dstSubpass;
 VkPipelineStageFlags srcStageMask;
 VkPipelineStageFlags dstStageMask;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
 VkDependencyFlags dependencyFlags;
} VkSubpassDependency;

• srcSubpass is the subpass index of the first subpass in the dependency, or VK_SUBPASS_EXTERNAL.

• dstSubpass is the subpass index of the second subpass in the dependency, or
VK_SUBPASS_EXTERNAL.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• dependencyFlags is a bitmask of VkDependencyFlagBits.

If srcSubpass is equal to dstSubpass then the VkSubpassDependency does not directly define a
dependency. Instead, it enables pipeline barriers to be used in a render pass instance within the
identified subpass, where the scopes of one pipeline barrier must be a subset of those described by
one subpass dependency. Subpass dependencies specified in this way that include framebuffer-
space stages in the srcStageMask must only include framebuffer-space stages in dstStageMask, and
must include VK_DEPENDENCY_BY_REGION_BIT. When a subpass dependency is specified in this way for
a subpass that has more than one view in its view mask, its dependencyFlags must include
VK_DEPENDENCY_VIEW_LOCAL_BIT.

If srcSubpass and dstSubpass are not equal, when a render pass instance which includes a subpass
dependency is submitted to a queue, it defines a dependency between the subpasses identified by
srcSubpass and dstSubpass.

If srcSubpass is equal to VK_SUBPASS_EXTERNAL, the first synchronization scope includes commands
that occur earlier in submission order than the vkCmdBeginRenderPass used to begin the render
pass instance. Otherwise, the first set of commands includes all commands submitted as part of the
subpass instance identified by srcSubpass and any load, store, or multisample resolve operations on
attachments used in srcSubpass. In either case, the first synchronization scope is limited to
operations on the pipeline stages determined by the source stage mask specified by srcStageMask.

If dstSubpass is equal to VK_SUBPASS_EXTERNAL, the second synchronization scope includes commands
that occur later in submission order than the vkCmdEndRenderPass used to end the render pass
instance. Otherwise, the second set of commands includes all commands submitted as part of the
subpass instance identified by dstSubpass and any load, store, and multisample resolve operations

306

on attachments used in dstSubpass. In either case, the second synchronization scope is limited to
operations on the pipeline stages determined by the destination stage mask specified by
dstStageMask.

The first access scope is limited to accesses in the pipeline stages determined by the source stage
mask specified by srcStageMask. It is also limited to access types in the source access mask specified
by srcAccessMask.

The second access scope is limited to accesses in the pipeline stages determined by the destination
stage mask specified by dstStageMask. It is also limited to access types in the destination access mask
specified by dstAccessMask.

The availability and visibility operations defined by a subpass dependency affect the execution of
image layout transitions within the render pass.

Note

For non-attachment resources, the memory dependency expressed by subpass
dependency is nearly identical to that of a VkMemoryBarrier (with matching
srcAccessMask and dstAccessMask parameters) submitted as a part of a
vkCmdPipelineBarrier (with matching srcStageMask and dstStageMask parameters).
The only difference being that its scopes are limited to the identified subpasses
rather than potentially affecting everything before and after.

For attachments however, subpass dependencies work more like a
VkImageMemoryBarrier defined similarly to the VkMemoryBarrier above, the
queue family indices set to VK_QUEUE_FAMILY_IGNORED, and layouts as follows:

• The equivalent to oldLayout is the attachment’s layout according to the subpass
description for srcSubpass.

• The equivalent to newLayout is the attachment’s layout according to the subpass
description for dstSubpass.

Valid Usage

• VUID-VkSubpassDependency-srcStageMask-04090
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-VkSubpassDependency-srcStageMask-04091
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubpassDependency-srcStageMask-03937
If the synchronization2 feature is not enabled, srcStageMask must not be 0

• VUID-VkSubpassDependency-dstStageMask-04090
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

307

• VUID-VkSubpassDependency-dstStageMask-04091
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubpassDependency-dstStageMask-03937
If the synchronization2 feature is not enabled, dstStageMask must not be 0

• VUID-VkSubpassDependency-srcSubpass-00864
srcSubpass must be less than or equal to dstSubpass, unless one of them is
VK_SUBPASS_EXTERNAL, to avoid cyclic dependencies and ensure a valid execution order

• VUID-VkSubpassDependency-srcSubpass-00865
srcSubpass and dstSubpass must not both be equal to VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency-srcSubpass-06809
If srcSubpass is equal to dstSubpass and srcStageMask includes a framebuffer-space stage,
dstStageMask must only contain framebuffer-space stages

• VUID-VkSubpassDependency-srcAccessMask-00868
Any access flag included in srcAccessMask must be supported by one of the pipeline stages
in srcStageMask, as specified in the table of supported access types

• VUID-VkSubpassDependency-dstAccessMask-00869
Any access flag included in dstAccessMask must be supported by one of the pipeline stages
in dstStageMask, as specified in the table of supported access types

• VUID-VkSubpassDependency-srcSubpass-02243
If srcSubpass equals dstSubpass, and srcStageMask and dstStageMask both include a
framebuffer-space stage, then dependencyFlags must include VK_DEPENDENCY_BY_REGION_BIT

• VUID-VkSubpassDependency-dependencyFlags-02520
If dependencyFlags includes VK_DEPENDENCY_VIEW_LOCAL_BIT, srcSubpass must not be equal to
VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency-dependencyFlags-02521
If dependencyFlags includes VK_DEPENDENCY_VIEW_LOCAL_BIT, dstSubpass must not be equal to
VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency-srcSubpass-00872
If srcSubpass equals dstSubpass and that subpass has more than one bit set in the view
mask, then dependencyFlags must include VK_DEPENDENCY_VIEW_LOCAL_BIT

Valid Usage (Implicit)

• VUID-VkSubpassDependency-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-VkSubpassDependency-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-VkSubpassDependency-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits values

• VUID-VkSubpassDependency-dstAccessMask-parameter

308

dstAccessMask must be a valid combination of VkAccessFlagBits values

• VUID-VkSubpassDependency-dependencyFlags-parameter
dependencyFlags must be a valid combination of VkDependencyFlagBits values

When multiview is enabled, the execution of the multiple views of one subpass may not occur
simultaneously or even back-to-back, and rather may be interleaved with the execution of other
subpasses. The load and store operations apply to attachments on a per-view basis. For example, an
attachment using VK_ATTACHMENT_LOAD_OP_CLEAR will have each view cleared on first use, but the first
use of one view may be temporally distant from the first use of another view.

Note

A good mental model for multiview is to think of a multiview subpass as if it were
a collection of individual (per-view) subpasses that are logically grouped together
and described as a single multiview subpass in the API. Similarly, a multiview
attachment can be thought of like several individual attachments that happen to
be layers in a single image. A view-local dependency between two multiview
subpasses acts like a set of one-to-one dependencies between corresponding pairs
of per-view subpasses. A view-global dependency between two multiview
subpasses acts like a set of N × M dependencies between all pairs of per-view
subpasses in the source and destination. Thus, it is a more compact representation
which also makes clear the commonality and reuse that is present between views
in a subpass. This interpretation motivates the answers to questions like “when
does the load op apply” - it is on the first use of each view of an attachment, as if
each view was a separate attachment.

The content of each view follows the description in attachment content behavior.
In particular, if an attachment is preserved, all views within the attachment are
preserved.

If there is no subpass dependency from VK_SUBPASS_EXTERNAL to the first subpass that uses an
attachment, then an implicit subpass dependency exists from VK_SUBPASS_EXTERNAL to the first
subpass it is used in. The implicit subpass dependency only exists if there exists an automatic layout
transition away from initialLayout. The subpass dependency operates as if defined with the
following parameters:

VkSubpassDependency implicitDependency = {
 .srcSubpass = VK_SUBPASS_EXTERNAL,
 .dstSubpass = firstSubpass, // First subpass attachment is used in
 .srcStageMask = VK_PIPELINE_STAGE_NONE,
 .dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
 .srcAccessMask = 0,
 .dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
 VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
 .dependencyFlags = 0

309

};

Similarly, if there is no subpass dependency from the last subpass that uses an attachment to
VK_SUBPASS_EXTERNAL, then an implicit subpass dependency exists from the last subpass it is used in
to VK_SUBPASS_EXTERNAL. The implicit subpass dependency only exists if there exists an automatic
layout transition into finalLayout. The subpass dependency operates as if defined with the
following parameters:

VkSubpassDependency implicitDependency = {
 .srcSubpass = lastSubpass, // Last subpass attachment is used in
 .dstSubpass = VK_SUBPASS_EXTERNAL,
 .srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
 .dstStageMask = VK_PIPELINE_STAGE_NONE,
 .srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
 .dstAccessMask = 0,
 .dependencyFlags = 0
};

As subpasses may overlap or execute out of order with regards to other subpasses unless a subpass
dependency chain describes otherwise, the layout transitions required between subpasses cannot
be known to an application. Instead, an application provides the layout that each attachment must
be in at the start and end of a render pass, and the layout it must be in during each subpass it is
used in. The implementation then must execute layout transitions between subpasses in order to
guarantee that the images are in the layouts required by each subpass, and in the final layout at the
end of the render pass.

Automatic layout transitions apply to the entire image subresource attached to the framebuffer. If
multiview is not enabled and the attachment is a view of a 1D or 2D image, the automatic layout
transitions apply to the number of layers specified by VkFramebufferCreateInfo::layers. If
multiview is enabled and the attachment is a view of a 1D or 2D image, the automatic layout
transitions apply to the layers corresponding to views which are used by some subpass in the
render pass, even if that subpass does not reference the given attachment. If the attachment view is
a 2D or 2D array view of a 3D image, even if the attachment view only refers to a subset of the slices
of the selected mip level of the 3D image, automatic layout transitions apply to the entire
subresource referenced which is the entire mip level in this case.

Automatic layout transitions away from the layout used in a subpass happen-after the availability
operations for all dependencies with that subpass as the srcSubpass.

Automatic layout transitions into the layout used in a subpass happen-before the visibility
operations for all dependencies with that subpass as the dstSubpass.

Automatic layout transitions away from initialLayout happen-after the availability operations for
all dependencies with a srcSubpass equal to VK_SUBPASS_EXTERNAL, where dstSubpass uses the
attachment that will be transitioned. For attachments created with
VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, automatic layout transitions away from initialLayout
happen-after the availability operations for all dependencies with a srcSubpass equal to

310

VK_SUBPASS_EXTERNAL, where dstSubpass uses any aliased attachment.

Automatic layout transitions into finalLayout happen-before the visibility operations for all
dependencies with a dstSubpass equal to VK_SUBPASS_EXTERNAL, where srcSubpass uses the attachment
that will be transitioned. For attachments created with VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT,
automatic layout transitions into finalLayout happen-before the visibility operations for all
dependencies with a dstSubpass equal to VK_SUBPASS_EXTERNAL, where srcSubpass uses any aliased
attachment.

If two subpasses use the same attachment, and both subpasses use the attachment in a read-only
layout, no subpass dependency needs to be specified between those subpasses. If an
implementation treats those layouts separately, it must insert an implicit subpass dependency
between those subpasses to separate the uses in each layout. The subpass dependency operates as if
defined with the following parameters:

// Used for input attachments
VkPipelineStageFlags inputAttachmentStages = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
VkAccessFlags inputAttachmentDstAccess = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;

// Used for depth/stencil attachments
VkPipelineStageFlags depthStencilAttachmentStages =
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
VkAccessFlags depthStencilAttachmentDstAccess =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;

VkSubpassDependency implicitDependency = {
 .srcSubpass = firstSubpass;
 .dstSubpass = secondSubpass;
 .srcStageMask = inputAttachmentStages | depthStencilAttachmentStages;
 .dstStageMask = inputAttachmentStages | depthStencilAttachmentStages;
 .srcAccessMask = 0;
 .dstAccessMask = inputAttachmentDstAccess | depthStencilAttachmentDstAccess;
 .dependencyFlags = 0;
};

A more extensible version of render pass creation is also defined below.

To create a render pass, call:

// Provided by VK_VERSION_1_2
VkResult vkCreateRenderPass2(
 VkDevice device,
 const VkRenderPassCreateInfo2* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkRenderPass* pRenderPass);

• device is the logical device that creates the render pass.

311

• pCreateInfo is a pointer to a VkRenderPassCreateInfo2 structure describing the parameters of
the render pass.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pRenderPass is a pointer to a VkRenderPass handle in which the resulting render pass object is
returned.

This command is functionally identical to vkCreateRenderPass, but includes extensible sub-
structures that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage (Implicit)

• VUID-vkCreateRenderPass2-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateRenderPass2-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkRenderPassCreateInfo2 structure

• VUID-vkCreateRenderPass2-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateRenderPass2-pRenderPass-parameter
pRenderPass must be a valid pointer to a VkRenderPass handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkRenderPassCreateInfo2 structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkRenderPassCreateInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkRenderPassCreateFlags flags;
 uint32_t attachmentCount;
 const VkAttachmentDescription2* pAttachments;
 uint32_t subpassCount;
 const VkSubpassDescription2* pSubpasses;
 uint32_t dependencyCount;
 const VkSubpassDependency2* pDependencies;
 uint32_t correlatedViewMaskCount;

312

 const uint32_t* pCorrelatedViewMasks;
} VkRenderPassCreateInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• attachmentCount is the number of attachments used by this render pass.

• pAttachments is a pointer to an array of attachmentCount VkAttachmentDescription2 structures
describing the attachments used by the render pass.

• subpassCount is the number of subpasses to create.

• pSubpasses is a pointer to an array of subpassCount VkSubpassDescription2 structures describing
each subpass.

• dependencyCount is the number of dependencies between pairs of subpasses.

• pDependencies is a pointer to an array of dependencyCount VkSubpassDependency2 structures
describing dependencies between pairs of subpasses.

• correlatedViewMaskCount is the number of correlation masks.

• pCorrelatedViewMasks is a pointer to an array of view masks indicating sets of views that may be
more efficient to render concurrently.

Parameters defined by this structure with the same name as those in VkRenderPassCreateInfo have
the identical effect to those parameters; the child structures are variants of those used in
VkRenderPassCreateInfo which add sType and pNext parameters, allowing them to be extended.

If the VkSubpassDescription2::viewMask member of any element of pSubpasses is not zero, multiview
functionality is considered to be enabled for this render pass.

correlatedViewMaskCount and pCorrelatedViewMasks have the same effect as
VkRenderPassMultiviewCreateInfo::correlationMaskCount and VkRenderPassMultiviewCreateInfo
::pCorrelationMasks, respectively.

Valid Usage

• VUID-VkRenderPassCreateInfo2-None-03049
If any two subpasses operate on attachments with overlapping ranges of the same
VkDeviceMemory object, and at least one subpass writes to that area of VkDeviceMemory, a
subpass dependency must be included (either directly or via some intermediate
subpasses) between them

• VUID-VkRenderPassCreateInfo2-attachment-03050
If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or the attachment indexed by any
element of pPreserveAttachments in any element of pSubpasses is bound to a range of a
VkDeviceMemory object that overlaps with any other attachment in any subpass (including
the same subpass), the VkAttachmentDescription2 structures describing them must include

313

VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT in flags

• VUID-VkRenderPassCreateInfo2-attachment-03051
If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or any element of pPreserveAttachments
in any element of pSubpasses is not VK_ATTACHMENT_UNUSED, then it must be less than
attachmentCount

• VUID-VkRenderPassCreateInfo2-pSubpasses-06473
If the pSubpasses pNext chain includes a VkSubpassDescriptionDepthStencilResolve
structure and the pDepthStencilResolveAttachment member is not NULL and does not have
the value VK_ATTACHMENT_UNUSED, then attachment must be less than attachmentCount

• VUID-VkRenderPassCreateInfo2-pAttachments-02522
For any member of pAttachments with a loadOp equal to VK_ATTACHMENT_LOAD_OP_CLEAR, the
first use of that attachment must not specify a layout equal to
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkRenderPassCreateInfo2-pAttachments-02523
For any member of pAttachments with a stencilLoadOp equal to
VK_ATTACHMENT_LOAD_OP_CLEAR, the first use of that attachment must not specify a layout
equal to VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkRenderPassCreateInfo2-pDependencies-03054
For any element of pDependencies, if the srcSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the srcStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the source
subpass

• VUID-VkRenderPassCreateInfo2-pDependencies-03055
For any element of pDependencies, if the dstSubpass is not VK_SUBPASS_EXTERNAL, all stage
flags included in the dstStageMask member of that dependency must be a pipeline stage
supported by the pipeline identified by the pipelineBindPoint member of the destination
subpass

• VUID-VkRenderPassCreateInfo2-pCorrelatedViewMasks-03056
The set of bits included in any element of pCorrelatedViewMasks must not overlap with the
set of bits included in any other element of pCorrelatedViewMasks

• VUID-VkRenderPassCreateInfo2-viewMask-03057
If the VkSubpassDescription2::viewMask member of all elements of pSubpasses is 0,
correlatedViewMaskCount must be 0

• VUID-VkRenderPassCreateInfo2-viewMask-03058
The VkSubpassDescription2::viewMask member of all elements of pSubpasses must either
all be 0, or all not be 0

• VUID-VkRenderPassCreateInfo2-viewMask-03059
If the VkSubpassDescription2::viewMask member of all elements of pSubpasses is 0, the
dependencyFlags member of any element of pDependencies must not include

314

VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-VkRenderPassCreateInfo2-pDependencies-03060
For any element of pDependencies where its srcSubpass member equals its dstSubpass
member, if the viewMask member of the corresponding element of pSubpasses includes
more than one bit, its dependencyFlags member must include
VK_DEPENDENCY_VIEW_LOCAL_BIT

• VUID-VkRenderPassCreateInfo2-attachment-02525
If the attachment member of any element of the pInputAttachments member of any element
of pSubpasses is not VK_ATTACHMENT_UNUSED, the aspectMask member of that element of
pInputAttachments must only include aspects that are present in images of the format
specified by the element of pAttachments specified by attachment

• VUID-VkRenderPassCreateInfo2-srcSubpass-02526
The srcSubpass member of each element of pDependencies must be less than subpassCount

• VUID-VkRenderPassCreateInfo2-dstSubpass-02527
The dstSubpass member of each element of pDependencies must be less than subpassCount

• VUID-VkRenderPassCreateInfo2-attachment-06244
If the attachment member of the pDepthStencilAttachment member of an element of
pSubpasses is not VK_ATTACHMENT_UNUSED, the layout member of that same structure is either
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
and the pNext chain of that structure does not include a
VkAttachmentReferenceStencilLayout structure, then the element of pAttachments with an
index equal to attachment must not have a format that includes both depth and stencil
components

• VUID-VkRenderPassCreateInfo2-attachment-06245
If the attachment member of the pDepthStencilAttachment member of an element of
pSubpasses is not VK_ATTACHMENT_UNUSED and the layout member of that same structure is
either VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, then the element of pAttachments with an
index equal to attachment must have a format that includes only a stencil component

• VUID-VkRenderPassCreateInfo2-attachment-06246
If the attachment member of the pDepthStencilAttachment member of an element of
pSubpasses is not VK_ATTACHMENT_UNUSED and the layout member of that same structure is
either VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, then the element of pAttachments with an index
equal to attachment must not have a format that includes only a stencil component

Valid Usage (Implicit)

• VUID-VkRenderPassCreateInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2

• VUID-VkRenderPassCreateInfo2-pNext-pNext
pNext must be NULL

• VUID-VkRenderPassCreateInfo2-flags-zerobitmask

315

flags must be 0

• VUID-VkRenderPassCreateInfo2-pAttachments-parameter
If attachmentCount is not 0, pAttachments must be a valid pointer to an array of
attachmentCount valid VkAttachmentDescription2 structures

• VUID-VkRenderPassCreateInfo2-pSubpasses-parameter
pSubpasses must be a valid pointer to an array of subpassCount valid
VkSubpassDescription2 structures

• VUID-VkRenderPassCreateInfo2-pDependencies-parameter
If dependencyCount is not 0, pDependencies must be a valid pointer to an array of
dependencyCount valid VkSubpassDependency2 structures

• VUID-VkRenderPassCreateInfo2-pCorrelatedViewMasks-parameter
If correlatedViewMaskCount is not 0, pCorrelatedViewMasks must be a valid pointer to an
array of correlatedViewMaskCount uint32_t values

• VUID-VkRenderPassCreateInfo2-subpassCount-arraylength
subpassCount must be greater than 0

The VkAttachmentDescription2 structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkAttachmentDescription2 {
 VkStructureType sType;
 const void* pNext;
 VkAttachmentDescriptionFlags flags;
 VkFormat format;
 VkSampleCountFlagBits samples;
 VkAttachmentLoadOp loadOp;
 VkAttachmentStoreOp storeOp;
 VkAttachmentLoadOp stencilLoadOp;
 VkAttachmentStoreOp stencilStoreOp;
 VkImageLayout initialLayout;
 VkImageLayout finalLayout;
} VkAttachmentDescription2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkAttachmentDescriptionFlagBits specifying additional properties of the
attachment.

• format is a VkFormat value specifying the format of the image that will be used for the
attachment.

• samples is a VkSampleCountFlagBits value specifying the number of samples of the image.

• loadOp is a VkAttachmentLoadOp value specifying how the contents of color and depth
components of the attachment are treated at the beginning of the subpass where it is first used.

• storeOp is a VkAttachmentStoreOp value specifying how the contents of color and depth

316

components of the attachment are treated at the end of the subpass where it is last used.

• stencilLoadOp is a VkAttachmentLoadOp value specifying how the contents of stencil
components of the attachment are treated at the beginning of the subpass where it is first used.

• stencilStoreOp is a VkAttachmentStoreOp value specifying how the contents of stencil
components of the attachment are treated at the end of the last subpass where it is used.

• initialLayout is the layout the attachment image subresource will be in when a render pass
instance begins.

• finalLayout is the layout the attachment image subresource will be transitioned to when a
render pass instance ends.

Parameters defined by this structure with the same name as those in VkAttachmentDescription
have the identical effect to those parameters.

If the separateDepthStencilLayouts feature is enabled, and format is a depth/stencil format,
initialLayout and finalLayout can be set to a layout that only specifies the layout of the depth
aspect.

If the pNext chain includes a VkAttachmentDescriptionStencilLayout structure, then the
stencilInitialLayout and stencilFinalLayout members specify the initial and final layouts of the
stencil aspect of a depth/stencil format, and initialLayout and finalLayout only apply to the depth
aspect. For depth-only formats, the VkAttachmentDescriptionStencilLayout structure is ignored. For
stencil-only formats, the initial and final layouts of the stencil aspect are taken from the
VkAttachmentDescriptionStencilLayout structure if present, or initialLayout and finalLayout if not
present.

If format is a depth/stencil format, and either initialLayout or finalLayout does not specify a layout
for the stencil aspect, then the application must specify the initial and final layouts of the stencil
aspect by including a VkAttachmentDescriptionStencilLayout structure in the pNext chain.

Valid Usage

• VUID-VkAttachmentDescription2-format-06699
If format includes a color or depth component and loadOp is VK_ATTACHMENT_LOAD_OP_LOAD,
then initialLayout must not be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription2-finalLayout-00843
finalLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkAttachmentDescription2-format-03280
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03281
If format is a depth/stencil format, initialLayout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription2-format-03282
If format is a color format, finalLayout must not be

317

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03283
If format is a depth/stencil format, finalLayout must not be
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription2-format-06487
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription2-format-06488
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescription2-separateDepthStencilLayouts-03284
If the separateDepthStencilLayouts feature is not enabled, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentDescription2-separateDepthStencilLayouts-03285
If the separateDepthStencilLayouts feature is not enabled, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

• VUID-VkAttachmentDescription2-format-03286
If format is a color format, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03287
If format is a color format, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-06906
If format is a depth/stencil format which includes both depth and stencil components,
initialLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-06907
If format is a depth/stencil format which includes both depth and stencil components,
finalLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03290
If format is a depth/stencil format which includes only the depth component,
initialLayout must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or

318

VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-03291
If format is a depth/stencil format which includes only the depth component, finalLayout
must not be VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-samples-08745
samples must be a valid VkSampleCountFlagBits value that is set in
imageCreateSampleCounts (as defined in Image Creation Limits) for the given format

• VUID-VkAttachmentDescription2-pNext-06704
If the pNext chain does not include a VkAttachmentDescriptionStencilLayout structure,
format includes a stencil component, and stencilLoadOp is VK_ATTACHMENT_LOAD_OP_LOAD,
then initialLayout must not be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription2-pNext-06705
If the pNext chain includes a VkAttachmentDescriptionStencilLayout structure, format
includes a stencil component, and stencilLoadOp is VK_ATTACHMENT_LOAD_OP_LOAD, then
VkAttachmentDescriptionStencilLayout::stencilInitialLayout must not be
VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkAttachmentDescription2-format-06249
If format is a depth/stencil format which includes both depth and stencil components, and
initialLayout is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, the pNext chain must include a
VkAttachmentDescriptionStencilLayout structure

• VUID-VkAttachmentDescription2-format-06250
If format is a depth/stencil format which includes both depth and stencil components, and
finalLayout is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, the pNext chain must include a
VkAttachmentDescriptionStencilLayout structure

• VUID-VkAttachmentDescription2-format-06247
If the pNext chain does not include a VkAttachmentDescriptionStencilLayout structure and
format only includes a stencil component, initialLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-06248
If the pNext chain does not include a VkAttachmentDescriptionStencilLayout structure and
format only includes a stencil component, finalLayout must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VUID-VkAttachmentDescription2-format-09332
format must not be VK_FORMAT_UNDEFINED

Valid Usage (Implicit)

• VUID-VkAttachmentDescription2-sType-sType
sType must be VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2

• VUID-VkAttachmentDescription2-pNext-pNext

319

pNext must be NULL or a pointer to a valid instance of
VkAttachmentDescriptionStencilLayout

• VUID-VkAttachmentDescription2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkAttachmentDescription2-flags-parameter
flags must be a valid combination of VkAttachmentDescriptionFlagBits values

• VUID-VkAttachmentDescription2-format-parameter
format must be a valid VkFormat value

• VUID-VkAttachmentDescription2-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-VkAttachmentDescription2-loadOp-parameter
loadOp must be a valid VkAttachmentLoadOp value

• VUID-VkAttachmentDescription2-storeOp-parameter
storeOp must be a valid VkAttachmentStoreOp value

• VUID-VkAttachmentDescription2-stencilLoadOp-parameter
stencilLoadOp must be a valid VkAttachmentLoadOp value

• VUID-VkAttachmentDescription2-stencilStoreOp-parameter
stencilStoreOp must be a valid VkAttachmentStoreOp value

• VUID-VkAttachmentDescription2-initialLayout-parameter
initialLayout must be a valid VkImageLayout value

• VUID-VkAttachmentDescription2-finalLayout-parameter
finalLayout must be a valid VkImageLayout value

The VkAttachmentDescriptionStencilLayout structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkAttachmentDescriptionStencilLayout {
 VkStructureType sType;
 void* pNext;
 VkImageLayout stencilInitialLayout;
 VkImageLayout stencilFinalLayout;
} VkAttachmentDescriptionStencilLayout;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stencilInitialLayout is the layout the stencil aspect of the attachment image subresource will
be in when a render pass instance begins.

• stencilFinalLayout is the layout the stencil aspect of the attachment image subresource will be
transitioned to when a render pass instance ends.

320

Valid Usage

• VUID-VkAttachmentDescriptionStencilLayout-stencilInitialLayout-03308
stencilInitialLayout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescriptionStencilLayout-stencilFinalLayout-03309
stencilFinalLayout must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkAttachmentDescriptionStencilLayout-stencilFinalLayout-03310
stencilFinalLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or
VK_IMAGE_LAYOUT_PREINITIALIZED

Valid Usage (Implicit)

• VUID-VkAttachmentDescriptionStencilLayout-sType-sType
sType must be VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT

• VUID-VkAttachmentDescriptionStencilLayout-stencilInitialLayout-parameter
stencilInitialLayout must be a valid VkImageLayout value

• VUID-VkAttachmentDescriptionStencilLayout-stencilFinalLayout-parameter
stencilFinalLayout must be a valid VkImageLayout value

The VkSubpassDescription2 structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSubpassDescription2 {
 VkStructureType sType;
 const void* pNext;
 VkSubpassDescriptionFlags flags;
 VkPipelineBindPoint pipelineBindPoint;
 uint32_t viewMask;
 uint32_t inputAttachmentCount;
 const VkAttachmentReference2* pInputAttachments;
 uint32_t colorAttachmentCount;
 const VkAttachmentReference2* pColorAttachments;
 const VkAttachmentReference2* pResolveAttachments;
 const VkAttachmentReference2* pDepthStencilAttachment;

321

 uint32_t preserveAttachmentCount;
 const uint32_t* pPreserveAttachments;
} VkSubpassDescription2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkSubpassDescriptionFlagBits specifying usage of the subpass.

• pipelineBindPoint is a VkPipelineBindPoint value specifying the pipeline type supported for this
subpass.

• viewMask is a bitfield of view indices describing which views rendering is broadcast to in this
subpass, when multiview is enabled.

• inputAttachmentCount is the number of input attachments.

• pInputAttachments is a pointer to an array of VkAttachmentReference2 structures defining the
input attachments for this subpass and their layouts.

• colorAttachmentCount is the number of color attachments.

• pColorAttachments is a pointer to an array of colorAttachmentCount VkAttachmentReference2
structures defining the color attachments for this subpass and their layouts.

• pResolveAttachments is NULL or a pointer to an array of colorAttachmentCount
VkAttachmentReference2 structures defining the resolve attachments for this subpass and their
layouts.

• pDepthStencilAttachment is a pointer to a VkAttachmentReference2 structure specifying the
depth/stencil attachment for this subpass and its layout.

• preserveAttachmentCount is the number of preserved attachments.

• pPreserveAttachments is a pointer to an array of preserveAttachmentCount render pass attachment
indices identifying attachments that are not used by this subpass, but whose contents must be
preserved throughout the subpass.

Parameters defined by this structure with the same name as those in VkSubpassDescription have
the identical effect to those parameters.

viewMask has the same effect for the described subpass as VkRenderPassMultiviewCreateInfo
::pViewMasks has on each corresponding subpass.

Valid Usage

• VUID-VkSubpassDescription2-attachment-06912
If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06913
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

322

• VUID-VkSubpassDescription2-attachment-06914
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06915
If the attachment member of pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED, ts layout
member must not be VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06916
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06917
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06918
If the attachment member of an element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06919
If the attachment member of an element of pColorAttachments is not VK_ATTACHMENT_UNUSED,
its layout member must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06920
If the attachment member of an element of pResolveAttachments is not
VK_ATTACHMENT_UNUSED, its layout member must not be
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-attachment-06251
If the attachment member of pDepthStencilAttachment is not VK_ATTACHMENT_UNUSED and its
pNext chain includes a VkAttachmentReferenceStencilLayout structure, the layout
member of pDepthStencilAttachment must not be
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• VUID-VkSubpassDescription2-pipelineBindPoint-04953
pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-VkSubpassDescription2-colorAttachmentCount-03063
colorAttachmentCount must be less than or equal to VkPhysicalDeviceLimits

323

::maxColorAttachments

• VUID-VkSubpassDescription2-loadOp-03064
If the first use of an attachment in this render pass is as an input attachment, and the
attachment is not also used as a color or depth/stencil attachment in the same subpass,
then loadOp must not be VK_ATTACHMENT_LOAD_OP_CLEAR

• VUID-VkSubpassDescription2-pResolveAttachments-03065
If pResolveAttachments is not NULL, for each resolve attachment that does not have the
value VK_ATTACHMENT_UNUSED, the corresponding color attachment must not have the value
VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription2-pResolveAttachments-03066
If pResolveAttachments is not NULL, for each resolve attachment that is not
VK_ATTACHMENT_UNUSED, the corresponding color attachment must not have a sample count
of VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescription2-pResolveAttachments-03068
Each element of pResolveAttachments must have the same VkFormat as its corresponding
color attachment

• VUID-VkSubpassDescription2-pResolveAttachments-03067
If pResolveAttachments is not NULL, each resolve attachment that is not
VK_ATTACHMENT_UNUSED must have a sample count of VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescription2-pInputAttachments-02897
All attachments in pInputAttachments that are not VK_ATTACHMENT_UNUSED

must have image formats whose potential format features contain at least
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescription2-pColorAttachments-02898
All attachments in pColorAttachments that are not VK_ATTACHMENT_UNUSED must have image
formats whose potential format features contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkSubpassDescription2-pResolveAttachments-02899
All attachments in pResolveAttachments that are not VK_ATTACHMENT_UNUSED must have
image formats whose potential format features contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkSubpassDescription2-pDepthStencilAttachment-02900
If pDepthStencilAttachment is not NULL and the attachment is not VK_ATTACHMENT_UNUSED then
it must have an image format whose potential format features contain
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescription2-multisampledRenderToSingleSampled-06872
All attachments in pDepthStencilAttachment or pColorAttachments that are not
VK_ATTACHMENT_UNUSED must have the same sample count

• VUID-VkSubpassDescription2-attachment-03073
Each element of pPreserveAttachments must not be VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescription2-pPreserveAttachments-03074
Each element of pPreserveAttachments must not also be an element of any other member

324

of the subpass description

• VUID-VkSubpassDescription2-layout-02528
If any attachment is used by more than one VkAttachmentReference2 member, then each
use must use the same layout

• VUID-VkSubpassDescription2-attachment-02799
If the attachment member of any element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
then the aspectMask member must be a valid combination of VkImageAspectFlagBits

• VUID-VkSubpassDescription2-attachment-02800
If the attachment member of any element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
then the aspectMask member must not be 0

• VUID-VkSubpassDescription2-attachment-02801
If the attachment member of any element of pInputAttachments is not VK_ATTACHMENT_UNUSED,
then the aspectMask member must not include VK_IMAGE_ASPECT_METADATA_BIT

• VUID-VkSubpassDescription2-pDepthStencilAttachment-04440
An attachment must not be used in both pDepthStencilAttachment and pColorAttachments

• VUID-VkSubpassDescription2-multiview-06558
If the multiview feature is not enabled, viewMask must be 0

• VUID-VkSubpassDescription2-viewMask-06706
The index of the most significant bit in viewMask must be less than maxMultiviewViewCount

Valid Usage (Implicit)

• VUID-VkSubpassDescription2-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2

• VUID-VkSubpassDescription2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkSubpassDescriptionDepthStencilResolve

• VUID-VkSubpassDescription2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSubpassDescription2-flags-zerobitmask
flags must be 0

• VUID-VkSubpassDescription2-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-VkSubpassDescription2-pInputAttachments-parameter
If inputAttachmentCount is not 0, pInputAttachments must be a valid pointer to an array of
inputAttachmentCount valid VkAttachmentReference2 structures

• VUID-VkSubpassDescription2-pColorAttachments-parameter
If colorAttachmentCount is not 0, pColorAttachments must be a valid pointer to an array of
colorAttachmentCount valid VkAttachmentReference2 structures

• VUID-VkSubpassDescription2-pResolveAttachments-parameter
If colorAttachmentCount is not 0, and pResolveAttachments is not NULL, pResolveAttachments

325

must be a valid pointer to an array of colorAttachmentCount valid
VkAttachmentReference2 structures

• VUID-VkSubpassDescription2-pDepthStencilAttachment-parameter
If pDepthStencilAttachment is not NULL, pDepthStencilAttachment must be a valid pointer to
a valid VkAttachmentReference2 structure

• VUID-VkSubpassDescription2-pPreserveAttachments-parameter
If preserveAttachmentCount is not 0, pPreserveAttachments must be a valid pointer to an
array of preserveAttachmentCount uint32_t values

The VkSubpassDescriptionDepthStencilResolve structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSubpassDescriptionDepthStencilResolve {
 VkStructureType sType;
 const void* pNext;
 VkResolveModeFlagBits depthResolveMode;
 VkResolveModeFlagBits stencilResolveMode;
 const VkAttachmentReference2* pDepthStencilResolveAttachment;
} VkSubpassDescriptionDepthStencilResolve;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• depthResolveMode is a VkResolveModeFlagBits value describing the depth resolve mode.

• stencilResolveMode is a VkResolveModeFlagBits value describing the stencil resolve mode.

• pDepthStencilResolveAttachment is NULL or a pointer to a VkAttachmentReference2 structure
defining the depth/stencil resolve attachment for this subpass and its layout.

If the pNext chain of VkSubpassDescription2 includes a VkSubpassDescriptionDepthStencilResolve
structure, then that structure describes multisample resolve operations for the depth/stencil
attachment in a subpass. If this structure is not included in the pNext chain of
VkSubpassDescription2, or if it is and either pDepthStencilResolveAttachment is NULL or its
attachment index is VK_ATTACHMENT_UNUSED, it indicates that no depth/stencil resolve attachment will
be used in the subpass.

Valid Usage

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03177
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, pDepthStencilAttachment must not be NULL or have the value
VK_ATTACHMENT_UNUSED

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03179
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, pDepthStencilAttachment must not have a sample count of
VK_SAMPLE_COUNT_1_BIT

326

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03180
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, pDepthStencilResolveAttachment must have a sample count of
VK_SAMPLE_COUNT_1_BIT

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-02651
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED then it must have an image format whose potential format features
contain VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03181
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED and VkFormat of pDepthStencilResolveAttachment has a depth
component, then the VkFormat of pDepthStencilAttachment must have a depth component
with the same number of bits and numeric format

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03182
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, and VkFormat of pDepthStencilResolveAttachment has a stencil
component, then the VkFormat of pDepthStencilAttachment must have a stencil
component with the same number of bits and numeric format

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03178
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, depthResolveMode and stencilResolveMode must not both be
VK_RESOLVE_MODE_NONE

• VUID-VkSubpassDescriptionDepthStencilResolve-depthResolveMode-03183
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED and the VkFormat of pDepthStencilResolveAttachment has a depth
component, then the value of depthResolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedDepthResolveModes or
VK_RESOLVE_MODE_NONE

• VUID-VkSubpassDescriptionDepthStencilResolve-stencilResolveMode-03184
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED and the VkFormat of pDepthStencilResolveAttachment has a stencil
component, then the value of stencilResolveMode must be one of the bits set in
VkPhysicalDeviceDepthStencilResolveProperties::supportedStencilResolveModes or
VK_RESOLVE_MODE_NONE

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03185
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, the VkFormat of pDepthStencilResolveAttachment has both depth and
stencil components, VkPhysicalDeviceDepthStencilResolveProperties::independentResolve
is VK_FALSE, and VkPhysicalDeviceDepthStencilResolveProperties::independentResolveNone
is VK_FALSE, then the values of depthResolveMode and stencilResolveMode must be identical

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-03186
If pDepthStencilResolveAttachment is not NULL and does not have the value
VK_ATTACHMENT_UNUSED, the VkFormat of pDepthStencilResolveAttachment has both depth and
stencil components, VkPhysicalDeviceDepthStencilResolveProperties::independentResolve
is VK_FALSE and VkPhysicalDeviceDepthStencilResolveProperties::independentResolveNone

327

is VK_TRUE, then the values of depthResolveMode and stencilResolveMode must be identical
or one of them must be VK_RESOLVE_MODE_NONE

Valid Usage (Implicit)

• VUID-VkSubpassDescriptionDepthStencilResolve-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE

• VUID-VkSubpassDescriptionDepthStencilResolve-pDepthStencilResolveAttachment-
parameter
If pDepthStencilResolveAttachment is not NULL, pDepthStencilResolveAttachment must be a
valid pointer to a valid VkAttachmentReference2 structure

The VkAttachmentReference2 structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkAttachmentReference2 {
 VkStructureType sType;
 const void* pNext;
 uint32_t attachment;
 VkImageLayout layout;
 VkImageAspectFlags aspectMask;
} VkAttachmentReference2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachment is either an integer value identifying an attachment at the corresponding index in
VkRenderPassCreateInfo2::pAttachments, or VK_ATTACHMENT_UNUSED to signify that this attachment
is not used.

• layout is a VkImageLayout value specifying the layout the attachment uses during the subpass.

• aspectMask is a mask of which aspect(s) can be accessed within the specified subpass as an input
attachment.

Parameters defined by this structure with the same name as those in VkAttachmentReference have
the identical effect to those parameters.

aspectMask is ignored when this structure is used to describe anything other than an input
attachment reference.

If the separateDepthStencilLayouts feature is enabled, and attachment has a depth/stencil format,
layout can be set to a layout that only specifies the layout of the depth aspect.

If layout only specifies the layout of the depth aspect of the attachment, the layout of the stencil
aspect is specified by the stencilLayout member of a VkAttachmentReferenceStencilLayout
structure included in the pNext chain. Otherwise, layout describes the layout for all relevant image
aspects.

328

Valid Usage

• VUID-VkAttachmentReference2-layout-03077
If attachment is not VK_ATTACHMENT_UNUSED, layout must not be VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_PREINITIALIZED, or VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

• VUID-VkAttachmentReference2-separateDepthStencilLayouts-03313
If the separateDepthStencilLayouts feature is not enabled, and attachment is not
VK_ATTACHMENT_UNUSED, layout must not be VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL,

Valid Usage (Implicit)

• VUID-VkAttachmentReference2-sType-sType
sType must be VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2

• VUID-VkAttachmentReference2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkAttachmentReferenceStencilLayout

• VUID-VkAttachmentReference2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkAttachmentReference2-layout-parameter
layout must be a valid VkImageLayout value

The VkAttachmentReferenceStencilLayout structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkAttachmentReferenceStencilLayout {
 VkStructureType sType;
 void* pNext;
 VkImageLayout stencilLayout;
} VkAttachmentReferenceStencilLayout;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stencilLayout is a VkImageLayout value specifying the layout the stencil aspect of the
attachment uses during the subpass.

Valid Usage

• VUID-VkAttachmentReferenceStencilLayout-stencilLayout-03318
stencilLayout must not be VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,

329

VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

Valid Usage (Implicit)

• VUID-VkAttachmentReferenceStencilLayout-sType-sType
sType must be VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT

• VUID-VkAttachmentReferenceStencilLayout-stencilLayout-parameter
stencilLayout must be a valid VkImageLayout value

The VkSubpassDependency2 structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSubpassDependency2 {
 VkStructureType sType;
 const void* pNext;
 uint32_t srcSubpass;
 uint32_t dstSubpass;
 VkPipelineStageFlags srcStageMask;
 VkPipelineStageFlags dstStageMask;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
 VkDependencyFlags dependencyFlags;
 int32_t viewOffset;
} VkSubpassDependency2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcSubpass is the subpass index of the first subpass in the dependency, or VK_SUBPASS_EXTERNAL.

• dstSubpass is the subpass index of the second subpass in the dependency, or
VK_SUBPASS_EXTERNAL.

• srcStageMask is a bitmask of VkPipelineStageFlagBits specifying the source stage mask.

• dstStageMask is a bitmask of VkPipelineStageFlagBits specifying the destination stage mask

• srcAccessMask is a bitmask of VkAccessFlagBits specifying a source access mask.

• dstAccessMask is a bitmask of VkAccessFlagBits specifying a destination access mask.

• dependencyFlags is a bitmask of VkDependencyFlagBits.

• viewOffset controls which views in the source subpass the views in the destination subpass
depend on.

330

Parameters defined by this structure with the same name as those in VkSubpassDependency have
the identical effect to those parameters.

viewOffset has the same effect for the described subpass dependency as
VkRenderPassMultiviewCreateInfo::pViewOffsets has on each corresponding subpass dependency.

If a VkMemoryBarrier2 is included in the pNext chain, srcStageMask, dstStageMask, srcAccessMask,
and dstAccessMask parameters are ignored. The synchronization and access scopes instead are
defined by the parameters of VkMemoryBarrier2.

Valid Usage

• VUID-VkSubpassDependency2-srcStageMask-04090
If the geometryShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-VkSubpassDependency2-srcStageMask-04091
If the tessellationShader feature is not enabled, srcStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubpassDependency2-srcStageMask-03937
If the synchronization2 feature is not enabled, srcStageMask must not be 0

• VUID-VkSubpassDependency2-dstStageMask-04090
If the geometryShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-VkSubpassDependency2-dstStageMask-04091
If the tessellationShader feature is not enabled, dstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-VkSubpassDependency2-dstStageMask-03937
If the synchronization2 feature is not enabled, dstStageMask must not be 0

• VUID-VkSubpassDependency2-srcSubpass-03084
srcSubpass must be less than or equal to dstSubpass, unless one of them is
VK_SUBPASS_EXTERNAL, to avoid cyclic dependencies and ensure a valid execution order

• VUID-VkSubpassDependency2-srcSubpass-03085
srcSubpass and dstSubpass must not both be equal to VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency2-srcSubpass-06810
If srcSubpass is equal to dstSubpass and srcStageMask includes a framebuffer-space stage,
dstStageMask must only contain framebuffer-space stages

• VUID-VkSubpassDependency2-srcAccessMask-03088
Any access flag included in srcAccessMask must be supported by one of the pipeline stages
in srcStageMask, as specified in the table of supported access types

• VUID-VkSubpassDependency2-dstAccessMask-03089
Any access flag included in dstAccessMask must be supported by one of the pipeline stages
in dstStageMask, as specified in the table of supported access types

331

• VUID-VkSubpassDependency2-dependencyFlags-03090
If dependencyFlags includes VK_DEPENDENCY_VIEW_LOCAL_BIT, srcSubpass must not be equal to
VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency2-dependencyFlags-03091
If dependencyFlags includes VK_DEPENDENCY_VIEW_LOCAL_BIT, dstSubpass must not be equal to
VK_SUBPASS_EXTERNAL

• VUID-VkSubpassDependency2-srcSubpass-02245
If srcSubpass equals dstSubpass, and srcStageMask and dstStageMask both include a
framebuffer-space stage, then dependencyFlags must include VK_DEPENDENCY_BY_REGION_BIT

• VUID-VkSubpassDependency2-viewOffset-02530
If viewOffset is not equal to 0, srcSubpass must not be equal to dstSubpass

• VUID-VkSubpassDependency2-dependencyFlags-03092
If dependencyFlags does not include VK_DEPENDENCY_VIEW_LOCAL_BIT, viewOffset must be 0

Valid Usage (Implicit)

• VUID-VkSubpassDependency2-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2

• VUID-VkSubpassDependency2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkMemoryBarrier2

• VUID-VkSubpassDependency2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSubpassDependency2-srcStageMask-parameter
srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-VkSubpassDependency2-dstStageMask-parameter
dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• VUID-VkSubpassDependency2-srcAccessMask-parameter
srcAccessMask must be a valid combination of VkAccessFlagBits values

• VUID-VkSubpassDependency2-dstAccessMask-parameter
dstAccessMask must be a valid combination of VkAccessFlagBits values

• VUID-VkSubpassDependency2-dependencyFlags-parameter
dependencyFlags must be a valid combination of VkDependencyFlagBits values

To destroy a render pass, call:

// Provided by VK_VERSION_1_0
void vkDestroyRenderPass(
 VkDevice device,
 VkRenderPass renderPass,
 const VkAllocationCallbacks* pAllocator);

332

• device is the logical device that destroys the render pass.

• renderPass is the handle of the render pass to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyRenderPass-renderPass-00873
All submitted commands that refer to renderPass must have completed execution

• VUID-vkDestroyRenderPass-renderPass-00874
If VkAllocationCallbacks were provided when renderPass was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyRenderPass-renderPass-00875
If no VkAllocationCallbacks were provided when renderPass was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyRenderPass-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyRenderPass-renderPass-parameter
If renderPass is not VK_NULL_HANDLE, renderPass must be a valid VkRenderPass handle

• VUID-vkDestroyRenderPass-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyRenderPass-renderPass-parent
If renderPass is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to renderPass must be externally synchronized

8.3. Render Pass Compatibility
Framebuffers and graphics pipelines are created based on a specific render pass object. They must
only be used with that render pass object, or one compatible with it.

Two attachment references are compatible if they have matching format and sample count, or are
both VK_ATTACHMENT_UNUSED or the pointer that would contain the reference is NULL.

Two arrays of attachment references are compatible if all corresponding pairs of attachments are
compatible. If the arrays are of different lengths, attachment references not present in the smaller

333

array are treated as VK_ATTACHMENT_UNUSED.

Two render passes are compatible if their corresponding color, input, resolve, and depth/stencil
attachment references are compatible and if they are otherwise identical except for:

• Initial and final image layout in attachment descriptions

• Load and store operations in attachment descriptions

• Image layout in attachment references

As an additional special case, if two render passes have a single subpass, the resolve attachment
reference compatibility requirements are ignored.

A framebuffer is compatible with a render pass if it was created using the same render pass or a
compatible render pass.

8.4. Framebuffers
Render passes operate in conjunction with framebuffers. Framebuffers represent a collection of
specific memory attachments that a render pass instance uses.

Framebuffers are represented by VkFramebuffer handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFramebuffer)

To create a framebuffer, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateFramebuffer(
 VkDevice device,
 const VkFramebufferCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFramebuffer* pFramebuffer);

• device is the logical device that creates the framebuffer.

• pCreateInfo is a pointer to a VkFramebufferCreateInfo structure describing additional
information about framebuffer creation.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFramebuffer is a pointer to a VkFramebuffer handle in which the resulting framebuffer object is
returned.

Valid Usage

• VUID-vkCreateFramebuffer-pCreateInfo-02777
If pCreateInfo->flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, and

334

attachmentCount is not 0, each element of pCreateInfo->pAttachments must have been
created on device

Valid Usage (Implicit)

• VUID-vkCreateFramebuffer-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateFramebuffer-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkFramebufferCreateInfo structure

• VUID-vkCreateFramebuffer-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateFramebuffer-pFramebuffer-parameter
pFramebuffer must be a valid pointer to a VkFramebuffer handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFramebufferCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkFramebufferCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkFramebufferCreateFlags flags;
 VkRenderPass renderPass;
 uint32_t attachmentCount;
 const VkImageView* pAttachments;
 uint32_t width;
 uint32_t height;
 uint32_t layers;
} VkFramebufferCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkFramebufferCreateFlagBits

335

• renderPass is a render pass defining what render passes the framebuffer will be compatible
with. See Render Pass Compatibility for details.

• attachmentCount is the number of attachments.

• pAttachments is a pointer to an array of VkImageView handles, each of which will be used as the
corresponding attachment in a render pass instance. If flags includes
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, this parameter is ignored.

• width, height and layers define the dimensions of the framebuffer. If the render pass uses
multiview, then layers must be one and each attachment requires a number of layers that is
greater than the maximum bit index set in the view mask in the subpasses in which it is used.

It is legal for a subpass to use no color or depth/stencil attachments, either because it has no
attachment references or because all of them are VK_ATTACHMENT_UNUSED. This kind of subpass can
use shader side effects such as image stores and atomics to produce an output. In this case, the
subpass continues to use the width, height, and layers of the framebuffer to define the dimensions
of the rendering area, and the rasterizationSamples from each pipeline’s
VkPipelineMultisampleStateCreateInfo to define the number of samples used in rasterization;
however, if VkPhysicalDeviceFeatures::variableMultisampleRate is VK_FALSE, then all pipelines to be
bound with the subpass must have the same value for VkPipelineMultisampleStateCreateInfo
::rasterizationSamples. In all such cases, rasterizationSamples must be a valid
VkSampleCountFlagBits value that is set in VkPhysicalDeviceLimits
::framebufferNoAttachmentsSampleCounts.

Valid Usage

• VUID-VkFramebufferCreateInfo-attachmentCount-00876
attachmentCount must be equal to the attachment count specified in renderPass

• VUID-VkFramebufferCreateInfo-flags-02778
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT and attachmentCount is not
0, pAttachments must be a valid pointer to an array of attachmentCount valid VkImageView
handles

• VUID-VkFramebufferCreateInfo-pAttachments-00877
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as a color attachment or resolve attachment by renderPass must
have been created with a usage value including VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-pAttachments-02633
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as a depth/stencil attachment by renderPass must have been
created with a usage value including VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-pAttachments-02634
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as a depth/stencil resolve attachment by renderPass must have
been created with a usage value including VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-pAttachments-00879
If renderpass is not VK_NULL_HANDLE, flags does not include

336

VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of pAttachments that is used as an
input attachment by renderPass must have been created with a usage value including
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-pAttachments-00880
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must have been created with a VkFormat value that matches the VkFormat
specified by the corresponding VkAttachmentDescription in renderPass

• VUID-VkFramebufferCreateInfo-pAttachments-00881
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must have been created with a samples value that matches the samples value
specified by the corresponding VkAttachmentDescription in renderPass

• VUID-VkFramebufferCreateInfo-flags-04533
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as an input, color, resolve, or depth/stencil attachment by
renderPass must have been created with a VkImageCreateInfo::extent.width greater than
or equal to width

• VUID-VkFramebufferCreateInfo-flags-04534
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as an input, color, resolve, or depth/stencil attachment by
renderPass must have been created with a VkImageCreateInfo::extent.height greater than
or equal to height

• VUID-VkFramebufferCreateInfo-flags-04535
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is used as an input, color, resolve, or depth/stencil attachment by
renderPass must have been created with a VkImageViewCreateInfo
::subresourceRange.layerCount greater than or equal to layers

• VUID-VkFramebufferCreateInfo-renderPass-04536
If renderPass was specified with non-zero view masks, each element of pAttachments that is
used as an input, color, resolve, or depth/stencil attachment by renderPass must have a
layerCount greater than the index of the most significant bit set in any of those view masks

• VUID-VkFramebufferCreateInfo-pAttachments-00883
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must only specify a single mip level

• VUID-VkFramebufferCreateInfo-pAttachments-00884
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must have been created with the identity swizzle

• VUID-VkFramebufferCreateInfo-width-00885
width must be greater than 0

• VUID-VkFramebufferCreateInfo-width-00886
width must be less than or equal to maxFramebufferWidth

• VUID-VkFramebufferCreateInfo-height-00887
height must be greater than 0

• VUID-VkFramebufferCreateInfo-height-00888

337

height must be less than or equal to maxFramebufferHeight

• VUID-VkFramebufferCreateInfo-layers-00889
layers must be greater than 0

• VUID-VkFramebufferCreateInfo-layers-00890
layers must be less than or equal to maxFramebufferLayers

• VUID-VkFramebufferCreateInfo-renderPass-02531
If renderPass was specified with non-zero view masks, layers must be 1

• VUID-VkFramebufferCreateInfo-pAttachments-00891
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments that is a 2D or 2D array image view taken from a 3D image must not be a
depth/stencil format

• VUID-VkFramebufferCreateInfo-flags-03189
If the imagelessFramebuffer feature is not enabled, flags must not include
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT

• VUID-VkFramebufferCreateInfo-flags-03190
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the pNext chain must include a
VkFramebufferAttachmentsCreateInfo structure

• VUID-VkFramebufferCreateInfo-flags-03191
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the attachmentImageInfoCount
member of a VkFramebufferAttachmentsCreateInfo structure in the pNext chain must be
equal to either zero or attachmentCount

• VUID-VkFramebufferCreateInfo-flags-04541
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the width member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure in the pNext chain that is used as an input, color, resolve or depth/stencil
attachment in renderPass must be greater than or equal to width

• VUID-VkFramebufferCreateInfo-flags-04542
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the height member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure in the pNext chain that is used as an input, color, resolve or depth/stencil
attachment in renderPass must be greater than or equal to height

• VUID-VkFramebufferCreateInfo-renderPass-03198
If multiview is enabled for renderPass and flags includes
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the layerCount member of any element of the
pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo structure
included in the pNext chain used as an input, color, resolve, or depth/stencil attachment in
renderPass must be greater than the maximum bit index set in the view mask in the
subpasses in which it is used in renderPass

• VUID-VkFramebufferCreateInfo-renderPass-04546
If multiview is not enabled for renderPass and flags includes
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the layerCount member of any element of the
pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo structure
included in the pNext chain used as an input, color, resolve, or depth/stencil attachment in

338

renderPass must be greater than or equal to layers

• VUID-VkFramebufferCreateInfo-flags-03201
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the usage member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure included in the pNext chain that refers to an attachment used as a color
attachment or resolve attachment by renderPass must include
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-flags-03202
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the usage member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure included in the pNext chain that refers to an attachment used as a depth/stencil
attachment by renderPass must include VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-flags-03204
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the usage member of any element
of the pAttachmentImageInfos member of a VkFramebufferAttachmentsCreateInfo
structure included in the pNext chain that refers to an attachment used as an input
attachment by renderPass must include VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkFramebufferCreateInfo-flags-03205
If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, at least one element of the
pViewFormats member of any element of the pAttachmentImageInfos member of a
VkFramebufferAttachmentsCreateInfo structure included in the pNext chain must be
equal to the corresponding value of VkAttachmentDescription::format used to create
renderPass

• VUID-VkFramebufferCreateInfo-flags-04113
If flags does not include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of
pAttachments must have been created with VkImageViewCreateInfo::viewType not equal to
VK_IMAGE_VIEW_TYPE_3D

Valid Usage (Implicit)

• VUID-VkFramebufferCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO

• VUID-VkFramebufferCreateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkFramebufferAttachmentsCreateInfo

• VUID-VkFramebufferCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkFramebufferCreateInfo-flags-parameter
flags must be a valid combination of VkFramebufferCreateFlagBits values

• VUID-VkFramebufferCreateInfo-renderPass-parameter
renderPass must be a valid VkRenderPass handle

• VUID-VkFramebufferCreateInfo-commonparent
Both of renderPass, and the elements of pAttachments that are valid handles of non-ignored

339

parameters must have been created, allocated, or retrieved from the same VkDevice

The VkFramebufferAttachmentsCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkFramebufferAttachmentsCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t attachmentImageInfoCount;
 const VkFramebufferAttachmentImageInfo* pAttachmentImageInfos;
} VkFramebufferAttachmentsCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachmentImageInfoCount is the number of attachments being described.

• pAttachmentImageInfos is a pointer to an array of VkFramebufferAttachmentImageInfo
structures, each structure describing a number of parameters of the corresponding attachment
in a render pass instance.

Valid Usage (Implicit)

• VUID-VkFramebufferAttachmentsCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO

• VUID-VkFramebufferAttachmentsCreateInfo-pAttachmentImageInfos-parameter
If attachmentImageInfoCount is not 0, pAttachmentImageInfos must be a valid pointer to an
array of attachmentImageInfoCount valid VkFramebufferAttachmentImageInfo structures

The VkFramebufferAttachmentImageInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkFramebufferAttachmentImageInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageCreateFlags flags;
 VkImageUsageFlags usage;
 uint32_t width;
 uint32_t height;
 uint32_t layerCount;
 uint32_t viewFormatCount;
 const VkFormat* pViewFormats;
} VkFramebufferAttachmentImageInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

340

• flags is a bitmask of VkImageCreateFlagBits, matching the value of VkImageCreateInfo::flags
used to create an image that will be used with this framebuffer.

• usage is a bitmask of VkImageUsageFlagBits, matching the value of VkImageCreateInfo::usage
used to create an image used with this framebuffer.

• width is the width of the image view used for rendering.

• height is the height of the image view used for rendering.

• layerCount is the number of array layers of the image view used for rendering.

• viewFormatCount is the number of entries in the pViewFormats array, matching the value of
VkImageFormatListCreateInfo::viewFormatCount used to create an image used with this
framebuffer.

• pViewFormats is a pointer to an array of VkFormat values specifying all of the formats which can
be used when creating views of the image, matching the value of
VkImageFormatListCreateInfo::pViewFormats used to create an image used with this
framebuffer.

Images that can be used with the framebuffer when beginning a render pass, as specified by
VkRenderPassAttachmentBeginInfo, must be created with parameters that are identical to those
specified here.

Valid Usage

• VUID-VkFramebufferAttachmentImageInfo-viewFormatCount-09536
If viewFormatCount is not 0, each element of pViewFormats must not be VK_FORMAT_UNDEFINED

Valid Usage (Implicit)

• VUID-VkFramebufferAttachmentImageInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO

• VUID-VkFramebufferAttachmentImageInfo-pNext-pNext
pNext must be NULL

• VUID-VkFramebufferAttachmentImageInfo-flags-parameter
flags must be a valid combination of VkImageCreateFlagBits values

• VUID-VkFramebufferAttachmentImageInfo-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkFramebufferAttachmentImageInfo-usage-requiredbitmask
usage must not be 0

• VUID-VkFramebufferAttachmentImageInfo-pViewFormats-parameter
If viewFormatCount is not 0, pViewFormats must be a valid pointer to an array of
viewFormatCount valid VkFormat values

Bits which can be set in VkFramebufferCreateInfo::flags, specifying options for framebuffers, are:

341

// Provided by VK_VERSION_1_0
typedef enum VkFramebufferCreateFlagBits {
 // Provided by VK_VERSION_1_2
 VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT = 0x00000001,
} VkFramebufferCreateFlagBits;

• VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT specifies that image views are not specified, and only
attachment compatibility information will be provided via a
VkFramebufferAttachmentImageInfo structure.

// Provided by VK_VERSION_1_0
typedef VkFlags VkFramebufferCreateFlags;

VkFramebufferCreateFlags is a bitmask type for setting a mask of zero or more
VkFramebufferCreateFlagBits.

To destroy a framebuffer, call:

// Provided by VK_VERSION_1_0
void vkDestroyFramebuffer(
 VkDevice device,
 VkFramebuffer framebuffer,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the framebuffer.

• framebuffer is the handle of the framebuffer to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyFramebuffer-framebuffer-00892
All submitted commands that refer to framebuffer must have completed execution

• VUID-vkDestroyFramebuffer-framebuffer-00893
If VkAllocationCallbacks were provided when framebuffer was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyFramebuffer-framebuffer-00894
If no VkAllocationCallbacks were provided when framebuffer was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyFramebuffer-device-parameter
device must be a valid VkDevice handle

342

• VUID-vkDestroyFramebuffer-framebuffer-parameter
If framebuffer is not VK_NULL_HANDLE, framebuffer must be a valid VkFramebuffer
handle

• VUID-vkDestroyFramebuffer-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyFramebuffer-framebuffer-parent
If framebuffer is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to framebuffer must be externally synchronized

8.5. Render Pass Load Operations
Render pass load operations define the initial values of an attachment during a render pass
instance.

Load operations for attachments with a depth/stencil format execute in the
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT pipeline stage. Load operations for attachments with a
color format execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage. The load
operation for each sample in an attachment happens-before any recorded command which
accesses the sample in that render pass instance via that attachment or an alias.

Note

Because load operations always happen first, external synchronization with
attachment access only needs to synchronize the load operations with previous
commands; not the operations within the render pass instance.

Load operations only update values within the defined render area for the render pass instance.
However, any writes performed by a load operation (as defined by its access masks) to a given
attachment may read and write back any memory locations within the image subresource bound
for that attachment. For depth/stencil images, writes to one aspect may also result in read-modify-
write operations for the other aspect.

Note

As entire subresources could be accessed by load operations, applications cannot
safely access values outside of the render area during a render pass instance when
a load operation that modifies values is used.

Load operations that can be used for a render pass are:

// Provided by VK_VERSION_1_0

343

typedef enum VkAttachmentLoadOp {
 VK_ATTACHMENT_LOAD_OP_LOAD = 0,
 VK_ATTACHMENT_LOAD_OP_CLEAR = 1,
 VK_ATTACHMENT_LOAD_OP_DONT_CARE = 2,
} VkAttachmentLoadOp;

• VK_ATTACHMENT_LOAD_OP_LOAD specifies that the previous contents of the image within the render
area will be preserved as the initial values. For attachments with a depth/stencil format, this
uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT. For attachments with a color
format, this uses the access type VK_ACCESS_COLOR_ATTACHMENT_READ_BIT.

• VK_ATTACHMENT_LOAD_OP_CLEAR specifies that the contents within the render area will be cleared to
a uniform value, which is specified when a render pass instance is begun. For attachments with
a depth/stencil format, this uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT.
For attachments with a color format, this uses the access type
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• VK_ATTACHMENT_LOAD_OP_DONT_CARE specifies that the previous contents within the area need not
be preserved; the contents of the attachment will be undefined inside the render area. For
attachments with a depth/stencil format, this uses the access type
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a color format, this uses
the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

During a render pass instance, input and color attachments with color formats that have a
component size of 8, 16, or 32 bits must be represented in the attachment’s format throughout the
instance. Attachments with other floating- or fixed-point color formats, or with depth components
may be represented in a format with a precision higher than the attachment format, but must be
represented with the same range. When such a component is loaded via the loadOp, it will be
converted into an implementation-dependent format used by the render pass. Such components
must be converted from the render pass format, to the format of the attachment, before they are
resolved or stored at the end of a render pass instance via storeOp. Conversions occur as described
in Numeric Representation and Computation and Fixed-Point Data Conversions.

8.6. Render Pass Store Operations
Render pass store operations define how values written to an attachment during a render pass
instance are stored to memory.

Store operations for attachments with a depth/stencil format execute in the
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stage. Store operations for attachments with a
color format execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage. The store
operation for each sample in an attachment happens-after any recorded command which accesses
the sample via that attachment or an alias.

Note

Because store operations always happen after other accesses in a render pass
instance, external synchronization with attachment access in an earlier render
pass only needs to synchronize with the store operations; not the operations
within the render pass instance. This does not apply when using

344

VK_ATTACHMENT_STORE_OP_NONE.

Store operations only update values within the defined render area for the render pass instance.
However, any writes performed by a store operation (as defined by its access masks) to a given
attachment may read and write back any memory locations within the image subresource bound
for that attachment. For depth/stencil images writes to one aspect may also result in read-modify-
write operations for the other aspect.

Note

As entire subresources could be accessed by store operations, applications cannot
safely access values outside of the render area via aliased resources during a
render pass instance when a store operation that modifies values is used.

Possible values of VkAttachmentDescription::storeOp and stencilStoreOp, specifying how the
contents of the attachment are treated, are:

// Provided by VK_VERSION_1_0
typedef enum VkAttachmentStoreOp {
 VK_ATTACHMENT_STORE_OP_STORE = 0,
 VK_ATTACHMENT_STORE_OP_DONT_CARE = 1,
 // Provided by VK_VERSION_1_3
 VK_ATTACHMENT_STORE_OP_NONE = 1000301000,
} VkAttachmentStoreOp;

• VK_ATTACHMENT_STORE_OP_STORE specifies the contents generated during the render pass and
within the render area are written to memory. For attachments with a depth/stencil format, this
uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a
color format, this uses the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• VK_ATTACHMENT_STORE_OP_DONT_CARE specifies the contents within the render area are not needed
after rendering, and may be discarded; the contents of the attachment will be undefined inside
the render area. For attachments with a depth/stencil format, this uses the access type
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a color format, this uses
the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• VK_ATTACHMENT_STORE_OP_NONE specifies the contents within the render area are not accessed by
the store operation as long as no values are written to the attachment during the render pass. If
values are written during the render pass, this behaves identically to
VK_ATTACHMENT_STORE_OP_DONT_CARE and with matching access semantics.

Note

VK_ATTACHMENT_STORE_OP_DONT_CARE can cause contents generated during previous
render passes to be discarded before reaching memory, even if no write to the
attachment occurs during the current render pass.

345

8.7. Render Pass Multisample Resolve Operations
Render pass multisample resolve operations combine sample values from a single pixel in a
multisample attachment and store the result to the corresponding pixel in a single sample
attachment.

Multisample resolve operations for attachments execute in the
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage. A final resolve operation for all
pixels in the render area happens-after any recorded command which writes a pixel via the
multisample attachment to be resolved or an explicit alias of it in the subpass that it is specified.
Any single sample attachment specified for use in a multisample resolve operation may have its
contents modified at any point once rendering begins for the render pass instance. Reads from the
multisample attachment can be synchronized with VK_ACCESS_COLOR_ATTACHMENT_READ_BIT. Access to
the single sample attachment can be synchronized with VK_ACCESS_COLOR_ATTACHMENT_READ_BIT and
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. These pipeline stage and access types are used whether the
attachments are color or depth/stencil attachments.

When using render pass objects, a subpass dependency specified with the above pipeline stages
and access flags will ensure synchronization with multisample resolve operations for any
attachments that were last accessed by that subpass. This allows later subpasses to read resolved
values as input attachments.

Resolve operations only update values within the defined render area for the render pass instance.
However, any writes performed by a resolve operation (as defined by its access masks) to a given
attachment may read and write back any memory locations within the image subresource bound
for that attachment. For depth/stencil images writes to one aspect may also result in read-modify-
write operations for the other aspect.

Note

As entire subresources could be accessed by multisample resolve operations,
applications cannot safely access values outside of the render area via aliased
resources during a render pass instance when a multisample resolve operation is
performed.

Multisample values in a multisample attachment are combined according to the resolve mode used:

// Provided by VK_VERSION_1_2
typedef enum VkResolveModeFlagBits {
 VK_RESOLVE_MODE_NONE = 0,
 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT = 0x00000001,
 VK_RESOLVE_MODE_AVERAGE_BIT = 0x00000002,
 VK_RESOLVE_MODE_MIN_BIT = 0x00000004,
 VK_RESOLVE_MODE_MAX_BIT = 0x00000008,
} VkResolveModeFlagBits;

• VK_RESOLVE_MODE_NONE indicates that no resolve operation is done.

• VK_RESOLVE_MODE_SAMPLE_ZERO_BIT indicates that result of the resolve operation is equal to the

346

value of sample 0.

• VK_RESOLVE_MODE_AVERAGE_BIT indicates that result of the resolve operation is the average of the
sample values.

• VK_RESOLVE_MODE_MIN_BIT indicates that result of the resolve operation is the minimum of the
sample values.

• VK_RESOLVE_MODE_MAX_BIT indicates that result of the resolve operation is the maximum of the
sample values.

If no resolve mode is otherwise specified, VK_RESOLVE_MODE_AVERAGE_BIT is used.

// Provided by VK_VERSION_1_2
typedef VkFlags VkResolveModeFlags;

VkResolveModeFlags is a bitmask type for setting a mask of zero or more VkResolveModeFlagBits.

8.8. Render Pass Commands
An application records the commands for a render pass instance one subpass at a time, by
beginning a render pass instance, iterating over the subpasses to record commands for that
subpass, and then ending the render pass instance.

To begin a render pass instance, call:

// Provided by VK_VERSION_1_0
void vkCmdBeginRenderPass(
 VkCommandBuffer commandBuffer,
 const VkRenderPassBeginInfo* pRenderPassBegin,
 VkSubpassContents contents);

• commandBuffer is the command buffer in which to record the command.

• pRenderPassBegin is a pointer to a VkRenderPassBeginInfo structure specifying the render pass
to begin an instance of, and the framebuffer the instance uses.

• contents is a VkSubpassContents value specifying how the commands in the first subpass will be
provided.

After beginning a render pass instance, the command buffer is ready to record the commands for
the first subpass of that render pass.

Valid Usage

• VUID-vkCmdBeginRenderPass-initialLayout-00895
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is

347

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then the corresponding attachment image view
of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-01758
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment
image view of the framebuffer specified in the framebuffer member of pRenderPassBegin
must have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-02842
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment image
view of the framebuffer specified in the framebuffer member of pRenderPassBegin must
have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-stencilInitialLayout-02843
If any of the stencilInitialLayout or stencilFinalLayout member of the
VkAttachmentDescriptionStencilLayout structures or the stencilLayout member of the
VkAttachmentReferenceStencilLayout structures specified when creating the render pass
specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment image
view of the framebuffer specified in the framebuffer member of pRenderPassBegin must
have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-00897
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then the corresponding attachment image view
of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including VK_IMAGE_USAGE_SAMPLED_BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-00898
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is

348

VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then the corresponding attachment image view of
the framebuffer specified in the framebuffer member of pRenderPassBegin must have been
created with a usage value including VK_IMAGE_USAGE_TRANSFER_SRC_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-00899
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then the corresponding attachment image view of
the framebuffer specified in the framebuffer member of pRenderPassBegin must have been
created with a usage value including VK_IMAGE_USAGE_TRANSFER_DST_BIT

• VUID-vkCmdBeginRenderPass-initialLayout-00900
If the initialLayout member of any of the VkAttachmentDescription structures specified
when creating the render pass specified in the renderPass member of pRenderPassBegin is
not VK_IMAGE_LAYOUT_UNDEFINED, then each such initialLayout must be equal to the current
layout of the corresponding attachment image subresource of the framebuffer specified
in the framebuffer member of pRenderPassBegin

• VUID-vkCmdBeginRenderPass-srcStageMask-06451
The srcStageMask members of any element of the pDependencies member of
VkRenderPassCreateInfo used to create renderPass must be supported by the capabilities
of the queue family identified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo used to create the command pool which commandBuffer was
allocated from

• VUID-vkCmdBeginRenderPass-dstStageMask-06452
The dstStageMask members of any element of the pDependencies member of
VkRenderPassCreateInfo used to create renderPass must be supported by the capabilities
of the queue family identified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo used to create the command pool which commandBuffer was
allocated from

• VUID-vkCmdBeginRenderPass-framebuffer-02532
For any attachment in framebuffer that is used by renderPass and is bound to memory
locations that are also bound to another attachment used by renderPass, and if at least one
of those uses causes either attachment to be written to, both attachments must have had
the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT set

• VUID-vkCmdBeginRenderPass-framebuffer-09045
If any attachments specified in framebuffer are used by renderPass and are bound to
overlapping memory locations, there must be only one that is used as a color attachment,
depth/stencil, or resolve attachment in any subpass

Valid Usage (Implicit)

• VUID-vkCmdBeginRenderPass-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginRenderPass-pRenderPassBegin-parameter
pRenderPassBegin must be a valid pointer to a valid VkRenderPassBeginInfo structure

349

• VUID-vkCmdBeginRenderPass-contents-parameter
contents must be a valid VkSubpassContents value

• VUID-vkCmdBeginRenderPass-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginRenderPass-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginRenderPass-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBeginRenderPass-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary Outside Graphics Action
State
Synchronization

Alternatively to begin a render pass, call:

// Provided by VK_VERSION_1_2
void vkCmdBeginRenderPass2(
 VkCommandBuffer commandBuffer,
 const VkRenderPassBeginInfo* pRenderPassBegin,
 const VkSubpassBeginInfo* pSubpassBeginInfo);

• commandBuffer is the command buffer in which to record the command.

• pRenderPassBegin is a pointer to a VkRenderPassBeginInfo structure specifying the render pass
to begin an instance of, and the framebuffer the instance uses.

• pSubpassBeginInfo is a pointer to a VkSubpassBeginInfo structure containing information about
the subpass which is about to begin rendering.

After beginning a render pass instance, the command buffer is ready to record the commands for

350

the first subpass of that render pass.

Valid Usage

• VUID-vkCmdBeginRenderPass2-framebuffer-02779
Both the framebuffer and renderPass members of pRenderPassBegin must have been
created on the same VkDevice that commandBuffer was allocated on

• VUID-vkCmdBeginRenderPass2-initialLayout-03094
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then the corresponding attachment image view
of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-03096
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment
image view of the framebuffer specified in the framebuffer member of pRenderPassBegin
must have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-02844
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, or VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment image
view of the framebuffer specified in the framebuffer member of pRenderPassBegin must
have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass2-stencilInitialLayout-02845
If any of the stencilInitialLayout or stencilFinalLayout member of the
VkAttachmentDescriptionStencilLayout structures or the stencilLayout member of the
VkAttachmentReferenceStencilLayout structures specified when creating the render pass
specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL then the corresponding attachment image
view of the framebuffer specified in the framebuffer member of pRenderPassBegin must
have been created with a usage value including
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

351

• VUID-vkCmdBeginRenderPass2-initialLayout-03097
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then the corresponding attachment image view
of the framebuffer specified in the framebuffer member of pRenderPassBegin must have
been created with a usage value including VK_IMAGE_USAGE_SAMPLED_BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-03098
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then the corresponding attachment image view of
the framebuffer specified in the framebuffer member of pRenderPassBegin must have been
created with a usage value including VK_IMAGE_USAGE_TRANSFER_SRC_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-03099
If any of the initialLayout or finalLayout member of the VkAttachmentDescription
structures or the layout member of the VkAttachmentReference structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then the corresponding attachment image view of
the framebuffer specified in the framebuffer member of pRenderPassBegin must have been
created with a usage value including VK_IMAGE_USAGE_TRANSFER_DST_BIT

• VUID-vkCmdBeginRenderPass2-initialLayout-03100
If the initialLayout member of any of the VkAttachmentDescription structures specified
when creating the render pass specified in the renderPass member of pRenderPassBegin is
not VK_IMAGE_LAYOUT_UNDEFINED, then each such initialLayout must be equal to the current
layout of the corresponding attachment image subresource of the framebuffer specified
in the framebuffer member of pRenderPassBegin

• VUID-vkCmdBeginRenderPass2-srcStageMask-06453
The srcStageMask members of any element of the pDependencies member of
VkRenderPassCreateInfo used to create renderPass must be supported by the capabilities
of the queue family identified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo used to create the command pool which commandBuffer was
allocated from

• VUID-vkCmdBeginRenderPass2-dstStageMask-06454
The dstStageMask members of any element of the pDependencies member of
VkRenderPassCreateInfo used to create renderPass must be supported by the capabilities
of the queue family identified by the queueFamilyIndex member of the
VkCommandPoolCreateInfo used to create the command pool which commandBuffer was
allocated from

• VUID-vkCmdBeginRenderPass2-framebuffer-02533
For any attachment in framebuffer that is used by renderPass and is bound to memory
locations that are also bound to another attachment used by renderPass, and if at least one
of those uses causes either attachment to be written to, both attachments must have had
the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT set

352

• VUID-vkCmdBeginRenderPass2-framebuffer-09046
If any attachments specified in framebuffer are used by renderPass and are bound to
overlapping memory locations, there must be only one that is used as a color attachment,
depth/stencil, or resolve attachment in any subpass

Valid Usage (Implicit)

• VUID-vkCmdBeginRenderPass2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginRenderPass2-pRenderPassBegin-parameter
pRenderPassBegin must be a valid pointer to a valid VkRenderPassBeginInfo structure

• VUID-vkCmdBeginRenderPass2-pSubpassBeginInfo-parameter
pSubpassBeginInfo must be a valid pointer to a valid VkSubpassBeginInfo structure

• VUID-vkCmdBeginRenderPass2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginRenderPass2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBeginRenderPass2-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBeginRenderPass2-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary Outside Graphics Action
State
Synchronization

The VkRenderPassBeginInfo structure is defined as:

// Provided by VK_VERSION_1_0

353

typedef struct VkRenderPassBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderPass renderPass;
 VkFramebuffer framebuffer;
 VkRect2D renderArea;
 uint32_t clearValueCount;
 const VkClearValue* pClearValues;
} VkRenderPassBeginInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• renderPass is the render pass to begin an instance of.

• framebuffer is the framebuffer containing the attachments that are used with the render pass.

• renderArea is the render area that is affected by the render pass instance, and is described in
more detail below.

• clearValueCount is the number of elements in pClearValues.

• pClearValues is a pointer to an array of clearValueCount VkClearValue structures containing
clear values for each attachment, if the attachment uses a loadOp value of
VK_ATTACHMENT_LOAD_OP_CLEAR or if the attachment has a depth/stencil format and uses a
stencilLoadOp value of VK_ATTACHMENT_LOAD_OP_CLEAR. The array is indexed by attachment
number. Only elements corresponding to cleared attachments are used. Other elements of
pClearValues are ignored.

renderArea is the render area that is affected by the render pass instance. The effects of attachment
load, store and multisample resolve operations are restricted to the pixels whose x and y
coordinates fall within the render area on all attachments. The render area extends to all layers of
framebuffer. The application must ensure (using scissor if necessary) that all rendering is contained
within the render area. The render area must be contained within the framebuffer dimensions.

Note

There may be a performance cost for using a render area smaller than the
framebuffer, unless it matches the render area granularity for the render pass.

Valid Usage

• VUID-VkRenderPassBeginInfo-clearValueCount-00902
clearValueCount must be greater than the largest attachment index in renderPass
specifying a loadOp (or stencilLoadOp, if the attachment has a depth/stencil format) of
VK_ATTACHMENT_LOAD_OP_CLEAR

• VUID-VkRenderPassBeginInfo-clearValueCount-04962
If clearValueCount is not 0, pClearValues must be a valid pointer to an array of
clearValueCount VkClearValue unions

• VUID-VkRenderPassBeginInfo-renderPass-00904

354

renderPass must be compatible with the renderPass member of the
VkFramebufferCreateInfo structure specified when creating framebuffer

• VUID-VkRenderPassBeginInfo-None-08996
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.extent.width must be greater
than 0

• VUID-VkRenderPassBeginInfo-None-08997
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.extent.height must be greater
than 0

• VUID-VkRenderPassBeginInfo-pNext-02850
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.x must be greater than or
equal to 0

• VUID-VkRenderPassBeginInfo-pNext-02851
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.y must be greater than or
equal to 0

• VUID-VkRenderPassBeginInfo-pNext-02852
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.x +
renderArea.extent.width must be less than or equal to VkFramebufferCreateInfo::width
the framebuffer was created with

• VUID-VkRenderPassBeginInfo-pNext-02853
If the pNext chain does not contain VkDeviceGroupRenderPassBeginInfo or its
deviceRenderAreaCount member is equal to 0, renderArea.offset.y +
renderArea.extent.height must be less than or equal to VkFramebufferCreateInfo::height
the framebuffer was created with

• VUID-VkRenderPassBeginInfo-pNext-02856
If the pNext chain contains VkDeviceGroupRenderPassBeginInfo, offset.x + extent.width
of each element of pDeviceRenderAreas must be less than or equal to
VkFramebufferCreateInfo::width the framebuffer was created with

• VUID-VkRenderPassBeginInfo-pNext-02857
If the pNext chain contains VkDeviceGroupRenderPassBeginInfo, offset.y + extent.height
of each element of pDeviceRenderAreas must be less than or equal to
VkFramebufferCreateInfo::height the framebuffer was created with

• VUID-VkRenderPassBeginInfo-framebuffer-03207
If framebuffer was created with a VkFramebufferCreateInfo::flags value that did not
include VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, and the pNext chain includes a
VkRenderPassAttachmentBeginInfo structure, its attachmentCount must be zero

• VUID-VkRenderPassBeginInfo-framebuffer-03208
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, the attachmentCount of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be equal

355

to the value of VkFramebufferAttachmentsCreateInfo::attachmentImageInfoCount used to
create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-02780
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must have been
created on the same VkDevice as framebuffer and renderPass

• VUID-VkRenderPassBeginInfo-framebuffer-03209
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkImageCreateInfo::flags equal to the
flags member of the corresponding element of VkFramebufferAttachmentsCreateInfo
::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-04627
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView with an inherited usage equal to the usage member of the corresponding
element of VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create
framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03211
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView with a width equal to the width member of the corresponding element of
VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03212
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView with a height equal to the height member of the corresponding element of
VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03213
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkImageViewCreateInfo
::subresourceRange.layerCount equal to the layerCount member of the corresponding
element of VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create
framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03214
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a

356

VkImageView of an image created with a value of VkImageFormatListCreateInfo
::viewFormatCount equal to the viewFormatCount member of the corresponding element of
VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03215
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a set of elements in
VkImageFormatListCreateInfo::pViewFormats equal to the set of elements in the
pViewFormats member of the corresponding element of
VkFramebufferAttachmentsCreateInfo::pAttachmentImageInfos used to create framebuffer

• VUID-VkRenderPassBeginInfo-framebuffer-03216
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkImageViewCreateInfo::format equal
to the corresponding value of VkAttachmentDescription::format in renderPass

• VUID-VkRenderPassBeginInfo-framebuffer-09047
If framebuffer was created with a VkFramebufferCreateInfo::flags value that included
VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT, each element of the pAttachments member of a
VkRenderPassAttachmentBeginInfo structure included in the pNext chain must be a
VkImageView of an image created with a value of VkImageCreateInfo::samples equal to
the corresponding value of VkAttachmentDescription::samples in renderPass

Valid Usage (Implicit)

• VUID-VkRenderPassBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO

• VUID-VkRenderPassBeginInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceGroupRenderPassBeginInfo or
VkRenderPassAttachmentBeginInfo

• VUID-VkRenderPassBeginInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkRenderPassBeginInfo-renderPass-parameter
renderPass must be a valid VkRenderPass handle

• VUID-VkRenderPassBeginInfo-framebuffer-parameter
framebuffer must be a valid VkFramebuffer handle

• VUID-VkRenderPassBeginInfo-commonparent
Both of framebuffer, and renderPass must have been created, allocated, or retrieved from
the same VkDevice

The VkSubpassBeginInfo structure is defined as:

357

// Provided by VK_VERSION_1_2
typedef struct VkSubpassBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkSubpassContents contents;
} VkSubpassBeginInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• contents is a VkSubpassContents value specifying how the commands in the next subpass will
be provided.

Valid Usage (Implicit)

• VUID-VkSubpassBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO

• VUID-VkSubpassBeginInfo-pNext-pNext
pNext must be NULL

• VUID-VkSubpassBeginInfo-contents-parameter
contents must be a valid VkSubpassContents value

Possible values of vkCmdBeginRenderPass::contents, specifying how the commands in the first
subpass will be provided, are:

// Provided by VK_VERSION_1_0
typedef enum VkSubpassContents {
 VK_SUBPASS_CONTENTS_INLINE = 0,
 VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS = 1,
} VkSubpassContents;

• VK_SUBPASS_CONTENTS_INLINE specifies that the contents of the subpass will be recorded inline in
the primary command buffer, and secondary command buffers must not be executed within
the subpass.

• VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS specifies that the contents are recorded in
secondary command buffers that will be called from the primary command buffer, and
vkCmdExecuteCommands is the only valid command in the command buffer until
vkCmdNextSubpass or vkCmdEndRenderPass.

If the pNext chain of VkRenderPassBeginInfo or VkRenderingInfo includes a
VkDeviceGroupRenderPassBeginInfo structure, then that structure includes a device mask and set of
render areas for the render pass instance.

The VkDeviceGroupRenderPassBeginInfo structure is defined as:

358

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupRenderPassBeginInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t deviceMask;
 uint32_t deviceRenderAreaCount;
 const VkRect2D* pDeviceRenderAreas;
} VkDeviceGroupRenderPassBeginInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceMask is the device mask for the render pass instance.

• deviceRenderAreaCount is the number of elements in the pDeviceRenderAreas array.

• pDeviceRenderAreas is a pointer to an array of VkRect2D structures defining the render area for
each physical device.

The deviceMask serves several purposes. It is an upper bound on the set of physical devices that can
be used during the render pass instance, and the initial device mask when the render pass instance
begins. In addition, commands transitioning to the next subpass in a render pass instance and
commands ending the render pass instance, and, accordingly render pass load, store, and
multisample resolve operations and subpass dependencies corresponding to the render pass
instance, are executed on the physical devices included in the device mask provided here.

If deviceRenderAreaCount is not zero, then the elements of pDeviceRenderAreas override the value of
VkRenderPassBeginInfo::renderArea, and provide a render area specific to each physical device.
These render areas serve the same purpose as VkRenderPassBeginInfo::renderArea, including
controlling the region of attachments that are cleared by VK_ATTACHMENT_LOAD_OP_CLEAR and that are
resolved into resolve attachments.

If this structure is not present, the render pass instance’s device mask is the value of
VkDeviceGroupCommandBufferBeginInfo::deviceMask. If this structure is not present or if
deviceRenderAreaCount is zero, VkRenderPassBeginInfo::renderArea is used for all physical devices.

Valid Usage

• VUID-VkDeviceGroupRenderPassBeginInfo-deviceMask-00905
deviceMask must be a valid device mask value

• VUID-VkDeviceGroupRenderPassBeginInfo-deviceMask-00906
deviceMask must not be zero

• VUID-VkDeviceGroupRenderPassBeginInfo-deviceMask-00907
deviceMask must be a subset of the command buffer’s initial device mask

• VUID-VkDeviceGroupRenderPassBeginInfo-deviceRenderAreaCount-00908
deviceRenderAreaCount must either be zero or equal to the number of physical devices in
the logical device

359

• VUID-VkDeviceGroupRenderPassBeginInfo-offset-06166
The offset.x member of any element of pDeviceRenderAreas must be greater than or equal
to 0

• VUID-VkDeviceGroupRenderPassBeginInfo-offset-06167
The offset.y member of any element of pDeviceRenderAreas must be greater than or equal
to 0

• VUID-VkDeviceGroupRenderPassBeginInfo-offset-06168
The sum of the offset.x and extent.width members of any element of pDeviceRenderAreas
must be less than or equal to maxFramebufferWidth

• VUID-VkDeviceGroupRenderPassBeginInfo-offset-06169
The sum of the offset.y and extent.height members of any element of pDeviceRenderAreas
must be less than or equal to maxFramebufferHeight

• VUID-VkDeviceGroupRenderPassBeginInfo-extent-08998
The extent.width member of any element of pDeviceRenderAreas must be greater than 0

• VUID-VkDeviceGroupRenderPassBeginInfo-extent-08999
The extent.height member of any element of pDeviceRenderAreas must be greater than 0

Valid Usage (Implicit)

• VUID-VkDeviceGroupRenderPassBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO

• VUID-VkDeviceGroupRenderPassBeginInfo-pDeviceRenderAreas-parameter
If deviceRenderAreaCount is not 0, pDeviceRenderAreas must be a valid pointer to an array of
deviceRenderAreaCount VkRect2D structures

The VkRenderPassAttachmentBeginInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkRenderPassAttachmentBeginInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t attachmentCount;
 const VkImageView* pAttachments;
} VkRenderPassAttachmentBeginInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• attachmentCount is the number of attachments.

• pAttachments is a pointer to an array of VkImageView handles, each of which will be used as the
corresponding attachment in the render pass instance.

360

Valid Usage

• VUID-VkRenderPassAttachmentBeginInfo-pAttachments-03218
Each element of pAttachments must only specify a single mip level

• VUID-VkRenderPassAttachmentBeginInfo-pAttachments-03219
Each element of pAttachments must have been created with the identity swizzle

• VUID-VkRenderPassAttachmentBeginInfo-pAttachments-04114
Each element of pAttachments must have been created with VkImageViewCreateInfo
::viewType not equal to VK_IMAGE_VIEW_TYPE_3D

Valid Usage (Implicit)

• VUID-VkRenderPassAttachmentBeginInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO

• VUID-VkRenderPassAttachmentBeginInfo-pAttachments-parameter
If attachmentCount is not 0, pAttachments must be a valid pointer to an array of
attachmentCount valid VkImageView handles

To query the render area granularity, call:

// Provided by VK_VERSION_1_0
void vkGetRenderAreaGranularity(
 VkDevice device,
 VkRenderPass renderPass,
 VkExtent2D* pGranularity);

• device is the logical device that owns the render pass.

• renderPass is a handle to a render pass.

• pGranularity is a pointer to a VkExtent2D structure in which the granularity is returned.

The conditions leading to an optimal renderArea are:

• the offset.x member in renderArea is a multiple of the width member of the returned
VkExtent2D (the horizontal granularity).

• the offset.y member in renderArea is a multiple of the height member of the returned
VkExtent2D (the vertical granularity).

• either the extent.width member in renderArea is a multiple of the horizontal granularity or
offset.x+extent.width is equal to the width of the framebuffer in the VkRenderPassBeginInfo.

• either the extent.height member in renderArea is a multiple of the vertical granularity or
offset.y+extent.height is equal to the height of the framebuffer in the VkRenderPassBeginInfo.

Subpass dependencies are not affected by the render area, and apply to the entire image

361

subresources attached to the framebuffer as specified in the description of automatic layout
transitions. Similarly, pipeline barriers are valid even if their effect extends outside the render
area.

Valid Usage (Implicit)

• VUID-vkGetRenderAreaGranularity-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetRenderAreaGranularity-renderPass-parameter
renderPass must be a valid VkRenderPass handle

• VUID-vkGetRenderAreaGranularity-pGranularity-parameter
pGranularity must be a valid pointer to a VkExtent2D structure

• VUID-vkGetRenderAreaGranularity-renderPass-parent
renderPass must have been created, allocated, or retrieved from device

To transition to the next subpass in the render pass instance after recording the commands for a
subpass, call:

// Provided by VK_VERSION_1_0
void vkCmdNextSubpass(
 VkCommandBuffer commandBuffer,
 VkSubpassContents contents);

• commandBuffer is the command buffer in which to record the command.

• contents specifies how the commands in the next subpass will be provided, in the same fashion
as the corresponding parameter of vkCmdBeginRenderPass.

The subpass index for a render pass begins at zero when vkCmdBeginRenderPass is recorded, and
increments each time vkCmdNextSubpass is recorded.

After transitioning to the next subpass, the application can record the commands for that subpass.

Valid Usage

• VUID-vkCmdNextSubpass-None-00909
The current subpass index must be less than the number of subpasses in the render pass
minus one

Valid Usage (Implicit)

• VUID-vkCmdNextSubpass-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdNextSubpass-contents-parameter

362

contents must be a valid VkSubpassContents value

• VUID-vkCmdNextSubpass-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdNextSubpass-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdNextSubpass-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdNextSubpass-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary Inside Graphics Action
State
Synchronization

To transition to the next subpass in the render pass instance after recording the commands for a
subpass, call:

// Provided by VK_VERSION_1_2
void vkCmdNextSubpass2(
 VkCommandBuffer commandBuffer,
 const VkSubpassBeginInfo* pSubpassBeginInfo,
 const VkSubpassEndInfo* pSubpassEndInfo);

• commandBuffer is the command buffer in which to record the command.

• pSubpassBeginInfo is a pointer to a VkSubpassBeginInfo structure containing information about
the subpass which is about to begin rendering.

• pSubpassEndInfo is a pointer to a VkSubpassEndInfo structure containing information about how
the previous subpass will be ended.

vkCmdNextSubpass2 is semantically identical to vkCmdNextSubpass, except that it is extensible, and

363

that contents is provided as part of an extensible structure instead of as a flat parameter.

Valid Usage

• VUID-vkCmdNextSubpass2-None-03102
The current subpass index must be less than the number of subpasses in the render pass
minus one

Valid Usage (Implicit)

• VUID-vkCmdNextSubpass2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdNextSubpass2-pSubpassBeginInfo-parameter
pSubpassBeginInfo must be a valid pointer to a valid VkSubpassBeginInfo structure

• VUID-vkCmdNextSubpass2-pSubpassEndInfo-parameter
pSubpassEndInfo must be a valid pointer to a valid VkSubpassEndInfo structure

• VUID-vkCmdNextSubpass2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdNextSubpass2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdNextSubpass2-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdNextSubpass2-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary Inside Graphics Action
State
Synchronization

364

To record a command to end a render pass instance after recording the commands for the last
subpass, call:

// Provided by VK_VERSION_1_0
void vkCmdEndRenderPass(
 VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer in which to end the current render pass instance.

Ending a render pass instance performs any multisample resolve operations on the final subpass.

Valid Usage

• VUID-vkCmdEndRenderPass-None-00910
The current subpass index must be equal to the number of subpasses in the render pass
minus one

• VUID-vkCmdEndRenderPass-None-06170
The current render pass instance must not have been begun with vkCmdBeginRendering

• VUID-vkCmdEndRenderPass-None-07004
If vkCmdBeginQuery* was called within a subpass of the render pass, the corresponding
vkCmdEndQuery* must have been called subsequently within the same subpass

Valid Usage (Implicit)

• VUID-vkCmdEndRenderPass-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndRenderPass-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndRenderPass-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdEndRenderPass-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdEndRenderPass-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

365

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary Inside Graphics Action
State
Synchronization

To record a command to end a render pass instance after recording the commands for the last
subpass, call:

// Provided by VK_VERSION_1_2
void vkCmdEndRenderPass2(
 VkCommandBuffer commandBuffer,
 const VkSubpassEndInfo* pSubpassEndInfo);

• commandBuffer is the command buffer in which to end the current render pass instance.

• pSubpassEndInfo is a pointer to a VkSubpassEndInfo structure containing information about how
the last subpass will be ended.

vkCmdEndRenderPass2 is semantically identical to vkCmdEndRenderPass, except that it is extensible.

Valid Usage

• VUID-vkCmdEndRenderPass2-None-03103
The current subpass index must be equal to the number of subpasses in the render pass
minus one

• VUID-vkCmdEndRenderPass2-None-06171
The current render pass instance must not have been begun with vkCmdBeginRendering

• VUID-vkCmdEndRenderPass2-None-07005
If vkCmdBeginQuery* was called within a subpass of the render pass, the corresponding
vkCmdEndQuery* must have been called subsequently within the same subpass

Valid Usage (Implicit)

• VUID-vkCmdEndRenderPass2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndRenderPass2-pSubpassEndInfo-parameter
pSubpassEndInfo must be a valid pointer to a valid VkSubpassEndInfo structure

• VUID-vkCmdEndRenderPass2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndRenderPass2-commandBuffer-cmdpool

366

The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdEndRenderPass2-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdEndRenderPass2-bufferlevel
commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary Inside Graphics Action
State
Synchronization

The VkSubpassEndInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSubpassEndInfo {
 VkStructureType sType;
 const void* pNext;
} VkSubpassEndInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

Valid Usage (Implicit)

• VUID-VkSubpassEndInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SUBPASS_END_INFO

• VUID-VkSubpassEndInfo-pNext-pNext
pNext must be NULL

367

8.9. Common Render Pass Data Races (Informative)
Due to the complexity of how rendering is performed, there are several ways an application can
accidentally introduce a data race, usually by doing something that may seem benign but actually
cannot be supported. This section indicates a number of the more common cases as guidelines to
help avoid them.

8.9.1. Sampling From a Read-only Attachment

Vulkan includes read-only layouts for depth/stencil images, that allow the images to be both read
during a render pass for the purposes of depth/stencil tests, and read as a non-attachment.

However, because VK_ATTACHMENT_STORE_OP_STORE and VK_ATTACHMENT_STORE_OP_DONT_CARE may
perform write operations, even if no recorded command writes to an attachment, reading from an
image while also using it as an attachment with these store operations can result in a data race. If
the reads from the non-attachment are performed in a fragment shader where the accessed
samples match those covered by the fragment shader, no data race will occur as store operations
are guaranteed to operate after fragment shader execution for the set of samples the fragment
covers. Notably, input attachments can also be used for this case. Reading other samples or in any
other shader stage can result in unexpected behavior due to the potential for a data race, and
validation errors should be generated for doing so. In practice, many applications have shipped
reading samples outside of the covered fragment without any observable issue, but there is no
guarantee that this will always work, and it is not advisable to rely on this in new or re-worked
code bases. As VK_ATTACHMENT_STORE_OP_NONE is guaranteed to perform no writes, applications
wishing to read an image as both an attachment and a non-attachment should make use of this
store operation, coupled with a load operation that also performs no writes.

8.9.2. Non-overlapping Access Between Resources

When relying on non-overlapping accesses between attachments and other resources, it is
important to note that load and store operations have fairly wide alignment requirements -
potentially affecting entire subresources and adjacent depth/stencil aspects. This makes it invalid to
access a non-attachment subresource that is simultaneously being used as an attachment where
either access performs a write operation.

8.9.3. Depth/Stencil and Input Attachments

When rendering to only the depth OR stencil aspect of an image, an input attachment accessing the
other aspect will always result in a data race.

8.9.4. Synchronization Options

There are several synchronization options available to synchronize between accesses to resources
within a render pass. Some of the options are outlined below:

• A VkSubpassDependency in a render pass object can synchronize attachment writes and
multisample resolve operations from a prior subpass for subsequent input attachment reads.

• A vkCmdPipelineBarrier inside a subpass can synchronize prior attachment writes in the

368

subpass with subsequent input attachment reads.

369

Chapter 9. Shaders
A shader specifies programmable operations that execute for each vertex, control point, tessellated
vertex, primitive, fragment, or workgroup in the corresponding stage(s) of the graphics and
compute pipelines.

Graphics pipelines include vertex shader execution as a result of primitive assembly, followed, if
enabled, by tessellation control and evaluation shaders operating on patches, geometry shaders, if
enabled, operating on primitives, and fragment shaders, if present, operating on fragments
generated by Rasterization. In this specification, vertex, tessellation control, tessellation evaluation
and geometry shaders are collectively referred to as pre-rasterization shader stages and occur in
the logical pipeline before rasterization. The fragment shader occurs logically after rasterization.

Only the compute shader stage is included in a compute pipeline. Compute shaders operate on
compute invocations in a workgroup.

Shaders can read from input variables, and read from and write to output variables. Input and
output variables can be used to transfer data between shader stages, or to allow the shader to
interact with values that exist in the execution environment. Similarly, the execution environment
provides constants describing capabilities.

Shader variables are associated with execution environment-provided inputs and outputs using
built-in decorations in the shader. The available decorations for each stage are documented in the
following subsections.

9.1. Shader Modules
Shader modules contain shader code and one or more entry points. Shaders are selected from a
shader module by specifying an entry point as part of pipeline creation. The stages of a pipeline can
use shaders that come from different modules. The shader code defining a shader module must be
in the SPIR-V format, as described by the Vulkan Environment for SPIR-V appendix.

Shader modules are represented by VkShaderModule handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkShaderModule)

To create a shader module, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateShaderModule(
 VkDevice device,
 const VkShaderModuleCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkShaderModule* pShaderModule);

• device is the logical device that creates the shader module.

370

• pCreateInfo is a pointer to a VkShaderModuleCreateInfo structure.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pShaderModule is a pointer to a VkShaderModule handle in which the resulting shader module
object is returned.

Once a shader module has been created, any entry points it contains can be used in pipeline shader
stages as described in Compute Pipelines and Graphics Pipelines.

Valid Usage

• VUID-vkCreateShaderModule-pCreateInfo-06904
If pCreateInfo is not NULL, pCreateInfo->pNext must be NULL

Valid Usage (Implicit)

• VUID-vkCreateShaderModule-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateShaderModule-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkShaderModuleCreateInfo structure

• VUID-vkCreateShaderModule-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateShaderModule-pShaderModule-parameter
pShaderModule must be a valid pointer to a VkShaderModule handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkShaderModuleCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkShaderModuleCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkShaderModuleCreateFlags flags;
 size_t codeSize;
 const uint32_t* pCode;

371

} VkShaderModuleCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• codeSize is the size, in bytes, of the code pointed to by pCode.

• pCode is a pointer to code that is used to create the shader module. The type and format of the
code is determined from the content of the memory addressed by pCode.

Valid Usage

• VUID-VkShaderModuleCreateInfo-codeSize-08735
codeSize must be a multiple of 4

• VUID-VkShaderModuleCreateInfo-pCode-08736
pCode must point to valid SPIR-V code, formatted and packed as described by the Khronos
SPIR-V Specification

• VUID-VkShaderModuleCreateInfo-pCode-08737
pCode must adhere to the validation rules described by the Validation Rules within a
Module section of the SPIR-V Environment appendix

• VUID-VkShaderModuleCreateInfo-pCode-08738
pCode must declare the Shader capability for SPIR-V code

• VUID-VkShaderModuleCreateInfo-pCode-08739
pCode must not declare any capability that is not supported by the API, as described by the
Capabilities section of the SPIR-V Environment appendix

• VUID-VkShaderModuleCreateInfo-pCode-08740
and pCode declares any of the capabilities listed in the SPIR-V Environment appendix, one
of the corresponding requirements must be satisfied

• VUID-VkShaderModuleCreateInfo-pCode-08741
pCode must not declare any SPIR-V extension that is not supported by the API, as described
by the Extension section of the SPIR-V Environment appendix

• VUID-VkShaderModuleCreateInfo-pCode-08742
and pCode declares any of the SPIR-V extensions listed in the SPIR-V Environment
appendix, one of the corresponding requirements must be satisfied

• VUID-VkShaderModuleCreateInfo-codeSize-01085
codeSize must be greater than 0

Valid Usage (Implicit)

• VUID-VkShaderModuleCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO

• VUID-VkShaderModuleCreateInfo-flags-zerobitmask

372

flags must be 0

• VUID-VkShaderModuleCreateInfo-pCode-parameter
pCode must be a valid pointer to an array of uint32_t values

// Provided by VK_VERSION_1_0
typedef VkFlags VkShaderModuleCreateFlags;

VkShaderModuleCreateFlags is a bitmask type for setting a mask, but is currently reserved for future
use.

To destroy a shader module, call:

// Provided by VK_VERSION_1_0
void vkDestroyShaderModule(
 VkDevice device,
 VkShaderModule shaderModule,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the shader module.

• shaderModule is the handle of the shader module to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

A shader module can be destroyed while pipelines created using its shaders are still in use.

Valid Usage

• VUID-vkDestroyShaderModule-shaderModule-01092
If VkAllocationCallbacks were provided when shaderModule was created, a compatible set
of callbacks must be provided here

• VUID-vkDestroyShaderModule-shaderModule-01093
If no VkAllocationCallbacks were provided when shaderModule was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyShaderModule-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyShaderModule-shaderModule-parameter
If shaderModule is not VK_NULL_HANDLE, shaderModule must be a valid VkShaderModule
handle

• VUID-vkDestroyShaderModule-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid

373

VkAllocationCallbacks structure

• VUID-vkDestroyShaderModule-shaderModule-parent
If shaderModule is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to shaderModule must be externally synchronized

9.2. Binding Shaders
Before a shader can be used it must be first bound to the command buffer.

Calling vkCmdBindPipeline binds all stages corresponding to the VkPipelineBindPoint.

The following table describes the relationship between shader stages and pipeline bind points:

Shader stage Pipeline bind point behavior controlled

• VK_SHADER_STAGE_VERTEX_BIT

• VK_SHADER_STAGE_TESSELLATIO
N_CONTROL_BIT

• VK_SHADER_STAGE_TESSELLATIO
N_EVALUATION_BIT

• VK_SHADER_STAGE_GEOMETRY_BI
T

• VK_SHADER_STAGE_FRAGMENT_BI
T

VK_PIPELINE_BIND_POINT_GRAPHIC
S

all drawing commands

• VK_SHADER_STAGE_COMPUTE_BIT VK_PIPELINE_BIND_POINT_COMPUTE all dispatch commands

9.3. Shader Execution
At each stage of the pipeline, multiple invocations of a shader may execute simultaneously. Further,
invocations of a single shader produced as the result of different commands may execute
simultaneously. The relative execution order of invocations of the same shader type is undefined.
Shader invocations may complete in a different order than that in which the primitives they
originated from were drawn or dispatched by the application. However, fragment shader outputs
are written to attachments in rasterization order.

The relative execution order of invocations of different shader types is largely undefined. However,
when invoking a shader whose inputs are generated from a previous pipeline stage, the shader
invocations from the previous stage are guaranteed to have executed far enough to generate input
values for all required inputs.

374

9.3.1. Shader Termination

A shader invocation that is terminated has finished executing instructions.

Executing OpReturn in the entry point, or executing OpTerminateInvocation in any function will
terminate an invocation. Implementations may also terminate a shader invocation when OpKill is
executed in any function; otherwise it becomes a helper invocation.

In addition to the above conditions, helper invocations are terminated when all non-helper
invocations in the same derivative group either terminate or become helper invocations via OpKill.

A shader stage for a given command completes execution when all invocations for that stage have
terminated.

9.4. Shader Memory Access Ordering
The order in which image or buffer memory is read or written by shaders is largely undefined. For
some shader types (vertex, tessellation evaluation, and in some cases, fragment), even the number
of shader invocations that may perform loads and stores is undefined.

In particular, the following rules apply:

• Vertex and tessellation evaluation shaders will be invoked at least once for each unique vertex,
as defined in those sections.

• Fragment shaders will be invoked zero or more times, as defined in that section.

• The relative execution order of invocations of the same shader type is undefined. A store issued
by a shader when working on primitive B might complete prior to a store for primitive A, even
if primitive A is specified prior to primitive B. This applies even to fragment shaders; while
fragment shader outputs are always written to the framebuffer in rasterization order, stores
executed by fragment shader invocations are not.

• The relative execution order of invocations of different shader types is largely undefined.

Note

The above limitations on shader invocation order make some forms of
synchronization between shader invocations within a single set of primitives
unimplementable. For example, having one invocation poll memory written by
another invocation assumes that the other invocation has been launched and will
complete its writes in finite time.

The Memory Model appendix defines the terminology and rules for how to correctly communicate
between shader invocations, such as when a write is Visible-To a read, and what constitutes a Data
Race.

Applications must not cause a data race.

The SPIR-V SubgroupMemory, CrossWorkgroupMemory, and AtomicCounterMemory memory
semantics are ignored. Sequentially consistent atomics and barriers are not supported and
SequentiallyConsistent is treated as AcquireRelease. SequentiallyConsistent should not be

375

used.

9.5. Shader Inputs and Outputs
Data is passed into and out of shaders using variables with input or output storage class,
respectively. User-defined inputs and outputs are connected between stages by matching their
Location decorations. Additionally, data can be provided by or communicated to special functions
provided by the execution environment using BuiltIn decorations.

In many cases, the same BuiltIn decoration can be used in multiple shader stages with similar
meaning. The specific behavior of variables decorated as BuiltIn is documented in the following
sections.

9.6. Vertex Shaders
Each vertex shader invocation operates on one vertex and its associated vertex attribute data, and
outputs one vertex and associated data. Graphics pipelines must include a vertex shader, and the
vertex shader stage is always the first shader stage in the graphics pipeline.

9.6.1. Vertex Shader Execution

A vertex shader must be executed at least once for each vertex specified by a drawing command. If
the subpass includes multiple views in its view mask, the shader may be invoked separately for
each view. During execution, the shader is presented with the index of the vertex and instance for
which it has been invoked. Input variables declared in the vertex shader are filled by the
implementation with the values of vertex attributes associated with the invocation being executed.

If the same vertex is specified multiple times in a drawing command (e.g. by including the same
index value multiple times in an index buffer) the implementation may reuse the results of vertex
shading if it can statically determine that the vertex shader invocations will produce identical
results.

Note

It is implementation-dependent when and if results of vertex shading are reused,
and thus how many times the vertex shader will be executed. This is true also if
the vertex shader contains stores or atomic operations (see
vertexPipelineStoresAndAtomics).

9.7. Tessellation Control Shaders
The tessellation control shader is used to read an input patch provided by the application and to
produce an output patch. Each tessellation control shader invocation operates on an input patch
(after all control points in the patch are processed by a vertex shader) and its associated data, and
outputs a single control point of the output patch and its associated data, and can also output
additional per-patch data. The input patch is sized according to the patchControlPoints member of
VkPipelineTessellationStateCreateInfo, as part of input assembly.

376

The size of the output patch is controlled by the OpExecutionMode OutputVertices specified in the
tessellation control or tessellation evaluation shaders, which must be specified in at least one of the
shaders. The size of the input and output patches must each be greater than zero and less than or
equal to VkPhysicalDeviceLimits::maxTessellationPatchSize.

9.7.1. Tessellation Control Shader Execution

A tessellation control shader is invoked at least once for each output vertex in a patch. If the
subpass includes multiple views in its view mask, the shader may be invoked separately for each
view.

Inputs to the tessellation control shader are generated by the vertex shader. Each invocation of the
tessellation control shader can read the attributes of any incoming vertices and their associated
data. The invocations corresponding to a given patch execute logically in parallel, with undefined
relative execution order. However, the OpControlBarrier instruction can be used to provide limited
control of the execution order by synchronizing invocations within a patch, effectively dividing
tessellation control shader execution into a set of phases. Tessellation control shaders will read
undefined values if one invocation reads a per-vertex or per-patch output written by another
invocation at any point during the same phase, or if two invocations attempt to write different
values to the same per-patch output in a single phase.

9.8. Tessellation Evaluation Shaders
The Tessellation Evaluation Shader operates on an input patch of control points and their
associated data, and a single input barycentric coordinate indicating the invocation’s relative
position within the subdivided patch, and outputs a single vertex and its associated data.

9.8.1. Tessellation Evaluation Shader Execution

A tessellation evaluation shader is invoked at least once for each unique vertex generated by the
tessellator. If the subpass includes multiple views in its view mask, the shader may be invoked
separately for each view.

9.9. Geometry Shaders
The geometry shader operates on a group of vertices and their associated data assembled from a
single input primitive, and emits zero or more output primitives and the group of vertices and their
associated data required for each output primitive.

9.9.1. Geometry Shader Execution

A geometry shader is invoked at least once for each primitive produced by the tessellation stages,
or at least once for each primitive generated by primitive assembly when tessellation is not in use.
A shader can request that the geometry shader runs multiple instances. A geometry shader is
invoked at least once for each instance. If the subpass includes multiple views in its view mask, the
shader may be invoked separately for each view.

377

9.10. Fragment Shaders
Fragment shaders are invoked as a fragment operation in a graphics pipeline. Each fragment
shader invocation operates on a single fragment and its associated data. With few exceptions,
fragment shaders do not have access to any data associated with other fragments and are
considered to execute in isolation of fragment shader invocations associated with other fragments.

9.11. Compute Shaders
Compute shaders are invoked via vkCmdDispatch and vkCmdDispatchIndirect commands. In
general, they have access to similar resources as shader stages executing as part of a graphics
pipeline.

Compute workloads are formed from groups of work items called workgroups and processed by the
compute shader in the current compute pipeline. A workgroup is a collection of shader invocations
that execute the same shader, potentially in parallel. Compute shaders execute in global
workgroups which are divided into a number of local workgroups with a size that can be set by
assigning a value to the LocalSize or LocalSizeId execution mode or via an object decorated by the
WorkgroupSize decoration. An invocation within a local workgroup can share data with other
members of the local workgroup through shared variables and issue memory and control flow
barriers to synchronize with other members of the local workgroup.

9.12. Interpolation Decorations
Variables in the Input storage class in a fragment shader’s interface are interpolated from the
values specified by the primitive being rasterized.

Note

Interpolation decorations can be present on input and output variables in pre-
rasterization shaders but have no effect on the interpolation performed.

An undecorated input variable will be interpolated with perspective-correct interpolation
according to the primitive type being rasterized. Lines and polygons are interpolated in the same
way as the primitive’s clip coordinates. If the NoPerspective decoration is present, linear
interpolation is instead used for lines and polygons. For points, as there is only a single vertex,
input values are never interpolated and instead take the value written for the single vertex.

If the Flat decoration is present on an input variable, the value is not interpolated, and instead
takes its value directly from the provoking vertex. Fragment shader inputs that are signed or
unsigned integers, integer vectors, or any double-precision floating-point type must be decorated
with Flat.

Interpolation of input variables is performed at an implementation-defined position within the
fragment area being shaded. The position is further constrained as follows:

• If the Centroid decoration is used, the interpolation position used for the variable must also fall
within the bounds of the primitive being rasterized.

378

• If the Sample decoration is used, the interpolation position used for the variable must be at the
position of the sample being shaded by the current fragment shader invocation.

• If a sample count of 1 is used, the interpolation position must be at the center of the fragment
area.

Note

As Centroid restricts the possible interpolation position to the covered area of the
primitive, the position can be forced to vary between neighboring fragments when
it otherwise would not. Derivatives calculated based on these differing locations
can produce inconsistent results compared to undecorated inputs. It is
recommended that input variables used in derivative calculations are not
decorated with Centroid.

9.13. Static Use
A SPIR-V module declares a global object in memory using the OpVariable instruction, which results
in a pointer x to that object. A specific entry point in a SPIR-V module is said to statically use that
object if that entry point’s call tree contains a function containing a instruction with x as an id
operand. A shader entry point also statically uses any variables explicitly declared in its interface.

9.14. Scope
A scope describes a set of shader invocations, where each such set is a scope instance. Each
invocation belongs to one or more scope instances, but belongs to no more than one scope instance
for each scope.

The operations available between invocations in a given scope instance vary, with smaller scopes
generally able to perform more operations, and with greater efficiency.

9.14.1. Cross Device

All invocations executed in a Vulkan instance fall into a single cross device scope instance.

Whilst the CrossDevice scope is defined in SPIR-V, it is disallowed in Vulkan. API synchronization
commands can be used to communicate between devices.

9.14.2. Device

All invocations executed on a single device form a device scope instance.

If the vulkanMemoryModel and vulkanMemoryModelDeviceScope features are enabled, this scope is
represented in SPIR-V by the Device Scope, which can be used as a Memory Scope for barrier and
atomic operations.

There is no method to synchronize the execution of these invocations within SPIR-V, and this can
only be done with API synchronization primitives.

Invocations executing on different devices in a device group operate in separate device scope

379

instances.

9.14.3. Queue Family

Invocations executed by queues in a given queue family form a queue family scope instance.

This scope is identified in SPIR-V as the QueueFamily Scope if the vulkanMemoryModel feature is
enabled, or if not, the Device Scope, which can be used as a Memory Scope for barrier and atomic
operations.

There is no method to synchronize the execution of these invocations within SPIR-V, and this can
only be done with API synchronization primitives.

Each invocation in a queue family scope instance must be in the same device scope instance.

9.14.4. Command

Any shader invocations executed as the result of a single command such as vkCmdDispatch or
vkCmdDraw form a command scope instance. For indirect drawing commands with drawCount
greater than one, invocations from separate draws are in separate command scope instances.

There is no specific Scope for communication across invocations in a command scope instance. As
this has a clear boundary at the API level, coordination here can be performed in the API, rather
than in SPIR-V.

Each invocation in a command scope instance must be in the same queue-family scope instance.

For shaders without defined workgroups, this set of invocations forms an invocation group as
defined in the SPIR-V specification.

9.14.5. Primitive

Any fragment shader invocations executed as the result of rasterization of a single primitive form a
primitive scope instance.

There is no specific Scope for communication across invocations in a primitive scope instance.

Any generated helper invocations are included in this scope instance.

Each invocation in a primitive scope instance must be in the same command scope instance.

Any input variables decorated with Flat are uniform within a primitive scope instance.

9.14.6. Workgroup

A local workgroup is a set of invocations that can synchronize and share data with each other using
memory in the Workgroup storage class.

The Workgroup Scope can be used as both an Execution Scope and Memory Scope for barrier and atomic
operations.

380

Each invocation in a local workgroup must be in the same command scope instance.

Only compute shaders have defined workgroups - other shader types cannot use workgroup
functionality. For shaders that have defined workgroups, this set of invocations forms an invocation
group as defined in the SPIR-V specification.

The amount of storage consumed by the variables declared with the Workgroup storage class is
implementation-dependent. However, the amount of storage consumed may not exceed the largest
block size that would be obtained if all active variables declared with Workgroup storage class were
assigned offsets in an arbitrary order by successively taking the smallest valid offset according to
the Standard Storage Buffer Layout rules, and with Boolean values considered as 32-bit integer
values for the purpose of this calculation. (This is equivalent to using the GLSL std430 layout rules.)

9.14.7. Subgroup

A subgroup (see the subsection “Control Flow” of section 2 of the SPIR-V 1.3 Revision 1 specification)
is a set of invocations that can synchronize and share data with each other efficiently.

The Subgroup Scope can be used as both an Execution Scope and Memory Scope for barrier and atomic
operations. Other subgroup features allow the use of group operations with subgroup scope.

For shaders that have defined workgroups, each invocation in a subgroup must be in the same
local workgroup.

In other shader stages, each invocation in a subgroup must be in the same device scope instance.

Only shader stages that support subgroup operations have defined subgroups.

Note

In shaders, there are two kinds of uniformity that are of primary interest to
applications: uniform within an invocation group (a.k.a. dynamically uniform),
and uniform within a subgroup scope.

While one could make the assumption that being uniform in invocation group
implies being uniform in subgroup scope, it is not necessarily the case for shader
stages without defined workgroups.

For shader stages with defined workgroups however, the relationship between
invocation group and subgroup scope is well defined as a subgroup is a subset of
the workgroup, and the workgroup is the invocation group. If a value is uniform in
invocation group, it is by definition also uniform in subgroup scope. This is
important if writing code like:

uniform texture2D Textures[];
uint dynamicallyUniformValue = gl_WorkGroupID.x;
vec4 value = texelFetch(Textures[dynamicallyUniformValue], coord, 0);

// subgroupUniformValue is guaranteed to be uniform within the
subgroup.

381

// This value also happens to be dynamically uniform.
vec4 subgroupUniformValue = subgroupBroadcastFirst
(dynamicallyUniformValue);

In shader stages without defined workgroups, this gets complicated. Due to
scoping rules, there is no guarantee that a subgroup is a subset of the invocation
group, which in turn defines the scope for dynamically uniform. In graphics, the
invocation group is a single draw command, except for multi-draw situations, and
indirect draws with drawCount > 1, where there are multiple invocation groups,
one per DrawIndex.

// Assume SubgroupSize = 8, where 3 draws are packed together.
// Two subgroups were generated.
uniform texture2D Textures[];

// DrawIndex builtin is dynamically uniform
uint dynamicallyUniformValue = gl_DrawID;
// | gl_DrawID = 0 | gl_DrawID = 1 | }
// Subgroup 0: { 0, 0, 0, 0, 1, 1, 1, 1 }
// | DrawID = 2 | DrawID = 1 | }
// Subgroup 1: { 2, 2, 2, 2, 1, 1, 1, 1 }

uint notActuallyDynamicallyUniformAnymore =
 subgroupBroadcastFirst(dynamicallyUniformValue);
// | gl_DrawID = 0 | gl_DrawID = 1 | }
// Subgroup 0: { 0, 0, 0, 0, 0, 0, 0, 0 }
// | gl_DrawID = 2 | gl_DrawID = 1 | }
// Subgroup 1: { 2, 2, 2, 2, 2, 2, 2, 2 }

// Bug. gl_DrawID = 1's invocation group observes both index 0 and 2.
vec4 value = texelFetch(Textures[notActuallyDynamicallyUniformAnymore],
 coord, 0);

Another problematic scenario is when a shader attempts to help the compiler
notice that a value is uniform in subgroup scope to potentially improve
performance.

layout(location = 0) flat in dynamicallyUniformIndex;
// Vertex shader might have emitted a value that depends only on
gl_DrawID,
// making it dynamically uniform.
// Give knowledge to compiler that the flat input is dynamically
uniform,
// as this is not a guarantee otherwise.

uint uniformIndex = subgroupBroadcastFirst(dynamicallyUniformIndex);
// Hazard: If different draw commands are packed into one subgroup, the
uniformIndex is wrong.

382

DrawData d = UBO.perDrawData[uniformIndex];

For implementations where subgroups are packed across draws, the
implementation must make sure to handle descriptor indexing correctly. From the
specification’s point of view, a dynamically uniform index does not require
NonUniform decoration, and such an implementation will likely either promote
descriptor indexing into NonUniform on its own, or handle non-uniformity
implicitly.

9.14.8. Quad

A quad scope instance is formed of four shader invocations.

In a fragment shader, each invocation in a quad scope instance is formed of invocations in
neighboring framebuffer locations (xi, yi), where:

• i is the index of the invocation within the scope instance.

• w and h are the number of pixels the fragment covers in the x and y axes.

• w and h are identical for all participating invocations.

• (x0) = (x1 - w) = (x2) = (x3 - w)

• (y0) = (y1) = (y2 - h) = (y3 - h)

• Each invocation has the same layer and sample indices.

In all shaders, each invocation in a quad scope instance is formed of invocations in adjacent
subgroup invocation indices (si), where:

• i is the index of the invocation within the quad scope instance.

• (s0) = (s1 - 1) = (s2 - 2) = (s3 - 3)

• s0 is an integer multiple of 4.

Each invocation in a quad scope instance must be in the same subgroup.

In a fragment shader, each invocation in a quad scope instance must be in the same primitive
scope instance.

Fragment and compute shaders have defined quad scope instances. If the
quadOperationsInAllStages limit is supported, any shader stages that support subgroup operations
also have defined quad scope instances.

9.14.9. Invocation

The smallest scope is a single invocation; this is represented by the Invocation Scope in SPIR-V.

Fragment shader invocations must be in a primitive scope instance.

Invocations in shaders that have defined workgroups must be in a local workgroup.

383

Invocations in shaders that have a defined subgroup scope must be in a subgroup.

Invocations in shaders that have a defined quad scope must be in a quad scope instance.

All invocations in all stages must be in a command scope instance.

9.15. Group Operations
Group operations are executed by multiple invocations within a scope instance; with each
invocation involved in calculating the result. This provides a mechanism for efficient
communication between invocations in a particular scope instance.

Group operations all take a Scope defining the desired scope instance to operate within. Only the
Subgroup scope can be used for these operations; the subgroupSupportedOperations limit defines
which types of operation can be used.

9.15.1. Basic Group Operations

Basic group operations include the use of OpGroupNonUniformElect, OpControlBarrier,
OpMemoryBarrier, and atomic operations.

OpGroupNonUniformElect can be used to choose a single invocation to perform a task for the whole
group. Only the invocation with the lowest id in the group will return true.

The Memory Model appendix defines the operation of barriers and atomics.

9.15.2. Vote Group Operations

The vote group operations allow invocations within a group to compare values across a group. The
types of votes enabled are:

• Do all active group invocations agree that an expression is true?

• Do any active group invocations evaluate an expression to true?

• Do all active group invocations have the same value of an expression?

Note

These operations are useful in combination with control flow in that they allow for
developers to check whether conditions match across the group and choose
potentially faster code-paths in these cases.

9.15.3. Arithmetic Group Operations

The arithmetic group operations allow invocations to perform scans and reductions across a group.
The operators supported are add, mul, min, max, and, or, xor.

For reductions, every invocation in a group will obtain the cumulative result of these operators
applied to all values in the group. For exclusive scans, each invocation in a group will obtain the
cumulative result of these operators applied to all values in invocations with a lower index in the

384

group. Inclusive scans are identical to exclusive scans, except the cumulative result includes the
operator applied to the value in the current invocation.

The order in which these operators are applied is implementation-dependent.

9.15.4. Ballot Group Operations

The ballot group operations allow invocations to perform more complex votes across the group.
The ballot functionality allows all invocations within a group to provide a boolean value and get as
a result what each invocation provided as their boolean value. The broadcast functionality allows
values to be broadcast from an invocation to all other invocations within the group.

9.15.5. Shuffle Group Operations

The shuffle group operations allow invocations to read values from other invocations within a
group.

9.15.6. Shuffle Relative Group Operations

The shuffle relative group operations allow invocations to read values from other invocations
within the group relative to the current invocation in the group. The relative operations supported
allow data to be shifted up and down through the invocations within a group.

9.15.7. Clustered Group Operations

The clustered group operations allow invocations to perform an operation among partitions of a
group, such that the operation is only performed within the group invocations within a partition.
The partitions for clustered group operations are consecutive power-of-two size groups of
invocations and the cluster size must be known at pipeline creation time. The operations supported
are add, mul, min, max, and, or, xor.

9.16. Quad Group Operations
Quad group operations (OpGroupNonUniformQuad*) are a specialized type of group operations that
only operate on quad scope instances. Whilst these instructions do include a Scope parameter, this
scope is always overridden; only the quad scope instance is included in its execution scope.

Fragment shaders that statically execute either OpGroupNonUniformQuadBroadcast or
OpGroupNonUniformQuadSwap must launch sufficient invocations to ensure their correct operation;
additional helper invocations are launched for framebuffer locations not covered by rasterized
fragments if necessary.

The index used to select participating invocations is i, as described for a quad scope instance,
defined as the quad index in the SPIR-V specification.

For OpGroupNonUniformQuadBroadcast this value is equal to Index. For OpGroupNonUniformQuadSwap, it is
equal to the implicit Index used by each participating invocation.

385

9.17. Derivative Operations
Derivative operations calculate the partial derivative for an expression P as a function of an
invocation’s x and y coordinates.

Derivative operations operate on a set of invocations known as a derivative group as defined in the
SPIR-V specification.

A derivative group in a fragment shader is equivalent to the primitive scope instance.

Derivatives are calculated assuming that P is piecewise linear and continuous within the derivative
group.

The following control-flow restrictions apply to derivative operations:

• dynamic instances of explicit derivative instructions (OpDPdx*, OpDPdy*, and OpFwidth*) must be
executed in control flow that is uniform within a derivative group.

• dynamic instances of implicit derivative operations can be executed in control flow that is not
uniform within the derivative group, but results are undefined.

Fragment shaders that statically execute derivative operations must launch sufficient invocations
to ensure their correct operation; additional helper invocations are launched for framebuffer
locations not covered by rasterized fragments if necessary.

Derivative operations calculate their results as the difference between the result of P across
invocations in the quad. For fine derivative operations (OpDPdxFine and OpDPdyFine), the values of
DPdx(Pi) are calculated as

DPdx(P0) = DPdx(P1) = P1 - P0

DPdx(P2) = DPdx(P3) = P3 - P2

and the values of DPdy(Pi) are calculated as

DPdy(P0) = DPdy(P2) = P2 - P0

DPdy(P1) = DPdy(P3) = P3 - P1

where i is the index of each invocation as described in Quad.

Coarse derivative operations (OpDPdxCoarse and OpDPdyCoarse), calculate their results in roughly the
same manner, but may only calculate two values instead of four (one for each of DPdx and DPdy),
reusing the same result no matter the originating invocation. If an implementation does this, it
should use the fine derivative calculations described for P0.

 Note

386

Derivative values are calculated between fragments rather than pixels. If the
fragment shader invocations involved in the calculation cover multiple pixels,
these operations cover a wider area, resulting in larger derivative values. This in
turn will result in a coarser LOD being selected for image sampling operations
using derivatives.

Applications may want to account for this when using multi-pixel fragments; if
pixel derivatives are desired, applications should use explicit derivative operations
and divide the results by the size of the fragment in each dimension as follows:

DPdx(Pn)' = DPdx(Pn) / w

DPdy(Pn)' = DPdy(Pn) / h

where w and h are the size of the fragments in the quad, and DPdx(Pn)' and
DPdy(Pn)' are the pixel derivatives.

The results for OpDPdx and OpDPdy may be calculated as either fine or coarse derivatives, with
implementations favouring the most efficient approach. Implementations must choose coarse or
fine consistently between the two.

Executing OpFwidthFine, OpFwidthCoarse, or OpFwidth is equivalent to executing the corresponding
OpDPdx* and OpDPdy* instructions, taking the absolute value of the results, and summing them.

Executing an OpImage*Sample*ImplicitLod instruction is equivalent to executing OpDPdx(Coordinate)
and OpDPdy(Coordinate), and passing the results as the Grad operands dx and dy.

Note

It is expected that using the ImplicitLod variants of sampling functions will be
substantially more efficient than using the ExplicitLod variants with explicitly
generated derivatives.

9.18. Helper Invocations
When performing derivative or quad group operations in a fragment shader, additional
invocations may be spawned in order to ensure correct results. These additional invocations are
known as helper invocations and can be identified by a non-zero value in the HelperInvocation
built-in. Stores and atomics performed by helper invocations must not have any effect on memory
except for the Function, Private and Output storage classes, and values returned by atomic
instructions in helper invocations are undefined.

Note

While storage to Output storage class has an effect even in helper invocations, it
does not mean that helper invocations have an effect on the framebuffer. Output
variables in fragment shaders can be read from as well, and they behave more like

387

Private variables for the duration of the shader invocation.

Helper invocations may be considered inactive for group operations other than derivative and
quad group operations. All invocations in a quad scope instance may become permanently inactive
at any point once the only remaining invocations in that quad scope instance are helper
invocations.

388

Chapter 10. Pipelines
The following figure shows a block diagram of the Vulkan pipelines. Some Vulkan commands
specify geometric objects to be drawn or computational work to be performed, while others specify
state controlling how objects are handled by the various pipeline stages, or control data transfer
between memory organized as images and buffers. Commands are effectively sent through a
processing pipeline, either a graphics pipeline, or a compute pipeline.

The first stage of the graphics pipeline (Input Assembler) assembles vertices to form geometric
primitives such as points, lines, and triangles, based on a requested primitive topology. In the next
stage (Vertex Shader) vertices can be transformed, computing positions and attributes for each
vertex. If tessellation and/or geometry shaders are supported, they can then generate multiple
primitives from a single input primitive, possibly changing the primitive topology or generating
additional attribute data in the process.

The final resulting primitives are clipped to a clip volume in preparation for the next stage,
Rasterization. The rasterizer produces a series of fragments associated with a region of the
framebuffer, from a two-dimensional description of a point, line segment, or triangle. These
fragments are processed by fragment operations to determine whether generated values will be
written to the framebuffer. Fragment shading determines the values to be written to the
framebuffer attachments. Framebuffer operations then read and write the color and depth/stencil
attachments of the framebuffer for a given subpass of a render pass instance. The attachments can
be used as input attachments in the fragment shader in a later subpass of the same render pass.

The compute pipeline is a separate pipeline from the graphics pipeline, which operates on one-,
two-, or three-dimensional workgroups which can read from and write to buffer and image
memory.

This ordering is meant only as a tool for describing Vulkan, not as a strict rule of how Vulkan is
implemented, and we present it only as a means to organize the various operations of the pipelines.
Actual ordering guarantees between pipeline stages are explained in detail in the synchronization
chapter.

389

Vertex Shader

Draw

Input Assembler

Tessellation Control Shader

Tessellation Primitive Generator

Tessellation Evaluation Shader

Rasterization

Indirect Buffer

Descriptor Sets

Legend

Geometry Shader

Vertex Post-Processing

Early Per-Fragment Tests

Fragment Shader

Late Per-Fragment Tests

Blending

Index Buffer

Vertex Buffers

Push Constants

Uniform Buffers

Uniform Texel Buffers
Sampled Images

Storage Buffers

Storage Texel Buffers

Storage Images

Compute Shader

Dispatch

Depth/Stencil Attachments

Input Attachments

Color Attachments

Fixed Function Stage

Shader Stage

Resource

Figure 2. Block diagram of the Vulkan pipeline

Each pipeline is controlled by a monolithic object created from a description of all of the shader
stages and any relevant fixed-function stages. Linking the whole pipeline together allows the
optimization of shaders based on their input/outputs and eliminates expensive draw time state
validation.

A pipeline object is bound to the current state using vkCmdBindPipeline. Any pipeline object state
that is specified as dynamic is not applied to the current state when the pipeline object is bound,
but is instead set by dynamic state setting commands.

No state, including dynamic state, is inherited from one command buffer to another.

Compute, and graphics pipelines are each represented by VkPipeline handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipeline)

10.1. Multiple Pipeline Creation
Multiple pipelines can be created in a single call by commands such as vkCreateComputePipelines,
and vkCreateGraphicsPipelines.

The creation commands are passed an array pCreateInfos of Vk*PipelineCreateInfo structures
specifying parameters of each pipeline to be created, and return a corresponding array of handles
in pPipelines. Each element index i of pPipelines is created based on the corresponding element i of
pCreateInfos.

Applications can group together similar pipelines to be created in a single call, and
implementations are encouraged to look for reuse opportunities when creating a group.

390

When attempting to create many pipelines in a single command, it is possible that creation may fail
for a subset of them. In this case, the corresponding elements of pPipelines will be set to
VK_NULL_HANDLE. If creation fails for a pipeline despite valid arguments (for example, due to out
of memory errors), the VkResult code returned by the pipeline creation command will indicate why.
The implementation will attempt to create all pipelines, and only return VK_NULL_HANDLE values
for those that actually failed.

If creation fails for a pipeline that has the VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT set in its
Vk*PipelineCreateInfo, pipelines at an index in the pPipelines array greater than or equal to that of
the failing pipeline will be set to VK_NULL_HANDLE.

If creation fails for multiple pipelines, the returned VkResult must be the return value of any one of
the pipelines which did not succeed. An application can reliably clean up from a failed call by
iterating over the pPipelines array and destroying every element that is not VK_NULL_HANDLE.

If the entire command fails and no pipelines are created, all elements of pPipelines will be set to
VK_NULL_HANDLE.

10.2. Compute Pipelines
Compute pipelines consist of a single static compute shader stage and the pipeline layout.

The compute pipeline represents a compute shader and is created by calling
vkCreateComputePipelines with module and pName selecting an entry point from a shader module,
where that entry point defines a valid compute shader, in the VkPipelineShaderStageCreateInfo
structure contained within the VkComputePipelineCreateInfo structure.

To create compute pipelines, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateComputePipelines(
 VkDevice device,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkComputePipelineCreateInfo* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

• device is the logical device that creates the compute pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the
handle of a valid pipeline cache object, in which case use of that cache is enabled for the
duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

• pCreateInfos is a pointer to an array of VkComputePipelineCreateInfo structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array of VkPipeline handles in which the resulting compute

391

pipeline objects are returned.

Pipelines are created and returned as described for Multiple Pipeline Creation.

Valid Usage

• VUID-vkCreateComputePipelines-flags-00695
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same
element is not -1, basePipelineIndex must be less than the index into pCreateInfos that
corresponds to that element

• VUID-vkCreateComputePipelines-flags-00696
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with
the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

• VUID-vkCreateComputePipelines-pipelineCache-02873
If pipelineCache was created with VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT,
host access to pipelineCache must be externally synchronized

Valid Usage (Implicit)

• VUID-vkCreateComputePipelines-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateComputePipelines-pipelineCache-parameter
If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

• VUID-vkCreateComputePipelines-pCreateInfos-parameter
pCreateInfos must be a valid pointer to an array of createInfoCount valid
VkComputePipelineCreateInfo structures

• VUID-vkCreateComputePipelines-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateComputePipelines-pPipelines-parameter
pPipelines must be a valid pointer to an array of createInfoCount VkPipeline handles

• VUID-vkCreateComputePipelines-createInfoCount-arraylength
createInfoCount must be greater than 0

• VUID-vkCreateComputePipelines-pipelineCache-parent
If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

392

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkComputePipelineCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkComputePipelineCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 VkPipelineShaderStageCreateInfo stage;
 VkPipelineLayout layout;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkComputePipelineCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.

• stage is a VkPipelineShaderStageCreateInfo structure describing the compute shader.

• layout is the description of binding locations used by both the pipeline and descriptor sets used
with the pipeline.

• basePipelineHandle is a pipeline to derive from.

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive
from.

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline
Derivatives.

Valid Usage

• VUID-VkComputePipelineCreateInfo-None-09497
flags must be a valid combination of VkPipelineCreateFlagBits values

• VUID-VkComputePipelineCreateInfo-flags-07984
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,
basePipelineHandle must be a valid compute VkPipeline handle

• VUID-VkComputePipelineCreateInfo-flags-07985

393

If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is
VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s
pCreateInfos parameter

• VUID-VkComputePipelineCreateInfo-flags-07986
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, basePipelineIndex must be -1
or basePipelineHandle must be VK_NULL_HANDLE

• VUID-VkComputePipelineCreateInfo-layout-07987
If a push constant block is declared in a shader, a push constant range in layout must
match both the shader stage and range

• VUID-VkComputePipelineCreateInfo-layout-07988
If a resource variables is declared in a shader, a descriptor slot in layout must match the
shader stage

• VUID-VkComputePipelineCreateInfo-layout-07990
If a resource variables is declared in a shader, a descriptor slot in layout must match the
descriptor type

• VUID-VkComputePipelineCreateInfo-layout-07991
If a resource variables is declared in a shader as an array, a descriptor slot in layout must
match the descriptor count

• VUID-VkComputePipelineCreateInfo-pipelineCreationCacheControl-02875
If the pipelineCreationCacheControl feature is not enabled, flags must not include
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT or
VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

• VUID-VkComputePipelineCreateInfo-stage-00701
The stage member of stage must be VK_SHADER_STAGE_COMPUTE_BIT

• VUID-VkComputePipelineCreateInfo-stage-00702
The shader code for the entry point identified by stage and the rest of the state identified
by this structure must adhere to the pipeline linking rules described in the Shader
Interfaces chapter

• VUID-VkComputePipelineCreateInfo-layout-01687
The number of resources in layout accessible to the compute shader stage must be less
than or equal to VkPhysicalDeviceLimits::maxPerStageResources

• VUID-VkComputePipelineCreateInfo-pipelineStageCreationFeedbackCount-06566
If VkPipelineCreationFeedbackCreateInfo::pipelineStageCreationFeedbackCount is not 0, it
must be 1

Valid Usage (Implicit)

• VUID-VkComputePipelineCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO

• VUID-VkComputePipelineCreateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkPipelineCreationFeedbackCreateInfo

394

• VUID-VkComputePipelineCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkComputePipelineCreateInfo-stage-parameter
stage must be a valid VkPipelineShaderStageCreateInfo structure

• VUID-VkComputePipelineCreateInfo-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-VkComputePipelineCreateInfo-commonparent
Both of basePipelineHandle, and layout that are valid handles of non-ignored parameters
must have been created, allocated, or retrieved from the same VkDevice

The VkPipelineShaderStageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineShaderStageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineShaderStageCreateFlags flags;
 VkShaderStageFlagBits stage;
 VkShaderModule module;
 const char* pName;
 const VkSpecializationInfo* pSpecializationInfo;
} VkPipelineShaderStageCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineShaderStageCreateFlagBits specifying how the pipeline shader
stage will be generated.

• stage is a VkShaderStageFlagBits value specifying a single pipeline stage.

• module is a VkShaderModule object containing the shader code for this stage.

• pName is a pointer to a null-terminated UTF-8 string specifying the entry point name of the
shader for this stage.

• pSpecializationInfo is a pointer to a VkSpecializationInfo structure, as described in
Specialization Constants, or NULL.

The shader code used by the pipeline is defined by module.

Valid Usage

• VUID-VkPipelineShaderStageCreateInfo-stage-00704
If the geometryShader feature is not enabled, stage must not be
VK_SHADER_STAGE_GEOMETRY_BIT

• VUID-VkPipelineShaderStageCreateInfo-stage-00705
If the tessellationShader feature is not enabled, stage must not be

395

VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• VUID-VkPipelineShaderStageCreateInfo-stage-00706
stage must not be VK_SHADER_STAGE_ALL_GRAPHICS, or VK_SHADER_STAGE_ALL

• VUID-VkPipelineShaderStageCreateInfo-pName-00707
pName must be the name of an OpEntryPoint in module with an execution model that
matches stage

• VUID-VkPipelineShaderStageCreateInfo-maxClipDistances-00708
If the identified entry point includes any variable in its interface that is declared with the
ClipDistance BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDeviceLimits::maxClipDistances

• VUID-VkPipelineShaderStageCreateInfo-maxCullDistances-00709
If the identified entry point includes any variable in its interface that is declared with the
CullDistance BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDeviceLimits::maxCullDistances

• VUID-VkPipelineShaderStageCreateInfo-maxCombinedClipAndCullDistances-00710
If the identified entry point includes variables in its interface that are declared with the
ClipDistance BuiltIn decoration and variables in its interface that are declared with the
CullDistance BuiltIn decoration, those variables must not have array sizes which sum to
more than VkPhysicalDeviceLimits::maxCombinedClipAndCullDistances

• VUID-VkPipelineShaderStageCreateInfo-maxSampleMaskWords-00711
If the identified entry point includes any variable in its interface that is declared with the
SampleMask BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDeviceLimits::maxSampleMaskWords

• VUID-VkPipelineShaderStageCreateInfo-stage-00713
If stage is VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, and the identified entry point has an
OpExecutionMode instruction specifying a patch size with OutputVertices, the patch size
must be greater than 0 and less than or equal to VkPhysicalDeviceLimits
::maxTessellationPatchSize

• VUID-VkPipelineShaderStageCreateInfo-stage-00714
If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction specifying a maximum output vertex count that is greater
than 0 and less than or equal to VkPhysicalDeviceLimits::maxGeometryOutputVertices

• VUID-VkPipelineShaderStageCreateInfo-stage-00715
If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction specifying an invocation count that is greater than 0 and less
than or equal to VkPhysicalDeviceLimits::maxGeometryShaderInvocations

• VUID-VkPipelineShaderStageCreateInfo-stage-02596
If stage is either VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, or VK_SHADER_STAGE_GEOMETRY_BIT, and the
identified entry point writes to Layer for any primitive, it must write the same value to
Layer for all vertices of a given primitive

396

• VUID-VkPipelineShaderStageCreateInfo-stage-02597
If stage is either VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, or VK_SHADER_STAGE_GEOMETRY_BIT, and the
identified entry point writes to ViewportIndex for any primitive, it must write the same
value to ViewportIndex for all vertices of a given primitive

• VUID-VkPipelineShaderStageCreateInfo-stage-06685
If stage is VK_SHADER_STAGE_FRAGMENT_BIT, and the identified entry point writes to FragDepth
in any execution path, all execution paths that are not exclusive to helper invocations
must either discard the fragment, or write or initialize the value of FragDepth

• VUID-VkPipelineShaderStageCreateInfo-flags-02784
If flags has the VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag set,
the subgroupSizeControl feature must be enabled

• VUID-VkPipelineShaderStageCreateInfo-flags-02785
If flags has the VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag set, the
computeFullSubgroups feature must be enabled

• VUID-VkPipelineShaderStageCreateInfo-flags-08988
If flags includes VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT, stage must
be VK_SHADER_STAGE_COMPUTE_BIT

• VUID-VkPipelineShaderStageCreateInfo-pNext-02754
If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the
pNext chain, flags must not have the
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag set

• VUID-VkPipelineShaderStageCreateInfo-pNext-02755
If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the
pNext chain, the subgroupSizeControl feature must be enabled, and stage must be a valid
bit specified in requiredSubgroupSizeStages

• VUID-VkPipelineShaderStageCreateInfo-pNext-02756
If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the
pNext chain and stage is VK_SHADER_STAGE_COMPUTE_BIT, the local workgroup size of the
shader must be less than or equal to the product of
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo::requiredSubgroupSize and
maxComputeWorkgroupSubgroups

• VUID-VkPipelineShaderStageCreateInfo-pNext-02757
If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the
pNext chain, and flags has the
VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag set, the local workgroup
size in the X dimension of the pipeline must be a multiple of
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo::requiredSubgroupSize

• VUID-VkPipelineShaderStageCreateInfo-flags-02758
If flags has both the VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT and
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flags set, the local
workgroup size in the X dimension of the pipeline must be a multiple of maxSubgroupSize

• VUID-VkPipelineShaderStageCreateInfo-flags-02759
If flags has the VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag set and

397

flags does not have the VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT
flag set and no VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is
included in the pNext chain, the local workgroup size in the X dimension of the pipeline
must be a multiple of subgroupSize

• VUID-VkPipelineShaderStageCreateInfo-stage-08771
module must be a valid VkShaderModule

• VUID-VkPipelineShaderStageCreateInfo-pSpecializationInfo-06849
The shader code used by the pipeline must be valid as described by the Khronos SPIR-V
Specification after applying the specializations provided in pSpecializationInfo, if any,
and then converting all specialization constants into fixed constants

Valid Usage (Implicit)

• VUID-VkPipelineShaderStageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO

• VUID-VkPipelineShaderStageCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo or VkShaderModuleCreateInfo

• VUID-VkPipelineShaderStageCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPipelineShaderStageCreateInfo-flags-parameter
flags must be a valid combination of VkPipelineShaderStageCreateFlagBits values

• VUID-VkPipelineShaderStageCreateInfo-stage-parameter
stage must be a valid VkShaderStageFlagBits value

• VUID-VkPipelineShaderStageCreateInfo-module-parameter
If module is not VK_NULL_HANDLE, module must be a valid VkShaderModule handle

• VUID-VkPipelineShaderStageCreateInfo-pName-parameter
pName must be a null-terminated UTF-8 string

• VUID-VkPipelineShaderStageCreateInfo-pSpecializationInfo-parameter
If pSpecializationInfo is not NULL, pSpecializationInfo must be a valid pointer to a valid
VkSpecializationInfo structure

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineShaderStageCreateFlags;

VkPipelineShaderStageCreateFlags is a bitmask type for setting a mask of zero or more
VkPipelineShaderStageCreateFlagBits.

Possible values of the flags member of VkPipelineShaderStageCreateInfo specifying how a pipeline
shader stage is created, are:

398

// Provided by VK_VERSION_1_0
typedef enum VkPipelineShaderStageCreateFlagBits {
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT = 0x00000001,
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT = 0x00000002,
} VkPipelineShaderStageCreateFlagBits;

• VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT specifies that the
SubgroupSize may vary in the shader stage.

• VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT specifies that the subgroup sizes
must be launched with all invocations active in the compute stage.

Note

If VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT and
VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT are specified and
minSubgroupSize does not equal maxSubgroupSize and no required subgroup size is
specified, then the only way to guarantee that the 'X' dimension of the local
workgroup size is a multiple of SubgroupSize is to make it a multiple of
maxSubgroupSize. Under these conditions, you are guaranteed full subgroups but
not any particular subgroup size.

Bits which can be set by commands and structures, specifying one or more shader stages, are:

// Provided by VK_VERSION_1_0
typedef enum VkShaderStageFlagBits {
 VK_SHADER_STAGE_VERTEX_BIT = 0x00000001,
 VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT = 0x00000002,
 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT = 0x00000004,
 VK_SHADER_STAGE_GEOMETRY_BIT = 0x00000008,
 VK_SHADER_STAGE_FRAGMENT_BIT = 0x00000010,
 VK_SHADER_STAGE_COMPUTE_BIT = 0x00000020,
 VK_SHADER_STAGE_ALL_GRAPHICS = 0x0000001F,
 VK_SHADER_STAGE_ALL = 0x7FFFFFFF,
} VkShaderStageFlagBits;

• VK_SHADER_STAGE_VERTEX_BIT specifies the vertex stage.

• VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT specifies the tessellation control stage.

• VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT specifies the tessellation evaluation stage.

• VK_SHADER_STAGE_GEOMETRY_BIT specifies the geometry stage.

• VK_SHADER_STAGE_FRAGMENT_BIT specifies the fragment stage.

• VK_SHADER_STAGE_COMPUTE_BIT specifies the compute stage.

• VK_SHADER_STAGE_ALL_GRAPHICS is a combination of bits used as shorthand to specify all graphics
stages defined above (excluding the compute stage).

399

• VK_SHADER_STAGE_ALL is a combination of bits used as shorthand to specify all shader stages
supported by the device, including all additional stages which are introduced by extensions.

Note

VK_SHADER_STAGE_ALL_GRAPHICS only includes the original five graphics stages
included in Vulkan 1.0, and not any stages added by extensions. Thus, it may not
have the desired effect in all cases.

// Provided by VK_VERSION_1_0
typedef VkFlags VkShaderStageFlags;

VkShaderStageFlags is a bitmask type for setting a mask of zero or more VkShaderStageFlagBits.

The VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPipelineShaderStageRequiredSubgroupSizeCreateInfo {
 VkStructureType sType;
 void* pNext;
 uint32_t requiredSubgroupSize;
} VkPipelineShaderStageRequiredSubgroupSizeCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• requiredSubgroupSize is an unsigned integer value specifying the required subgroup size for the
newly created pipeline shader stage.

If a VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure is included in the pNext chain of
VkPipelineShaderStageCreateInfo, it specifies that the pipeline shader stage being compiled has a
required subgroup size.

Valid Usage

• VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-requiredSubgroupSize-
02760
requiredSubgroupSize must be a power-of-two integer

• VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-requiredSubgroupSize-
02761
requiredSubgroupSize must be greater or equal to minSubgroupSize

• VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-requiredSubgroupSize-
02762
requiredSubgroupSize must be less than or equal to maxSubgroupSize

400

Valid Usage (Implicit)

• VUID-VkPipelineShaderStageRequiredSubgroupSizeCreateInfo-sType-sType
sType must be
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO

10.3. Graphics Pipelines
Graphics pipelines consist of multiple shader stages, multiple fixed-function pipeline stages, and a
pipeline layout.

To create graphics pipelines, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateGraphicsPipelines(
 VkDevice device,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkGraphicsPipelineCreateInfo* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

• device is the logical device that creates the graphics pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the
handle of a valid pipeline cache object, in which case use of that cache is enabled for the
duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

• pCreateInfos is a pointer to an array of VkGraphicsPipelineCreateInfo structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array of VkPipeline handles in which the resulting graphics
pipeline objects are returned.

The VkGraphicsPipelineCreateInfo structure includes an array of VkPipelineShaderStageCreateInfo
structures for each of the desired active shader stages, as well as creation information for all
relevant fixed-function stages, and a pipeline layout.

Pipelines are created and returned as described for Multiple Pipeline Creation.

Valid Usage

• VUID-vkCreateGraphicsPipelines-flags-00720
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same
element is not -1, basePipelineIndex must be less than the index into pCreateInfos that

401

corresponds to that element

• VUID-vkCreateGraphicsPipelines-flags-00721
If the flags member of any element of pCreateInfos contains the
VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, the base pipeline must have been created with
the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag set

• VUID-vkCreateGraphicsPipelines-pipelineCache-02876
If pipelineCache was created with VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT,
host access to pipelineCache must be externally synchronized

Note

An implicit cache may be provided by the implementation or a layer. For this
reason, it is still valid to set
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT on flags for any
element of pCreateInfos while passing VK_NULL_HANDLE for pipelineCache.

Valid Usage (Implicit)

• VUID-vkCreateGraphicsPipelines-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateGraphicsPipelines-pipelineCache-parameter
If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

• VUID-vkCreateGraphicsPipelines-pCreateInfos-parameter
pCreateInfos must be a valid pointer to an array of createInfoCount valid
VkGraphicsPipelineCreateInfo structures

• VUID-vkCreateGraphicsPipelines-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateGraphicsPipelines-pPipelines-parameter
pPipelines must be a valid pointer to an array of createInfoCount VkPipeline handles

• VUID-vkCreateGraphicsPipelines-createInfoCount-arraylength
createInfoCount must be greater than 0

• VUID-vkCreateGraphicsPipelines-pipelineCache-parent
If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

Return Codes

Success

• VK_SUCCESS

402

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkGraphicsPipelineCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkGraphicsPipelineCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 uint32_t stageCount;
 const VkPipelineShaderStageCreateInfo* pStages;
 const VkPipelineVertexInputStateCreateInfo* pVertexInputState;
 const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
 const VkPipelineTessellationStateCreateInfo* pTessellationState;
 const VkPipelineViewportStateCreateInfo* pViewportState;
 const VkPipelineRasterizationStateCreateInfo* pRasterizationState;
 const VkPipelineMultisampleStateCreateInfo* pMultisampleState;
 const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;
 const VkPipelineColorBlendStateCreateInfo* pColorBlendState;
 const VkPipelineDynamicStateCreateInfo* pDynamicState;
 VkPipelineLayout layout;
 VkRenderPass renderPass;
 uint32_t subpass;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkGraphicsPipelineCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCreateFlagBits specifying how the pipeline will be generated.

• stageCount is the number of entries in the pStages array.

• pStages is a pointer to an array of stageCount VkPipelineShaderStageCreateInfo structures
describing the set of the shader stages to be included in the graphics pipeline.

• pVertexInputState is a pointer to a VkPipelineVertexInputStateCreateInfo structure.

• pInputAssemblyState is a pointer to a VkPipelineInputAssemblyStateCreateInfo structure which
determines input assembly behavior for vertex shading, as described in Drawing Commands.

• pTessellationState is a pointer to a VkPipelineTessellationStateCreateInfo structure defining
tessellation state used by tessellation shaders.

• pViewportState is a pointer to a VkPipelineViewportStateCreateInfo structure defining viewport
state used when rasterization is enabled.

• pRasterizationState is a pointer to a VkPipelineRasterizationStateCreateInfo structure defining
rasterization state.

403

• pMultisampleState is a pointer to a VkPipelineMultisampleStateCreateInfo structure defining
multisample state used when rasterization is enabled.

• pDepthStencilState is a pointer to a VkPipelineDepthStencilStateCreateInfo structure defining
depth/stencil state used when rasterization is enabled for depth or stencil attachments accessed
during rendering.

• pColorBlendState is a pointer to a VkPipelineColorBlendStateCreateInfo structure defining color
blend state used when rasterization is enabled for any color attachments accessed during
rendering.

• pDynamicState is a pointer to a VkPipelineDynamicStateCreateInfo structure defining which
properties of the pipeline state object are dynamic and can be changed independently of the
pipeline state. This can be NULL, which means no state in the pipeline is considered dynamic.

• layout is the description of binding locations used by both the pipeline and descriptor sets used
with the pipeline.

• renderPass is a handle to a render pass object describing the environment in which the pipeline
will be used. The pipeline must only be used with a render pass instance compatible with the
one provided. See Render Pass Compatibility for more information.

• subpass is the index of the subpass in the render pass where this pipeline will be used.

• basePipelineHandle is a pipeline to derive from.

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive
from.

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline
Derivatives.

The state required for a graphics pipeline is divided into vertex input state, pre-rasterization shader
state, fragment shader state, and fragment output state.

Vertex Input State

Vertex input state is defined by:

• VkPipelineVertexInputStateCreateInfo

• VkPipelineInputAssemblyStateCreateInfo

This state must be specified to create a complete graphics pipeline.

Pre-Rasterization Shader State

Pre-rasterization shader state is defined by:

• VkPipelineShaderStageCreateInfo entries for:

◦ Vertex shaders

◦ Tessellation control shaders

◦ Tessellation evaluation shaders

◦ Geometry shaders

• Within the VkPipelineLayout, the full pipeline layout must be specified.

404

• VkPipelineViewportStateCreateInfo

• VkPipelineRasterizationStateCreateInfo

• VkPipelineTessellationStateCreateInfo

• VkRenderPass and subpass parameter

• The viewMask parameter of VkPipelineRenderingCreateInfo (formats are ignored)

This state must be specified to create a complete graphics pipeline.

Fragment Shader State

Fragment shader state is defined by:

• A VkPipelineShaderStageCreateInfo entry for the fragment shader

• Within the VkPipelineLayout, the full pipeline layout must be specified.

• VkPipelineMultisampleStateCreateInfo if sample shading is enabled or renderpass is not
VK_NULL_HANDLE

• VkPipelineDepthStencilStateCreateInfo

• VkRenderPass and subpass parameter

• The viewMask parameter of VkPipelineRenderingCreateInfo (formats are ignored)

If rasterizerDiscardEnable is set to VK_FALSE or VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE is used,
this state must be specified to create a complete graphics pipeline.

Fragment Output State

Fragment output state is defined by:

• VkPipelineColorBlendStateCreateInfo

• VkRenderPass and subpass parameter

• VkPipelineMultisampleStateCreateInfo

• VkPipelineRenderingCreateInfo

If rasterizerDiscardEnable is set to VK_FALSE or VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE is used,
this state must be specified to create a complete graphics pipeline.

Dynamic State

Dynamic state values set via pDynamicState must be ignored if the state they correspond to is not
otherwise statically set by one of the state subsets used to create the pipeline. For example, if a
pipeline only included pre-rasterization shader state, then any dynamic state value corresponding
to depth or stencil testing has no effect.

Complete Graphics Pipelines

A complete graphics pipeline always includes pre-rasterization shader state, with other subsets
included depending on that state as specified in the above sections.

405

Valid Usage

• VUID-VkGraphicsPipelineCreateInfo-None-09497
flags must be a valid combination of VkPipelineCreateFlagBits values

• VUID-VkGraphicsPipelineCreateInfo-flags-07984
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is -1,
basePipelineHandle must be a valid graphics VkPipeline handle

• VUID-VkGraphicsPipelineCreateInfo-flags-07985
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is
VK_NULL_HANDLE, basePipelineIndex must be a valid index into the calling command’s
pCreateInfos parameter

• VUID-VkGraphicsPipelineCreateInfo-flags-07986
If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, basePipelineIndex must be -1
or basePipelineHandle must be VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-layout-07987
If a push constant block is declared in a shader, a push constant range in layout must
match both the shader stage and range

• VUID-VkGraphicsPipelineCreateInfo-layout-07988
If a resource variables is declared in a shader, a descriptor slot in layout must match the
shader stage

• VUID-VkGraphicsPipelineCreateInfo-layout-07990
If a resource variables is declared in a shader, a descriptor slot in layout must match the
descriptor type

• VUID-VkGraphicsPipelineCreateInfo-layout-07991
If a resource variables is declared in a shader as an array, a descriptor slot in layout must
match the descriptor count

• VUID-VkGraphicsPipelineCreateInfo-stage-02096
If the pipeline requires pre-rasterization shader state the stage member of one element of
pStages must be VK_SHADER_STAGE_VERTEX_BIT

• VUID-VkGraphicsPipelineCreateInfo-pStages-00729
If the pipeline requires pre-rasterization shader state and pStages includes a tessellation
control shader stage, it must include a tessellation evaluation shader stage

• VUID-VkGraphicsPipelineCreateInfo-pStages-00730
If the pipeline requires pre-rasterization shader state and pStages includes a tessellation
evaluation shader stage, it must include a tessellation control shader stage

• VUID-VkGraphicsPipelineCreateInfo-pStages-09022
If the pipeline requires pre-rasterization shader state and pStages includes a tessellation
control shader stage, pTessellationState must be a valid pointer to a valid
VkPipelineTessellationStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pStages-00732
If the pipeline requires pre-rasterization shader state and pStages includes tessellation
shader stages, the shader code of at least one stage must contain an OpExecutionMode

406

instruction specifying the type of subdivision in the pipeline

• VUID-VkGraphicsPipelineCreateInfo-pStages-00733
If the pipeline requires pre-rasterization shader state and pStages includes tessellation
shader stages, and the shader code of both stages contain an OpExecutionMode instruction
specifying the type of subdivision in the pipeline, they must both specify the same
subdivision mode

• VUID-VkGraphicsPipelineCreateInfo-pStages-00734
If the pipeline requires pre-rasterization shader state and pStages includes tessellation
shader stages, the shader code of at least one stage must contain an OpExecutionMode
instruction specifying the output patch size in the pipeline

• VUID-VkGraphicsPipelineCreateInfo-pStages-00735
If the pipeline requires pre-rasterization shader state and pStages includes tessellation
shader stages, and the shader code of both contain an OpExecutionMode instruction
specifying the out patch size in the pipeline, they must both specify the same patch size

• VUID-VkGraphicsPipelineCreateInfo-pStages-08888
If the pipeline is being created with pre-rasterization shader state and vertex input state
and pStages includes tessellation shader stages, the topology member of pInputAssembly
must be VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

• VUID-VkGraphicsPipelineCreateInfo-topology-08889
If the pipeline is being created with pre-rasterization shader state and vertex input state
and the topology member of pInputAssembly is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, then
pStages must include tessellation shader stages

• VUID-VkGraphicsPipelineCreateInfo-TessellationEvaluation-07723
If the pipeline is being created with a TessellationEvaluation Execution Model, no Geometry
Execution Model, uses the PointMode Execution Mode, and
shaderTessellationAndGeometryPointSize is enabled, a PointSize decorated variable must
be written to

• VUID-VkGraphicsPipelineCreateInfo-topology-08773
If the pipeline is being created with a Vertex Execution Model and no
TessellationEvaluation or Geometry Execution Model, and the topology member of
pInputAssembly is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, a PointSize decorated variable must
be written to

• VUID-VkGraphicsPipelineCreateInfo-TessellationEvaluation-07724
If the pipeline is being created with a TessellationEvaluation Execution Model, no Geometry
Execution Model, uses the PointMode Execution Mode, and
shaderTessellationAndGeometryPointSize is not enabled, a PointSize decorated variable
must not be written to

• VUID-VkGraphicsPipelineCreateInfo-shaderTessellationAndGeometryPointSize-08776
If the pipeline is being created with a Geometry Execution Model, uses the OutputPoints
Execution Mode, and shaderTessellationAndGeometryPointSize is enabled, a PointSize
decorated variable must be written to for every vertex emitted

• VUID-VkGraphicsPipelineCreateInfo-Geometry-07726
If the pipeline is being created with a Geometry Execution Model, uses the OutputPoints
Execution Mode, and shaderTessellationAndGeometryPointSize is not enabled, a PointSize

407

decorated variable must not be written to

• VUID-VkGraphicsPipelineCreateInfo-pStages-00738
If the pipeline requires pre-rasterization shader state and pStages includes a geometry
shader stage, and does not include any tessellation shader stages, its shader code must
contain an OpExecutionMode instruction specifying an input primitive type that is
compatible with the primitive topology specified in pInputAssembly

• VUID-VkGraphicsPipelineCreateInfo-pStages-00739
If the pipeline requires pre-rasterization shader state and pStages includes a geometry
shader stage, and also includes tessellation shader stages, its shader code must contain an
OpExecutionMode instruction specifying an input primitive type that is compatible with the
primitive topology that is output by the tessellation stages

• VUID-VkGraphicsPipelineCreateInfo-pStages-00740
If the pipeline requires pre-rasterization shader state and fragment shader state, it
includes both a fragment shader and a geometry shader, and the fragment shader code
reads from an input variable that is decorated with PrimitiveId, then the geometry shader
code must write to a matching output variable, decorated with PrimitiveId, in all
execution paths

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06038
If renderPass is not VK_NULL_HANDLE and the pipeline is being created with fragment
shader state the fragment shader must not read from any input attachment that is
defined as VK_ATTACHMENT_UNUSED in subpass

• VUID-VkGraphicsPipelineCreateInfo-pStages-00742
If the pipeline requires pre-rasterization shader state and multiple pre-rasterization
shader stages are included in pStages, the shader code for the entry points identified by
those pStages and the rest of the state identified by this structure must adhere to the
pipeline linking rules described in the Shader Interfaces chapter

• VUID-VkGraphicsPipelineCreateInfo-None-04889
If the pipeline requires pre-rasterization shader state and fragment shader state, the
fragment shader and last pre-rasterization shader stage and any relevant state must
adhere to the pipeline linking rules described in the Shader Interfaces chapter

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06041
If renderPass is not VK_NULL_HANDLE, and the pipeline is being created with fragment
output interface state, then for each color attachment in the subpass, if the potential
format features of the format of the corresponding attachment description do not contain
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of the
corresponding element of the pAttachments member of pColorBlendState must be VK_FALSE

• VUID-VkGraphicsPipelineCreateInfo-renderPass-07609
If renderPass is not VK_NULL_HANDLE, and the pipeline is being created with fragment
output interface state, and the pColorBlendState pointer is not NULL, and the subpass uses
color attachments, the attachmentCount member of pColorBlendState must be equal to the
colorAttachmentCount used to create subpass

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04130
If the pipeline requires pre-rasterization shader state, and pViewportState->pViewports is
not dynamic, then pViewportState->pViewports must be a valid pointer to an array of

408

pViewportState->viewportCount valid VkViewport structures

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04131
If the pipeline requires pre-rasterization shader state, and pViewportState->pScissors is
not dynamic, then pViewportState->pScissors must be a valid pointer to an array of
pViewportState->scissorCount VkRect2D structures

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-00749
If the pipeline requires pre-rasterization shader state, and the wideLines feature is not
enabled, and no element of the pDynamicStates member of pDynamicState is
VK_DYNAMIC_STATE_LINE_WIDTH, the lineWidth member of pRasterizationState must be 1.0

• VUID-VkGraphicsPipelineCreateInfo-rasterizerDiscardEnable-09024
If the pipeline requires pre-rasterization shader state, and the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state is enabled or the
rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, pViewportState must
be a valid pointer to a valid VkPipelineViewportStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pMultisampleState-09026
If the pipeline requires fragment output interface state, pMultisampleState must be a valid
pointer to a valid VkPipelineMultisampleStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pMultisampleState-09027
If pMultisampleState is not NULL it must be a valid pointer to a valid
VkPipelineMultisampleStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-alphaToCoverageEnable-08891
If the pipeline is being created with fragment shader state, the
VkPipelineMultisampleStateCreateInfo::alphaToCoverageEnable is not ignored and is
VK_TRUE, then the Fragment Output Interface must contain a variable for the alpha
Component word in Location 0 at Index 0

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09028
If renderPass is not VK_NULL_HANDLE, the pipeline is being created with fragment shader
state, and subpass uses a depth/stencil attachment, pDepthStencilState must be a valid
pointer to a valid VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pDepthStencilState-09029
If pDepthStencilState is not NULL it must be a valid pointer to a valid
VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09030
If renderPass is not VK_NULL_HANDLE, the pipeline is being created with fragment output
interface state, and subpass uses color attachments, pColorBlendState must be a valid
pointer to a valid VkPipelineColorBlendStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-00754
If the pipeline requires pre-rasterization shader state, the depthBiasClamp feature is not
enabled, no element of the pDynamicStates member of pDynamicState is
VK_DYNAMIC_STATE_DEPTH_BIAS, and the depthBiasEnable member of pRasterizationState is
VK_TRUE, the depthBiasClamp member of pRasterizationState must be 0.0

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-02510
If the pipeline requires fragment shader state, and no element of the pDynamicStates

409

member of pDynamicState is VK_DYNAMIC_STATE_DEPTH_BOUNDS, and the depthBoundsTestEnable
member of pDepthStencilState is VK_TRUE, the minDepthBounds and maxDepthBounds members
of pDepthStencilState must be between 0.0 and 1.0, inclusive

• VUID-VkGraphicsPipelineCreateInfo-subpass-00758
If the pipeline requires fragment output interface state, rasterizationSamples is not
dynamic, and subpass does not use any color and/or depth/stencil attachments, then the
rasterizationSamples member of pMultisampleState must follow the rules for a zero-
attachment subpass

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06046
If renderPass is not VK_NULL_HANDLE, subpass must be a valid subpass within renderPass

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06047
If renderPass is not VK_NULL_HANDLE, the pipeline is being created with pre-
rasterization shader state, subpass viewMask is not 0, and multiviewTessellationShader is
not enabled, then pStages must not include tessellation shaders

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06048
If renderPass is not VK_NULL_HANDLE, the pipeline is being created with pre-
rasterization shader state, subpass viewMask is not 0, and multiviewGeometryShader is not
enabled, then pStages must not include a geometry shader

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06050
If renderPass is not VK_NULL_HANDLE and the pipeline is being created with pre-
rasterization shader state, and subpass viewMask is not 0, then all of the shaders in the
pipeline must not include variables decorated with the Layer built-in decoration in their
interfaces

• VUID-VkGraphicsPipelineCreateInfo-flags-00764
flags must not contain the VK_PIPELINE_CREATE_DISPATCH_BASE flag

• VUID-VkGraphicsPipelineCreateInfo-pStages-01565
If the pipeline requires fragment shader state and an input attachment was referenced by
an aspectMask at renderPass creation time, the fragment shader must only read from the
aspects that were specified for that input attachment

• VUID-VkGraphicsPipelineCreateInfo-layout-01688
The number of resources in layout accessible to each shader stage that is used by the
pipeline must be less than or equal to VkPhysicalDeviceLimits::maxPerStageResources

• VUID-VkGraphicsPipelineCreateInfo-pStages-02097
If the pipeline requires vertex input state, and pVertexInputState is not dynamic, then
pVertexInputState must be a valid pointer to a valid
VkPipelineVertexInputStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-Input-07904
If the pipeline is being created with vertex input state and pVertexInputState is not
dynamic, then all variables with the Input storage class decorated with Location in the
Vertex Execution Model OpEntryPoint must contain a location in
VkVertexInputAttributeDescription::location

• VUID-VkGraphicsPipelineCreateInfo-Input-08733
If the pipeline requires vertex input state and pVertexInputState is not dynamic, then the

410

numeric type associated with all Input variables of the corresponding Location in the
Vertex Execution Model OpEntryPoint must be the same as
VkVertexInputAttributeDescription::format

• VUID-VkGraphicsPipelineCreateInfo-pVertexInputState-08929
If the pipeline is being created with vertex input state and pVertexInputState is not
dynamic, and VkVertexInputAttributeDescription::format has a 64-bit component, then the
scalar width associated with all Input variables of the corresponding Location in the
Vertex Execution Model OpEntryPoint must be 64-bit

• VUID-VkGraphicsPipelineCreateInfo-pVertexInputState-08930
If the pipeline is being created with vertex input state and pVertexInputState is not
dynamic, and the scalar width associated with a Location decorated Input variable in the
Vertex Execution Model OpEntryPoint is 64-bit, then the corresponding
VkVertexInputAttributeDescription::format must have a 64-bit component

• VUID-VkGraphicsPipelineCreateInfo-pVertexInputState-09198
If the pipeline is being created with vertex input state and pVertexInputState is not
dynamic, and VkVertexInputAttributeDescription::format has a 64-bit component, then all
Input variables at the corresponding Location in the Vertex Execution Model OpEntryPoint
must not use components that are not present in the format

• VUID-VkGraphicsPipelineCreateInfo-dynamicPrimitiveTopologyUnrestricted-09031
If the pipeline requires vertex input state, pInputAssemblyState must be a valid pointer to
a valid VkPipelineInputAssemblyStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pInputAssemblyState-09032
If pInputAssemblyState is not NULL it must be a valid pointer to a valid
VkPipelineInputAssemblyStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-03378
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is less than
Version 1.3 there must be no element of the pDynamicStates member of pDynamicState set
to VK_DYNAMIC_STATE_CULL_MODE, VK_DYNAMIC_STATE_FRONT_FACE,
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY, VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT,
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT, VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE,
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE, VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE,
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP, VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE,
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE, or VK_DYNAMIC_STATE_STENCIL_OP

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-03379
If the pipeline requires pre-rasterization shader state, and
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT is included in the pDynamicStates array then
viewportCount must be zero

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-03380
If the pipeline requires pre-rasterization shader state, and
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT is included in the pDynamicStates array then
scissorCount must be zero

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04132
If the pipeline requires pre-rasterization shader state, and
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT is included in the pDynamicStates array then

411

VK_DYNAMIC_STATE_VIEWPORT must not be present

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04133
If the pipeline requires pre-rasterization shader state, and
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT is included in the pDynamicStates array then
VK_DYNAMIC_STATE_SCISSOR must not be present

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04868
If the value of VkApplicationInfo::apiVersion used to create the VkInstance is less than
Version 1.3 there must be no element of the pDynamicStates member of pDynamicState set
to VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE, VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE, or
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04869
If the extendedDynamicState2LogicOp feature is not enabled, there must be no element of
the pDynamicStates member of pDynamicState set to VK_DYNAMIC_STATE_LOGIC_OP_EXT

• VUID-VkGraphicsPipelineCreateInfo-pDynamicStates-04870
If the extendedDynamicState2PatchControlPoints feature is not enabled, there must be no
element of the pDynamicStates member of pDynamicState set to
VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT

• VUID-VkGraphicsPipelineCreateInfo-pipelineCreationCacheControl-02878
If the pipelineCreationCacheControl feature is not enabled, flags must not include
VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT or
VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

• VUID-VkGraphicsPipelineCreateInfo-dynamicRendering-06576
If the dynamicRendering feature is not enabled and the pipeline requires pre-rasterization
shader state, fragment shader state, or fragment output interface state, renderPass must
not be VK_NULL_HANDLE

• VUID-VkGraphicsPipelineCreateInfo-multiview-06577
If the multiview feature is not enabled, the pipeline requires pre-rasterization shader
state, fragment shader state, or fragment output interface state, and renderPass is
VK_NULL_HANDLE, VkPipelineRenderingCreateInfo::viewMask must be 0

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06578
If the pipeline requires pre-rasterization shader state, fragment shader state, or fragment
output interface state, and renderPass is VK_NULL_HANDLE, the index of the most
significant bit in VkPipelineRenderingCreateInfo::viewMask must be less than
maxMultiviewViewCount

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06579
If the pipeline requires fragment output interface state, and renderPass is
VK_NULL_HANDLE, and VkPipelineRenderingCreateInfo::colorAttachmentCount is not 0,
VkPipelineRenderingCreateInfo::pColorAttachmentFormats must be a valid pointer to an
array of colorAttachmentCount valid VkFormat values

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06580
If the pipeline requires fragment output interface state, and renderPass is
VK_NULL_HANDLE, each element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats must be a valid VkFormat value

412

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06582
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
and any element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats is not
VK_FORMAT_UNDEFINED, that format must be a format with potential format features that
include VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06583
If the pipeline requires fragment output interface state, and renderPass is
VK_NULL_HANDLE, VkPipelineRenderingCreateInfo::depthAttachmentFormat must be a
valid VkFormat value

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06584
If the pipeline requires fragment output interface state, and renderPass is
VK_NULL_HANDLE, VkPipelineRenderingCreateInfo::stencilAttachmentFormat must be a
valid VkFormat value

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06585
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
and VkPipelineRenderingCreateInfo::depthAttachmentFormat is not VK_FORMAT_UNDEFINED, it
must be a format with potential format features that include
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06586
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
and VkPipelineRenderingCreateInfo::stencilAttachmentFormat is not VK_FORMAT_UNDEFINED,
it must be a format with potential format features that include
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06587
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
and VkPipelineRenderingCreateInfo::depthAttachmentFormat is not VK_FORMAT_UNDEFINED, it
must be a format that includes a depth component

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06588
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
and VkPipelineRenderingCreateInfo::stencilAttachmentFormat is not VK_FORMAT_UNDEFINED,
it must be a format that includes a stencil component

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06589
If the pipeline requires fragment output interface state, renderPass is VK_NULL_HANDLE,
VkPipelineRenderingCreateInfo::depthAttachmentFormat is not VK_FORMAT_UNDEFINED, and
VkPipelineRenderingCreateInfo::stencilAttachmentFormat is not VK_FORMAT_UNDEFINED,
depthAttachmentFormat must equal stencilAttachmentFormat

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09033
If renderPass is VK_NULL_HANDLE, the pipeline is being created with fragment shader
state and fragment output interface state, and either of VkPipelineRenderingCreateInfo
::depthAttachmentFormat or VkPipelineRenderingCreateInfo::stencilAttachmentFormat are
not VK_FORMAT_UNDEFINED, pDepthStencilState must be a valid pointer to a valid
VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pDepthStencilState-09034
If pDepthStencilState is not NULL it must be a valid pointer to a valid

413

VkPipelineDepthStencilStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-renderPass-09037
If renderPass is VK_NULL_HANDLE, the pipeline is being created with fragment output
interface state, and any element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats is not VK_FORMAT_UNDEFINED, pColorBlendState must be a valid
pointer to a valid VkPipelineColorBlendStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-pColorBlendState-09038
If pColorBlendState is not NULL it must be a valid pointer to a valid
VkPipelineColorBlendStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06055
If renderPass is VK_NULL_HANDLE, pColorBlendState is not dynamic, and the pipeline is
being created with fragment output interface state, pColorBlendState->attachmentCount
must be equal to VkPipelineRenderingCreateInfo::colorAttachmentCount

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06057
If renderPass is VK_NULL_HANDLE, the pipeline is being created with pre-rasterization
shader state, VkPipelineRenderingCreateInfo::viewMask is not 0, and the
multiviewTessellationShader feature is not enabled, then pStages must not include
tessellation shaders

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06058
If renderPass is VK_NULL_HANDLE, the pipeline is being created with pre-rasterization
shader state, VkPipelineRenderingCreateInfo::viewMask is not 0, and the
multiviewGeometryShader feature is not enabled, then pStages must not include a geometry
shader

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06059
If renderPass is VK_NULL_HANDLE, the pipeline is being created with pre-rasterization
shader state, and VkPipelineRenderingCreateInfo::viewMask is not 0, all of the shaders in
the pipeline must not include variables decorated with the Layer built-in decoration in
their interfaces

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06061
If the pipeline requires fragment shader state, and renderPass is VK_NULL_HANDLE,
fragment shaders in pStages must not include the InputAttachment capability

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06062
If the pipeline requires fragment output interface state and renderPass is
VK_NULL_HANDLE, for each color attachment format defined by the
pColorAttachmentFormats member of VkPipelineRenderingCreateInfo, if its potential
format features do not contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the
blendEnable member of the corresponding element of the pAttachments member of
pColorBlendState must be VK_FALSE

• VUID-VkGraphicsPipelineCreateInfo-pipelineStageCreationFeedbackCount-06594
If VkPipelineCreationFeedbackCreateInfo::pipelineStageCreationFeedbackCount is not 0, it
must be equal to stageCount

• VUID-VkGraphicsPipelineCreateInfo-pStages-06600
If the pipeline requires pre-rasterization shader state or fragment shader state, pStages
must be a valid pointer to an array of stageCount valid VkPipelineShaderStageCreateInfo

414

structures

• VUID-VkGraphicsPipelineCreateInfo-stageCount-09587
If the pipeline does not require pre-rasterization shader state or fragment shader state,
stageCount must be zero

• VUID-VkGraphicsPipelineCreateInfo-pRasterizationState-06601
If the pipeline requires pre-rasterization shader state, pRasterizationState must be a
valid pointer to a valid VkPipelineRasterizationStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-layout-06602
If the pipeline requires fragment shader state or pre-rasterization shader state, layout
must be a valid VkPipelineLayout handle

• VUID-VkGraphicsPipelineCreateInfo-renderPass-06603
If the pipeline requires pre-rasterization shader state, fragment shader state, or fragment
output state, and renderPass is not VK_NULL_HANDLE, renderPass must be a valid
VkRenderPass handle

• VUID-VkGraphicsPipelineCreateInfo-stageCount-09530
If the pipeline requires pre-rasterization shader state, stageCount must be greater than 0

• VUID-VkGraphicsPipelineCreateInfo-pStages-06894
If the pipeline requires pre-rasterization shader state but not fragment shader state,
elements of pStages must not have stage set to VK_SHADER_STAGE_FRAGMENT_BIT

• VUID-VkGraphicsPipelineCreateInfo-pStages-06895
If the pipeline requires fragment shader state but not pre-rasterization shader state,
elements of pStages must not have stage set to a shader stage which participates in pre-
rasterization

• VUID-VkGraphicsPipelineCreateInfo-pStages-06896
If the pipeline requires pre-rasterization shader state, all elements of pStages must have a
stage set to a shader stage which participates in fragment shader state or pre-
rasterization shader state

• VUID-VkGraphicsPipelineCreateInfo-stage-06897
If the pipeline requires fragment shader state and/or pre-rasterization shader state, any
value of stage must not be set in more than one element of pStages

• VUID-VkGraphicsPipelineCreateInfo-renderPass-08744
If renderPass is VK_NULL_HANDLE, the pipeline requires fragment output state or
fragment shader state, the pipeline enables sample shading, rasterizationSamples is not
dynamic, and the pNext chain includes a VkPipelineRenderingCreateInfo structure,
rasterizationSamples must be a valid VkSampleCountFlagBits value that is set in
imageCreateSampleCounts (as defined in Image Creation Limits) for every element of
depthAttachmentFormat, stencilAttachmentFormat and the pColorAttachmentFormats array
which is not VK_FORMAT_UNDEFINED

• VUID-VkGraphicsPipelineCreateInfo-None-08893
The pipeline must be created with pre-rasterization shader state

• VUID-VkGraphicsPipelineCreateInfo-pStages-08894
If pStages includes a vertex shader stage, the pipeline must be created with vertex input
state

415

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-08896
If pDynamicState->pDynamicStates includes VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE, or
if it does not and pRasterizationState->rasterizerDiscardEnable is VK_FALSE, the pipeline
must be created with fragment shader state and fragment output interface state

• VUID-VkGraphicsPipelineCreateInfo-None-09043
If the format of any color attachment is VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, the
colorWriteMask member of the corresponding element of pColorBlendState->pAttachments
must either include all of VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, and
VK_COLOR_COMPONENT_B_BIT, or none of them

Valid Usage (Implicit)

• VUID-VkGraphicsPipelineCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO

• VUID-VkGraphicsPipelineCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkPipelineCreationFeedbackCreateInfo or
VkPipelineRenderingCreateInfo

• VUID-VkGraphicsPipelineCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkGraphicsPipelineCreateInfo-pDynamicState-parameter
If pDynamicState is not NULL, pDynamicState must be a valid pointer to a valid
VkPipelineDynamicStateCreateInfo structure

• VUID-VkGraphicsPipelineCreateInfo-commonparent
Each of basePipelineHandle, layout, and renderPass that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

The VkPipelineRenderingCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPipelineRenderingCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t viewMask;
 uint32_t colorAttachmentCount;
 const VkFormat* pColorAttachmentFormats;
 VkFormat depthAttachmentFormat;
 VkFormat stencilAttachmentFormat;
} VkPipelineRenderingCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• viewMask is the viewMask used for rendering.

416

• colorAttachmentCount is the number of entries in pColorAttachmentFormats

• pColorAttachmentFormats is a pointer to an array of VkFormat values defining the format of color
attachments used in this pipeline.

• depthAttachmentFormat is a VkFormat value defining the format of the depth attachment used in
this pipeline.

• stencilAttachmentFormat is a VkFormat value defining the format of the stencil attachment used
in this pipeline.

When a pipeline is created without a VkRenderPass, if the pNext chain of
VkGraphicsPipelineCreateInfo includes this structure, it specifies the view mask and format of
attachments used for rendering. If this structure is not specified, and the pipeline does not include
a VkRenderPass, viewMask and colorAttachmentCount are 0, and depthAttachmentFormat and
stencilAttachmentFormat are VK_FORMAT_UNDEFINED. If a graphics pipeline is created with a valid
VkRenderPass, parameters of this structure are ignored.

If depthAttachmentFormat, stencilAttachmentFormat, or any element of pColorAttachmentFormats is
VK_FORMAT_UNDEFINED, it indicates that the corresponding attachment is unused within the render
pass. Valid formats indicate that an attachment can be used - but it is still valid to set the
attachment to NULL when beginning rendering.

Valid Usage

• VUID-VkPipelineRenderingCreateInfo-colorAttachmentCount-09533
colorAttachmentCount must be less than or equal to maxColorAttachments

Valid Usage (Implicit)

• VUID-VkPipelineRenderingCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO

Bits which can be set in

• VkGraphicsPipelineCreateInfo::flags

• VkComputePipelineCreateInfo::flags

specify how a pipeline is created, and are:

// Provided by VK_VERSION_1_0
typedef enum VkPipelineCreateFlagBits {
 VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT = 0x00000001,
 VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT = 0x00000002,
 VK_PIPELINE_CREATE_DERIVATIVE_BIT = 0x00000004,
 // Provided by VK_VERSION_1_1
 VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT = 0x00000008,
 // Provided by VK_VERSION_1_1

417

 VK_PIPELINE_CREATE_DISPATCH_BASE_BIT = 0x00000010,
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT = 0x00000100,
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT = 0x00000200,
 // Provided by VK_VERSION_1_1
 VK_PIPELINE_CREATE_DISPATCH_BASE = VK_PIPELINE_CREATE_DISPATCH_BASE_BIT,
} VkPipelineCreateFlagBits;

• VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT specifies that the created pipeline will not be
optimized. Using this flag may reduce the time taken to create the pipeline.

• VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT specifies that the pipeline to be created is allowed to
be the parent of a pipeline that will be created in a subsequent pipeline creation call.

• VK_PIPELINE_CREATE_DERIVATIVE_BIT specifies that the pipeline to be created will be a child of a
previously created parent pipeline.

• VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT specifies that any shader input variables
decorated as ViewIndex will be assigned values as if they were decorated as DeviceIndex.

• VK_PIPELINE_CREATE_DISPATCH_BASE specifies that a compute pipeline can be used with
vkCmdDispatchBase with a non-zero base workgroup.

• VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT specifies that pipeline creation will
fail if a compile is required for creation of a valid VkPipeline object;
VK_PIPELINE_COMPILE_REQUIRED will be returned by pipeline creation, and the VkPipeline will be
set to VK_NULL_HANDLE.

• When creating multiple pipelines, VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT specifies
that control will be returned to the application if any individual pipeline returns a result which
is not VK_SUCCESS rather than continuing to create additional pipelines.

It is valid to set both VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT and
VK_PIPELINE_CREATE_DERIVATIVE_BIT. This allows a pipeline to be both a parent and possibly a child
in a pipeline hierarchy. See Pipeline Derivatives for more information.

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineCreateFlags;

VkPipelineCreateFlags is a bitmask type for setting a mask of zero or more
VkPipelineCreateFlagBits.

The VkPipelineDynamicStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineDynamicStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineDynamicStateCreateFlags flags;
 uint32_t dynamicStateCount;

418

 const VkDynamicState* pDynamicStates;
} VkPipelineDynamicStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• dynamicStateCount is the number of elements in the pDynamicStates array.

• pDynamicStates is a pointer to an array of VkDynamicState values specifying which pieces of
pipeline state will use the values from dynamic state commands rather than from pipeline state
creation information.

Valid Usage

• VUID-VkPipelineDynamicStateCreateInfo-pDynamicStates-01442
Each element of pDynamicStates must be unique

Valid Usage (Implicit)

• VUID-VkPipelineDynamicStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO

• VUID-VkPipelineDynamicStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineDynamicStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineDynamicStateCreateInfo-pDynamicStates-parameter
If dynamicStateCount is not 0, pDynamicStates must be a valid pointer to an array of
dynamicStateCount valid VkDynamicState values

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineDynamicStateCreateFlags;

VkPipelineDynamicStateCreateFlags is a bitmask type for setting a mask, but is currently reserved for
future use.

The source of different pieces of dynamic state is specified by the
VkPipelineDynamicStateCreateInfo::pDynamicStates property of the currently active pipeline, each
of whose elements must be one of the values:

// Provided by VK_VERSION_1_0
typedef enum VkDynamicState {
 VK_DYNAMIC_STATE_VIEWPORT = 0,
 VK_DYNAMIC_STATE_SCISSOR = 1,

419

 VK_DYNAMIC_STATE_LINE_WIDTH = 2,
 VK_DYNAMIC_STATE_DEPTH_BIAS = 3,
 VK_DYNAMIC_STATE_BLEND_CONSTANTS = 4,
 VK_DYNAMIC_STATE_DEPTH_BOUNDS = 5,
 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK = 6,
 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK = 7,
 VK_DYNAMIC_STATE_STENCIL_REFERENCE = 8,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_CULL_MODE = 1000267000,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_FRONT_FACE = 1000267001,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY = 1000267002,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT = 1000267003,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT = 1000267004,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE = 1000267005,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE = 1000267006,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE = 1000267007,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_COMPARE_OP = 1000267008,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE = 1000267009,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE = 1000267010,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_STENCIL_OP = 1000267011,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE = 1000377001,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE = 1000377002,
 // Provided by VK_VERSION_1_3
 VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE = 1000377004,
} VkDynamicState;

• VK_DYNAMIC_STATE_VIEWPORT specifies that the pViewports state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetViewport before any drawing commands. The number of viewports used by a pipeline
is still specified by the viewportCount member of VkPipelineViewportStateCreateInfo.

• VK_DYNAMIC_STATE_SCISSOR specifies that the pScissors state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetScissor before any drawing commands. The number of scissor rectangles used by a
pipeline is still specified by the scissorCount member of VkPipelineViewportStateCreateInfo.

• VK_DYNAMIC_STATE_LINE_WIDTH specifies that the lineWidth state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with

420

vkCmdSetLineWidth before any drawing commands that generate line primitives for the
rasterizer.

• VK_DYNAMIC_STATE_DEPTH_BIAS specifies that the depthBiasConstantFactor, depthBiasClamp and
depthBiasSlopeFactor states in VkPipelineRasterizationStateCreateInfo will be ignored and must
be set dynamically with vkCmdSetDepthBias before any draws are performed with depth bias
enabled.

• VK_DYNAMIC_STATE_BLEND_CONSTANTS specifies that the blendConstants state in
VkPipelineColorBlendStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetBlendConstants before any draws are performed with a pipeline state with
VkPipelineColorBlendAttachmentState member blendEnable set to VK_TRUE and any of the blend
functions using a constant blend color.

• VK_DYNAMIC_STATE_DEPTH_BOUNDS specifies that the minDepthBounds and maxDepthBounds states of
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBounds before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member depthBoundsTestEnable set to VK_TRUE.

• VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK specifies that the compareMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilCompareMask before any draws are performed with a
pipeline state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to
VK_TRUE

• VK_DYNAMIC_STATE_STENCIL_WRITE_MASK specifies that the writeMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilWriteMask before any draws are performed with a pipeline
state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

• VK_DYNAMIC_STATE_STENCIL_REFERENCE specifies that the reference state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilReference before any draws are performed with a pipeline
state with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

• VK_DYNAMIC_STATE_CULL_MODE specifies that the cullMode state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetCullMode before any drawing commands.

• VK_DYNAMIC_STATE_FRONT_FACE specifies that the frontFace state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetFrontFace before any drawing commands.

• VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY specifies that the topology state in
VkPipelineInputAssemblyStateCreateInfo only specifies the topology class, and the specific
topology order and adjacency must be set dynamically with vkCmdSetPrimitiveTopology before
any drawing commands.

• VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT specifies that the viewportCount and pViewports state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetViewportWithCount before any draw call.

• VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT specifies that the scissorCount and pScissors state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with

421

vkCmdSetScissorWithCount before any draw call.

• VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE specifies that the stride state in
VkVertexInputBindingDescription will be ignored and must be set dynamically with
vkCmdBindVertexBuffers2 before any draw call.

• VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE specifies that the depthTestEnable state in
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthTestEnable before any draw call.

• VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE specifies that the depthWriteEnable state in
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthWriteEnable before any draw call.

• VK_DYNAMIC_STATE_DEPTH_COMPARE_OP specifies that the depthCompareOp state in
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthCompareOp before any draw call.

• VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE specifies that the depthBoundsTestEnable state in
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBoundsTestEnable before any draw call.

• VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE specifies that the stencilTestEnable state in
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetStencilTestEnable before any draw call.

• VK_DYNAMIC_STATE_STENCIL_OP specifies that the failOp, passOp, depthFailOp, and compareOp states
in VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be
set dynamically with vkCmdSetStencilOp before any draws are performed with a pipeline state
with VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

• VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE specifies that the rasterizerDiscardEnable state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetRasterizerDiscardEnable before any drawing commands.

• VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE specifies that the depthBiasEnable state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBiasEnable before any drawing commands.

• VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE specifies that the primitiveRestartEnable state in
VkPipelineInputAssemblyStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetPrimitiveRestartEnable before any drawing commands.

10.3.1. Valid Combinations of Stages for Graphics Pipelines

If tessellation shader stages are omitted, the tessellation shading and fixed-function stages of the
pipeline are skipped.

If a geometry shader is omitted, the geometry shading stage is skipped.

If a fragment shader is omitted, fragment color outputs have undefined values, and the fragment
depth value is determined by Fragment Operations state. This can be useful for depth-only
rendering.

Presence of a shader stage in a pipeline is indicated by including a valid

422

VkPipelineShaderStageCreateInfo with module and pName selecting an entry point from a shader
module, where that entry point is valid for the stage specified by stage.

Presence of some of the fixed-function stages in the pipeline is implicitly derived from enabled
shaders and provided state. For example, the fixed-function tessellator is always present when the
pipeline has valid Tessellation Control and Tessellation Evaluation shaders.

For example:

• Depth/stencil-only rendering in a subpass with no color attachments

◦ Active Pipeline Shader Stages

▪ Vertex Shader

◦ Required: Fixed-Function Pipeline Stages

▪ VkPipelineVertexInputStateCreateInfo

▪ VkPipelineInputAssemblyStateCreateInfo

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineDepthStencilStateCreateInfo

• Color-only rendering in a subpass with no depth/stencil attachment

◦ Active Pipeline Shader Stages

▪ Vertex Shader

▪ Fragment Shader

◦ Required: Fixed-Function Pipeline Stages

▪ VkPipelineVertexInputStateCreateInfo

▪ VkPipelineInputAssemblyStateCreateInfo

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineColorBlendStateCreateInfo

• Rendering pipeline with tessellation and geometry shaders

◦ Active Pipeline Shader Stages

▪ Vertex Shader

▪ Tessellation Control Shader

▪ Tessellation Evaluation Shader

▪ Geometry Shader

▪ Fragment Shader

◦ Required: Fixed-Function Pipeline Stages

423

▪ VkPipelineVertexInputStateCreateInfo

▪ VkPipelineInputAssemblyStateCreateInfo

▪ VkPipelineTessellationStateCreateInfo

▪ VkPipelineViewportStateCreateInfo

▪ VkPipelineRasterizationStateCreateInfo

▪ VkPipelineMultisampleStateCreateInfo

▪ VkPipelineDepthStencilStateCreateInfo

▪ VkPipelineColorBlendStateCreateInfo

10.4. Pipeline Destruction
To destroy a pipeline, call:

// Provided by VK_VERSION_1_0
void vkDestroyPipeline(
 VkDevice device,
 VkPipeline pipeline,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline.

• pipeline is the handle of the pipeline to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyPipeline-pipeline-00765
All submitted commands that refer to pipeline must have completed execution

• VUID-vkDestroyPipeline-pipeline-00766
If VkAllocationCallbacks were provided when pipeline was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyPipeline-pipeline-00767
If no VkAllocationCallbacks were provided when pipeline was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyPipeline-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyPipeline-pipeline-parameter
If pipeline is not VK_NULL_HANDLE, pipeline must be a valid VkPipeline handle

424

• VUID-vkDestroyPipeline-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyPipeline-pipeline-parent
If pipeline is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to pipeline must be externally synchronized

10.5. Pipeline Derivatives
A pipeline derivative is a child pipeline created from a parent pipeline, where the child and parent
are expected to have much commonality.

The goal of derivative pipelines is that they be cheaper to create using the parent as a starting
point, and that it be more efficient (on either host or device) to switch/bind between children of the
same parent.

A derivative pipeline is created by setting the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag in the
Vk*PipelineCreateInfo structure. If this is set, then exactly one of basePipelineHandle or
basePipelineIndex members of the structure must have a valid handle/index, and specifies the
parent pipeline. If basePipelineHandle is used, the parent pipeline must have already been created.
If basePipelineIndex is used, then the parent is being created in the same command.
VK_NULL_HANDLE acts as the invalid handle for basePipelineHandle, and -1 is the invalid index for
basePipelineIndex. If basePipelineIndex is used, the base pipeline must appear earlier in the array.
The base pipeline must have been created with the VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag
set.

10.6. Pipeline Cache
Pipeline cache objects allow the result of pipeline construction to be reused between pipelines and
between runs of an application. Reuse between pipelines is achieved by passing the same pipeline
cache object when creating multiple related pipelines. Reuse across runs of an application is
achieved by retrieving pipeline cache contents in one run of an application, saving the contents,
and using them to preinitialize a pipeline cache on a subsequent run. The contents of the pipeline
cache objects are managed by the implementation. Applications can manage the host memory
consumed by a pipeline cache object and control the amount of data retrieved from a pipeline
cache object.

Pipeline cache objects are represented by VkPipelineCache handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipelineCache)

425

10.6.1. Creating a Pipeline Cache

To create pipeline cache objects, call:

// Provided by VK_VERSION_1_0
VkResult vkCreatePipelineCache(
 VkDevice device,
 const VkPipelineCacheCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPipelineCache* pPipelineCache);

• device is the logical device that creates the pipeline cache object.

• pCreateInfo is a pointer to a VkPipelineCacheCreateInfo structure containing initial parameters
for the pipeline cache object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelineCache is a pointer to a VkPipelineCache handle in which the resulting pipeline cache
object is returned.

Note

Applications can track and manage the total host memory size of a pipeline cache
object using the pAllocator. Applications can limit the amount of data retrieved
from a pipeline cache object in vkGetPipelineCacheData. Implementations should
not internally limit the total number of entries added to a pipeline cache object or
the total host memory consumed.

Once created, a pipeline cache can be passed to the vkCreateGraphicsPipelines and
vkCreateComputePipelines commands. If the pipeline cache passed into these commands is not
VK_NULL_HANDLE, the implementation will query it for possible reuse opportunities and update it
with new content. The use of the pipeline cache object in these commands is internally
synchronized, and the same pipeline cache object can be used in multiple threads simultaneously.

If flags of pCreateInfo includes VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT, all
commands that modify the returned pipeline cache object must be externally synchronized.

Note

Implementations should make every effort to limit any critical sections to the
actual accesses to the cache, which is expected to be significantly shorter than the
duration of the vkCreate*Pipelines commands.

Valid Usage (Implicit)

• VUID-vkCreatePipelineCache-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreatePipelineCache-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkPipelineCacheCreateInfo structure

426

• VUID-vkCreatePipelineCache-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreatePipelineCache-pPipelineCache-parameter
pPipelineCache must be a valid pointer to a VkPipelineCache handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineCacheCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineCacheCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCacheCreateFlags flags;
 size_t initialDataSize;
 const void* pInitialData;
} VkPipelineCacheCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineCacheCreateFlagBits specifying the behavior of the pipeline
cache.

• initialDataSize is the number of bytes in pInitialData. If initialDataSize is zero, the pipeline
cache will initially be empty.

• pInitialData is a pointer to previously retrieved pipeline cache data. If the pipeline cache data is
incompatible (as defined below) with the device, the pipeline cache will be initially empty. If
initialDataSize is zero, pInitialData is ignored.

Valid Usage

• VUID-VkPipelineCacheCreateInfo-initialDataSize-00768
If initialDataSize is not 0, it must be equal to the size of pInitialData, as returned by
vkGetPipelineCacheData when pInitialData was originally retrieved

• VUID-VkPipelineCacheCreateInfo-initialDataSize-00769
If initialDataSize is not 0, pInitialData must have been retrieved from a previous call to

427

vkGetPipelineCacheData

• VUID-VkPipelineCacheCreateInfo-pipelineCreationCacheControl-02892
If the pipelineCreationCacheControl feature is not enabled, flags must not include
VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

Valid Usage (Implicit)

• VUID-VkPipelineCacheCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO

• VUID-VkPipelineCacheCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineCacheCreateInfo-flags-parameter
flags must be a valid combination of VkPipelineCacheCreateFlagBits values

• VUID-VkPipelineCacheCreateInfo-pInitialData-parameter
If initialDataSize is not 0, pInitialData must be a valid pointer to an array of
initialDataSize bytes

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineCacheCreateFlags;

VkPipelineCacheCreateFlags is a bitmask type for setting a mask of zero or more
VkPipelineCacheCreateFlagBits.

Bits which can be set in VkPipelineCacheCreateInfo::flags, specifying behavior of the pipeline
cache, are:

typedef enum VkPipelineCacheCreateFlagBits {
 // Provided by VK_VERSION_1_3
 VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
} VkPipelineCacheCreateFlagBits;

• VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT specifies that all commands that modify
the created VkPipelineCache will be externally synchronized. When set, the implementation
may skip any unnecessary processing needed to support simultaneous modification from
multiple threads where allowed.

10.6.2. Merging Pipeline Caches

Pipeline cache objects can be merged using the command:

// Provided by VK_VERSION_1_0
VkResult vkMergePipelineCaches(
 VkDevice device,

428

 VkPipelineCache dstCache,
 uint32_t srcCacheCount,
 const VkPipelineCache* pSrcCaches);

• device is the logical device that owns the pipeline cache objects.

• dstCache is the handle of the pipeline cache to merge results into.

• srcCacheCount is the length of the pSrcCaches array.

• pSrcCaches is a pointer to an array of pipeline cache handles, which will be merged into
dstCache. The previous contents of dstCache are included after the merge.

Note

The details of the merge operation are implementation-dependent, but
implementations should merge the contents of the specified pipelines and prune
duplicate entries.

Valid Usage

• VUID-vkMergePipelineCaches-dstCache-00770
dstCache must not appear in the list of source caches

Valid Usage (Implicit)

• VUID-vkMergePipelineCaches-device-parameter
device must be a valid VkDevice handle

• VUID-vkMergePipelineCaches-dstCache-parameter
dstCache must be a valid VkPipelineCache handle

• VUID-vkMergePipelineCaches-pSrcCaches-parameter
pSrcCaches must be a valid pointer to an array of srcCacheCount valid VkPipelineCache
handles

• VUID-vkMergePipelineCaches-srcCacheCount-arraylength
srcCacheCount must be greater than 0

• VUID-vkMergePipelineCaches-dstCache-parent
dstCache must have been created, allocated, or retrieved from device

• VUID-vkMergePipelineCaches-pSrcCaches-parent
Each element of pSrcCaches must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to dstCache must be externally synchronized

429

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

10.6.3. Retrieving Pipeline Cache Data

Data can be retrieved from a pipeline cache object using the command:

// Provided by VK_VERSION_1_0
VkResult vkGetPipelineCacheData(
 VkDevice device,
 VkPipelineCache pipelineCache,
 size_t* pDataSize,
 void* pData);

• device is the logical device that owns the pipeline cache.

• pipelineCache is the pipeline cache to retrieve data from.

• pDataSize is a pointer to a size_t value related to the amount of data in the pipeline cache, as
described below.

• pData is either NULL or a pointer to a buffer.

If pData is NULL, then the maximum size of the data that can be retrieved from the pipeline cache, in
bytes, is returned in pDataSize. Otherwise, pDataSize must point to a variable set by the user to the
size of the buffer, in bytes, pointed to by pData, and on return the variable is overwritten with the
amount of data actually written to pData. If pDataSize is less than the maximum size that can be
retrieved by the pipeline cache, at most pDataSize bytes will be written to pData, and VK_INCOMPLETE
will be returned instead of VK_SUCCESS, to indicate that not all of the pipeline cache was returned.

Any data written to pData is valid and can be provided as the pInitialData member of the
VkPipelineCacheCreateInfo structure passed to vkCreatePipelineCache.

Two calls to vkGetPipelineCacheData with the same parameters must retrieve the same data unless a
command that modifies the contents of the cache is called between them.

The initial bytes written to pData must be a header as described in the Pipeline Cache Header
section.

If pDataSize is less than what is necessary to store this header, nothing will be written to pData and
zero will be written to pDataSize.

430

Valid Usage (Implicit)

• VUID-vkGetPipelineCacheData-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPipelineCacheData-pipelineCache-parameter
pipelineCache must be a valid VkPipelineCache handle

• VUID-vkGetPipelineCacheData-pDataSize-parameter
pDataSize must be a valid pointer to a size_t value

• VUID-vkGetPipelineCacheData-pData-parameter
If the value referenced by pDataSize is not 0, and pData is not NULL, pData must be a valid
pointer to an array of pDataSize bytes

• VUID-vkGetPipelineCacheData-pipelineCache-parent
pipelineCache must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

10.6.4. Pipeline Cache Header

Applications can store the data retrieved from the pipeline cache, and use these data, possibly in a
future run of the application, to populate new pipeline cache objects. The results of pipeline
compiles, however, may depend on the vendor ID, device ID, driver version, and other details of
the device. To enable applications to detect when previously retrieved data is incompatible with the
device, the pipeline cache data must begin with a valid pipeline cache header.

Note

Structures described in this section are not part of the Vulkan API and are only
used to describe the representation of data elements in pipeline cache data.
Accordingly, the valid usage clauses defined for structures defined in this section
do not define valid usage conditions for APIs accepting pipeline cache data as
input, as providing invalid pipeline cache data as input to any Vulkan API
commands will result in the provided pipeline cache data being ignored.

Version one of the pipeline cache header is defined as:

// Provided by VK_VERSION_1_0

431

typedef struct VkPipelineCacheHeaderVersionOne {
 uint32_t headerSize;
 VkPipelineCacheHeaderVersion headerVersion;
 uint32_t vendorID;
 uint32_t deviceID;
 uint8_t pipelineCacheUUID[VK_UUID_SIZE];
} VkPipelineCacheHeaderVersionOne;

• headerSize is the length in bytes of the pipeline cache header.

• headerVersion is a VkPipelineCacheHeaderVersion value specifying the version of the header. A
consumer of the pipeline cache should use the cache version to interpret the remainder of the
cache header.

• vendorID is the VkPhysicalDeviceProperties::vendorID of the implementation.

• deviceID is the VkPhysicalDeviceProperties::deviceID of the implementation.

• pipelineCacheUUID is the VkPhysicalDeviceProperties::pipelineCacheUUID of the implementation.

Unlike most structures declared by the Vulkan API, all fields of this structure are written with the
least significant byte first, regardless of host byte-order.

The C language specification does not define the packing of structure members. This layout
assumes tight structure member packing, with members laid out in the order listed in the structure,
and the intended size of the structure is 32 bytes. If a compiler produces code that diverges from
that pattern, applications must employ another method to set values at the correct offsets.

Valid Usage

• VUID-VkPipelineCacheHeaderVersionOne-headerSize-04967
headerSize must be 32

• VUID-VkPipelineCacheHeaderVersionOne-headerVersion-04968
headerVersion must be VK_PIPELINE_CACHE_HEADER_VERSION_ONE

• VUID-VkPipelineCacheHeaderVersionOne-headerSize-08990
headerSize must not exceed the size of the pipeline cache

Valid Usage (Implicit)

• VUID-VkPipelineCacheHeaderVersionOne-headerVersion-parameter
headerVersion must be a valid VkPipelineCacheHeaderVersion value

Possible values of the headerVersion value of the pipeline cache header are:

// Provided by VK_VERSION_1_0
typedef enum VkPipelineCacheHeaderVersion {
 VK_PIPELINE_CACHE_HEADER_VERSION_ONE = 1,

432

} VkPipelineCacheHeaderVersion;

• VK_PIPELINE_CACHE_HEADER_VERSION_ONE specifies version one of the pipeline cache, described by
VkPipelineCacheHeaderVersionOne.

10.6.5. Destroying a Pipeline Cache

To destroy a pipeline cache, call:

// Provided by VK_VERSION_1_0
void vkDestroyPipelineCache(
 VkDevice device,
 VkPipelineCache pipelineCache,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline cache object.

• pipelineCache is the handle of the pipeline cache to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyPipelineCache-pipelineCache-00771
If VkAllocationCallbacks were provided when pipelineCache was created, a compatible set
of callbacks must be provided here

• VUID-vkDestroyPipelineCache-pipelineCache-00772
If no VkAllocationCallbacks were provided when pipelineCache was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyPipelineCache-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyPipelineCache-pipelineCache-parameter
If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache
handle

• VUID-vkDestroyPipelineCache-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyPipelineCache-pipelineCache-parent
If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from
device

433

Host Synchronization

• Host access to pipelineCache must be externally synchronized

10.7. Specialization Constants
Specialization constants are a mechanism whereby constants in a SPIR-V module can have their
constant value specified at the time the VkPipeline is created. This allows a SPIR-V module to have
constants that can be modified while executing an application that uses the Vulkan API.

Note

Specialization constants are useful to allow a compute shader to have its local
workgroup size changed at runtime by the user, for example.

Each VkPipelineShaderStageCreateInfo structure contains a pSpecializationInfo member, which
can be NULL to indicate no specialization constants, or point to a VkSpecializationInfo structure.

The VkSpecializationInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSpecializationInfo {
 uint32_t mapEntryCount;
 const VkSpecializationMapEntry* pMapEntries;
 size_t dataSize;
 const void* pData;
} VkSpecializationInfo;

• mapEntryCount is the number of entries in the pMapEntries array.

• pMapEntries is a pointer to an array of VkSpecializationMapEntry structures, which map constant
IDs to offsets in pData.

• dataSize is the byte size of the pData buffer.

• pData contains the actual constant values to specialize with.

Valid Usage

• VUID-VkSpecializationInfo-offset-00773
The offset member of each element of pMapEntries must be less than dataSize

• VUID-VkSpecializationInfo-pMapEntries-00774
The size member of each element of pMapEntries must be less than or equal to dataSize
minus offset

• VUID-VkSpecializationInfo-constantID-04911
The constantID value of each element of pMapEntries must be unique within pMapEntries

434

Valid Usage (Implicit)

• VUID-VkSpecializationInfo-pMapEntries-parameter
If mapEntryCount is not 0, pMapEntries must be a valid pointer to an array of mapEntryCount
valid VkSpecializationMapEntry structures

• VUID-VkSpecializationInfo-pData-parameter
If dataSize is not 0, pData must be a valid pointer to an array of dataSize bytes

The VkSpecializationMapEntry structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSpecializationMapEntry {
 uint32_t constantID;
 uint32_t offset;
 size_t size;
} VkSpecializationMapEntry;

• constantID is the ID of the specialization constant in SPIR-V.

• offset is the byte offset of the specialization constant value within the supplied data buffer.

• size is the byte size of the specialization constant value within the supplied data buffer.

If a constantID value is not a specialization constant ID used in the shader, that map entry does not
affect the behavior of the pipeline.

Valid Usage

• VUID-VkSpecializationMapEntry-constantID-00776
For a constantID specialization constant declared in a shader, size must match the byte
size of the constantID. If the specialization constant is of type boolean, size must be the
byte size of VkBool32

In human readable SPIR-V:

OpDecorate %x SpecId 13 ; decorate .x component of WorkgroupSize with ID 13
OpDecorate %y SpecId 42 ; decorate .y component of WorkgroupSize with ID 42
OpDecorate %z SpecId 3 ; decorate .z component of WorkgroupSize with ID 3
OpDecorate %wgsize BuiltIn WorkgroupSize ; decorate WorkgroupSize onto constant
%i32 = OpTypeInt 32 0 ; declare an unsigned 32-bit type
%uvec3 = OpTypeVector %i32 3 ; declare a 3 element vector type of unsigned 32-bit
%x = OpSpecConstant %i32 1 ; declare the .x component of WorkgroupSize
%y = OpSpecConstant %i32 1 ; declare the .y component of WorkgroupSize
%z = OpSpecConstant %i32 1 ; declare the .z component of WorkgroupSize
%wgsize = OpSpecConstantComposite %uvec3 %x %y %z ; declare WorkgroupSize

435

From the above we have three specialization constants, one for each of the x, y & z elements of the
WorkgroupSize vector.

Now to specialize the above via the specialization constants mechanism:

const VkSpecializationMapEntry entries[] =
{
 {
 .constantID = 13,
 .offset = 0 * sizeof(uint32_t),
 .size = sizeof(uint32_t)
 },
 {
 .constantID = 42,
 .offset = 1 * sizeof(uint32_t),
 .size = sizeof(uint32_t)
 },
 {
 .constantID = 3,
 .offset = 2 * sizeof(uint32_t),
 .size = sizeof(uint32_t)
 }
};

const uint32_t data[] = { 16, 8, 4 }; // our workgroup size is 16x8x4

const VkSpecializationInfo info =
{
 .mapEntryCount = 3,
 .pMapEntries = entries,
 .dataSize = 3 * sizeof(uint32_t),
 .pData = data,
};

Then when calling vkCreateComputePipelines, and passing the VkSpecializationInfo we defined as
the pSpecializationInfo parameter of VkPipelineShaderStageCreateInfo, we will create a compute
pipeline with the runtime specified local workgroup size.

Another example would be that an application has a SPIR-V module that has some platform-
dependent constants they wish to use.

In human readable SPIR-V:

OpDecorate %1 SpecId 0 ; decorate our signed 32-bit integer constant
OpDecorate %2 SpecId 12 ; decorate our 32-bit floating-point constant
%i32 = OpTypeInt 32 1 ; declare a signed 32-bit type
%float = OpTypeFloat 32 ; declare a 32-bit floating-point type
%1 = OpSpecConstant %i32 -1 ; some signed 32-bit integer constant

436

%2 = OpSpecConstant %float 0.5 ; some 32-bit floating-point constant

From the above we have two specialization constants, one is a signed 32-bit integer and the second
is a 32-bit floating-point value.

Now to specialize the above via the specialization constants mechanism:

struct SpecializationData {
 int32_t data0;
 float data1;
};

const VkSpecializationMapEntry entries[] =
{
 {
 .constantID = 0,
 .offset = offsetof(SpecializationData, data0),
 .size = sizeof(SpecializationData::data0)
 },
 {
 .constantID = 12,
 .offset = offsetof(SpecializationData, data1),
 .size = sizeof(SpecializationData::data1)
 }
};

SpecializationData data;
data.data0 = -42; // set the data for the 32-bit integer
data.data1 = 42.0f; // set the data for the 32-bit floating-point

const VkSpecializationInfo info =
{
 .mapEntryCount = 2,
 .pMapEntries = entries,
 .dataSize = sizeof(data),
 .pdata = &data,
};

It is legal for a SPIR-V module with specializations to be compiled into a pipeline where no
specialization information was provided. SPIR-V specialization constants contain default values
such that if a specialization is not provided, the default value will be used. In the examples above, it
would be valid for an application to only specialize some of the specialization constants within the
SPIR-V module, and let the other constants use their default values encoded within the
OpSpecConstant declarations.

10.8. Pipeline Binding
Once a pipeline has been created, it can be bound to the command buffer using the command:

437

// Provided by VK_VERSION_1_0
void vkCmdBindPipeline(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipeline pipeline);

• commandBuffer is the command buffer that the pipeline will be bound to.

• pipelineBindPoint is a VkPipelineBindPoint value specifying to which bind point the pipeline is
bound. Binding one does not disturb the others.

• pipeline is the pipeline to be bound.

Once bound, a pipeline binding affects subsequent commands that interact with the given pipeline
type in the command buffer until a different pipeline of the same type is bound to the bind point.
Commands that do not interact with the given pipeline type must not be affected by the pipeline
state.

Valid Usage

• VUID-vkCmdBindPipeline-pipelineBindPoint-00777
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, the VkCommandPool that
commandBuffer was allocated from must support compute operations

• VUID-vkCmdBindPipeline-pipelineBindPoint-00778
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, the VkCommandPool that
commandBuffer was allocated from must support graphics operations

• VUID-vkCmdBindPipeline-pipelineBindPoint-00779
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, pipeline must be a compute
pipeline

• VUID-vkCmdBindPipeline-pipelineBindPoint-00780
If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline must be a graphics
pipeline

• VUID-vkCmdBindPipeline-pipeline-00781
If the variableMultisampleRate feature is not supported, pipeline is a graphics pipeline, the
current subpass uses no attachments, and this is not the first call to this function with a
graphics pipeline after transitioning to the current subpass, then the sample count
specified by this pipeline must match that set in the previous pipeline

Valid Usage (Implicit)

• VUID-vkCmdBindPipeline-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindPipeline-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-vkCmdBindPipeline-pipeline-parameter

438

pipeline must be a valid VkPipeline handle

• VUID-vkCmdBindPipeline-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindPipeline-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBindPipeline-commonparent
Both of commandBuffer, and pipeline must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics
Compute

State

Possible values of vkCmdBindPipeline::pipelineBindPoint, specifying the bind point of a pipeline
object, are:

// Provided by VK_VERSION_1_0
typedef enum VkPipelineBindPoint {
 VK_PIPELINE_BIND_POINT_GRAPHICS = 0,
 VK_PIPELINE_BIND_POINT_COMPUTE = 1,
} VkPipelineBindPoint;

• VK_PIPELINE_BIND_POINT_COMPUTE specifies binding as a compute pipeline.

• VK_PIPELINE_BIND_POINT_GRAPHICS specifies binding as a graphics pipeline.

10.9. Dynamic State
When a pipeline object is bound, any pipeline object state that is not specified as dynamic is applied
to the command buffer state. Pipeline object state that is specified as dynamic is not applied to the
command buffer state at this time. Instead, dynamic state can be modified at any time and persists
for the lifetime of the command buffer, or until modified by another dynamic state setting

439

command, or made invalid by another pipeline bind with that state specified as static.

When a pipeline object is bound, the following applies to each state parameter:

• If the state is not specified as dynamic in the new pipeline object, then that command buffer
state is overwritten by the state in the new pipeline object. Before any draw or dispatch call
with this pipeline there must not have been any calls to any of the corresponding dynamic state
setting commands after this pipeline was bound.

• If the state is specified as dynamic in the new pipeline object, then that command buffer state is
not disturbed. Before any draw or dispatch call with this pipeline there must have been at least
one call to each of the corresponding dynamic state setting commands. The state-setting
commands must be recorded after command buffer recording was begun, or after the last
command binding a pipeline object with that state specified as static, whichever was the latter.

• If the state is not included (corresponding pointer in VkGraphicsPipelineCreateInfo was NULL or
was ignored) in the new pipeline object, then that command buffer state is not disturbed.

Dynamic state that does not affect the result of operations can be left undefined.

Note

For example, if blending is disabled by the pipeline object state then the dynamic
color blend constants do not need to be specified in the command buffer, even if
this state is specified as dynamic in the pipeline object.

Note

Applications running on Vulkan implementations advertising an
VkPhysicalDeviceDriverProperties::conformanceVersion less than 1.3.8.0 should be
aware that rebinding the currently bound pipeline object may not reapply static
state.

10.10. Pipeline Creation Feedback
Feedback about the creation of a particular pipeline object can be obtained by adding a
VkPipelineCreationFeedbackCreateInfo structure to the pNext chain of VkGraphicsPipelineCreateInfo,
or VkComputePipelineCreateInfo. The VkPipelineCreationFeedbackCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPipelineCreationFeedbackCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreationFeedback* pPipelineCreationFeedback;
 uint32_t pipelineStageCreationFeedbackCount;
 VkPipelineCreationFeedback* pPipelineStageCreationFeedbacks;
} VkPipelineCreationFeedbackCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

440

• pPipelineCreationFeedback is a pointer to a VkPipelineCreationFeedback structure.

• pipelineStageCreationFeedbackCount is the number of elements in
pPipelineStageCreationFeedbacks.

• pPipelineStageCreationFeedbacks is a pointer to an array of pipelineStageCreationFeedbackCount
VkPipelineCreationFeedback structures.

An implementation should write pipeline creation feedback to pPipelineCreationFeedback and may
write pipeline stage creation feedback to pPipelineStageCreationFeedbacks. An implementation
must set or clear the VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT in VkPipelineCreationFeedback
::flags for pPipelineCreationFeedback and every element of pPipelineStageCreationFeedbacks.

Note

One common scenario for an implementation to skip per-stage feedback is when
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT is set in
pPipelineCreationFeedback.

When chained to VkGraphicsPipelineCreateInfo, the i element of pPipelineStageCreationFeedbacks
corresponds to the i element of VkGraphicsPipelineCreateInfo::pStages. When chained to
VkComputePipelineCreateInfo, the first element of pPipelineStageCreationFeedbacks corresponds to
VkComputePipelineCreateInfo::stage.

Valid Usage (Implicit)

• VUID-VkPipelineCreationFeedbackCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_CREATION_FEEDBACK_CREATE_INFO

• VUID-VkPipelineCreationFeedbackCreateInfo-pPipelineCreationFeedback-parameter
pPipelineCreationFeedback must be a valid pointer to a VkPipelineCreationFeedback
structure

• VUID-VkPipelineCreationFeedbackCreateInfo-pPipelineStageCreationFeedbacks-
parameter
If pipelineStageCreationFeedbackCount is not 0, pPipelineStageCreationFeedbacks must be a
valid pointer to an array of pipelineStageCreationFeedbackCount
VkPipelineCreationFeedback structures

The VkPipelineCreationFeedback structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPipelineCreationFeedback {
 VkPipelineCreationFeedbackFlags flags;
 uint64_t duration;
} VkPipelineCreationFeedback;

• flags is a bitmask of VkPipelineCreationFeedbackFlagBits providing feedback about the
creation of a pipeline or of a pipeline stage.

441

• duration is the duration spent creating a pipeline or pipeline stage in nanoseconds.

If the VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT is not set in flags, an implementation must not set
any other bits in flags, and the values of all other VkPipelineCreationFeedback data members are
undefined.

Possible values of the flags member of VkPipelineCreationFeedback are:

// Provided by VK_VERSION_1_3
typedef enum VkPipelineCreationFeedbackFlagBits {
 VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT = 0x00000001,
 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT = 0x00000002,
 VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT = 0x00000004,
 VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT =
VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT =
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT,
 VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT_EXT =
VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT,
} VkPipelineCreationFeedbackFlagBits;

• VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT indicates that the feedback information is valid.

• VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT indicates that a readily
usable pipeline or pipeline stage was found in the pipelineCache specified by the application in
the pipeline creation command.

An implementation should set the
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT bit if it was able to avoid the
large majority of pipeline or pipeline stage creation work by using the pipelineCache parameter
of vkCreateGraphicsPipelines, or vkCreateComputePipelines. When an implementation sets this
bit for the entire pipeline, it may leave it unset for any stage.

Note

Implementations are encouraged to provide a meaningful signal to
applications using this bit. The intention is to communicate to the application
that the pipeline or pipeline stage was created “as fast as it gets” using the
pipeline cache provided by the application. If an implementation uses an
internal cache, it is discouraged from setting this bit as the feedback would be
unactionable.

• VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT indicates that the base pipeline
specified by the basePipelineHandle or basePipelineIndex member of the Vk*PipelineCreateInfo
structure was used to accelerate the creation of the pipeline.

An implementation should set the
VK_PIPELINE_CREATION_FEEDBACK_BASE_PIPELINE_ACCELERATION_BIT bit if it was able to avoid a
significant amount of work by using the base pipeline.

442

Note

While “significant amount of work” is subjective, implementations are
encouraged to provide a meaningful signal to applications using this bit. For
example, a 1% reduction in duration may not warrant setting this bit, while a
50% reduction would.

// Provided by VK_VERSION_1_3
typedef VkFlags VkPipelineCreationFeedbackFlags;

VkPipelineCreationFeedbackFlags is a bitmask type for providing zero or more
VkPipelineCreationFeedbackFlagBits.

443

Chapter 11. Memory Allocation
Vulkan memory is broken up into two categories, host memory and device memory.

11.1. Host Memory
Host memory is memory needed by the Vulkan implementation for non-device-visible storage.

Note

This memory may be used to store the implementation’s representation and state
of Vulkan objects.

Vulkan provides applications the opportunity to perform host memory allocations on behalf of the
Vulkan implementation. If this feature is not used, the implementation will perform its own
memory allocations. Since most memory allocations are off the critical path, this is not meant as a
performance feature. Rather, this can be useful for certain embedded systems, for debugging
purposes (e.g. putting a guard page after all host allocations), or for memory allocation logging.

Allocators are provided by the application as a pointer to a VkAllocationCallbacks structure:

// Provided by VK_VERSION_1_0
typedef struct VkAllocationCallbacks {
 void* pUserData;
 PFN_vkAllocationFunction pfnAllocation;
 PFN_vkReallocationFunction pfnReallocation;
 PFN_vkFreeFunction pfnFree;
 PFN_vkInternalAllocationNotification pfnInternalAllocation;
 PFN_vkInternalFreeNotification pfnInternalFree;
} VkAllocationCallbacks;

• pUserData is a value to be interpreted by the implementation of the callbacks. When any of the
callbacks in VkAllocationCallbacks are called, the Vulkan implementation will pass this value as
the first parameter to the callback. This value can vary each time an allocator is passed into a
command, even when the same object takes an allocator in multiple commands.

• pfnAllocation is a PFN_vkAllocationFunction pointer to an application-defined memory
allocation function.

• pfnReallocation is a PFN_vkReallocationFunction pointer to an application-defined memory
reallocation function.

• pfnFree is a PFN_vkFreeFunction pointer to an application-defined memory free function.

• pfnInternalAllocation is a PFN_vkInternalAllocationNotification pointer to an application-
defined function that is called by the implementation when the implementation makes internal
allocations.

• pfnInternalFree is a PFN_vkInternalFreeNotification pointer to an application-defined function
that is called by the implementation when the implementation frees internal allocations.

444

Valid Usage

• VUID-VkAllocationCallbacks-pfnAllocation-00632
pfnAllocation must be a valid pointer to a valid user-defined PFN_vkAllocationFunction

• VUID-VkAllocationCallbacks-pfnReallocation-00633
pfnReallocation must be a valid pointer to a valid user-defined
PFN_vkReallocationFunction

• VUID-VkAllocationCallbacks-pfnFree-00634
pfnFree must be a valid pointer to a valid user-defined PFN_vkFreeFunction

• VUID-VkAllocationCallbacks-pfnInternalAllocation-00635
If either of pfnInternalAllocation or pfnInternalFree is not NULL, both must be valid
callbacks

The type of pfnAllocation is:

// Provided by VK_VERSION_1_0
typedef void* (VKAPI_PTR *PFN_vkAllocationFunction)(
 void* pUserData,
 size_t size,
 size_t alignment,
 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• size is the size in bytes of the requested allocation.

• alignment is the requested alignment of the allocation in bytes and must be a power of two.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

If pfnAllocation is unable to allocate the requested memory, it must return NULL. If the allocation
was successful, it must return a valid pointer to memory allocation containing at least size bytes,
and with the pointer value being a multiple of alignment.

Note

Correct Vulkan operation cannot be assumed if the application does not follow
these rules.

For example, pfnAllocation (or pfnReallocation) could cause termination of
running Vulkan instance(s) on a failed allocation for debugging purposes, either
directly or indirectly. In these circumstances, it cannot be assumed that any part
of any affected VkInstance objects are going to operate correctly (even
vkDestroyInstance), and the application must ensure it cleans up properly via
other means (e.g. process termination).

445

If pfnAllocation returns NULL, and if the implementation is unable to continue correct processing of
the current command without the requested allocation, it must treat this as a runtime error, and
generate VK_ERROR_OUT_OF_HOST_MEMORY at the appropriate time for the command in which the
condition was detected, as described in Return Codes.

If the implementation is able to continue correct processing of the current command without the
requested allocation, then it may do so, and must not generate VK_ERROR_OUT_OF_HOST_MEMORY as a
result of this failed allocation.

The type of pfnReallocation is:

// Provided by VK_VERSION_1_0
typedef void* (VKAPI_PTR *PFN_vkReallocationFunction)(
 void* pUserData,
 void* pOriginal,
 size_t size,
 size_t alignment,
 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• pOriginal must be either NULL or a pointer previously returned by pfnReallocation or
pfnAllocation of a compatible allocator.

• size is the size in bytes of the requested allocation.

• alignment is the requested alignment of the allocation in bytes and must be a power of two.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

If the reallocation was successful, pfnReallocation must return an allocation with enough space for
size bytes, and the contents of the original allocation from bytes zero to min(original size, new size)
- 1 must be preserved in the returned allocation. If size is larger than the old size, the contents of
the additional space are undefined. If satisfying these requirements involves creating a new
allocation, then the old allocation should be freed.

If pOriginal is NULL, then pfnReallocation must behave equivalently to a call to
PFN_vkAllocationFunction with the same parameter values (without pOriginal).

If size is zero, then pfnReallocation must behave equivalently to a call to PFN_vkFreeFunction with
the same pUserData parameter value, and pMemory equal to pOriginal.

If pOriginal is non-NULL, the implementation must ensure that alignment is equal to the alignment
used to originally allocate pOriginal.

If this function fails and pOriginal is non-NULL the application must not free the old allocation.

pfnReallocation must follow the same rules for return values as PFN_vkAllocationFunction.

The type of pfnFree is:

446

// Provided by VK_VERSION_1_0
typedef void (VKAPI_PTR *PFN_vkFreeFunction)(
 void* pUserData,
 void* pMemory);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• pMemory is the allocation to be freed.

pMemory may be NULL, which the callback must handle safely. If pMemory is non-NULL, it must be a
pointer previously allocated by pfnAllocation or pfnReallocation. The application should free this
memory.

The type of pfnInternalAllocation is:

// Provided by VK_VERSION_1_0
typedef void (VKAPI_PTR *PFN_vkInternalAllocationNotification)(
 void* pUserData,
 size_t size,
 VkInternalAllocationType allocationType,
 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• size is the requested size of an allocation.

• allocationType is a VkInternalAllocationType value specifying the requested type of an
allocation.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

This is a purely informational callback.

The type of pfnInternalFree is:

// Provided by VK_VERSION_1_0
typedef void (VKAPI_PTR *PFN_vkInternalFreeNotification)(
 void* pUserData,
 size_t size,
 VkInternalAllocationType allocationType,
 VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by
the application.

• size is the requested size of an allocation.

447

• allocationType is a VkInternalAllocationType value specifying the requested type of an
allocation.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the
lifetime of the allocation, as described here.

Each allocation has an allocation scope defining its lifetime and which object it is associated with.
Possible values passed to the allocationScope parameter of the callback functions specified by
VkAllocationCallbacks, indicating the allocation scope, are:

// Provided by VK_VERSION_1_0
typedef enum VkSystemAllocationScope {
 VK_SYSTEM_ALLOCATION_SCOPE_COMMAND = 0,
 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT = 1,
 VK_SYSTEM_ALLOCATION_SCOPE_CACHE = 2,
 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE = 3,
 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE = 4,
} VkSystemAllocationScope;

• VK_SYSTEM_ALLOCATION_SCOPE_COMMAND specifies that the allocation is scoped to the duration of the
Vulkan command.

• VK_SYSTEM_ALLOCATION_SCOPE_OBJECT specifies that the allocation is scoped to the lifetime of the
Vulkan object that is being created or used.

• VK_SYSTEM_ALLOCATION_SCOPE_CACHE specifies that the allocation is scoped to the lifetime of a
VkPipelineCache object.

• VK_SYSTEM_ALLOCATION_SCOPE_DEVICE specifies that the allocation is scoped to the lifetime of the
Vulkan device.

• VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE specifies that the allocation is scoped to the lifetime of the
Vulkan instance.

Most Vulkan commands operate on a single object, or there is a sole object that is being created or
manipulated. When an allocation uses an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT or
VK_SYSTEM_ALLOCATION_SCOPE_CACHE, the allocation is scoped to the object being created or
manipulated.

When an implementation requires host memory, it will make callbacks to the application using the
most specific allocator and allocation scope available:

• If an allocation is scoped to the duration of a command, the allocator will use the
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND allocation scope. The most specific allocator available is
used: if the object being created or manipulated has an allocator, that object’s allocator will be
used, else if the parent VkDevice has an allocator it will be used, else if the parent VkInstance has
an allocator it will be used. Else,

• If an allocation is associated with a VkPipelineCache object, the allocator will use the
VK_SYSTEM_ALLOCATION_SCOPE_CACHE allocation scope. The most specific allocator available is used
(cache, else device, else instance). Else,

448

• If an allocation is scoped to the lifetime of an object, that object is being created or manipulated
by the command, and that object’s type is not VkDevice or VkInstance, the allocator will use an
allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT. The most specific allocator available is
used (object, else device, else instance). Else,

• If an allocation is scoped to the lifetime of a device, the allocator will use an allocation scope of
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE. The most specific allocator available is used (device, else
instance). Else,

• If the allocation is scoped to the lifetime of an instance and the instance has an allocator, its
allocator will be used with an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE.

• Otherwise an implementation will allocate memory through an alternative mechanism that is
unspecified.

Objects that are allocated from pools do not specify their own allocator. When an implementation
requires host memory for such an object, that memory is sourced from the object’s parent pool’s
allocator.

The application is not expected to handle allocating memory that is intended for execution by the
host due to the complexities of differing security implementations across multiple platforms. The
implementation will allocate such memory internally and invoke an application provided
informational callback when these internal allocations are allocated and freed. Upon allocation of
executable memory, pfnInternalAllocation will be called. Upon freeing executable memory,
pfnInternalFree will be called. An implementation will only call an informational callback for
executable memory allocations and frees.

The allocationType parameter to the pfnInternalAllocation and pfnInternalFree functions may be
one of the following values:

// Provided by VK_VERSION_1_0
typedef enum VkInternalAllocationType {
 VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE = 0,
} VkInternalAllocationType;

• VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE specifies that the allocation is intended for execution
by the host.

An implementation must only make calls into an application-provided allocator during the
execution of an API command. An implementation must only make calls into an application-
provided allocator from the same thread that called the provoking API command. The
implementation should not synchronize calls to any of the callbacks. If synchronization is needed,
the callbacks must provide it themselves. The informational callbacks are subject to the same
restrictions as the allocation callbacks.

If an implementation intends to make calls through a VkAllocationCallbacks structure between the
time a vkCreate* command returns and the time a corresponding vkDestroy* command begins, that
implementation must save a copy of the allocator before the vkCreate* command returns. The
callback functions and any data structures they rely upon must remain valid for the lifetime of the
object they are associated with.

449

If an allocator is provided to a vkCreate* command, a compatible allocator must be provided to the
corresponding vkDestroy* command. Two VkAllocationCallbacks structures are compatible if
memory allocated with pfnAllocation or pfnReallocation in each can be freed with pfnReallocation
or pfnFree in the other. An allocator must not be provided to a vkDestroy* command if an allocator
was not provided to the corresponding vkCreate* command.

If a non-NULL allocator is used, the pfnAllocation, pfnReallocation and pfnFree members must be
non-NULL and point to valid implementations of the callbacks. An application can choose to not
provide informational callbacks by setting both pfnInternalAllocation and pfnInternalFree to NULL.
pfnInternalAllocation and pfnInternalFree must either both be NULL or both be non-NULL.

If pfnAllocation or pfnReallocation fail, the implementation may fail object creation and/or
generate a VK_ERROR_OUT_OF_HOST_MEMORY error, as appropriate.

Allocation callbacks must not call any Vulkan commands.

The following sets of rules define when an implementation is permitted to call the allocator
callbacks.

pfnAllocation or pfnReallocation may be called in the following situations:

• Allocations scoped to a VkDevice or VkInstance may be allocated from any API command.

• Allocations scoped to a command may be allocated from any API command.

• Allocations scoped to a VkPipelineCache may only be allocated from:

◦ vkCreatePipelineCache

◦ vkMergePipelineCaches for dstCache

◦ vkCreateGraphicsPipelines for pipelineCache

◦ vkCreateComputePipelines for pipelineCache

• Allocations scoped to a VkDescriptorPool may only be allocated from:

◦ any command that takes the pool as a direct argument

◦ vkAllocateDescriptorSets for the descriptorPool member of its pAllocateInfo parameter

◦ vkCreateDescriptorPool

• Allocations scoped to a VkCommandPool may only be allocated from:

◦ any command that takes the pool as a direct argument

◦ vkCreateCommandPool

◦ vkAllocateCommandBuffers for the commandPool member of its pAllocateInfo parameter

◦ any vkCmd* command whose commandBuffer was allocated from that VkCommandPool

• Allocations scoped to any other object may only be allocated in that object’s vkCreate*
command.

pfnFree, or pfnReallocation with zero size, may be called in the following situations:

• Allocations scoped to a VkDevice or VkInstance may be freed from any API command.

450

• Allocations scoped to a command must be freed by any API command which allocates such
memory.

• Allocations scoped to a VkPipelineCache may be freed from vkDestroyPipelineCache.

• Allocations scoped to a VkDescriptorPool may be freed from

◦ any command that takes the pool as a direct argument

• Allocations scoped to a VkCommandPool may be freed from:

◦ any command that takes the pool as a direct argument

◦ vkResetCommandBuffer whose commandBuffer was allocated from that VkCommandPool

• Allocations scoped to any other object may be freed in that object’s vkDestroy* command.

• Any command that allocates host memory may also free host memory of the same scope.

11.2. Device Memory
Device memory is memory that is visible to the device — for example the contents of the image or
buffer objects, which can be natively used by the device.

11.2.1. Device Memory Properties

Memory properties of a physical device describe the memory heaps and memory types available.

To query memory properties, call:

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceMemoryProperties(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceMemoryProperties* pMemoryProperties);

• physicalDevice is the handle to the device to query.

• pMemoryProperties is a pointer to a VkPhysicalDeviceMemoryProperties structure in which the
properties are returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceMemoryProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceMemoryProperties-pMemoryProperties-parameter
pMemoryProperties must be a valid pointer to a VkPhysicalDeviceMemoryProperties
structure

The VkPhysicalDeviceMemoryProperties structure is defined as:

// Provided by VK_VERSION_1_0

451

typedef struct VkPhysicalDeviceMemoryProperties {
 uint32_t memoryTypeCount;
 VkMemoryType memoryTypes[VK_MAX_MEMORY_TYPES];
 uint32_t memoryHeapCount;
 VkMemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];
} VkPhysicalDeviceMemoryProperties;

• memoryTypeCount is the number of valid elements in the memoryTypes array.

• memoryTypes is an array of VK_MAX_MEMORY_TYPES VkMemoryType structures describing the
memory types that can be used to access memory allocated from the heaps specified by
memoryHeaps.

• memoryHeapCount is the number of valid elements in the memoryHeaps array.

• memoryHeaps is an array of VK_MAX_MEMORY_HEAPS VkMemoryHeap structures describing the
memory heaps from which memory can be allocated.

The VkPhysicalDeviceMemoryProperties structure describes a number of memory heaps as well as a
number of memory types that can be used to access memory allocated in those heaps. Each heap
describes a memory resource of a particular size, and each memory type describes a set of memory
properties (e.g. host cached vs. uncached) that can be used with a given memory heap. Allocations
using a particular memory type will consume resources from the heap indicated by that memory
type’s heap index. More than one memory type may share each heap, and the heaps and memory
types provide a mechanism to advertise an accurate size of the physical memory resources while
allowing the memory to be used with a variety of different properties.

The number of memory heaps is given by memoryHeapCount and is less than or equal to
VK_MAX_MEMORY_HEAPS. Each heap is described by an element of the memoryHeaps array as a
VkMemoryHeap structure. The number of memory types available across all memory heaps is
given by memoryTypeCount and is less than or equal to VK_MAX_MEMORY_TYPES. Each memory type is
described by an element of the memoryTypes array as a VkMemoryType structure.

At least one heap must include VK_MEMORY_HEAP_DEVICE_LOCAL_BIT in VkMemoryHeap::flags. If there
are multiple heaps that all have similar performance characteristics, they may all include
VK_MEMORY_HEAP_DEVICE_LOCAL_BIT. In a unified memory architecture (UMA) system there is often
only a single memory heap which is considered to be equally “local” to the host and to the device,
and such an implementation must advertise the heap as device-local.

Each memory type returned by vkGetPhysicalDeviceMemoryProperties must have its propertyFlags
set to one of the following values:

• 0

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |

452

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

• VK_MEMORY_PROPERTY_PROTECTED_BIT

• VK_MEMORY_PROPERTY_PROTECTED_BIT | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

There must be at least one memory type with both the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bits set in its propertyFlags. There must be at least one
memory type with the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set in its propertyFlags.

For each pair of elements X and Y returned in memoryTypes, X must be placed at a lower index
position than Y if:

• the set of bit flags returned in the propertyFlags member of X is a strict subset of the set of bit
flags returned in the propertyFlags member of Y; or

• the propertyFlags members of X and Y are equal, and X belongs to a memory heap with greater
performance (as determined in an implementation-specific manner)

Note

There is no ordering requirement between X and Y elements for the case their
propertyFlags members are not in a subset relation. That potentially allows more
than one possible way to order the same set of memory types. Notice that the list of
all allowed memory property flag combinations is written in a valid order. But if
instead VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT was before
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, the
list would still be in a valid order.

This ordering requirement enables applications to use a simple search loop to select the desired
memory type along the lines of:

// Find a memory in `memoryTypeBitsRequirement` that includes all of
`requiredProperties`
int32_t findProperties(const VkPhysicalDeviceMemoryProperties* pMemoryProperties,
 uint32_t memoryTypeBitsRequirement,

453

 VkMemoryPropertyFlags requiredProperties) {
 const uint32_t memoryCount = pMemoryProperties->memoryTypeCount;
 for (uint32_t memoryIndex = 0; memoryIndex < memoryCount; ++memoryIndex) {
 const uint32_t memoryTypeBits = (1 << memoryIndex);
 const bool isRequiredMemoryType = memoryTypeBitsRequirement & memoryTypeBits;

 const VkMemoryPropertyFlags properties =
 pMemoryProperties->memoryTypes[memoryIndex].propertyFlags;
 const bool hasRequiredProperties =
 (properties & requiredProperties) == requiredProperties;

 if (isRequiredMemoryType && hasRequiredProperties)
 return static_cast<int32_t>(memoryIndex);
 }

 // failed to find memory type
 return -1;
}

// Try to find an optimal memory type, or if it does not exist try fallback memory
type
// `device` is the VkDevice
// `image` is the VkImage that requires memory to be bound
// `memoryProperties` properties as returned by vkGetPhysicalDeviceMemoryProperties
// `requiredProperties` are the property flags that must be present
// `optimalProperties` are the property flags that are preferred by the application
VkMemoryRequirements memoryRequirements;
vkGetImageMemoryRequirements(device, image, &memoryRequirements);
int32_t memoryType =
 findProperties(&memoryProperties, memoryRequirements.memoryTypeBits,
optimalProperties);
if (memoryType == -1) // not found; try fallback properties
 memoryType =
 findProperties(&memoryProperties, memoryRequirements.memoryTypeBits,
requiredProperties);

VK_MAX_MEMORY_TYPES is the length of an array of VkMemoryType structures describing memory
types, as returned in VkPhysicalDeviceMemoryProperties::memoryTypes.

#define VK_MAX_MEMORY_TYPES 32U

VK_MAX_MEMORY_HEAPS is the length of an array of VkMemoryHeap structures describing memory
heaps, as returned in VkPhysicalDeviceMemoryProperties::memoryHeaps.

#define VK_MAX_MEMORY_HEAPS 16U

To query memory properties, call:

454

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceMemoryProperties2(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceMemoryProperties2* pMemoryProperties);

• physicalDevice is the handle to the device to query.

• pMemoryProperties is a pointer to a VkPhysicalDeviceMemoryProperties2 structure in which the
properties are returned.

vkGetPhysicalDeviceMemoryProperties2 behaves similarly to vkGetPhysicalDeviceMemoryProperties,
with the ability to return extended information in a pNext chain of output structures.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceMemoryProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceMemoryProperties2-pMemoryProperties-parameter
pMemoryProperties must be a valid pointer to a VkPhysicalDeviceMemoryProperties2
structure

The VkPhysicalDeviceMemoryProperties2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceMemoryProperties2 {
 VkStructureType sType;
 void* pNext;
 VkPhysicalDeviceMemoryProperties memoryProperties;
} VkPhysicalDeviceMemoryProperties2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryProperties is a VkPhysicalDeviceMemoryProperties structure which is populated with the
same values as in vkGetPhysicalDeviceMemoryProperties.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMemoryProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2

• VUID-VkPhysicalDeviceMemoryProperties2-pNext-pNext
pNext must be NULL

The VkMemoryHeap structure is defined as:

455

// Provided by VK_VERSION_1_0
typedef struct VkMemoryHeap {
 VkDeviceSize size;
 VkMemoryHeapFlags flags;
} VkMemoryHeap;

• size is the total memory size in bytes in the heap.

• flags is a bitmask of VkMemoryHeapFlagBits specifying attribute flags for the heap.

Bits which may be set in VkMemoryHeap::flags, indicating attribute flags for the heap, are:

// Provided by VK_VERSION_1_0
typedef enum VkMemoryHeapFlagBits {
 VK_MEMORY_HEAP_DEVICE_LOCAL_BIT = 0x00000001,
 // Provided by VK_VERSION_1_1
 VK_MEMORY_HEAP_MULTI_INSTANCE_BIT = 0x00000002,
} VkMemoryHeapFlagBits;

• VK_MEMORY_HEAP_DEVICE_LOCAL_BIT specifies that the heap corresponds to device-local memory.
Device-local memory may have different performance characteristics than host-local memory,
and may support different memory property flags.

• VK_MEMORY_HEAP_MULTI_INSTANCE_BIT specifies that in a logical device representing more than one
physical device, there is a per-physical device instance of the heap memory. By default, an
allocation from such a heap will be replicated to each physical device’s instance of the heap.

// Provided by VK_VERSION_1_0
typedef VkFlags VkMemoryHeapFlags;

VkMemoryHeapFlags is a bitmask type for setting a mask of zero or more VkMemoryHeapFlagBits.

The VkMemoryType structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryType {
 VkMemoryPropertyFlags propertyFlags;
 uint32_t heapIndex;
} VkMemoryType;

• heapIndex describes which memory heap this memory type corresponds to, and must be less
than memoryHeapCount from the VkPhysicalDeviceMemoryProperties structure.

• propertyFlags is a bitmask of VkMemoryPropertyFlagBits of properties for this memory type.

Bits which may be set in VkMemoryType::propertyFlags, indicating properties of a memory type,
are:

456

// Provided by VK_VERSION_1_0
typedef enum VkMemoryPropertyFlagBits {
 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT = 0x00000002,
 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004,
 VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008,
 VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT = 0x00000010,
 // Provided by VK_VERSION_1_1
 VK_MEMORY_PROPERTY_PROTECTED_BIT = 0x00000020,
} VkMemoryPropertyFlagBits;

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit specifies that memory allocated with this type is the
most efficient for device access. This property will be set if and only if the memory type belongs
to a heap with the VK_MEMORY_HEAP_DEVICE_LOCAL_BIT set.

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit specifies that memory allocated with this type can be
mapped for host access using vkMapMemory.

• VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit specifies that the host cache management commands
vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are not needed to
flush host writes to the device or make device writes visible to the host, respectively.

• VK_MEMORY_PROPERTY_HOST_CACHED_BIT bit specifies that memory allocated with this type is cached
on the host. Host memory accesses to uncached memory are slower than to cached memory,
however uncached memory is always host coherent.

• VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit specifies that the memory type only allows device
access to the memory. Memory types must not have both
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT and VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set.
Additionally, the object’s backing memory may be provided by the implementation lazily as
specified in Lazily Allocated Memory.

• VK_MEMORY_PROPERTY_PROTECTED_BIT bit specifies that the memory type only allows device access
to the memory, and allows protected queue operations to access the memory. Memory types
must not have VK_MEMORY_PROPERTY_PROTECTED_BIT set and any of
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set, or VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, or
VK_MEMORY_PROPERTY_HOST_CACHED_BIT set.

// Provided by VK_VERSION_1_0
typedef VkFlags VkMemoryPropertyFlags;

VkMemoryPropertyFlags is a bitmask type for setting a mask of zero or more
VkMemoryPropertyFlagBits.

11.2.2. Device Memory Objects

A Vulkan device operates on data in device memory via memory objects that are represented in the
API by a VkDeviceMemory handle:

457

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDeviceMemory)

11.2.3. Device Memory Allocation

To allocate memory objects, call:

// Provided by VK_VERSION_1_0
VkResult vkAllocateMemory(
 VkDevice device,
 const VkMemoryAllocateInfo* pAllocateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDeviceMemory* pMemory);

• device is the logical device that owns the memory.

• pAllocateInfo is a pointer to a VkMemoryAllocateInfo structure describing parameters of the
allocation. A successfully returned allocation must use the requested parameters — no
substitution is permitted by the implementation.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pMemory is a pointer to a VkDeviceMemory handle in which information about the allocated
memory is returned.

Allocations returned by vkAllocateMemory are guaranteed to meet any alignment requirement of the
implementation. For example, if an implementation requires 128 byte alignment for images and 64
byte alignment for buffers, the device memory returned through this mechanism would be 128-
byte aligned. This ensures that applications can correctly suballocate objects of different types
(with potentially different alignment requirements) in the same memory object.

When memory is allocated, its contents are undefined with the following constraint:

• The contents of unprotected memory must not be a function of the contents of data protected
memory objects, even if those memory objects were previously freed.

Note

The contents of memory allocated by one application should not be a function of
data from protected memory objects of another application, even if those memory
objects were previously freed.

The maximum number of valid memory allocations that can exist simultaneously within a
VkDevice may be restricted by implementation- or platform-dependent limits. The
maxMemoryAllocationCount feature describes the number of allocations that can exist simultaneously
before encountering these internal limits.

Note

For historical reasons, if maxMemoryAllocationCount is exceeded, some

458

implementations may return VK_ERROR_TOO_MANY_OBJECTS. Exceeding this limit will
result in undefined behavior, and an application should not rely on the use of the
returned error code in order to identify when the limit is reached.

Note

Many protected memory implementations involve complex hardware and system
software support, and often have additional and much lower limits on the number
of simultaneous protected memory allocations (from memory types with the
VK_MEMORY_PROPERTY_PROTECTED_BIT property) than for non-protected memory
allocations. These limits can be system-wide, and depend on a variety of factors
outside of the Vulkan implementation, so they cannot be queried in Vulkan.
Applications should use as few allocations as possible from such memory types by
suballocating aggressively, and be prepared for allocation failure even when there
is apparently plenty of capacity remaining in the memory heap. As a guideline, the
Vulkan conformance test suite requires that at least 80 minimum-size allocations
can exist concurrently when no other uses of protected memory are active in the
system.

Some platforms may have a limit on the maximum size of a single allocation. For example, certain
systems may fail to create allocations with a size greater than or equal to 4GB. Such a limit is
implementation-dependent, and if such a failure occurs then the error
VK_ERROR_OUT_OF_DEVICE_MEMORY must be returned.

Valid Usage

• VUID-vkAllocateMemory-pAllocateInfo-01713
pAllocateInfo->allocationSize must be less than or equal to
VkPhysicalDeviceMemoryProperties::memoryHeaps[memindex].size where memindex =
VkPhysicalDeviceMemoryProperties::memoryTypes[pAllocateInfo->memoryTypeIndex
].heapIndex as returned by vkGetPhysicalDeviceMemoryProperties for the
VkPhysicalDevice that device was created from

• VUID-vkAllocateMemory-pAllocateInfo-01714
pAllocateInfo->memoryTypeIndex must be less than VkPhysicalDeviceMemoryProperties
::memoryTypeCount as returned by vkGetPhysicalDeviceMemoryProperties for the
VkPhysicalDevice that device was created from

• VUID-vkAllocateMemory-maxMemoryAllocationCount-04101
There must be less than VkPhysicalDeviceLimits::maxMemoryAllocationCount device memory
allocations currently allocated on the device

Valid Usage (Implicit)

• VUID-vkAllocateMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkAllocateMemory-pAllocateInfo-parameter
pAllocateInfo must be a valid pointer to a valid VkMemoryAllocateInfo structure

459

• VUID-vkAllocateMemory-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkAllocateMemory-pMemory-parameter
pMemory must be a valid pointer to a VkDeviceMemory handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INVALID_EXTERNAL_HANDLE

The VkMemoryAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDeviceSize allocationSize;
 uint32_t memoryTypeIndex;
} VkMemoryAllocateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• allocationSize is the size of the allocation in bytes.

• memoryTypeIndex is an index identifying a memory type from the memoryTypes array of the
VkPhysicalDeviceMemoryProperties structure.

The internal data of an allocated device memory object must include a reference to
implementation-specific resources, referred to as the memory object’s payload.

Valid Usage

• VUID-VkMemoryAllocateInfo-allocationSize-07897
allocationSize must be greater than 0

• VUID-VkMemoryAllocateInfo-memoryTypeIndex-01872
If the protectedMemory feature is not enabled, the VkMemoryAllocateInfo::memoryTypeIndex
must not indicate a memory type that reports VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkMemoryAllocateInfo-opaqueCaptureAddress-03329

460

If VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress is not zero,
VkMemoryAllocateFlagsInfo::flags must include
VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

• VUID-VkMemoryAllocateInfo-flags-03330
If VkMemoryAllocateFlagsInfo::flags includes
VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT, the
bufferDeviceAddressCaptureReplay feature must be enabled

• VUID-VkMemoryAllocateInfo-flags-03331
If VkMemoryAllocateFlagsInfo::flags includes VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT, the
bufferDeviceAddress feature must be enabled

• VUID-VkMemoryAllocateInfo-opaqueCaptureAddress-03333
If the parameters define an import operation,
VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress must be zero

Valid Usage (Implicit)

• VUID-VkMemoryAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO

• VUID-VkMemoryAllocateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExportMemoryAllocateInfo,
VkMemoryAllocateFlagsInfo, VkMemoryDedicatedAllocateInfo, or
VkMemoryOpaqueCaptureAddressAllocateInfo

• VUID-VkMemoryAllocateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

If the pNext chain includes a VkMemoryDedicatedAllocateInfo structure, then that structure includes a
handle of the sole buffer or image resource that the memory can be bound to.

The VkMemoryDedicatedAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkMemoryDedicatedAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
 VkBuffer buffer;
} VkMemoryDedicatedAllocateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is VK_NULL_HANDLE or a handle of an image which this memory will be bound to.

• buffer is VK_NULL_HANDLE or a handle of a buffer which this memory will be bound to.

461

Valid Usage

• VUID-VkMemoryDedicatedAllocateInfo-image-01432
At least one of image and buffer must be VK_NULL_HANDLE

• VUID-VkMemoryDedicatedAllocateInfo-image-02964
If image is not VK_NULL_HANDLE , VkMemoryAllocateInfo::allocationSize must equal the
VkMemoryRequirements::size of the image

• VUID-VkMemoryDedicatedAllocateInfo-image-01434
If image is not VK_NULL_HANDLE, image must have been created without
VK_IMAGE_CREATE_SPARSE_BINDING_BIT set in VkImageCreateInfo::flags

• VUID-VkMemoryDedicatedAllocateInfo-buffer-02965
If buffer is not VK_NULL_HANDLE , VkMemoryAllocateInfo::allocationSize must equal the
VkMemoryRequirements::size of the buffer

• VUID-VkMemoryDedicatedAllocateInfo-buffer-01436
If buffer is not VK_NULL_HANDLE, buffer must have been created without
VK_BUFFER_CREATE_SPARSE_BINDING_BIT set in VkBufferCreateInfo::flags

Valid Usage (Implicit)

• VUID-VkMemoryDedicatedAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO

• VUID-VkMemoryDedicatedAllocateInfo-image-parameter
If image is not VK_NULL_HANDLE, image must be a valid VkImage handle

• VUID-VkMemoryDedicatedAllocateInfo-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• VUID-VkMemoryDedicatedAllocateInfo-commonparent
Both of buffer, and image that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

When allocating memory whose payload may be exported to another process or Vulkan instance,
add a VkExportMemoryAllocateInfo structure to the pNext chain of the VkMemoryAllocateInfo
structure, specifying the handle types that may be exported.

The VkExportMemoryAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExportMemoryAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlags handleTypes;
} VkExportMemoryAllocateInfo;

462

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is zero or a bitmask of VkExternalMemoryHandleTypeFlagBits specifying one or
more memory handle types the application can export from the resulting allocation. The
application can request multiple handle types for the same allocation.

Valid Usage

• VUID-VkExportMemoryAllocateInfo-handleTypes-00656
The bits in handleTypes must be supported and compatible, as reported by
VkExternalImageFormatProperties or VkExternalBufferProperties

Valid Usage (Implicit)

• VUID-VkExportMemoryAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO

• VUID-VkExportMemoryAllocateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalMemoryHandleTypeFlagBits
values

11.2.4. Device Group Memory Allocations

If the pNext chain of VkMemoryAllocateInfo includes a VkMemoryAllocateFlagsInfo structure, then
that structure includes flags and a device mask controlling how many instances of the memory will
be allocated.

The VkMemoryAllocateFlagsInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkMemoryAllocateFlagsInfo {
 VkStructureType sType;
 const void* pNext;
 VkMemoryAllocateFlags flags;
 uint32_t deviceMask;
} VkMemoryAllocateFlagsInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkMemoryAllocateFlagBits controlling the allocation.

• deviceMask is a mask of physical devices in the logical device, indicating that memory must be
allocated on each device in the mask, if VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT is set in flags.

If VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT is not set, the number of instances allocated depends on

463

whether VK_MEMORY_HEAP_MULTI_INSTANCE_BIT is set in the memory heap. If
VK_MEMORY_HEAP_MULTI_INSTANCE_BIT is set, then memory is allocated for every physical device in the
logical device (as if deviceMask has bits set for all device indices). If
VK_MEMORY_HEAP_MULTI_INSTANCE_BIT is not set, then a single instance of memory is allocated (as if
deviceMask is set to one).

On some implementations, allocations from a multi-instance heap may consume memory on all
physical devices even if the deviceMask excludes some devices. If
VkPhysicalDeviceGroupProperties::subsetAllocation is VK_TRUE, then memory is only consumed for
the devices in the device mask.

Note

In practice, most allocations on a multi-instance heap will be allocated across all
physical devices. Unicast allocation support is an optional optimization for a
minority of allocations.

Valid Usage

• VUID-VkMemoryAllocateFlagsInfo-deviceMask-00675
If VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT is set, deviceMask must be a valid device mask

• VUID-VkMemoryAllocateFlagsInfo-deviceMask-00676
If VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT is set, deviceMask must not be zero

Valid Usage (Implicit)

• VUID-VkMemoryAllocateFlagsInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO

• VUID-VkMemoryAllocateFlagsInfo-flags-parameter
flags must be a valid combination of VkMemoryAllocateFlagBits values

Bits which can be set in VkMemoryAllocateFlagsInfo::flags, controlling device memory allocation,
are:

// Provided by VK_VERSION_1_1
typedef enum VkMemoryAllocateFlagBits {
 VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT = 0x00000001,
 // Provided by VK_VERSION_1_2
 VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT = 0x00000002,
 // Provided by VK_VERSION_1_2
 VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT = 0x00000004,
} VkMemoryAllocateFlagBits;

• VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT specifies that memory will be allocated for the devices in
VkMemoryAllocateFlagsInfo::deviceMask.

464

• VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT specifies that the memory can be attached to a buffer
object created with the VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT bit set in usage, and that the
memory handle can be used to retrieve an opaque address via
vkGetDeviceMemoryOpaqueCaptureAddress.

• VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT specifies that the memory’s address can
be saved and reused on a subsequent run (e.g. for trace capture and replay), see
VkBufferOpaqueCaptureAddressCreateInfo for more detail.

// Provided by VK_VERSION_1_1
typedef VkFlags VkMemoryAllocateFlags;

VkMemoryAllocateFlags is a bitmask type for setting a mask of zero or more
VkMemoryAllocateFlagBits.

11.2.5. Opaque Capture Address Allocation

To request a specific device address for a memory allocation, add a
VkMemoryOpaqueCaptureAddressAllocateInfo structure to the pNext chain of the
VkMemoryAllocateInfo structure. The VkMemoryOpaqueCaptureAddressAllocateInfo structure is
defined as:

// Provided by VK_VERSION_1_2
typedef struct VkMemoryOpaqueCaptureAddressAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 uint64_t opaqueCaptureAddress;
} VkMemoryOpaqueCaptureAddressAllocateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• opaqueCaptureAddress is the opaque capture address requested for the memory allocation.

If opaqueCaptureAddress is zero, no specific address is requested.

If opaqueCaptureAddress is not zero, it should be an address retrieved from
vkGetDeviceMemoryOpaqueCaptureAddress on an identically created memory allocation on the
same implementation.

Note

In most cases, it is expected that a non-zero opaqueAddress is an address retrieved
from vkGetDeviceMemoryOpaqueCaptureAddress on an identically created
memory allocation. If this is not the case, it is likely that
VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS errors will occur.

This is, however, not a strict requirement because trace capture/replay tools may

465

need to adjust memory allocation parameters for imported memory.

If this structure is not present, it is as if opaqueCaptureAddress is zero.

Valid Usage (Implicit)

• VUID-VkMemoryOpaqueCaptureAddressAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO

11.2.6. Freeing Device Memory

To free a memory object, call:

// Provided by VK_VERSION_1_0
void vkFreeMemory(
 VkDevice device,
 VkDeviceMemory memory,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object to be freed.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Before freeing a memory object, an application must ensure the memory object is no longer in use
by the device — for example by command buffers in the pending state. Memory can be freed whilst
still bound to resources, but those resources must not be used afterwards. Freeing a memory object
releases the reference it held, if any, to its payload. If there are still any bound images or buffers,
the memory object’s payload may not be immediately released by the implementation, but must be
released by the time all bound images and buffers have been destroyed. Once all references to a
payload are released, it is returned to the heap from which it was allocated.

How memory objects are bound to Images and Buffers is described in detail in the Resource
Memory Association section.

If a memory object is mapped at the time it is freed, it is implicitly unmapped.

Note

As described below, host writes are not implicitly flushed when the memory object
is unmapped, but the implementation must guarantee that writes that have not
been flushed do not affect any other memory.

Valid Usage

• VUID-vkFreeMemory-memory-00677
All submitted commands that refer to memory (via images or buffers) must have completed

466

execution

Valid Usage (Implicit)

• VUID-vkFreeMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkFreeMemory-memory-parameter
If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• VUID-vkFreeMemory-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkFreeMemory-memory-parent
If memory is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

11.2.7. Host Access to Device Memory Objects

Memory objects created with vkAllocateMemory are not directly host accessible.

Memory objects created with the memory property VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT are
considered mappable. Memory objects must be mappable in order to be successfully mapped on
the host.

To retrieve a host virtual address pointer to a region of a mappable memory object, call:

// Provided by VK_VERSION_1_0
VkResult vkMapMemory(
 VkDevice device,
 VkDeviceMemory memory,
 VkDeviceSize offset,
 VkDeviceSize size,
 VkMemoryMapFlags flags,
 void** ppData);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object to be mapped.

• offset is a zero-based byte offset from the beginning of the memory object.

• size is the size of the memory range to map, or VK_WHOLE_SIZE to map from offset to the end of
the allocation.

467

• flags is reserved for future use.

• ppData is a pointer to a void* variable in which a host-accessible pointer to the beginning of the
mapped range is returned. This pointer minus offset must be aligned to at least
VkPhysicalDeviceLimits::minMemoryMapAlignment.

After a successful call to vkMapMemory the memory object memory is considered to be currently host
mapped.

Note

It is an application error to call vkMapMemory on a memory object that is already
host mapped.

Note

vkMapMemory will fail if the implementation is unable to allocate an appropriately
sized contiguous virtual address range, e.g. due to virtual address space
fragmentation or platform limits. In such cases, vkMapMemory must return
VK_ERROR_MEMORY_MAP_FAILED. The application can improve the likelihood of success
by reducing the size of the mapped range and/or removing unneeded mappings
using vkUnmapMemory.

vkMapMemory does not check whether the device memory is currently in use before returning the
host-accessible pointer. The application must guarantee that any previously submitted command
that writes to this range has completed before the host reads from or writes to that range, and that
any previously submitted command that reads from that range has completed before the host
writes to that region (see here for details on fulfilling such a guarantee). If the device memory was
allocated without the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, these guarantees must be made for
an extended range: the application must round down the start of the range to the nearest multiple
of VkPhysicalDeviceLimits::nonCoherentAtomSize, and round the end of the range up to the nearest
multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize.

While a range of device memory is host mapped, the application is responsible for synchronizing
both device and host access to that memory range.

Note

It is important for the application developer to become meticulously familiar with
all of the mechanisms described in the chapter on Synchronization and Cache
Control as they are crucial to maintaining memory access ordering.

Valid Usage

• VUID-vkMapMemory-memory-00678
memory must not be currently host mapped

• VUID-vkMapMemory-offset-00679
offset must be less than the size of memory

• VUID-vkMapMemory-size-00680

468

If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• VUID-vkMapMemory-size-00681
If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of the
memory minus offset

• VUID-vkMapMemory-memory-00682
memory must have been created with a memory type that reports
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

Valid Usage (Implicit)

• VUID-vkMapMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkMapMemory-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkMapMemory-flags-zerobitmask
flags must be 0

• VUID-vkMapMemory-ppData-parameter
ppData must be a valid pointer to a pointer value

• VUID-vkMapMemory-memory-parent
memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_MEMORY_MAP_FAILED

// Provided by VK_VERSION_1_0
typedef VkFlags VkMemoryMapFlags;

VkMemoryMapFlags is a bitmask type for setting a mask of zero or more VkMemoryMapFlagBits.

469

Two commands are provided to enable applications to work with non-coherent memory
allocations: vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges.

Note

If the memory object was created with the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
set, vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are
unnecessary and may have a performance cost. However, availability and
visibility operations still need to be managed on the device. See the description of
host access types for more information.

After a successful call to vkMapMemory the memory object memory is considered to be currently host
mapped.

To flush ranges of non-coherent memory from the host caches, call:

// Provided by VK_VERSION_1_0
VkResult vkFlushMappedMemoryRanges(
 VkDevice device,
 uint32_t memoryRangeCount,
 const VkMappedMemoryRange* pMemoryRanges);

• device is the logical device that owns the memory ranges.

• memoryRangeCount is the length of the pMemoryRanges array.

• pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the
memory ranges to flush.

vkFlushMappedMemoryRanges guarantees that host writes to the memory ranges described by
pMemoryRanges are made available to the host memory domain, such that they can be made
available to the device memory domain via memory domain operations using the
VK_ACCESS_HOST_WRITE_BIT access type.

Within each range described by pMemoryRanges, each set of nonCoherentAtomSize bytes in that range is
flushed if any byte in that set has been written by the host since it was first host mapped, or the last
time it was flushed. If pMemoryRanges includes sets of nonCoherentAtomSize bytes where no bytes have
been written by the host, those bytes must not be flushed.

Unmapping non-coherent memory does not implicitly flush the host mapped memory, and host
writes that have not been flushed may not ever be visible to the device. However, implementations
must ensure that writes that have not been flushed do not become visible to any other memory.

Note

The above guarantee avoids a potential memory corruption in scenarios where
host writes to a mapped memory object have not been flushed before the memory
is unmapped (or freed), and the virtual address range is subsequently reused for a
different mapping (or memory allocation).

470

Valid Usage (Implicit)

• VUID-vkFlushMappedMemoryRanges-device-parameter
device must be a valid VkDevice handle

• VUID-vkFlushMappedMemoryRanges-pMemoryRanges-parameter
pMemoryRanges must be a valid pointer to an array of memoryRangeCount valid
VkMappedMemoryRange structures

• VUID-vkFlushMappedMemoryRanges-memoryRangeCount-arraylength
memoryRangeCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To invalidate ranges of non-coherent memory from the host caches, call:

// Provided by VK_VERSION_1_0
VkResult vkInvalidateMappedMemoryRanges(
 VkDevice device,
 uint32_t memoryRangeCount,
 const VkMappedMemoryRange* pMemoryRanges);

• device is the logical device that owns the memory ranges.

• memoryRangeCount is the length of the pMemoryRanges array.

• pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the
memory ranges to invalidate.

vkInvalidateMappedMemoryRanges guarantees that device writes to the memory ranges described by
pMemoryRanges, which have been made available to the host memory domain using the
VK_ACCESS_HOST_WRITE_BIT and VK_ACCESS_HOST_READ_BIT access types, are made visible to the host. If
a range of non-coherent memory is written by the host and then invalidated without first being
flushed, its contents are undefined.

Within each range described by pMemoryRanges, each set of nonCoherentAtomSize bytes in that range is
invalidated if any byte in that set has been written by the device since it was first host mapped, or
the last time it was invalidated.

Note

471

Mapping non-coherent memory does not implicitly invalidate that memory.

Valid Usage (Implicit)

• VUID-vkInvalidateMappedMemoryRanges-device-parameter
device must be a valid VkDevice handle

• VUID-vkInvalidateMappedMemoryRanges-pMemoryRanges-parameter
pMemoryRanges must be a valid pointer to an array of memoryRangeCount valid
VkMappedMemoryRange structures

• VUID-vkInvalidateMappedMemoryRanges-memoryRangeCount-arraylength
memoryRangeCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkMappedMemoryRange structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMappedMemoryRange {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
 VkDeviceSize offset;
 VkDeviceSize size;
} VkMappedMemoryRange;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memory is the memory object to which this range belongs.

• offset is the zero-based byte offset from the beginning of the memory object.

• size is either the size of range, or VK_WHOLE_SIZE to affect the range from offset to the end of the
current mapping of the allocation.

Valid Usage

• VUID-VkMappedMemoryRange-memory-00684

472

memory must be currently host mapped

• VUID-VkMappedMemoryRange-size-00685
If size is not equal to VK_WHOLE_SIZE, offset and size must specify a range contained
within the currently mapped range of memory

• VUID-VkMappedMemoryRange-size-00686
If size is equal to VK_WHOLE_SIZE, offset must be within the currently mapped range of
memory

• VUID-VkMappedMemoryRange-offset-00687
offset must be a multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize

• VUID-VkMappedMemoryRange-size-01389
If size is equal to VK_WHOLE_SIZE, the end of the current mapping of memory must either be a
multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize bytes from the beginning of the
memory object, or be equal to the end of the memory object

• VUID-VkMappedMemoryRange-size-01390
If size is not equal to VK_WHOLE_SIZE, size must either be a multiple of
VkPhysicalDeviceLimits::nonCoherentAtomSize, or offset plus size must equal the size of
memory

Valid Usage (Implicit)

• VUID-VkMappedMemoryRange-sType-sType
sType must be VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE

• VUID-VkMappedMemoryRange-pNext-pNext
pNext must be NULL

• VUID-VkMappedMemoryRange-memory-parameter
memory must be a valid VkDeviceMemory handle

To unmap a memory object once host access to it is no longer needed by the application, call:

// Provided by VK_VERSION_1_0
void vkUnmapMemory(
 VkDevice device,
 VkDeviceMemory memory);

• device is the logical device that owns the memory.

• memory is the memory object to be unmapped.

Valid Usage

• VUID-vkUnmapMemory-memory-00689
memory must be currently host mapped

473

Valid Usage (Implicit)

• VUID-vkUnmapMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkUnmapMemory-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkUnmapMemory-memory-parent
memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

11.2.8. Lazily Allocated Memory

If the memory object is allocated from a heap with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit
set, that object’s backing memory may be provided by the implementation lazily. The actual
committed size of the memory may initially be as small as zero (or as large as the requested size),
and monotonically increases as additional memory is needed.

A memory type with this flag set is only allowed to be bound to a VkImage whose usage flags include
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT.

Note

Using lazily allocated memory objects for framebuffer attachments that are not
needed once a render pass instance has completed may allow some
implementations to never allocate memory for such attachments.

To determine the amount of lazily-allocated memory that is currently committed for a memory
object, call:

// Provided by VK_VERSION_1_0
void vkGetDeviceMemoryCommitment(
 VkDevice device,
 VkDeviceMemory memory,
 VkDeviceSize* pCommittedMemoryInBytes);

• device is the logical device that owns the memory.

• memory is the memory object being queried.

• pCommittedMemoryInBytes is a pointer to a VkDeviceSize value in which the number of bytes
currently committed is returned, on success.

The implementation may update the commitment at any time, and the value returned by this query

474

may be out of date.

The implementation guarantees to allocate any committed memory from the heapIndex indicated by
the memory type that the memory object was created with.

Valid Usage

• VUID-vkGetDeviceMemoryCommitment-memory-00690
memory must have been created with a memory type that reports
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

Valid Usage (Implicit)

• VUID-vkGetDeviceMemoryCommitment-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceMemoryCommitment-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkGetDeviceMemoryCommitment-pCommittedMemoryInBytes-parameter
pCommittedMemoryInBytes must be a valid pointer to a VkDeviceSize value

• VUID-vkGetDeviceMemoryCommitment-memory-parent
memory must have been created, allocated, or retrieved from device

11.2.9. Protected Memory

Protected memory divides device memory into protected device memory and unprotected device
memory.

Protected memory adds the following concepts:

• Memory:

◦ Unprotected device memory, which can be visible to the device and can be visible to the
host

◦ Protected device memory, which can be visible to the device but must not be visible to the
host

• Resources:

◦ Unprotected images and unprotected buffers, to which unprotected memory can be bound

◦ Protected images and protected buffers, to which protected memory can be bound

• Command buffers:

◦ Unprotected command buffers, which can be submitted to a device queue to execute
unprotected queue operations

◦ Protected command buffers, which can be submitted to a protected-capable device queue to
execute protected queue operations

475

• Device queues:

◦ Unprotected device queues, to which unprotected command buffers can be submitted

◦ Protected-capable device queues, to which unprotected command buffers or protected
command buffers can be submitted

• Queue submissions

◦ Unprotected queue submissions, through which unprotected command buffers can be
submitted

◦ Protected queue submissions, through which protected command buffers can be submitted

• Queue operations

◦ Unprotected queue operations

◦ Protected queue operations

Protected Memory Access Rules

If VkPhysicalDeviceProtectedMemoryProperties::protectedNoFault is VK_FALSE, applications must
not perform any of the following operations:

• Write to unprotected memory within protected queue operations.

• Access protected memory within protected queue operations other than in framebuffer-space
pipeline stages, the compute shader stage, or the transfer stage.

• Perform a query within protected queue operations.

If VkPhysicalDeviceProtectedMemoryProperties::protectedNoFault is VK_TRUE, these operations are
valid, but reads will return undefined values, and writes will either be dropped or store undefined
values.

Additionally, indirect operations must not be performed within protected queue operations.

Whether these operations are valid or not, or if any other invalid usage is performed, the
implementation must guarantee that:

• Protected device memory must never be visible to the host.

• Values written to unprotected device memory must not be a function of values from protected
memory.

11.2.10. Peer Memory Features

Peer memory is memory that is allocated for a given physical device and then bound to a resource
and accessed by a different physical device, in a logical device that represents multiple physical
devices. Some ways of reading and writing peer memory may not be supported by a device.

To determine how peer memory can be accessed, call:

// Provided by VK_VERSION_1_1
void vkGetDeviceGroupPeerMemoryFeatures(

476

 VkDevice device,
 uint32_t heapIndex,
 uint32_t localDeviceIndex,
 uint32_t remoteDeviceIndex,
 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures);

• device is the logical device that owns the memory.

• heapIndex is the index of the memory heap from which the memory is allocated.

• localDeviceIndex is the device index of the physical device that performs the memory access.

• remoteDeviceIndex is the device index of the physical device that the memory is allocated for.

• pPeerMemoryFeatures is a pointer to a VkPeerMemoryFeatureFlags bitmask indicating which
types of memory accesses are supported for the combination of heap, local, and remote devices.

Valid Usage

• VUID-vkGetDeviceGroupPeerMemoryFeatures-heapIndex-00691
heapIndex must be less than memoryHeapCount

• VUID-vkGetDeviceGroupPeerMemoryFeatures-localDeviceIndex-00692
localDeviceIndex must be a valid device index

• VUID-vkGetDeviceGroupPeerMemoryFeatures-remoteDeviceIndex-00693
remoteDeviceIndex must be a valid device index

• VUID-vkGetDeviceGroupPeerMemoryFeatures-localDeviceIndex-00694
localDeviceIndex must not equal remoteDeviceIndex

Valid Usage (Implicit)

• VUID-vkGetDeviceGroupPeerMemoryFeatures-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceGroupPeerMemoryFeatures-pPeerMemoryFeatures-parameter
pPeerMemoryFeatures must be a valid pointer to a VkPeerMemoryFeatureFlags value

Bits which may be set in vkGetDeviceGroupPeerMemoryFeatures::pPeerMemoryFeatures, indicating
supported peer memory features, are:

// Provided by VK_VERSION_1_1
typedef enum VkPeerMemoryFeatureFlagBits {
 VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT = 0x00000001,
 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT = 0x00000002,
 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT = 0x00000004,
 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT = 0x00000008,
} VkPeerMemoryFeatureFlagBits;

477

• VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT specifies that the memory can be accessed as the source of
any vkCmdCopy* command.

• VK_PEER_MEMORY_FEATURE_COPY_DST_BIT specifies that the memory can be accessed as the
destination of any vkCmdCopy* command.

• VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT specifies that the memory can be read as any memory
access type.

• VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT specifies that the memory can be written as any
memory access type. Shader atomics are considered to be writes.

Note

The peer memory features of a memory heap also apply to any accesses that may
be performed during image layout transitions.

VK_PEER_MEMORY_FEATURE_COPY_DST_BIT must be supported for all host local heaps and for at least one
device-local memory heap.

If a device does not support a peer memory feature, it is still valid to use a resource that includes
both local and peer memory bindings with the corresponding access type as long as only the local
bindings are actually accessed. For example, an application doing split-frame rendering would use
framebuffer attachments that include both local and peer memory bindings, but would scissor the
rendering to only update local memory.

// Provided by VK_VERSION_1_1
typedef VkFlags VkPeerMemoryFeatureFlags;

VkPeerMemoryFeatureFlags is a bitmask type for setting a mask of zero or more
VkPeerMemoryFeatureFlagBits.

11.2.11. Opaque Capture Address Query

To query a 64-bit opaque capture address value from a memory object, call:

// Provided by VK_VERSION_1_2
uint64_t vkGetDeviceMemoryOpaqueCaptureAddress(
 VkDevice device,
 const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo);

• device is the logical device that the memory object was allocated on.

• pInfo is a pointer to a VkDeviceMemoryOpaqueCaptureAddressInfo structure specifying the
memory object to retrieve an address for.

The 64-bit return value is an opaque address representing the start of pInfo->memory.

If the memory object was allocated with a non-zero value of
VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress, the return value must be the

478

same address.

Note

The expected usage for these opaque addresses is only for trace capture/replay
tools to store these addresses in a trace and subsequently specify them during
replay.

Valid Usage

• VUID-vkGetDeviceMemoryOpaqueCaptureAddress-None-03334
The bufferDeviceAddress feature must be enabled

• VUID-vkGetDeviceMemoryOpaqueCaptureAddress-device-03335
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetDeviceMemoryOpaqueCaptureAddress-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceMemoryOpaqueCaptureAddress-pInfo-parameter
pInfo must be a valid pointer to a valid VkDeviceMemoryOpaqueCaptureAddressInfo
structure

The VkDeviceMemoryOpaqueCaptureAddressInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkDeviceMemoryOpaqueCaptureAddressInfo {
 VkStructureType sType;
 const void* pNext;
 VkDeviceMemory memory;
} VkDeviceMemoryOpaqueCaptureAddressInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memory specifies the memory whose address is being queried.

Valid Usage

• VUID-VkDeviceMemoryOpaqueCaptureAddressInfo-memory-03336
memory must have been allocated with VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT

479

Valid Usage (Implicit)

• VUID-VkDeviceMemoryOpaqueCaptureAddressInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO

• VUID-VkDeviceMemoryOpaqueCaptureAddressInfo-pNext-pNext
pNext must be NULL

• VUID-VkDeviceMemoryOpaqueCaptureAddressInfo-memory-parameter
memory must be a valid VkDeviceMemory handle

480

Chapter 12. Resource Creation
Vulkan supports two primary resource types: buffers and images. Resources are views of memory
with associated formatting and dimensionality. Buffers provide access to raw arrays of bytes,
whereas images can be multidimensional and may have associated metadata.

12.1. Buffers
Buffers represent linear arrays of data which are used for various purposes by binding them to a
graphics or compute pipeline via descriptor sets or certain commands, or by directly specifying
them as parameters to certain commands.

Buffers are represented by VkBuffer handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBuffer)

To create buffers, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateBuffer(
 VkDevice device,
 const VkBufferCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkBuffer* pBuffer);

• device is the logical device that creates the buffer object.

• pCreateInfo is a pointer to a VkBufferCreateInfo structure containing parameters affecting
creation of the buffer.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pBuffer is a pointer to a VkBuffer handle in which the resulting buffer object is returned.

Valid Usage

• VUID-vkCreateBuffer-flags-00911
If the flags member of pCreateInfo includes VK_BUFFER_CREATE_SPARSE_BINDING_BIT,
creating this VkBuffer must not cause the total required sparse memory for all currently
valid sparse resources on the device to exceed VkPhysicalDeviceLimits
::sparseAddressSpaceSize

Valid Usage (Implicit)

• VUID-vkCreateBuffer-device-parameter

481

device must be a valid VkDevice handle

• VUID-vkCreateBuffer-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkBufferCreateInfo structure

• VUID-vkCreateBuffer-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateBuffer-pBuffer-parameter
pBuffer must be a valid pointer to a VkBuffer handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkBufferCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkBufferCreateFlags flags;
 VkDeviceSize size;
 VkBufferUsageFlags usage;
 VkSharingMode sharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
} VkBufferCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkBufferCreateFlagBits specifying additional parameters of the buffer.

• size is the size in bytes of the buffer to be created.

• usage is a bitmask of VkBufferUsageFlagBits specifying allowed usages of the buffer.

• sharingMode is a VkSharingMode value specifying the sharing mode of the buffer when it will be
accessed by multiple queue families.

• queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

• pQueueFamilyIndices is a pointer to an array of queue families that will access this buffer. It is
ignored if sharingMode is not VK_SHARING_MODE_CONCURRENT.

482

Valid Usage

• VUID-VkBufferCreateInfo-None-09499
usage must be a valid combination of VkBufferUsageFlagBits values

• VUID-VkBufferCreateInfo-None-09500
usage must not be 0

• VUID-VkBufferCreateInfo-size-00912
size must be greater than 0

• VUID-VkBufferCreateInfo-sharingMode-00913
If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a valid pointer
to an array of queueFamilyIndexCount uint32_t values

• VUID-VkBufferCreateInfo-sharingMode-00914
If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than
1

• VUID-VkBufferCreateInfo-sharingMode-01419
If sharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices must be
unique and must be less than pQueueFamilyPropertyCount returned by either
vkGetPhysicalDeviceQueueFamilyProperties2 or
vkGetPhysicalDeviceQueueFamilyProperties for the physicalDevice that was used to
create device

• VUID-VkBufferCreateInfo-flags-00915
If the sparseBinding feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_BINDING_BIT

• VUID-VkBufferCreateInfo-flags-00916
If the sparseResidencyBuffer feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkBufferCreateInfo-flags-00917
If the sparseResidencyAliased feature is not enabled, flags must not contain
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT

• VUID-VkBufferCreateInfo-flags-00918
If flags contains VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT or
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT, it must also contain
VK_BUFFER_CREATE_SPARSE_BINDING_BIT

• VUID-VkBufferCreateInfo-pNext-00920
If the pNext chain includes a VkExternalMemoryBufferCreateInfo structure, its
handleTypes member must only contain bits that are also in VkExternalBufferProperties
::externalMemoryProperties.compatibleHandleTypes, as returned by
vkGetPhysicalDeviceExternalBufferProperties with pExternalBufferInfo->handleType
equal to any one of the handle types specified in VkExternalMemoryBufferCreateInfo
::handleTypes

• VUID-VkBufferCreateInfo-flags-01887
If the protectedMemory feature is not enabled, flags must not contain
VK_BUFFER_CREATE_PROTECTED_BIT

483

• VUID-VkBufferCreateInfo-None-01888
If any of the bits VK_BUFFER_CREATE_SPARSE_BINDING_BIT,
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT, or VK_BUFFER_CREATE_SPARSE_ALIASED_BIT are set,
VK_BUFFER_CREATE_PROTECTED_BIT must not also be set

• VUID-VkBufferCreateInfo-opaqueCaptureAddress-03337
If VkBufferOpaqueCaptureAddressCreateInfo::opaqueCaptureAddress is not zero, flags
must include VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

• VUID-VkBufferCreateInfo-flags-03338
If flags includes VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT, the
bufferDeviceAddressCaptureReplay feature must be enabled

• VUID-VkBufferCreateInfo-size-06409
size must be less than or equal to VkPhysicalDeviceMaintenance4Properties
::maxBufferSize

Valid Usage (Implicit)

• VUID-VkBufferCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO

• VUID-VkBufferCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkBufferOpaqueCaptureAddressCreateInfo or
VkExternalMemoryBufferCreateInfo

• VUID-VkBufferCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBufferCreateInfo-flags-parameter
flags must be a valid combination of VkBufferCreateFlagBits values

• VUID-VkBufferCreateInfo-sharingMode-parameter
sharingMode must be a valid VkSharingMode value

Bits which can be set in VkBufferCreateInfo::usage, specifying usage behavior of a buffer, are:

// Provided by VK_VERSION_1_0
typedef enum VkBufferUsageFlagBits {
 VK_BUFFER_USAGE_TRANSFER_SRC_BIT = 0x00000001,
 VK_BUFFER_USAGE_TRANSFER_DST_BIT = 0x00000002,
 VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000004,
 VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT = 0x00000008,
 VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT = 0x00000010,
 VK_BUFFER_USAGE_STORAGE_BUFFER_BIT = 0x00000020,
 VK_BUFFER_USAGE_INDEX_BUFFER_BIT = 0x00000040,
 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT = 0x00000080,
 VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT = 0x00000100,
 // Provided by VK_VERSION_1_2
 VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT = 0x00020000,

484

} VkBufferUsageFlagBits;

• VK_BUFFER_USAGE_TRANSFER_SRC_BIT specifies that the buffer can be used as the source of a
transfer command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT).

• VK_BUFFER_USAGE_TRANSFER_DST_BIT specifies that the buffer can be used as the destination of a
transfer command.

• VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT specifies that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER.

• VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT specifies that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER.

• VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT specifies that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_STORAGE_BUFFER_BIT specifies that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_INDEX_BUFFER_BIT specifies that the buffer is suitable for passing as the buffer
parameter to vkCmdBindIndexBuffer.

• VK_BUFFER_USAGE_VERTEX_BUFFER_BIT specifies that the buffer is suitable for passing as an element
of the pBuffers array to vkCmdBindVertexBuffers.

• VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT specifies that the buffer is suitable for passing as the
buffer parameter to vkCmdDrawIndirect, vkCmdDrawIndexedIndirect, or
vkCmdDispatchIndirect.

• VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT specifies that the buffer can be used to retrieve a
buffer device address via vkGetBufferDeviceAddress and use that address to access the buffer’s
memory from a shader.

// Provided by VK_VERSION_1_0
typedef VkFlags VkBufferUsageFlags;

VkBufferUsageFlags is a bitmask type for setting a mask of zero or more VkBufferUsageFlagBits.

Bits which can be set in VkBufferCreateInfo::flags, specifying additional parameters of a buffer,
are:

// Provided by VK_VERSION_1_0
typedef enum VkBufferCreateFlagBits {
 VK_BUFFER_CREATE_SPARSE_BINDING_BIT = 0x00000001,
 VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
 VK_BUFFER_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
 // Provided by VK_VERSION_1_1

485

 VK_BUFFER_CREATE_PROTECTED_BIT = 0x00000008,
 // Provided by VK_VERSION_1_2
 VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT = 0x00000010,
} VkBufferCreateFlagBits;

• VK_BUFFER_CREATE_SPARSE_BINDING_BIT specifies that the buffer will be backed using sparse
memory binding.

• VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT specifies that the buffer can be partially backed using
sparse memory binding. Buffers created with this flag must also be created with the
VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag.

• VK_BUFFER_CREATE_SPARSE_ALIASED_BIT specifies that the buffer will be backed using sparse
memory binding with memory ranges that might also simultaneously be backing another buffer
(or another portion of the same buffer). Buffers created with this flag must also be created with
the VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag.

• VK_BUFFER_CREATE_PROTECTED_BIT specifies that the buffer is a protected buffer.

• VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT specifies that the buffer’s address can be
saved and reused on a subsequent run (e.g. for trace capture and replay), see
VkBufferOpaqueCaptureAddressCreateInfo for more detail.

See Sparse Resource Features and Physical Device Features for details of the sparse memory
features supported on a device.

// Provided by VK_VERSION_1_0
typedef VkFlags VkBufferCreateFlags;

VkBufferCreateFlags is a bitmask type for setting a mask of zero or more VkBufferCreateFlagBits.

To define a set of external memory handle types that may be used as backing store for a buffer, add
a VkExternalMemoryBufferCreateInfo structure to the pNext chain of the VkBufferCreateInfo
structure. The VkExternalMemoryBufferCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalMemoryBufferCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlags handleTypes;
} VkExternalMemoryBufferCreateInfo;

Note

A VkExternalMemoryBufferCreateInfo structure with a non-zero handleTypes field
must be included in the creation parameters for a buffer that will be bound to
memory that is either exported or imported.

• sType is a VkStructureType value identifying this structure.

486

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is zero or a bitmask of VkExternalMemoryHandleTypeFlagBits specifying one or
more external memory handle types.

Valid Usage (Implicit)

• VUID-VkExternalMemoryBufferCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO

• VUID-VkExternalMemoryBufferCreateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalMemoryHandleTypeFlagBits
values

To request a specific device address for a buffer, add a VkBufferOpaqueCaptureAddressCreateInfo
structure to the pNext chain of the VkBufferCreateInfo structure. The
VkBufferOpaqueCaptureAddressCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkBufferOpaqueCaptureAddressCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint64_t opaqueCaptureAddress;
} VkBufferOpaqueCaptureAddressCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• opaqueCaptureAddress is the opaque capture address requested for the buffer.

If opaqueCaptureAddress is zero, no specific address is requested.

If opaqueCaptureAddress is not zero, then it should be an address retrieved from
vkGetBufferOpaqueCaptureAddress for an identically created buffer on the same implementation.

If this structure is not present, it is as if opaqueCaptureAddress is zero.

Apps should avoid creating buffers with app-provided addresses and implementation-provided
addresses in the same process, to reduce the likelihood of VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS
errors.

Note

The expected usage for this is that a trace capture/replay tool will add the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT flag to all buffers that use
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, and during capture will save the
queried opaque device addresses in the trace. During replay, the buffers will be
created specifying the original address so any address values stored in the trace
data will remain valid.

487

Implementations are expected to separate such buffers in the GPU address space
so normal allocations will avoid using these addresses. Apps/tools should avoid
mixing app-provided and implementation-provided addresses for buffers created
with VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT, to avoid address space
allocation conflicts.

Valid Usage (Implicit)

• VUID-VkBufferOpaqueCaptureAddressCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO

To destroy a buffer, call:

// Provided by VK_VERSION_1_0
void vkDestroyBuffer(
 VkDevice device,
 VkBuffer buffer,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the buffer.

• buffer is the buffer to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyBuffer-buffer-00922
All submitted commands that refer to buffer, either directly or via a VkBufferView, must
have completed execution

• VUID-vkDestroyBuffer-buffer-00923
If VkAllocationCallbacks were provided when buffer was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyBuffer-buffer-00924
If no VkAllocationCallbacks were provided when buffer was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroyBuffer-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyBuffer-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• VUID-vkDestroyBuffer-pAllocator-parameter

488

If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyBuffer-buffer-parent
If buffer is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to buffer must be externally synchronized

12.2. Buffer Views
A buffer view represents a contiguous range of a buffer and a specific format to be used to interpret
the data. Buffer views are used to enable shaders to access buffer contents using image operations.
In order to create a valid buffer view, the buffer must have been created with at least one of the
following usage flags:

• VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT

• VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

Buffer views are represented by VkBufferView handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBufferView)

To create a buffer view, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateBufferView(
 VkDevice device,
 const VkBufferViewCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkBufferView* pView);

• device is the logical device that creates the buffer view.

• pCreateInfo is a pointer to a VkBufferViewCreateInfo structure containing parameters to be
used to create the buffer view.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pView is a pointer to a VkBufferView handle in which the resulting buffer view object is
returned.

489

Valid Usage (Implicit)

• VUID-vkCreateBufferView-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateBufferView-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkBufferViewCreateInfo structure

• VUID-vkCreateBufferView-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateBufferView-pView-parameter
pView must be a valid pointer to a VkBufferView handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkBufferViewCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferViewCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkBufferViewCreateFlags flags;
 VkBuffer buffer;
 VkFormat format;
 VkDeviceSize offset;
 VkDeviceSize range;
} VkBufferViewCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• buffer is a VkBuffer on which the view will be created.

• format is a VkFormat describing the format of the data elements in the buffer.

• offset is an offset in bytes from the base address of the buffer. Accesses to the buffer view from
shaders use addressing that is relative to this starting offset.

• range is a size in bytes of the buffer view. If range is equal to VK_WHOLE_SIZE, the range from

490

offset to the end of the buffer is used. If VK_WHOLE_SIZE is used and the remaining size of the
buffer is not a multiple of the texel block size of format, the nearest smaller multiple is used.

The buffer view has a buffer view usage identifying which descriptor types can be created from it.
This usage is equal to the VkBufferCreateInfo::usage value used to create buffer.

Valid Usage

• VUID-VkBufferViewCreateInfo-offset-00925
offset must be less than the size of buffer

• VUID-VkBufferViewCreateInfo-range-00928
If range is not equal to VK_WHOLE_SIZE, range must be greater than 0

• VUID-VkBufferViewCreateInfo-range-00929
If range is not equal to VK_WHOLE_SIZE, range must be an integer multiple of the texel block
size of format

• VUID-VkBufferViewCreateInfo-range-00930
If range is not equal to VK_WHOLE_SIZE, the number of texel buffer elements given by (⌊range
/ (texel block size)⌋ × (texels per block)) where texel block size and texels per block are as
defined in the Compatible Formats table for format, must be less than or equal to
VkPhysicalDeviceLimits::maxTexelBufferElements

• VUID-VkBufferViewCreateInfo-offset-00931
If range is not equal to VK_WHOLE_SIZE, the sum of offset and range must be less than or
equal to the size of buffer

• VUID-VkBufferViewCreateInfo-range-04059
If range is equal to VK_WHOLE_SIZE, the number of texel buffer elements given by (⌊(size -
offset) / (texel block size)⌋ × (texels per block)) where size is the size of buffer, and texel
block size and texels per block are as defined in the Compatible Formats table for format,
must be less than or equal to VkPhysicalDeviceLimits::maxTexelBufferElements

• VUID-VkBufferViewCreateInfo-buffer-00932
buffer must have been created with a usage value containing at least one of
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

• VUID-VkBufferViewCreateInfo-format-08778
If the buffer view usage contains VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, then format
features of format must contain VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

• VUID-VkBufferViewCreateInfo-format-08779
If the buffer view usage contains VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, then format
features of format must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

• VUID-VkBufferViewCreateInfo-buffer-00935
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBufferViewCreateInfo-offset-02749
If the texelBufferAlignment feature is not enabled, offset must be a multiple of
VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment

491

• VUID-VkBufferViewCreateInfo-buffer-02750
If the texelBufferAlignment feature is enabled and if buffer was created with usage
containing VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, offset must be a multiple of the
lesser of VkPhysicalDeviceTexelBufferAlignmentProperties
::storageTexelBufferOffsetAlignmentBytes or, if
VkPhysicalDeviceTexelBufferAlignmentProperties::storageTexelBufferOffsetSingleTexelAl
ignment is VK_TRUE, the size of a texel of the requested format. If the size of a texel is a
multiple of three bytes, then the size of a single component of format is used instead

• VUID-VkBufferViewCreateInfo-buffer-02751
If the texelBufferAlignment feature is enabled and if buffer was created with usage
containing VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, offset must be a multiple of the
lesser of VkPhysicalDeviceTexelBufferAlignmentProperties
::uniformTexelBufferOffsetAlignmentBytes or, if
VkPhysicalDeviceTexelBufferAlignmentProperties::uniformTexelBufferOffsetSingleTexelAl
ignment is VK_TRUE, the size of a texel of the requested format. If the size of a texel is a
multiple of three bytes, then the size of a single component of format is used instead

Valid Usage (Implicit)

• VUID-VkBufferViewCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO

• VUID-VkBufferViewCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkBufferViewCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkBufferViewCreateInfo-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-VkBufferViewCreateInfo-format-parameter
format must be a valid VkFormat value

// Provided by VK_VERSION_1_0
typedef VkFlags VkBufferViewCreateFlags;

VkBufferViewCreateFlags is a bitmask type for setting a mask, but is currently reserved for future
use.

To destroy a buffer view, call:

// Provided by VK_VERSION_1_0
void vkDestroyBufferView(
 VkDevice device,
 VkBufferView bufferView,

492

 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the buffer view.

• bufferView is the buffer view to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyBufferView-bufferView-00936
All submitted commands that refer to bufferView must have completed execution

• VUID-vkDestroyBufferView-bufferView-00937
If VkAllocationCallbacks were provided when bufferView was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyBufferView-bufferView-00938
If no VkAllocationCallbacks were provided when bufferView was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyBufferView-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyBufferView-bufferView-parameter
If bufferView is not VK_NULL_HANDLE, bufferView must be a valid VkBufferView handle

• VUID-vkDestroyBufferView-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyBufferView-bufferView-parent
If bufferView is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to bufferView must be externally synchronized

12.2.1. Buffer View Format Features

Valid uses of a VkBufferView may depend on the buffer view’s format features, defined below. Such
constraints are documented in the affected valid usage statement.

• If Vulkan 1.3 is supported or the VK_KHR_format_feature_flags2 extension is supported, then the
buffer view’s set of format features is the value of VkFormatProperties3::bufferFeatures found
by calling vkGetPhysicalDeviceFormatProperties2 on the same format as

493

VkBufferViewCreateInfo::format.

12.3. Images
Images represent multidimensional - up to 3 - arrays of data which can be used for various
purposes (e.g. attachments, textures), by binding them to a graphics or compute pipeline via
descriptor sets, or by directly specifying them as parameters to certain commands.

Images are represented by VkImage handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImage)

To create images, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateImage(
 VkDevice device,
 const VkImageCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkImage* pImage);

• device is the logical device that creates the image.

• pCreateInfo is a pointer to a VkImageCreateInfo structure containing parameters to be used to
create the image.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pImage is a pointer to a VkImage handle in which the resulting image object is returned.

Valid Usage

• VUID-vkCreateImage-flags-00939
If the flags member of pCreateInfo includes VK_IMAGE_CREATE_SPARSE_BINDING_BIT, creating
this VkImage must not cause the total required sparse memory for all currently valid
sparse resources on the device to exceed VkPhysicalDeviceLimits::sparseAddressSpaceSize

Valid Usage (Implicit)

• VUID-vkCreateImage-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateImage-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkImageCreateInfo structure

• VUID-vkCreateImage-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid

494

VkAllocationCallbacks structure

• VUID-vkCreateImage-pImage-parameter
pImage must be a valid pointer to a VkImage handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkImageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageCreateFlags flags;
 VkImageType imageType;
 VkFormat format;
 VkExtent3D extent;
 uint32_t mipLevels;
 uint32_t arrayLayers;
 VkSampleCountFlagBits samples;
 VkImageTiling tiling;
 VkImageUsageFlags usage;
 VkSharingMode sharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
 VkImageLayout initialLayout;
} VkImageCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkImageCreateFlagBits describing additional parameters of the image.

• imageType is a VkImageType value specifying the basic dimensionality of the image. Layers in
array textures do not count as a dimension for the purposes of the image type.

• format is a VkFormat describing the format and type of the texel blocks that will be contained in
the image.

• extent is a VkExtent3D describing the number of data elements in each dimension of the base
level.

495

• mipLevels describes the number of levels of detail available for minified sampling of the image.

• arrayLayers is the number of layers in the image.

• samples is a VkSampleCountFlagBits value specifying the number of samples per texel.

• tiling is a VkImageTiling value specifying the tiling arrangement of the texel blocks in memory.

• usage is a bitmask of VkImageUsageFlagBits describing the intended usage of the image.

• sharingMode is a VkSharingMode value specifying the sharing mode of the image when it will be
accessed by multiple queue families.

• queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

• pQueueFamilyIndices is a pointer to an array of queue families that will access this image. It is
ignored if sharingMode is not VK_SHARING_MODE_CONCURRENT.

• initialLayout is a VkImageLayout value specifying the initial VkImageLayout of all image
subresources of the image. See Image Layouts.

Images created with tiling equal to VK_IMAGE_TILING_LINEAR have further restrictions on their limits
and capabilities compared to images created with tiling equal to VK_IMAGE_TILING_OPTIMAL. Creation
of images with tiling VK_IMAGE_TILING_LINEAR may not be supported unless other parameters meet
all of the constraints:

• imageType is VK_IMAGE_TYPE_2D

• format is not a depth/stencil format

• mipLevels is 1

• arrayLayers is 1

• samples is VK_SAMPLE_COUNT_1_BIT

• usage only includes VK_IMAGE_USAGE_TRANSFER_SRC_BIT and/or VK_IMAGE_USAGE_TRANSFER_DST_BIT

Images created with one of the formats that require a sampler Y′CBCR conversion, have further
restrictions on their limits and capabilities compared to images created with other formats.
Creation of images with a format requiring Y′CBCR conversion may not be supported unless other
parameters meet all of the constraints:

• imageType is VK_IMAGE_TYPE_2D

• mipLevels is 1

• arrayLayers is 1, unless otherwise indicated by VkImageFormatProperties::maxArrayLayers, as
returned by vkGetPhysicalDeviceImageFormatProperties

• samples is VK_SAMPLE_COUNT_1_BIT

Implementations may support additional limits and capabilities beyond those listed above.

To determine the set of valid usage bits for a given format, call
vkGetPhysicalDeviceFormatProperties.

If the size of the resultant image would exceed maxResourceSize, then vkCreateImage must fail and
return VK_ERROR_OUT_OF_DEVICE_MEMORY. This failure may occur even when all image creation

496

parameters satisfy their valid usage requirements.

Note

For images created without VK_IMAGE_CREATE_EXTENDED_USAGE_BIT a usage bit is valid
if it is supported for the format the image is created with.

For images created with VK_IMAGE_CREATE_EXTENDED_USAGE_BIT a usage bit is valid if it
is supported for at least one of the formats a VkImageView created from the image
can have (see Image Views for more detail).

Image Creation Limits

Valid values for some image creation parameters are limited by a numerical upper bound or
by inclusion in a bitset. For example, VkImageCreateInfo::arrayLayers is limited by
imageCreateMaxArrayLayers, defined below; and VkImageCreateInfo::samples is limited by
imageCreateSampleCounts, also defined below.

Several limiting values are defined below, as well as assisting values from which the limiting
values are derived. The limiting values are referenced by the relevant valid usage statements
of VkImageCreateInfo.

• Let VkBool32 imageCreateMaybeLinear indicate if the resultant image may be linear. (The
definition below is trivial because certain extensions are disabled in this build of the
specification).

◦ If tiling is VK_IMAGE_TILING_LINEAR, then imageCreateMaybeLinear is VK_TRUE.

◦ If tiling is VK_IMAGE_TILING_OPTIMAL, then imageCreateMaybeLinear is VK_FALSE.

• Let VkFormatFeatureFlags imageCreateFormatFeatures be the set of valid format features
available during image creation.

◦ If tiling is VK_IMAGE_TILING_LINEAR, then imageCreateFormatFeatures is the value of
VkFormatProperties::linearTilingFeatures found by calling
vkGetPhysicalDeviceFormatProperties with parameter format equal to
VkImageCreateInfo::format.

◦ If tiling is VK_IMAGE_TILING_OPTIMAL, then imageCreateFormatFeatures is the value of
VkFormatProperties::optimalTilingFeatures found by calling
vkGetPhysicalDeviceFormatProperties with parameter format equal to
VkImageCreateInfo::format.

• Let VkImageFormatProperties2 imageCreateImageFormatPropertiesList[] be the list of
structures obtained by calling vkGetPhysicalDeviceImageFormatProperties2, possibly
multiple times, as follows:

◦ The parameters VkPhysicalDeviceImageFormatInfo2::format, imageType, tiling, usage,
and flags must be equal to those in VkImageCreateInfo.

◦ If VkImageCreateInfo::pNext contains a VkExternalMemoryImageCreateInfo structure
whose handleTypes is not 0, then VkPhysicalDeviceImageFormatInfo2::pNext must
contain a VkPhysicalDeviceExternalImageFormatInfo structure whose handleType is

497

not 0; and vkGetPhysicalDeviceImageFormatProperties2 must be called for each
handle type in VkExternalMemoryImageCreateInfo::handleTypes, successively setting
VkPhysicalDeviceExternalImageFormatInfo::handleType on each call.

◦ If VkImageCreateInfo::pNext contains no VkExternalMemoryImageCreateInfo
structure, or contains a structure whose handleTypes is 0, then
VkPhysicalDeviceImageFormatInfo2::pNext must either contain no
VkPhysicalDeviceExternalImageFormatInfo structure, or contain a structure whose
handleType is 0.

◦ If any call to vkGetPhysicalDeviceImageFormatProperties2 returns an error, then
imageCreateImageFormatPropertiesList is defined to be the empty list.

• Let uint32_t imageCreateMaxMipLevels be the minimum value of
VkImageFormatProperties::maxMipLevels in imageCreateImageFormatPropertiesList. The
value is undefined if imageCreateImageFormatPropertiesList is empty.

• Let uint32_t imageCreateMaxArrayLayers be the minimum value of
VkImageFormatProperties::maxArrayLayers in imageCreateImageFormatPropertiesList. The
value is undefined if imageCreateImageFormatPropertiesList is empty.

• Let VkExtent3D imageCreateMaxExtent be the component-wise minimum over all
VkImageFormatProperties::maxExtent values in imageCreateImageFormatPropertiesList. The
value is undefined if imageCreateImageFormatPropertiesList is empty.

• Let VkSampleCountFlags imageCreateSampleCounts be the intersection of each
VkImageFormatProperties::sampleCounts in imageCreateImageFormatPropertiesList. The
value is undefined if imageCreateImageFormatPropertiesList is empty.

Valid Usage

• VUID-VkImageCreateInfo-imageCreateMaxMipLevels-02251
Each of the following values (as described in Image Creation Limits) must not be
undefined : imageCreateMaxMipLevels, imageCreateMaxArrayLayers, imageCreateMaxExtent,
and imageCreateSampleCounts

• VUID-VkImageCreateInfo-sharingMode-00941
If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a valid pointer
to an array of queueFamilyIndexCount uint32_t values

• VUID-VkImageCreateInfo-sharingMode-00942
If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than
1

• VUID-VkImageCreateInfo-sharingMode-01420
If sharingMode is VK_SHARING_MODE_CONCURRENT, each element of pQueueFamilyIndices must be
unique and must be less than pQueueFamilyPropertyCount returned by either
vkGetPhysicalDeviceQueueFamilyProperties or
vkGetPhysicalDeviceQueueFamilyProperties2 for the physicalDevice that was used to
create device

• VUID-VkImageCreateInfo-format-00943
format must not be VK_FORMAT_UNDEFINED

498

• VUID-VkImageCreateInfo-extent-00944
extent.width must be greater than 0

• VUID-VkImageCreateInfo-extent-00945
extent.height must be greater than 0

• VUID-VkImageCreateInfo-extent-00946
extent.depth must be greater than 0

• VUID-VkImageCreateInfo-mipLevels-00947
mipLevels must be greater than 0

• VUID-VkImageCreateInfo-arrayLayers-00948
arrayLayers must be greater than 0

• VUID-VkImageCreateInfo-flags-00949
If flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, imageType must be
VK_IMAGE_TYPE_2D

• VUID-VkImageCreateInfo-flags-08865
If flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, extent.width and extent.height
must be equal

• VUID-VkImageCreateInfo-flags-08866
If flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, arrayLayers must be greater than
or equal to 6

• VUID-VkImageCreateInfo-flags-00950
If flags contains VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, imageType must be
VK_IMAGE_TYPE_3D

• VUID-VkImageCreateInfo-flags-09403
If flags contains VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, flags must not include
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT, VK_IMAGE_CREATE_SPARSE_BINDING_BIT, or
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-extent-02252
extent.width must be less than or equal to imageCreateMaxExtent.width (as defined in
Image Creation Limits)

• VUID-VkImageCreateInfo-extent-02253
extent.height must be less than or equal to imageCreateMaxExtent.height (as defined in
Image Creation Limits)

• VUID-VkImageCreateInfo-extent-02254
extent.depth must be less than or equal to imageCreateMaxExtent.depth (as defined in
Image Creation Limits)

• VUID-VkImageCreateInfo-imageType-00956
If imageType is VK_IMAGE_TYPE_1D, both extent.height and extent.depth must be 1

• VUID-VkImageCreateInfo-imageType-00957
If imageType is VK_IMAGE_TYPE_2D, extent.depth must be 1

• VUID-VkImageCreateInfo-mipLevels-00958
mipLevels must be less than or equal to the number of levels in the complete mipmap
chain based on extent.width, extent.height, and extent.depth

499

• VUID-VkImageCreateInfo-mipLevels-02255
mipLevels must be less than or equal to imageCreateMaxMipLevels (as defined in Image
Creation Limits)

• VUID-VkImageCreateInfo-arrayLayers-02256
arrayLayers must be less than or equal to imageCreateMaxArrayLayers (as defined in Image
Creation Limits)

• VUID-VkImageCreateInfo-imageType-00961
If imageType is VK_IMAGE_TYPE_3D, arrayLayers must be 1

• VUID-VkImageCreateInfo-samples-02257
If samples is not VK_SAMPLE_COUNT_1_BIT, then imageType must be VK_IMAGE_TYPE_2D, flags
must not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, mipLevels must be equal to 1, and
imageCreateMaybeLinear (as defined in Image Creation Limits) must be VK_FALSE,

• VUID-VkImageCreateInfo-usage-00963
If usage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, then bits other than
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must not be set

• VUID-VkImageCreateInfo-usage-00964
If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,
or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.width must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferWidth

• VUID-VkImageCreateInfo-usage-00965
If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,
or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.height must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferHeight

• VUID-VkImageCreateInfo-usage-00966
If usage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, usage must also contain at
least one of VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-samples-02258
samples must be a valid VkSampleCountFlagBits value that is set in
imageCreateSampleCounts (as defined in Image Creation Limits)

• VUID-VkImageCreateInfo-usage-00968
If the shaderStorageImageMultisample feature is not enabled, and usage contains
VK_IMAGE_USAGE_STORAGE_BIT, samples must be VK_SAMPLE_COUNT_1_BIT

• VUID-VkImageCreateInfo-flags-00969
If the sparseBinding feature is not enabled, flags must not contain
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

• VUID-VkImageCreateInfo-flags-01924
If the sparseResidencyAliased feature is not enabled, flags must not contain
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT

• VUID-VkImageCreateInfo-tiling-04121

500

If tiling is VK_IMAGE_TILING_LINEAR, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00970
If imageType is VK_IMAGE_TYPE_1D, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00971
If the sparseResidencyImage2D feature is not enabled, and imageType is VK_IMAGE_TYPE_2D,
flags must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00972
If the sparseResidencyImage3D feature is not enabled, and imageType is VK_IMAGE_TYPE_3D,
flags must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00973
If the sparseResidency2Samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D, and
samples is VK_SAMPLE_COUNT_2_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00974
If the sparseResidency4Samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D, and
samples is VK_SAMPLE_COUNT_4_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00975
If the sparseResidency8Samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D, and
samples is VK_SAMPLE_COUNT_8_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-imageType-00976
If the sparseResidency16Samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D, and
samples is VK_SAMPLE_COUNT_16_BIT, flags must not contain
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• VUID-VkImageCreateInfo-flags-00987
If flags contains VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT or
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT, it must also contain
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

• VUID-VkImageCreateInfo-None-01925
If any of the bits VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or VK_IMAGE_CREATE_SPARSE_ALIASED_BIT are set,
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT must not also be set

• VUID-VkImageCreateInfo-flags-01890
If the protectedMemory feature is not enabled, flags must not contain
VK_IMAGE_CREATE_PROTECTED_BIT

• VUID-VkImageCreateInfo-None-01891
If any of the bits VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or VK_IMAGE_CREATE_SPARSE_ALIASED_BIT are set,
VK_IMAGE_CREATE_PROTECTED_BIT must not also be set

• VUID-VkImageCreateInfo-pNext-00990

501

If the pNext chain includes a VkExternalMemoryImageCreateInfo structure, its handleTypes
member must only contain bits that are also in VkExternalImageFormatProperties
::externalMemoryProperties.compatibleHandleTypes, as returned by
vkGetPhysicalDeviceImageFormatProperties2 with format, imageType, tiling, usage, and
flags equal to those in this structure, and with a
VkPhysicalDeviceExternalImageFormatInfo structure included in the pNext chain, with a
handleType equal to any one of the handle types specified in
VkExternalMemoryImageCreateInfo::handleTypes

• VUID-VkImageCreateInfo-physicalDeviceCount-01421
If the logical device was created with VkDeviceGroupDeviceCreateInfo
::physicalDeviceCount equal to 1, flags must not contain
VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT

• VUID-VkImageCreateInfo-flags-02259
If flags contains VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT, then mipLevels must
be one, arrayLayers must be one, imageType must be VK_IMAGE_TYPE_2D. and
imageCreateMaybeLinear (as defined in Image Creation Limits) must be VK_FALSE

• VUID-VkImageCreateInfo-flags-01572
If flags contains VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT, then format must be a
compressed image format

• VUID-VkImageCreateInfo-flags-01573
If flags contains VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT, then flags must also
contain VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

• VUID-VkImageCreateInfo-initialLayout-00993
initialLayout must be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• VUID-VkImageCreateInfo-pNext-01443
If the pNext chain includes a VkExternalMemoryImageCreateInfo or
VkExternalMemoryImageCreateInfoNV structure whose handleTypes member is not 0,
initialLayout must be VK_IMAGE_LAYOUT_UNDEFINED

• VUID-VkImageCreateInfo-format-06410
If the image format is one of the formats that require a sampler Y′CBCR conversion,
mipLevels must be 1

• VUID-VkImageCreateInfo-format-06411
If the image format is one of the formats that require a sampler Y′CBCR conversion, samples
must be VK_SAMPLE_COUNT_1_BIT

• VUID-VkImageCreateInfo-format-06412
If the image format is one of the formats that require a sampler Y′CBCR conversion,
imageType must be VK_IMAGE_TYPE_2D

• VUID-VkImageCreateInfo-imageCreateFormatFeatures-02260
If format is a multi-planar format, and if imageCreateFormatFeatures (as defined in Image
Creation Limits) does not contain VK_FORMAT_FEATURE_DISJOINT_BIT, then flags must not
contain VK_IMAGE_CREATE_DISJOINT_BIT

• VUID-VkImageCreateInfo-format-01577
If format is not a multi-planar format, and flags does not include

502

VK_IMAGE_CREATE_ALIAS_BIT, flags must not contain VK_IMAGE_CREATE_DISJOINT_BIT

• VUID-VkImageCreateInfo-format-04712
If format has a _422 or _420 suffix, extent.width must be a multiple of 2

• VUID-VkImageCreateInfo-format-04713
If format has a _420 suffix, extent.height must be a multiple of 2

• VUID-VkImageCreateInfo-format-02795
If format is a depth-stencil format, usage includes
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and the pNext chain includes a
VkImageStencilUsageCreateInfo structure, then its VkImageStencilUsageCreateInfo
::stencilUsage member must also include VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-format-02796
If format is a depth-stencil format, usage does not include
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and the pNext chain includes a
VkImageStencilUsageCreateInfo structure, then its VkImageStencilUsageCreateInfo
::stencilUsage member must also not include
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-format-02797
If format is a depth-stencil format, usage includes
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, and the pNext chain includes a
VkImageStencilUsageCreateInfo structure, then its VkImageStencilUsageCreateInfo
::stencilUsage member must also include VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-format-02798
If format is a depth-stencil format, usage does not include
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, and the pNext chain includes a
VkImageStencilUsageCreateInfo structure, then its VkImageStencilUsageCreateInfo
::stencilUsage member must also not include VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

• VUID-VkImageCreateInfo-Format-02536
If Format is a depth-stencil format and the pNext chain includes a
VkImageStencilUsageCreateInfo structure with its stencilUsage member including
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.width must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferWidth

• VUID-VkImageCreateInfo-format-02537
If format is a depth-stencil format and the pNext chain includes a
VkImageStencilUsageCreateInfo structure with its stencilUsage member including
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, extent.height must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferHeight

• VUID-VkImageCreateInfo-format-02538
If the shaderStorageImageMultisample feature is not enabled, format is a depth-stencil
format and the pNext chain includes a VkImageStencilUsageCreateInfo structure with its
stencilUsage including VK_IMAGE_USAGE_STORAGE_BIT, samples must be
VK_SAMPLE_COUNT_1_BIT

• VUID-VkImageCreateInfo-pNext-06722
If a VkImageFormatListCreateInfo structure was included in the pNext chain and
VkImageFormatListCreateInfo::viewFormatCount is not zero, then each format in

503

VkImageFormatListCreateInfo::pViewFormats must either be compatible with the format as
described in the compatibility table or, if flags contains
VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT, be an uncompressed format that is
size-compatible with format

• VUID-VkImageCreateInfo-flags-04738
If flags does not contain VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT and the pNext chain includes
a VkImageFormatListCreateInfo structure, then VkImageFormatListCreateInfo
::viewFormatCount must be 0 or 1

Valid Usage (Implicit)

• VUID-VkImageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO

• VUID-VkImageCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExternalMemoryImageCreateInfo,
VkImageFormatListCreateInfo, or VkImageStencilUsageCreateInfo

• VUID-VkImageCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkImageCreateInfo-flags-parameter
flags must be a valid combination of VkImageCreateFlagBits values

• VUID-VkImageCreateInfo-imageType-parameter
imageType must be a valid VkImageType value

• VUID-VkImageCreateInfo-format-parameter
format must be a valid VkFormat value

• VUID-VkImageCreateInfo-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-VkImageCreateInfo-tiling-parameter
tiling must be a valid VkImageTiling value

• VUID-VkImageCreateInfo-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkImageCreateInfo-usage-requiredbitmask
usage must not be 0

• VUID-VkImageCreateInfo-sharingMode-parameter
sharingMode must be a valid VkSharingMode value

• VUID-VkImageCreateInfo-initialLayout-parameter
initialLayout must be a valid VkImageLayout value

The VkImageStencilUsageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2

504

typedef struct VkImageStencilUsageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageUsageFlags stencilUsage;
} VkImageStencilUsageCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• stencilUsage is a bitmask of VkImageUsageFlagBits describing the intended usage of the stencil
aspect of the image.

If the pNext chain of VkImageCreateInfo includes a VkImageStencilUsageCreateInfo structure, then
that structure includes the usage flags specific to the stencil aspect of the image for an image with a
depth-stencil format.

This structure specifies image usages which only apply to the stencil aspect of a depth/stencil
format image. When this structure is included in the pNext chain of VkImageCreateInfo, the stencil
aspect of the image must only be used as specified by stencilUsage. When this structure is not
included in the pNext chain of VkImageCreateInfo, the stencil aspect of an image must only be used
as specified by VkImageCreateInfo::usage. Use of other aspects of an image are unaffected by this
structure.

This structure can also be included in the pNext chain of VkPhysicalDeviceImageFormatInfo2 to
query additional capabilities specific to image creation parameter combinations including a
separate set of usage flags for the stencil aspect of the image using
vkGetPhysicalDeviceImageFormatProperties2. When this structure is not included in the pNext
chain of VkPhysicalDeviceImageFormatInfo2 then the implicit value of stencilUsage matches that of
VkPhysicalDeviceImageFormatInfo2::usage.

Valid Usage

• VUID-VkImageStencilUsageCreateInfo-stencilUsage-02539
If stencilUsage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, it must not include bits
other than VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

Valid Usage (Implicit)

• VUID-VkImageStencilUsageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO

• VUID-VkImageStencilUsageCreateInfo-stencilUsage-parameter
stencilUsage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkImageStencilUsageCreateInfo-stencilUsage-requiredbitmask
stencilUsage must not be 0

505

To define a set of external memory handle types that may be used as backing store for an image,
add a VkExternalMemoryImageCreateInfo structure to the pNext chain of the VkImageCreateInfo
structure. The VkExternalMemoryImageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalMemoryImageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlags handleTypes;
} VkExternalMemoryImageCreateInfo;

Note

A VkExternalMemoryImageCreateInfo structure with a non-zero handleTypes field
must be included in the creation parameters for an image that will be bound to
memory that is either exported or imported.

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleTypes is zero or a bitmask of VkExternalMemoryHandleTypeFlagBits specifying one or
more external memory handle types.

Valid Usage (Implicit)

• VUID-VkExternalMemoryImageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO

• VUID-VkExternalMemoryImageCreateInfo-handleTypes-parameter
handleTypes must be a valid combination of VkExternalMemoryHandleTypeFlagBits
values

If the pNext chain of VkImageCreateInfo includes a VkImageFormatListCreateInfo structure, then that
structure contains a list of all formats that can be used when creating views of this image.

The VkImageFormatListCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkImageFormatListCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t viewFormatCount;
 const VkFormat* pViewFormats;
} VkImageFormatListCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

506

• viewFormatCount is the number of entries in the pViewFormats array.

• pViewFormats is a pointer to an array of VkFormat values specifying all formats which can be
used when creating views of this image.

If viewFormatCount is zero, pViewFormats is ignored and the image is created as if the
VkImageFormatListCreateInfo structure were not included in the pNext chain of VkImageCreateInfo.

Valid Usage

• VUID-VkImageFormatListCreateInfo-viewFormatCount-09540
If viewFormatCount is not 0, each element of pViewFormats must not be VK_FORMAT_UNDEFINED

Valid Usage (Implicit)

• VUID-VkImageFormatListCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO

• VUID-VkImageFormatListCreateInfo-pViewFormats-parameter
If viewFormatCount is not 0, pViewFormats must be a valid pointer to an array of
viewFormatCount valid VkFormat values

Bits which can be set in

• VkImageViewUsageCreateInfo::usage

• VkImageStencilUsageCreateInfo::stencilUsage

• VkImageCreateInfo::usage

specify intended usage of an image, and are:

// Provided by VK_VERSION_1_0
typedef enum VkImageUsageFlagBits {
 VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,
 VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,
 VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,
 VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,
 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000020,
 VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,
 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,
} VkImageUsageFlagBits;

• VK_IMAGE_USAGE_TRANSFER_SRC_BIT specifies that the image can be used as the source of a transfer
command.

• VK_IMAGE_USAGE_TRANSFER_DST_BIT specifies that the image can be used as the destination of a
transfer command.

507

• VK_IMAGE_USAGE_SAMPLED_BIT specifies that the image can be used to create a VkImageView suitable
for occupying a VkDescriptorSet slot either of type VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and be sampled by a shader.

• VK_IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkImageView suitable
for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

• VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT specifies that the image can be used to create a
VkImageView suitable for use as a color or resolve attachment in a VkFramebuffer.

• VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT specifies that the image can be used to create a
VkImageView suitable for use as a depth/stencil or depth/stencil resolve attachment in a
VkFramebuffer.

• VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT specifies that implementations may support using
memory allocations with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT to back an image with
this usage. This bit can be set for any image that can be used to create a VkImageView suitable for
use as a color, resolve, depth/stencil, or input attachment.

• VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT specifies that the image can be used to create a
VkImageView suitable for occupying VkDescriptorSet slot of type
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; be read from a shader as an input attachment; and be
used as an input attachment in a framebuffer.

// Provided by VK_VERSION_1_0
typedef VkFlags VkImageUsageFlags;

VkImageUsageFlags is a bitmask type for setting a mask of zero or more VkImageUsageFlagBits.

When creating a VkImageView one of the following VkImageUsageFlagBits must be set:

• VK_IMAGE_USAGE_SAMPLED_BIT

• VK_IMAGE_USAGE_STORAGE_BIT

• VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

Bits which can be set in VkImageCreateInfo::flags, specifying additional parameters of an image,
are:

// Provided by VK_VERSION_1_0
typedef enum VkImageCreateFlagBits {
 VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,
 VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
 VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
 VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,
 VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,
 // Provided by VK_VERSION_1_1

508

 VK_IMAGE_CREATE_ALIAS_BIT = 0x00000400,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT = 0x00000040,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT = 0x00000020,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT = 0x00000080,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_EXTENDED_USAGE_BIT = 0x00000100,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_PROTECTED_BIT = 0x00000800,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_CREATE_DISJOINT_BIT = 0x00000200,
} VkImageCreateFlagBits;

• VK_IMAGE_CREATE_SPARSE_BINDING_BIT specifies that the image will be backed using sparse
memory binding.

• VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT specifies that the image can be partially backed using
sparse memory binding. Images created with this flag must also be created with the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

• VK_IMAGE_CREATE_SPARSE_ALIASED_BIT specifies that the image will be backed using sparse
memory binding with memory ranges that might also simultaneously be backing another image
(or another portion of the same image). Images created with this flag must also be created with
the VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

• VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a VkImageView
with a different format from the image. For multi-planar formats,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that a VkImageView can be created of a plane of the
image.

• VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT specifies that the image can be used to create a
VkImageView of type VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

• VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT specifies that the image can be used to create a
VkImageView of type VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY.

• VK_IMAGE_CREATE_PROTECTED_BIT specifies that the image is a protected image.

• VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT specifies that the image can be used with a
non-zero value of the splitInstanceBindRegionCount member of a
VkBindImageMemoryDeviceGroupInfo structure passed into vkBindImageMemory2. This flag
also has the effect of making the image use the standard sparse image block dimensions.

• VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT specifies that the image having a compressed
format can be used to create a VkImageView with an uncompressed format where each texel in
the image view corresponds to a compressed texel block of the image.

• VK_IMAGE_CREATE_EXTENDED_USAGE_BIT specifies that the image can be created with usage flags that
are not supported for the format the image is created with but are supported for at least one
format a VkImageView created from the image can have.

• VK_IMAGE_CREATE_DISJOINT_BIT specifies that an image with a multi-planar format must have

509

each plane separately bound to memory, rather than having a single memory binding for the
whole image; the presence of this bit distinguishes a disjoint image from an image without this
bit set.

• VK_IMAGE_CREATE_ALIAS_BIT specifies that two images created with the same creation parameters
and aliased to the same memory can interpret the contents of the memory consistently with
each other, subject to the rules described in the Memory Aliasing section. This flag further
specifies that each plane of a disjoint image can share an in-memory non-linear representation
with single-plane images, and that a single-plane image can share an in-memory non-linear
representation with a plane of a multi-planar disjoint image, according to the rules in
Compatible Formats of Planes of Multi-Planar Formats. If the pNext chain includes a
VkExternalMemoryImageCreateInfo structure whose handleTypes member is not 0, it is as if
VK_IMAGE_CREATE_ALIAS_BIT is set.

See Sparse Resource Features and Sparse Physical Device Features for more details.

// Provided by VK_VERSION_1_0
typedef VkFlags VkImageCreateFlags;

VkImageCreateFlags is a bitmask type for setting a mask of zero or more VkImageCreateFlagBits.

Possible values of VkImageCreateInfo::imageType, specifying the basic dimensionality of an image,
are:

// Provided by VK_VERSION_1_0
typedef enum VkImageType {
 VK_IMAGE_TYPE_1D = 0,
 VK_IMAGE_TYPE_2D = 1,
 VK_IMAGE_TYPE_3D = 2,
} VkImageType;

• VK_IMAGE_TYPE_1D specifies a one-dimensional image.

• VK_IMAGE_TYPE_2D specifies a two-dimensional image.

• VK_IMAGE_TYPE_3D specifies a three-dimensional image.

Possible values of VkImageCreateInfo::tiling, specifying the tiling arrangement of texel blocks in
an image, are:

// Provided by VK_VERSION_1_0
typedef enum VkImageTiling {
 VK_IMAGE_TILING_OPTIMAL = 0,
 VK_IMAGE_TILING_LINEAR = 1,
} VkImageTiling;

• VK_IMAGE_TILING_OPTIMAL specifies optimal tiling (texels are laid out in an implementation-
dependent arrangement, for more efficient memory access).

510

• VK_IMAGE_TILING_LINEAR specifies linear tiling (texels are laid out in memory in row-major order,
possibly with some padding on each row).

To query the memory layout of an image subresource, call:

// Provided by VK_VERSION_1_0
void vkGetImageSubresourceLayout(
 VkDevice device,
 VkImage image,
 const VkImageSubresource* pSubresource,
 VkSubresourceLayout* pLayout);

• device is the logical device that owns the image.

• image is the image whose layout is being queried.

• pSubresource is a pointer to a VkImageSubresource structure selecting a specific image
subresource from the image.

• pLayout is a pointer to a VkSubresourceLayout structure in which the layout is returned.

The image must be linear. The returned layout is valid for host access.

If the image’s format is a multi-planar format, then vkGetImageSubresourceLayout describes one
plane of the image.

vkGetImageSubresourceLayout is invariant for the lifetime of a single image.

Valid Usage

• VUID-vkGetImageSubresourceLayout-image-07789
image must have been created with tiling equal to VK_IMAGE_TILING_LINEAR

• VUID-vkGetImageSubresourceLayout-aspectMask-00997
The aspectMask member of pSubresource must only have a single bit set

• VUID-vkGetImageSubresourceLayout-mipLevel-01716
The mipLevel member of pSubresource must be less than the mipLevels specified in image

• VUID-vkGetImageSubresourceLayout-arrayLayer-01717
The arrayLayer member of pSubresource must be less than the arrayLayers specified in
image

• VUID-vkGetImageSubresourceLayout-format-08886
If format of the image is a color format that is not a multi-planar image format, and tiling
of the image is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, the aspectMask member
of pSubresource must be VK_IMAGE_ASPECT_COLOR_BIT

• VUID-vkGetImageSubresourceLayout-format-04462
If format of the image has a depth component, the aspectMask member of pSubresource
must contain VK_IMAGE_ASPECT_DEPTH_BIT

• VUID-vkGetImageSubresourceLayout-format-04463

511

If format of the image has a stencil component, the aspectMask member of pSubresource
must contain VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkGetImageSubresourceLayout-format-04464
If format of the image does not contain a stencil or depth component, the aspectMask
member of pSubresource must not contain VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkGetImageSubresourceLayout-tiling-08717
If the tiling of the image is VK_IMAGE_TILING_LINEAR and has a multi-planar image format,
then the aspectMask member of pSubresource must be a single valid multi-planar aspect
mask bit

Valid Usage (Implicit)

• VUID-vkGetImageSubresourceLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageSubresourceLayout-image-parameter
image must be a valid VkImage handle

• VUID-vkGetImageSubresourceLayout-pSubresource-parameter
pSubresource must be a valid pointer to a valid VkImageSubresource structure

• VUID-vkGetImageSubresourceLayout-pLayout-parameter
pLayout must be a valid pointer to a VkSubresourceLayout structure

• VUID-vkGetImageSubresourceLayout-image-parent
image must have been created, allocated, or retrieved from device

The VkImageSubresource structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageSubresource {
 VkImageAspectFlags aspectMask;
 uint32_t mipLevel;
 uint32_t arrayLayer;
} VkImageSubresource;

• aspectMask is a VkImageAspectFlags value selecting the image aspect.

• mipLevel selects the mipmap level.

• arrayLayer selects the array layer.

Valid Usage (Implicit)

• VUID-VkImageSubresource-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkImageSubresource-aspectMask-requiredbitmask

512

aspectMask must not be 0

Information about the layout of the image subresource is returned in a VkSubresourceLayout
structure:

// Provided by VK_VERSION_1_0
typedef struct VkSubresourceLayout {
 VkDeviceSize offset;
 VkDeviceSize size;
 VkDeviceSize rowPitch;
 VkDeviceSize arrayPitch;
 VkDeviceSize depthPitch;
} VkSubresourceLayout;

• offset is the byte offset from the start of the image or the plane where the image subresource
begins.

• size is the size in bytes of the image subresource. size includes any extra memory that is
required based on rowPitch.

• rowPitch describes the number of bytes between each row of texels in an image.

• arrayPitch describes the number of bytes between each array layer of an image.

• depthPitch describes the number of bytes between each slice of 3D image.

If the image is linear, then rowPitch, arrayPitch and depthPitch describe the layout of the image
subresource in linear memory. For uncompressed formats, rowPitch is the number of bytes between
texels with the same x coordinate in adjacent rows (y coordinates differ by one). arrayPitch is the
number of bytes between texels with the same x and y coordinate in adjacent array layers of the
image (array layer values differ by one). depthPitch is the number of bytes between texels with the
same x and y coordinate in adjacent slices of a 3D image (z coordinates differ by one). Expressed as
an addressing formula, the starting byte of a texel in the image subresource has address:

// (x,y,z,layer) are in texel coordinates
address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x*elementSize +
offset

For compressed formats, the rowPitch is the number of bytes between compressed texel blocks in
adjacent rows. arrayPitch is the number of bytes between compressed texel blocks in adjacent
array layers. depthPitch is the number of bytes between compressed texel blocks in adjacent slices
of a 3D image.

// (x,y,z,layer) are in compressed texel block coordinates
address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x
*compressedTexelBlockByteSize + offset;

The value of arrayPitch is undefined for images that were not created as arrays. depthPitch is

513

defined only for 3D images.

If the image has a single-plane color format , then the aspectMask member of VkImageSubresource
must be VK_IMAGE_ASPECT_COLOR_BIT.

If the image has a depth/stencil format , then aspectMask must be either VK_IMAGE_ASPECT_DEPTH_BIT
or VK_IMAGE_ASPECT_STENCIL_BIT. On implementations that store depth and stencil aspects separately,
querying each of these image subresource layouts will return a different offset and size
representing the region of memory used for that aspect. On implementations that store depth and
stencil aspects interleaved, the same offset and size are returned and represent the interleaved
memory allocation.

If the image has a multi-planar format , then the aspectMask member of VkImageSubresource must be
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, or (for 3-plane formats only)
VK_IMAGE_ASPECT_PLANE_2_BIT. Querying each of these image subresource layouts will return a
different offset and size representing the region of memory used for that plane. If the image is
disjoint, then the offset is relative to the base address of the plane. If the image is non-disjoint, then
the offset is relative to the base address of the image.

To destroy an image, call:

// Provided by VK_VERSION_1_0
void vkDestroyImage(
 VkDevice device,
 VkImage image,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the image.

• image is the image to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyImage-image-01000
All submitted commands that refer to image, either directly or via a VkImageView, must
have completed execution

• VUID-vkDestroyImage-image-01001
If VkAllocationCallbacks were provided when image was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyImage-image-01002
If no VkAllocationCallbacks were provided when image was created, pAllocator must be
NULL

514

Valid Usage (Implicit)

• VUID-vkDestroyImage-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyImage-image-parameter
If image is not VK_NULL_HANDLE, image must be a valid VkImage handle

• VUID-vkDestroyImage-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyImage-image-parent
If image is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to image must be externally synchronized

12.3.1. Image Format Features

Valid uses of a VkImage may depend on the image’s format features, defined below. Such
constraints are documented in the affected valid usage statement.

• If the image was created with VK_IMAGE_TILING_LINEAR, then its set of format features is the value
of VkFormatProperties::linearTilingFeatures found by calling
vkGetPhysicalDeviceFormatProperties on the same format as VkImageCreateInfo::format.

• If the image was created with VK_IMAGE_TILING_OPTIMAL, then its set of format features is the
value of VkFormatProperties::optimalTilingFeatures found by calling
vkGetPhysicalDeviceFormatProperties on the same format as VkImageCreateInfo::format.

12.3.2. Image Mip Level Sizing

A complete mipmap chain is the full set of mip levels, from the largest mip level provided, down to
the minimum mip level size.

Conventional Images

For conventional images, the dimensions of each successive mip level, n+1, are:

widthn+1 = max(⌊widthn/2⌋, 1)

heightn+1 = max(⌊heightn/2⌋, 1)

depthn+1 = max(⌊depthn/2⌋, 1)

515

where widthn, heightn, and depthn are the dimensions of the next larger mip level, n.

The minimum mip level size is:

• 1 for one-dimensional images,

• 1x1 for two-dimensional images, and

• 1x1x1 for three-dimensional images.

The number of levels in a complete mipmap chain is:

⌊log2(max(width0, height0, depth0))⌋ + 1

where width0, height0, and depth0 are the dimensions of the largest (most detailed) mip level, 0.

12.4. Image Layouts
Images are stored in implementation-dependent opaque layouts in memory. Each layout has
limitations on what kinds of operations are supported for image subresources using the layout. At
any given time, the data representing an image subresource in memory exists in a particular layout
which is determined by the most recent layout transition that was performed on that image
subresource. Applications have control over which layout each image subresource uses, and can
transition an image subresource from one layout to another. Transitions can happen with an image
memory barrier, included as part of a vkCmdPipelineBarrier or a vkCmdWaitEvents command
buffer command (see Image Memory Barriers), or as part of a subpass dependency within a render
pass (see VkSubpassDependency).

Image layout is per-image subresource. Separate image subresources of the same image can be in
different layouts at the same time, with the exception that depth and stencil aspects of a given
image subresource can only be in different layouts if the separateDepthStencilLayouts feature is
enabled.

Note

Each layout may offer optimal performance for a specific usage of image memory.
For example, an image with a layout of VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
may provide optimal performance for use as a color attachment, but be
unsupported for use in transfer commands. Applications can transition an image
subresource from one layout to another in order to achieve optimal performance
when the image subresource is used for multiple kinds of operations. After
initialization, applications need not use any layout other than the general layout,
though this may produce suboptimal performance on some implementations.

Upon creation, all image subresources of an image are initially in the same layout, where that
layout is selected by the VkImageCreateInfo::initialLayout member. The initialLayout must be
either VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED. If it is
VK_IMAGE_LAYOUT_PREINITIALIZED, then the image data can be preinitialized by the host while using
this layout, and the transition away from this layout will preserve that data. If it is
VK_IMAGE_LAYOUT_UNDEFINED, then the contents of the data are considered to be undefined, and the

516

transition away from this layout is not guaranteed to preserve that data. For either of these initial
layouts, any image subresources must be transitioned to another layout before they are accessed
by the device.

Host access to image memory is only well-defined for linear images and for image subresources of
those images which are currently in either the VK_IMAGE_LAYOUT_PREINITIALIZED or
VK_IMAGE_LAYOUT_GENERAL layout. Calling vkGetImageSubresourceLayout for a linear image returns a
subresource layout mapping that is valid for either of those image layouts.

The set of image layouts consists of:

// Provided by VK_VERSION_1_0
typedef enum VkImageLayout {
 VK_IMAGE_LAYOUT_UNDEFINED = 0,
 VK_IMAGE_LAYOUT_GENERAL = 1,
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL = 2,
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL = 3,
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL = 4,
 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL = 5,
 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL = 6,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL = 7,
 VK_IMAGE_LAYOUT_PREINITIALIZED = 8,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL = 1000117000,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL = 1000117001,
 // Provided by VK_VERSION_1_2
 VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL = 1000241000,
 // Provided by VK_VERSION_1_2
 VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL = 1000241001,
 // Provided by VK_VERSION_1_2
 VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL = 1000241002,
 // Provided by VK_VERSION_1_2
 VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL = 1000241003,
 // Provided by VK_VERSION_1_3
 VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL = 1000314000,
 // Provided by VK_VERSION_1_3
 VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL = 1000314001,
} VkImageLayout;

The type(s) of device access supported by each layout are:

• VK_IMAGE_LAYOUT_UNDEFINED specifies that the layout is unknown. Image memory cannot be
transitioned into this layout. This layout can be used as the initialLayout member of
VkImageCreateInfo. This layout can be used in place of the current image layout in a layout
transition, but doing so will cause the contents of the image’s memory to be undefined.

• VK_IMAGE_LAYOUT_PREINITIALIZED specifies that an image’s memory is in a defined layout and can
be populated by data, but that it has not yet been initialized by the driver. Image memory
cannot be transitioned into this layout. This layout can be used as the initialLayout member of

517

VkImageCreateInfo. This layout is intended to be used as the initial layout for an image whose
contents are written by the host, and hence the data can be written to memory immediately,
without first executing a layout transition. Currently, VK_IMAGE_LAYOUT_PREINITIALIZED is only
useful with linear images because there is not a standard layout defined for
VK_IMAGE_TILING_OPTIMAL images.

• VK_IMAGE_LAYOUT_GENERAL supports all types of device access.

• VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL specifies a layout that must only be used with attachment
accesses in the graphics pipeline.

• VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL specifies a layout allowing read only access as an
attachment, or in shaders as a sampled image, combined image/sampler, or input attachment.

• VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL must only be used as a color or resolve attachment in
a VkFramebuffer. This layout is valid only for image subresources of images created with the
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT usage bit enabled.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL specifies a layout for both the depth and
stencil aspects of a depth/stencil format image allowing read and write access as a depth/stencil
attachment. It is equivalent to VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL and
VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL specifies a layout for both the depth and
stencil aspects of a depth/stencil format image allowing read only access as a depth/stencil
attachment or in shaders as a sampled image, combined image/sampler, or input attachment. It
is equivalent to VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL and
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL.

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL specifies a layout for depth/stencil
format images allowing read and write access to the stencil aspect as a stencil attachment, and
read only access to the depth aspect as a depth attachment or in shaders as a sampled image,
combined image/sampler, or input attachment. It is equivalent to
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL and VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL.

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL specifies a layout for depth/stencil
format images allowing read and write access to the depth aspect as a depth attachment, and
read only access to the stencil aspect as a stencil attachment or in shaders as a sampled image,
combined image/sampler, or input attachment. It is equivalent to
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL and VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL.

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL specifies a layout for the depth aspect of a
depth/stencil format image allowing read and write access as a depth attachment.

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL specifies a layout for the depth aspect of a
depth/stencil format image allowing read-only access as a depth attachment or in shaders as a
sampled image, combined image/sampler, or input attachment.

• VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL specifies a layout for the stencil aspect of a
depth/stencil format image allowing read and write access as a stencil attachment.

• VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL specifies a layout for the stencil aspect of a
depth/stencil format image allowing read-only access as a stencil attachment or in shaders as a
sampled image, combined image/sampler, or input attachment.

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL specifies a layout allowing read-only access in a

518

shader as a sampled image, combined image/sampler, or input attachment. This layout is valid
only for image subresources of images created with the VK_IMAGE_USAGE_SAMPLED_BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT usage bits enabled.

• VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL must only be used as a source image of a transfer
command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT). This layout is valid only for
image subresources of images created with the VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage bit
enabled.

• VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL must only be used as a destination image of a transfer
command. This layout is valid only for image subresources of images created with the
VK_IMAGE_USAGE_TRANSFER_DST_BIT usage bit enabled.

The layout of each image subresource is not a state of the image subresource itself, but is rather a
property of how the data in memory is organized, and thus for each mechanism of accessing an
image in the API the application must specify a parameter or structure member that indicates
which image layout the image subresource(s) are considered to be in when the image will be
accessed. For transfer commands, this is a parameter to the command (see Clear Commands and
Copy Commands). For use as a framebuffer attachment, this is a member in the substructures of the
VkRenderPassCreateInfo (see Render Pass). For use in a descriptor set, this is a member in the
VkDescriptorImageInfo structure (see Descriptor Set Updates).

12.4.1. Image Layout Matching Rules

At the time that any command buffer command accessing an image executes on any queue, the
layouts of the image subresources that are accessed must all match exactly the layout specified via
the API controlling those accesses, except in case of accesses to an image with a depth/stencil
format performed through descriptors referring to only a single aspect of the image, where the
following relaxed matching rules apply:

• Descriptors referring just to the depth aspect of a depth/stencil image only need to match in the
image layout of the depth aspect, thus VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL and
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL are considered to match.

• Descriptors referring just to the stencil aspect of a depth/stencil image only need to match in the
image layout of the stencil aspect, thus VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL and
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL are considered to match.

When performing a layout transition on an image subresource, the old layout value must either
equal the current layout of the image subresource (at the time the transition executes), or else be
VK_IMAGE_LAYOUT_UNDEFINED (implying that the contents of the image subresource need not be
preserved). The new layout used in a transition must not be VK_IMAGE_LAYOUT_UNDEFINED or
VK_IMAGE_LAYOUT_PREINITIALIZED.

12.5. Image Views
Image objects are not directly accessed by pipeline shaders for reading or writing image data.
Instead, image views representing contiguous ranges of the image subresources and containing
additional metadata are used for that purpose. Views must be created on images of compatible
types, and must represent a valid subset of image subresources.

519

Image views are represented by VkImageView handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImageView)

VK_REMAINING_ARRAY_LAYERS is a special constant value used for image views to indicate that all
remaining array layers in an image after the base layer should be included in the view.

#define VK_REMAINING_ARRAY_LAYERS (~0U)

VK_REMAINING_MIP_LEVELS is a special constant value used for image views to indicate that all
remaining mipmap levels in an image after the base level should be included in the view.

#define VK_REMAINING_MIP_LEVELS (~0U)

The types of image views that can be created are:

// Provided by VK_VERSION_1_0
typedef enum VkImageViewType {
 VK_IMAGE_VIEW_TYPE_1D = 0,
 VK_IMAGE_VIEW_TYPE_2D = 1,
 VK_IMAGE_VIEW_TYPE_3D = 2,
 VK_IMAGE_VIEW_TYPE_CUBE = 3,
 VK_IMAGE_VIEW_TYPE_1D_ARRAY = 4,
 VK_IMAGE_VIEW_TYPE_2D_ARRAY = 5,
 VK_IMAGE_VIEW_TYPE_CUBE_ARRAY = 6,
} VkImageViewType;

To create an image view, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateImageView(
 VkDevice device,
 const VkImageViewCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkImageView* pView);

• device is the logical device that creates the image view.

• pCreateInfo is a pointer to a VkImageViewCreateInfo structure containing parameters to be used
to create the image view.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pView is a pointer to a VkImageView handle in which the resulting image view object is
returned.

520

Valid Usage

• VUID-vkCreateImageView-image-09179
VkImageViewCreateInfo::image must have been created from device

Valid Usage (Implicit)

• VUID-vkCreateImageView-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateImageView-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkImageViewCreateInfo structure

• VUID-vkCreateImageView-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateImageView-pView-parameter
pView must be a valid pointer to a VkImageView handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkImageViewCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageViewCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageViewCreateFlags flags;
 VkImage image;
 VkImageViewType viewType;
 VkFormat format;
 VkComponentMapping components;
 VkImageSubresourceRange subresourceRange;
} VkImageViewCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

521

• flags is a bitmask of VkImageViewCreateFlagBits specifying additional parameters of the image
view.

• image is a VkImage on which the view will be created.

• viewType is a VkImageViewType value specifying the type of the image view.

• format is a VkFormat specifying the format and type used to interpret texel blocks of the image.

• components is a VkComponentMapping structure specifying a remapping of color components
(or of depth or stencil components after they have been converted into color components).

• subresourceRange is a VkImageSubresourceRange structure selecting the set of mipmap levels
and array layers to be accessible to the view.

Some of the image creation parameters are inherited by the view. In particular, image view creation
inherits the implicit parameter usage specifying the allowed usages of the image view that, by
default, takes the value of the corresponding usage parameter specified in VkImageCreateInfo at
image creation time. The implicit usage can be overridden by adding a
VkImageViewUsageCreateInfo structure to the pNext chain, but the view usage must be a subset of
the image usage. If image has a depth-stencil format and was created with a
VkImageStencilUsageCreateInfo structure included in the pNext chain of VkImageCreateInfo, the
usage is calculated based on the subresource.aspectMask provided:

• If aspectMask includes only VK_IMAGE_ASPECT_STENCIL_BIT, the implicit usage is equal to
VkImageStencilUsageCreateInfo::stencilUsage.

• If aspectMask includes only VK_IMAGE_ASPECT_DEPTH_BIT, the implicit usage is equal to
VkImageCreateInfo::usage.

• If both aspects are included in aspectMask, the implicit usage is equal to the intersection of
VkImageCreateInfo::usage and VkImageStencilUsageCreateInfo::stencilUsage.

If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, and if the format of the image
is not multi-planar, format can be different from the image’s format, but if image was created
without the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag and they are not equal they must
be compatible. Image format compatibility is defined in the Format Compatibility Classes section.
Views of compatible formats will have the same mapping between texel coordinates and memory
locations irrespective of the format, with only the interpretation of the bit pattern changing.

If image was created with a multi-planar format, and the image view’s aspectMask is one of
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT or VK_IMAGE_ASPECT_PLANE_2_BIT, the
view’s aspect mask is considered to be equivalent to VK_IMAGE_ASPECT_COLOR_BIT when used as a
framebuffer attachment.

Note

Values intended to be used with one view format may not be exactly preserved
when written or read through a different format. For example, an integer value
that happens to have the bit pattern of a floating point denorm or NaN may be
flushed or canonicalized when written or read through a view with a floating
point format. Similarly, a value written through a signed normalized format that
has a bit pattern exactly equal to -2b may be changed to -2b + 1 as described in

522

Conversion from Normalized Fixed-Point to Floating-Point.

If image was created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag, format must be
compatible with the image’s format as described above; or must be an uncompressed format, in
which case it must be size-compatible with the image’s format. In this case, the resulting image
view’s texel dimensions equal the dimensions of the selected mip level divided by the compressed
texel block size and rounded up.

The VkComponentMapping components member describes a remapping from components of the
image to components of the vector returned by shader image instructions. This remapping must be
the identity swizzle for storage image descriptors, input attachment descriptors, framebuffer
attachments, and any VkImageView used with a combined image sampler that enables sampler Y′CBCR

conversion.

If the image view is to be used with a sampler which supports sampler Y′CBCR conversion, an
identically defined object of type VkSamplerYcbcrConversion to that used to create the sampler
must be passed to vkCreateImageView in a VkSamplerYcbcrConversionInfo included in the pNext
chain of VkImageViewCreateInfo. Conversely, if a VkSamplerYcbcrConversion object is passed to
vkCreateImageView, an identically defined VkSamplerYcbcrConversion object must be used when
sampling the image.

If the image has a multi-planar format, subresourceRange.aspectMask is VK_IMAGE_ASPECT_COLOR_BIT,
and usage includes VK_IMAGE_USAGE_SAMPLED_BIT, then the format must be identical to the image
format and the sampler to be used with the image view must enable sampler Y′CBCR conversion.

If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT and the image has a multi-planar
format, and if subresourceRange.aspectMask is VK_IMAGE_ASPECT_PLANE_0_BIT,
VK_IMAGE_ASPECT_PLANE_1_BIT, or VK_IMAGE_ASPECT_PLANE_2_BIT, format must be compatible with the
corresponding plane of the image, and the sampler to be used with the image view must not enable
sampler Y′CBCR conversion. The width and height of the single-plane image view must be derived
from the multi-planar image’s dimensions in the manner listed for plane compatibility for the
plane.

Any view of an image plane will have the same mapping between texel coordinates and memory
locations as used by the components of the color aspect, subject to the formulae relating texel
coordinates to lower-resolution planes as described in Chroma Reconstruction. That is, if an R or B
plane has a reduced resolution relative to the G plane of the multi-planar image, the image view
operates using the (uplane, vplane) unnormalized coordinates of the reduced-resolution plane, and these
coordinates access the same memory locations as the (ucolor, vcolor) unnormalized coordinates of the
color aspect for which chroma reconstruction operations operate on the same (uplane, vplane) or (iplane,
jplane) coordinates.

Table 7. Image type and image view type compatibility requirements

Image View Type Compatible Image Types

VK_IMAGE_VIEW_TYPE_1D VK_IMAGE_TYPE_1D

VK_IMAGE_VIEW_TYPE_1D_ARRAY VK_IMAGE_TYPE_1D

VK_IMAGE_VIEW_TYPE_2D VK_IMAGE_TYPE_2D , VK_IMAGE_TYPE_3D

523

Image View Type Compatible Image Types

VK_IMAGE_VIEW_TYPE_2D_ARRAY VK_IMAGE_TYPE_2D , VK_IMAGE_TYPE_3D

VK_IMAGE_VIEW_TYPE_CUBE VK_IMAGE_TYPE_2D

VK_IMAGE_VIEW_TYPE_CUBE_ARRAY VK_IMAGE_TYPE_2D

VK_IMAGE_VIEW_TYPE_3D VK_IMAGE_TYPE_3D

Valid Usage

• VUID-VkImageViewCreateInfo-image-01003
If image was not created with VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT then viewType must not
be VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-VkImageViewCreateInfo-viewType-01004
If the imageCubeArray feature is not enabled, viewType must not be
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• VUID-VkImageViewCreateInfo-image-06723
If image was created with VK_IMAGE_TYPE_3D but without
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT set then viewType must not be
VK_IMAGE_VIEW_TYPE_2D_ARRAY

• VUID-VkImageViewCreateInfo-image-06727
If image was created with VK_IMAGE_TYPE_3D but without
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT set then viewType must not be
VK_IMAGE_VIEW_TYPE_2D

• VUID-VkImageViewCreateInfo-image-04970
If image was created with VK_IMAGE_TYPE_3D and viewType is VK_IMAGE_VIEW_TYPE_2D or
VK_IMAGE_VIEW_TYPE_2D_ARRAY then subresourceRange.levelCount must be 1

• VUID-VkImageViewCreateInfo-image-04971
If image was created with VK_IMAGE_TYPE_3D and viewType is VK_IMAGE_VIEW_TYPE_2D or
VK_IMAGE_VIEW_TYPE_2D_ARRAY then VkImageCreateInfo::flags must not contain any of
VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, and
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT

• VUID-VkImageViewCreateInfo-image-04972
If image was created with a samples value not equal to VK_SAMPLE_COUNT_1_BIT then viewType
must be either VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY

• VUID-VkImageViewCreateInfo-image-04441
image must have been created with a usage value containing at least one of the usages
defined in the valid image usage list for image views

• VUID-VkImageViewCreateInfo-None-02273
The format features of the resultant image view must contain at least one bit

• VUID-VkImageViewCreateInfo-usage-02274
If usage contains VK_IMAGE_USAGE_SAMPLED_BIT, then the format features of the resultant
image view must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

• VUID-VkImageViewCreateInfo-usage-02275

524

If usage contains VK_IMAGE_USAGE_STORAGE_BIT, then the image view’s format features must
contain VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

• VUID-VkImageViewCreateInfo-usage-02276
If usage contains VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, then the image view’s format
features must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkImageViewCreateInfo-usage-02277
If usage contains VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, then the image view’s
format features must contain VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageViewCreateInfo-usage-08932
If usage contains VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT,

then the image view’s format features must contain at least one of
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

• VUID-VkImageViewCreateInfo-subresourceRange-01478
subresourceRange.baseMipLevel must be less than the mipLevels specified in
VkImageCreateInfo when image was created

• VUID-VkImageViewCreateInfo-subresourceRange-01718
If subresourceRange.levelCount is not VK_REMAINING_MIP_LEVELS,
subresourceRange.baseMipLevel + subresourceRange.levelCount must be less than or equal
to the mipLevels specified in VkImageCreateInfo when image was created

• VUID-VkImageViewCreateInfo-image-01482
If image is not a 3D image created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT set, or
viewType is not VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY,
subresourceRange.baseArrayLayer must be less than the arrayLayers specified in
VkImageCreateInfo when image was created

• VUID-VkImageViewCreateInfo-subresourceRange-01483
If subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS, image is not a 3D image
created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT set, or viewType is not
VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY, subresourceRange.layerCount must
be non-zero and subresourceRange.baseArrayLayer + subresourceRange.layerCount must be
less than or equal to the arrayLayers specified in VkImageCreateInfo when image was
created

• VUID-VkImageViewCreateInfo-image-02724
If image is a 3D image created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT set, and
viewType is VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY,
subresourceRange.baseArrayLayer must be less than the depth computed from baseMipLevel
and extent.depth specified in VkImageCreateInfo when image was created, according to
the formula defined in Image Mip Level Sizing

• VUID-VkImageViewCreateInfo-subresourceRange-02725
If subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS, image is a 3D image
created with VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT set, and viewType is
VK_IMAGE_VIEW_TYPE_2D or VK_IMAGE_VIEW_TYPE_2D_ARRAY, subresourceRange.layerCount must
be non-zero and subresourceRange.baseArrayLayer + subresourceRange.layerCount must be

525

less than or equal to the depth computed from baseMipLevel and extent.depth specified in
VkImageCreateInfo when image was created, according to the formula defined in Image
Mip Level Sizing

• VUID-VkImageViewCreateInfo-image-01761
If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, but without the
VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag, and if the format of the image is not
a multi-planar format, format must be compatible with the format used to create image, as
defined in Format Compatibility Classes

• VUID-VkImageViewCreateInfo-image-01583
If image was created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag,
format must be compatible with, or must be an uncompressed format that is size-
compatible with, the format used to create image

• VUID-VkImageViewCreateInfo-image-07072
If image was created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag and
format is a non-compressed format, the levelCount member of subresourceRange must be 1

• VUID-VkImageViewCreateInfo-image-09487
If image was created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag, and
format is a non-compressed format, then the layerCount member of subresourceRange must
be 1

• VUID-VkImageViewCreateInfo-pNext-01585
If a VkImageFormatListCreateInfo structure was included in the pNext chain of the
VkImageCreateInfo structure used when creating image and
VkImageFormatListCreateInfo::viewFormatCount is not zero then format must be one of the
formats in VkImageFormatListCreateInfo::pViewFormats

• VUID-VkImageViewCreateInfo-image-01586
If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, if the format of the
image is a multi-planar format, and if subresourceRange.aspectMask is one of the multi-
planar aspect mask bits, then format must be compatible with the VkFormat for the plane
of the image format indicated by subresourceRange.aspectMask, as defined in Compatible
Formats of Planes of Multi-Planar Formats

• VUID-VkImageViewCreateInfo-subresourceRange-07818
subresourceRange.aspectMask must only have at most 1 valid multi-planar aspect mask bit

• VUID-VkImageViewCreateInfo-image-01762
If image was not created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, or if the format
of the image is a multi-planar format and if subresourceRange.aspectMask is
VK_IMAGE_ASPECT_COLOR_BIT, format must be identical to the format used to create image

• VUID-VkImageViewCreateInfo-format-06415
If the image view requires a sampler Y′CBCR conversion and usage contains
VK_IMAGE_USAGE_SAMPLED_BIT, then the pNext chain must include a
VkSamplerYcbcrConversionInfo structure with a conversion value other than
VK_NULL_HANDLE

• VUID-VkImageViewCreateInfo-format-04714
If format has a _422 or _420 suffix then image must have been created with a width that is a
multiple of 2

526

• VUID-VkImageViewCreateInfo-format-04715
If format has a _420 suffix then image must have been created with a height that is a
multiple of 2

• VUID-VkImageViewCreateInfo-pNext-01970
If the pNext chain includes a VkSamplerYcbcrConversionInfo structure with a conversion
value other than VK_NULL_HANDLE, all members of components must have the identity
swizzle

• VUID-VkImageViewCreateInfo-pNext-06658
If the pNext chain includes a VkSamplerYcbcrConversionInfo structure with a conversion
value other than VK_NULL_HANDLE, format must be the same used in
VkSamplerYcbcrConversionCreateInfo::format

• VUID-VkImageViewCreateInfo-image-01020
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkImageViewCreateInfo-subResourceRange-01021
viewType must be compatible with the type of image as shown in the view type
compatibility table

• VUID-VkImageViewCreateInfo-pNext-02662
If the pNext chain includes a VkImageViewUsageCreateInfo structure, and image was not
created with a VkImageStencilUsageCreateInfo structure included in the pNext chain of
VkImageCreateInfo, its usage member must not include any bits that were not set in the
usage member of the VkImageCreateInfo structure used to create image

• VUID-VkImageViewCreateInfo-pNext-02663
If the pNext chain includes a VkImageViewUsageCreateInfo structure, image was created
with a VkImageStencilUsageCreateInfo structure included in the pNext chain of
VkImageCreateInfo, and subresourceRange.aspectMask includes
VK_IMAGE_ASPECT_STENCIL_BIT, the usage member of the VkImageViewUsageCreateInfo
structure must not include any bits that were not set in the usage member of the
VkImageStencilUsageCreateInfo structure used to create image

• VUID-VkImageViewCreateInfo-pNext-02664
If the pNext chain includes a VkImageViewUsageCreateInfo structure, image was created
with a VkImageStencilUsageCreateInfo structure included in the pNext chain of
VkImageCreateInfo, and subresourceRange.aspectMask includes bits other than
VK_IMAGE_ASPECT_STENCIL_BIT, the usage member of the VkImageViewUsageCreateInfo
structure must not include any bits that were not set in the usage member of the
VkImageCreateInfo structure used to create image

• VUID-VkImageViewCreateInfo-imageViewType-04973
If viewType is VK_IMAGE_VIEW_TYPE_1D, VK_IMAGE_VIEW_TYPE_2D, or VK_IMAGE_VIEW_TYPE_3D; and
subresourceRange.layerCount is not VK_REMAINING_ARRAY_LAYERS, then
subresourceRange.layerCount must be 1

• VUID-VkImageViewCreateInfo-imageViewType-04974
If viewType is VK_IMAGE_VIEW_TYPE_1D, VK_IMAGE_VIEW_TYPE_2D, or VK_IMAGE_VIEW_TYPE_3D; and
subresourceRange.layerCount is VK_REMAINING_ARRAY_LAYERS, then the remaining number of
layers must be 1

527

• VUID-VkImageViewCreateInfo-viewType-02960
If viewType is VK_IMAGE_VIEW_TYPE_CUBE and subresourceRange.layerCount is not
VK_REMAINING_ARRAY_LAYERS, subresourceRange.layerCount must be 6

• VUID-VkImageViewCreateInfo-viewType-02961
If viewType is VK_IMAGE_VIEW_TYPE_CUBE_ARRAY and subresourceRange.layerCount is not
VK_REMAINING_ARRAY_LAYERS, subresourceRange.layerCount must be a multiple of 6

• VUID-VkImageViewCreateInfo-viewType-02962
If viewType is VK_IMAGE_VIEW_TYPE_CUBE and subresourceRange.layerCount is
VK_REMAINING_ARRAY_LAYERS, the remaining number of layers must be 6

• VUID-VkImageViewCreateInfo-viewType-02963
If viewType is VK_IMAGE_VIEW_TYPE_CUBE_ARRAY and subresourceRange.layerCount is
VK_REMAINING_ARRAY_LAYERS, the remaining number of layers must be a multiple of 6

• VUID-VkImageViewCreateInfo-subresourceRange-09594
subresourceRange.aspectMask must be valid for the format the image was created with

Valid Usage (Implicit)

• VUID-VkImageViewCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO

• VUID-VkImageViewCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkImageViewUsageCreateInfo or
VkSamplerYcbcrConversionInfo

• VUID-VkImageViewCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkImageViewCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkImageViewCreateInfo-image-parameter
image must be a valid VkImage handle

• VUID-VkImageViewCreateInfo-viewType-parameter
viewType must be a valid VkImageViewType value

• VUID-VkImageViewCreateInfo-format-parameter
format must be a valid VkFormat value

• VUID-VkImageViewCreateInfo-components-parameter
components must be a valid VkComponentMapping structure

• VUID-VkImageViewCreateInfo-subresourceRange-parameter
subresourceRange must be a valid VkImageSubresourceRange structure

Bits which can be set in VkImageViewCreateInfo::flags, specifying additional parameters of an
image view, are:

528

// Provided by VK_VERSION_1_0
typedef enum VkImageViewCreateFlagBits {
} VkImageViewCreateFlagBits;

// Provided by VK_VERSION_1_0
typedef VkFlags VkImageViewCreateFlags;

VkImageViewCreateFlags is a bitmask type for setting a mask of zero or more
VkImageViewCreateFlagBits.

The set of usages for the created image view can be restricted compared to the parent image’s usage
flags by adding a VkImageViewUsageCreateInfo structure to the pNext chain of
VkImageViewCreateInfo.

The VkImageViewUsageCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImageViewUsageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageUsageFlags usage;
} VkImageViewUsageCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• usage is a bitmask of VkImageUsageFlagBits specifying allowed usages of the image view.

When this structure is chained to VkImageViewCreateInfo the usage field overrides the implicit
usage parameter inherited from image creation time and its value is used instead for the purposes
of determining the valid usage conditions of VkImageViewCreateInfo.

Valid Usage (Implicit)

• VUID-VkImageViewUsageCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO

• VUID-VkImageViewUsageCreateInfo-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkImageViewUsageCreateInfo-usage-requiredbitmask
usage must not be 0

The VkImageSubresourceRange structure is defined as:

// Provided by VK_VERSION_1_0

529

typedef struct VkImageSubresourceRange {
 VkImageAspectFlags aspectMask;
 uint32_t baseMipLevel;
 uint32_t levelCount;
 uint32_t baseArrayLayer;
 uint32_t layerCount;
} VkImageSubresourceRange;

• aspectMask is a bitmask of VkImageAspectFlagBits specifying which aspect(s) of the image are
included in the view.

• baseMipLevel is the first mipmap level accessible to the view.

• levelCount is the number of mipmap levels (starting from baseMipLevel) accessible to the view.

• baseArrayLayer is the first array layer accessible to the view.

• layerCount is the number of array layers (starting from baseArrayLayer) accessible to the view.

The number of mipmap levels and array layers must be a subset of the image subresources in the
image. If an application wants to use all mip levels or layers in an image after the baseMipLevel or
baseArrayLayer, it can set levelCount and layerCount to the special values VK_REMAINING_MIP_LEVELS
and VK_REMAINING_ARRAY_LAYERS without knowing the exact number of mip levels or layers.

For cube and cube array image views, the layers of the image view starting at baseArrayLayer
correspond to faces in the order +X, -X, +Y, -Y, +Z, -Z. For cube arrays, each set of six sequential
layers is a single cube, so the number of cube maps in a cube map array view is layerCount / 6, and
image array layer (baseArrayLayer + i) is face index (i mod 6) of cube i / 6. If the number of layers in
the view, whether set explicitly in layerCount or implied by VK_REMAINING_ARRAY_LAYERS, is not a
multiple of 6, the last cube map in the array must not be accessed.

aspectMask must be only VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT if format is a color, depth-only or stencil-only format, respectively,
except if format is a multi-planar format. If using a depth/stencil format with both depth and stencil
components, aspectMask must include at least one of VK_IMAGE_ASPECT_DEPTH_BIT and
VK_IMAGE_ASPECT_STENCIL_BIT, and can include both.

When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D image’s
mip level in order to create a 2D or 2D array image view of a 3D image created with
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and layerCount specify the first slice index
and the number of slices to include in the created image view. Such an image view can be used as a
framebuffer attachment that refers only to the specified range of slices of the selected mip level.
However, any layout transitions performed on such an attachment view during a render pass
instance still apply to the entire subresource referenced which includes all the slices of the selected
mip level.

When using an image view of a depth/stencil image to populate a descriptor set (e.g. for sampling in
the shader, or for use as an input attachment), the aspectMask must only include one bit, which
selects whether the image view is used for depth reads (i.e. using a floating-point sampler or input
attachment in the shader) or stencil reads (i.e. using an unsigned integer sampler or input
attachment in the shader). When an image view of a depth/stencil image is used as a depth/stencil

530

framebuffer attachment, the aspectMask is ignored and both depth and stencil image subresources
are used.

When creating a VkImageView, if sampler Y′CBCR conversion is enabled in the sampler, the aspectMask
of a subresourceRange used by the VkImageView must be VK_IMAGE_ASPECT_COLOR_BIT.

When creating a VkImageView, if sampler Y′CBCR conversion is not enabled in the sampler and the
image format is multi-planar, the image must have been created with
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, and the aspectMask of the VkImageView’s subresourceRange must
be VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT or VK_IMAGE_ASPECT_PLANE_2_BIT.

Valid Usage

• VUID-VkImageSubresourceRange-levelCount-01720
If levelCount is not VK_REMAINING_MIP_LEVELS, it must be greater than 0

• VUID-VkImageSubresourceRange-layerCount-01721
If layerCount is not VK_REMAINING_ARRAY_LAYERS, it must be greater than 0

• VUID-VkImageSubresourceRange-aspectMask-01670
If aspectMask includes VK_IMAGE_ASPECT_COLOR_BIT, then it must not include any of
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, or VK_IMAGE_ASPECT_PLANE_2_BIT

Valid Usage (Implicit)

• VUID-VkImageSubresourceRange-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkImageSubresourceRange-aspectMask-requiredbitmask
aspectMask must not be 0

Bits which can be set in an aspect mask to specify aspects of an image for purposes such as
identifying a subresource, are:

// Provided by VK_VERSION_1_0
typedef enum VkImageAspectFlagBits {
 VK_IMAGE_ASPECT_COLOR_BIT = 0x00000001,
 VK_IMAGE_ASPECT_DEPTH_BIT = 0x00000002,
 VK_IMAGE_ASPECT_STENCIL_BIT = 0x00000004,
 VK_IMAGE_ASPECT_METADATA_BIT = 0x00000008,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_ASPECT_PLANE_0_BIT = 0x00000010,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_ASPECT_PLANE_1_BIT = 0x00000020,
 // Provided by VK_VERSION_1_1
 VK_IMAGE_ASPECT_PLANE_2_BIT = 0x00000040,
 // Provided by VK_VERSION_1_3
 VK_IMAGE_ASPECT_NONE = 0,

531

} VkImageAspectFlagBits;

• VK_IMAGE_ASPECT_NONE specifies no image aspect, or the image aspect is not applicable.

• VK_IMAGE_ASPECT_COLOR_BIT specifies the color aspect.

• VK_IMAGE_ASPECT_DEPTH_BIT specifies the depth aspect.

• VK_IMAGE_ASPECT_STENCIL_BIT specifies the stencil aspect.

• VK_IMAGE_ASPECT_METADATA_BIT specifies the metadata aspect used for sparse resource operations.

• VK_IMAGE_ASPECT_PLANE_0_BIT specifies plane 0 of a multi-planar image format.

• VK_IMAGE_ASPECT_PLANE_1_BIT specifies plane 1 of a multi-planar image format.

• VK_IMAGE_ASPECT_PLANE_2_BIT specifies plane 2 of a multi-planar image format.

// Provided by VK_VERSION_1_0
typedef VkFlags VkImageAspectFlags;

VkImageAspectFlags is a bitmask type for setting a mask of zero or more VkImageAspectFlagBits.

The VkComponentMapping structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkComponentMapping {
 VkComponentSwizzle r;
 VkComponentSwizzle g;
 VkComponentSwizzle b;
 VkComponentSwizzle a;
} VkComponentMapping;

• r is a VkComponentSwizzle specifying the component value placed in the R component of the
output vector.

• g is a VkComponentSwizzle specifying the component value placed in the G component of the
output vector.

• b is a VkComponentSwizzle specifying the component value placed in the B component of the
output vector.

• a is a VkComponentSwizzle specifying the component value placed in the A component of the
output vector.

Valid Usage (Implicit)

• VUID-VkComponentMapping-r-parameter
r must be a valid VkComponentSwizzle value

• VUID-VkComponentMapping-g-parameter
g must be a valid VkComponentSwizzle value

532

• VUID-VkComponentMapping-b-parameter
b must be a valid VkComponentSwizzle value

• VUID-VkComponentMapping-a-parameter
a must be a valid VkComponentSwizzle value

Possible values of the members of VkComponentMapping, specifying the component values placed
in each component of the output vector, are:

// Provided by VK_VERSION_1_0
typedef enum VkComponentSwizzle {
 VK_COMPONENT_SWIZZLE_IDENTITY = 0,
 VK_COMPONENT_SWIZZLE_ZERO = 1,
 VK_COMPONENT_SWIZZLE_ONE = 2,
 VK_COMPONENT_SWIZZLE_R = 3,
 VK_COMPONENT_SWIZZLE_G = 4,
 VK_COMPONENT_SWIZZLE_B = 5,
 VK_COMPONENT_SWIZZLE_A = 6,
} VkComponentSwizzle;

• VK_COMPONENT_SWIZZLE_IDENTITY specifies that the component is set to the identity swizzle.

• VK_COMPONENT_SWIZZLE_ZERO specifies that the component is set to zero.

• VK_COMPONENT_SWIZZLE_ONE specifies that the component is set to either 1 or 1.0, depending on
whether the type of the image view format is integer or floating-point respectively, as
determined by the Format Definition section for each VkFormat.

• VK_COMPONENT_SWIZZLE_R specifies that the component is set to the value of the R component of
the image.

• VK_COMPONENT_SWIZZLE_G specifies that the component is set to the value of the G component of
the image.

• VK_COMPONENT_SWIZZLE_B specifies that the component is set to the value of the B component of
the image.

• VK_COMPONENT_SWIZZLE_A specifies that the component is set to the value of the A component of
the image.

Setting the identity swizzle on a component is equivalent to setting the identity mapping on that
component. That is:

Table 8. Component Mappings Equivalent To VK_COMPONENT_SWIZZLE_IDENTITY

Component Identity Mapping

components.r VK_COMPONENT_SWIZZLE_R

components.g VK_COMPONENT_SWIZZLE_G

components.b VK_COMPONENT_SWIZZLE_B

components.a VK_COMPONENT_SWIZZLE_A

533

To destroy an image view, call:

// Provided by VK_VERSION_1_0
void vkDestroyImageView(
 VkDevice device,
 VkImageView imageView,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the image view.

• imageView is the image view to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyImageView-imageView-01026
All submitted commands that refer to imageView must have completed execution

• VUID-vkDestroyImageView-imageView-01027
If VkAllocationCallbacks were provided when imageView was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyImageView-imageView-01028
If no VkAllocationCallbacks were provided when imageView was created, pAllocator must
be NULL

Valid Usage (Implicit)

• VUID-vkDestroyImageView-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyImageView-imageView-parameter
If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• VUID-vkDestroyImageView-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyImageView-imageView-parent
If imageView is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to imageView must be externally synchronized

534

12.5.1. Image View Format Features

Valid uses of a VkImageView may depend on the image view’s format features, defined below. Such
constraints are documented in the affected valid usage statement.

• If Vulkan 1.3 is supported or the VK_KHR_format_feature_flags2 extension is supported, and
VkImageViewCreateInfo::image was created with VK_IMAGE_TILING_LINEAR, then the image view’s
set of format features is the value of VkFormatProperties3::linearTilingFeatures found by
calling vkGetPhysicalDeviceFormatProperties2 on the same format as VkImageViewCreateInfo
::format.

• If Vulkan 1.3 is not supported and the VK_KHR_format_feature_flags2 extension is not supported,
and VkImageViewCreateInfo::image was created with VK_IMAGE_TILING_LINEAR, then the image
view’s set of format features is the union of the value of VkFormatProperties
::linearTilingFeatures found by calling vkGetPhysicalDeviceFormatProperties on the same
format as VkImageViewCreateInfo::format, with:

◦ VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT if the format is a depth/stencil
format and the image view features also contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT.

◦ VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT if the format is one of the extended
storage formats and shaderStorageImageReadWithoutFormat is enabled on the device.

◦ VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT if the format is one of the extended
storage formats and shaderStorageImageWriteWithoutFormat is enabled on the device.

• If Vulkan 1.3 is supported or the VK_KHR_format_feature_flags2 extension is supported, and
VkImageViewCreateInfo::image was created with VK_IMAGE_TILING_OPTIMAL, then the image view’s
set of format features is the value of VkFormatProperties::optimalTilingFeatures or
VkFormatProperties3::optimalTilingFeatures found by calling
vkGetPhysicalDeviceFormatProperties or vkGetPhysicalDeviceImageFormatProperties2 on the
same format as VkImageViewCreateInfo::format.

• If Vulkan 1.3 is not supported and the VK_KHR_format_feature_flags2 extension is not supported,
and VkImageViewCreateInfo::image was created with VK_IMAGE_TILING_OPTIMAL, then the image
view’s set of format features is the union of the value of VkFormatProperties
::optimalTilingFeatures found by calling vkGetPhysicalDeviceFormatProperties on the same
format as VkImageViewCreateInfo::format, with:

◦ VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT if the format is a depth/stencil
format and the image view features also contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT.

◦ VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT if the format is one of the extended
storage formats and shaderStorageImageReadWithoutFormat is enabled on the device.

◦ VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT if the format is one of the extended
storage formats and shaderStorageImageWriteWithoutFormat is enabled on the device.

12.6. Resource Memory Association
Resources are initially created as virtual allocations with no backing memory. Device memory is
allocated separately (see Device Memory) and then associated with the resource. This association is
done differently for sparse and non-sparse resources.

535

Resources created with any of the sparse creation flags are considered sparse resources. Resources
created without these flags are non-sparse. The details on resource memory association for sparse
resources is described in Sparse Resources.

Non-sparse resources must be bound completely and contiguously to a single VkDeviceMemory object
before the resource is passed as a parameter to any of the following operations:

• creating image or buffer views

• updating descriptor sets

• recording commands in a command buffer

Once bound, the memory binding is immutable for the lifetime of the resource.

In a logical device representing more than one physical device, buffer and image resources exist on
all physical devices but can be bound to memory differently on each. Each such replicated resource
is an instance of the resource. For sparse resources, each instance can be bound to memory
arbitrarily differently. For non-sparse resources, each instance can either be bound to the local or a
peer instance of the memory, or for images can be bound to rectangular regions from the local
and/or peer instances. When a resource is used in a descriptor set, each physical device interprets
the descriptor according to its own instance’s binding to memory.

Note

There are no new copy commands to transfer data between physical devices.
Instead, an application can create a resource with a peer mapping and use it as the
source or destination of a transfer command executed by a single physical device
to copy the data from one physical device to another.

To determine the memory requirements for a buffer resource, call:

// Provided by VK_VERSION_1_0
void vkGetBufferMemoryRequirements(
 VkDevice device,
 VkBuffer buffer,
 VkMemoryRequirements* pMemoryRequirements);

• device is the logical device that owns the buffer.

• buffer is the buffer to query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements structure in which the memory
requirements of the buffer object are returned.

Valid Usage (Implicit)

• VUID-vkGetBufferMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferMemoryRequirements-buffer-parameter

536

buffer must be a valid VkBuffer handle

• VUID-vkGetBufferMemoryRequirements-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements structure

• VUID-vkGetBufferMemoryRequirements-buffer-parent
buffer must have been created, allocated, or retrieved from device

To determine the memory requirements for an image resource which is not created with the
VK_IMAGE_CREATE_DISJOINT_BIT flag set, call:

// Provided by VK_VERSION_1_0
void vkGetImageMemoryRequirements(
 VkDevice device,
 VkImage image,
 VkMemoryRequirements* pMemoryRequirements);

• device is the logical device that owns the image.

• image is the image to query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements structure in which the memory
requirements of the image object are returned.

Valid Usage

• VUID-vkGetImageMemoryRequirements-image-01588
image must not have been created with the VK_IMAGE_CREATE_DISJOINT_BIT flag set

Valid Usage (Implicit)

• VUID-vkGetImageMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageMemoryRequirements-image-parameter
image must be a valid VkImage handle

• VUID-vkGetImageMemoryRequirements-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements structure

• VUID-vkGetImageMemoryRequirements-image-parent
image must have been created, allocated, or retrieved from device

The VkMemoryRequirements structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryRequirements {
 VkDeviceSize size;
 VkDeviceSize alignment;

537

 uint32_t memoryTypeBits;
} VkMemoryRequirements;

• size is the size, in bytes, of the memory allocation required for the resource.

• alignment is the alignment, in bytes, of the offset within the allocation required for the
resource.

• memoryTypeBits is a bitmask and contains one bit set for every supported memory type for the
resource. Bit i is set if and only if the memory type i in the VkPhysicalDeviceMemoryProperties
structure for the physical device is supported for the resource.

The implementation guarantees certain properties about the memory requirements returned by
vkGetDeviceBufferMemoryRequirements, vkGetDeviceImageMemoryRequirements,
vkGetBufferMemoryRequirements and vkGetImageMemoryRequirements:

• The memoryTypeBits member always contains at least one bit set.

• If buffer is a VkBuffer not created with the VK_BUFFER_CREATE_SPARSE_BINDING_BIT or
VK_BUFFER_CREATE_PROTECTED_BIT bits set, or if image is a linear image that was not created with
the VK_IMAGE_CREATE_PROTECTED_BIT bit set, then the memoryTypeBits member always contains at
least one bit set corresponding to a VkMemoryType with a propertyFlags that has both the
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit and the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit set.
In other words, mappable coherent memory can always be attached to these objects.

• If buffer was created with VkExternalMemoryBufferCreateInfo::handleTypes set to 0 or image
was created with VkExternalMemoryImageCreateInfo::handleTypes set to 0, the memoryTypeBits
member always contains at least one bit set corresponding to a VkMemoryType with a
propertyFlags that has the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set.

• The memoryTypeBits member is identical for all VkBuffer objects created with the same value for
the flags and usage members in the VkBufferCreateInfo structure and the handleTypes member
of the VkExternalMemoryBufferCreateInfo structure passed to vkCreateBuffer. Further, if
usage1 and usage2 of type VkBufferUsageFlags are such that the bits set in usage2 are a subset of
the bits set in usage1, and they have the same flags and VkExternalMemoryBufferCreateInfo
::handleTypes, then the bits set in memoryTypeBits returned for usage1 must be a subset of the bits
set in memoryTypeBits returned for usage2, for all values of flags.

• The alignment member is a power of two.

• The alignment member is identical for all VkBuffer objects created with the same combination of
values for the usage and flags members in the VkBufferCreateInfo structure passed to
vkCreateBuffer.

• If the maintenance4 feature is enabled, then the alignment member is identical for all VkImage
objects created with the same combination of values for the flags, imageType, format, extent,
mipLevels, arrayLayers, samples, tiling and usage members in the VkImageCreateInfo structure
passed to vkCreateImage.

• The alignment member satisfies the buffer descriptor offset alignment requirements associated
with the VkBuffer’s usage:

◦ If usage included VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, alignment must be an integer multiple of

538

VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment.

◦ If usage included VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, alignment must be an integer multiple
of VkPhysicalDeviceLimits::minUniformBufferOffsetAlignment.

◦ If usage included VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, alignment must be an integer multiple
of VkPhysicalDeviceLimits::minStorageBufferOffsetAlignment.

• For images created with a color format, the memoryTypeBits member is identical for all VkImage
objects created with the same combination of values for the tiling member, the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit of the flags member, the
VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT bit of the flags member, handleTypes member
of VkExternalMemoryImageCreateInfo, and the VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the
usage member in the VkImageCreateInfo structure passed to vkCreateImage.

• For images created with a depth/stencil format, the memoryTypeBits member is identical for all
VkImage objects created with the same combination of values for the format member, the tiling
member, the VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit of the flags member, the
VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT bit of the flags member, handleTypes member
of VkExternalMemoryImageCreateInfo, and the VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the
usage member in the VkImageCreateInfo structure passed to vkCreateImage.

• If the memory requirements are for a VkImage, the memoryTypeBits member must not refer to a
VkMemoryType with a propertyFlags that has the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set if
the image did not have VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT bit set in the usage member of
the VkImageCreateInfo structure passed to vkCreateImage.

• If the memory requirements are for a VkBuffer, the memoryTypeBits member must not refer to a
VkMemoryType with a propertyFlags that has the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set.

Note

The implication of this requirement is that lazily allocated memory is
disallowed for buffers in all cases.

• The size member is identical for all VkBuffer objects created with the same combination of
creation parameters specified in VkBufferCreateInfo and its pNext chain.

• The size member is identical for all VkImage objects created with the same combination of
creation parameters specified in VkImageCreateInfo and its pNext chain.

Note

This, however, does not imply that they interpret the contents of the bound
memory identically with each other. That additional guarantee, however, can
be explicitly requested using VK_IMAGE_CREATE_ALIAS_BIT.

• If the maintenance4 feature is enabled, these additional guarantees apply:

◦ For a VkBuffer, the size memory requirement is never greater than that of another VkBuffer
created with a greater or equal size specified in VkBufferCreateInfo, all other creation
parameters being identical.

◦ For a VkBuffer, the size memory requirement is never greater than the result of aligning
VkBufferCreateInfo::size with the alignment memory requirement.

539

◦ For a VkImage, the size memory requirement is never greater than that of another VkImage
created with a greater or equal value in each of extent.width, extent.height, and
extent.depth; all other creation parameters being identical.

◦ The memory requirements returned by vkGetDeviceBufferMemoryRequirements are
identical to those that would be returned by vkGetBufferMemoryRequirements2 if it were
called with a VkBuffer created with the same VkBufferCreateInfo values.

◦ The memory requirements returned by vkGetDeviceImageMemoryRequirements are
identical to those that would be returned by vkGetImageMemoryRequirements2 if it were
called with a VkImage created with the same VkImageCreateInfo values.

To determine the memory requirements for a buffer resource, call:

// Provided by VK_VERSION_1_1
void vkGetBufferMemoryRequirements2(
 VkDevice device,
 const VkBufferMemoryRequirementsInfo2* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

• device is the logical device that owns the buffer.

• pInfo is a pointer to a VkBufferMemoryRequirementsInfo2 structure containing parameters
required for the memory requirements query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the memory
requirements of the buffer object are returned.

Valid Usage (Implicit)

• VUID-vkGetBufferMemoryRequirements2-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferMemoryRequirements2-pInfo-parameter
pInfo must be a valid pointer to a valid VkBufferMemoryRequirementsInfo2 structure

• VUID-vkGetBufferMemoryRequirements2-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

To determine the memory requirements for a buffer resource without creating an object, call:

// Provided by VK_VERSION_1_3
void vkGetDeviceBufferMemoryRequirements(
 VkDevice device,
 const VkDeviceBufferMemoryRequirements* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

• device is the logical device intended to own the buffer.

• pInfo is a pointer to a VkDeviceBufferMemoryRequirements structure containing parameters

540

required for the memory requirements query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the memory
requirements of the buffer object are returned.

Valid Usage (Implicit)

• VUID-vkGetDeviceBufferMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceBufferMemoryRequirements-pInfo-parameter
pInfo must be a valid pointer to a valid VkDeviceBufferMemoryRequirements structure

• VUID-vkGetDeviceBufferMemoryRequirements-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

The VkBufferMemoryRequirementsInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBufferMemoryRequirementsInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkBuffer buffer;
} VkBufferMemoryRequirementsInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer is the buffer to query.

Valid Usage (Implicit)

• VUID-VkBufferMemoryRequirementsInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2

• VUID-VkBufferMemoryRequirementsInfo2-pNext-pNext
pNext must be NULL

• VUID-VkBufferMemoryRequirementsInfo2-buffer-parameter
buffer must be a valid VkBuffer handle

The VkDeviceBufferMemoryRequirements structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkDeviceBufferMemoryRequirements {
 VkStructureType sType;
 const void* pNext;
 const VkBufferCreateInfo* pCreateInfo;

541

} VkDeviceBufferMemoryRequirements;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pCreateInfo is a pointer to a VkBufferCreateInfo structure containing parameters affecting
creation of the buffer to query.

Valid Usage (Implicit)

• VUID-VkDeviceBufferMemoryRequirements-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS

• VUID-VkDeviceBufferMemoryRequirements-pNext-pNext
pNext must be NULL

• VUID-VkDeviceBufferMemoryRequirements-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkBufferCreateInfo structure

To determine the memory requirements for an image resource, call:

// Provided by VK_VERSION_1_1
void vkGetImageMemoryRequirements2(
 VkDevice device,
 const VkImageMemoryRequirementsInfo2* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

• device is the logical device that owns the image.

• pInfo is a pointer to a VkImageMemoryRequirementsInfo2 structure containing parameters
required for the memory requirements query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the memory
requirements of the image object are returned.

Valid Usage (Implicit)

• VUID-vkGetImageMemoryRequirements2-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageMemoryRequirements2-pInfo-parameter
pInfo must be a valid pointer to a valid VkImageMemoryRequirementsInfo2 structure

• VUID-vkGetImageMemoryRequirements2-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

To determine the memory requirements for an image resource without creating an object, call:

542

// Provided by VK_VERSION_1_3
void vkGetDeviceImageMemoryRequirements(
 VkDevice device,
 const VkDeviceImageMemoryRequirements* pInfo,
 VkMemoryRequirements2* pMemoryRequirements);

• device is the logical device intended to own the image.

• pInfo is a pointer to a VkDeviceImageMemoryRequirements structure containing parameters
required for the memory requirements query.

• pMemoryRequirements is a pointer to a VkMemoryRequirements2 structure in which the memory
requirements of the image object are returned.

Valid Usage (Implicit)

• VUID-vkGetDeviceImageMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceImageMemoryRequirements-pInfo-parameter
pInfo must be a valid pointer to a valid VkDeviceImageMemoryRequirements structure

• VUID-vkGetDeviceImageMemoryRequirements-pMemoryRequirements-parameter
pMemoryRequirements must be a valid pointer to a VkMemoryRequirements2 structure

The VkImageMemoryRequirementsInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImageMemoryRequirementsInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
} VkImageMemoryRequirementsInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is the image to query.

Valid Usage

• VUID-VkImageMemoryRequirementsInfo2-image-01589
If image was created with a multi-planar format and the VK_IMAGE_CREATE_DISJOINT_BIT flag,
there must be a VkImagePlaneMemoryRequirementsInfo included in the pNext chain of
the VkImageMemoryRequirementsInfo2 structure

• VUID-VkImageMemoryRequirementsInfo2-image-01590
If image was not created with the VK_IMAGE_CREATE_DISJOINT_BIT flag, there must not be a

543

VkImagePlaneMemoryRequirementsInfo included in the pNext chain of the
VkImageMemoryRequirementsInfo2 structure

• VUID-VkImageMemoryRequirementsInfo2-image-01591
If image was created with a single-plane format, there must not be a
VkImagePlaneMemoryRequirementsInfo included in the pNext chain of the
VkImageMemoryRequirementsInfo2 structure

Valid Usage (Implicit)

• VUID-VkImageMemoryRequirementsInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2

• VUID-VkImageMemoryRequirementsInfo2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkImagePlaneMemoryRequirementsInfo

• VUID-VkImageMemoryRequirementsInfo2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkImageMemoryRequirementsInfo2-image-parameter
image must be a valid VkImage handle

The VkDeviceImageMemoryRequirements structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkDeviceImageMemoryRequirements {
 VkStructureType sType;
 const void* pNext;
 const VkImageCreateInfo* pCreateInfo;
 VkImageAspectFlagBits planeAspect;
} VkDeviceImageMemoryRequirements;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pCreateInfo is a pointer to a VkImageCreateInfo structure containing parameters affecting
creation of the image to query.

• planeAspect is a VkImageAspectFlagBits value specifying the aspect corresponding to the image
plane to query. This parameter is ignored unless pCreateInfo->flags has
VK_IMAGE_CREATE_DISJOINT_BIT set.

Valid Usage

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-06416
The pCreateInfo->pNext chain must not contain a VkImageSwapchainCreateInfoKHR structure

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-06417

544

If pCreateInfo->format specifies a multi-planar format and pCreateInfo->flags has
VK_IMAGE_CREATE_DISJOINT_BIT set then planeAspect must not be VK_IMAGE_ASPECT_NONE_KHR

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-06419
If pCreateInfo->flags has VK_IMAGE_CREATE_DISJOINT_BIT set and if the pCreateInfo->tiling
is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, then planeAspect must be a single
valid multi-planar aspect mask bit

Valid Usage (Implicit)

• VUID-VkDeviceImageMemoryRequirements-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS

• VUID-VkDeviceImageMemoryRequirements-pNext-pNext
pNext must be NULL

• VUID-VkDeviceImageMemoryRequirements-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkImageCreateInfo structure

• VUID-VkDeviceImageMemoryRequirements-planeAspect-parameter
If planeAspect is not 0, planeAspect must be a valid VkImageAspectFlagBits value

To determine the memory requirements for a plane of a disjoint image, add a
VkImagePlaneMemoryRequirementsInfo structure to the pNext chain of the
VkImageMemoryRequirementsInfo2 structure.

The VkImagePlaneMemoryRequirementsInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImagePlaneMemoryRequirementsInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageAspectFlagBits planeAspect;
} VkImagePlaneMemoryRequirementsInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• planeAspect is a VkImageAspectFlagBits value specifying the aspect corresponding to the image
plane to query.

Valid Usage

• VUID-VkImagePlaneMemoryRequirementsInfo-planeAspect-02281
If the image’s tiling is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, then
planeAspect must be a single valid multi-planar aspect mask bit

545

Valid Usage (Implicit)

• VUID-VkImagePlaneMemoryRequirementsInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO

• VUID-VkImagePlaneMemoryRequirementsInfo-planeAspect-parameter
planeAspect must be a valid VkImageAspectFlagBits value

The VkMemoryRequirements2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkMemoryRequirements2 {
 VkStructureType sType;
 void* pNext;
 VkMemoryRequirements memoryRequirements;
} VkMemoryRequirements2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryRequirements is a VkMemoryRequirements structure describing the memory
requirements of the resource.

Valid Usage (Implicit)

• VUID-VkMemoryRequirements2-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2

• VUID-VkMemoryRequirements2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkMemoryDedicatedRequirements

• VUID-VkMemoryRequirements2-sType-unique
The sType value of each struct in the pNext chain must be unique

The VkMemoryDedicatedRequirements structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkMemoryDedicatedRequirements {
 VkStructureType sType;
 void* pNext;
 VkBool32 prefersDedicatedAllocation;
 VkBool32 requiresDedicatedAllocation;
} VkMemoryDedicatedRequirements;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

546

• prefersDedicatedAllocation specifies that the implementation would prefer a dedicated
allocation for this resource. The application is still free to suballocate the resource but it may
get better performance if a dedicated allocation is used.

• requiresDedicatedAllocation specifies that a dedicated allocation is required for this resource.

To determine the dedicated allocation requirements of a buffer or image resource, add a
VkMemoryDedicatedRequirements structure to the pNext chain of the VkMemoryRequirements2
structure passed as the pMemoryRequirements parameter of vkGetBufferMemoryRequirements2 or
vkGetImageMemoryRequirements2, respectively.

Constraints on the values returned for buffer resources are:

• requiresDedicatedAllocation may be VK_TRUE if the pNext chain of VkBufferCreateInfo for the call
to vkCreateBuffer used to create the buffer being queried included a
VkExternalMemoryBufferCreateInfo structure, and any of the handle types specified in
VkExternalMemoryBufferCreateInfo::handleTypes requires dedicated allocation, as reported by
vkGetPhysicalDeviceExternalBufferProperties in VkExternalBufferProperties
::externalMemoryProperties.externalMemoryFeatures. Otherwise, requiresDedicatedAllocation will
be VK_FALSE.

• When the implementation sets requiresDedicatedAllocation to VK_TRUE, it must also set
prefersDedicatedAllocation to VK_TRUE.

• If VK_BUFFER_CREATE_SPARSE_BINDING_BIT was set in VkBufferCreateInfo::flags when buffer was
created, then both prefersDedicatedAllocation and requiresDedicatedAllocation will be VK_FALSE.

Constraints on the values returned for image resources are:

• requiresDedicatedAllocation may be VK_TRUE if the pNext chain of VkImageCreateInfo for the call
to vkCreateImage used to create the image being queried included a
VkExternalMemoryImageCreateInfo structure, and any of the handle types specified in
VkExternalMemoryImageCreateInfo::handleTypes requires dedicated allocation, as reported by
vkGetPhysicalDeviceImageFormatProperties2 in VkExternalImageFormatProperties
::externalMemoryProperties.externalMemoryFeatures.

• requiresDedicatedAllocation will otherwise be VK_FALSE

• If VK_IMAGE_CREATE_SPARSE_BINDING_BIT was set in VkImageCreateInfo::flags when image was
created, then both prefersDedicatedAllocation and requiresDedicatedAllocation will be VK_FALSE.

Valid Usage (Implicit)

• VUID-VkMemoryDedicatedRequirements-sType-sType
sType must be VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS

To attach memory to a buffer object, call:

// Provided by VK_VERSION_1_0
VkResult vkBindBufferMemory(
 VkDevice device,

547

 VkBuffer buffer,
 VkDeviceMemory memory,
 VkDeviceSize memoryOffset);

• device is the logical device that owns the buffer and memory.

• buffer is the buffer to be attached to memory.

• memory is a VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the buffer. The
number of bytes returned in the VkMemoryRequirements::size member in memory, starting from
memoryOffset bytes, will be bound to the specified buffer.

vkBindBufferMemory is equivalent to passing the same parameters through
VkBindBufferMemoryInfo to vkBindBufferMemory2.

Valid Usage

• VUID-vkBindBufferMemory-buffer-07459
buffer must not have been bound to a memory object

• VUID-vkBindBufferMemory-buffer-01030
buffer must not have been created with any sparse memory binding flags

• VUID-vkBindBufferMemory-memoryOffset-01031
memoryOffset must be less than the size of memory

• VUID-vkBindBufferMemory-memory-01035
memory must have been allocated using one of the memory types allowed in the
memoryTypeBits member of the VkMemoryRequirements structure returned from a call to
vkGetBufferMemoryRequirements with buffer

• VUID-vkBindBufferMemory-memoryOffset-01036
memoryOffset must be an integer multiple of the alignment member of the
VkMemoryRequirements structure returned from a call to vkGetBufferMemoryRequirements with
buffer

• VUID-vkBindBufferMemory-size-01037
The size member of the VkMemoryRequirements structure returned from a call to
vkGetBufferMemoryRequirements with buffer must be less than or equal to the size of memory
minus memoryOffset

• VUID-vkBindBufferMemory-buffer-01444
If buffer requires a dedicated allocation (as reported by
vkGetBufferMemoryRequirements2 in VkMemoryDedicatedRequirements
::requiresDedicatedAllocation for buffer), memory must have been allocated with
VkMemoryDedicatedAllocateInfo::buffer equal to buffer

• VUID-vkBindBufferMemory-memory-01508
If the VkMemoryAllocateInfo provided when memory was allocated included a
VkMemoryDedicatedAllocateInfo structure in its pNext chain, and
VkMemoryDedicatedAllocateInfo::buffer was not VK_NULL_HANDLE, then buffer must

548

equal VkMemoryDedicatedAllocateInfo::buffer, and memoryOffset must be zero

• VUID-vkBindBufferMemory-None-01898
If buffer was created with the VK_BUFFER_CREATE_PROTECTED_BIT bit set, the buffer must be
bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-vkBindBufferMemory-None-01899
If buffer was created with the VK_BUFFER_CREATE_PROTECTED_BIT bit not set, the buffer must
not be bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-vkBindBufferMemory-memory-02726
If the value of VkExportMemoryAllocateInfo::handleTypes used to allocate memory is not 0, it
must include at least one of the handles set in VkExternalMemoryBufferCreateInfo
::handleTypes when buffer was created

• VUID-vkBindBufferMemory-memory-02985
If memory was allocated by a memory import operation, the external handle type of the
imported memory must also have been set in VkExternalMemoryBufferCreateInfo
::handleTypes when buffer was created

• VUID-vkBindBufferMemory-bufferDeviceAddress-03339
If the VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress feature is
enabled and buffer was created with the VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT bit
set, memory must have been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit
set

• VUID-vkBindBufferMemory-bufferDeviceAddressCaptureReplay-09200
If the VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddressCaptureReplay
feature is enabled and buffer was created with the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set, memory must have been
allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set

Valid Usage (Implicit)

• VUID-vkBindBufferMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindBufferMemory-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkBindBufferMemory-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkBindBufferMemory-buffer-parent
buffer must have been created, allocated, or retrieved from device

• VUID-vkBindBufferMemory-memory-parent
memory must have been created, allocated, or retrieved from device

549

Host Synchronization

• Host access to buffer must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To attach memory to buffer objects for one or more buffers at a time, call:

// Provided by VK_VERSION_1_1
VkResult vkBindBufferMemory2(
 VkDevice device,
 uint32_t bindInfoCount,
 const VkBindBufferMemoryInfo* pBindInfos);

• device is the logical device that owns the buffers and memory.

• bindInfoCount is the number of elements in pBindInfos.

• pBindInfos is a pointer to an array of bindInfoCount VkBindBufferMemoryInfo structures
describing buffers and memory to bind.

On some implementations, it may be more efficient to batch memory bindings into a single
command.

If any of the memory binding operations described by pBindInfos fail, the VkResult returned by this
command must be the return value of any one of the memory binding operations which did not
return VK_SUCCESS.

Note

If the vkBindBufferMemory2 command failed, and bindInfoCount was greater than
one, then the buffers referenced by pBindInfos will be in an indeterminate state,
and must not be used.

Applications should destroy these buffers.

Valid Usage (Implicit)

• VUID-vkBindBufferMemory2-device-parameter
device must be a valid VkDevice handle

550

• VUID-vkBindBufferMemory2-pBindInfos-parameter
pBindInfos must be a valid pointer to an array of bindInfoCount valid
VkBindBufferMemoryInfo structures

• VUID-vkBindBufferMemory2-bindInfoCount-arraylength
bindInfoCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

VkBindBufferMemoryInfo contains members corresponding to the parameters of
vkBindBufferMemory.

The VkBindBufferMemoryInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindBufferMemoryInfo {
 VkStructureType sType;
 const void* pNext;
 VkBuffer buffer;
 VkDeviceMemory memory;
 VkDeviceSize memoryOffset;
} VkBindBufferMemoryInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer is the buffer to be attached to memory.

• memory is a VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the buffer. The
number of bytes returned in the VkMemoryRequirements::size member in memory, starting from
memoryOffset bytes, will be bound to the specified buffer.

Valid Usage

• VUID-VkBindBufferMemoryInfo-buffer-07459
buffer must not have been bound to a memory object

• VUID-VkBindBufferMemoryInfo-buffer-01030
buffer must not have been created with any sparse memory binding flags

551

• VUID-VkBindBufferMemoryInfo-memoryOffset-01031
memoryOffset must be less than the size of memory

• VUID-VkBindBufferMemoryInfo-memory-01035
memory must have been allocated using one of the memory types allowed in the
memoryTypeBits member of the VkMemoryRequirements structure returned from a call to
vkGetBufferMemoryRequirements with buffer

• VUID-VkBindBufferMemoryInfo-memoryOffset-01036
memoryOffset must be an integer multiple of the alignment member of the
VkMemoryRequirements structure returned from a call to vkGetBufferMemoryRequirements with
buffer

• VUID-VkBindBufferMemoryInfo-size-01037
The size member of the VkMemoryRequirements structure returned from a call to
vkGetBufferMemoryRequirements with buffer must be less than or equal to the size of memory
minus memoryOffset

• VUID-VkBindBufferMemoryInfo-buffer-01444
If buffer requires a dedicated allocation (as reported by
vkGetBufferMemoryRequirements2 in VkMemoryDedicatedRequirements
::requiresDedicatedAllocation for buffer), memory must have been allocated with
VkMemoryDedicatedAllocateInfo::buffer equal to buffer

• VUID-VkBindBufferMemoryInfo-memory-01508
If the VkMemoryAllocateInfo provided when memory was allocated included a
VkMemoryDedicatedAllocateInfo structure in its pNext chain, and
VkMemoryDedicatedAllocateInfo::buffer was not VK_NULL_HANDLE, then buffer must
equal VkMemoryDedicatedAllocateInfo::buffer, and memoryOffset must be zero

• VUID-VkBindBufferMemoryInfo-None-01898
If buffer was created with the VK_BUFFER_CREATE_PROTECTED_BIT bit set, the buffer must be
bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkBindBufferMemoryInfo-None-01899
If buffer was created with the VK_BUFFER_CREATE_PROTECTED_BIT bit not set, the buffer must
not be bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkBindBufferMemoryInfo-memory-02726
If the value of VkExportMemoryAllocateInfo::handleTypes used to allocate memory is not 0, it
must include at least one of the handles set in VkExternalMemoryBufferCreateInfo
::handleTypes when buffer was created

• VUID-VkBindBufferMemoryInfo-memory-02985
If memory was allocated by a memory import operation, the external handle type of the
imported memory must also have been set in VkExternalMemoryBufferCreateInfo
::handleTypes when buffer was created

• VUID-VkBindBufferMemoryInfo-bufferDeviceAddress-03339
If the VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress feature is
enabled and buffer was created with the VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT bit
set, memory must have been allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT bit

552

set

• VUID-VkBindBufferMemoryInfo-bufferDeviceAddressCaptureReplay-09200
If the VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddressCaptureReplay
feature is enabled and buffer was created with the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set, memory must have been
allocated with the VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT bit set

• VUID-VkBindBufferMemoryInfo-pNext-01605
If the pNext chain includes a VkBindBufferMemoryDeviceGroupInfo structure, all
instances of memory specified by VkBindBufferMemoryDeviceGroupInfo::pDeviceIndices
must have been allocated

Valid Usage (Implicit)

• VUID-VkBindBufferMemoryInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO

• VUID-VkBindBufferMemoryInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkBindBufferMemoryDeviceGroupInfo

• VUID-VkBindBufferMemoryInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBindBufferMemoryInfo-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-VkBindBufferMemoryInfo-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-VkBindBufferMemoryInfo-commonparent
Both of buffer, and memory must have been created, allocated, or retrieved from the same
VkDevice

The VkBindBufferMemoryDeviceGroupInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindBufferMemoryDeviceGroupInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t deviceIndexCount;
 const uint32_t* pDeviceIndices;
} VkBindBufferMemoryDeviceGroupInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceIndexCount is the number of elements in pDeviceIndices.

• pDeviceIndices is a pointer to an array of device indices.

553

If the pNext chain of VkBindBufferMemoryInfo includes a VkBindBufferMemoryDeviceGroupInfo
structure, then that structure determines how memory is bound to buffers across multiple devices
in a device group.

If deviceIndexCount is greater than zero, then on device index i the buffer is attached to the instance
of memory on the physical device with device index pDeviceIndices[i].

If deviceIndexCount is zero and memory comes from a memory heap with the
VK_MEMORY_HEAP_MULTI_INSTANCE_BIT bit set, then it is as if pDeviceIndices contains consecutive
indices from zero to the number of physical devices in the logical device, minus one. In other
words, by default each physical device attaches to its own instance of memory.

If deviceIndexCount is zero and memory comes from a memory heap without the
VK_MEMORY_HEAP_MULTI_INSTANCE_BIT bit set, then it is as if pDeviceIndices contains an array of zeros.
In other words, by default each physical device attaches to instance zero.

Valid Usage

• VUID-VkBindBufferMemoryDeviceGroupInfo-deviceIndexCount-01606
deviceIndexCount must either be zero or equal to the number of physical devices in the
logical device

• VUID-VkBindBufferMemoryDeviceGroupInfo-pDeviceIndices-01607
All elements of pDeviceIndices must be valid device indices

Valid Usage (Implicit)

• VUID-VkBindBufferMemoryDeviceGroupInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO

• VUID-VkBindBufferMemoryDeviceGroupInfo-pDeviceIndices-parameter
If deviceIndexCount is not 0, pDeviceIndices must be a valid pointer to an array of
deviceIndexCount uint32_t values

To attach memory to a VkImage object created without the VK_IMAGE_CREATE_DISJOINT_BIT set, call:

// Provided by VK_VERSION_1_0
VkResult vkBindImageMemory(
 VkDevice device,
 VkImage image,
 VkDeviceMemory memory,
 VkDeviceSize memoryOffset);

• device is the logical device that owns the image and memory.

• image is the image.

• memory is the VkDeviceMemory object describing the device memory to attach.

554

• memoryOffset is the start offset of the region of memory which is to be bound to the image. The
number of bytes returned in the VkMemoryRequirements::size member in memory, starting from
memoryOffset bytes, will be bound to the specified image.

vkBindImageMemory is equivalent to passing the same parameters through VkBindImageMemoryInfo
to vkBindImageMemory2.

Valid Usage

• VUID-vkBindImageMemory-image-07460
image must not have been bound to a memory object

• VUID-vkBindImageMemory-image-01045
image must not have been created with any sparse memory binding flags

• VUID-vkBindImageMemory-memoryOffset-01046
memoryOffset must be less than the size of memory

• VUID-vkBindImageMemory-image-01445
If image requires a dedicated allocation (as reported by
vkGetImageMemoryRequirements2 in VkMemoryDedicatedRequirements
::requiresDedicatedAllocation for image), memory must have been created with
VkMemoryDedicatedAllocateInfo::image equal to image

• VUID-vkBindImageMemory-memory-02628
If the VkMemoryAllocateInfo provided when memory was allocated included a
VkMemoryDedicatedAllocateInfo structure in its pNext chain, and
VkMemoryDedicatedAllocateInfo::image was not VK_NULL_HANDLE, then image must
equal VkMemoryDedicatedAllocateInfo::image and memoryOffset must be zero

• VUID-vkBindImageMemory-None-01901
If image was created with the VK_IMAGE_CREATE_PROTECTED_BIT bit set, the image must be
bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-vkBindImageMemory-None-01902
If image was created with the VK_IMAGE_CREATE_PROTECTED_BIT bit not set, the image must
not be bound to a memory object created with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-vkBindImageMemory-memory-02728
If the value of VkExportMemoryAllocateInfo::handleTypes used to allocate memory is not 0, it
must include at least one of the handles set in VkExternalMemoryImageCreateInfo
::handleTypes when image was created

• VUID-vkBindImageMemory-memory-02989
If memory was created by a memory import operation, the external handle type of the
imported memory must also have been set in VkExternalMemoryImageCreateInfo
::handleTypes when image was created

• VUID-vkBindImageMemory-image-01608
image must not have been created with the VK_IMAGE_CREATE_DISJOINT_BIT set

• VUID-vkBindImageMemory-memory-01047

555

memory must have been allocated using one of the memory types allowed in the
memoryTypeBits member of the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements with image

• VUID-vkBindImageMemory-memoryOffset-01048
memoryOffset must be an integer multiple of the alignment member of the
VkMemoryRequirements structure returned from a call to vkGetImageMemoryRequirements
with image

• VUID-vkBindImageMemory-size-01049
The difference of the size of memory and memoryOffset must be greater than or equal to the
size member of the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements with the same image

Valid Usage (Implicit)

• VUID-vkBindImageMemory-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindImageMemory-image-parameter
image must be a valid VkImage handle

• VUID-vkBindImageMemory-memory-parameter
memory must be a valid VkDeviceMemory handle

• VUID-vkBindImageMemory-image-parent
image must have been created, allocated, or retrieved from device

• VUID-vkBindImageMemory-memory-parent
memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to image must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To attach memory to image objects for one or more images at a time, call:

// Provided by VK_VERSION_1_1

556

VkResult vkBindImageMemory2(
 VkDevice device,
 uint32_t bindInfoCount,
 const VkBindImageMemoryInfo* pBindInfos);

• device is the logical device that owns the images and memory.

• bindInfoCount is the number of elements in pBindInfos.

• pBindInfos is a pointer to an array of VkBindImageMemoryInfo structures, describing images
and memory to bind.

On some implementations, it may be more efficient to batch memory bindings into a single
command.

If any of the memory binding operations described by pBindInfos fail, the VkResult returned by this
command must be the return value of any one of the memory binding operations which did not
return VK_SUCCESS.

Note

If the vkBindImageMemory2 command failed, and bindInfoCount was greater than one,
then the images referenced by pBindInfos will be in an indeterminate state, and
must not be used.

Applications should destroy these images.

Valid Usage

• VUID-vkBindImageMemory2-pBindInfos-02858
If any VkBindImageMemoryInfo::image was created with VK_IMAGE_CREATE_DISJOINT_BIT
then all planes of VkBindImageMemoryInfo::image must be bound individually in
separate pBindInfos

• VUID-vkBindImageMemory2-pBindInfos-04006
pBindInfos must not refer to the same image subresource more than once

Valid Usage (Implicit)

• VUID-vkBindImageMemory2-device-parameter
device must be a valid VkDevice handle

• VUID-vkBindImageMemory2-pBindInfos-parameter
pBindInfos must be a valid pointer to an array of bindInfoCount valid
VkBindImageMemoryInfo structures

• VUID-vkBindImageMemory2-bindInfoCount-arraylength
bindInfoCount must be greater than 0

557

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

VkBindImageMemoryInfo contains members corresponding to the parameters of
vkBindImageMemory.

The VkBindImageMemoryInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindImageMemoryInfo {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
 VkDeviceMemory memory;
 VkDeviceSize memoryOffset;
} VkBindImageMemoryInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is the image to be attached to memory.

• memory is a VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the image. The
number of bytes returned in the VkMemoryRequirements::size member in memory, starting from
memoryOffset bytes, will be bound to the specified image.

Valid Usage

• VUID-VkBindImageMemoryInfo-image-07460
image must not have been bound to a memory object

• VUID-VkBindImageMemoryInfo-image-01045
image must not have been created with any sparse memory binding flags

• VUID-VkBindImageMemoryInfo-memoryOffset-01046
memoryOffset must be less than the size of memory

• VUID-VkBindImageMemoryInfo-image-01445
If image requires a dedicated allocation (as reported by
vkGetImageMemoryRequirements2 in VkMemoryDedicatedRequirements
::requiresDedicatedAllocation for image), memory must have been created with

558

VkMemoryDedicatedAllocateInfo::image equal to image

• VUID-VkBindImageMemoryInfo-memory-02628
If the VkMemoryAllocateInfo provided when memory was allocated included a
VkMemoryDedicatedAllocateInfo structure in its pNext chain, and
VkMemoryDedicatedAllocateInfo::image was not VK_NULL_HANDLE, then image must
equal VkMemoryDedicatedAllocateInfo::image and memoryOffset must be zero

• VUID-VkBindImageMemoryInfo-None-01901
If image was created with the VK_IMAGE_CREATE_PROTECTED_BIT bit set, the image must be
bound to a memory object allocated with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkBindImageMemoryInfo-None-01902
If image was created with the VK_IMAGE_CREATE_PROTECTED_BIT bit not set, the image must
not be bound to a memory object created with a memory type that reports
VK_MEMORY_PROPERTY_PROTECTED_BIT

• VUID-VkBindImageMemoryInfo-memory-02728
If the value of VkExportMemoryAllocateInfo::handleTypes used to allocate memory is not 0, it
must include at least one of the handles set in VkExternalMemoryImageCreateInfo
::handleTypes when image was created

• VUID-VkBindImageMemoryInfo-memory-02989
If memory was created by a memory import operation, the external handle type of the
imported memory must also have been set in VkExternalMemoryImageCreateInfo
::handleTypes when image was created

• VUID-VkBindImageMemoryInfo-pNext-01615
If the pNext chain does not include a VkBindImagePlaneMemoryInfo structure, memory
must have been allocated using one of the memory types allowed in the memoryTypeBits
member of the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements2 with image

• VUID-VkBindImageMemoryInfo-pNext-01616
If the pNext chain does not include a VkBindImagePlaneMemoryInfo structure,
memoryOffset must be an integer multiple of the alignment member of the
VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements2 with image

• VUID-VkBindImageMemoryInfo-pNext-01617
If the pNext chain does not include a VkBindImagePlaneMemoryInfo structure, the
difference of the size of memory and memoryOffset must be greater than or equal to the size
member of the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements2 with the same image

• VUID-VkBindImageMemoryInfo-pNext-01618
If the pNext chain includes a VkBindImagePlaneMemoryInfo structure, image must have
been created with the VK_IMAGE_CREATE_DISJOINT_BIT bit set

• VUID-VkBindImageMemoryInfo-image-07736
If image was created with the VK_IMAGE_CREATE_DISJOINT_BIT bit set, then the pNext chain
must include a VkBindImagePlaneMemoryInfo structure

559

• VUID-VkBindImageMemoryInfo-pNext-01619
If the pNext chain includes a VkBindImagePlaneMemoryInfo structure, memory must have
been allocated using one of the memory types allowed in the memoryTypeBits member of
the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements2 with image and where
VkBindImagePlaneMemoryInfo::planeAspect corresponds to the
VkImagePlaneMemoryRequirementsInfo::planeAspect in the
VkImageMemoryRequirementsInfo2 structure’s pNext chain

• VUID-VkBindImageMemoryInfo-pNext-01620
If the pNext chain includes a VkBindImagePlaneMemoryInfo structure, memoryOffset must
be an integer multiple of the alignment member of the VkMemoryRequirements structure
returned from a call to vkGetImageMemoryRequirements2 with image and where
VkBindImagePlaneMemoryInfo::planeAspect corresponds to the
VkImagePlaneMemoryRequirementsInfo::planeAspect in the
VkImageMemoryRequirementsInfo2 structure’s pNext chain

• VUID-VkBindImageMemoryInfo-pNext-01621
If the pNext chain includes a VkBindImagePlaneMemoryInfo structure, the difference of
the size of memory and memoryOffset must be greater than or equal to the size member of
the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements2 with the same image and where
VkBindImagePlaneMemoryInfo::planeAspect corresponds to the
VkImagePlaneMemoryRequirementsInfo::planeAspect in the
VkImageMemoryRequirementsInfo2 structure’s pNext chain

• VUID-VkBindImageMemoryInfo-memory-01625
memory must be a valid VkDeviceMemory handle

• VUID-VkBindImageMemoryInfo-pNext-01626
If the pNext chain includes a VkBindImageMemoryDeviceGroupInfo structure, all
instances of memory specified by VkBindImageMemoryDeviceGroupInfo::pDeviceIndices
must have been allocated

• VUID-VkBindImageMemoryInfo-pNext-01627
If the pNext chain includes a VkBindImageMemoryDeviceGroupInfo structure, and
VkBindImageMemoryDeviceGroupInfo::splitInstanceBindRegionCount is not zero, then
image must have been created with the VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT
bit set

• VUID-VkBindImageMemoryInfo-pNext-01628
If the pNext chain includes a VkBindImageMemoryDeviceGroupInfo structure, all
elements of VkBindImageMemoryDeviceGroupInfo::pSplitInstanceBindRegions must be
valid rectangles contained within the dimensions of image

• VUID-VkBindImageMemoryInfo-pNext-01629
If the pNext chain includes a VkBindImageMemoryDeviceGroupInfo structure, the union
of the areas of all elements of VkBindImageMemoryDeviceGroupInfo
::pSplitInstanceBindRegions that correspond to the same instance of image must cover the
entire image

560

Valid Usage (Implicit)

• VUID-VkBindImageMemoryInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO

• VUID-VkBindImageMemoryInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkBindImageMemoryDeviceGroupInfo or
VkBindImagePlaneMemoryInfo

• VUID-VkBindImageMemoryInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBindImageMemoryInfo-image-parameter
image must be a valid VkImage handle

• VUID-VkBindImageMemoryInfo-commonparent
Both of image, and memory that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

The VkBindImageMemoryDeviceGroupInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindImageMemoryDeviceGroupInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t deviceIndexCount;
 const uint32_t* pDeviceIndices;
 uint32_t splitInstanceBindRegionCount;
 const VkRect2D* pSplitInstanceBindRegions;
} VkBindImageMemoryDeviceGroupInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• deviceIndexCount is the number of elements in pDeviceIndices.

• pDeviceIndices is a pointer to an array of device indices.

• splitInstanceBindRegionCount is the number of elements in pSplitInstanceBindRegions.

• pSplitInstanceBindRegions is a pointer to an array of VkRect2D structures describing which
regions of the image are attached to each instance of memory.

If the pNext chain of VkBindImageMemoryInfo includes a VkBindImageMemoryDeviceGroupInfo
structure, then that structure determines how memory is bound to images across multiple devices
in a device group.

If deviceIndexCount is greater than zero, then on device index i image is attached to the instance of
the memory on the physical device with device index pDeviceIndices[i].

561

Let N be the number of physical devices in the logical device. If splitInstanceBindRegionCount is
greater than zero, then pSplitInstanceBindRegions is a pointer to an array of N2 rectangles, where
the image region specified by the rectangle at element i*N+j in resource instance i is bound to the
memory instance j. The blocks of the memory that are bound to each sparse image block region use
an offset in memory, relative to memoryOffset, computed as if the whole image was being bound to a
contiguous range of memory. In other words, horizontally adjacent image blocks use consecutive
blocks of memory, vertically adjacent image blocks are separated by the number of bytes per block
multiplied by the width in blocks of image, and the block at (0,0) corresponds to memory starting at
memoryOffset.

If splitInstanceBindRegionCount and deviceIndexCount are zero and the memory comes from a
memory heap with the VK_MEMORY_HEAP_MULTI_INSTANCE_BIT bit set, then it is as if pDeviceIndices
contains consecutive indices from zero to the number of physical devices in the logical device,
minus one. In other words, by default each physical device attaches to its own instance of the
memory.

If splitInstanceBindRegionCount and deviceIndexCount are zero and the memory comes from a
memory heap without the VK_MEMORY_HEAP_MULTI_INSTANCE_BIT bit set, then it is as if pDeviceIndices
contains an array of zeros. In other words, by default each physical device attaches to instance zero.

Valid Usage

• VUID-VkBindImageMemoryDeviceGroupInfo-deviceIndexCount-01633
At least one of deviceIndexCount and splitInstanceBindRegionCount must be zero

• VUID-VkBindImageMemoryDeviceGroupInfo-deviceIndexCount-01634
deviceIndexCount must either be zero or equal to the number of physical devices in the
logical device

• VUID-VkBindImageMemoryDeviceGroupInfo-pDeviceIndices-01635
All elements of pDeviceIndices must be valid device indices

• VUID-VkBindImageMemoryDeviceGroupInfo-splitInstanceBindRegionCount-01636
splitInstanceBindRegionCount must either be zero or equal to the number of physical
devices in the logical device squared

• VUID-VkBindImageMemoryDeviceGroupInfo-pSplitInstanceBindRegions-01637
Elements of pSplitInstanceBindRegions that correspond to the same instance of an image
must not overlap

• VUID-VkBindImageMemoryDeviceGroupInfo-offset-01638
The offset.x member of any element of pSplitInstanceBindRegions must be a multiple of
the sparse image block width (VkSparseImageFormatProperties::imageGranularity.width) of
all non-metadata aspects of the image

• VUID-VkBindImageMemoryDeviceGroupInfo-offset-01639
The offset.y member of any element of pSplitInstanceBindRegions must be a multiple of
the sparse image block height (VkSparseImageFormatProperties::imageGranularity.height) of
all non-metadata aspects of the image

• VUID-VkBindImageMemoryDeviceGroupInfo-extent-01640
The extent.width member of any element of pSplitInstanceBindRegions must either be a

562

multiple of the sparse image block width of all non-metadata aspects of the image, or else
extent.width + offset.x must equal the width of the image subresource

• VUID-VkBindImageMemoryDeviceGroupInfo-extent-01641
The extent.height member of any element of pSplitInstanceBindRegions must either be a
multiple of the sparse image block height of all non-metadata aspects of the image, or else
extent.height + offset.y must equal the height of the image subresource

Valid Usage (Implicit)

• VUID-VkBindImageMemoryDeviceGroupInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO

• VUID-VkBindImageMemoryDeviceGroupInfo-pDeviceIndices-parameter
If deviceIndexCount is not 0, pDeviceIndices must be a valid pointer to an array of
deviceIndexCount uint32_t values

• VUID-VkBindImageMemoryDeviceGroupInfo-pSplitInstanceBindRegions-parameter
If splitInstanceBindRegionCount is not 0, pSplitInstanceBindRegions must be a valid
pointer to an array of splitInstanceBindRegionCount VkRect2D structures

In order to bind planes of a disjoint image, add a VkBindImagePlaneMemoryInfo structure to the pNext
chain of VkBindImageMemoryInfo.

The VkBindImagePlaneMemoryInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkBindImagePlaneMemoryInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageAspectFlagBits planeAspect;
} VkBindImagePlaneMemoryInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• planeAspect is a VkImageAspectFlagBits value specifying the aspect of the disjoint image plane to
bind.

Valid Usage

• VUID-VkBindImagePlaneMemoryInfo-planeAspect-02283
If the image’s tiling is VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, then
planeAspect must be a single valid multi-planar aspect mask bit

563

Valid Usage (Implicit)

• VUID-VkBindImagePlaneMemoryInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO

• VUID-VkBindImagePlaneMemoryInfo-planeAspect-parameter
planeAspect must be a valid VkImageAspectFlagBits value

Buffer-Image Granularity

The implementation-dependent limit bufferImageGranularity specifies a page-like granularity at
which linear and non-linear resources must be placed in adjacent memory locations to avoid
aliasing. Two resources which do not satisfy this granularity requirement are said to alias.
bufferImageGranularity is specified in bytes, and must be a power of two. Implementations which
do not impose a granularity restriction may report a bufferImageGranularity value of one.

Note

Despite its name, bufferImageGranularity is really a granularity between “linear”
and “non-linear” resources.

Given resourceA at the lower memory offset and resourceB at the higher memory offset in the
same VkDeviceMemory object, where one resource is linear and the other is non-linear (as defined in
the Glossary), and the following:

resourceA.end = resourceA.memoryOffset + resourceA.size - 1
resourceA.endPage = resourceA.end & ~(bufferImageGranularity-1)
resourceB.start = resourceB.memoryOffset
resourceB.startPage = resourceB.start & ~(bufferImageGranularity-1)

The following property must hold:

resourceA.endPage < resourceB.startPage

That is, the end of the first resource (A) and the beginning of the second resource (B) must be on
separate “pages” of size bufferImageGranularity. bufferImageGranularity may be different than the
physical page size of the memory heap. This restriction is only needed when a linear resource and a
non-linear resource are adjacent in memory and will be used simultaneously. The memory ranges
of adjacent resources can be closer than bufferImageGranularity, provided they meet the alignment
requirement for the objects in question.

Sparse block size in bytes and sparse image and buffer memory alignments must all be multiples of
the bufferImageGranularity. Therefore, memory bound to sparse resources naturally satisfies the
bufferImageGranularity.

564

12.7. Resource Sharing Mode
Buffer and image objects are created with a sharing mode controlling how they can be accessed
from queues. The supported sharing modes are:

// Provided by VK_VERSION_1_0
typedef enum VkSharingMode {
 VK_SHARING_MODE_EXCLUSIVE = 0,
 VK_SHARING_MODE_CONCURRENT = 1,
} VkSharingMode;

• VK_SHARING_MODE_EXCLUSIVE specifies that access to any range or image subresource of the object
will be exclusive to a single queue family at a time.

• VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image subresource
of the object from multiple queue families is supported.

Note

VK_SHARING_MODE_CONCURRENT may result in lower performance access to the buffer
or image than VK_SHARING_MODE_EXCLUSIVE.

Ranges of buffers and image subresources of image objects created using VK_SHARING_MODE_EXCLUSIVE
must only be accessed by queues in the queue family that has ownership of the resource. Upon
creation, such resources are not owned by any queue family; ownership is implicitly acquired upon
first use within a queue. Once a resource using VK_SHARING_MODE_EXCLUSIVE is owned by some queue
family, the application must perform a queue family ownership transfer to make the memory
contents of a range or image subresource accessible to a different queue family.

Note

Images still require a layout transition from VK_IMAGE_LAYOUT_UNDEFINED or
VK_IMAGE_LAYOUT_PREINITIALIZED before being used on the first queue.

A queue family can take ownership of an image subresource or buffer range of a resource created
with VK_SHARING_MODE_EXCLUSIVE, without an ownership transfer, in the same way as for a resource
that was just created; however, taking ownership in this way has the effect that the contents of the
image subresource or buffer range are undefined.

Ranges of buffers and image subresources of image objects created using
VK_SHARING_MODE_CONCURRENT must only be accessed by queues from the queue families specified
through the queueFamilyIndexCount and pQueueFamilyIndices members of the corresponding create
info structures.

12.7.1. External Resource Sharing

Resources should only be accessed in the Vulkan instance that has exclusive ownership of their
underlying memory. Only one Vulkan instance has exclusive ownership of a resource’s underlying
memory at a given time, regardless of whether the resource was created using

565

VK_SHARING_MODE_EXCLUSIVE or VK_SHARING_MODE_CONCURRENT. Applications can transfer ownership of a
resource’s underlying memory only if the memory has been imported from or exported to another
instance or external API using external memory handles. The semantics for transferring ownership
outside of the instance are similar to those used for transferring ownership of
VK_SHARING_MODE_EXCLUSIVE resources between queues, and is also accomplished using
VkBufferMemoryBarrier or VkImageMemoryBarrier operations. To make the contents of the
underlying memory accessible in the destination instance or API, applications must

1. Release exclusive ownership from the source instance or API.

2. Ensure the release operation has completed using semaphores or fences.

3. Acquire exclusive ownership in the destination instance or API

Unlike queue family ownership transfers, the destination instance or API is not specified explicitly
when releasing ownership, nor is the source instance or API specified when acquiring ownership.
Instead, the image or memory barrier’s dstQueueFamilyIndex or srcQueueFamilyIndex parameters are
set to the reserved queue family index VK_QUEUE_FAMILY_EXTERNAL to represent the external
destination or source respectively.

Binding a resource to a memory object shared between multiple Vulkan instances or other APIs
does not change the ownership of the underlying memory. The first entity to access the resource
implicitly acquires ownership. An entity can also implicitly take ownership from another entity in
the same way without an explicit ownership transfer. However, taking ownership in this way has
the effect that the contents of the underlying memory are undefined.

Accessing a resource backed by memory that is owned by a particular instance or API has the same
semantics as accessing a VK_SHARING_MODE_EXCLUSIVE resource, with one exception: Implementations
must ensure layout transitions performed on one member of a set of identical subresources of
identical images that alias the same range of an underlying memory object affect the layout of all
the subresources in the set.

As a corollary, writes to any image subresources in such a set must not make the contents of
memory used by other subresources in the set undefined. An application can define the content of
a subresource of one image by performing device writes to an identical subresource of another
image provided both images are bound to the same region of external memory. Applications may
also add resources to such a set after the content of the existing set members has been defined
without making the content undefined by creating a new image with the initial layout
VK_IMAGE_LAYOUT_UNDEFINED and binding it to the same region of external memory as the existing
images.

Note

Because layout transitions apply to all identical images aliasing the same region of
external memory, the actual layout of the memory backing a new image as well as
an existing image with defined content will not be undefined. Such an image is not
usable until it acquires ownership of its memory from the existing owner.
Therefore, the layout specified as part of this transition will be the true initial
layout of the image. The undefined layout specified when creating it is a
placeholder to simplify valid usage requirements.

566

12.8. Memory Aliasing
A range of a VkDeviceMemory allocation is aliased if it is bound to multiple resources simultaneously,
as described below, via vkBindImageMemory, vkBindBufferMemory, via sparse memory bindings,
or by binding the memory to resources in multiple Vulkan instances or external APIs using external
memory handle export and import mechanisms.

Consider two resources, resourceA and resourceB, bound respectively to memory rangeA and rangeB.
Let paddedRangeA and paddedRangeB be, respectively, rangeA and rangeB aligned to
bufferImageGranularity. If the resources are both linear or both non-linear (as defined in the
Glossary), then the resources alias the memory in the intersection of rangeA and rangeB. If one
resource is linear and the other is non-linear, then the resources alias the memory in the
intersection of paddedRangeA and paddedRangeB.

Applications can alias memory, but use of multiple aliases is subject to several constraints.

Note

Memory aliasing can be useful to reduce the total device memory footprint of an
application, if some large resources are used for disjoint periods of time.

When a non-linear, non-VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT image is bound to an aliased range,
all image subresources of the image overlap the range. When a linear image is bound to an aliased
range, the image subresources that (according to the image’s advertised layout) include bytes from
the aliased range overlap the range. When a VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT image has
sparse image blocks bound to an aliased range, only image subresources including those sparse
image blocks overlap the range, and when the memory bound to the image’s mip tail overlaps an
aliased range all image subresources in the mip tail overlap the range.

Buffers, and linear image subresources in either the VK_IMAGE_LAYOUT_PREINITIALIZED or
VK_IMAGE_LAYOUT_GENERAL layouts, are host-accessible subresources. That is, the host has a well-
defined addressing scheme to interpret the contents, and thus the layout of the data in memory can
be consistently interpreted across aliases if each of those aliases is a host-accessible subresource.
Non-linear images, and linear image subresources in other layouts, are not host-accessible.

If two aliases are both host-accessible, then they interpret the contents of the memory in consistent
ways, and data written to one alias can be read by the other alias.

If two aliases are both images that were created with identical creation parameters, both were
created with the VK_IMAGE_CREATE_ALIAS_BIT flag set, and both are bound identically to memory
except for VkBindImageMemoryDeviceGroupInfo::pDeviceIndices and
VkBindImageMemoryDeviceGroupInfo::pSplitInstanceBindRegions, then they interpret the contents
of the memory in consistent ways, and data written to one alias can be read by the other alias.

Additionally, if an individual plane of a multi-planar image and a single-plane image alias the same
memory, then they also interpret the contents of the memory in consistent ways under the same
conditions, but with the following modifications:

• Both must have been created with the VK_IMAGE_CREATE_DISJOINT_BIT flag.

567

• The single-plane image must have a VkFormat that is equivalent to that of the multi-planar
image’s individual plane.

• The single-plane image and the individual plane of the multi-planar image must be bound
identically to memory except for VkBindImageMemoryDeviceGroupInfo::pDeviceIndices and
VkBindImageMemoryDeviceGroupInfo::pSplitInstanceBindRegions.

• The width and height of the single-plane image are derived from the multi-planar image’s
dimensions in the manner listed for plane compatibility for the aliased plane.

• All other creation parameters must be identical

Aliases created by binding the same memory to resources in multiple Vulkan instances or external
APIs using external memory handle export and import mechanisms interpret the contents of the
memory in consistent ways, and data written to one alias can be read by the other alias.

Otherwise, the aliases interpret the contents of the memory differently, and writes via one alias
make the contents of memory partially or completely undefined to the other alias. If the first alias is
a host-accessible subresource, then the bytes affected are those written by the memory operations
according to its addressing scheme. If the first alias is not host-accessible, then the bytes affected
are those overlapped by the image subresources that were written. If the second alias is a host-
accessible subresource, the affected bytes become undefined. If the second alias is not host-
accessible, all sparse image blocks (for sparse partially-resident images) or all image subresources
(for non-sparse image and fully resident sparse images) that overlap the affected bytes become
undefined.

If any image subresources are made undefined due to writes to an alias, then each of those image
subresources must have its layout transitioned from VK_IMAGE_LAYOUT_UNDEFINED to a valid layout
before it is used, or from VK_IMAGE_LAYOUT_PREINITIALIZED if the memory has been written by the
host. If any sparse blocks of a sparse image have been made undefined, then only the image
subresources containing them must be transitioned.

Use of an overlapping range by two aliases must be separated by a memory dependency using the
appropriate access types if at least one of those uses performs writes, whether the aliases interpret
memory consistently or not. If buffer or image memory barriers are used, the scope of the barrier
must contain the entire range and/or set of image subresources that overlap.

If two aliasing image views are used in the same framebuffer, then the render pass must declare
the attachments using the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, and follow the other rules
listed in that section.

Note

Memory recycled via an application suballocator (i.e. without freeing and
reallocating the memory objects) is not substantially different from memory
aliasing. However, a suballocator usually waits on a fence before recycling a
region of memory, and signaling a fence involves sufficient implicit dependencies
to satisfy all the above requirements.

568

12.8.1. Resource Memory Overlap

Applications can safely access a resource concurrently as long as the memory locations do not
overlap as defined in Memory Location. This includes aliased resources if such aliasing is well-
defined. It also includes access from different queues and/or queue families if such concurrent
access is supported by the resource. Transfer commands only access memory locations specified by
the range of the transfer command.

Note

The intent is that buffers (or linear images) can be accessed concurrently, even
when they share cache lines, but otherwise do not access the same memory range.
The concept of a device cache line size is not exposed in the memory model.

569

Chapter 13. Samplers
VkSampler objects represent the state of an image sampler which is used by the implementation to
read image data and apply filtering and other transformations for the shader.

Samplers are represented by VkSampler handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSampler)

To create a sampler object, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateSampler(
 VkDevice device,
 const VkSamplerCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSampler* pSampler);

• device is the logical device that creates the sampler.

• pCreateInfo is a pointer to a VkSamplerCreateInfo structure specifying the state of the sampler
object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSampler is a pointer to a VkSampler handle in which the resulting sampler object is returned.

Valid Usage

• VUID-vkCreateSampler-maxSamplerAllocationCount-04110
There must be less than VkPhysicalDeviceLimits::maxSamplerAllocationCount VkSampler
objects currently created on the device

Valid Usage (Implicit)

• VUID-vkCreateSampler-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateSampler-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkSamplerCreateInfo structure

• VUID-vkCreateSampler-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateSampler-pSampler-parameter
pSampler must be a valid pointer to a VkSampler handle

570

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkSamplerCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSamplerCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSamplerCreateFlags flags;
 VkFilter magFilter;
 VkFilter minFilter;
 VkSamplerMipmapMode mipmapMode;
 VkSamplerAddressMode addressModeU;
 VkSamplerAddressMode addressModeV;
 VkSamplerAddressMode addressModeW;
 float mipLodBias;
 VkBool32 anisotropyEnable;
 float maxAnisotropy;
 VkBool32 compareEnable;
 VkCompareOp compareOp;
 float minLod;
 float maxLod;
 VkBorderColor borderColor;
 VkBool32 unnormalizedCoordinates;
} VkSamplerCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkSamplerCreateFlagBits describing additional parameters of the sampler.

• magFilter is a VkFilter value specifying the magnification filter to apply to lookups.

• minFilter is a VkFilter value specifying the minification filter to apply to lookups.

• mipmapMode is a VkSamplerMipmapMode value specifying the mipmap filter to apply to lookups.

• addressModeU is a VkSamplerAddressMode value specifying the addressing mode for U
coordinates outside [0,1).

• addressModeV is a VkSamplerAddressMode value specifying the addressing mode for V
coordinates outside [0,1).

• addressModeW is a VkSamplerAddressMode value specifying the addressing mode for W

571

coordinates outside [0,1).

• mipLodBias is the bias to be added to mipmap LOD calculation and bias provided by image
sampling functions in SPIR-V, as described in the LOD Operation section.

• anisotropyEnable is VK_TRUE to enable anisotropic filtering, as described in the Texel Anisotropic
Filtering section, or VK_FALSE otherwise.

• maxAnisotropy is the anisotropy value clamp used by the sampler when anisotropyEnable is
VK_TRUE. If anisotropyEnable is VK_FALSE, maxAnisotropy is ignored.

• compareEnable is VK_TRUE to enable comparison against a reference value during lookups, or
VK_FALSE otherwise.

◦ Note: Some implementations will default to shader state if this member does not match.

• compareOp is a VkCompareOp value specifying the comparison operator to apply to fetched data
before filtering as described in the Depth Compare Operation section.

• minLod is used to clamp the minimum of the computed LOD value.

• maxLod is used to clamp the maximum of the computed LOD value. To avoid clamping the
maximum value, set maxLod to the constant VK_LOD_CLAMP_NONE.

• borderColor is a VkBorderColor value specifying the predefined border color to use.

• unnormalizedCoordinates controls whether to use unnormalized or normalized texel coordinates
to address texels of the image. When set to VK_TRUE, the range of the image coordinates used to
lookup the texel is in the range of zero to the image size in each dimension. When set to
VK_FALSE the range of image coordinates is zero to one.

When unnormalizedCoordinates is VK_TRUE, images the sampler is used with in the shader have
the following requirements:

◦ The viewType must be either VK_IMAGE_VIEW_TYPE_1D or VK_IMAGE_VIEW_TYPE_2D.

◦ The image view must have a single layer and a single mip level.
When unnormalizedCoordinates is VK_TRUE, image built-in functions in the shader that use the
sampler have the following requirements:

◦ The functions must not use projection.

◦ The functions must not use offsets.

Mapping of OpenGL to Vulkan filter modes

magFilter values of VK_FILTER_NEAREST and VK_FILTER_LINEAR directly correspond to
GL_NEAREST and GL_LINEAR magnification filters. minFilter and mipmapMode combine
to correspond to the similarly named OpenGL minification filter of
GL_minFilter_MIPMAP_mipmapMode (e.g. minFilter of VK_FILTER_LINEAR and mipmapMode
of VK_SAMPLER_MIPMAP_MODE_NEAREST correspond to GL_LINEAR_MIPMAP_NEAREST).

There are no Vulkan filter modes that directly correspond to OpenGL minification
filters of GL_LINEAR or GL_NEAREST, but they can be emulated using
VK_SAMPLER_MIPMAP_MODE_NEAREST, minLod = 0, and maxLod = 0.25, and using minFilter =
VK_FILTER_LINEAR or minFilter = VK_FILTER_NEAREST, respectively.

572

Note that using a maxLod of zero would cause magnification to always be
performed, and the magFilter to always be used. This is valid, just not an exact
match for OpenGL behavior. Clamping the maximum LOD to 0.25 allows the λ
value to be non-zero and minification to be performed, while still always rounding
down to the base level. If the minFilter and magFilter are equal, then using a
maxLod of zero also works.

The maximum number of sampler objects which can be simultaneously created on a device is
implementation-dependent and specified by the maxSamplerAllocationCount member of the
VkPhysicalDeviceLimits structure.

Note

For historical reasons, if maxSamplerAllocationCount is exceeded, some
implementations may return VK_ERROR_TOO_MANY_OBJECTS. Exceeding this limit will
result in undefined behavior, and an application should not rely on the use of the
returned error code in order to identify when the limit is reached.

Since VkSampler is a non-dispatchable handle type, implementations may return the same handle
for sampler state vectors that are identical. In such cases, all such objects would only count once
against the maxSamplerAllocationCount limit.

Valid Usage

• VUID-VkSamplerCreateInfo-mipLodBias-01069
The absolute value of mipLodBias must be less than or equal to VkPhysicalDeviceLimits
::maxSamplerLodBias

• VUID-VkSamplerCreateInfo-maxLod-01973
maxLod must be greater than or equal to minLod

• VUID-VkSamplerCreateInfo-anisotropyEnable-01070
If the samplerAnisotropy feature is not enabled, anisotropyEnable must be VK_FALSE

• VUID-VkSamplerCreateInfo-anisotropyEnable-01071
If anisotropyEnable is VK_TRUE, maxAnisotropy must be between 1.0 and
VkPhysicalDeviceLimits::maxSamplerAnisotropy, inclusive

• VUID-VkSamplerCreateInfo-minFilter-01645
If sampler Y′CBCR conversion is enabled and the potential format features of the sampler
Y′CBCR conversion do not support
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT,
minFilter and magFilter must be equal to the sampler Y′CBCR conversion’s chromaFilter

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01072
If unnormalizedCoordinates is VK_TRUE, minFilter and magFilter must be equal

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01073
If unnormalizedCoordinates is VK_TRUE, mipmapMode must be VK_SAMPLER_MIPMAP_MODE_NEAREST

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01074
If unnormalizedCoordinates is VK_TRUE, minLod and maxLod must be zero

573

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01075
If unnormalizedCoordinates is VK_TRUE, addressModeU and addressModeV must each be either
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01076
If unnormalizedCoordinates is VK_TRUE, anisotropyEnable must be VK_FALSE

• VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01077
If unnormalizedCoordinates is VK_TRUE, compareEnable must be VK_FALSE

• VUID-VkSamplerCreateInfo-addressModeU-01078
If any of addressModeU, addressModeV or addressModeW are
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER, borderColor must be a valid VkBorderColor
value

• VUID-VkSamplerCreateInfo-addressModeU-01646
If sampler Y′CBCR conversion is enabled, addressModeU, addressModeV, and addressModeW
must be VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, anisotropyEnable must be VK_FALSE, and
unnormalizedCoordinates must be VK_FALSE

• VUID-VkSamplerCreateInfo-None-01647
If sampler Y′CBCR conversion is enabled and the pNext chain includes a
VkSamplerReductionModeCreateInfo structure, then the sampler reduction mode must
be set to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE

• VUID-VkSamplerCreateInfo-pNext-06726
If samplerFilterMinmax is not enabled and the pNext chain includes a
VkSamplerReductionModeCreateInfo structure, then the sampler reduction mode must
be set to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE

• VUID-VkSamplerCreateInfo-addressModeU-01079
If samplerMirrorClampToEdge is not enabled, and if the VK_KHR_sampler_mirror_clamp_to_edge
extension is not enabled, addressModeU, addressModeV and addressModeW must not be
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE

• VUID-VkSamplerCreateInfo-compareEnable-01080
If compareEnable is VK_TRUE, compareOp must be a valid VkCompareOp value

• VUID-VkSamplerCreateInfo-compareEnable-01423
If compareEnable is VK_TRUE, the reductionMode member of
VkSamplerReductionModeCreateInfo must be
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE

Valid Usage (Implicit)

• VUID-VkSamplerCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO

• VUID-VkSamplerCreateInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkSamplerReductionModeCreateInfo or
VkSamplerYcbcrConversionInfo

574

• VUID-VkSamplerCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkSamplerCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkSamplerCreateInfo-magFilter-parameter
magFilter must be a valid VkFilter value

• VUID-VkSamplerCreateInfo-minFilter-parameter
minFilter must be a valid VkFilter value

• VUID-VkSamplerCreateInfo-mipmapMode-parameter
mipmapMode must be a valid VkSamplerMipmapMode value

• VUID-VkSamplerCreateInfo-addressModeU-parameter
addressModeU must be a valid VkSamplerAddressMode value

• VUID-VkSamplerCreateInfo-addressModeV-parameter
addressModeV must be a valid VkSamplerAddressMode value

• VUID-VkSamplerCreateInfo-addressModeW-parameter
addressModeW must be a valid VkSamplerAddressMode value

VK_LOD_CLAMP_NONE is a special constant value used for VkSamplerCreateInfo::maxLod to indicate that
maximum LOD clamping should not be performed.

#define VK_LOD_CLAMP_NONE 1000.0F

Bits which can be set in VkSamplerCreateInfo::flags, specifying additional parameters of a sampler,
are:

// Provided by VK_VERSION_1_0
typedef enum VkSamplerCreateFlagBits {
} VkSamplerCreateFlagBits;

// Provided by VK_VERSION_1_0
typedef VkFlags VkSamplerCreateFlags;

VkSamplerCreateFlags is a bitmask type for setting a mask of zero or more VkSamplerCreateFlagBits.

The VkSamplerReductionModeCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkSamplerReductionModeCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSamplerReductionMode reductionMode;

575

} VkSamplerReductionModeCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• reductionMode is a VkSamplerReductionMode value controlling how texture filtering combines
texel values.

If the pNext chain of VkSamplerCreateInfo includes a VkSamplerReductionModeCreateInfo structure,
then that structure includes a mode controlling how texture filtering combines texel values.

If this structure is not present, reductionMode is considered to be
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE.

Valid Usage (Implicit)

• VUID-VkSamplerReductionModeCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO

• VUID-VkSamplerReductionModeCreateInfo-reductionMode-parameter
reductionMode must be a valid VkSamplerReductionMode value

Reduction modes are specified by VkSamplerReductionMode, which takes values:

// Provided by VK_VERSION_1_2
typedef enum VkSamplerReductionMode {
 VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE = 0,
 VK_SAMPLER_REDUCTION_MODE_MIN = 1,
 VK_SAMPLER_REDUCTION_MODE_MAX = 2,
} VkSamplerReductionMode;

• VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE specifies that texel values are combined by
computing a weighted average of values in the footprint, using weights as specified in the image
operations chapter.

• VK_SAMPLER_REDUCTION_MODE_MIN specifies that texel values are combined by taking the
component-wise minimum of values in the footprint with non-zero weights.

• VK_SAMPLER_REDUCTION_MODE_MAX specifies that texel values are combined by taking the
component-wise maximum of values in the footprint with non-zero weights.

Possible values of the VkSamplerCreateInfo::magFilter and minFilter parameters, specifying filters
used for texture lookups, are:

// Provided by VK_VERSION_1_0
typedef enum VkFilter {
 VK_FILTER_NEAREST = 0,
 VK_FILTER_LINEAR = 1,

576

} VkFilter;

• VK_FILTER_NEAREST specifies nearest filtering.

• VK_FILTER_LINEAR specifies linear filtering.

These filters are described in detail in Texel Filtering.

Possible values of the VkSamplerCreateInfo::mipmapMode, specifying the mipmap mode used for
texture lookups, are:

// Provided by VK_VERSION_1_0
typedef enum VkSamplerMipmapMode {
 VK_SAMPLER_MIPMAP_MODE_NEAREST = 0,
 VK_SAMPLER_MIPMAP_MODE_LINEAR = 1,
} VkSamplerMipmapMode;

• VK_SAMPLER_MIPMAP_MODE_NEAREST specifies nearest filtering.

• VK_SAMPLER_MIPMAP_MODE_LINEAR specifies linear filtering.

These modes are described in detail in Texel Filtering.

Possible values of the VkSamplerCreateInfo::addressMode* parameters, specifying the behavior of
sampling with coordinates outside the range [0,1] for the respective u, v, or w coordinate as defined
in the Wrapping Operation section, are:

// Provided by VK_VERSION_1_0
typedef enum VkSamplerAddressMode {
 VK_SAMPLER_ADDRESS_MODE_REPEAT = 0,
 VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT = 1,
 VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE = 2,
 VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER = 3,
 // Provided by VK_VERSION_1_2
 VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE = 4,
} VkSamplerAddressMode;

• VK_SAMPLER_ADDRESS_MODE_REPEAT specifies that the repeat wrap mode will be used.

• VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT specifies that the mirrored repeat wrap mode will be
used.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE specifies that the clamp to edge wrap mode will be used.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER specifies that the clamp to border wrap mode will be
used.

• VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE specifies that the mirror clamp to edge wrap
mode will be used. This is only valid if samplerMirrorClampToEdge is enabled, or if the
VK_KHR_sampler_mirror_clamp_to_edge extension is enabled.

577

Comparison operators compare a reference and a test value, and return a true (“passed”) or false
(“failed”) value depending on the comparison operator chosen. The supported operators are:

// Provided by VK_VERSION_1_0
typedef enum VkCompareOp {
 VK_COMPARE_OP_NEVER = 0,
 VK_COMPARE_OP_LESS = 1,
 VK_COMPARE_OP_EQUAL = 2,
 VK_COMPARE_OP_LESS_OR_EQUAL = 3,
 VK_COMPARE_OP_GREATER = 4,
 VK_COMPARE_OP_NOT_EQUAL = 5,
 VK_COMPARE_OP_GREATER_OR_EQUAL = 6,
 VK_COMPARE_OP_ALWAYS = 7,
} VkCompareOp;

• VK_COMPARE_OP_NEVER specifies that the comparison always evaluates false.

• VK_COMPARE_OP_LESS specifies that the comparison evaluates reference < test.

• VK_COMPARE_OP_EQUAL specifies that the comparison evaluates reference = test.

• VK_COMPARE_OP_LESS_OR_EQUAL specifies that the comparison evaluates reference ≤ test.

• VK_COMPARE_OP_GREATER specifies that the comparison evaluates reference > test.

• VK_COMPARE_OP_NOT_EQUAL specifies that the comparison evaluates reference ≠ test.

• VK_COMPARE_OP_GREATER_OR_EQUAL specifies that the comparison evaluates reference ≥ test.

• VK_COMPARE_OP_ALWAYS specifies that the comparison always evaluates true.

Comparison operators are used for:

• The Depth Compare Operation operator for a sampler, specified by VkSamplerCreateInfo
::compareOp.

• The stencil comparison operator for the stencil test, specified by vkCmdSetStencilOp::compareOp
or VkStencilOpState::compareOp.

• The Depth Comparison operator for the depth test, specified by vkCmdSetDepthCompareOp
::depthCompareOp or VkPipelineDepthStencilStateCreateInfo::depthCompareOp.

Each such use describes how the reference and test values for that comparison are determined.

Possible values of VkSamplerCreateInfo::borderColor, specifying the border color used for texture
lookups, are:

// Provided by VK_VERSION_1_0
typedef enum VkBorderColor {
 VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK = 0,
 VK_BORDER_COLOR_INT_TRANSPARENT_BLACK = 1,
 VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK = 2,
 VK_BORDER_COLOR_INT_OPAQUE_BLACK = 3,
 VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE = 4,

578

 VK_BORDER_COLOR_INT_OPAQUE_WHITE = 5,
} VkBorderColor;

• VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK specifies a transparent, floating-point format, black
color.

• VK_BORDER_COLOR_INT_TRANSPARENT_BLACK specifies a transparent, integer format, black color.

• VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK specifies an opaque, floating-point format, black color.

• VK_BORDER_COLOR_INT_OPAQUE_BLACK specifies an opaque, integer format, black color.

• VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE specifies an opaque, floating-point format, white color.

• VK_BORDER_COLOR_INT_OPAQUE_WHITE specifies an opaque, integer format, white color.

These colors are described in detail in Texel Replacement.

To destroy a sampler, call:

// Provided by VK_VERSION_1_0
void vkDestroySampler(
 VkDevice device,
 VkSampler sampler,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the sampler.

• sampler is the sampler to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroySampler-sampler-01082
All submitted commands that refer to sampler must have completed execution

• VUID-vkDestroySampler-sampler-01083
If VkAllocationCallbacks were provided when sampler was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroySampler-sampler-01084
If no VkAllocationCallbacks were provided when sampler was created, pAllocator must be
NULL

Valid Usage (Implicit)

• VUID-vkDestroySampler-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroySampler-sampler-parameter
If sampler is not VK_NULL_HANDLE, sampler must be a valid VkSampler handle

579

• VUID-vkDestroySampler-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroySampler-sampler-parent
If sampler is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to sampler must be externally synchronized

13.1. Sampler Y′CBCR Conversion
To create a sampler with Y′CBCR conversion enabled, add a VkSamplerYcbcrConversionInfo
structure to the pNext chain of the VkSamplerCreateInfo structure. To create a sampler Y′CBCR

conversion, the samplerYcbcrConversion feature must be enabled. Conversion must be fixed at
pipeline creation time, through use of a combined image sampler with an immutable sampler in
VkDescriptorSetLayoutBinding.

A VkSamplerYcbcrConversionInfo must be provided for samplers to be used with image views that
access VK_IMAGE_ASPECT_COLOR_BIT if the format is one of the formats that require a sampler Y′CBCR

conversion .

The VkSamplerYcbcrConversionInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkSamplerYcbcrConversionInfo {
 VkStructureType sType;
 const void* pNext;
 VkSamplerYcbcrConversion conversion;
} VkSamplerYcbcrConversionInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• conversion is a VkSamplerYcbcrConversion handle created with
vkCreateSamplerYcbcrConversion.

Valid Usage (Implicit)

• VUID-VkSamplerYcbcrConversionInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO

• VUID-VkSamplerYcbcrConversionInfo-conversion-parameter
conversion must be a valid VkSamplerYcbcrConversion handle

580

A sampler Y′CBCR conversion is an opaque representation of a device-specific sampler Y′CBCR

conversion description, represented as a VkSamplerYcbcrConversion handle:

// Provided by VK_VERSION_1_1
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSamplerYcbcrConversion)

To create a VkSamplerYcbcrConversion, call:

// Provided by VK_VERSION_1_1
VkResult vkCreateSamplerYcbcrConversion(
 VkDevice device,
 const VkSamplerYcbcrConversionCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSamplerYcbcrConversion* pYcbcrConversion);

• device is the logical device that creates the sampler Y′CBCR conversion.

• pCreateInfo is a pointer to a VkSamplerYcbcrConversionCreateInfo structure specifying the
requested sampler Y′CBCR conversion.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pYcbcrConversion is a pointer to a VkSamplerYcbcrConversion handle in which the resulting
sampler Y′CBCR conversion is returned.

The interpretation of the configured sampler Y′CBCR conversion is described in more detail in the
description of sampler Y′CBCR conversion in the Image Operations chapter.

Valid Usage

• VUID-vkCreateSamplerYcbcrConversion-None-01648
The samplerYcbcrConversion feature must be enabled

Valid Usage (Implicit)

• VUID-vkCreateSamplerYcbcrConversion-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateSamplerYcbcrConversion-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkSamplerYcbcrConversionCreateInfo
structure

• VUID-vkCreateSamplerYcbcrConversion-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateSamplerYcbcrConversion-pYcbcrConversion-parameter
pYcbcrConversion must be a valid pointer to a VkSamplerYcbcrConversion handle

581

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkSamplerYcbcrConversionCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkSamplerYcbcrConversionCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkFormat format;
 VkSamplerYcbcrModelConversion ycbcrModel;
 VkSamplerYcbcrRange ycbcrRange;
 VkComponentMapping components;
 VkChromaLocation xChromaOffset;
 VkChromaLocation yChromaOffset;
 VkFilter chromaFilter;
 VkBool32 forceExplicitReconstruction;
} VkSamplerYcbcrConversionCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• format is the format of the image from which color information will be retrieved.

• ycbcrModel describes the color matrix for conversion between color models.

• ycbcrRange describes whether the encoded values have headroom and foot room, or whether
the encoding uses the full numerical range.

• components applies a swizzle based on VkComponentSwizzle enums prior to range expansion
and color model conversion.

• xChromaOffset describes the sample location associated with downsampled chroma components
in the x dimension. xChromaOffset has no effect for formats in which chroma components are
not downsampled horizontally.

• yChromaOffset describes the sample location associated with downsampled chroma components
in the y dimension. yChromaOffset has no effect for formats in which the chroma components
are not downsampled vertically.

• chromaFilter is the filter for chroma reconstruction.

• forceExplicitReconstruction can be used to ensure that reconstruction is done explicitly, if
supported.

582

Note

Setting forceExplicitReconstruction to VK_TRUE may have a performance penalty
on implementations where explicit reconstruction is not the default mode of
operation.

If format supports
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT
_BIT the forceExplicitReconstruction value behaves as if it was set to VK_TRUE.

Sampler Y′CBCR conversion objects do not support external format conversion without additional
extensions defining external formats.

Valid Usage

• VUID-VkSamplerYcbcrConversionCreateInfo-format-04061
format must represent unsigned normalized values (i.e. the format must be a UNORM
format)

• VUID-VkSamplerYcbcrConversionCreateInfo-format-01650
The potential format features of the sampler Y′CBCR conversion must support
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT or
VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT

• VUID-VkSamplerYcbcrConversionCreateInfo-xChromaOffset-01651
If the potential format features of the sampler Y′CBCR conversion do not support
VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT, xChromaOffset and yChromaOffset must not
be VK_CHROMA_LOCATION_COSITED_EVEN if the corresponding components are downsampled

• VUID-VkSamplerYcbcrConversionCreateInfo-xChromaOffset-01652
If the potential format features of the sampler Y′CBCR conversion do not support
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT, xChromaOffset and yChromaOffset must
not be VK_CHROMA_LOCATION_MIDPOINT if the corresponding components are downsampled

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02581
If the format has a _422 or _420 suffix, then components.g must be the identity swizzle

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02582
If the format has a _422 or _420 suffix, then components.a must be the identity swizzle,
VK_COMPONENT_SWIZZLE_ONE, or VK_COMPONENT_SWIZZLE_ZERO

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02583
If the format has a _422 or _420 suffix, then components.r must be the identity swizzle or
VK_COMPONENT_SWIZZLE_B

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02584
If the format has a _422 or _420 suffix, then components.b must be the identity swizzle or
VK_COMPONENT_SWIZZLE_R

• VUID-VkSamplerYcbcrConversionCreateInfo-components-02585
If the format has a _422 or _420 suffix, and if either components.r or components.b is the
identity swizzle, both values must be the identity swizzle

• VUID-VkSamplerYcbcrConversionCreateInfo-ycbcrModel-01655

583

If ycbcrModel is not VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY, then components.r,
components.g, and components.b must correspond to components of the format; that is,
components.r, components.g, and components.b must not be VK_COMPONENT_SWIZZLE_ZERO or
VK_COMPONENT_SWIZZLE_ONE, and must not correspond to a component containing zero or
one as a consequence of conversion to RGBA

• VUID-VkSamplerYcbcrConversionCreateInfo-ycbcrRange-02748
If ycbcrRange is VK_SAMPLER_YCBCR_RANGE_ITU_NARROW then the R, G and B components
obtained by applying the component swizzle to format must each have a bit-depth greater
than or equal to 8

• VUID-VkSamplerYcbcrConversionCreateInfo-forceExplicitReconstruction-01656
If the potential format features of the sampler Y′CBCR conversion do not support
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCE
ABLE_BIT forceExplicitReconstruction must be VK_FALSE

• VUID-VkSamplerYcbcrConversionCreateInfo-chromaFilter-01657
If the potential format features of the sampler Y′CBCR conversion do not support
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT, chromaFilter must
not be VK_FILTER_LINEAR

Valid Usage (Implicit)

• VUID-VkSamplerYcbcrConversionCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO

• VUID-VkSamplerYcbcrConversionCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkSamplerYcbcrConversionCreateInfo-format-parameter
format must be a valid VkFormat value

• VUID-VkSamplerYcbcrConversionCreateInfo-ycbcrModel-parameter
ycbcrModel must be a valid VkSamplerYcbcrModelConversion value

• VUID-VkSamplerYcbcrConversionCreateInfo-ycbcrRange-parameter
ycbcrRange must be a valid VkSamplerYcbcrRange value

• VUID-VkSamplerYcbcrConversionCreateInfo-components-parameter
components must be a valid VkComponentMapping structure

• VUID-VkSamplerYcbcrConversionCreateInfo-xChromaOffset-parameter
xChromaOffset must be a valid VkChromaLocation value

• VUID-VkSamplerYcbcrConversionCreateInfo-yChromaOffset-parameter
yChromaOffset must be a valid VkChromaLocation value

• VUID-VkSamplerYcbcrConversionCreateInfo-chromaFilter-parameter
chromaFilter must be a valid VkFilter value

If chromaFilter is VK_FILTER_NEAREST, chroma samples are reconstructed to luma component
resolution using nearest-neighbour sampling. Otherwise, chroma samples are reconstructed using
interpolation. More details can be found in the description of sampler Y′CBCR conversion in the

584

Image Operations chapter.

VkSamplerYcbcrModelConversion defines the conversion from the source color model to the
shader color model. Possible values are:

// Provided by VK_VERSION_1_1
typedef enum VkSamplerYcbcrModelConversion {
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY = 0,
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY = 1,
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709 = 2,
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601 = 3,
 VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020 = 4,
} VkSamplerYcbcrModelConversion;

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY specifies that the input values to the
conversion are unmodified.

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY specifies no model conversion but the inputs
are range expanded as for Y′CBCR.

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709 specifies the color model conversion from Y′CBCR

to R′G′B′ defined in BT.709 and described in the “BT.709 Y′CBCR conversion” section of the
Khronos Data Format Specification.

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601 specifies the color model conversion from Y′CBCR

to R′G′B′ defined in BT.601 and described in the “BT.601 Y′CBCR conversion” section of the
Khronos Data Format Specification.

• VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020 specifies the color model conversion from Y′CBCR

to R′G′B′ defined in BT.2020 and described in the “BT.2020 Y′CBCR conversion” section of the
Khronos Data Format Specification.

In the VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_* color models, for the input to the sampler Y′CBCR

range expansion and model conversion:

• the Y (Y′ luma) component corresponds to the G component of an RGB image.

• the CB (CB or “U” blue color difference) component corresponds to the B component of an RGB
image.

• the CR (CR or “V” red color difference) component corresponds to the R component of an RGB
image.

• the alpha component, if present, is not modified by color model conversion.

These rules reflect the mapping of components after the component swizzle operation (controlled
by VkSamplerYcbcrConversionCreateInfo::components).

Note

For example, an “YUVA” 32-bit format comprising four 8-bit components can be
implemented as VK_FORMAT_R8G8B8A8_UNORM with a component mapping:

585

• components.a = VK_COMPONENT_SWIZZLE_IDENTITY

• components.r = VK_COMPONENT_SWIZZLE_B

• components.g = VK_COMPONENT_SWIZZLE_R

• components.b = VK_COMPONENT_SWIZZLE_G

The VkSamplerYcbcrRange enum describes whether color components are encoded using the full
range of numerical values or whether values are reserved for headroom and foot room.
VkSamplerYcbcrRange is defined as:

// Provided by VK_VERSION_1_1
typedef enum VkSamplerYcbcrRange {
 VK_SAMPLER_YCBCR_RANGE_ITU_FULL = 0,
 VK_SAMPLER_YCBCR_RANGE_ITU_NARROW = 1,
} VkSamplerYcbcrRange;

• VK_SAMPLER_YCBCR_RANGE_ITU_FULL specifies that the full range of the encoded values are valid and
interpreted according to the ITU “full range” quantization rules.

• VK_SAMPLER_YCBCR_RANGE_ITU_NARROW specifies that headroom and foot room are reserved in the
numerical range of encoded values, and the remaining values are expanded according to the
ITU “narrow range” quantization rules.

The formulae for these conversions is described in the Sampler Y′CBCR Range Expansion section of
the Image Operations chapter.

No range modification takes place if ycbcrModel is VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
the ycbcrRange field of VkSamplerYcbcrConversionCreateInfo is ignored in this case.

The VkChromaLocation enum defines the location of downsampled chroma component samples
relative to the luma samples, and is defined as:

// Provided by VK_VERSION_1_1
typedef enum VkChromaLocation {
 VK_CHROMA_LOCATION_COSITED_EVEN = 0,
 VK_CHROMA_LOCATION_MIDPOINT = 1,
} VkChromaLocation;

• VK_CHROMA_LOCATION_COSITED_EVEN specifies that downsampled chroma samples are aligned with
luma samples with even coordinates.

• VK_CHROMA_LOCATION_MIDPOINT specifies that downsampled chroma samples are located half way
between each even luma sample and the nearest higher odd luma sample.

To destroy a sampler Y′CBCR conversion, call:

// Provided by VK_VERSION_1_1
void vkDestroySamplerYcbcrConversion(

586

 VkDevice device,
 VkSamplerYcbcrConversion ycbcrConversion,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the Y′CBCR conversion.

• ycbcrConversion is the conversion to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage (Implicit)

• VUID-vkDestroySamplerYcbcrConversion-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroySamplerYcbcrConversion-ycbcrConversion-parameter
If ycbcrConversion is not VK_NULL_HANDLE, ycbcrConversion must be a valid
VkSamplerYcbcrConversion handle

• VUID-vkDestroySamplerYcbcrConversion-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroySamplerYcbcrConversion-ycbcrConversion-parent
If ycbcrConversion is a valid handle, it must have been created, allocated, or retrieved
from device

Host Synchronization

• Host access to ycbcrConversion must be externally synchronized

587

Chapter 14. Resource Descriptors
A descriptor is an opaque data structure representing a shader resource such as a buffer, buffer
view, image view, sampler, or combined image sampler. Descriptors are organized into descriptor
sets, which are bound during command recording for use in subsequent drawing commands. The
arrangement of content in each descriptor set is determined by a descriptor set layout, which
determines what descriptors can be stored within it. The sequence of descriptor set layouts that can
be used by a pipeline is specified in a pipeline layout. Each pipeline object can use up to
maxBoundDescriptorSets (see Limits) descriptor sets.

Shaders access resources via variables decorated with a descriptor set and binding number that
link them to a descriptor in a descriptor set. The shader interface mapping to bound descriptor sets
is described in the Shader Resource Interface section.

Shaders can also access buffers without going through descriptors by using Physical Storage Buffer
Access to access them through 64-bit addresses.

14.1. Descriptor Types
There are a number of different types of descriptor supported by Vulkan, corresponding to
different resources or usage. The following sections describe the API definitions of each descriptor
type. The mapping of each type to SPIR-V is listed in the Shader Resource and Descriptor Type
Correspondence and Shader Resource and Storage Class Correspondence tables in the Shader
Interfaces chapter.

14.1.1. Storage Image

A storage image (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor type associated with an image
resource via an image view that load, store, and atomic operations can be performed on.

Storage image loads are supported in all shader stages for image views whose format features
contain VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT.

Stores to storage images are supported in compute shaders for image views whose format features
contain VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT.

Atomic operations on storage images are supported in compute shaders for image views whose
format features contain VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT.

When the fragmentStoresAndAtomics feature is enabled, stores and atomic operations are also
supported for storage images in fragment shaders with the same set of image formats as supported
in compute shaders. When the vertexPipelineStoresAndAtomics feature is enabled, stores and atomic
operations are also supported in vertex, tessellation, and geometry shaders with the same set of
image formats as supported in compute shaders.

The image subresources for a storage image must be in the VK_IMAGE_LAYOUT_GENERAL layout in order
to access its data in a shader.

588

14.1.2. Sampler

A sampler descriptor (VK_DESCRIPTOR_TYPE_SAMPLER) is a descriptor type associated with a sampler
object, used to control the behavior of sampling operations performed on a sampled image.

14.1.3. Sampled Image

A sampled image (VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE) is a descriptor type associated with an image
resource via an image view that sampling operations can be performed on.

Shaders combine a sampled image variable and a sampler variable to perform sampling
operations.

Sampled images are supported in all shader stages for image views whose format features contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT.

An image subresources for a sampled image must be in one of the following layouts:

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_GENERAL

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

14.1.4. Combined Image Sampler

A combined image sampler (VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) is a single descriptor type
associated with both a sampler and an image resource, combining both a sampler and sampled
image descriptor into a single descriptor.

If the descriptor refers to a sampler that performs Y′CBCR conversion, the sampler must only be
used to sample the image in the same descriptor. Otherwise, the sampler and image in this type of
descriptor can be used freely with any other samplers and images.

An image subresources for a combined image sampler must be in one of the following layouts:

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_GENERAL

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

589

Note

On some implementations, it may be more efficient to sample from an image using
a combination of sampler and sampled image that are stored together in the
descriptor set in a combined descriptor.

14.1.5. Uniform Texel Buffer

A uniform texel buffer (VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) is a descriptor type associated
with a buffer resource via a buffer view that image sampling operations can be performed on.

Uniform texel buffers define a tightly-packed 1-dimensional linear array of texels, with texels going
through format conversion when read in a shader in the same way as they are for an image.

Load operations from uniform texel buffers are supported in all shader stages for buffer view
formats which report format features support for VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

14.1.6. Storage Texel Buffer

A storage texel buffer (VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER) is a descriptor type associated with
a buffer resource via a buffer view that image load, store, and atomic operations can be performed
on.

Storage texel buffers define a tightly-packed 1-dimensional linear array of texels, with texels going
through format conversion when read in a shader in the same way as they are for an image. Unlike
uniform texel buffers, these buffers can also be written to in the same way as for storage images.

Storage texel buffer loads are supported in all shader stages for texel buffer view formats which
report format features support for VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

Stores to storage texel buffers are supported in compute shaders for texel buffer formats which
report format features support for VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

Atomic operations on storage texel buffers are supported in compute shaders for texel buffer
formats which report format features support for
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

When the fragmentStoresAndAtomics feature is enabled, stores and atomic operations are also
supported for storage texel buffers in fragment shaders with the same set of texel buffer formats as
supported in compute shaders. When the vertexPipelineStoresAndAtomics feature is enabled, stores
and atomic operations are also supported in vertex, tessellation, and geometry shaders with the
same set of texel buffer formats as supported in compute shaders.

14.1.7. Storage Buffer

A storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER) is a descriptor type associated with a buffer
resource directly, described in a shader as a structure with various members that load, store, and
atomic operations can be performed on.

 Note

590

Atomic operations can only be performed on members of certain types as defined
in the SPIR-V environment appendix.

14.1.8. Uniform Buffer

A uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) is a descriptor type associated with a buffer
resource directly, described in a shader as a structure with various members that load operations
can be performed on.

14.1.9. Dynamic Uniform Buffer

A dynamic uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) is almost identical to a
uniform buffer, and differs only in how the offset into the buffer is specified. The base offset
calculated by the VkDescriptorBufferInfo when initially updating the descriptor set is added to a
dynamic offset when binding the descriptor set.

14.1.10. Dynamic Storage Buffer

A dynamic storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) is almost identical to a
storage buffer, and differs only in how the offset into the buffer is specified. The base offset
calculated by the VkDescriptorBufferInfo when initially updating the descriptor set is added to a
dynamic offset when binding the descriptor set.

14.1.11. Inline Uniform Block

An inline uniform block (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) is almost identical to a uniform
buffer, and differs only in taking its storage directly from the encompassing descriptor set instead
of being backed by buffer memory. It is typically used to access a small set of constant data that
does not require the additional flexibility provided by the indirection enabled when using a
uniform buffer where the descriptor and the referenced buffer memory are decoupled. Compared
to push constants, they allow reusing the same set of constant data across multiple disjoint sets of
drawing and dispatching commands.

Inline uniform block descriptors cannot be aggregated into arrays. Instead, the array size specified
for an inline uniform block descriptor binding specifies the binding’s capacity in bytes.

14.1.12. Input Attachment

An input attachment (VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) is a descriptor type associated with an
image resource via an image view that can be used for framebuffer local load operations in
fragment shaders.

All image formats that are supported for color attachments
(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) or depth/stencil attachments
(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) for a given image tiling mode are also supported
for input attachments.

An image view used as an input attachment must be in one of the following layouts:

591

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

• VK_IMAGE_LAYOUT_GENERAL

• VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

14.2. Descriptor Sets
Descriptors are grouped together into descriptor set objects. A descriptor set object is an opaque
object containing storage for a set of descriptors, where the types and number of descriptors is
defined by a descriptor set layout. The layout object may be used to define the association of each
descriptor binding with memory or other implementation resources. The layout is used both for
determining the resources that need to be associated with the descriptor set, and determining the
interface between shader stages and shader resources.

14.2.1. Descriptor Set Layout

A descriptor set layout object is defined by an array of zero or more descriptor bindings. Each
individual descriptor binding is specified by a descriptor type, a count (array size) of the number of
descriptors in the binding, a set of shader stages that can access the binding, and (if using
immutable samplers) an array of sampler descriptors.

Descriptor set layout objects are represented by VkDescriptorSetLayout handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorSetLayout)

To create descriptor set layout objects, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateDescriptorSetLayout(
 VkDevice device,
 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorSetLayout* pSetLayout);

• device is the logical device that creates the descriptor set layout.

• pCreateInfo is a pointer to a VkDescriptorSetLayoutCreateInfo structure specifying the state of
the descriptor set layout object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSetLayout is a pointer to a VkDescriptorSetLayout handle in which the resulting descriptor set
layout object is returned.

592

Valid Usage

• VUID-vkCreateDescriptorSetLayout-support-09582
If the descriptor layout does not meet the limits reported through the physical device
limits, then vkGetDescriptorSetLayoutSupport must return
VkDescriptorSetLayoutSupport with support equal to VK_TRUE for pCreateInfo

Valid Usage (Implicit)

• VUID-vkCreateDescriptorSetLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateDescriptorSetLayout-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDescriptorSetLayoutCreateInfo structure

• VUID-vkCreateDescriptorSetLayout-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDescriptorSetLayout-pSetLayout-parameter
pSetLayout must be a valid pointer to a VkDescriptorSetLayout handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the descriptor set layout is passed in a VkDescriptorSetLayoutCreateInfo
structure:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorSetLayoutCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSetLayoutCreateFlags flags;
 uint32_t bindingCount;
 const VkDescriptorSetLayoutBinding* pBindings;
} VkDescriptorSetLayoutCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

593

• flags is a bitmask specifying options for descriptor set layout creation.

• bindingCount is the number of elements in pBindings.

• pBindings is a pointer to an array of VkDescriptorSetLayoutBinding structures.

Valid Usage

• VUID-VkDescriptorSetLayoutCreateInfo-binding-00279
The VkDescriptorSetLayoutBinding::binding members of the elements of the pBindings
array must each have different values

• VUID-VkDescriptorSetLayoutCreateInfo-flags-03000
If any binding has the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit set, flags must
include VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT

• VUID-VkDescriptorSetLayoutCreateInfo-descriptorType-03001
If any binding has the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit set, then all
bindings must not have descriptorType of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

Valid Usage (Implicit)

• VUID-VkDescriptorSetLayoutCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO

• VUID-VkDescriptorSetLayoutCreateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkDescriptorSetLayoutBindingFlagsCreateInfo

• VUID-VkDescriptorSetLayoutCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkDescriptorSetLayoutCreateInfo-flags-parameter
flags must be a valid combination of VkDescriptorSetLayoutCreateFlagBits values

• VUID-VkDescriptorSetLayoutCreateInfo-pBindings-parameter
If bindingCount is not 0, pBindings must be a valid pointer to an array of bindingCount valid
VkDescriptorSetLayoutBinding structures

Bits which can be set in VkDescriptorSetLayoutCreateInfo::flags, specifying options for descriptor
set layout, are:

// Provided by VK_VERSION_1_0
typedef enum VkDescriptorSetLayoutCreateFlagBits {
 // Provided by VK_VERSION_1_2
 VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT = 0x00000002,
} VkDescriptorSetLayoutCreateFlagBits;

• VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT specifies that descriptor sets using

594

this layout must be allocated from a descriptor pool created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT bit set. Descriptor set layouts created with this
bit set have alternate limits for the maximum number of descriptors per-stage and per-pipeline
layout. The non-UpdateAfterBind limits only count descriptors in sets created without this flag.
The UpdateAfterBind limits count all descriptors, but the limits may be higher than the non-
UpdateAfterBind limits.

Note

All bits for this type are defined by extensions, and none of those extensions are
enabled in this build of the specification.

// Provided by VK_VERSION_1_0
typedef VkFlags VkDescriptorSetLayoutCreateFlags;

VkDescriptorSetLayoutCreateFlags is a bitmask type for setting a mask of zero or more
VkDescriptorSetLayoutCreateFlagBits.

The VkDescriptorSetLayoutBinding structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorSetLayoutBinding {
 uint32_t binding;
 VkDescriptorType descriptorType;
 uint32_t descriptorCount;
 VkShaderStageFlags stageFlags;
 const VkSampler* pImmutableSamplers;
} VkDescriptorSetLayoutBinding;

• binding is the binding number of this entry and corresponds to a resource of the same binding
number in the shader stages.

• descriptorType is a VkDescriptorType specifying which type of resource descriptors are used for
this binding.

• descriptorCount is the number of descriptors contained in the binding, accessed in a shader as
an array, except if descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK in which case
descriptorCount is the size in bytes of the inline uniform block. If descriptorCount is zero this
binding entry is reserved and the resource must not be accessed from any stage via this binding
within any pipeline using the set layout.

• stageFlags member is a bitmask of VkShaderStageFlagBits specifying which pipeline shader
stages can access a resource for this binding. VK_SHADER_STAGE_ALL is a shorthand specifying that
all defined shader stages, including any additional stages defined by extensions, can access the
resource.

If a shader stage is not included in stageFlags, then a resource must not be accessed from that
stage via this binding within any pipeline using the set layout. Other than input attachments
which are limited to the fragment shader, there are no limitations on what combinations of

595

stages can use a descriptor binding, and in particular a binding can be used by both graphics
stages and the compute stage.

• pImmutableSamplers affects initialization of samplers. If descriptorType specifies a
VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
pImmutableSamplers can be used to initialize a set of immutable samplers. Immutable samplers
are permanently bound into the set layout and must not be changed; updating a
VK_DESCRIPTOR_TYPE_SAMPLER descriptor with immutable samplers is not allowed and updates to a
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptor with immutable samplers does not
modify the samplers (the image views are updated, but the sampler updates are ignored). If
pImmutableSamplers is not NULL, then it is a pointer to an array of sampler handles that will be
copied into the set layout and used for the corresponding binding. Only the sampler handles are
copied; the sampler objects must not be destroyed before the final use of the set layout and any
descriptor pools and sets created using it. If pImmutableSamplers is NULL, then the sampler slots
are dynamic and sampler handles must be bound into descriptor sets using this layout. If
descriptorType is not one of these descriptor types, then pImmutableSamplers is ignored.

The above layout definition allows the descriptor bindings to be specified sparsely such that not all
binding numbers between 0 and the maximum binding number need to be specified in the
pBindings array. Bindings that are not specified have a descriptorCount and stageFlags of zero, and
the value of descriptorType is undefined. However, all binding numbers between 0 and the
maximum binding number in the VkDescriptorSetLayoutCreateInfo::pBindings array may consume
memory in the descriptor set layout even if not all descriptor bindings are used, though it should
not consume additional memory from the descriptor pool.

Note

The maximum binding number specified should be as compact as possible to
avoid wasted memory.

Valid Usage

• VUID-VkDescriptorSetLayoutBinding-descriptorType-00282
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and descriptorCount is not 0 and
pImmutableSamplers is not NULL, pImmutableSamplers must be a valid pointer to an array of
descriptorCount valid VkSampler handles

• VUID-VkDescriptorSetLayoutBinding-descriptorType-04604
If the inlineUniformBlock feature is not enabled, descriptorType must not be
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

• VUID-VkDescriptorSetLayoutBinding-descriptorType-02209
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then descriptorCount must
be a multiple of 4

• VUID-VkDescriptorSetLayoutBinding-descriptorType-08004
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then descriptorCount must
be less than or equal to VkPhysicalDeviceInlineUniformBlockProperties
::maxInlineUniformBlockSize

596

• VUID-VkDescriptorSetLayoutBinding-descriptorCount-09465
If descriptorCount is not 0, stageFlags must be VK_SHADER_STAGE_ALL or a valid combination
of other VkShaderStageFlagBits values

• VUID-VkDescriptorSetLayoutBinding-descriptorType-01510
If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT and descriptorCount is not 0, then
stageFlags must be 0 or VK_SHADER_STAGE_FRAGMENT_BIT

Valid Usage (Implicit)

• VUID-VkDescriptorSetLayoutBinding-descriptorType-parameter
descriptorType must be a valid VkDescriptorType value

If the pNext chain of a VkDescriptorSetLayoutCreateInfo structure includes a
VkDescriptorSetLayoutBindingFlagsCreateInfo structure, then that structure includes an array of
flags, one for each descriptor set layout binding.

The VkDescriptorSetLayoutBindingFlagsCreateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkDescriptorSetLayoutBindingFlagsCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t bindingCount;
 const VkDescriptorBindingFlags* pBindingFlags;
} VkDescriptorSetLayoutBindingFlagsCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• bindingCount is zero or the number of elements in pBindingFlags.

• pBindingFlags is a pointer to an array of VkDescriptorBindingFlags bitfields, one for each
descriptor set layout binding.

If bindingCount is zero or if this structure is not included in the pNext chain, the
VkDescriptorBindingFlags for each descriptor set layout binding is considered to be zero.
Otherwise, the descriptor set layout binding at VkDescriptorSetLayoutCreateInfo::pBindings[i] uses
the flags in pBindingFlags[i].

Valid Usage

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-bindingCount-03002
If bindingCount is not zero, bindingCount must equal VkDescriptorSetLayoutCreateInfo
::bindingCount

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-pBindingFlags-03004
If an element of pBindingFlags includes

597

VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT, then it must be the element with
the highest binding number

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingUniformBufferUpdateAfterBind-03005
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingUniformBufferUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingSampledImageUpdateAfterBind-03006
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingSampledImageUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingStorageImageUpdateAfterBind-03007
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingStorageImageUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingStorageBufferUpdateAfterBind-03008
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingStorageBufferUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingUniformTexelBufferUpdateAfterBind-03009
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingUniformTexelBufferUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingStorageTexelBufferUpdateAfterBind-03010
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingStorageTexelBufferUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingInlineUniformBlockUpdateAfterBind-02211
If VkPhysicalDeviceInlineUniformBlockFeatures
::descriptorBindingInlineUniformBlockUpdateAfterBind is not enabled, all bindings with
descriptor type VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK must not use
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

598

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-None-03011
All bindings with descriptor type VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
must not use VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingUpdateUnusedWhilePending-03012
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingUpdateUnusedWhilePending is not enabled, all elements of pBindingFlags
must not include VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-descriptorBindingPartiallyBound-
03013
If VkPhysicalDeviceDescriptorIndexingFeatures::descriptorBindingPartiallyBound is not
enabled, all elements of pBindingFlags must not include
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-
descriptorBindingVariableDescriptorCount-03014
If VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingVariableDescriptorCount is not enabled, all elements of pBindingFlags
must not include VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-pBindingFlags-03015
If an element of pBindingFlags includes
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT, that element’s descriptorType must
not be VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

Valid Usage (Implicit)

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO

• VUID-VkDescriptorSetLayoutBindingFlagsCreateInfo-pBindingFlags-parameter
If bindingCount is not 0, pBindingFlags must be a valid pointer to an array of bindingCount
valid combinations of VkDescriptorBindingFlagBits values

Bits which can be set in each element of VkDescriptorSetLayoutBindingFlagsCreateInfo
::pBindingFlags, specifying options for the corresponding descriptor set layout binding, are:

// Provided by VK_VERSION_1_2
typedef enum VkDescriptorBindingFlagBits {
 VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT = 0x00000001,
 VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT = 0x00000002,
 VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT = 0x00000004,
 VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT = 0x00000008,
} VkDescriptorBindingFlagBits;

599

• VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT indicates that if descriptors in this binding are
updated between when the descriptor set is bound in a command buffer and when that
command buffer is submitted to a queue, then the submission will use the most recently set
descriptors for this binding and the updates do not invalidate the command buffer. Descriptor
bindings created with this flag are also partially exempt from the external synchronization
requirement in vkUpdateDescriptorSets. Multiple descriptors with this flag set can be updated
concurrently in different threads, though the same descriptor must not be updated
concurrently by two threads. Descriptors with this flag set can be updated concurrently with
the set being bound to a command buffer in another thread, but not concurrently with the set
being reset or freed.

• VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT indicates that descriptors in this binding that are
not dynamically used need not contain valid descriptors at the time the descriptors are
consumed. A descriptor is dynamically used if any shader invocation executes an instruction
that performs any memory access using the descriptor. If a descriptor is not dynamically used,
any resource referenced by the descriptor is not considered to be referenced during command
execution.

• VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT indicates that descriptors in this
binding can be updated after a command buffer has bound this descriptor set, or while a
command buffer that uses this descriptor set is pending execution, as long as the descriptors
that are updated are not used by those command buffers. Descriptor bindings created with this
flag are also partially exempt from the external synchronization requirement in
vkUpdateDescriptorSetWithTemplateKHR and vkUpdateDescriptorSets in the same way as for
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT. If VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT is
also set, then descriptors can be updated as long as they are not dynamically used by any
shader invocations. If VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT is not set, then descriptors
can be updated as long as they are not statically used by any shader invocations.

• VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT indicates that this is a variable-sized
descriptor binding whose size will be specified when a descriptor set is allocated using this
layout. The value of descriptorCount is treated as an upper bound on the size of the binding.
This must only be used for the last binding in the descriptor set layout (i.e. the binding with the
largest value of binding). For the purposes of counting against limits such as maxDescriptorSet*
and maxPerStageDescriptor*, the full value of descriptorCount is counted, except for descriptor
bindings with a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK. In this case,
descriptorCount specifies the upper bound on the byte size of the binding; thus it counts against
the maxInlineUniformTotalSize limit instead.

Note

Note that while VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT and
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT both involve updates to
descriptor sets after they are bound,
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT is a weaker requirement
since it is only about descriptors that are not used, whereas
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT requires the implementation to
observe updates to descriptors that are used.

// Provided by VK_VERSION_1_2

600

typedef VkFlags VkDescriptorBindingFlags;

VkDescriptorBindingFlags is a bitmask type for setting a mask of zero or more
VkDescriptorBindingFlagBits.

To query information about whether a descriptor set layout can be created, call:

// Provided by VK_VERSION_1_1
void vkGetDescriptorSetLayoutSupport(
 VkDevice device,
 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
 VkDescriptorSetLayoutSupport* pSupport);

• device is the logical device that would create the descriptor set layout.

• pCreateInfo is a pointer to a VkDescriptorSetLayoutCreateInfo structure specifying the state of
the descriptor set layout object.

• pSupport is a pointer to a VkDescriptorSetLayoutSupport structure, in which information about
support for the descriptor set layout object is returned.

Some implementations have limitations on what fits in a descriptor set which are not easily
expressible in terms of existing limits like maxDescriptorSet*, for example if all descriptor types
share a limited space in memory but each descriptor is a different size or alignment. This command
returns information about whether a descriptor set satisfies this limit. If the descriptor set layout
satisfies the VkPhysicalDeviceMaintenance3Properties::maxPerSetDescriptors limit, this command is
guaranteed to return VK_TRUE in VkDescriptorSetLayoutSupport::supported. If the descriptor set
layout exceeds the VkPhysicalDeviceMaintenance3Properties::maxPerSetDescriptors limit, whether
the descriptor set layout is supported is implementation-dependent and may depend on whether
the descriptor sizes and alignments cause the layout to exceed an internal limit.

This command does not consider other limits such as maxPerStageDescriptor*, and so a descriptor
set layout that is supported according to this command must still satisfy the pipeline layout limits
such as maxPerStageDescriptor* in order to be used in a pipeline layout.

Note

This is a VkDevice query rather than VkPhysicalDevice because the answer may
depend on enabled features.

Valid Usage (Implicit)

• VUID-vkGetDescriptorSetLayoutSupport-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDescriptorSetLayoutSupport-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDescriptorSetLayoutCreateInfo structure

• VUID-vkGetDescriptorSetLayoutSupport-pSupport-parameter
pSupport must be a valid pointer to a VkDescriptorSetLayoutSupport structure

601

Information about support for the descriptor set layout is returned in a
VkDescriptorSetLayoutSupport structure:

// Provided by VK_VERSION_1_1
typedef struct VkDescriptorSetLayoutSupport {
 VkStructureType sType;
 void* pNext;
 VkBool32 supported;
} VkDescriptorSetLayoutSupport;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• supported specifies whether the descriptor set layout can be created.

supported is set to VK_TRUE if the descriptor set can be created, or else is set to VK_FALSE.

Valid Usage (Implicit)

• VUID-VkDescriptorSetLayoutSupport-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT

• VUID-VkDescriptorSetLayoutSupport-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkDescriptorSetVariableDescriptorCountLayoutSupport

• VUID-VkDescriptorSetLayoutSupport-sType-unique
The sType value of each struct in the pNext chain must be unique

If the pNext chain of a VkDescriptorSetLayoutSupport structure includes a
VkDescriptorSetVariableDescriptorCountLayoutSupport structure, then that structure returns
additional information about whether the descriptor set layout is supported.

// Provided by VK_VERSION_1_2
typedef struct VkDescriptorSetVariableDescriptorCountLayoutSupport {
 VkStructureType sType;
 void* pNext;
 uint32_t maxVariableDescriptorCount;
} VkDescriptorSetVariableDescriptorCountLayoutSupport;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxVariableDescriptorCount indicates the maximum number of descriptors supported in the
highest numbered binding of the layout, if that binding is variable-sized. If the highest
numbered binding of the layout has a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then maxVariableDescriptorCount indicates the
maximum byte size supported for the binding, if that binding is variable-sized.

602

If the VkDescriptorSetLayoutCreateInfo structure specified in vkGetDescriptorSetLayoutSupport
::pCreateInfo includes a variable-sized descriptor, then supported is determined assuming the
requested size of the variable-sized descriptor, and maxVariableDescriptorCount is set to the
maximum size of that descriptor that can be successfully created (which is greater than or equal to
the requested size passed in). If the VkDescriptorSetLayoutCreateInfo structure does not include a
variable-sized descriptor, or if the VkPhysicalDeviceDescriptorIndexingFeatures
::descriptorBindingVariableDescriptorCount feature is not enabled, then maxVariableDescriptorCount
is set to zero. For the purposes of this command, a variable-sized descriptor binding with a
descriptorCount of zero is treated as having a descriptorCount of four if descriptorType is
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, or one otherwise, and thus the binding is not ignored and
the maximum descriptor count will be returned. If the layout is not supported, then the value
written to maxVariableDescriptorCount is undefined.

Valid Usage (Implicit)

• VUID-VkDescriptorSetVariableDescriptorCountLayoutSupport-sType-sType
sType must be
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT

The following examples show a shader snippet using two descriptor sets, and application code that
creates corresponding descriptor set layouts.

GLSL example

//
// binding to a single sampled image descriptor in set 0
//
layout (set=0, binding=0) uniform texture2D mySampledImage;

//
// binding to an array of sampled image descriptors in set 0
//
layout (set=0, binding=1) uniform texture2D myArrayOfSampledImages[12];

//
// binding to a single uniform buffer descriptor in set 1
//
layout (set=1, binding=0) uniform myUniformBuffer
{
 vec4 myElement[32];
};

SPIR-V example

 ...
 %1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %9 "mySampledImage"

603

 OpName %14 "myArrayOfSampledImages"
 OpName %18 "myUniformBuffer"
 OpMemberName %18 0 "myElement"
 OpName %20 ""
 OpDecorate %9 DescriptorSet 0
 OpDecorate %9 Binding 0
 OpDecorate %14 DescriptorSet 0
 OpDecorate %14 Binding 1
 OpDecorate %17 ArrayStride 16
 OpMemberDecorate %18 0 Offset 0
 OpDecorate %18 Block
 OpDecorate %20 DescriptorSet 1
 OpDecorate %20 Binding 0
 %2 = OpTypeVoid
 %3 = OpTypeFunction %2
 %6 = OpTypeFloat 32
 %7 = OpTypeImage %6 2D 0 0 0 1 Unknown
 %8 = OpTypePointer UniformConstant %7
 %9 = OpVariable %8 UniformConstant
 %10 = OpTypeInt 32 0
 %11 = OpConstant %10 12
 %12 = OpTypeArray %7 %11
 %13 = OpTypePointer UniformConstant %12
 %14 = OpVariable %13 UniformConstant
 %15 = OpTypeVector %6 4
 %16 = OpConstant %10 32
 %17 = OpTypeArray %15 %16
 %18 = OpTypeStruct %17
 %19 = OpTypePointer Uniform %18
 %20 = OpVariable %19 Uniform
 ...

API example

VkResult myResult;

const VkDescriptorSetLayoutBinding myDescriptorSetLayoutBinding[] =
{
 // binding to a single image descriptor
 {
 .binding = 0,
 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
 .descriptorCount = 1,
 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
 .pImmutableSamplers = NULL
 },

 // binding to an array of image descriptors
 {
 .binding = 1,

604

 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
 .descriptorCount = 12,
 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
 .pImmutableSamplers = NULL
 },

 // binding to a single uniform buffer descriptor
 {
 .binding = 0,
 .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
 .descriptorCount = 1,
 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
 .pImmutableSamplers = NULL
 }
};

const VkDescriptorSetLayoutCreateInfo myDescriptorSetLayoutCreateInfo[] =
{
 // Information for first descriptor set with two descriptor bindings
 {
 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
 .pNext = NULL,
 .flags = 0,
 .bindingCount = 2,
 .pBindings = &myDescriptorSetLayoutBinding[0]
 },

 // Information for second descriptor set with one descriptor binding
 {
 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
 .pNext = NULL,
 .flags = 0,
 .bindingCount = 1,
 .pBindings = &myDescriptorSetLayoutBinding[2]
 }
};

VkDescriptorSetLayout myDescriptorSetLayout[2];

//
// Create first descriptor set layout
//
myResult = vkCreateDescriptorSetLayout(
 myDevice,
 &myDescriptorSetLayoutCreateInfo[0],
 NULL,
 &myDescriptorSetLayout[0]);

//
// Create second descriptor set layout
//

605

myResult = vkCreateDescriptorSetLayout(
 myDevice,
 &myDescriptorSetLayoutCreateInfo[1],
 NULL,
 &myDescriptorSetLayout[1]);

To destroy a descriptor set layout, call:

// Provided by VK_VERSION_1_0
void vkDestroyDescriptorSetLayout(
 VkDevice device,
 VkDescriptorSetLayout descriptorSetLayout,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the descriptor set layout.

• descriptorSetLayout is the descriptor set layout to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-00284
If VkAllocationCallbacks were provided when descriptorSetLayout was created, a
compatible set of callbacks must be provided here

• VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-00285
If no VkAllocationCallbacks were provided when descriptorSetLayout was created,
pAllocator must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyDescriptorSetLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-parameter
If descriptorSetLayout is not VK_NULL_HANDLE, descriptorSetLayout must be a valid
VkDescriptorSetLayout handle

• VUID-vkDestroyDescriptorSetLayout-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyDescriptorSetLayout-descriptorSetLayout-parent
If descriptorSetLayout is a valid handle, it must have been created, allocated, or retrieved
from device

606

Host Synchronization

• Host access to descriptorSetLayout must be externally synchronized

14.2.2. Pipeline Layouts

Access to descriptor sets from a pipeline is accomplished through a pipeline layout. Zero or more
descriptor set layouts and zero or more push constant ranges are combined to form a pipeline
layout object describing the complete set of resources that can be accessed by a pipeline. The
pipeline layout represents a sequence of descriptor sets with each having a specific layout. This
sequence of layouts is used to determine the interface between shader stages and shader resources.
Each pipeline is created using a pipeline layout.

Pipeline layout objects are represented by VkPipelineLayout handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipelineLayout)

To create a pipeline layout, call:

// Provided by VK_VERSION_1_0
VkResult vkCreatePipelineLayout(
 VkDevice device,
 const VkPipelineLayoutCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPipelineLayout* pPipelineLayout);

• device is the logical device that creates the pipeline layout.

• pCreateInfo is a pointer to a VkPipelineLayoutCreateInfo structure specifying the state of the
pipeline layout object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelineLayout is a pointer to a VkPipelineLayout handle in which the resulting pipeline layout
object is returned.

Valid Usage (Implicit)

• VUID-vkCreatePipelineLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreatePipelineLayout-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkPipelineLayoutCreateInfo structure

• VUID-vkCreatePipelineLayout-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

607

• VUID-vkCreatePipelineLayout-pPipelineLayout-parameter
pPipelineLayout must be a valid pointer to a VkPipelineLayout handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineLayoutCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineLayoutCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineLayoutCreateFlags flags;
 uint32_t setLayoutCount;
 const VkDescriptorSetLayout* pSetLayouts;
 uint32_t pushConstantRangeCount;
 const VkPushConstantRange* pPushConstantRanges;
} VkPipelineLayoutCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkPipelineLayoutCreateFlagBits specifying options for pipeline layout
creation.

• setLayoutCount is the number of descriptor sets included in the pipeline layout.

• pSetLayouts is a pointer to an array of VkDescriptorSetLayout objects.

• pushConstantRangeCount is the number of push constant ranges included in the pipeline layout.

• pPushConstantRanges is a pointer to an array of VkPushConstantRange structures defining a set of
push constant ranges for use in a single pipeline layout. In addition to descriptor set layouts, a
pipeline layout also describes how many push constants can be accessed by each stage of the
pipeline.

Note

Push constants represent a high speed path to modify constant data in
pipelines that is expected to outperform memory-backed resource updates.

608

Valid Usage

• VUID-VkPipelineLayoutCreateInfo-setLayoutCount-00286
setLayoutCount must be less than or equal to VkPhysicalDeviceLimits
::maxBoundDescriptorSets

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03016
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_SAMPLER and VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible
to any given shader stage across all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceLimits::maxPerStageDescriptorSamplers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03017
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceLimits::maxPerStageDescriptorUniformBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03018
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceLimits::maxPerStageDescriptorStorageBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-06939
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxPerStageDescriptorSampledImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03020
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceLimits::maxPerStageDescriptorStorageImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03021
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxPerStageDescriptorInputAttachments

• VUID-VkPipelineLayoutCreateInfo-descriptorType-02214
The total number of bindings in descriptor set layouts created without the

609

VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set and with a
descriptorType of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible to any given shader
stage across all elements of pSetLayouts, must be less than or equal to
VkPhysicalDeviceInlineUniformBlockProperties::maxPerStageDescriptorInlineUniformBlocks

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03022
The total number of descriptors with a descriptorType of VK_DESCRIPTOR_TYPE_SAMPLER and
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxPerStageDescriptorUpdateAfterBindSamp
lers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03023
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxPerStageDescriptorUpdateAfterBindUniformBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03024
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxPerStageDescriptorUpdateAfterBindStorageBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03025
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxPerStageDescriptorUpdateAfterBindSamp
ledImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03026
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
accessible to any given shader stage across all elements of pSetLayouts must be less than
or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxPerStageDescriptorUpdateAfterBindStorageImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03027
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxPerStageDescriptorUpdateAfterBindInpu
tAttachments

• VUID-VkPipelineLayoutCreateInfo-descriptorType-02215
The total number of bindings with a descriptorType of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible to any given shader stage across all
elements of pSetLayouts must be less than or equal to

610

VkPhysicalDeviceInlineUniformBlockProperties::maxPerStageDescriptorUpdateAfterBindInli
neUniformBlocks

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03028
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_SAMPLER and VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible
across all shader stages and across all elements of pSetLayouts must be less than or equal
to VkPhysicalDeviceLimits::maxDescriptorSetSamplers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03029
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetUniformBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03030
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible across all shader stages and
across all elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetUniformBuffersDynamic

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03031
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetStorageBuffers

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03032
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible across all shader stages and
across all elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetStorageBuffersDynamic

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03033
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetSampledImages

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03034
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
accessible across all shader stages and across all elements of pSetLayouts must be less
than or equal to VkPhysicalDeviceLimits::maxDescriptorSetStorageImages

611

• VUID-VkPipelineLayoutCreateInfo-descriptorType-03035
The total number of descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to VkPhysicalDeviceLimits
::maxDescriptorSetInputAttachments

• VUID-VkPipelineLayoutCreateInfo-descriptorType-02216
The total number of bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set with a descriptorType
of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible across all shader stages and across
all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceInlineUniformBlockProperties::maxDescriptorSetInlineUniformBlocks

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03036
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_SAMPLER and
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER accessible across all shader stages and across
all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxDescriptorSetUpdateAfterBindSamplers

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03037
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER accessible
across all shader stages and across all elements of pSetLayouts must be less than or equal
to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindUniformBuffers

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03038
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
accessible across all shader stages and across all elements of pSetLayouts must be less
than or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindUniformBuffersDynamic

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03039
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER accessible
across all shader stages and across all elements of pSetLayouts must be less than or equal
to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindStorageBuffers

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03040
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
accessible across all shader stages and across all elements of pSetLayouts must be less
than or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindStorageBuffersDynamic

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03041
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, and VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
accessible across all shader stages and across all elements of pSetLayouts must be less
than or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindSampledImages

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03042
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and

612

VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceDescriptorIndexingProperties::maxDescriptorSetUpdateAfterBindStorageIm
ages

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-03043
The total number of descriptors of the type VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT
accessible across all shader stages and across all elements of pSetLayouts must be less
than or equal to VkPhysicalDeviceDescriptorIndexingProperties
::maxDescriptorSetUpdateAfterBindInputAttachments

• VUID-VkPipelineLayoutCreateInfo-descriptorType-02217
The total number of bindings with a descriptorType of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceInlineUniformBlockProperties::maxDescriptorSetUpdateAfterBindInlineUni
formBlocks

• VUID-VkPipelineLayoutCreateInfo-descriptorType-06531
The total number of descriptors with a descriptorType of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK accessible across all shader stages and across all
elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceVulkan13Properties::maxInlineUniformTotalSize

• VUID-VkPipelineLayoutCreateInfo-pPushConstantRanges-00292
Any two elements of pPushConstantRanges must not include the same stage in stageFlags

• VUID-VkPipelineLayoutCreateInfo-graphicsPipelineLibrary-06753
Elements of pSetLayouts must be valid VkDescriptorSetLayout objects

Valid Usage (Implicit)

• VUID-VkPipelineLayoutCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO

• VUID-VkPipelineLayoutCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineLayoutCreateInfo-pSetLayouts-parameter
If setLayoutCount is not 0, pSetLayouts must be a valid pointer to an array of
setLayoutCount valid or VK_NULL_HANDLE VkDescriptorSetLayout handles

• VUID-VkPipelineLayoutCreateInfo-pPushConstantRanges-parameter
If pushConstantRangeCount is not 0, pPushConstantRanges must be a valid pointer to an array
of pushConstantRangeCount valid VkPushConstantRange structures

typedef enum VkPipelineLayoutCreateFlagBits {
} VkPipelineLayoutCreateFlagBits;

All values for this enum are defined by extensions.

613

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineLayoutCreateFlags;

VkPipelineLayoutCreateFlags is a bitmask type for setting a mask of VkPipelineLayoutCreateFlagBits.

The VkPushConstantRange structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPushConstantRange {
 VkShaderStageFlags stageFlags;
 uint32_t offset;
 uint32_t size;
} VkPushConstantRange;

• stageFlags is a set of stage flags describing the shader stages that will access a range of push
constants. If a particular stage is not included in the range, then accessing members of that
range of push constants from the corresponding shader stage will return undefined values.

• offset and size are the start offset and size, respectively, consumed by the range. Both offset
and size are in units of bytes and must be a multiple of 4. The layout of the push constant
variables is specified in the shader.

Valid Usage

• VUID-VkPushConstantRange-offset-00294
offset must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• VUID-VkPushConstantRange-offset-00295
offset must be a multiple of 4

• VUID-VkPushConstantRange-size-00296
size must be greater than 0

• VUID-VkPushConstantRange-size-00297
size must be a multiple of 4

• VUID-VkPushConstantRange-size-00298
size must be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus
offset

Valid Usage (Implicit)

• VUID-VkPushConstantRange-stageFlags-parameter
stageFlags must be a valid combination of VkShaderStageFlagBits values

• VUID-VkPushConstantRange-stageFlags-requiredbitmask
stageFlags must not be 0

614

Once created, pipeline layouts are used as part of pipeline creation (see Pipelines), as part of
binding descriptor sets (see Descriptor Set Binding), and as part of setting push constants (see Push
Constant Updates). Pipeline creation accepts a pipeline layout as input, and the layout may be used
to map (set, binding, arrayElement) tuples to implementation resources or memory locations within
a descriptor set. The assignment of implementation resources depends only on the bindings defined
in the descriptor sets that comprise the pipeline layout, and not on any shader source.

All resource variables statically used in all shaders in a pipeline must be declared with a (set,
binding, arrayElement) that exists in the corresponding descriptor set layout and is of an
appropriate descriptor type and includes the set of shader stages it is used by in stageFlags. The
pipeline layout can include entries that are not used by a particular pipeline. The pipeline layout
allows the application to provide a consistent set of bindings across multiple pipeline compiles,
which enables those pipelines to be compiled in a way that the implementation may cheaply switch
pipelines without reprogramming the bindings.

Similarly, the push constant block declared in each shader (if present) must only place variables at
offsets that are each included in a push constant range with stageFlags including the bit
corresponding to the shader stage that uses it. The pipeline layout can include ranges or portions of
ranges that are not used by a particular pipeline.

There is a limit on the total number of resources of each type that can be included in bindings in all
descriptor set layouts in a pipeline layout as shown in Pipeline Layout Resource Limits. The “Total
Resources Available” column gives the limit on the number of each type of resource that can be
included in bindings in all descriptor sets in the pipeline layout. Some resource types count against
multiple limits. Additionally, there are limits on the total number of each type of resource that can
be used in any pipeline stage as described in Shader Resource Limits.

Table 9. Pipeline Layout Resource Limits

Total Resources Available Resource Types

maxDescriptorSetSamplers or
maxDescriptorSetUpdateAfterBindSamplers

sampler

combined image sampler

maxDescriptorSetSampledImages or
maxDescriptorSetUpdateAfterBindSampledImages

sampled image

combined image sampler

uniform texel buffer

maxDescriptorSetStorageImages or
maxDescriptorSetUpdateAfterBindStorageImages

storage image

storage texel buffer

maxDescriptorSetUniformBuffers or
maxDescriptorSetUpdateAfterBindUniformBuffers

uniform buffer

uniform buffer dynamic

maxDescriptorSetUniformBuffersDynamic or
maxDescriptorSetUpdateAfterBindUniformBuffersD
ynamic

uniform buffer dynamic

maxDescriptorSetStorageBuffers or
maxDescriptorSetUpdateAfterBindStorageBuffers

storage buffer

storage buffer dynamic

615

Total Resources Available Resource Types

maxDescriptorSetStorageBuffersDynamic or
maxDescriptorSetUpdateAfterBindStorageBuffersD
ynamic

storage buffer dynamic

maxDescriptorSetInputAttachments or
maxDescriptorSetUpdateAfterBindInputAttachment
s

input attachment

maxDescriptorSetInlineUniformBlocks or
maxDescriptorSetUpdateAfterBindInlineUniformBl
ocks

inline uniform block

To destroy a pipeline layout, call:

// Provided by VK_VERSION_1_0
void vkDestroyPipelineLayout(
 VkDevice device,
 VkPipelineLayout pipelineLayout,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline layout.

• pipelineLayout is the pipeline layout to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyPipelineLayout-pipelineLayout-00299
If VkAllocationCallbacks were provided when pipelineLayout was created, a compatible
set of callbacks must be provided here

• VUID-vkDestroyPipelineLayout-pipelineLayout-00300
If no VkAllocationCallbacks were provided when pipelineLayout was created, pAllocator
must be NULL

• VUID-vkDestroyPipelineLayout-pipelineLayout-02004
pipelineLayout must not have been passed to any vkCmd* command for any command
buffers that are still in the recording state when vkDestroyPipelineLayout is called

Valid Usage (Implicit)

• VUID-vkDestroyPipelineLayout-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyPipelineLayout-pipelineLayout-parameter
If pipelineLayout is not VK_NULL_HANDLE, pipelineLayout must be a valid
VkPipelineLayout handle

• VUID-vkDestroyPipelineLayout-pAllocator-parameter

616

If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyPipelineLayout-pipelineLayout-parent
If pipelineLayout is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to pipelineLayout must be externally synchronized

Pipeline Layout Compatibility

Two pipeline layouts are defined to be “compatible for push constants” if they were created with
identical push constant ranges. Two pipeline layouts are defined to be “compatible for set N” if they
were created with identically defined descriptor set layouts for sets zero through N, and if they were
created with identical push constant ranges.

When binding a descriptor set (see Descriptor Set Binding) to set number N, a previously bound
descriptor set bound with lower index M than N is disturbed if the pipeline layouts for set M and N
are not compatible for set M. Otherwise, the bound descriptor set in M is not disturbed.

If, additionally, the previously bound descriptor set for set N was bound using a pipeline layout not
compatible for set N, then all bindings in sets numbered greater than N are disturbed.

When binding a pipeline, the pipeline can correctly access any previously bound descriptor set N if
it was bound with compatible pipeline layout for set N, and it was not disturbed.

Layout compatibility means that descriptor sets can be bound to a command buffer for use by any
pipeline created with a compatible pipeline layout, and without having bound a particular pipeline
first. It also means that descriptor sets can remain valid across a pipeline change, and the same
resources will be accessible to the newly bound pipeline.

When a descriptor set is disturbed by binding descriptor sets, the disturbed set is considered to
contain undefined descriptors bound with the same pipeline layout as the disturbing descriptor set.

Implementor’s Note

A consequence of layout compatibility is that when the implementation compiles a pipeline
layout and maps pipeline resources to implementation resources, the mechanism for set N
should only be a function of sets [0..N].

Note

Place the least frequently changing descriptor sets near the start of the pipeline
layout, and place the descriptor sets representing the most frequently changing
resources near the end. When pipelines are switched, only the descriptor set
bindings that have been invalidated will need to be updated and the remainder of

617

the descriptor set bindings will remain in place.

The maximum number of descriptor sets that can be bound to a pipeline layout is queried from
physical device properties (see maxBoundDescriptorSets in Limits).

API example

const VkDescriptorSetLayout layouts[] = { layout1, layout2 };

const VkPushConstantRange ranges[] =
{
 {
 .stageFlags = VK_SHADER_STAGE_VERTEX_BIT,
 .offset = 0,
 .size = 4
 },
 {
 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
 .offset = 4,
 .size = 4
 },
};

const VkPipelineLayoutCreateInfo createInfo =
{
 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
 .pNext = NULL,
 .flags = 0,
 .setLayoutCount = 2,
 .pSetLayouts = layouts,
 .pushConstantRangeCount = 2,
 .pPushConstantRanges = ranges
};

VkPipelineLayout myPipelineLayout;
myResult = vkCreatePipelineLayout(
 myDevice,
 &createInfo,
 NULL,
 &myPipelineLayout);

14.2.3. Allocation of Descriptor Sets

A descriptor pool maintains a pool of descriptors, from which descriptor sets are allocated.
Descriptor pools are externally synchronized, meaning that the application must not allocate
and/or free descriptor sets from the same pool in multiple threads simultaneously.

Descriptor pools are represented by VkDescriptorPool handles:

618

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorPool)

To create a descriptor pool object, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateDescriptorPool(
 VkDevice device,
 const VkDescriptorPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorPool* pDescriptorPool);

• device is the logical device that creates the descriptor pool.

• pCreateInfo is a pointer to a VkDescriptorPoolCreateInfo structure specifying the state of the
descriptor pool object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDescriptorPool is a pointer to a VkDescriptorPool handle in which the resulting descriptor pool
object is returned.

The created descriptor pool is returned in pDescriptorPool.

Valid Usage (Implicit)

• VUID-vkCreateDescriptorPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateDescriptorPool-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDescriptorPoolCreateInfo structure

• VUID-vkCreateDescriptorPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDescriptorPool-pDescriptorPool-parameter
pDescriptorPool must be a valid pointer to a VkDescriptorPool handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

619

Additional information about the pool is passed in a VkDescriptorPoolCreateInfo structure:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorPoolCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorPoolCreateFlags flags;
 uint32_t maxSets;
 uint32_t poolSizeCount;
 const VkDescriptorPoolSize* pPoolSizes;
} VkDescriptorPoolCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkDescriptorPoolCreateFlagBits specifying certain supported operations on
the pool.

• maxSets is the maximum number of descriptor sets that can be allocated from the pool.

• poolSizeCount is the number of elements in pPoolSizes.

• pPoolSizes is a pointer to an array of VkDescriptorPoolSize structures, each containing a
descriptor type and number of descriptors of that type to be allocated in the pool.

If multiple VkDescriptorPoolSize structures containing the same descriptor type appear in the
pPoolSizes array then the pool will be created with enough storage for the total number of
descriptors of each type.

Fragmentation of a descriptor pool is possible and may lead to descriptor set allocation failures. A
failure due to fragmentation is defined as failing a descriptor set allocation despite the sum of all
outstanding descriptor set allocations from the pool plus the requested allocation requiring no
more than the total number of descriptors requested at pool creation. Implementations provide
certain guarantees of when fragmentation must not cause allocation failure, as described below.

If a descriptor pool has not had any descriptor sets freed since it was created or most recently reset
then fragmentation must not cause an allocation failure (note that this is always the case for a pool
created without the VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT bit set). Additionally, if all
sets allocated from the pool since it was created or most recently reset use the same number of
descriptors (of each type) and the requested allocation also uses that same number of descriptors
(of each type), then fragmentation must not cause an allocation failure.

If an allocation failure occurs due to fragmentation, an application can create an additional
descriptor pool to perform further descriptor set allocations.

If flags has the VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT bit set, descriptor pool creation
may fail with the error VK_ERROR_FRAGMENTATION if the total number of descriptors across all pools
(including this one) created with this bit set exceeds maxUpdateAfterBindDescriptorsInAllPools, or if
fragmentation of the underlying hardware resources occurs.

620

Valid Usage

• VUID-VkDescriptorPoolCreateInfo-descriptorPoolOverallocation-09227
maxSets must be greater than 0

• VUID-VkDescriptorPoolCreateInfo-pPoolSizes-09424
If pPoolSizes contains a descriptorType of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, the
pNext chain must include a VkDescriptorPoolInlineUniformBlockCreateInfo structure
whose maxInlineUniformBlockBindings member is not zero

Valid Usage (Implicit)

• VUID-VkDescriptorPoolCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO

• VUID-VkDescriptorPoolCreateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkDescriptorPoolInlineUniformBlockCreateInfo

• VUID-VkDescriptorPoolCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkDescriptorPoolCreateInfo-flags-parameter
flags must be a valid combination of VkDescriptorPoolCreateFlagBits values

• VUID-VkDescriptorPoolCreateInfo-pPoolSizes-parameter
If poolSizeCount is not 0, pPoolSizes must be a valid pointer to an array of poolSizeCount
valid VkDescriptorPoolSize structures

In order to be able to allocate descriptor sets having inline uniform block bindings the descriptor
pool must be created with specifying the inline uniform block binding capacity of the descriptor
pool, in addition to the total inline uniform data capacity in bytes which is specified through a
VkDescriptorPoolSize structure with a descriptorType value of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK. This can be done by adding a
VkDescriptorPoolInlineUniformBlockCreateInfo structure to the pNext chain of
VkDescriptorPoolCreateInfo.

The VkDescriptorPoolInlineUniformBlockCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkDescriptorPoolInlineUniformBlockCreateInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t maxInlineUniformBlockBindings;
} VkDescriptorPoolInlineUniformBlockCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

621

• maxInlineUniformBlockBindings is the number of inline uniform block bindings to allocate.

Valid Usage (Implicit)

• VUID-VkDescriptorPoolInlineUniformBlockCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO

Bits which can be set in VkDescriptorPoolCreateInfo::flags, enabling operations on a descriptor
pool, are:

// Provided by VK_VERSION_1_0
typedef enum VkDescriptorPoolCreateFlagBits {
 VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT = 0x00000001,
 // Provided by VK_VERSION_1_2
 VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT = 0x00000002,
} VkDescriptorPoolCreateFlagBits;

• VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT specifies that descriptor sets can return
their individual allocations to the pool, i.e. all of vkAllocateDescriptorSets,
vkFreeDescriptorSets, and vkResetDescriptorPool are allowed. Otherwise, descriptor sets
allocated from the pool must not be individually freed back to the pool, i.e. only
vkAllocateDescriptorSets and vkResetDescriptorPool are allowed.

• VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT specifies that descriptor sets allocated from
this pool can include bindings with the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit set. It is
valid to allocate descriptor sets that have bindings that do not set the
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit from a pool that has
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT set.

// Provided by VK_VERSION_1_0
typedef VkFlags VkDescriptorPoolCreateFlags;

VkDescriptorPoolCreateFlags is a bitmask type for setting a mask of zero or more
VkDescriptorPoolCreateFlagBits.

The VkDescriptorPoolSize structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorPoolSize {
 VkDescriptorType type;
 uint32_t descriptorCount;
} VkDescriptorPoolSize;

• type is the type of descriptor.

• descriptorCount is the number of descriptors of that type to allocate. If type is

622

VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then descriptorCount is the number of bytes to allocate
for descriptors of this type.

Valid Usage

• VUID-VkDescriptorPoolSize-descriptorCount-00302
descriptorCount must be greater than 0

• VUID-VkDescriptorPoolSize-type-02218
If type is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then descriptorCount must be a
multiple of 4

Valid Usage (Implicit)

• VUID-VkDescriptorPoolSize-type-parameter
type must be a valid VkDescriptorType value

To destroy a descriptor pool, call:

// Provided by VK_VERSION_1_0
void vkDestroyDescriptorPool(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the descriptor pool.

• descriptorPool is the descriptor pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

When a pool is destroyed, all descriptor sets allocated from the pool are implicitly freed and
become invalid. Descriptor sets allocated from a given pool do not need to be freed before
destroying that descriptor pool.

Valid Usage

• VUID-vkDestroyDescriptorPool-descriptorPool-00303
All submitted commands that refer to descriptorPool (via any allocated descriptor sets)
must have completed execution

• VUID-vkDestroyDescriptorPool-descriptorPool-00304
If VkAllocationCallbacks were provided when descriptorPool was created, a compatible
set of callbacks must be provided here

• VUID-vkDestroyDescriptorPool-descriptorPool-00305
If no VkAllocationCallbacks were provided when descriptorPool was created, pAllocator
must be NULL

623

Valid Usage (Implicit)

• VUID-vkDestroyDescriptorPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyDescriptorPool-descriptorPool-parameter
If descriptorPool is not VK_NULL_HANDLE, descriptorPool must be a valid
VkDescriptorPool handle

• VUID-vkDestroyDescriptorPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyDescriptorPool-descriptorPool-parent
If descriptorPool is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to descriptorPool must be externally synchronized

Descriptor sets are allocated from descriptor pool objects, and are represented by VkDescriptorSet
handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorSet)

To allocate descriptor sets from a descriptor pool, call:

// Provided by VK_VERSION_1_0
VkResult vkAllocateDescriptorSets(
 VkDevice device,
 const VkDescriptorSetAllocateInfo* pAllocateInfo,
 VkDescriptorSet* pDescriptorSets);

• device is the logical device that owns the descriptor pool.

• pAllocateInfo is a pointer to a VkDescriptorSetAllocateInfo structure describing parameters of
the allocation.

• pDescriptorSets is a pointer to an array of VkDescriptorSet handles in which the resulting
descriptor set objects are returned.

The allocated descriptor sets are returned in pDescriptorSets.

When a descriptor set is allocated, the initial state is largely uninitialized and all descriptors are
undefined, with the exception that samplers with a non-null pImmutableSamplers are initialized on
allocation. Descriptors also become undefined if the underlying resource or view object is

624

destroyed. Descriptor sets containing undefined descriptors can still be bound and used, subject to
the following conditions:

• For descriptor set bindings created with the VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT bit set,
all descriptors in that binding that are dynamically used must have been populated before the
descriptor set is consumed.

• For descriptor set bindings created without the VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT bit
set, all descriptors in that binding that are statically used must have been populated before the
descriptor set is consumed.

• Descriptor bindings with descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK can be
undefined when the descriptor set is consumed; though values in that block will be undefined.

• Entries that are not used by a pipeline can have undefined descriptors.

If a call to vkAllocateDescriptorSets would cause the total number of descriptor sets allocated from
the pool to exceed the value of VkDescriptorPoolCreateInfo::maxSets used to create pAllocateInfo-
>descriptorPool, then the allocation may fail due to lack of space in the descriptor pool. Similarly,
the allocation may fail due to lack of space if the call to vkAllocateDescriptorSets would cause the
number of any given descriptor type to exceed the sum of all the descriptorCount members of each
element of VkDescriptorPoolCreateInfo::pPoolSizes with a type equal to that type.

Additionally, the allocation may also fail if a call to vkAllocateDescriptorSets would cause the total
number of inline uniform block bindings allocated from the pool to exceed the value of
VkDescriptorPoolInlineUniformBlockCreateInfo::maxInlineUniformBlockBindings used to create the
descriptor pool.

If the allocation fails due to no more space in the descriptor pool, and not because of system or
device memory exhaustion, then VK_ERROR_OUT_OF_POOL_MEMORY must be returned.

vkAllocateDescriptorSets can be used to create multiple descriptor sets. If the creation of any of
those descriptor sets fails, then the implementation must destroy all successfully created descriptor
set objects from this command, set all entries of the pDescriptorSets array to VK_NULL_HANDLE
and return the error.

Valid Usage (Implicit)

• VUID-vkAllocateDescriptorSets-device-parameter
device must be a valid VkDevice handle

• VUID-vkAllocateDescriptorSets-pAllocateInfo-parameter
pAllocateInfo must be a valid pointer to a valid VkDescriptorSetAllocateInfo structure

• VUID-vkAllocateDescriptorSets-pDescriptorSets-parameter
pDescriptorSets must be a valid pointer to an array of pAllocateInfo->descriptorSetCount
VkDescriptorSet handles

• VUID-vkAllocateDescriptorSets-pAllocateInfo::descriptorSetCount-arraylength
pAllocateInfo->descriptorSetCount must be greater than 0

625

Host Synchronization

• Host access to pAllocateInfo->descriptorPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FRAGMENTED_POOL

• VK_ERROR_OUT_OF_POOL_MEMORY

The VkDescriptorSetAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorSetAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorPool descriptorPool;
 uint32_t descriptorSetCount;
 const VkDescriptorSetLayout* pSetLayouts;
} VkDescriptorSetAllocateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• descriptorPool is the pool which the sets will be allocated from.

• descriptorSetCount determines the number of descriptor sets to be allocated from the pool.

• pSetLayouts is a pointer to an array of descriptor set layouts, with each member specifying how
the corresponding descriptor set is allocated.

Valid Usage

• VUID-VkDescriptorSetAllocateInfo-apiVersion-07895
If the VK_KHR_maintenance1 extension is not enabled and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, descriptorSetCount must not be greater than the
number of sets that are currently available for allocation in descriptorPool

• VUID-VkDescriptorSetAllocateInfo-apiVersion-07896
If the VK_KHR_maintenance1 extension is not enabled and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, descriptorPool must have enough free descriptor

626

capacity remaining to allocate the descriptor sets of the specified layouts

• VUID-VkDescriptorSetAllocateInfo-pSetLayouts-03044
If any element of pSetLayouts was created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set, descriptorPool must
have been created with the VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set

• VUID-VkDescriptorSetAllocateInfo-pSetLayouts-09380
If pSetLayouts[i] was created with an element of pBindingFlags that includes
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT, and
VkDescriptorSetVariableDescriptorCountAllocateInfo is included in the pNext chain, and
VkDescriptorSetVariableDescriptorCountAllocateInfo::descriptorSetCount is not zero, then
VkDescriptorSetVariableDescriptorCountAllocateInfo::pDescriptorCounts[i] must be less
than or equal to VkDescriptorSetLayoutBinding::descriptorCount for the corresponding
binding used to create pSetLayouts[i]

Valid Usage (Implicit)

• VUID-VkDescriptorSetAllocateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO

• VUID-VkDescriptorSetAllocateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkDescriptorSetVariableDescriptorCountAllocateInfo

• VUID-VkDescriptorSetAllocateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkDescriptorSetAllocateInfo-descriptorPool-parameter
descriptorPool must be a valid VkDescriptorPool handle

• VUID-VkDescriptorSetAllocateInfo-pSetLayouts-parameter
pSetLayouts must be a valid pointer to an array of descriptorSetCount valid
VkDescriptorSetLayout handles

• VUID-VkDescriptorSetAllocateInfo-descriptorSetCount-arraylength
descriptorSetCount must be greater than 0

• VUID-VkDescriptorSetAllocateInfo-commonparent
Both of descriptorPool, and the elements of pSetLayouts must have been created,
allocated, or retrieved from the same VkDevice

If the pNext chain of a VkDescriptorSetAllocateInfo structure includes a
VkDescriptorSetVariableDescriptorCountAllocateInfo structure, then that structure includes an
array of descriptor counts for variable-sized descriptor bindings, one for each descriptor set being
allocated.

The VkDescriptorSetVariableDescriptorCountAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkDescriptorSetVariableDescriptorCountAllocateInfo {

627

 VkStructureType sType;
 const void* pNext;
 uint32_t descriptorSetCount;
 const uint32_t* pDescriptorCounts;
} VkDescriptorSetVariableDescriptorCountAllocateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• descriptorSetCount is zero or the number of elements in pDescriptorCounts.

• pDescriptorCounts is a pointer to an array of descriptor counts, with each member specifying the
number of descriptors in a variable-sized descriptor binding in the corresponding descriptor set
being allocated.

If descriptorSetCount is zero or this structure is not included in the pNext chain, then the variable
lengths are considered to be zero. Otherwise, pDescriptorCounts[i] is the number of descriptors in
the variable-sized descriptor binding in the corresponding descriptor set layout. If the variable-
sized descriptor binding in the corresponding descriptor set layout has a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then pDescriptorCounts[i] specifies the binding’s capacity
in bytes. If VkDescriptorSetAllocateInfo::pSetLayouts[i] does not include a variable-sized descriptor
binding, then pDescriptorCounts[i] is ignored.

Valid Usage

• VUID-VkDescriptorSetVariableDescriptorCountAllocateInfo-descriptorSetCount-03045
If descriptorSetCount is not zero, descriptorSetCount must equal
VkDescriptorSetAllocateInfo::descriptorSetCount

Valid Usage (Implicit)

• VUID-VkDescriptorSetVariableDescriptorCountAllocateInfo-sType-sType
sType must be
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO

• VUID-VkDescriptorSetVariableDescriptorCountAllocateInfo-pDescriptorCounts-parameter
If descriptorSetCount is not 0, pDescriptorCounts must be a valid pointer to an array of
descriptorSetCount uint32_t values

To free allocated descriptor sets, call:

// Provided by VK_VERSION_1_0
VkResult vkFreeDescriptorSets(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 uint32_t descriptorSetCount,

628

 const VkDescriptorSet* pDescriptorSets);

• device is the logical device that owns the descriptor pool.

• descriptorPool is the descriptor pool from which the descriptor sets were allocated.

• descriptorSetCount is the number of elements in the pDescriptorSets array.

• pDescriptorSets is a pointer to an array of handles to VkDescriptorSet objects.

After calling vkFreeDescriptorSets, all descriptor sets in pDescriptorSets are invalid.

Valid Usage

• VUID-vkFreeDescriptorSets-pDescriptorSets-00309
All submitted commands that refer to any element of pDescriptorSets must have
completed execution

• VUID-vkFreeDescriptorSets-pDescriptorSets-00310
pDescriptorSets must be a valid pointer to an array of descriptorSetCount VkDescriptorSet
handles, each element of which must either be a valid handle or VK_NULL_HANDLE

• VUID-vkFreeDescriptorSets-descriptorPool-00312
descriptorPool must have been created with the
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT flag

Valid Usage (Implicit)

• VUID-vkFreeDescriptorSets-device-parameter
device must be a valid VkDevice handle

• VUID-vkFreeDescriptorSets-descriptorPool-parameter
descriptorPool must be a valid VkDescriptorPool handle

• VUID-vkFreeDescriptorSets-descriptorSetCount-arraylength
descriptorSetCount must be greater than 0

• VUID-vkFreeDescriptorSets-descriptorPool-parent
descriptorPool must have been created, allocated, or retrieved from device

• VUID-vkFreeDescriptorSets-pDescriptorSets-parent
Each element of pDescriptorSets that is a valid handle must have been created, allocated,
or retrieved from descriptorPool

Host Synchronization

• Host access to descriptorPool must be externally synchronized

• Host access to each member of pDescriptorSets must be externally synchronized

629

Return Codes

Success

• VK_SUCCESS

To return all descriptor sets allocated from a given pool to the pool, rather than freeing individual
descriptor sets, call:

// Provided by VK_VERSION_1_0
VkResult vkResetDescriptorPool(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 VkDescriptorPoolResetFlags flags);

• device is the logical device that owns the descriptor pool.

• descriptorPool is the descriptor pool to be reset.

• flags is reserved for future use.

Resetting a descriptor pool recycles all of the resources from all of the descriptor sets allocated
from the descriptor pool back to the descriptor pool, and the descriptor sets are implicitly freed.

Valid Usage

• VUID-vkResetDescriptorPool-descriptorPool-00313
All uses of descriptorPool (via any allocated descriptor sets) must have completed
execution

Valid Usage (Implicit)

• VUID-vkResetDescriptorPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetDescriptorPool-descriptorPool-parameter
descriptorPool must be a valid VkDescriptorPool handle

• VUID-vkResetDescriptorPool-flags-zerobitmask
flags must be 0

• VUID-vkResetDescriptorPool-descriptorPool-parent
descriptorPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to descriptorPool must be externally synchronized

630

• Host access to any VkDescriptorSet objects allocated from descriptorPool must be
externally synchronized

Return Codes

Success

• VK_SUCCESS

// Provided by VK_VERSION_1_0
typedef VkFlags VkDescriptorPoolResetFlags;

VkDescriptorPoolResetFlags is a bitmask type for setting a mask, but is currently reserved for future
use.

14.2.4. Descriptor Set Updates

Once allocated, descriptor sets can be updated with a combination of write and copy operations. To
update descriptor sets, call:

// Provided by VK_VERSION_1_0
void vkUpdateDescriptorSets(
 VkDevice device,
 uint32_t descriptorWriteCount,
 const VkWriteDescriptorSet* pDescriptorWrites,
 uint32_t descriptorCopyCount,
 const VkCopyDescriptorSet* pDescriptorCopies);

• device is the logical device that updates the descriptor sets.

• descriptorWriteCount is the number of elements in the pDescriptorWrites array.

• pDescriptorWrites is a pointer to an array of VkWriteDescriptorSet structures describing the
descriptor sets to write to.

• descriptorCopyCount is the number of elements in the pDescriptorCopies array.

• pDescriptorCopies is a pointer to an array of VkCopyDescriptorSet structures describing the
descriptor sets to copy between.

The operations described by pDescriptorWrites are performed first, followed by the operations
described by pDescriptorCopies. Within each array, the operations are performed in the order they
appear in the array.

Each element in the pDescriptorWrites array describes an operation updating the descriptor set
using descriptors for resources specified in the structure.

Each element in the pDescriptorCopies array is a VkCopyDescriptorSet structure describing an
operation copying descriptors between sets.

631

If the dstSet member of any element of pDescriptorWrites or pDescriptorCopies is bound, accessed,
or modified by any command that was recorded to a command buffer which is currently in the
recording or executable state, and any of the descriptor bindings that are updated were not created
with the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT or
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT bits set, that command buffer becomes
invalid.

Valid Usage

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06236
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
elements of the pTexelBufferView member of pDescriptorWrites[i] must have been created
on device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06237
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the buffer member of any element of the
pBufferInfo member of pDescriptorWrites[i] must have been created on device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06238
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and dstSet was
not allocated with a layout that included immutable samplers for dstBinding with
descriptorType, the sampler member of any element of the pImageInfo member of
pDescriptorWrites[i] must have been created on device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06239
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER the
imageView member of any element of pDescriptorWrites[i] must have been created on
device

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06493
For each element i where pDescriptorWrites[i].descriptorType is
VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, pDescriptorWrites[i].pImageInfo must be a valid
pointer to an array of pDescriptorWrites[i].descriptorCount valid VkDescriptorImageInfo
structures

• VUID-vkUpdateDescriptorSets-None-03047
The dstSet member of each element of pDescriptorWrites or pDescriptorCopies for
bindings which were created without the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT or
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT bits set must not be used by any
command that was recorded to a command buffer which is in the pending state

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-06993

632

Host access to pDescriptorWrites[i].dstSet and pDescriptorCopies[i].dstSet must be
externally synchronized unless explicitly denoted otherwise for specific flags

Valid Usage (Implicit)

• VUID-vkUpdateDescriptorSets-device-parameter
device must be a valid VkDevice handle

• VUID-vkUpdateDescriptorSets-pDescriptorWrites-parameter
If descriptorWriteCount is not 0, pDescriptorWrites must be a valid pointer to an array of
descriptorWriteCount valid VkWriteDescriptorSet structures

• VUID-vkUpdateDescriptorSets-pDescriptorCopies-parameter
If descriptorCopyCount is not 0, pDescriptorCopies must be a valid pointer to an array of
descriptorCopyCount valid VkCopyDescriptorSet structures

The VkWriteDescriptorSet structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkWriteDescriptorSet {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSet dstSet;
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
 VkDescriptorType descriptorType;
 const VkDescriptorImageInfo* pImageInfo;
 const VkDescriptorBufferInfo* pBufferInfo;
 const VkBufferView* pTexelBufferView;
} VkWriteDescriptorSet;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dstSet is the destination descriptor set to update.

• dstBinding is the descriptor binding within that set.

• dstArrayElement is the starting element in that array. If the descriptor binding identified by
dstSet and dstBinding has a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then
dstArrayElement specifies the starting byte offset within the binding.

• descriptorCount is the number of descriptors to update. If the descriptor binding identified by
dstSet and dstBinding has a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, then
descriptorCount specifies the number of bytes to update. Otherwise, descriptorCount is one of

◦ the number of elements in pImageInfo

◦ the number of elements in pBufferInfo

633

◦ the number of elements in pTexelBufferView

◦ a value matching the dataSize member of a VkWriteDescriptorSetInlineUniformBlock
structure in the pNext chain

• descriptorType is a VkDescriptorType specifying the type of each descriptor in pImageInfo,
pBufferInfo, or pTexelBufferView, as described below. It must be the same type as the
descriptorType specified in VkDescriptorSetLayoutBinding for dstSet at dstBinding. The type of
the descriptor also controls which array the descriptors are taken from.

• pImageInfo is a pointer to an array of VkDescriptorImageInfo structures or is ignored, as
described below.

• pBufferInfo is a pointer to an array of VkDescriptorBufferInfo structures or is ignored, as
described below.

• pTexelBufferView is a pointer to an array of VkBufferView handles as described in the Buffer
Views section or is ignored, as described below.

Only one of pImageInfo, pBufferInfo, or pTexelBufferView members is used according to the
descriptor type specified in the descriptorType member of the containing VkWriteDescriptorSet
structure, or none of them in case descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, in
which case the source data for the descriptor writes is taken from the
VkWriteDescriptorSetInlineUniformBlock structure included in the pNext chain of
VkWriteDescriptorSet, as specified below.

If the dstBinding has fewer than descriptorCount array elements remaining starting from
dstArrayElement, then the remainder will be used to update the subsequent binding - dstBinding+1
starting at array element zero. If a binding has a descriptorCount of zero, it is skipped. This
behavior applies recursively, with the update affecting consecutive bindings as needed to update all
descriptorCount descriptors. Consecutive bindings must have identical VkDescriptorType,
VkShaderStageFlags, VkDescriptorBindingFlagBits, and immutable samplers references.

Note

The same behavior applies to bindings with a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK where descriptorCount specifies the
number of bytes to update while dstArrayElement specifies the starting byte offset,
thus in this case if the dstBinding has a smaller byte size than the sum of
dstArrayElement and descriptorCount, then the remainder will be used to update
the subsequent binding - dstBinding+1 starting at offset zero. This falls out as a
special case of the above rule.

Valid Usage

• VUID-VkWriteDescriptorSet-dstBinding-00315
dstBinding must be less than or equal to the maximum value of binding of all
VkDescriptorSetLayoutBinding structures specified when dstSet’s descriptor set layout
was created

• VUID-VkWriteDescriptorSet-dstBinding-00316
dstBinding must be a binding with a non-zero descriptorCount

634

• VUID-VkWriteDescriptorSet-descriptorCount-00317
All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those
with a descriptorCount of zero, must have identical descriptorType and stageFlags

• VUID-VkWriteDescriptorSet-descriptorCount-00318
All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those
with a descriptorCount of zero, must all either use immutable samplers or must all not
use immutable samplers

• VUID-VkWriteDescriptorSet-descriptorType-00319
descriptorType must match the type of dstBinding within dstSet

• VUID-VkWriteDescriptorSet-dstSet-00320
dstSet must be a valid VkDescriptorSet handle

• VUID-VkWriteDescriptorSet-dstArrayElement-00321
The sum of dstArrayElement and descriptorCount must be less than or equal to the number
of array elements in the descriptor set binding specified by dstBinding, and all applicable
consecutive bindings, as described by consecutive binding updates

• VUID-VkWriteDescriptorSet-descriptorType-02219
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, dstArrayElement must be an
integer multiple of 4

• VUID-VkWriteDescriptorSet-descriptorType-02220
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, descriptorCount must be an
integer multiple of 4

• VUID-VkWriteDescriptorSet-descriptorType-02994
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, each element of pTexelBufferView must be
either a valid VkBufferView handle or VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-02995
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER and the nullDescriptor feature is not enabled,
each element of pTexelBufferView must not be VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-00324
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, pBufferInfo must be a valid pointer to an
array of descriptorCount valid VkDescriptorBufferInfo structures

• VUID-VkWriteDescriptorSet-descriptorType-00325
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and dstSet was not allocated with a layout
that included immutable samplers for dstBinding with descriptorType, the sampler
member of each element of pImageInfo must be a valid VkSampler object

• VUID-VkWriteDescriptorSet-descriptorType-02996
If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, the imageView
member of each element of pImageInfo must be either a valid VkImageView handle or

635

VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-02997
If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and the
nullDescriptor feature is not enabled, the imageView member of each element of
pImageInfo must not be VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-07683
If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView member of each
element of pImageInfo must not be VK_NULL_HANDLE

• VUID-VkWriteDescriptorSet-descriptorType-02221
If descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, the pNext chain must
include a VkWriteDescriptorSetInlineUniformBlock structure whose dataSize member
equals descriptorCount

• VUID-VkWriteDescriptorSet-descriptorType-00327
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the offset member of each element of
pBufferInfo must be a multiple of VkPhysicalDeviceLimits
::minUniformBufferOffsetAlignment

• VUID-VkWriteDescriptorSet-descriptorType-00328
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the offset member of each element of
pBufferInfo must be a multiple of VkPhysicalDeviceLimits
::minStorageBufferOffsetAlignment

• VUID-VkWriteDescriptorSet-descriptorType-00329
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, and the buffer member of any element of
pBufferInfo is the handle of a non-sparse buffer, then that buffer must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkWriteDescriptorSet-descriptorType-00330
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the buffer member of each element of
pBufferInfo must have been created with VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT set

• VUID-VkWriteDescriptorSet-descriptorType-00331
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the buffer member of each element of
pBufferInfo must have been created with VK_BUFFER_USAGE_STORAGE_BUFFER_BIT set

• VUID-VkWriteDescriptorSet-descriptorType-00332
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, the range member of each element of
pBufferInfo, or the effective range if range is VK_WHOLE_SIZE, must be less than or equal to
VkPhysicalDeviceLimits::maxUniformBufferRange

• VUID-VkWriteDescriptorSet-descriptorType-00333
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or

636

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the range member of each element of
pBufferInfo, or the effective range if range is VK_WHOLE_SIZE, must be less than or equal to
VkPhysicalDeviceLimits::maxStorageBufferRange

• VUID-VkWriteDescriptorSet-descriptorType-08765
If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, the pTexelBufferView buffer
view usage must include VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT

• VUID-VkWriteDescriptorSet-descriptorType-08766
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, the pTexelBufferView buffer
view usage must include VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

• VUID-VkWriteDescriptorSet-descriptorType-00336
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE or
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView member of each element of pImageInfo
must have been created with the identity swizzle

• VUID-VkWriteDescriptorSet-descriptorType-00337
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, the imageView member of each element of
pImageInfo must have been created with VK_IMAGE_USAGE_SAMPLED_BIT set

• VUID-VkWriteDescriptorSet-descriptorType-04149
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE the imageLayout member of each
element of pImageInfo must be a member of the list given in Sampled Image

• VUID-VkWriteDescriptorSet-descriptorType-04150
If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER the imageLayout member of
each element of pImageInfo must be a member of the list given in Combined Image
Sampler

• VUID-VkWriteDescriptorSet-descriptorType-04151
If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT the imageLayout member of each
element of pImageInfo must be a member of the list given in Input Attachment

• VUID-VkWriteDescriptorSet-descriptorType-04152
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE the imageLayout member of each
element of pImageInfo must be a member of the list given in Storage Image

• VUID-VkWriteDescriptorSet-descriptorType-00338
If descriptorType is VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the imageView member of each
element of pImageInfo must have been created with VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT
set

• VUID-VkWriteDescriptorSet-descriptorType-00339
If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, the imageView member of each
element of pImageInfo must have been created with VK_IMAGE_USAGE_STORAGE_BIT set

• VUID-VkWriteDescriptorSet-descriptorType-02752
If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER, then dstSet must not have been allocated
with a layout that included immutable samplers for dstBinding

637

Valid Usage (Implicit)

• VUID-VkWriteDescriptorSet-sType-sType
sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET

• VUID-VkWriteDescriptorSet-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkWriteDescriptorSetInlineUniformBlock

• VUID-VkWriteDescriptorSet-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkWriteDescriptorSet-descriptorType-parameter
descriptorType must be a valid VkDescriptorType value

• VUID-VkWriteDescriptorSet-descriptorCount-arraylength
descriptorCount must be greater than 0

• VUID-VkWriteDescriptorSet-commonparent
Both of dstSet, and the elements of pTexelBufferView that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

The type of descriptors in a descriptor set is specified by VkWriteDescriptorSet::descriptorType,
which must be one of the values:

// Provided by VK_VERSION_1_0
typedef enum VkDescriptorType {
 VK_DESCRIPTOR_TYPE_SAMPLER = 0,
 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER = 1,
 VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE = 2,
 VK_DESCRIPTOR_TYPE_STORAGE_IMAGE = 3,
 VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER = 4,
 VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER = 5,
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER = 6,
 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER = 7,
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC = 8,
 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC = 9,
 VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT = 10,
 // Provided by VK_VERSION_1_3
 VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK = 1000138000,
} VkDescriptorType;

• VK_DESCRIPTOR_TYPE_SAMPLER specifies a sampler descriptor.

• VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER specifies a combined image sampler descriptor.

• VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE specifies a sampled image descriptor.

• VK_DESCRIPTOR_TYPE_STORAGE_IMAGE specifies a storage image descriptor.

• VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER specifies a uniform texel buffer descriptor.

• VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER specifies a storage texel buffer descriptor.

638

• VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER specifies a uniform buffer descriptor.

• VK_DESCRIPTOR_TYPE_STORAGE_BUFFER specifies a storage buffer descriptor.

• VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC specifies a dynamic uniform buffer descriptor.

• VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC specifies a dynamic storage buffer descriptor.

• VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT specifies an input attachment descriptor.

• VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK specifies an inline uniform block.

When a descriptor set is updated via elements of VkWriteDescriptorSet, members of pImageInfo,
pBufferInfo and pTexelBufferView are only accessed by the implementation when they correspond
to descriptor type being defined - otherwise they are ignored. The members accessed are as follows
for each descriptor type:

• For VK_DESCRIPTOR_TYPE_SAMPLER, only the sampler member of each element of
VkWriteDescriptorSet::pImageInfo is accessed.

• For VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, only the imageView and imageLayout members of each
element of VkWriteDescriptorSet::pImageInfo are accessed.

• For VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, all members of each element of
VkWriteDescriptorSet::pImageInfo are accessed.

• For VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, all
members of each element of VkWriteDescriptorSet::pBufferInfo are accessed.

• For VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, each
element of VkWriteDescriptorSet::pTexelBufferView is accessed.

When updating descriptors with a descriptorType of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, none
of the pImageInfo, pBufferInfo, or pTexelBufferView members are accessed, instead the source data
of the descriptor update operation is taken from the VkWriteDescriptorSetInlineUniformBlock
structure in the pNext chain of VkWriteDescriptorSet.

The VkDescriptorBufferInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorBufferInfo {
 VkBuffer buffer;
 VkDeviceSize offset;
 VkDeviceSize range;
} VkDescriptorBufferInfo;

• buffer is the buffer resource.

• offset is the offset in bytes from the start of buffer. Access to buffer memory via this descriptor
uses addressing that is relative to this starting offset.

• range is the size in bytes that is used for this descriptor update, or VK_WHOLE_SIZE to use the range
from offset to the end of the buffer.

639

Note

When setting range to VK_WHOLE_SIZE, the effective range must not be larger
than the maximum range for the descriptor type (maxUniformBufferRange or
maxStorageBufferRange). This means that VK_WHOLE_SIZE is not typically useful in
the common case where uniform buffer descriptors are suballocated from a
buffer that is much larger than maxUniformBufferRange.

For VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
descriptor types, offset is the base offset from which the dynamic offset is applied and range is the
static size used for all dynamic offsets.

When range is VK_WHOLE_SIZE the effective range is calculated at vkUpdateDescriptorSets is by taking
the size of buffer minus the offset.

Valid Usage

• VUID-VkDescriptorBufferInfo-offset-00340
offset must be less than the size of buffer

• VUID-VkDescriptorBufferInfo-range-00341
If range is not equal to VK_WHOLE_SIZE, range must be greater than 0

• VUID-VkDescriptorBufferInfo-range-00342
If range is not equal to VK_WHOLE_SIZE, range must be less than or equal to the size of buffer
minus offset

• VUID-VkDescriptorBufferInfo-buffer-02998
If the nullDescriptor feature is not enabled, buffer must not be VK_NULL_HANDLE

Valid Usage (Implicit)

• VUID-VkDescriptorBufferInfo-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

The VkDescriptorImageInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDescriptorImageInfo {
 VkSampler sampler;
 VkImageView imageView;
 VkImageLayout imageLayout;
} VkDescriptorImageInfo;

• sampler is a sampler handle, and is used in descriptor updates for types
VK_DESCRIPTOR_TYPE_SAMPLER and VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER if the binding being
updated does not use immutable samplers.

640

• imageView is an image view handle, and is used in descriptor updates for types
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

• imageLayout is the layout that the image subresources accessible from imageView will be in at the
time this descriptor is accessed. imageLayout is used in descriptor updates for types
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

Members of VkDescriptorImageInfo that are not used in an update (as described above) are ignored.

Valid Usage

• VUID-VkDescriptorImageInfo-imageView-06712
imageView must not be a 2D array image view created from a 3D image

• VUID-VkDescriptorImageInfo-descriptorType-06713
imageView must not be a 2D view created from a 3D image

• VUID-VkDescriptorImageInfo-descriptorType-06714
imageView must not be a 2D view created from a 3D image

• VUID-VkDescriptorImageInfo-imageView-01976
If imageView is created from a depth/stencil image, the aspectMask used to create the
imageView must include either VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT
but not both

• VUID-VkDescriptorImageInfo-imageLayout-09425
If imageLayout is VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, then the aspectMask used to
create imageView must not include either VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkDescriptorImageInfo-imageLayout-09426
If imageLayout is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, then the aspectMask used to create
imageView must not include VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkDescriptorImageInfo-imageLayout-00344
imageLayout must match the actual VkImageLayout of each subresource accessible from
imageView at the time this descriptor is accessed as defined by the image layout matching
rules

• VUID-VkDescriptorImageInfo-sampler-01564
If sampler is used and the VkFormat of the image is a multi-planar format, the image must
have been created with VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, and the aspectMask of the
imageView must be a valid multi-planar aspect mask bit

641

Valid Usage (Implicit)

• VUID-VkDescriptorImageInfo-commonparent
Both of imageView, and sampler that are valid handles of non-ignored parameters must
have been created, allocated, or retrieved from the same VkDevice

If the descriptorType member of VkWriteDescriptorSet is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK
then the data to write to the descriptor set is specified through a
VkWriteDescriptorSetInlineUniformBlock structure included in the pNext chain of
VkWriteDescriptorSet.

The VkWriteDescriptorSetInlineUniformBlock structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkWriteDescriptorSetInlineUniformBlock {
 VkStructureType sType;
 const void* pNext;
 uint32_t dataSize;
 const void* pData;
} VkWriteDescriptorSetInlineUniformBlock;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dataSize is the number of bytes of inline uniform block data pointed to by pData.

• pData is a pointer to dataSize number of bytes of data to write to the inline uniform block.

Valid Usage

• VUID-VkWriteDescriptorSetInlineUniformBlock-dataSize-02222
dataSize must be an integer multiple of 4

Valid Usage (Implicit)

• VUID-VkWriteDescriptorSetInlineUniformBlock-sType-sType
sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK

• VUID-VkWriteDescriptorSetInlineUniformBlock-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-VkWriteDescriptorSetInlineUniformBlock-dataSize-arraylength
dataSize must be greater than 0

The VkCopyDescriptorSet structure is defined as:

642

// Provided by VK_VERSION_1_0
typedef struct VkCopyDescriptorSet {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSet srcSet;
 uint32_t srcBinding;
 uint32_t srcArrayElement;
 VkDescriptorSet dstSet;
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
} VkCopyDescriptorSet;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcSet, srcBinding, and srcArrayElement are the source set, binding, and array element,
respectively. If the descriptor binding identified by srcSet and srcBinding has a descriptor type
of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then srcArrayElement specifies the starting byte
offset within the binding to copy from.

• dstSet, dstBinding, and dstArrayElement are the destination set, binding, and array element,
respectively. If the descriptor binding identified by dstSet and dstBinding has a descriptor type
of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then dstArrayElement specifies the starting byte
offset within the binding to copy to.

• descriptorCount is the number of descriptors to copy from the source to destination. If
descriptorCount is greater than the number of remaining array elements in the source or
destination binding, those affect consecutive bindings in a manner similar to
VkWriteDescriptorSet above. If the descriptor binding identified by srcSet and srcBinding has a
descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then descriptorCount specifies the
number of bytes to copy and the remaining array elements in the source or destination binding
refer to the remaining number of bytes in those.

Valid Usage

• VUID-VkCopyDescriptorSet-srcBinding-00345
srcBinding must be a valid binding within srcSet

• VUID-VkCopyDescriptorSet-srcArrayElement-00346
The sum of srcArrayElement and descriptorCount must be less than or equal to the number
of array elements in the descriptor set binding specified by srcBinding, and all applicable
consecutive bindings, as described by consecutive binding updates

• VUID-VkCopyDescriptorSet-dstBinding-00347
dstBinding must be a valid binding within dstSet

• VUID-VkCopyDescriptorSet-dstArrayElement-00348
The sum of dstArrayElement and descriptorCount must be less than or equal to the number
of array elements in the descriptor set binding specified by dstBinding, and all applicable

643

consecutive bindings, as described by consecutive binding updates

• VUID-VkCopyDescriptorSet-dstBinding-02632
The type of dstBinding within dstSet must be equal to the type of srcBinding within srcSet

• VUID-VkCopyDescriptorSet-srcSet-00349
If srcSet is equal to dstSet, then the source and destination ranges of descriptors must not
overlap, where the ranges may include array elements from consecutive bindings as
described by consecutive binding updates

• VUID-VkCopyDescriptorSet-srcBinding-02223
If the descriptor type of the descriptor set binding specified by srcBinding is
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, srcArrayElement must be an integer multiple of
4

• VUID-VkCopyDescriptorSet-dstBinding-02224
If the descriptor type of the descriptor set binding specified by dstBinding is
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, dstArrayElement must be an integer multiple of
4

• VUID-VkCopyDescriptorSet-srcBinding-02225
If the descriptor type of the descriptor set binding specified by either srcBinding or
dstBinding is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, descriptorCount must be an
integer multiple of 4

• VUID-VkCopyDescriptorSet-srcSet-01918
If srcSet’s layout was created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT flag set, then dstSet’s layout
must also have been created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT flag set

• VUID-VkCopyDescriptorSet-srcSet-04885
If srcSet’s layout was created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT flag set, then dstSet’s layout
must have been created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT flag set

• VUID-VkCopyDescriptorSet-srcSet-01920
If the descriptor pool from which srcSet was allocated was created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set, then the descriptor pool from
which dstSet was allocated must also have been created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set

• VUID-VkCopyDescriptorSet-srcSet-04887
If the descriptor pool from which srcSet was allocated was created without the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set, then the descriptor pool from
which dstSet was allocated must have been created without the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT flag set

• VUID-VkCopyDescriptorSet-dstBinding-02753
If the descriptor type of the descriptor set binding specified by dstBinding is
VK_DESCRIPTOR_TYPE_SAMPLER, then dstSet must not have been allocated with a layout that
included immutable samplers for dstBinding

644

Valid Usage (Implicit)

• VUID-VkCopyDescriptorSet-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET

• VUID-VkCopyDescriptorSet-pNext-pNext
pNext must be NULL

• VUID-VkCopyDescriptorSet-srcSet-parameter
srcSet must be a valid VkDescriptorSet handle

• VUID-VkCopyDescriptorSet-dstSet-parameter
dstSet must be a valid VkDescriptorSet handle

• VUID-VkCopyDescriptorSet-commonparent
Both of dstSet, and srcSet must have been created, allocated, or retrieved from the same
VkDevice

14.2.5. Descriptor Update Templates

A descriptor update template specifies a mapping from descriptor update information in host
memory to descriptors in a descriptor set. It is designed to avoid passing redundant information to
the driver when frequently updating the same set of descriptors in descriptor sets.

Descriptor update template objects are represented by VkDescriptorUpdateTemplate handles:

// Provided by VK_VERSION_1_1
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorUpdateTemplate)

14.2.6. Descriptor Set Updates With Templates

Updating a large VkDescriptorSet array can be an expensive operation since an application must
specify one VkWriteDescriptorSet structure for each descriptor or descriptor array to update, each
of which re-specifies the same state when updating the same descriptor in multiple descriptor sets.
For cases when an application wishes to update the same set of descriptors in multiple descriptor
sets allocated using the same VkDescriptorSetLayout, vkUpdateDescriptorSetWithTemplate can be
used as a replacement for vkUpdateDescriptorSets.

VkDescriptorUpdateTemplate allows implementations to convert a set of descriptor update operations
on a single descriptor set to an internal format that, in conjunction with
vkUpdateDescriptorSetWithTemplate , can be more efficient compared to calling
vkUpdateDescriptorSets . The descriptors themselves are not specified in the
VkDescriptorUpdateTemplate, rather, offsets into an application provided pointer to host memory are
specified, which are combined with a pointer passed to vkUpdateDescriptorSetWithTemplate . This
allows large batches of updates to be executed without having to convert application data
structures into a strictly-defined Vulkan data structure.

To create a descriptor update template, call:

645

// Provided by VK_VERSION_1_1
VkResult vkCreateDescriptorUpdateTemplate(
 VkDevice device,
 const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate);

• device is the logical device that creates the descriptor update template.

• pCreateInfo is a pointer to a VkDescriptorUpdateTemplateCreateInfo structure specifying the set
of descriptors to update with a single call to vkUpdateDescriptorSetWithTemplate.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDescriptorUpdateTemplate is a pointer to a VkDescriptorUpdateTemplate handle in which the
resulting descriptor update template object is returned.

Valid Usage (Implicit)

• VUID-vkCreateDescriptorUpdateTemplate-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateDescriptorUpdateTemplate-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkDescriptorUpdateTemplateCreateInfo
structure

• VUID-vkCreateDescriptorUpdateTemplate-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreateDescriptorUpdateTemplate-pDescriptorUpdateTemplate-parameter
pDescriptorUpdateTemplate must be a valid pointer to a VkDescriptorUpdateTemplate
handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkDescriptorUpdateTemplateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDescriptorUpdateTemplateCreateInfo {
 VkStructureType sType;

646

 const void* pNext;
 VkDescriptorUpdateTemplateCreateFlags flags;
 uint32_t descriptorUpdateEntryCount;
 const VkDescriptorUpdateTemplateEntry* pDescriptorUpdateEntries;
 VkDescriptorUpdateTemplateType templateType;
 VkDescriptorSetLayout descriptorSetLayout;
 VkPipelineBindPoint pipelineBindPoint;
 VkPipelineLayout pipelineLayout;
 uint32_t set;
} VkDescriptorUpdateTemplateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• descriptorUpdateEntryCount is the number of elements in the pDescriptorUpdateEntries array.

• pDescriptorUpdateEntries is a pointer to an array of VkDescriptorUpdateTemplateEntry
structures describing the descriptors to be updated by the descriptor update template.

• templateType Specifies the type of the descriptor update template. If set to
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET it can only be used to update descriptor sets
with a fixed descriptorSetLayout.

• descriptorSetLayout is the descriptor set layout used to build the descriptor update template. All
descriptor sets which are going to be updated through the newly created descriptor update
template must be created with a layout that matches (is the same as, or defined identically to)
this layout. This parameter is ignored if templateType is not
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.

• pipelineBindPoint is reserved for future use and is ignored

• pipelineLayout is reserved for future use and is ignored

• set is reserved for future use and is ignored

Valid Usage

• VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-00350
If templateType is VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET, descriptorSetLayout
must be a valid VkDescriptorSetLayout handle

Valid Usage (Implicit)

• VUID-VkDescriptorUpdateTemplateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO

• VUID-VkDescriptorUpdateTemplateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkDescriptorUpdateTemplateCreateInfo-flags-zerobitmask

647

flags must be 0

• VUID-VkDescriptorUpdateTemplateCreateInfo-pDescriptorUpdateEntries-parameter
pDescriptorUpdateEntries must be a valid pointer to an array of
descriptorUpdateEntryCount valid VkDescriptorUpdateTemplateEntry structures

• VUID-VkDescriptorUpdateTemplateCreateInfo-templateType-parameter
templateType must be a valid VkDescriptorUpdateTemplateType value

• VUID-VkDescriptorUpdateTemplateCreateInfo-descriptorUpdateEntryCount-arraylength
descriptorUpdateEntryCount must be greater than 0

• VUID-VkDescriptorUpdateTemplateCreateInfo-commonparent
Both of descriptorSetLayout, and pipelineLayout that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

// Provided by VK_VERSION_1_1
typedef VkFlags VkDescriptorUpdateTemplateCreateFlags;

VkDescriptorUpdateTemplateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

The descriptor update template type is determined by the VkDescriptorUpdateTemplateCreateInfo
::templateType property, which takes the following values:

// Provided by VK_VERSION_1_1
typedef enum VkDescriptorUpdateTemplateType {
 VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET = 0,
} VkDescriptorUpdateTemplateType;

• VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET specifies that the descriptor update
template will be used for descriptor set updates only.

The VkDescriptorUpdateTemplateEntry structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDescriptorUpdateTemplateEntry {
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
 VkDescriptorType descriptorType;
 size_t offset;
 size_t stride;
} VkDescriptorUpdateTemplateEntry;

• dstBinding is the descriptor binding to update when using this descriptor update template.

• dstArrayElement is the starting element in the array belonging to dstBinding. If the descriptor
binding identified by dstBinding has a descriptor type of

648

VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then dstArrayElement specifies the starting byte offset
to update.

• descriptorCount is the number of descriptors to update. If descriptorCount is greater than the
number of remaining array elements in the destination binding, those affect consecutive
bindings in a manner similar to VkWriteDescriptorSet above. If the descriptor binding
identified by dstBinding has a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then
descriptorCount specifies the number of bytes to update and the remaining array elements in
the destination binding refer to the remaining number of bytes in it.

• descriptorType is a VkDescriptorType specifying the type of the descriptor.

• offset is the offset in bytes of the first binding in the raw data structure.

• stride is the stride in bytes between two consecutive array elements of the descriptor update
information in the raw data structure. The actual pointer ptr for each array element j of update
entry i is computed using the following formula:

 const char *ptr = (const char *)pData + pDescriptorUpdateEntries[i].offset + j
* pDescriptorUpdateEntries[i].stride

The stride is useful in case the bindings are stored in structs along with other data. If
descriptorType is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK then the value of stride is ignored
and the stride is assumed to be 1, i.e. the descriptor update information for them is always
specified as a contiguous range.

Valid Usage

• VUID-VkDescriptorUpdateTemplateEntry-dstBinding-00354
dstBinding must be a valid binding in the descriptor set layout implicitly specified when
using a descriptor update template to update descriptors

• VUID-VkDescriptorUpdateTemplateEntry-dstArrayElement-00355
dstArrayElement and descriptorCount must be less than or equal to the number of array
elements in the descriptor set binding implicitly specified when using a descriptor update
template to update descriptors, and all applicable consecutive bindings, as described by
consecutive binding updates

• VUID-VkDescriptorUpdateTemplateEntry-descriptor-02226
If descriptor type is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, dstArrayElement must be an
integer multiple of 4

• VUID-VkDescriptorUpdateTemplateEntry-descriptor-02227
If descriptor type is VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK, descriptorCount must be an
integer multiple of 4

Valid Usage (Implicit)

• VUID-VkDescriptorUpdateTemplateEntry-descriptorType-parameter
descriptorType must be a valid VkDescriptorType value

649

To destroy a descriptor update template, call:

// Provided by VK_VERSION_1_1
void vkDestroyDescriptorUpdateTemplate(
 VkDevice device,
 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that has been used to create the descriptor update template

• descriptorUpdateTemplate is the descriptor update template to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyDescriptorUpdateTemplate-descriptorSetLayout-00356
If VkAllocationCallbacks were provided when descriptorUpdateTemplate was created, a
compatible set of callbacks must be provided here

• VUID-vkDestroyDescriptorUpdateTemplate-descriptorSetLayout-00357
If no VkAllocationCallbacks were provided when descriptorUpdateTemplate was created,
pAllocator must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyDescriptorUpdateTemplate-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyDescriptorUpdateTemplate-descriptorUpdateTemplate-parameter
If descriptorUpdateTemplate is not VK_NULL_HANDLE, descriptorUpdateTemplate must be a
valid VkDescriptorUpdateTemplate handle

• VUID-vkDestroyDescriptorUpdateTemplate-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyDescriptorUpdateTemplate-descriptorUpdateTemplate-parent
If descriptorUpdateTemplate is a valid handle, it must have been created, allocated, or
retrieved from device

Host Synchronization

• Host access to descriptorUpdateTemplate must be externally synchronized

Once a VkDescriptorUpdateTemplate has been created, descriptor sets can be updated by calling:

650

// Provided by VK_VERSION_1_1
void vkUpdateDescriptorSetWithTemplate(
 VkDevice device,
 VkDescriptorSet descriptorSet,
 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
 const void* pData);

• device is the logical device that updates the descriptor set.

• descriptorSet is the descriptor set to update

• descriptorUpdateTemplate is a VkDescriptorUpdateTemplate object specifying the update
mapping between pData and the descriptor set to update.

• pData is a pointer to memory containing one or more VkDescriptorImageInfo,
VkDescriptorBufferInfo, or VkBufferView structures used to write the descriptors.

Valid Usage

• VUID-vkUpdateDescriptorSetWithTemplate-pData-01685
pData must be a valid pointer to a memory containing one or more valid instances of
VkDescriptorImageInfo, VkDescriptorBufferInfo, or VkBufferView in a layout defined by
descriptorUpdateTemplate when it was created with vkCreateDescriptorUpdateTemplate

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorSet-06995
Host access to descriptorSet must be externally synchronized unless explicitly denoted
otherwise for specific flags

Valid Usage (Implicit)

• VUID-vkUpdateDescriptorSetWithTemplate-device-parameter
device must be a valid VkDevice handle

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorSet-parameter
descriptorSet must be a valid VkDescriptorSet handle

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorUpdateTemplate-parameter
descriptorUpdateTemplate must be a valid VkDescriptorUpdateTemplate handle

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorSet-parent
descriptorSet must have been created, allocated, or retrieved from device

• VUID-vkUpdateDescriptorSetWithTemplate-descriptorUpdateTemplate-parent
descriptorUpdateTemplate must have been created, allocated, or retrieved from device

API example

struct AppBufferView {
 VkBufferView bufferView;
 uint32_t applicationRelatedInformation;

651

};

struct AppDataStructure
{
 VkDescriptorImageInfo imageInfo; // a single image info
 VkDescriptorBufferInfo bufferInfoArray[3]; // 3 buffer infos in an array
 AppBufferView bufferView[2]; // An application defined structure
containing a bufferView
 // ... some more application related data
};

const VkDescriptorUpdateTemplateEntry descriptorUpdateTemplateEntries[] =
{
 // binding to a single image descriptor
 {
 .binding = 0,
 .dstArrayElement = 0,
 .descriptorCount = 1,
 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
 .offset = offsetof(AppDataStructure, imageInfo),
 .stride = 0 // stride not required if descriptorCount is 1
 },

 // binding to an array of buffer descriptors
 {
 .binding = 1,
 .dstArrayElement = 0,
 .descriptorCount = 3,
 .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
 .offset = offsetof(AppDataStructure, bufferInfoArray),
 .stride = sizeof(VkDescriptorBufferInfo) // descriptor buffer infos are
compact
 },

 // binding to an array of buffer views
 {
 .binding = 2,
 .dstArrayElement = 0,
 .descriptorCount = 2,
 .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
 .offset = offsetof(AppDataStructure, bufferView) +
 offsetof(AppBufferView, bufferView),
 .stride = sizeof(AppBufferView) // bufferViews do not have to be
compact
 },
};

// create a descriptor update template for descriptor set updates
const VkDescriptorUpdateTemplateCreateInfo createInfo =
{
 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO,

652

 .pNext = NULL,
 .flags = 0,
 .descriptorUpdateEntryCount = 3,
 .pDescriptorUpdateEntries = descriptorUpdateTemplateEntries,
 .templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET,
 .descriptorSetLayout = myLayout,
 .pipelineBindPoint = 0, // ignored by given templateType
 .pipelineLayout = 0, // ignored by given templateType
 .set = 0, // ignored by given templateType
};

VkDescriptorUpdateTemplate myDescriptorUpdateTemplate;
myResult = vkCreateDescriptorUpdateTemplate(
 myDevice,
 &createInfo,
 NULL,
 &myDescriptorUpdateTemplate);

AppDataStructure appData;

// fill appData here or cache it in your engine
vkUpdateDescriptorSetWithTemplate(myDevice, myDescriptorSet,
myDescriptorUpdateTemplate, &appData);

14.2.7. Descriptor Set Binding

To bind one or more descriptor sets to a command buffer, call:

// Provided by VK_VERSION_1_0
void vkCmdBindDescriptorSets(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipelineLayout layout,
 uint32_t firstSet,
 uint32_t descriptorSetCount,
 const VkDescriptorSet* pDescriptorSets,
 uint32_t dynamicOffsetCount,
 const uint32_t* pDynamicOffsets);

• commandBuffer is the command buffer that the descriptor sets will be bound to.

• pipelineBindPoint is a VkPipelineBindPoint indicating the type of the pipeline that will use the
descriptors. There is a separate set of bind points for each pipeline type, so binding one does not
disturb the others.

• layout is a VkPipelineLayout object used to program the bindings.

• firstSet is the set number of the first descriptor set to be bound.

• descriptorSetCount is the number of elements in the pDescriptorSets array.

653

• pDescriptorSets is a pointer to an array of handles to VkDescriptorSet objects describing the
descriptor sets to bind to.

• dynamicOffsetCount is the number of dynamic offsets in the pDynamicOffsets array.

• pDynamicOffsets is a pointer to an array of uint32_t values specifying dynamic offsets.

vkCmdBindDescriptorSets binds descriptor sets pDescriptorSets[0..descriptorSetCount-1] to set
numbers [firstSet..firstSet+descriptorSetCount-1] for subsequent bound pipeline commands set
by pipelineBindPoint. Any bindings that were previously applied via these sets are no longer valid.

Once bound, a descriptor set affects rendering of subsequent commands that interact with the
given pipeline type in the command buffer until either a different set is bound to the same set
number, or the set is disturbed as described in Pipeline Layout Compatibility.

A compatible descriptor set must be bound for all set numbers that any shaders in a pipeline
access, at the time that a drawing or dispatching command is recorded to execute using that
pipeline. However, if none of the shaders in a pipeline statically use any bindings with a particular
set number, then no descriptor set need be bound for that set number, even if the pipeline layout
includes a non-trivial descriptor set layout for that set number.

When consuming a descriptor, a descriptor is considered valid if the descriptor is not undefined as
described by descriptor set allocation. A descriptor that was disturbed by Pipeline Layout
Compatibility, or was never bound by vkCmdBindDescriptorSets is not considered valid. If a pipeline
accesses a descriptor either statically or dynamically depending on the
VkDescriptorBindingFlagBits, the consuming descriptor type in the pipeline must match the
VkDescriptorType in VkDescriptorSetLayoutCreateInfo for the descriptor to be considered valid.

Note

Further validation may be carried out beyond validation for descriptor types, e.g.
Texel Input Validation.

If any of the sets being bound include dynamic uniform or storage buffers, then pDynamicOffsets
includes one element for each array element in each dynamic descriptor type binding in each set.
Values are taken from pDynamicOffsets in an order such that all entries for set N come before set
N+1; within a set, entries are ordered by the binding numbers in the descriptor set layouts; and
within a binding array, elements are in order. dynamicOffsetCount must equal the total number of
dynamic descriptors in the sets being bound.

The effective offset used for dynamic uniform and storage buffer bindings is the sum of the relative
offset taken from pDynamicOffsets, and the base address of the buffer plus base offset in the
descriptor set. The range of the dynamic uniform and storage buffer bindings is the buffer range as
specified in the descriptor set.

Each of the pDescriptorSets must be compatible with the pipeline layout specified by layout. The
layout used to program the bindings must also be compatible with the pipeline used in subsequent
bound pipeline commands with that pipeline type, as defined in the Pipeline Layout Compatibility
section.

The descriptor set contents bound by a call to vkCmdBindDescriptorSets may be consumed at the

654

following times:

• For descriptor bindings created with the VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT bit set,
the contents may be consumed when the command buffer is submitted to a queue, or during
shader execution of the resulting draws and dispatches, or any time in between. Otherwise,

• during host execution of the command, or during shader execution of the resulting draws and
dispatches, or any time in between.

Thus, the contents of a descriptor set binding must not be altered (overwritten by an update
command, or freed) between the first point in time that it may be consumed, and when the
command completes executing on the queue.

The contents of pDynamicOffsets are consumed immediately during execution of
vkCmdBindDescriptorSets. Once all pending uses have completed, it is legal to update and reuse a
descriptor set.

Valid Usage

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-00358
Each element of pDescriptorSets must have been allocated with a VkDescriptorSetLayout
that matches (is the same as, or identically defined as) the VkDescriptorSetLayout at set n
in layout, where n is the sum of firstSet and the index into pDescriptorSets

• VUID-vkCmdBindDescriptorSets-dynamicOffsetCount-00359
dynamicOffsetCount must be equal to the total number of dynamic descriptors in
pDescriptorSets

• VUID-vkCmdBindDescriptorSets-firstSet-00360
The sum of firstSet and descriptorSetCount must be less than or equal to
VkPipelineLayoutCreateInfo::setLayoutCount provided when layout was created

• VUID-vkCmdBindDescriptorSets-pDynamicOffsets-01971
Each element of pDynamicOffsets which corresponds to a descriptor binding with type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must be a multiple of VkPhysicalDeviceLimits
::minUniformBufferOffsetAlignment

• VUID-vkCmdBindDescriptorSets-pDynamicOffsets-01972
Each element of pDynamicOffsets which corresponds to a descriptor binding with type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must be a multiple of VkPhysicalDeviceLimits
::minStorageBufferOffsetAlignment

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-01979
For each dynamic uniform or storage buffer binding in pDescriptorSets, the sum of the
effective offset and the range of the binding must be less than or equal to the size of the
buffer

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-06715
For each dynamic uniform or storage buffer binding in pDescriptorSets, if the range was
set with VK_WHOLE_SIZE then pDynamicOffsets which corresponds to the descriptor binding
must be 0

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-06563

655

Each element of pDescriptorSets must be a valid VkDescriptorSet

• VUID-vkCmdBindDescriptorSets-pipelineBindPoint-00361
pipelineBindPoint must be supported by the commandBuffer’s parent VkCommandPool’s queue
family

Valid Usage (Implicit)

• VUID-vkCmdBindDescriptorSets-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindDescriptorSets-pipelineBindPoint-parameter
pipelineBindPoint must be a valid VkPipelineBindPoint value

• VUID-vkCmdBindDescriptorSets-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-vkCmdBindDescriptorSets-pDescriptorSets-parameter
pDescriptorSets must be a valid pointer to an array of descriptorSetCount valid or
VK_NULL_HANDLE VkDescriptorSet handles

• VUID-vkCmdBindDescriptorSets-pDynamicOffsets-parameter
If dynamicOffsetCount is not 0, pDynamicOffsets must be a valid pointer to an array of
dynamicOffsetCount uint32_t values

• VUID-vkCmdBindDescriptorSets-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindDescriptorSets-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBindDescriptorSets-descriptorSetCount-arraylength
descriptorSetCount must be greater than 0

• VUID-vkCmdBindDescriptorSets-commonparent
Each of commandBuffer, layout, and the elements of pDescriptorSets that are valid handles
of non-ignored parameters must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

656

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics
Compute

State

14.2.8. Push Constant Updates

As described above in section Pipeline Layouts, the pipeline layout defines shader push constants
which are updated via Vulkan commands rather than via writes to memory or copy commands.

Note

Push constants represent a high speed path to modify constant data in pipelines
that is expected to outperform memory-backed resource updates.

To update push constants, call:

// Provided by VK_VERSION_1_0
void vkCmdPushConstants(
 VkCommandBuffer commandBuffer,
 VkPipelineLayout layout,
 VkShaderStageFlags stageFlags,
 uint32_t offset,
 uint32_t size,
 const void* pValues);

• commandBuffer is the command buffer in which the push constant update will be recorded.

• layout is the pipeline layout used to program the push constant updates.

• stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages that will use the
push constants in the updated range.

• offset is the start offset of the push constant range to update, in units of bytes.

• size is the size of the push constant range to update, in units of bytes.

• pValues is a pointer to an array of size bytes containing the new push constant values.

When a command buffer begins recording, all push constant values are undefined. Reads of
undefined push constant values by the executing shader return undefined values.

Push constant values can be updated incrementally, causing shader stages in stageFlags to read the
new data from pValues for push constants modified by this command, while still reading the
previous data for push constants not modified by this command. When a bound pipeline command
is issued, the bound pipeline’s layout must be compatible with the layouts used to set the values of
all push constants in the pipeline layout’s push constant ranges, as described in Pipeline Layout
Compatibility. Binding a pipeline with a layout that is not compatible with the push constant layout

657

does not disturb the push constant values.

Note

As stageFlags needs to include all flags the relevant push constant ranges were
created with, any flags that are not supported by the queue family that the
VkCommandPool used to allocate commandBuffer was created on are ignored.

Valid Usage

• VUID-vkCmdPushConstants-offset-01795
For each byte in the range specified by offset and size and for each shader stage in
stageFlags, there must be a push constant range in layout that includes that byte and that
stage

• VUID-vkCmdPushConstants-offset-01796
For each byte in the range specified by offset and size and for each push constant range
that overlaps that byte, stageFlags must include all stages in that push constant range’s
VkPushConstantRange::stageFlags

• VUID-vkCmdPushConstants-offset-00368
offset must be a multiple of 4

• VUID-vkCmdPushConstants-size-00369
size must be a multiple of 4

• VUID-vkCmdPushConstants-offset-00370
offset must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• VUID-vkCmdPushConstants-size-00371
size must be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus
offset

Valid Usage (Implicit)

• VUID-vkCmdPushConstants-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdPushConstants-layout-parameter
layout must be a valid VkPipelineLayout handle

• VUID-vkCmdPushConstants-stageFlags-parameter
stageFlags must be a valid combination of VkShaderStageFlagBits values

• VUID-vkCmdPushConstants-stageFlags-requiredbitmask
stageFlags must not be 0

• VUID-vkCmdPushConstants-pValues-parameter
pValues must be a valid pointer to an array of size bytes

• VUID-vkCmdPushConstants-commandBuffer-recording
commandBuffer must be in the recording state

658

• VUID-vkCmdPushConstants-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdPushConstants-size-arraylength
size must be greater than 0

• VUID-vkCmdPushConstants-commonparent
Both of commandBuffer, and layout must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics
Compute

State

14.3. Physical Storage Buffer Access
To query a 64-bit buffer device address value through which buffer memory can be accessed in a
shader, call:

// Provided by VK_VERSION_1_2
VkDeviceAddress vkGetBufferDeviceAddress(
 VkDevice device,
 const VkBufferDeviceAddressInfo* pInfo);

• device is the logical device that the buffer was created on.

• pInfo is a pointer to a VkBufferDeviceAddressInfo structure specifying the buffer to retrieve an
address for.

The 64-bit return value is an address of the start of pInfo->buffer. The address range starting at this
value and whose size is the size of the buffer can be used in a shader to access the memory bound
to that buffer, using the SPV_KHR_physical_storage_buffer extension and the PhysicalStorageBuffer
storage class. For example, this value can be stored in a uniform buffer, and the shader can read
the value from the uniform buffer and use it to do a dependent read/write to this buffer. A value of
zero is reserved as a “null” pointer and must not be returned as a valid buffer device address. All

659

loads, stores, and atomics in a shader through PhysicalStorageBuffer pointers must access
addresses in the address range of some buffer.

If the buffer was created with a non-zero value of VkBufferOpaqueCaptureAddressCreateInfo
::opaqueCaptureAddress, the return value will be the same address that was returned at capture time.

The returned address must satisfy the alignment requirement specified by
VkMemoryRequirements::alignment for the buffer in VkBufferDeviceAddressInfo::buffer.

If multiple VkBuffer objects are bound to overlapping ranges of VkDeviceMemory,
implementations may return address ranges which overlap. In this case, it is ambiguous which
VkBuffer is associated with any given device address. For purposes of valid usage, if multiple
VkBuffer objects can be attributed to a device address, a VkBuffer is selected such that valid usage
passes, if it exists.

Valid Usage

• VUID-vkGetBufferDeviceAddress-bufferDeviceAddress-03324
The bufferDeviceAddress feature must be enabled

• VUID-vkGetBufferDeviceAddress-device-03325
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

Valid Usage (Implicit)

• VUID-vkGetBufferDeviceAddress-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferDeviceAddress-pInfo-parameter
pInfo must be a valid pointer to a valid VkBufferDeviceAddressInfo structure

The VkBufferDeviceAddressInfo structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkBufferDeviceAddressInfo {
 VkStructureType sType;
 const void* pNext;
 VkBuffer buffer;
} VkBufferDeviceAddressInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• buffer specifies the buffer whose address is being queried.

660

Valid Usage

• VUID-VkBufferDeviceAddressInfo-buffer-02600
If buffer is non-sparse and was not created with the
VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT flag, then it must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkBufferDeviceAddressInfo-buffer-02601
buffer must have been created with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT

Valid Usage (Implicit)

• VUID-VkBufferDeviceAddressInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO

• VUID-VkBufferDeviceAddressInfo-pNext-pNext
pNext must be NULL

• VUID-VkBufferDeviceAddressInfo-buffer-parameter
buffer must be a valid VkBuffer handle

To query a 64-bit buffer opaque capture address, call:

// Provided by VK_VERSION_1_2
uint64_t vkGetBufferOpaqueCaptureAddress(
 VkDevice device,
 const VkBufferDeviceAddressInfo* pInfo);

• device is the logical device that the buffer was created on.

• pInfo is a pointer to a VkBufferDeviceAddressInfo structure specifying the buffer to retrieve an
address for.

The 64-bit return value is an opaque capture address of the start of pInfo->buffer.

If the buffer was created with a non-zero value of VkBufferOpaqueCaptureAddressCreateInfo
::opaqueCaptureAddress the return value must be the same address.

Valid Usage

• VUID-vkGetBufferOpaqueCaptureAddress-None-03326
The bufferDeviceAddress feature must be enabled

• VUID-vkGetBufferOpaqueCaptureAddress-device-03327
If device was created with multiple physical devices, then the
bufferDeviceAddressMultiDevice feature must be enabled

661

Valid Usage (Implicit)

• VUID-vkGetBufferOpaqueCaptureAddress-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetBufferOpaqueCaptureAddress-pInfo-parameter
pInfo must be a valid pointer to a valid VkBufferDeviceAddressInfo structure

662

Chapter 15. Shader Interfaces
When a pipeline is created, the set of shaders specified in the corresponding VkPipelineCreateInfo
structure are implicitly linked at a number of different interfaces.

• Shader Input and Output Interface

• Vertex Input Interface

• Fragment Output Interface

• Fragment Input Attachment Interface

• Shader Resource Interface

This chapter describes valid uses for a set of SPIR-V decorations. Any other use of one of these
decorations is invalid, with the exception that, when using SPIR-V versions 1.4 and earlier: Block,
BufferBlock, Offset, ArrayStride, and MatrixStride can also decorate types and type members used
by variables in the Private and Function storage classes.

Note

In this chapter, there are references to SPIR-V terms such as the MeshNV execution
model. These terms will appear even in a build of the specification which does not
support any extensions. This is as intended, since these terms appear in the unified
SPIR-V specification without such qualifiers.

15.1. Shader Input and Output Interfaces
When multiple stages are present in a pipeline, the outputs of one stage form an interface with the
inputs of the next stage. When such an interface involves a shader, shader outputs are matched
against the inputs of the next stage, and shader inputs are matched against the outputs of the
previous stage.

All the variables forming the shader input and output interfaces are listed as operands to the
OpEntryPoint instruction and are declared with the Input or Output storage classes, respectively, in
the SPIR-V module. These generally form the interfaces between consecutive shader stages,
regardless of any non-shader stages between the consecutive shader stages.

There are two classes of variables that can be matched between shader stages, built-in variables
and user-defined variables. Each class has a different set of matching criteria.

Output variables of a shader stage have undefined values until the shader writes to them or uses the
Initializer operand when declaring the variable.

15.1.1. Built-in Interface Block

Shader built-in variables meeting the following requirements define the built-in interface block.
They must

• be explicitly declared (there are no implicit built-ins),

663

• be identified with a BuiltIn decoration,

• form object types as described in the Built-in Variables section, and

• be declared in a block whose top-level members are the built-ins.

There must be no more than one built-in interface block per shader per interface .

Built-ins must not have any Location or Component decorations.

15.1.2. User-defined Variable Interface

The non-built-in variables listed by OpEntryPoint with the Input or Output storage class form the
user-defined variable interface. These must have numeric type or, recursively, composite types of
such types. If an implementation supports storageInputOutput16, components can have a width of
16 bits. These variables must be identified with a Location decoration and can also be identified
with a Component decoration.

15.1.3. Interface Matching

An output variable, block, or structure member in a given shader stage has an interface match with
an input variable, block, or structure member in a subsequent shader stage if they both adhere to
the following conditions:

• They have equivalent decorations, other than:

◦ one is not decorated with Component and the other is declared with a Component of 0

◦ Interpolation decorations

◦ RelaxedPrecision if one is an input variable and the other an output variable

• Their types match as follows:

◦ if the input is declared in a tessellation control or geometry shader as an OpTypeArray with
an Element Type equivalent to the OpType* declaration of the output, and neither is a structure
member; or

◦ if the maintenance4 feature is enabled, they are declared as OpTypeVector variables, and the
output has a Component Count value higher than that of the input but the same Component Type;
or

◦ if in any other case they are declared with an equivalent OpType* declaration.

• If both are structures and every member has an interface match.

Note

The word “structure” above refers to both variables that have an OpTypeStruct type
and interface blocks (which are also declared as OpTypeStruct).

All input variables and blocks must have an interface match in the preceding shader stage, except
for built-in variables in fragment shaders. Shaders can declare and write to output variables that
are not declared or read by the subsequent stage.

The value of an input variable is undefined if the preceding stage does not write to a matching

664

output variable, as described above.

15.1.4. Location Assignment

This section describes Location assignments for user-defined variables and how many Location slots
are consumed by a given user-variable type. As mentioned above, some inputs and outputs have an
additional level of arrayness relative to other shader inputs and outputs. This outer array level is
removed from the type before considering how many Location slots the type consumes.

The Location value specifies an interface slot comprised of a 32-bit four-component vector
conveyed between stages. The Component specifies word components within these vector Location
slots. Only types with widths of 16, 32 or 64 are supported in shader interfaces.

Inputs and outputs of the following types consume a single interface Location:

• 16-bit scalar and vector types, and

• 32-bit scalar and vector types, and

• 64-bit scalar and 2-component vector types.

64-bit three- and four-component vectors consume two consecutive Location slots.

If a declared input or output is an array of size n and each element takes m Location slots, it will be
assigned m × n consecutive Location slots starting with the specified Location.

If the declared input or output is an n × m 16-, 32- or 64-bit matrix, it will be assigned multiple
Location slots starting with the specified Location. The number of Location slots assigned for each
matrix will be the same as for an n-element array of m-component vectors.

An OpVariable with a structure type that is not a block must be decorated with a Location.

When an OpVariable with a structure type (either block or non-block) is decorated with a Location,
the members in the structure type must not be decorated with a Location. The OpVariable’s
members are assigned consecutive Location slots in declaration order, starting from the first
member, which is assigned the Location decoration from the OpVariable.

When a block-type OpVariable is declared without a Location decoration, each member in its
structure type must be decorated with a Location. Types nested deeper than the top-level members
must not have Location decorations.

The Location slots consumed by block and structure members are determined by applying the rules
above in a depth-first traversal of the instantiated members as though the structure or block
member were declared as an input or output variable of the same type.

Any two inputs listed as operands on the same OpEntryPoint must not be assigned the same
Location slot and Component word, either explicitly or implicitly. Any two outputs listed as operands
on the same OpEntryPoint must not be assigned the same Location slot and Component word, either
explicitly or implicitly.

The number of input and output Location slots available for a shader input or output interface is
limited, and dependent on the shader stage as described in Shader Input and Output Locations. All

665

variables in both the built-in interface block and the user-defined variable interface count against
these limits. Each effective Location must have a value less than the number of Location slots
available for the given interface, as specified in the “Locations Available” column in Shader Input
and Output Locations.

Table 10. Shader Input and Output Locations

Shader Interface Locations Available

vertex input maxVertexInputAttributes

vertex output maxVertexOutputComponents / 4

tessellation control input maxTessellationControlPerVertexInputComponents / 4

tessellation control output maxTessellationControlPerVertexOutputComponents / 4

tessellation evaluation
input

maxTessellationEvaluationInputComponents / 4

tessellation evaluation
output

maxTessellationEvaluationOutputComponents / 4

geometry input maxGeometryInputComponents / 4

geometry output maxGeometryOutputComponents / 4

fragment input maxFragmentInputComponents / 4

fragment output maxFragmentOutputAttachments

15.1.5. Component Assignment

The Component decoration allows the Location to be more finely specified for scalars and vectors,
down to the individual Component word within a Location slot that are consumed. The Component
word within a Location are 0, 1, 2, and 3. A variable or block member starting at Component N will
consume Component words N, N+1, N+2, … up through its size. For 16-, and 32-bit types, it is invalid if
this sequence of Component words gets larger than 3. A scalar 64-bit type will consume two of these
Component words in sequence, and a two-component 64-bit vector type will consume all four
Component words available within a Location. A three- or four-component 64-bit vector type must
not specify a non-zero Component decoration. A three-component 64-bit vector type will consume all
four Component words of the first Location and Component 0 and 1 of the second Location. This leaves
Component 2 and 3 available for other component-qualified declarations.

A scalar or two-component 64-bit data type must not specify a Component decoration of 1 or 3. A
Component decoration must not be specified for any type that is not a scalar or vector.

A four-component 64-bit data type will consume all four Component words of the first Location and
all four Component words of the second Location.

15.2. Vertex Input Interface
When the vertex stage is present in a pipeline, the vertex shader input variables form an interface
with the vertex input attributes. The vertex shader input variables are matched by the Location and
Component decorations to the vertex input attributes specified in the pVertexInputState member of

666

the VkGraphicsPipelineCreateInfo structure.

The vertex shader input variables listed by OpEntryPoint with the Input storage class form the vertex
input interface. These variables must be identified with a Location decoration and can also be
identified with a Component decoration.

For the purposes of interface matching: variables declared without a Component decoration are
considered to have a Component decoration of zero. The number of available vertex input Location
slots is given by the maxVertexInputAttributes member of the VkPhysicalDeviceLimits structure.

See Attribute Location and Component Assignment for details.

All vertex shader inputs declared as above must have a corresponding attribute and binding in the
pipeline.

15.3. Fragment Output Interface
When the fragment stage is present in a pipeline, the fragment shader outputs form an interface
with the output attachments defined by a render pass instance. The fragment shader output
variables are matched by the Location and Component decorations to specified color attachments.

The fragment shader output variables listed by OpEntryPoint with the Output storage class form the
fragment output interface. These variables must be identified with a Location decoration. They can
also be identified with a Component decoration and/or an Index decoration. For the purposes of
interface matching: variables declared without a Component decoration are considered to have a
Component decoration of zero, and variables declared without an Index decoration are considered to
have an Index decoration of zero.

A fragment shader output variable identified with a Location decoration of i is associated with the
color attachment indicated by VkRenderingInfo::pColorAttachments[i]. When using render pass
objects, it is associated with the color attachment indicated by VkSubpassDescription
::pColorAttachments[i]. Values are written to those attachments after passing through the blending
unit as described in Blending, if enabled. Locations are consumed as described in Location
Assignment. The number of available fragment output Location slots is given by the
maxFragmentOutputAttachments member of the VkPhysicalDeviceLimits structure.

When an active fragment shader invocation finishes, the values of all fragment shader outputs are
copied out and used as blend inputs or color attachments writes. If the invocation does not set a
value for them, the input values to those blending or color attachment writes are undefined.

Components of the output variables are assigned as described in Component Assignment. Output
Component words identified as 0, 1, 2, and 3 will be directed to the R, G, B, and A inputs to the
blending unit, respectively, or to the output attachment if blending is disabled. If two variables are
placed within the same Location, they must have the same underlying type (floating-point or
integer). Component words which do not correspond to any fragment shader output will also result in
undefined values for blending or color attachment writes.

Fragment outputs identified with an Index of zero are directed to the first input of the blending unit
associated with the corresponding Location. Outputs identified with an Index of one are directed to

667

the second input of the corresponding blending unit.

There must be no output variable which has the same Location, Component, and Index as any other,
either explicitly declared or implied.

Output values written by a fragment shader must be declared with either OpTypeFloat or OpTypeInt,
and a Width of 32. If storageInputOutput16 is supported, output values written by a fragment shader
can be also declared with either OpTypeFloat or OpTypeInt and a Width of 16. Composites of these
types are also permitted. If the color attachment has a signed or unsigned normalized fixed-point
format, color values are assumed to be floating-point and are converted to fixed-point as described
in Conversion From Floating-Point to Normalized Fixed-Point; If the color attachment has an
integer format, color values are assumed to be integers and converted to the bit-depth of the target.
Any value that cannot be represented in the attachment’s format is undefined. For any other
attachment format no conversion is performed. If the type of the values written by the fragment
shader do not match the format of the corresponding color attachment, the resulting values are
undefined for those components.

15.4. Fragment Input Attachment Interface
When a fragment stage is present in a pipeline, the fragment shader subpass inputs form an
interface with the input attachments of the current subpass. The fragment shader subpass input
variables are matched by InputAttachmentIndex decorations to the input attachments specified in
the pInputAttachments array of the VkSubpassDescription structure describing the subpass that the
fragment shader is executed in.

The fragment shader subpass input variables with the UniformConstant storage class and a
decoration of InputAttachmentIndex that are statically used by OpEntryPoint form the fragment input
attachment interface. These variables must be declared with a type of OpTypeImage, a Dim operand of
SubpassData, an Arrayed operand of 0, and a Sampled operand of 2. The MS operand of the OpTypeImage
must be 0 if the samples field of the corresponding VkAttachmentDescription is
VK_SAMPLE_COUNT_1_BIT and 1 otherwise.

A subpass input variable identified with an InputAttachmentIndex decoration of i reads from the
input attachment indicated by pInputAttachments[i] member of VkSubpassDescription. If the subpass
input variable is declared as an array of size N, it consumes N consecutive input attachments,
starting with the index specified. There must not be more than one input variable with the same
InputAttachmentIndex whether explicitly declared or implied by an array declaration per image
aspect. A multi-aspect image (e.g. a depth/stencil format) can use the same input variable. The
number of available input attachment indices is given by the
maxPerStageDescriptorInputAttachments member of the VkPhysicalDeviceLimits structure.

Variables identified with the InputAttachmentIndex must only be used by a fragment stage. The
numeric format of the subpass input must match the format of the corresponding input
attachment, or the values of subpass loads from these variables are undefined. If the framebuffer
attachment contains both depth and stencil aspects, the numeric format of the subpass input
determines if depth or stencil aspect is accessed by the shader.

See Input Attachment for more details.

668

15.4.1. Fragment Input Attachment Compatibility

An input attachment that is statically accessed by a fragment shader must be backed by a
descriptor that is equivalent to the VkImageView in the VkFramebuffer, except for
subresourceRange.aspectMask. The aspectMask must be equal to the aspect accessed by the shader.

15.5. Shader Resource Interface
When a shader stage accesses buffer or image resources, as described in the Resource Descriptors
section, the shader resource variables must be matched with the pipeline layout that is provided at
pipeline creation time.

The set of shader variables that form the shader resource interface for a stage are the variables
statically used by that stage’s OpEntryPoint with a storage class of Uniform, UniformConstant,
StorageBuffer, or PushConstant. For the fragment shader, this includes the fragment input
attachment interface.

The shader resource interface consists of two sub-interfaces: the push constant interface and the
descriptor set interface.

15.5.1. Push Constant Interface

The shader variables defined with a storage class of PushConstant that are statically used by the
shader entry points for the pipeline define the push constant interface. They must be:

• typed as OpTypeStruct,

• identified with a Block decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in
Offset and Stride Assignment.

There must be no more than one push constant block statically used per shader entry point.

Each statically used member of a push constant block must be placed at an Offset such that the
entire member is entirely contained within the VkPushConstantRange for each OpEntryPoint that
uses it, and the stageFlags for that range must specify the appropriate VkShaderStageFlagBits for
that stage. The Offset decoration for any member of a push constant block must not cause the
space required for that member to extend outside the range [0, maxPushConstantsSize).

Any member of a push constant block that is declared as an array must only be accessed with
dynamically uniform indices.

15.5.2. Descriptor Set Interface

The descriptor set interface is comprised of the shader variables with the storage class of
StorageBuffer, Uniform or UniformConstant (including the variables in the fragment input attachment
interface) that are statically used by the shader entry points for the pipeline.

These variables must have DescriptorSet and Binding decorations specified, which are assigned and
matched with the VkDescriptorSetLayout objects in the pipeline layout as described in DescriptorSet

669

and Binding Assignment.

The Image Format of an OpTypeImage declaration must not be Unknown, for variables which are used
for OpImageRead, OpImageSparseRead, or OpImageWrite operations, except under the following
conditions:

• For OpImageWrite, if the image format is listed in the storage without format list and if the
shaderStorageImageWriteWithoutFormat feature is enabled and the shader module declares the
StorageImageWriteWithoutFormat capability.

• For OpImageWrite, if the image format supports
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT and the shader module declares the
StorageImageWriteWithoutFormat capability.

• For OpImageRead or OpImageSparseRead, if the image format is listed in the storage without format
list and if the shaderStorageImageReadWithoutFormat feature is enabled and the shader module
declares the StorageImageReadWithoutFormat capability.

• For OpImageRead or OpImageSparseRead, if the image format supports
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT and the shader module declares the
StorageImageReadWithoutFormat capability.

• For OpImageRead, if Dim is SubpassData (indicating a read from an input attachment).

The Image Format of an OpTypeImage declaration must not be Unknown, for variables which are used
for OpAtomic* operations.

Variables identified with the Uniform storage class are used to access transparent buffer backed
resources. Such variables must be:

• typed as OpTypeStruct, or an array of this type,

• identified with a Block or BufferBlock decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in
Offset and Stride Assignment.

Variables identified with the StorageBuffer storage class are used to access transparent buffer
backed resources. Such variables must be:

• typed as OpTypeStruct, or an array of this type,

• identified with a Block decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in
Offset and Stride Assignment.

The Offset decoration for any member of a Block-decorated variable in the Uniform storage class
must not cause the space required for that variable to extend outside the range [0,
maxUniformBufferRange). The Offset decoration for any member of a Block-decorated variable in the
StorageBuffer storage class must not cause the space required for that variable to extend outside
the range [0, maxStorageBufferRange).

Variables identified with the Uniform storage class can also be used to access transparent descriptor
set backed resources when the variable is assigned to a descriptor set layout binding with a

670

descriptorType of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK. In this case the variable must be typed
as OpTypeStruct and cannot be aggregated into arrays of that type. Further, the Offset decoration
for any member of such a variable must not cause the space required for that variable to extend
outside the range [0,maxInlineUniformBlockSize).

Variables identified with a storage class of UniformConstant and a decoration of
InputAttachmentIndex must be declared as described in Fragment Input Attachment Interface.

SPIR-V variables decorated with a descriptor set and binding that identify a combined image
sampler descriptor can have a type of OpTypeImage, OpTypeSampler (Sampled=1), or OpTypeSampledImage.

Arrays of any of these types can be indexed with constant integral expressions. The following
features must be enabled and capabilities must be declared in order to index such arrays with
dynamically uniform or non-uniform indices:

• Storage images (except storage texel buffers and input attachments):

◦ Dynamically uniform: shaderStorageImageArrayDynamicIndexing and
StorageImageArrayDynamicIndexing

◦ Non-uniform: shaderStorageImageArrayNonUniformIndexing and
StorageImageArrayNonUniformIndexing

• Storage texel buffers:

◦ Dynamically uniform: shaderStorageTexelBufferArrayDynamicIndexing and
StorageTexelBufferArrayDynamicIndexing

◦ Non-uniform: shaderStorageTexelBufferArrayNonUniformIndexing and
StorageTexelBufferArrayNonUniformIndexing

• Input attachments:

◦ Dynamically uniform: shaderInputAttachmentArrayDynamicIndexing and
InputAttachmentArrayDynamicIndexing

◦ Non-uniform: shaderInputAttachmentArrayNonUniformIndexing and
InputAttachmentArrayNonUniformIndexing

• Sampled images (except uniform texel buffers), samplers and combined image samplers:

◦ Dynamically uniform: shaderSampledImageArrayDynamicIndexing and
SampledImageArrayDynamicIndexing

◦ Non-uniform: shaderSampledImageArrayNonUniformIndexing and
SampledImageArrayNonUniformIndexing

• Uniform texel buffers:

◦ Dynamically uniform: shaderUniformTexelBufferArrayDynamicIndexing and
UniformTexelBufferArrayDynamicIndexing

◦ Non-uniform: shaderUniformTexelBufferArrayNonUniformIndexing and
UniformTexelBufferArrayNonUniformIndexing

• Uniform buffers:

◦ Dynamically uniform: shaderUniformBufferArrayDynamicIndexing and

671

UniformBufferArrayDynamicIndexing

◦ Non-uniform: shaderUniformBufferArrayNonUniformIndexing and
UniformBufferArrayNonUniformIndexing

• Storage buffers:

◦ Dynamically uniform: shaderStorageBufferArrayDynamicIndexing and
StorageBufferArrayDynamicIndexing

◦ Non-uniform: shaderStorageBufferArrayNonUniformIndexing and
StorageBufferArrayNonUniformIndexing

If an instruction loads from or stores to a resource (including atomics and image instructions) and
the resource descriptor being accessed is not dynamically uniform, then the corresponding non-
uniform indexing feature must be enabled and the capability must be declared. If an instruction
loads from or stores to a resource (including atomics and image instructions) and the resource
descriptor being accessed is loaded from an array element with a non-constant index, then the
corresponding dynamic or non-uniform indexing feature must be enabled and the capability must
be declared.

If the combined image sampler enables sampler Y′CBCR conversion, it must be indexed only by
constant integral expressions when aggregated into arrays in shader code, irrespective of the
shaderSampledImageArrayDynamicIndexing feature.

Table 11. Shader Resource and Descriptor Type Correspondence

Resource type Descriptor Type

sampler VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

sampled image VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

storage image VK_DESCRIPTOR_TYPE_STORAGE_IMAGE

combined image sampler VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

uniform texel buffer VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER

storage texel buffer VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER

uniform buffer VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC

storage buffer VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

input attachment VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT

inline uniform block VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

Table 12. Shader Resource and Storage Class Correspondence

Resource type Storage Class Type1 Decoration(s)2

sampler UniformConstant OpTypeSampler

sampled image UniformConstant OpTypeImage (Sampled=1)

672

Resource type Storage Class Type1 Decoration(s)2

storage image UniformConstant OpTypeImage (Sampled=2)

combined image
sampler

UniformConstant OpTypeSampledImage
OpTypeImage (Sampled=1)
OpTypeSampler

uniform texel
buffer

UniformConstant OpTypeImage (Dim=Buffer,
Sampled=1)

storage texel buffer UniformConstant OpTypeImage (Dim=Buffer,
Sampled=2)

uniform buffer Uniform OpTypeStruct Block, Offset, (ArrayStride),
(MatrixStride)

storage buffer

Uniform

OpTypeStruct

BufferBlock, Offset,
(ArrayStride), (MatrixStride)

StorageBuffer Block, Offset, (ArrayStride),
(MatrixStride)

input attachment UniformConstant OpTypeImage (Dim
=SubpassData, Sampled=2)

InputAttachmentIndex

inline uniform
block

Uniform OpTypeStruct Block, Offset, (ArrayStride),
(MatrixStride)

1

Where OpTypeImage is referenced, the Dim values Buffer and Subpassdata are only accepted where
they are specifically referenced. They do not correspond to resource types where a generic
OpTypeImage is specified.

2

In addition to DescriptorSet and Binding.

15.5.3. DescriptorSet and Binding Assignment

A variable decorated with a DescriptorSet decoration of s and a Binding decoration of b indicates
that this variable is associated with the VkDescriptorSetLayoutBinding that has a binding equal to b
in pSetLayouts[s] that was specified in VkPipelineLayoutCreateInfo.

DescriptorSet decoration values must be between zero and maxBoundDescriptorSets minus one,
inclusive. Binding decoration values can be any 32-bit unsigned integer value, as described in
Descriptor Set Layout. Each descriptor set has its own binding name space.

If the Binding decoration is used with an array, the entire array is assigned that binding value. The
array must be a single-dimensional array and size of the array must be no larger than the number
of descriptors in the binding. If the array is runtime-sized, then array elements greater than or
equal to the size of that binding in the bound descriptor set must not be used. If the array is
runtime-sized, the runtimeDescriptorArray feature must be enabled and the RuntimeDescriptorArray
capability must be declared. The index of each element of the array is referred to as the

673

arrayElement. For the purposes of interface matching and descriptor set operations, if a resource
variable is not an array, it is treated as if it has an arrayElement of zero.

There is a limit on the number of resources of each type that can be accessed by a pipeline stage as
shown in Shader Resource Limits. The “Resources Per Stage” column gives the limit on the number
each type of resource that can be statically used for an entry point in any given stage in a pipeline.
The “Resource Types” column lists which resource types are counted against the limit. Some
resource types count against multiple limits.

The pipeline layout may include descriptor sets and bindings which are not referenced by any
variables statically used by the entry points for the shader stages in the binding’s stageFlags.

However, if a variable assigned to a given DescriptorSet and Binding is statically used by the entry
point for a shader stage, the pipeline layout must contain a descriptor set layout binding in that
descriptor set layout and for that binding number, and that binding’s stageFlags must include the
appropriate VkShaderStageFlagBits for that stage. The variable must be of a valid resource type
determined by its SPIR-V type and storage class, as defined in Shader Resource and Storage Class
Correspondence. The descriptor set layout binding must be of a corresponding descriptor type, as
defined in Shader Resource and Descriptor Type Correspondence.

Note

There are no limits on the number of shader variables that can have overlapping
set and binding values in a shader; but which resources are statically used has an
impact. If any shader variable identifying a resource is statically used in a shader,
then the underlying descriptor bound at the declared set and binding must
support the declared type in the shader when the shader executes.

If multiple shader variables are declared with the same set and binding values,
and with the same underlying descriptor type, they can all be statically used
within the same shader. However, accesses are not automatically synchronized,
and Aliased decorations should be used to avoid data hazards (see section 2.18.2
Aliasing in the SPIR-V specification).

If multiple shader variables with the same set and binding values are declared in a
single shader, but with different declared types, where any of those are not
supported by the relevant bound descriptor, that shader can only be executed if
the variables with the unsupported type are not statically used.

A noteworthy example of using multiple statically-used shader variables sharing
the same descriptor set and binding values is a descriptor of type
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER that has multiple corresponding
shader variables in the UniformConstant storage class, where some could be
OpTypeImage (Sampled=1), some could be OpTypeSampler, and some could be
OpTypeSampledImage.

Table 13. Shader Resource Limits

674

https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#_a_id_aliasingsection_a_aliasing
https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#_a_id_aliasingsection_a_aliasing

Resources per Stage Resource Types

maxPerStageDescriptorSamplers or
maxPerStageDescriptorUpdateAfterBindSamplers

sampler

combined image sampler

maxPerStageDescriptorSampledImages or
maxPerStageDescriptorUpdateAfterBindSampledI
mages

sampled image

combined image sampler

uniform texel buffer

maxPerStageDescriptorStorageImages or
maxPerStageDescriptorUpdateAfterBindStorageI
mages

storage image

storage texel buffer

maxPerStageDescriptorUniformBuffers or
maxPerStageDescriptorUpdateAfterBindUniformB
uffers

uniform buffer

uniform buffer dynamic

maxPerStageDescriptorStorageBuffers or
maxPerStageDescriptorUpdateAfterBindStorageB
uffers

storage buffer

storage buffer dynamic

maxPerStageDescriptorInputAttachments or
maxPerStageDescriptorUpdateAfterBindInputAtt
achments

input attachment1

maxPerStageDescriptorInlineUniformBlocks or
maxPerStageDescriptorUpdateAfterBindInlineUn
iformBlocks

inline uniform block

1

Input attachments can only be used in the fragment shader stage

15.5.4. Offset and Stride Assignment

Certain objects must be explicitly laid out using the Offset, ArrayStride, and MatrixStride, as
described in SPIR-V explicit layout validation rules. All such layouts also must conform to the
following requirements.

Note

The numeric order of Offset decorations does not need to follow member
declaration order.

Alignment Requirements

There are different alignment requirements depending on the specific resources and on the
features enabled on the device.

Matrix types are defined in terms of arrays as follows:

• A column-major matrix with C columns and R rows is equivalent to a C element array of vectors
with R components.

• A row-major matrix with C columns and R rows is equivalent to an R element array of vectors
with C components.

675

https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#ShaderValidation

The scalar alignment of the type of an OpTypeStruct member is defined recursively as follows:

• A scalar of size N has a scalar alignment of N.

• A vector type has a scalar alignment equal to that of its component type.

• An array type has a scalar alignment equal to that of its element type.

• A structure has a scalar alignment equal to the largest scalar alignment of any of its members.

• A matrix type inherits scalar alignment from the equivalent array declaration.

The base alignment of the type of an OpTypeStruct member is defined recursively as follows:

• A scalar has a base alignment equal to its scalar alignment.

• A two-component vector has a base alignment equal to twice its scalar alignment.

• A three- or four-component vector has a base alignment equal to four times its scalar alignment.

• An array has a base alignment equal to the base alignment of its element type.

• A structure has a base alignment equal to the largest base alignment of any of its members. An
empty structure has a base alignment equal to the size of the smallest scalar type permitted by
the capabilities declared in the SPIR-V module. (e.g., for a 1 byte aligned empty struct in the
StorageBuffer storage class, StorageBuffer8BitAccess or UniformAndStorageBuffer8BitAccess must
be declared in the SPIR-V module.)

• A matrix type inherits base alignment from the equivalent array declaration.

The extended alignment of the type of an OpTypeStruct member is similarly defined as follows:

• A scalar or vector type has an extended alignment equal to its base alignment.

• An array or structure type has an extended alignment equal to the largest extended alignment
of any of its members, rounded up to a multiple of 16.

• A matrix type inherits extended alignment from the equivalent array declaration.

A member is defined to improperly straddle if either of the following are true:

• It is a vector with total size less than or equal to 16 bytes, and has Offset decorations placing its
first byte at F and its last byte at L, where floor(F / 16) != floor(L / 16).

• It is a vector with total size greater than 16 bytes and has its Offset decorations placing its first
byte at a non-integer multiple of 16.

Standard Buffer Layout

Every member of an OpTypeStruct that is required to be explicitly laid out must be aligned
according to the first matching rule as follows. If the struct is contained in pointer types of multiple
storage classes, it must satisfy the requirements for every storage class used to reference it.

1. If the scalarBlockLayout feature is enabled on the device and the storage class is Uniform,
StorageBuffer, PhysicalStorageBuffer, or PushConstant then every member must be aligned
according to its scalar alignment.

2. All vectors must be aligned according to their scalar alignment.

676

3. If the uniformBufferStandardLayout feature is not enabled on the device, then any member of an
OpTypeStruct with a storage class of Uniform and a decoration of Block must be aligned according
to its extended alignment.

4. Every other member must be aligned according to its base alignment.

Note

Even if scalar alignment is supported, it is generally more performant to use the
base alignment.

The memory layout must obey the following rules:

• The Offset decoration of any member must be a multiple of its alignment.

• Any ArrayStride or MatrixStride decoration must be a multiple of the alignment of the array or
matrix as defined above.

If one of the conditions below applies

• The storage class is Uniform, StorageBuffer, PhysicalStorageBuffer, or PushConstant, and the
scalarBlockLayout feature is not enabled on the device.

• The storage class is any other storage class.

the memory layout must also obey the following rules:

• Vectors must not improperly straddle, as defined above.

• The Offset decoration of a member must not place it between the end of a structure, an array
or a matrix and the next multiple of the alignment of that structure, array or matrix.

Note

The std430 layout in GLSL satisfies these rules for types using the base alignment.
The std140 layout satisfies the rules for types using the extended alignment.

15.6. Built-In Variables
Built-in variables are accessed in shaders by declaring a variable decorated with a BuiltIn SPIR-V
decoration. The meaning of each BuiltIn decoration is as follows. In the remainder of this section,
the name of a built-in is used interchangeably with a term equivalent to a variable decorated with
that particular built-in. Built-ins that represent integer values can be declared as either signed or
unsigned 32-bit integers.

As mentioned above, some inputs and outputs have an additional level of arrayness relative to
other shader inputs and outputs. This level of arrayness is not included in the type descriptions
below, but must be included when declaring the built-in.

BaseInstance

Decorating a variable with the BaseInstance built-in will make that variable contain the integer
value corresponding to the first instance that was passed to the command that invoked the
current vertex shader invocation. BaseInstance is the firstInstance parameter to a direct

677

drawing command or the firstInstance member of a structure consumed by an indirect drawing
command.

Valid Usage

• VUID-BaseInstance-BaseInstance-04181
The BaseInstance decoration must be used only within the Vertex Execution Model

• VUID-BaseInstance-BaseInstance-04182
The variable decorated with BaseInstance must be declared using the Input Storage Class

• VUID-BaseInstance-BaseInstance-04183
The variable decorated with BaseInstance must be declared as a scalar 32-bit integer
value

BaseVertex

Decorating a variable with the BaseVertex built-in will make that variable contain the integer
value corresponding to the first vertex or vertex offset that was passed to the command that
invoked the current vertex shader invocation. For non-indexed drawing commands, this variable
is the firstVertex parameter to a direct drawing command or the firstVertex member of the
structure consumed by an indirect drawing command. For indexed drawing commands, this
variable is the vertexOffset parameter to a direct drawing command or the vertexOffset member
of the structure consumed by an indirect drawing command.

Valid Usage

• VUID-BaseVertex-BaseVertex-04184
The BaseVertex decoration must be used only within the Vertex Execution Model

• VUID-BaseVertex-BaseVertex-04185
The variable decorated with BaseVertex must be declared using the Input Storage Class

• VUID-BaseVertex-BaseVertex-04186
The variable decorated with BaseVertex must be declared as a scalar 32-bit integer value

ClipDistance

Decorating a variable with the ClipDistance built-in decoration will make that variable contain
the mechanism for controlling user clipping. ClipDistance is an array such that the ith element of
the array specifies the clip distance for plane i. A clip distance of 0 means the vertex is on the
plane, a positive distance means the vertex is inside the clip half-space, and a negative distance
means the vertex is outside the clip half-space.

Note

The array variable decorated with ClipDistance is explicitly sized by the shader.

Note

In the last pre-rasterization shader stage, these values will be linearly interpolated

678

across the primitive and the portion of the primitive with interpolated distances
less than 0 will be considered outside the clip volume. If ClipDistance is then used
by a fragment shader, ClipDistance contains these linearly interpolated values.

Valid Usage

• VUID-ClipDistance-ClipDistance-04187
The ClipDistance decoration must be used only within the MeshEXT, MeshNV, Vertex,
Fragment, TessellationControl, TessellationEvaluation, or Geometry Execution Model

• VUID-ClipDistance-ClipDistance-04188
The variable decorated with ClipDistance within the MeshEXT, MeshNV, or Vertex Execution
Model must be declared using the Output Storage Class

• VUID-ClipDistance-ClipDistance-04189
The variable decorated with ClipDistance within the Fragment Execution Model must be
declared using the Input Storage Class

• VUID-ClipDistance-ClipDistance-04190
The variable decorated with ClipDistance within the TessellationControl,
TessellationEvaluation, or Geometry Execution Model must not be declared in a Storage
Class other than Input or Output

• VUID-ClipDistance-ClipDistance-04191
The variable decorated with ClipDistance must be declared as an array of 32-bit floating-
point values

CullDistance

Decorating a variable with the CullDistance built-in decoration will make that variable contain
the mechanism for controlling user culling. If any member of this array is assigned a negative
value for all vertices belonging to a primitive, then the primitive is discarded before
rasterization.

Note

In fragment shaders, the values of the CullDistance array are linearly interpolated
across each primitive.

Note

If CullDistance decorates an input variable, that variable will contain the
corresponding value from the CullDistance decorated output variable from the
previous shader stage.

Valid Usage

• VUID-CullDistance-CullDistance-04196
The CullDistance decoration must be used only within the MeshEXT, MeshNV, Vertex,
Fragment, TessellationControl, TessellationEvaluation, or Geometry Execution Model

679

• VUID-CullDistance-CullDistance-04197
The variable decorated with CullDistance within the MeshEXT, MeshNV or Vertex Execution
Model must be declared using the Output Storage Class

• VUID-CullDistance-CullDistance-04198
The variable decorated with CullDistance within the Fragment Execution Model must be
declared using the Input Storage Class

• VUID-CullDistance-CullDistance-04199
The variable decorated with CullDistance within the TessellationControl,
TessellationEvaluation, or Geometry Execution Model must not be declared using a Storage
Class other than Input or Output

• VUID-CullDistance-CullDistance-04200
The variable decorated with CullDistance must be declared as an array of 32-bit floating-
point values

DeviceIndex

The DeviceIndex decoration can be applied to a shader input which will be filled with the device
index of the physical device that is executing the current shader invocation. This value will be in
the range , where physicalDeviceCount is the physicalDeviceCount
member of VkDeviceGroupDeviceCreateInfo.

Valid Usage

• VUID-DeviceIndex-DeviceIndex-04205
The variable decorated with DeviceIndex must be declared using the Input Storage Class

• VUID-DeviceIndex-DeviceIndex-04206
The variable decorated with DeviceIndex must be declared as a scalar 32-bit integer value

DrawIndex

Decorating a variable with the DrawIndex built-in will make that variable contain the integer
value corresponding to the zero-based index of the draw that invoked the current vertex shader
invocation. For indirect drawing commands, DrawIndex begins at zero and increments by one for
each draw executed. The number of draws is given by the drawCount parameter. For direct
drawing commands, DrawIndex is always zero. DrawIndex is dynamically uniform.

Valid Usage

• VUID-DrawIndex-DrawIndex-04207
The DrawIndex decoration must be used only within the Vertex, MeshEXT, TaskEXT, MeshNV, or
TaskNV Execution Model

• VUID-DrawIndex-DrawIndex-04208
The variable decorated with DrawIndex must be declared using the Input Storage Class

• VUID-DrawIndex-DrawIndex-04209
The variable decorated with DrawIndex must be declared as a scalar 32-bit integer value

680

FragCoord

Decorating a variable with the FragCoord built-in decoration will make that variable contain the
framebuffer coordinate of the fragment being processed. The (x,y) coordinate (0,0) is
the upper left corner of the upper left pixel in the framebuffer.

When Sample Shading is enabled, the x and y components of FragCoord reflect the location of
one of the samples corresponding to the shader invocation.

Otherwise, the x and y components of FragCoord reflect the location of the center of the
fragment.

The z component of FragCoord is the interpolated depth value of the primitive.

The w component is the interpolated .

The Centroid interpolation decoration is ignored, but allowed, on FragCoord.

Valid Usage

• VUID-FragCoord-FragCoord-04210
The FragCoord decoration must be used only within the Fragment Execution Model

• VUID-FragCoord-FragCoord-04211
The variable decorated with FragCoord must be declared using the Input Storage Class

• VUID-FragCoord-FragCoord-04212
The variable decorated with FragCoord must be declared as a four-component vector of
32-bit floating-point values

FragDepth

To have a shader supply a fragment-depth value, the shader must declare the DepthReplacing
execution mode. Such a shader’s fragment-depth value will come from the variable decorated
with the FragDepth built-in decoration.

This value will be used for any subsequent depth testing performed by the implementation or
writes to the depth attachment. See fragment shader depth replacement for details.

Valid Usage

• VUID-FragDepth-FragDepth-04213
The FragDepth decoration must be used only within the Fragment Execution Model

• VUID-FragDepth-FragDepth-04214
The variable decorated with FragDepth must be declared using the Output Storage Class

• VUID-FragDepth-FragDepth-04215
The variable decorated with FragDepth must be declared as a scalar 32-bit floating-point
value

• VUID-FragDepth-FragDepth-04216
If the shader dynamically writes to the variable decorated with FragDepth, the

681

DepthReplacing Execution Mode must be declared

FrontFacing

Decorating a variable with the FrontFacing built-in decoration will make that variable contain
whether the fragment is front or back facing. This variable is non-zero if the current fragment is
considered to be part of a front-facing polygon primitive or of a non-polygon primitive and is
zero if the fragment is considered to be part of a back-facing polygon primitive.

Valid Usage

• VUID-FrontFacing-FrontFacing-04229
The FrontFacing decoration must be used only within the Fragment Execution Model

• VUID-FrontFacing-FrontFacing-04230
The variable decorated with FrontFacing must be declared using the Input Storage Class

• VUID-FrontFacing-FrontFacing-04231
The variable decorated with FrontFacing must be declared as a boolean value

GlobalInvocationId

Decorating a variable with the GlobalInvocationId built-in decoration will make that variable
contain the location of the current invocation within the global workgroup. Each component is
equal to the index of the local workgroup multiplied by the size of the local workgroup plus
LocalInvocationId.

Valid Usage

• VUID-GlobalInvocationId-GlobalInvocationId-04236
The GlobalInvocationId decoration must be used only within the GLCompute, MeshEXT,
TaskEXT, MeshNV, or TaskNV Execution Model

• VUID-GlobalInvocationId-GlobalInvocationId-04237
The variable decorated with GlobalInvocationId must be declared using the Input Storage
Class

• VUID-GlobalInvocationId-GlobalInvocationId-04238
The variable decorated with GlobalInvocationId must be declared as a three-component
vector of 32-bit integer values

HelperInvocation

Decorating a variable with the HelperInvocation built-in decoration will make that variable
contain whether the current invocation is a helper invocation. This variable is non-zero if the
current fragment being shaded is a helper invocation and zero otherwise. A helper invocation is
an invocation of the shader that is produced to satisfy internal requirements such as the
generation of derivatives.

 Note

682

It is very likely that a helper invocation will have a value of SampleMask fragment
shader input value that is zero.

Valid Usage

• VUID-HelperInvocation-HelperInvocation-04239
The HelperInvocation decoration must be used only within the Fragment Execution Model

• VUID-HelperInvocation-HelperInvocation-04240
The variable decorated with HelperInvocation must be declared using the Input Storage
Class

• VUID-HelperInvocation-HelperInvocation-04241
The variable decorated with HelperInvocation must be declared as a boolean value

InvocationId

Decorating a variable with the InvocationId built-in decoration will make that variable contain
the index of the current shader invocation in a geometry shader, or the index of the output
patch vertex in a tessellation control shader.

In a geometry shader, the index of the current shader invocation ranges from zero to the
number of instances declared in the shader minus one. If the instance count of the geometry
shader is one or is not specified, then InvocationId will be zero.

Valid Usage

• VUID-InvocationId-InvocationId-04257
The InvocationId decoration must be used only within the TessellationControl or
Geometry Execution Model

• VUID-InvocationId-InvocationId-04258
The variable decorated with InvocationId must be declared using the Input Storage Class

• VUID-InvocationId-InvocationId-04259
The variable decorated with InvocationId must be declared as a scalar 32-bit integer
value

InstanceIndex

Decorating a variable in a vertex shader with the InstanceIndex built-in decoration will make
that variable contain the index of the instance that is being processed by the current vertex
shader invocation. InstanceIndex begins at the firstInstance parameter to vkCmdDraw or
vkCmdDrawIndexed or at the firstInstance member of a structure consumed by
vkCmdDrawIndirect or vkCmdDrawIndexedIndirect.

Valid Usage

• VUID-InstanceIndex-InstanceIndex-04263
The InstanceIndex decoration must be used only within the Vertex Execution Model

683

• VUID-InstanceIndex-InstanceIndex-04264
The variable decorated with InstanceIndex must be declared using the Input Storage Class

• VUID-InstanceIndex-InstanceIndex-04265
The variable decorated with InstanceIndex must be declared as a scalar 32-bit integer
value

Layer

Decorating a variable with the Layer built-in decoration will make that variable contain the
select layer of a multi-layer framebuffer attachment.

In a vertex, tessellation evaluation, or geometry shader, any variable decorated with Layer can
be written with the framebuffer layer index to which the primitive produced by that shader will
be directed.

The last active pre-rasterization shader stage (in pipeline order) controls the Layer that is used.
Outputs in previous shader stages are not used, even if the last stage fails to write the Layer.

If the last active pre-rasterization shader stage shader entry point’s interface does not include a
variable decorated with Layer, then the first layer is used. If a pre-rasterization shader stage
shader entry point’s interface includes a variable decorated with Layer, it must write the same
value to Layer for all output vertices of a given primitive. If the Layer value is less than 0 or
greater than or equal to the number of layers in the framebuffer, then primitives may still be
rasterized, fragment shaders may be executed, and the framebuffer values for all layers are
undefined.

In a fragment shader, a variable decorated with Layer contains the layer index of the primitive
that the fragment invocation belongs to.

Valid Usage

• VUID-Layer-Layer-04272
The Layer decoration must be used only within the MeshEXT, MeshNV, Vertex,
TessellationEvaluation, Geometry, or Fragment Execution Model

• VUID-Layer-Layer-04273
If the shaderOutputLayer feature is not enabled then the Layer decoration must be used
only within the Geometry or Fragment Execution Model

• VUID-Layer-Layer-04274
The variable decorated with Layer within the MeshEXT, MeshNV, Vertex,
TessellationEvaluation, or Geometry Execution Model must be declared using the Output
Storage Class

• VUID-Layer-Layer-04275
The variable decorated with Layer within the Fragment Execution Model must be declared
using the Input Storage Class

• VUID-Layer-Layer-04276
The variable decorated with Layer must be declared as a scalar 32-bit integer value

684

• VUID-Layer-Layer-07039
The variable decorated with Layer within the MeshEXT Execution Model must also be
decorated with the PerPrimitiveEXT decoration

LocalInvocationId

Decorating a variable with the LocalInvocationId built-in decoration will make that variable
contain the location of the current compute shader invocation within the local workgroup. Each
component ranges from zero through to the size of the workgroup in that dimension minus one.

Note

If the size of the workgroup in a particular dimension is one, then the
LocalInvocationId in that dimension will be zero. If the workgroup is effectively
two-dimensional, then LocalInvocationId.z will be zero. If the workgroup is
effectively one-dimensional, then both LocalInvocationId.y and
LocalInvocationId.z will be zero.

Valid Usage

• VUID-LocalInvocationId-LocalInvocationId-04281
The LocalInvocationId decoration must be used only within the GLCompute, MeshEXT,
TaskEXT, MeshNV, or TaskNV Execution Model

• VUID-LocalInvocationId-LocalInvocationId-04282
The variable decorated with LocalInvocationId must be declared using the Input Storage
Class

• VUID-LocalInvocationId-LocalInvocationId-04283
The variable decorated with LocalInvocationId must be declared as a three-component
vector of 32-bit integer values

LocalInvocationIndex

Decorating a variable with the LocalInvocationIndex built-in decoration will make that variable
contain a one-dimensional representation of LocalInvocationId. This is computed as:

LocalInvocationIndex =
 LocalInvocationId.z * WorkgroupSize.x * WorkgroupSize.y +
 LocalInvocationId.y * WorkgroupSize.x +
 LocalInvocationId.x;

Valid Usage

• VUID-LocalInvocationIndex-LocalInvocationIndex-04284
The LocalInvocationIndex decoration must be used only within the GLCompute, MeshEXT,
TaskEXT, MeshNV, or TaskNV Execution Model

• VUID-LocalInvocationIndex-LocalInvocationIndex-04285

685

The variable decorated with LocalInvocationIndex must be declared using the Input
Storage Class

• VUID-LocalInvocationIndex-LocalInvocationIndex-04286
The variable decorated with LocalInvocationIndex must be declared as a scalar 32-bit
integer value

NumSubgroups

Decorating a variable with the NumSubgroups built-in decoration will make that variable contain
the number of subgroups in the local workgroup.

Valid Usage

• VUID-NumSubgroups-NumSubgroups-04293
The NumSubgroups decoration must be used only within the GLCompute, MeshEXT, TaskEXT,
MeshNV, or TaskNV Execution Model

• VUID-NumSubgroups-NumSubgroups-04294
The variable decorated with NumSubgroups must be declared using the Input Storage Class

• VUID-NumSubgroups-NumSubgroups-04295
The variable decorated with NumSubgroups must be declared as a scalar 32-bit integer
value

NumWorkgroups

Decorating a variable with the NumWorkgroups built-in decoration will make that variable contain
the number of local workgroups that are part of the dispatch that the invocation belongs to.
Each component is equal to the values of the workgroup count parameters passed into the
dispatching commands.

Valid Usage

• VUID-NumWorkgroups-NumWorkgroups-04296
The NumWorkgroups decoration must be used only within the GLCompute, MeshEXT, or TaskEXT
Execution Model

• VUID-NumWorkgroups-NumWorkgroups-04297
The variable decorated with NumWorkgroups must be declared using the Input Storage Class

• VUID-NumWorkgroups-NumWorkgroups-04298
The variable decorated with NumWorkgroups must be declared as a three-component vector
of 32-bit integer values

PatchVertices

Decorating a variable with the PatchVertices built-in decoration will make that variable contain
the number of vertices in the input patch being processed by the shader. In a Tessellation
Control Shader, this is the same as the name:patchControlPoints member of
VkPipelineTessellationStateCreateInfo. In a Tessellation Evaluation Shader, PatchVertices is

686

equal to the tessellation control output patch size. When the same shader is used in different
pipelines where the patch sizes are configured differently, the value of the PatchVertices
variable will also differ.

Valid Usage

• VUID-PatchVertices-PatchVertices-04308
The PatchVertices decoration must be used only within the TessellationControl or
TessellationEvaluation Execution Model

• VUID-PatchVertices-PatchVertices-04309
The variable decorated with PatchVertices must be declared using the Input Storage Class

• VUID-PatchVertices-PatchVertices-04310
The variable decorated with PatchVertices must be declared as a scalar 32-bit integer
value

PointCoord

Decorating a variable with the PointCoord built-in decoration will make that variable contain the
coordinate of the current fragment within the point being rasterized, normalized to the size of
the point with origin in the upper left corner of the point, as described in Basic Point
Rasterization. If the primitive the fragment shader invocation belongs to is not a point, then the
variable decorated with PointCoord contains an undefined value.

Note

Depending on how the point is rasterized, PointCoord may never reach (0,0) or
(1,1).

Valid Usage

• VUID-PointCoord-PointCoord-04311
The PointCoord decoration must be used only within the Fragment Execution Model

• VUID-PointCoord-PointCoord-04312
The variable decorated with PointCoord must be declared using the Input Storage Class

• VUID-PointCoord-PointCoord-04313
The variable decorated with PointCoord must be declared as a two-component vector of
32-bit floating-point values

PointSize

Decorating a variable with the PointSize built-in decoration will make that variable contain the
size of point primitives . The value written to the variable decorated with PointSize by the last
pre-rasterization shader stage in the pipeline is used as the framebuffer-space size of points
produced by rasterization.

Note

687

When PointSize decorates a variable in the Input Storage Class, it contains the data
written to the output variable decorated with PointSize from the previous shader
stage.

Valid Usage

• VUID-PointSize-PointSize-04314
The PointSize decoration must be used only within the MeshEXT, MeshNV, Vertex,
TessellationControl, TessellationEvaluation, or Geometry Execution Model

• VUID-PointSize-PointSize-04315
The variable decorated with PointSize within the MeshEXT, MeshNV, or Vertex Execution
Model must be declared using the Output Storage Class

• VUID-PointSize-PointSize-04316
The variable decorated with PointSize within the TessellationControl,
TessellationEvaluation, or Geometry Execution Model must not be declared using a Storage
Class other than Input or Output

• VUID-PointSize-PointSize-04317
The variable decorated with PointSize must be declared as a scalar 32-bit floating-point
value

Position

Decorating a variable with the Position built-in decoration will make that variable contain the
position of the current vertex. In the last pre-rasterization shader stage, the value of the variable
decorated with Position is used in subsequent primitive assembly, clipping, and rasterization
operations.

Note

When Position decorates a variable in the Input Storage Class, it contains the data
written to the output variable decorated with Position from the previous shader
stage.

Valid Usage

• VUID-Position-Position-04318
The Position decoration must be used only within the MeshEXT, MeshNV, Vertex,
TessellationControl, TessellationEvaluation, or Geometry Execution Model

• VUID-Position-Position-04319
The variable decorated with Position within the MeshEXT, MeshNV, or Vertex Execution Model
must be declared using the Output Storage Class

• VUID-Position-Position-04320
The variable decorated with Position within the TessellationControl,
TessellationEvaluation, or Geometry Execution Model must not be declared using a Storage
Class other than Input or Output

688

• VUID-Position-Position-04321
The variable decorated with Position must be declared as a four-component vector of 32-
bit floating-point values

PrimitiveId

Decorating a variable with the PrimitiveId built-in decoration will make that variable contain
the index of the current primitive.

The index of the first primitive generated by a drawing command is zero, and the index is
incremented after every individual point, line, or triangle primitive is processed.

For triangles drawn as points or line segments (see Polygon Mode), the primitive index is
incremented only once, even if multiple points or lines are eventually drawn.

Variables decorated with PrimitiveId are reset to zero between each instance drawn.

Restarting a primitive topology using primitive restart has no effect on the value of variables
decorated with PrimitiveId.

In tessellation control and tessellation evaluation shaders, it will contain the index of the patch
within the current set of rendering primitives that corresponds to the shader invocation.

In a geometry shader, it will contain the number of primitives presented as input to the shader
since the current set of rendering primitives was started.

In a fragment shader, it will contain the primitive index written by the geometry shader if a
geometry shader is present, or with the value that would have been presented as input to the
geometry shader had it been present.

Note

When the PrimitiveId decoration is applied to an output variable in the geometry
shader, the resulting value is seen through the PrimitiveId decorated input
variable in the fragment shader.

The fragment shader using PrimitiveId will need to declare either the Geometry or
Tessellation capability to satisfy the requirement SPIR-V has to use PrimitiveId.

Valid Usage

• VUID-PrimitiveId-PrimitiveId-04330
The PrimitiveId decoration must be used only within the MeshEXT, MeshNV, IntersectionKHR,
AnyHitKHR, ClosestHitKHR, TessellationControl, TessellationEvaluation, Geometry, or
Fragment Execution Model

• VUID-PrimitiveId-Fragment-04331
If pipeline contains both the Fragment and Geometry Execution Model and a variable
decorated with PrimitiveId is read from Fragment shader, then the Geometry shader must
write to the output variables decorated with PrimitiveId in all execution paths

689

• VUID-PrimitiveId-Fragment-04332
If pipeline contains both the Fragment and MeshEXT or MeshNV Execution Model and a variable
decorated with PrimitiveId is read from Fragment shader, then the MeshEXT or MeshNV
shader must write to the output variables decorated with PrimitiveId in all execution
paths

• VUID-PrimitiveId-Fragment-04333
If Fragment Execution Model contains a variable decorated with PrimitiveId, then either the
MeshShadingEXT, MeshShadingNV, Geometry or Tessellation capability must also be declared

• VUID-PrimitiveId-PrimitiveId-04334
The variable decorated with PrimitiveId within the TessellationControl,
TessellationEvaluation, Fragment, IntersectionKHR, AnyHitKHR, or ClosestHitKHR Execution
Model must be declared using the Input Storage Class

• VUID-PrimitiveId-PrimitiveId-04335
The variable decorated with PrimitiveId within the Geometry Execution Model must be
declared using the Input or Output Storage Class

• VUID-PrimitiveId-PrimitiveId-04336
The variable decorated with PrimitiveId within the MeshEXT or MeshNV Execution Model
must be declared using the Output Storage Class

• VUID-PrimitiveId-PrimitiveId-04337
The variable decorated with PrimitiveId must be declared as a scalar 32-bit integer value

• VUID-PrimitiveId-PrimitiveId-07040
The variable decorated with PrimitiveId within the MeshEXT Execution Model must also be
decorated with the PerPrimitiveEXT decoration

SampleId

Decorating a variable with the SampleId built-in decoration will make that variable contain the
coverage index for the current fragment shader invocation. SampleId ranges from zero to the
number of samples in the framebuffer minus one. If a fragment shader entry point’s interface
includes an input variable decorated with SampleId, Sample Shading is considered enabled with
a minSampleShading value of 1.0.

Valid Usage

• VUID-SampleId-SampleId-04354
The SampleId decoration must be used only within the Fragment Execution Model

• VUID-SampleId-SampleId-04355
The variable decorated with SampleId must be declared using the Input Storage Class

• VUID-SampleId-SampleId-04356
The variable decorated with SampleId must be declared as a scalar 32-bit integer value

SampleMask

Decorating a variable with the SampleMask built-in decoration will make any variable contain the
sample mask for the current fragment shader invocation.

690

A variable in the Input storage class decorated with SampleMask will contain a bitmask of the set
of samples covered by the primitive generating the fragment during rasterization. It has a
sample bit set if and only if the sample is considered covered for this fragment shader
invocation. SampleMask[] is an array of integers. Bits are mapped to samples in a manner where
bit B of mask M (SampleMask[M]) corresponds to sample 32 × M + B.

A variable in the Output storage class decorated with SampleMask is an array of integers forming a
bit array in a manner similar to an input variable decorated with SampleMask, but where each bit
represents coverage as computed by the shader. This computed SampleMask is combined with the
generated coverage mask in the multisample coverage operation.

Variables decorated with SampleMask must be either an unsized array, or explicitly sized to be no
larger than the implementation-dependent maximum sample-mask (as an array of 32-bit
elements), determined by the maximum number of samples.

If a fragment shader entry point’s interface includes an output variable decorated with
SampleMask, the sample mask will be undefined for any array elements of any fragment shader
invocations that fail to assign a value. If a fragment shader entry point’s interface does not
include an output variable decorated with SampleMask, the sample mask has no effect on the
processing of a fragment.

Valid Usage

• VUID-SampleMask-SampleMask-04357
The SampleMask decoration must be used only within the Fragment Execution Model

• VUID-SampleMask-SampleMask-04358
The variable decorated with SampleMask must be declared using the Input or Output
Storage Class

• VUID-SampleMask-SampleMask-04359
The variable decorated with SampleMask must be declared as an array of 32-bit integer
values

SamplePosition

Decorating a variable with the SamplePosition built-in decoration will make that variable contain
the sub-pixel position of the sample being shaded. The top left of the pixel is considered to be at
coordinate (0,0) and the bottom right of the pixel is considered to be at coordinate (1,1).

If a fragment shader entry point’s interface includes an input variable decorated with
SamplePosition, Sample Shading is considered enabled with a minSampleShading value of 1.0.

Valid Usage

• VUID-SamplePosition-SamplePosition-04360
The SamplePosition decoration must be used only within the Fragment Execution Model

• VUID-SamplePosition-SamplePosition-04361
The variable decorated with SamplePosition must be declared using the Input Storage

691

Class

• VUID-SamplePosition-SamplePosition-04362
The variable decorated with SamplePosition must be declared as a two-component vector
of 32-bit floating-point values

SubgroupId

Decorating a variable with the SubgroupId built-in decoration will make that variable contain the
index of the subgroup within the local workgroup. This variable is in range [0, NumSubgroups-1].

Valid Usage

• VUID-SubgroupId-SubgroupId-04367
The SubgroupId decoration must be used only within the GLCompute, MeshEXT, TaskEXT,
MeshNV, or TaskNV Execution Model

• VUID-SubgroupId-SubgroupId-04368
The variable decorated with SubgroupId must be declared using the Input Storage Class

• VUID-SubgroupId-SubgroupId-04369
The variable decorated with SubgroupId must be declared as a scalar 32-bit integer value

SubgroupEqMask

Decorating a variable with the SubgroupEqMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bit corresponding to the
SubgroupLocalInvocationId is set in the variable decorated with SubgroupEqMask. All other bits are
set to zero.

SubgroupEqMaskKHR is an alias of SubgroupEqMask.

Valid Usage

• VUID-SubgroupEqMask-SubgroupEqMask-04370
The variable decorated with SubgroupEqMask must be declared using the Input Storage
Class

• VUID-SubgroupEqMask-SubgroupEqMask-04371
The variable decorated with SubgroupEqMask must be declared as a four-component vector
of 32-bit integer values

SubgroupGeMask

Decorating a variable with the SubgroupGeMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bits corresponding to the
invocations greater than or equal to SubgroupLocalInvocationId through SubgroupSize-1 are set in
the variable decorated with SubgroupGeMask. All other bits are set to zero.

SubgroupGeMaskKHR is an alias of SubgroupGeMask.

692

Valid Usage

• VUID-SubgroupGeMask-SubgroupGeMask-04372
The variable decorated with SubgroupGeMask must be declared using the Input Storage
Class

• VUID-SubgroupGeMask-SubgroupGeMask-04373
The variable decorated with SubgroupGeMask must be declared as a four-component vector
of 32-bit integer values

SubgroupGtMask

Decorating a variable with the SubgroupGtMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bits corresponding to the
invocations greater than SubgroupLocalInvocationId through SubgroupSize-1 are set in the
variable decorated with SubgroupGtMask. All other bits are set to zero.

SubgroupGtMaskKHR is an alias of SubgroupGtMask.

Valid Usage

• VUID-SubgroupGtMask-SubgroupGtMask-04374
The variable decorated with SubgroupGtMask must be declared using the Input Storage
Class

• VUID-SubgroupGtMask-SubgroupGtMask-04375
The variable decorated with SubgroupGtMask must be declared as a four-component vector
of 32-bit integer values

SubgroupLeMask

Decorating a variable with the SubgroupLeMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bits corresponding to the
invocations less than or equal to SubgroupLocalInvocationId are set in the variable decorated
with SubgroupLeMask. All other bits are set to zero.

SubgroupLeMaskKHR is an alias of SubgroupLeMask.

Valid Usage

• VUID-SubgroupLeMask-SubgroupLeMask-04376
The variable decorated with SubgroupLeMask must be declared using the Input Storage
Class

• VUID-SubgroupLeMask-SubgroupLeMask-04377
The variable decorated with SubgroupLeMask must be declared as a four-component vector
of 32-bit integer values

693

SubgroupLtMask

Decorating a variable with the SubgroupLtMask builtin decoration will make that variable contain
the subgroup mask of the current subgroup invocation. The bits corresponding to the
invocations less than SubgroupLocalInvocationId are set in the variable decorated with
SubgroupLtMask. All other bits are set to zero.

SubgroupLtMaskKHR is an alias of SubgroupLtMask.

Valid Usage

• VUID-SubgroupLtMask-SubgroupLtMask-04378
The variable decorated with SubgroupLtMask must be declared using the Input Storage
Class

• VUID-SubgroupLtMask-SubgroupLtMask-04379
The variable decorated with SubgroupLtMask must be declared as a four-component vector
of 32-bit integer values

SubgroupLocalInvocationId

Decorating a variable with the SubgroupLocalInvocationId builtin decoration will make that
variable contain the index of the invocation within the subgroup. This variable is in range
[0,SubgroupSize-1].

If VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT is specified, or if module declares
SPIR-V version 1.6 or higher, and the local workgroup size in the X dimension of the stage is a
multiple of SubgroupSize, full subgroups are enabled for that pipeline stage. When full subgroups
are enabled, subgroups must be launched with all invocations active, i.e., there is an active
invocation with SubgroupLocalInvocationId for each value in range [0,SubgroupSize-1].

Note

There is no direct relationship between SubgroupLocalInvocationId and
LocalInvocationId or LocalInvocationIndex. If the pipeline was created with full
subgroups applications can compute their own local invocation index to serve the
same purpose:

index = SubgroupLocalInvocationId + SubgroupId × SubgroupSize

If full subgroups are not enabled, some subgroups may be dispatched with inactive
invocations that do not correspond to a local workgroup invocation, making the
value of index unreliable.

Note

VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT is effectively
deprecated when compiling SPIR-V 1.6 shaders, as this behavior is the default for
Vulkan with SPIR-V 1.6. This is more aligned with developer expectations, and
avoids applications unexpectedly breaking in the future.

694

Valid Usage

• VUID-SubgroupLocalInvocationId-SubgroupLocalInvocationId-04380
The variable decorated with SubgroupLocalInvocationId must be declared using the Input
Storage Class

• VUID-SubgroupLocalInvocationId-SubgroupLocalInvocationId-04381
The variable decorated with SubgroupLocalInvocationId must be declared as a scalar 32-bit
integer value

SubgroupSize

Decorating a variable with the SubgroupSize builtin decoration will make that variable contain
the implementation-dependent number of invocations in a subgroup. This value must be a
power-of-two integer.

If the pipeline was created with the
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag set, or the SPIR-V module
is at least version 1.6, the SubgroupSize decorated variable will contain the subgroup size for each
subgroup that gets dispatched. This value must be between minSubgroupSize and maxSubgroupSize
and must be uniform with subgroup scope. The value may vary across a single draw call, and
for fragment shaders may vary across a single primitive. In compute dispatches, SubgroupSize
must be uniform with command scope.

If the pipeline was created with a chained
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure, the SubgroupSize decorated
variable will match requiredSubgroupSize.

If SPIR-V module is less than version 1.6 and the pipeline was not created with the
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag set and no
VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure was chained, the variable
decorated with SubgroupSize will match subgroupSize.

The maximum number of invocations that an implementation can support per subgroup is 128.

Note

The old behavior for SubgroupSize is considered deprecated as certain compute
algorithms cannot be easily implemented without the guarantees of
VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT and
VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT.

Valid Usage

• VUID-SubgroupSize-SubgroupSize-04382
The variable decorated with SubgroupSize must be declared using the Input Storage Class

• VUID-SubgroupSize-SubgroupSize-04383
The variable decorated with SubgroupSize must be declared as a scalar 32-bit integer
value

695

TessCoord

Decorating a variable with the TessCoord built-in decoration will make that variable contain the
three-dimensional (u,v,w) barycentric coordinate of the tessellated vertex within the patch. u, v,
and w are in the range [0,1] and vary linearly across the primitive being subdivided. For the
tessellation modes of Quads or IsoLines, the third component is always zero.

Valid Usage

• VUID-TessCoord-TessCoord-04387
The TessCoord decoration must be used only within the TessellationEvaluation Execution
Model

• VUID-TessCoord-TessCoord-04388
The variable decorated with TessCoord must be declared using the Input Storage Class

• VUID-TessCoord-TessCoord-04389
The variable decorated with TessCoord must be declared as a three-component vector of
32-bit floating-point values

TessLevelOuter

Decorating a variable with the TessLevelOuter built-in decoration will make that variable contain
the outer tessellation levels for the current patch.

In tessellation control shaders, the variable decorated with TessLevelOuter can be written to,
controlling the tessellation factors for the resulting patch. These values are used by the
tessellator to control primitive tessellation and can be read by tessellation evaluation shaders.

In tessellation evaluation shaders, the variable decorated with TessLevelOuter can read the
values written by the tessellation control shader.

Valid Usage

• VUID-TessLevelOuter-TessLevelOuter-04390
The TessLevelOuter decoration must be used only within the TessellationControl or
TessellationEvaluation Execution Model

• VUID-TessLevelOuter-TessLevelOuter-04391
The variable decorated with TessLevelOuter within the TessellationControl Execution
Model must be declared using the Output Storage Class

• VUID-TessLevelOuter-TessLevelOuter-04392
The variable decorated with TessLevelOuter within the TessellationEvaluation Execution
Model must be declared using the Input Storage Class

• VUID-TessLevelOuter-TessLevelOuter-04393
The variable decorated with TessLevelOuter must be declared as an array of size four,
containing 32-bit floating-point values

696

TessLevelInner

Decorating a variable with the TessLevelInner built-in decoration will make that variable contain
the inner tessellation levels for the current patch.

In tessellation control shaders, the variable decorated with TessLevelInner can be written to,
controlling the tessellation factors for the resulting patch. These values are used by the
tessellator to control primitive tessellation and can be read by tessellation evaluation shaders.

In tessellation evaluation shaders, the variable decorated with TessLevelInner can read the
values written by the tessellation control shader.

Valid Usage

• VUID-TessLevelInner-TessLevelInner-04394
The TessLevelInner decoration must be used only within the TessellationControl or
TessellationEvaluation Execution Model

• VUID-TessLevelInner-TessLevelInner-04395
The variable decorated with TessLevelInner within the TessellationControl Execution
Model must be declared using the Output Storage Class

• VUID-TessLevelInner-TessLevelInner-04396
The variable decorated with TessLevelInner within the TessellationEvaluation Execution
Model must be declared using the Input Storage Class

• VUID-TessLevelInner-TessLevelInner-04397
The variable decorated with TessLevelInner must be declared as an array of size two,
containing 32-bit floating-point values

VertexIndex

Decorating a variable with the VertexIndex built-in decoration will make that variable contain
the index of the vertex that is being processed by the current vertex shader invocation. For non-
indexed draws, this variable begins at the firstVertex parameter to vkCmdDraw or the
firstVertex member of a structure consumed by vkCmdDrawIndirect and increments by one for
each vertex in the draw. For indexed draws, its value is the content of the index buffer for the
vertex plus the vertexOffset parameter to vkCmdDrawIndexed or the vertexOffset member of
the structure consumed by vkCmdDrawIndexedIndirect.

Note

VertexIndex starts at the same starting value for each instance.

Valid Usage

• VUID-VertexIndex-VertexIndex-04398
The VertexIndex decoration must be used only within the Vertex Execution Model

• VUID-VertexIndex-VertexIndex-04399
The variable decorated with VertexIndex must be declared using the Input Storage Class

697

• VUID-VertexIndex-VertexIndex-04400
The variable decorated with VertexIndex must be declared as a scalar 32-bit integer value

ViewIndex

The ViewIndex decoration can be applied to a shader input which will be filled with the index of
the view that is being processed by the current shader invocation.

If multiview is enabled in the render pass, this value will be one of the bits set in the view mask
of the subpass the pipeline is compiled against. If multiview is not enabled in the render pass,
this value will be zero.

Valid Usage

• VUID-ViewIndex-ViewIndex-04401
The ViewIndex decoration must be used only within the MeshEXT, Vertex, Geometry,
TessellationControl, TessellationEvaluation or Fragment Execution Model

• VUID-ViewIndex-ViewIndex-04402
The variable decorated with ViewIndex must be declared using the Input Storage Class

• VUID-ViewIndex-ViewIndex-04403
The variable decorated with ViewIndex must be declared as a scalar 32-bit integer value

ViewportIndex

Decorating a variable with the ViewportIndex built-in decoration will make that variable contain
the index of the viewport.

In a vertex, tessellation evaluation, or geometry shader, the variable decorated with
ViewportIndex can be written to with the viewport index to which the primitive produced by that
shader will be directed.

The selected viewport index is used to select the viewport transform and scissor rectangle.

The last active pre-rasterization shader stage (in pipeline order) controls the ViewportIndex that is
used. Outputs in previous shader stages are not used, even if the last stage fails to write the
ViewportIndex.

If the last active pre-rasterization shader stage shader entry point’s interface does not include a
variable decorated with ViewportIndex then the first viewport is used. If a pre-rasterization
shader stage shader entry point’s interface includes a variable decorated with ViewportIndex, it
must write the same value to ViewportIndex for all output vertices of a given primitive.

In a fragment shader, the variable decorated with ViewportIndex contains the viewport index of
the primitive that the fragment invocation belongs to.

Valid Usage

• VUID-ViewportIndex-ViewportIndex-04404

698

The ViewportIndex decoration must be used only within the MeshEXT, MeshNV, Vertex,
TessellationEvaluation, Geometry, or Fragment Execution Model

• VUID-ViewportIndex-ViewportIndex-04405
If the shaderOutputViewportIndex feature is not enabled then the ViewportIndex decoration
must be used only within the Geometry or Fragment Execution Model

• VUID-ViewportIndex-ViewportIndex-04406
The variable decorated with ViewportIndex within the MeshEXT, MeshNV, Vertex,
TessellationEvaluation, or Geometry Execution Model must be declared using the Output
Storage Class

• VUID-ViewportIndex-ViewportIndex-04407
The variable decorated with ViewportIndex within the Fragment Execution Model must be
declared using the Input Storage Class

• VUID-ViewportIndex-ViewportIndex-04408
The variable decorated with ViewportIndex must be declared as a scalar 32-bit integer
value

• VUID-ViewportIndex-ViewportIndex-07060
The variable decorated with ViewportIndex within the MeshEXT Execution Model must also
be decorated with the PerPrimitiveEXT decoration

WorkgroupId

Decorating a variable with the WorkgroupId built-in decoration will make that variable contain
the global workgroup that the current invocation is a member of. Each component ranges from a
base value to a base + count value, based on the parameters passed into the dispatching
commands.

Valid Usage

• VUID-WorkgroupId-WorkgroupId-04422
The WorkgroupId decoration must be used only within the GLCompute, MeshEXT, TaskEXT,
MeshNV, or TaskNV Execution Model

• VUID-WorkgroupId-WorkgroupId-04423
The variable decorated with WorkgroupId must be declared using the Input Storage Class

• VUID-WorkgroupId-WorkgroupId-04424
The variable decorated with WorkgroupId must be declared as a three-component vector of
32-bit integer values

WorkgroupSize

Note

SPIR-V 1.6 deprecated WorkgroupSize in favor of using the LocalSizeId Execution
Mode instead. Support for LocalSizeId was added with VK_KHR_maintenance4 and
promoted to core in Version 1.3.

699

Decorating an object with the WorkgroupSize built-in decoration will make that object contain the
dimensions of a local workgroup. If an object is decorated with the WorkgroupSize decoration, this
takes precedence over any LocalSize or LocalSizeId execution mode.

Valid Usage

• VUID-WorkgroupSize-WorkgroupSize-04425
The WorkgroupSize decoration must be used only within the GLCompute, MeshEXT, TaskEXT,
MeshNV, or TaskNV Execution Model

• VUID-WorkgroupSize-WorkgroupSize-04426
The variable decorated with WorkgroupSize must be a specialization constant or a constant

• VUID-WorkgroupSize-WorkgroupSize-04427
The variable decorated with WorkgroupSize must be declared as a three-component vector
of 32-bit integer values

700

Chapter 16. Image Operations

16.1. Image Operations Overview
Vulkan Image Operations are operations performed by those SPIR-V Image Instructions which take
an OpTypeImage (representing a VkImageView) or OpTypeSampledImage (representing a (VkImageView,
VkSampler) pair). Read, write, and atomic operations also take texel coordinates as operands, and
return a value based on a neighborhood of texture elements (texels) within the image. Query
operations return properties of the bound image or of the lookup itself. The “Depth” operand of
OpTypeImage is ignored.

Note

Texel is a term which is a combination of the words texture and element. Early
interactive computer graphics supported texture operations on textures, a small
subset of the image operations on images described here. The discrete samples
remain essentially equivalent, however, so we retain the historical term texel to
refer to them.

Image Operations include the functionality of the following SPIR-V Image Instructions:

• OpImageSample* and OpImageSparseSample* read one or more neighboring texels of the image, and
filter the texel values based on the state of the sampler.

◦ Instructions with ImplicitLod in the name determine the LOD used in the sampling
operation based on the coordinates used in neighboring fragments.

◦ Instructions with ExplicitLod in the name determine the LOD used in the sampling
operation based on additional coordinates.

◦ Instructions with Proj in the name apply homogeneous projection to the coordinates.

• OpImageFetch and OpImageSparseFetch return a single texel of the image. No sampler is used.

• OpImage*Gather and OpImageSparse*Gather read neighboring texels and return a single
component of each.

• OpImageRead (and OpImageSparseRead) and OpImageWrite read and write, respectively, a texel in the
image. No sampler is used.

• OpImage*Dref* instructions apply depth comparison on the texel values.

• OpImageSparse* instructions additionally return a sparse residency code.

• OpImageQuerySize, OpImageQuerySizeLod, OpImageQueryLevels, and OpImageQuerySamples return
properties of the image descriptor that would be accessed. The image itself is not accessed.

• OpImageQueryLod returns the LOD parameters that would be used in a sample operation. The
actual operation is not performed.

16.1.1. Texel Coordinate Systems

Images are addressed by texel coordinates. There are three texel coordinate systems:

701

• normalized texel coordinates [0.0, 1.0]

• unnormalized texel coordinates [0.0, width / height / depth)

• integer texel coordinates [0, width / height / depth)

SPIR-V OpImageFetch, OpImageSparseFetch, OpImageRead, OpImageSparseRead, and OpImageWrite
instructions use integer texel coordinates.

Other image instructions can use either normalized or unnormalized texel coordinates (selected by
the unnormalizedCoordinates state of the sampler used in the instruction), but there are limitations
on what operations, image state, and sampler state is supported. Normalized coordinates are
logically converted to unnormalized as part of image operations, and certain steps are only
performed on normalized coordinates. The array layer coordinate is always treated as
unnormalized even when other coordinates are normalized.

Normalized texel coordinates are referred to as (s,t,r,q,a), with the coordinates having the following
meanings:

• s: Coordinate in the first dimension of an image.

• t: Coordinate in the second dimension of an image.

• r: Coordinate in the third dimension of an image.

◦ (s,t,r) are interpreted as a direction vector for Cube images.

• q: Fourth coordinate, for homogeneous (projective) coordinates.

• a: Coordinate for array layer.

The coordinates are extracted from the SPIR-V operand based on the dimensionality of the image
variable and type of instruction. For Proj instructions, the components are in order (s, [t,] [r,] q),
with t and r being conditionally present based on the Dim of the image. For non-Proj instructions,
the coordinates are (s [,t] [,r] [,a]), with t and r being conditionally present based on the Dim of the
image and a being conditionally present based on the Arrayed property of the image. Projective
image instructions are not supported on Arrayed images.

Unnormalized texel coordinates are referred to as (u,v,w,a), with the coordinates having the
following meanings:

• u: Coordinate in the first dimension of an image.

• v: Coordinate in the second dimension of an image.

• w: Coordinate in the third dimension of an image.

• a: Coordinate for array layer.

Only the u and v coordinates are directly extracted from the SPIR-V operand, because only 1D and
2D (non-Arrayed) dimensionalities support unnormalized coordinates. The components are in order
(u [,v]), with v being conditionally present when the dimensionality is 2D. When normalized
coordinates are converted to unnormalized coordinates, all four coordinates are used.

Integer texel coordinates are referred to as (i,j,k,l,n), with the coordinates having the following
meanings:

702

• i: Coordinate in the first dimension of an image.

• j: Coordinate in the second dimension of an image.

• k: Coordinate in the third dimension of an image.

• l: Coordinate for array layer.

• n: Index of the sample within the texel.

They are extracted from the SPIR-V operand in order (i [,j] [,k] [,l] [,n]), with j and k conditionally
present based on the Dim of the image, and l conditionally present based on the Arrayed property of
the image. n is conditionally present and is taken from the Sample image operand.

For all coordinate types, unused coordinates are assigned a value of zero.

0 1 2 3 4 5 6 7i

0.0 8.0u

0.0 1.0s

3

2

1

0

j

4.0

0.0

v

1.0

0.0

t

 i0j1 i1j1

 i0j0 i1j0

(u-0.5,v-0.5)

(u,v)

 i0j1' i1j1'

 i0j0' i1j0'

Figure 3. Texel Coordinate Systems, Linear Filtering

The Texel Coordinate Systems - For the example shown of an 8×4 texel two dimensional image.

• Normalized texel coordinates:

◦ The s coordinate goes from 0.0 to 1.0.

◦ The t coordinate goes from 0.0 to 1.0.

• Unnormalized texel coordinates:

◦ The u coordinate within the range 0.0 to 8.0 is within the image, otherwise it is outside the
image.

◦ The v coordinate within the range 0.0 to 4.0 is within the image, otherwise it is outside the
image.

• Integer texel coordinates:

◦ The i coordinate within the range 0 to 7 addresses texels within the image, otherwise it is
outside the image.

703

◦ The j coordinate within the range 0 to 3 addresses texels within the image, otherwise it is
outside the image.

• Also shown for linear filtering:

◦ Given the unnormalized coordinates (u,v), the four texels selected are i0j0, i1j0, i0j1, and i1j1.

◦ The fractions α and β.

◦ Given the offset Δi and Δj, the four texels selected by the offset are i0j'0, i1j'0, i0j'1, and i1j'1.

Note

For formats with reduced-resolution components, Δi and Δj are relative to the
resolution of the highest-resolution component, and therefore may be divided by
two relative to the unnormalized coordinate space of the lower-resolution
components.

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

 ij

 ij'

(u,v)

Figure 4. Texel Coordinate Systems, Nearest Filtering

The Texel Coordinate Systems - For the example shown of an 8×4 texel two dimensional image.

• Texel coordinates as above. Also shown for nearest filtering:

◦ Given the unnormalized coordinates (u,v), the texel selected is ij.

◦ Given the offset Δi and Δj, the texel selected by the offset is ij'.

16.2. Conversion Formulas

16.2.1. RGB to Shared Exponent Conversion

An RGB color (red, green, blue) is transformed to a shared exponent color (redshared, greenshared,
blueshared, expshared) as follows:

704

First, the components (red, green, blue) are clamped to (redclamped, greenclamped, blueclamped) as:

redclamped = max(0, min(sharedexpmax, red))

greenclamped = max(0, min(sharedexpmax, green))

blueclamped = max(0, min(sharedexpmax, blue))

where:

Note

NaN, if supported, is handled as in
IEEE 754-2008 minNum() and maxNum(). This results in any NaN being mapped to
zero.

The largest clamped component, maxclamped is determined:

maxclamped = max(redclamped, greenclamped, blueclamped)

A preliminary shared exponent exp' is computed:

The shared exponent expshared is computed:

Finally, three integer values in the range 0 to 2N are computed:

705

16.2.2. Shared Exponent to RGB

A shared exponent color (redshared, greenshared, blueshared, expshared) is transformed to an RGB color (red,
green, blue) as follows:

where:

N = 9 (number of mantissa bits per component)

B = 15 (exponent bias)

16.3. Texel Input Operations
Texel input instructions are SPIR-V image instructions that read from an image. Texel input
operations are a set of steps that are performed on state, coordinates, and texel values while
processing a texel input instruction, and which are common to some or all texel input instructions.
They include the following steps, which are performed in the listed order:

• Validation operations

◦ Instruction/Sampler/Image validation

◦ Coordinate validation

◦ Sparse validation

◦ Layout validation

• Format conversion

• Texel replacement

• Depth comparison

706

• Conversion to RGBA

• Component swizzle

• Chroma reconstruction

• Y′CBCR conversion

For texel input instructions involving multiple texels (for sampling or gathering), these steps are
applied for each texel that is used in the instruction. Depending on the type of image instruction,
other steps are conditionally performed between these steps or involving multiple coordinate or
texel values.

If Chroma Reconstruction is implicit, Texel Filtering instead takes place during chroma
reconstruction, before sampler Y′CBCR conversion occurs.

16.3.1. Texel Input Validation Operations

Texel input validation operations inspect instruction/image/sampler state or coordinates, and in
certain circumstances cause the texel value to be replaced or become undefined. There are a series
of validations that the texel undergoes.

Instruction/Sampler/Image View Validation

There are a number of cases where a SPIR-V instruction can mismatch with the sampler, the image
view, or both, and a number of further cases where the sampler can mismatch with the image view.
In such cases the value of the texel returned is undefined.

These cases include:

• The sampler borderColor is an integer type and the image view format is not one of the
VkFormat integer types or a stencil component of a depth/stencil format.

• The sampler borderColor is a float type and the image view format is not one of the VkFormat
float types or a depth component of a depth/stencil format.

• The sampler borderColor is one of the opaque black colors (VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK
or VK_BORDER_COLOR_INT_OPAQUE_BLACK) and the image view VkComponentSwizzle for any of the
VkComponentMapping components is not the identity swizzle.

• The VkImageLayout of any subresource in the image view does not match the
VkDescriptorImageInfo::imageLayout used to write the image descriptor.

• The SPIR-V Image Format is not compatible with the image view’s format.

• The sampler unnormalizedCoordinates is VK_TRUE and any of the limitations of unnormalized
coordinates are violated.

• The SPIR-V instruction is one of the OpImage*Dref* instructions and the sampler compareEnable is
VK_FALSE

• The SPIR-V instruction is not one of the OpImage*Dref* instructions and the sampler
compareEnable is VK_TRUE

• The SPIR-V instruction is one of the OpImage*Dref* instructions, the image view format is one of
the depth/stencil formats, and the image view aspect is not VK_IMAGE_ASPECT_DEPTH_BIT.

707

• The SPIR-V instruction’s image variable’s properties are not compatible with the image view:

◦ Rules for viewType:

▪ VK_IMAGE_VIEW_TYPE_1D must have Dim = 1D, Arrayed = 0, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_2D must have Dim = 2D, Arrayed = 0.

▪ VK_IMAGE_VIEW_TYPE_3D must have Dim = 3D, Arrayed = 0, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_CUBE must have Dim = Cube, Arrayed = 0, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_1D_ARRAY must have Dim = 1D, Arrayed = 1, MS = 0.

▪ VK_IMAGE_VIEW_TYPE_2D_ARRAY must have Dim = 2D, Arrayed = 1.

▪ VK_IMAGE_VIEW_TYPE_CUBE_ARRAY must have Dim = Cube, Arrayed = 1, MS = 0.

◦ If the image was created with VkImageCreateInfo::samples equal to VK_SAMPLE_COUNT_1_BIT,
the instruction must have MS = 0.

◦ If the image was created with VkImageCreateInfo::samples not equal to
VK_SAMPLE_COUNT_1_BIT, the instruction must have MS = 1.

◦ If the Sampled Type of the OpTypeImage does not match the SPIR-V Type.

◦ If the signedness of any read or sample operation does not match the signedness of the
image’s format.

Only OpImageSample* and OpImageSparseSample* can be used with a sampler or image view that
enables sampler Y′CBCR conversion.

OpImageFetch, OpImageSparseFetch, OpImage*Gather, and OpImageSparse*Gather must not be used with a
sampler or image view that enables sampler Y′CBCR conversion.

The ConstOffset and Offset operands must not be used with a sampler or image view that enables
sampler Y′CBCR conversion.

If the underlying VkImage format has an X component in its format description, undefined values
are read from those bits.

Note

If the VkImage format and VkImageView format are the same, these bits will be
unused by format conversion and this will have no effect. However, if the
VkImageView format is different, then some bits of the result may be undefined. For
example, when a VK_FORMAT_R10X6_UNORM_PACK16 VkImage is sampled via a
VK_FORMAT_R16_UNORM VkImageView, the low 6 bits of the value before format
conversion are undefined and format conversion may return a range of different
values.

Integer Texel Coordinate Validation

Integer texel coordinates are validated against the size of the image level, and the number of layers
and number of samples in the image. For SPIR-V instructions that use integer texel coordinates, this
is performed directly on the integer coordinates. For instructions that use normalized or
unnormalized texel coordinates, this is performed on the coordinates that result after conversion to

708

integer texel coordinates.

If the integer texel coordinates do not satisfy all of the conditions

0 ≤ i < ws

0 ≤ j < hs

0 ≤ k < ds

0 ≤ l < layers

0 ≤ n < samples

where:

ws = width of the image level

hs = height of the image level

ds = depth of the image level

layers = number of layers in the image

samples = number of samples per texel in the image

then the texel fails integer texel coordinate validation.

There are four cases to consider:

1. Valid Texel Coordinates

◦ If the texel coordinates pass validation (that is, the coordinates lie within the image),

then the texel value comes from the value in image memory.

2. Border Texel

◦ If the texel coordinates fail validation, and

◦ If the read is the result of an image sample instruction or image gather instruction, and

709

◦ If the image is not a cube image,

then the texel is a border texel and texel replacement is performed.

3. Invalid Texel

◦ If the texel coordinates fail validation, and

◦ If the read is the result of an image fetch instruction, image read instruction, or atomic
instruction,

then the texel is an invalid texel and texel replacement is performed.

4. Cube Map Edge or Corner

Otherwise the texel coordinates lie beyond the edges or corners of the selected cube map face,
and Cube map edge handling is performed.

Cube Map Edge Handling

If the texel coordinates lie beyond the edges or corners of the selected cube map face (as described
in the prior section), the following steps are performed. Note that this does not occur when using
VK_FILTER_NEAREST filtering within a mip level, since VK_FILTER_NEAREST is treated as using
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

• Cube Map Edge Texel

◦ If the texel lies beyond the selected cube map face in either only i or only j, then the
coordinates (i,j) and the array layer l are transformed to select the adjacent texel from the
appropriate neighboring face.

• Cube Map Corner Texel

◦ If the texel lies beyond the selected cube map face in both i and j, then there is no unique
neighboring face from which to read that texel. The texel should be replaced by the average
of the three values of the adjacent texels in each incident face. However, implementations
may replace the cube map corner texel by other methods. The methods are subject to the
constraint that if the three available texels have the same value, the resulting filtered texel
must have that value.

Sparse Validation

If the texel reads from an unbound region of a sparse image, the texel is a sparse unbound texel, and
processing continues with texel replacement.

Layout Validation

If all planes of a disjoint multi-planar image are not in the same image layout, the image must not
be sampled with sampler Y′CBCR conversion enabled.

16.3.2. Format Conversion

Texels undergo a format conversion from the VkFormat of the image view to a vector of either
floating point or signed or unsigned integer components, with the number of components based on

710

the number of components present in the format.

• Color formats have one, two, three, or four components, according to the format.

• Depth/stencil formats are one component. The depth or stencil component is selected by the
aspectMask of the image view.

Each component is converted based on its type and size (as defined in the Format Definition section
for each VkFormat), using the appropriate equations in 16-Bit Floating-Point Numbers, Unsigned
11-Bit Floating-Point Numbers, Unsigned 10-Bit Floating-Point Numbers, Fixed-Point Data
Conversion, and Shared Exponent to RGB. Signed integer components smaller than 32 bits are sign-
extended.

If the image view format is sRGB, the color components are first converted as if they are UNORM,
and then sRGB to linear conversion is applied to the R, G, and B components as described in the
“sRGB EOTF” section of the Khronos Data Format Specification. The A component, if present, is
unchanged.

If the image view format is block-compressed, then the texel value is first decoded, then converted
based on the type and number of components defined by the compressed format.

16.3.3. Texel Replacement

A texel is replaced if it is one (and only one) of:

• a border texel,

• an invalid texel, or

• a sparse unbound texel.

Border texels are replaced with a value based on the image format and the borderColor of the
sampler. The border color is:

Table 14. Border Color B

Sampler borderColor Corresponding Border Color

VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK [Br, Bg, Bb, Ba] = [0.0, 0.0, 0.0, 0.0]

VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK [Br, Bg, Bb, Ba] = [0.0, 0.0, 0.0, 1.0]

VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE [Br, Bg, Bb, Ba] = [1.0, 1.0, 1.0, 1.0]

VK_BORDER_COLOR_INT_TRANSPARENT_BLACK [Br, Bg, Bb, Ba] = [0, 0, 0, 0]

VK_BORDER_COLOR_INT_OPAQUE_BLACK [Br, Bg, Bb, Ba] = [0, 0, 0, 1]

VK_BORDER_COLOR_INT_OPAQUE_WHITE [Br, Bg, Bb, Ba] = [1, 1, 1, 1]

Note

The names VK_BORDER_COLOR_*_TRANSPARENT_BLACK, VK_BORDER_COLOR_*_OPAQUE_BLACK,
and VK_BORDER_COLOR_*_OPAQUE_WHITE are meant to describe which components are
zeros and ones in the vocabulary of compositing, and are not meant to imply that
the numerical value of VK_BORDER_COLOR_INT_OPAQUE_WHITE is a saturating value for

711

integers.

This is substituted for the texel value by replacing the number of components in the image format

Table 15. Border Texel Components After Replacement

Texel Aspect or Format Component Assignment

Depth aspect D = Br

Stencil aspect S = Br

One component color format Colorr = Br

Two component color format [Colorr,Colorg] = [Br,Bg]

Three component color format [Colorr,Colorg,Colorb] = [Br,Bg,Bb]

Four component color format [Colorr,Colorg,Colorb,Colora] = [Br,Bg,Bb,Ba]

The value returned by a read of an invalid texel is undefined, unless that read operation is from a
buffer resource and the robustBufferAccess feature is enabled. In that case, an invalid texel is
replaced as described by the robustBufferAccess feature. If the access is to an image resource and
the x, y, z, or layer coordinate validation fails and the robustImageAccess feature is enabled, then
zero must be returned for the R, G, and B components, if present. Either zero or one must be
returned for the A component, if present. If only the sample index was invalid, the values returned
are undefined.

Additionally, if the robustImageAccess feature is enabled, any invalid texels may be expanded to four
components prior to texel replacement. This means that components not present in the image
format may be replaced with 0 or may undergo conversion to RGBA as normal.

If the VkPhysicalDeviceSparseProperties::residencyNonResidentStrict property is VK_TRUE, a sparse
unbound texel is replaced with 0 or 0.0 values for integer and floating-point components of the
image format, respectively.

If residencyNonResidentStrict is VK_FALSE, the value of the sparse unbound texel is undefined.

16.3.4. Depth Compare Operation

If the image view has a depth/stencil format, the depth component is selected by the aspectMask, and
the operation is an OpImage*Dref* instruction, a depth comparison is performed. The result is 1.0 if
the comparison evaluates to true, and 0.0 otherwise. This value replaces the depth component D.

The compare operation is selected by the VkCompareOp value set by VkSamplerCreateInfo
::compareOp. The reference value from the SPIR-V operand Dref and the texel depth value Dtex are used
as the reference and test values, respectively, in that operation.

If the image being sampled has an unsigned normalized fixed-point format, then Dref is clamped to
[0,1] before the compare operation.

712

16.3.5. Conversion to RGBA

The texel is expanded from one, two, or three components to four components based on the image
base color:

Table 16. Texel Color After Conversion To RGBA

Texel Aspect or Format RGBA Color

Depth aspect [Colorr,Colorg,Colorb, Colora] = [D,0,0,one]

Stencil aspect [Colorr,Colorg,Colorb, Colora] = [S,0,0,one]

One component color format [Colorr,Colorg,Colorb, Colora] = [Colorr,0,0,one]

Two component color format [Colorr,Colorg,Colorb, Colora] = [Colorr,Colorg,0,one]

Three component color format [Colorr,Colorg,Colorb, Colora] = [Colorr,Colorg,Colorb,one]

Four component color format [Colorr,Colorg,Colorb, Colora] = [Colorr,Colorg,Colorb,Colora]

where one = 1.0f for floating-point formats and depth aspects, and one = 1 for integer formats and
stencil aspects.

16.3.6. Component Swizzle

All texel input instructions apply a swizzle based on:

• the VkComponentSwizzle enums in the components member of the VkImageViewCreateInfo
structure for the image being read if sampler Y′CBCR conversion is not enabled, and

• the VkComponentSwizzle enums in the components member of the
VkSamplerYcbcrConversionCreateInfo structure for the sampler Y′CBCR conversion if sampler
Y′CBCR conversion is enabled.

The swizzle can rearrange the components of the texel, or substitute zero or one for any
components. It is defined as follows for each color component:

where:

713

If the border color is one of the VK_BORDER_COLOR_*_OPAQUE_BLACK enums and the
VkComponentSwizzle is not the identity swizzle for all components, the value of the texel after
swizzle is undefined.

If the image view has a depth/stencil format and the VkComponentSwizzle is
VK_COMPONENT_SWIZZLE_ONE, the value of the texel after swizzle is undefined.

16.3.7. Sparse Residency

OpImageSparse* instructions return a structure which includes a residency code indicating whether
any texels accessed by the instruction are sparse unbound texels. This code can be interpreted by
the OpImageSparseTexelsResident instruction which converts the residency code to a boolean value.

16.3.8. Chroma Reconstruction

In some color models, the color representation is defined in terms of monochromatic light intensity
(often called “luma”) and color differences relative to this intensity, often called “chroma”. It is
common for color models other than RGB to represent the chroma components at lower spatial
resolution than the luma component. This approach is used to take advantage of the eye’s lower
spatial sensitivity to color compared with its sensitivity to brightness. Less commonly, the same
approach is used with additive color, since the green component dominates the eye’s sensitivity to
light intensity and the spatial sensitivity to color introduced by red and blue is lower.

Lower-resolution components are “downsampled” by resizing them to a lower spatial resolution
than the component representing luminance. This process is also commonly known as “chroma
subsampling”. There is one luminance sample in each texture texel, but each chrominance sample
may be shared among several texels in one or both texture dimensions.

• “_444” formats do not spatially downsample chroma values compared with luma: there are
unique chroma samples for each texel.

• “_422” formats have downsampling in the x dimension (corresponding to u or s coordinates):
they are sampled at half the resolution of luma in that dimension.

• “_420” formats have downsampling in the x dimension (corresponding to u or s coordinates)
and the y dimension (corresponding to v or t coordinates): they are sampled at half the
resolution of luma in both dimensions.

The process of reconstructing a full color value for texture access involves accessing both chroma
and luma values at the same location. To generate the color accurately, the values of the lower-
resolution components at the location of the luma samples must be reconstructed from the lower-

714

resolution sample locations, an operation known here as “chroma reconstruction” irrespective of
the actual color model.

The location of the chroma samples relative to the luma coordinates is determined by the
xChromaOffset and yChromaOffset members of the VkSamplerYcbcrConversionCreateInfo structure
used to create the sampler Y′CBCR conversion.

The following diagrams show the relationship between unnormalized (u,v) coordinates and (i,j)
integer texel positions in the luma component (shown in black, with circles showing integer sample
positions) and the texel coordinates of reduced-resolution chroma components, shown as crosses in
red.

Note

If the chroma values are reconstructed at the locations of the luma samples by
means of interpolation, chroma samples from outside the image bounds are
needed; these are determined according to Wrapping Operation. These diagrams
represent this by showing the bounds of the “chroma texel” extending beyond the
image bounds, and including additional chroma sample positions where required
for interpolation. The limits of a sample for NEAREST sampling is shown as a grid.

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,2 1,2 2,2 3,2

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

0,3 1,3 2,3 3,3

Figure 5. 422 downsampling, xChromaOffset=COSITED_EVEN

715

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,2 1,2 2,2 3,2

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

0,3 1,3 2,3 3,3

Figure 6. 422 downsampling, xChromaOffset=MIDPOINT

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Figure 7. 420 downsampling, xChromaOffset=COSITED_EVEN, yChromaOffset=COSITED_EVEN

716

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Figure 8. 420 downsampling, xChromaOffset=MIDPOINT, yChromaOffset=COSITED_EVEN

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Figure 9. 420 downsampling, xChromaOffset=COSITED_EVEN, yChromaOffset=MIDPOINT

717

3

2

1

0

0 1 2 3 4 5 6 7

j

i

0.0 8.0u

0.0 1.0s

4.0

0.0

v

1.0

0.0

t

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Figure 10. 420 downsampling, xChromaOffset=MIDPOINT, yChromaOffset=MIDPOINT

Reconstruction is implemented in one of two ways:

If the format of the image that is to be sampled sets
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT, or the
VkSamplerYcbcrConversionCreateInfo’s forceExplicitReconstruction is set to VK_TRUE,
reconstruction is performed as an explicit step independent of filtering, described in the Explicit
Reconstruction section.

If the format of the image that is to be sampled does not set
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT and if the
VkSamplerYcbcrConversionCreateInfo’s forceExplicitReconstruction is set to VK_FALSE,
reconstruction is performed as an implicit part of filtering prior to color model conversion, with no
separate post-conversion texel filtering step, as described in the Implicit Reconstruction section.

Explicit Reconstruction

• If the chromaFilter member of the VkSamplerYcbcrConversionCreateInfo structure is
VK_FILTER_NEAREST:

◦ If the format’s R and B components are reduced in resolution in just width by a factor of two
relative to the G component (i.e. this is a “_422” format), the values accessed by
texel filtering are reconstructed as follows:

◦ If the format’s R and B components are reduced in resolution in width and height by a factor
of two relative to the G component (i.e. this is a “_420” format), the values accessed
by texel filtering are reconstructed as follows:

718

Note

xChromaOffset and yChromaOffset have no effect if chromaFilter is
VK_FILTER_NEAREST for explicit reconstruction.

• If the chromaFilter member of the VkSamplerYcbcrConversionCreateInfo structure is
VK_FILTER_LINEAR:

◦ If the format’s R and B components are reduced in resolution in just width by a factor of two
relative to the G component (i.e. this is a “_422” format):

▪ If xChromaOffset is VK_CHROMA_LOCATION_COSITED_EVEN:

▪ If xChromaOffset is VK_CHROMA_LOCATION_MIDPOINT:

◦ If the format’s R and B components are reduced in resolution in width and height by a factor
of two relative to the G component (i.e. this is a “_420” format), a similar relationship applies.
Due to the number of options, these formulae are expressed more concisely as follows:

Note

In the case where the texture itself is bilinearly interpolated as described in Texel

719

Filtering, thus requiring four full-color samples for the filtering operation, and
where the reconstruction of these samples uses bilinear interpolation in the
chroma components due to chromaFilter=VK_FILTER_LINEAR, up to nine chroma
samples may be required, depending on the sample location.

Implicit Reconstruction

Implicit reconstruction takes place by the samples being interpolated, as required by the filter
settings of the sampler, except that chromaFilter takes precedence for the chroma samples.

If chromaFilter is VK_FILTER_NEAREST, an implementation may behave as if xChromaOffset and
yChromaOffset were both VK_CHROMA_LOCATION_MIDPOINT, irrespective of the values set.

Note

This will not have any visible effect if the locations of the luma samples coincide
with the location of the samples used for rasterization.

The sample coordinates are adjusted by the downsample factor of the component (such that, for
example, the sample coordinates are divided by two if the component has a downsample factor of
two relative to the luma component):

16.3.9. Sampler Y′CBCR Conversion

Sampler Y′CBCR conversion performs the following operations, which an implementation may
combine into a single mathematical operation:

• Sampler Y′CBCR Range Expansion

• Sampler Y′CBCR Model Conversion

Sampler Y′CBCR Range Expansion

Sampler Y′CBCR range expansion is applied to color component values after all texel input
operations which are not specific to sampler Y′CBCR conversion. For example, the input values to
this stage have been converted using the normal format conversion rules.

Sampler Y′CBCR range expansion is not applied if ycbcrModel is
VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY. That is, the shader receives the vector C'rgba as
output by the Component Swizzle stage without further modification.

For other values of ycbcrModel, range expansion is applied to the texel component values output by
the Component Swizzle defined by the components member of
VkSamplerYcbcrConversionCreateInfo. Range expansion applies independently to each component

720

of the image. For the purposes of range expansion and Y′CBCR model conversion, the R and B
components contain color difference (chroma) values and the G component contains luma. The A
component is not modified by sampler Y′CBCR range expansion.

The range expansion to be applied is defined by the ycbcrRange member of the
VkSamplerYcbcrConversionCreateInfo structure:

• If ycbcrRange is VK_SAMPLER_YCBCR_RANGE_ITU_FULL, the following transformations are applied:

Note

These formulae correspond to the “full range” encoding in the “Quantization
schemes” chapter of the Khronos Data Format Specification.

Should any future amendments be made to the ITU specifications from which
these equations are derived, the formulae used by Vulkan may also be updated
to maintain parity.

• If ycbcrRange is VK_SAMPLER_YCBCR_RANGE_ITU_NARROW, the following transformations are applied:

Note

These formulae correspond to the “narrow range” encoding in the
“Quantization schemes” chapter of the Khronos Data Format Specification.

• n is the bit-depth of the components in the format.

The precision of the operations performed during range expansion must be at least that of the
source format.

An implementation may clamp the results of these range expansion operations such that Y′ falls in
the range [0,1], and/or such that CB and CR fall in the range [-0.5,0.5].

Sampler Y′CBCR Model Conversion

The range-expanded values are converted between color models, according to the color model

721

conversion specified in the ycbcrModel member:

VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY

The color components are not modified by the color model conversion since they are assumed
already to represent the desired color model in which the shader is operating; Y′CBCR range
expansion is also ignored.

VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY

The color components are not modified by the color model conversion and are assumed to be
treated as though in Y′CBCR form both in memory and in the shader; Y′CBCR range expansion is
applied to the components as for other Y′CBCR models, with the vector (CR,Y′,CB,A) provided to the
shader.

VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709

The color components are transformed from a Y′CBCR representation to an R′G′B′ representation
as described in the “BT.709 Y′CBCR conversion” section of the Khronos Data Format Specification.

VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601

The color components are transformed from a Y′CBCR representation to an R′G′B′ representation
as described in the “BT.601 Y′CBCR conversion” section of the Khronos Data Format Specification.

VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020

The color components are transformed from a Y′CBCR representation to an R′G′B′ representation
as described in the “BT.2020 Y′CBCR conversion” section of the Khronos Data Format
Specification.

In this operation, each output component is dependent on each input component.

An implementation may clamp the R′G′B′ results of these conversions to the range [0,1].

The precision of the operations performed during model conversion must be at least that of the
source format.

The alpha component is not modified by these model conversions.

Note

Sampling operations in a non-linear color space can introduce color and intensity
shifts at sharp transition boundaries. To avoid this issue, the technically precise
color correction sequence described in the “Introduction to Color Conversions”
chapter of the Khronos Data Format Specification may be performed as follows:

• Calculate the unnormalized texel coordinates corresponding to the desired
sample position.

• For a minFilter or magFilter of VK_FILTER_NEAREST:

1. Calculate (i,j) for the sample location as described under the “nearest
filtering” formulae in (u,v,w,a) to (i,j,k,l,n) Transformation and Array Layer
Selection

2. Calculate the normalized texel coordinates corresponding to these integer

722

coordinates.

3. Sample using sampler Y′CBCR conversion at this location.

• For a minFilter or magFilter of VK_FILTER_LINEAR:

1. Calculate (i[0,1],j[0,1]) for the sample location as described under the “linear
filtering” formulae in (u,v,w,a) to (i,j,k,l,n) Transformation and Array Layer
Selection

2. Calculate the normalized texel coordinates corresponding to these integer
coordinates.

3. Sample using sampler Y′CBCR conversion at each of these locations.

4. Convert the non-linear A′R′G′B′ outputs of the Y′CBCR conversions to linear
ARGB values as described in the “Transfer Functions” chapter of the
Khronos Data Format Specification.

5. Interpolate the linear ARGB values using the α and β values described in
the “linear filtering” section of (u,v,w,a) to (i,j,k,l,n) Transformation and
Array Layer Selection and the equations in Texel Filtering.

The additional calculations and, especially, additional number of sampling
operations in the VK_FILTER_LINEAR case can be expected to have a performance
impact compared with using the outputs directly. Since the variations from
“correct” results are subtle for most content, the application author should
determine whether a more costly implementation is strictly necessary.

If chromaFilter, and minFilter or magFilter are both VK_FILTER_NEAREST, these
operations are redundant and sampling using sampler Y′CBCR conversion at the
desired sample coordinates will produce the “correct” results without further
processing.

16.4. Texel Output Operations
Texel output instructions are SPIR-V image instructions that write to an image. Texel output
operations are a set of steps that are performed on state, coordinates, and texel values while
processing a texel output instruction, and which are common to some or all texel output
instructions. They include the following steps, which are performed in the listed order:

• Validation operations

◦ Format validation

◦ Type validation

◦ Coordinate validation

◦ Sparse validation

• Texel output format conversion

723

16.4.1. Texel Output Validation Operations

Texel output validation operations inspect instruction/image state or coordinates, and in certain
circumstances cause the write to have no effect. There are a series of validations that the texel
undergoes.

Texel Format Validation

If the image format of the OpTypeImage is not compatible with the VkImageView’s format, the write
causes the contents of the image’s memory to become undefined.

Texel Type Validation

If the Sampled Type of the OpTypeImage does not match the SPIR-V Type, the write causes the value of
the texel to become undefined. For integer types, if the signedness of the access does not match the
signedness of the accessed resource, the write causes the value of the texel to become undefined.

16.4.2. Integer Texel Coordinate Validation

The integer texel coordinates are validated according to the same rules as for texel input coordinate
validation.

If the texel fails integer texel coordinate validation, then the write has no effect.

16.4.3. Sparse Texel Operation

If the texel attempts to write to an unbound region of a sparse image, the texel is a sparse unbound
texel. In such a case, if the VkPhysicalDeviceSparseProperties::residencyNonResidentStrict property
is VK_TRUE, the sparse unbound texel write has no effect. If residencyNonResidentStrict is VK_FALSE,
the write may have a side effect that becomes visible to other accesses to unbound texels in any
resource, but will not be visible to any device memory allocated by the application.

16.4.4. Texel Output Format Conversion

If the image format is sRGB, a linear to sRGB conversion is applied to the R, G, and B components as
described in the “sRGB EOTF” section of the Khronos Data Format Specification. The A component,
if present, is unchanged.

Texels then undergo a format conversion from the floating point, signed, or unsigned integer type
of the texel data to the VkFormat of the image view. If the number of components in the texel data
is larger than the number of components in the format, additional components are discarded.

Each component is converted based on its type and size (as defined in the Format Definition section
for each VkFormat). Floating-point outputs are converted as described in Floating-Point Format
Conversions and Fixed-Point Data Conversion. Integer outputs are converted such that their value
is preserved. The converted value of any integer that cannot be represented in the target format is
undefined.

If the VkImageView format has an X component in its format description, undefined values are
written to those bits.

724

If the underlying VkImage format has an X component in its format description, undefined values
are also written to those bits, even if result format conversion produces a valid value for those bits
because the VkImageView format is different.

16.5. Normalized Texel Coordinate Operations
If the image sampler instruction provides normalized texel coordinates, some of the following
operations are performed.

16.5.1. Projection Operation

For Proj image operations, the normalized texel coordinates (s,t,r,q,a) and (if present) the Dref

coordinate are transformed as follows:

16.5.2. Derivative Image Operations

Derivatives are used for LOD selection. These derivatives are either implicit (in an ImplicitLod
image instruction in a fragment shader) or explicit (provided explicitly by shader to the image
instruction in any shader).

For implicit derivatives image instructions, the derivatives of texel coordinates are calculated in the
same manner as derivative operations. That is:

Partial derivatives not defined above for certain image dimensionalities are set to zero.

For explicit LOD image instructions, if the optional SPIR-V operand Grad is provided, then the
operand values are used for the derivatives. The number of components present in each derivative
for a given image dimensionality matches the number of partial derivatives computed above.

If the optional SPIR-V operand Lod is provided, then derivatives are set to zero, the cube map
derivative transformation is skipped, and the scale factor operation is skipped. Instead, the floating
point scalar coordinate is directly assigned to λbase as described in LOD Operation.

If the image or sampler object used by an implicit derivative image instruction is not uniform
across the quad and quadDivergentImplicitLod is not supported, then the derivative and LOD values

725

are undefined. Implicit derivatives are well-defined when the image and sampler and control flow
are uniform across the quad, even if they diverge between different quads.

If quadDivergentImplicitLod is supported, then derivatives and implicit LOD values are well-defined
even if the image or sampler object are not uniform within a quad. The derivatives are computed
as specified above, and the implicit LOD calculation proceeds for each shader invocation using its
respective image and sampler object.

16.5.3. Cube Map Face Selection and Transformations

For cube map image instructions, the (s,t,r) coordinates are treated as a direction vector (rx,ry,rz).
The direction vector is used to select a cube map face. The direction vector is transformed to a per-
face texel coordinate system (sface,tface), The direction vector is also used to transform the derivatives
to per-face derivatives.

16.5.4. Cube Map Face Selection

The direction vector selects one of the cube map’s faces based on the largest magnitude coordinate
direction (the major axis direction). Since two or more coordinates can have identical magnitude,
the implementation must have rules to disambiguate this situation.

The rules should have as the first rule that rz wins over ry and rx, and the second rule that ry wins
over rx. An implementation may choose other rules, but the rules must be deterministic and
depend only on (rx,ry,rz).

The layer number (corresponding to a cube map face), the coordinate selections for sc, tc, rc, and the
selection of derivatives, are determined by the major axis direction as specified in the following
two tables.

Table 17. Cube map face and coordinate selection

Major
Axis
Direction

Layer
Number

Cube Map
Face

sc tc rc

+rx 0 Positive X -rz -ry rx

-rx 1 Negative X +rz -ry rx

+ry 2 Positive Y +rx +rz ry

-ry 3 Negative Y +rx -rz ry

+rz 4 Positive Z +rx -ry rz

-rz 5 Negative Z -rx -ry rz

Table 18. Cube map derivative selection

726

Major
Axis
Directio
n

∂sc / ∂x ∂sc / ∂y ∂tc / ∂x ∂tc / ∂y ∂rc / ∂x ∂rc / ∂y

+rx -∂rz / ∂x -∂rz / ∂y -∂ry / ∂x -∂ry / ∂y +∂rx / ∂x +∂rx / ∂y

-rx +∂rz / ∂x +∂rz / ∂y -∂ry / ∂x -∂ry / ∂y -∂rx / ∂x -∂rx / ∂y

+ry +∂rx / ∂x +∂rx / ∂y +∂rz / ∂x +∂rz / ∂y +∂ry / ∂x +∂ry / ∂y

-ry +∂rx / ∂x +∂rx / ∂y -∂rz / ∂x -∂rz / ∂y -∂ry / ∂x -∂ry / ∂y

+rz +∂rx / ∂x +∂rx / ∂y -∂ry / ∂x -∂ry / ∂y +∂rz / ∂x +∂rz / ∂y

-rz -∂rx / ∂x -∂rx / ∂y -∂ry / ∂x -∂ry / ∂y -∂rz / ∂x -∂rz / ∂y

16.5.5. Cube Map Coordinate Transformation

16.5.6. Cube Map Derivative Transformation

16.5.7. Scale Factor Operation, LOD Operation and Image Level(s) Selection

LOD selection can be either explicit (provided explicitly by the image instruction) or implicit
(determined from a scale factor calculated from the derivatives). The LOD must be computed with
mipmapPrecisionBits of accuracy.

Scale Factor Operation

The magnitude of the derivatives are calculated by:

727

mux = |∂s/∂x| × wbase

mvx = |∂t/∂x| × hbase

mwx = |∂r/∂x| × dbase

muy = |∂s/∂y| × wbase

mvy = |∂t/∂y| × hbase

mwy = |∂r/∂y| × dbase

where:

∂t/∂x = ∂t/∂y = 0 (for 1D images)

∂r/∂x = ∂r/∂y = 0 (for 1D, 2D or Cube images)

and:

wbase = image.w

hbase = image.h

dbase = image.d

(for the baseMipLevel, from the image descriptor).

A point sampled in screen space has an elliptical footprint in texture space. The minimum and
maximum scale factors (ρmin, ρmax) should be the minor and major axes of this ellipse.

The scale factors ρx and ρy, calculated from the magnitude of the derivatives in x and y, are used to
compute the minimum and maximum scale factors.

ρx and ρy may be approximated with functions fx and fy, subject to the following constraints:

728

The minimum and maximum scale factors (ρmin,ρmax) are determined by:

ρmax = max(ρx, ρy)

ρmin = min(ρx, ρy)

The ratio of anisotropy is determined by:

η = min(ρmax/ρmin, maxAniso)

where:

sampler.maxAniso = maxAnisotropy (from sampler descriptor)

limits.maxAniso = maxSamplerAnisotropy (from physical device limits)

maxAniso = min(sampler.maxAniso, limits.maxAniso)

If ρmax = ρmin = 0, then all the partial derivatives are zero, the fragment’s footprint in texel space is a
point, and η should be treated as 1. If ρmax ≠ 0 and ρmin = 0 then all partial derivatives along one axis
are zero, the fragment’s footprint in texel space is a line segment, and η should be treated as
maxAniso. However, anytime the footprint is small in texel space the implementation may use a
smaller value of η, even when ρmin is zero or close to zero. If either VkPhysicalDeviceFeatures
::samplerAnisotropy or VkSamplerCreateInfo::anisotropyEnable are VK_FALSE, maxAniso is set to 1.

If η = 1, sampling is isotropic. If η > 1, sampling is anisotropic.

The sampling rate (N) is derived as:

N = ⌈η⌉

An implementation may round N up to the nearest supported sampling rate. An implementation
may use the value of N as an approximation of η.

LOD Operation

The LOD parameter λ is computed as follows:

729

where:

and maxSamplerLodBias is the value of the VkPhysicalDeviceLimits feature maxSamplerLodBias.

Image Level(s) Selection

The image level(s) d, dhi, and dlo which texels are read from are determined by an image-level
parameter dl, which is computed based on the LOD parameter, as follows:

where:

and:

baseMipLevel and levelCount are taken from the subresourceRange of the image view.

If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_NEAREST, then the level selected is d = dl.

If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_LINEAR, two neighboring levels are selected:

730

δ is the fractional value, quantized to the number of mipmap precision bits, used for linear filtering
between levels.

16.5.8. (s,t,r,q,a) to (u,v,w,a) Transformation

The normalized texel coordinates are scaled by the image level dimensions and the array layer is
selected.

This transformation is performed once for each level used in filtering (either d, or dhi and dlo).

where:

widthscale = widthlevel

heightscale = heightlevel

depthscale = depthlevel

and where (Δi, Δj, Δk) are taken from the image instruction if it includes a ConstOffset or Offset
operand, otherwise they are taken to be zero.

Operations then proceed to Unnormalized Texel Coordinate Operations.

16.6. Unnormalized Texel Coordinate Operations

16.6.1. (u,v,w,a) to (i,j,k,l,n) Transformation and Array Layer Selection

The unnormalized texel coordinates are transformed to integer texel coordinates relative to the
selected mipmap level.

The layer index l is computed as:

731

l = clamp(RNE(a), 0, layerCount - 1) + baseArrayLayer

where layerCount is the number of layers in the image subresource range of the image view,
baseArrayLayer is the first layer from the subresource range, and where:

The sample index n is assigned the value 0.

Nearest filtering (VK_FILTER_NEAREST) computes the integer texel coordinates that the unnormalized
coordinates lie within:

where:

shift = 0.0

Linear filtering (VK_FILTER_LINEAR) computes a set of neighboring coordinates which bound the
unnormalized coordinates. The integer texel coordinates are combinations of i0 or i1, j0 or j1, k0 or k1,
as well as weights α, β, and γ.

where:

shift = 0.5

and where:

where the number of fraction bits retained is specified by VkPhysicalDeviceLimits
::subTexelPrecisionBits.

732

16.7. Integer Texel Coordinate Operations
The OpImageFetch and OpImageFetchSparse SPIR-V instructions may supply a LOD from which texels
are to be fetched using the optional SPIR-V operand Lod. Other integer-coordinate operations must
not. If the Lod is provided then it must be an integer.

The image level selected is:

If d does not lie in the range [baseMipLevel, baseMipLevel + levelCount) then any values fetched are
undefined, and any writes (if supported) are discarded.

16.8. Image Sample Operations

16.8.1. Wrapping Operation

Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used
within a mip level then VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is
used within a mip level then sampling at the edges is performed as described earlier in the Cube
map edge handling section.

The first integer texel coordinate i is transformed based on the addressModeU parameter of the
sampler.

where:

j (for 2D and Cube image) and k (for 3D image) are similarly transformed based on the addressModeV
and addressModeW parameters of the sampler, respectively.

16.8.2. Texel Gathering

SPIR-V instructions with Gather in the name return a vector derived from 4 texels in the base level
of the image view. The rules for the VK_FILTER_LINEAR minification filter are applied to identify the
four selected texels. Each texel is then converted to an RGBA value according to conversion to RGBA
and then swizzled. A four-component vector is then assembled by taking the component indicated
by the Component value in the instruction from the swizzled color value of the four texels. If the

733

operation does not use the ConstOffsets image operand then the four texels form the 2 × 2 rectangle
used for texture filtering:

If the operation does use the ConstOffsets image operand then the offsets allow a custom filter to be
defined:

where:

OpImage*Gather must not be used on a sampled image with sampler Y′CBCR conversion enabled.

16.8.3. Texel Filtering

Texel filtering is first performed for each level (either d or dhi and dlo).

If λ is less than or equal to zero, the texture is said to be magnified, and the filter mode within a mip
level is selected by the magFilter in the sampler. If λ is greater than zero, the texture is said to be
minified, and the filter mode within a mip level is selected by the minFilter in the sampler.

Texel Nearest Filtering

Within a mip level, VK_FILTER_NEAREST filtering selects a single value using the (i, j, k) texel
coordinates, with all texels taken from layer l.

Texel Linear Filtering

Within a mip level, VK_FILTER_LINEAR filtering combines 8 (for 3D), 4 (for 2D or Cube), or 2 (for 1D)

734

texel values, together with their linear weights. The linear weights are derived from the fractions
computed earlier:

The values of multiple texels, together with their weights, are combined to produce a filtered value.

The VkSamplerReductionModeCreateInfo::reductionMode can control the process by which multiple
texels, together with their weights, are combined to produce a filtered texture value.

When the reductionMode is set (explicitly or implicitly) to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, a weighted average is computed:

However, if the reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX,
the process operates on the above set of multiple texels, together with their weights, computing a
component-wise minimum or maximum, respectively, of the components of the set of texels with
non-zero weights.

Texel Mipmap Filtering

VK_SAMPLER_MIPMAP_MODE_NEAREST filtering returns the value of a single mipmap level,

τ = τ[d].

VK_SAMPLER_MIPMAP_MODE_LINEAR filtering combines the values of multiple mipmap levels (τ[hi] and
τ[lo]), together with their linear weights.

The linear weights are derived from the fraction computed earlier:

The values of multiple mipmap levels, together with their weights, are combined to produce a final

735

filtered value.

The VkSamplerReductionModeCreateInfo::reductionMode can control the process by which multiple
texels, together with their weights, are combined to produce a filtered texture value.

When the reductionMode is set (explicitly or implicitly) to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, a weighted average is computed:

However, if the reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX,
the process operates on the above values, together with their weights, computing a component-wise
minimum or maximum, respectively, of the components of the values with non-zero weights.

Texel Anisotropic Filtering

Anisotropic filtering is enabled by the anisotropyEnable in the sampler. When enabled, the image
filtering scheme accounts for a degree of anisotropy.

The particular scheme for anisotropic texture filtering is implementation-dependent.
Implementations should consider the magFilter, minFilter and mipmapMode of the sampler to control
the specifics of the anisotropic filtering scheme used. In addition, implementations should consider
minLod and maxLod of the sampler.

Note

For historical reasons, vendor implementations of anisotropic filtering interpret
these sampler parameters in different ways, particularly in corner cases such as
magFilter, minFilter of NEAREST or maxAnisotropy equal to 1.0. Applications should
not expect consistent behavior in such cases, and should use anisotropic filtering
only with parameters which are expected to give a quality improvement relative
to LINEAR filtering.

The following describes one particular approach to implementing anisotropic
filtering for the 2D Image case; implementations may choose other methods:

Given a magFilter, minFilter of VK_FILTER_LINEAR and a mipmapMode of
VK_SAMPLER_MIPMAP_MODE_NEAREST:

Instead of a single isotropic sample, N isotropic samples are sampled within the
image footprint of the image level d to approximate an anisotropic filter. The sum
τ2Daniso is defined using the single isotropic τ2D(u,v) at level d.

When VkSamplerReductionModeCreateInfo::reductionMode is set to
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, the above summation is used.

736

However, if the reduction mode is VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX, the process operates on the above values, together
with their weights, computing a component-wise minimum or maximum,
respectively, of the components of the values with non-zero weights.

16.9. Image Operation Steps
Each step described in this chapter is performed by a subset of the image instructions:

• Texel Input Validation Operations, Format Conversion, Texel Replacement, Conversion to RGBA,
and Component Swizzle: Performed by all instructions except OpImageWrite.

• Depth Comparison: Performed by OpImage*Dref instructions.

• All Texel output operations: Performed by OpImageWrite.

• Projection: Performed by all OpImage*Proj instructions.

• Derivative Image Operations, Cube Map Operations, Scale Factor Operation, LOD Operation and
Image Level(s) Selection, and Texel Anisotropic Filtering: Performed by all OpImageSample* and
OpImageSparseSample* instructions.

• (s,t,r,q,a) to (u,v,w,a) Transformation, Wrapping, and (u,v,w,a) to (i,j,k,l,n) Transformation And
Array Layer Selection: Performed by all OpImageSample, OpImageSparseSample, and OpImage*Gather
instructions.

• Texel Gathering: Performed by OpImage*Gather instructions.

• Texel Filtering: Performed by all OpImageSample* and OpImageSparseSample* instructions.

• Sparse Residency: Performed by all OpImageSparse* instructions.

16.10. Image Query Instructions

16.10.1. Image Property Queries

OpImageQuerySize, OpImageQuerySizeLod, OpImageQueryLevels, and OpImageQuerySamples query
properties of the image descriptor that would be accessed by a shader image operation.

OpImageQuerySizeLod returns the size of the image level identified by the Level of Detail operand. If
that level does not exist in the image, then the value returned is undefined.

16.10.2. Lod Query

OpImageQueryLod returns the Lod parameters that would be used in an image operation with the
given image and coordinates. The steps described in this chapter are performed as if for
OpImageSampleImplicitLod, up to Scale Factor Operation, LOD Operation and Image Level(s)
Selection. The return value is the vector (λ', dl). These values may be subject to implementation-
specific maxima and minima for very large, out-of-range values.

737

Chapter 17. Queries
Queries provide a mechanism to return information about the processing of a sequence of Vulkan
commands. Query operations are asynchronous, and as such, their results are not returned
immediately. Instead, their results, and their availability status are stored in a Query Pool. The state
of these queries can be read back on the host, or copied to a buffer object on the device.

The supported query types are Occlusion Queries, Pipeline Statistics Queries, and Timestamp
Queries.

17.1. Query Pools
Queries are managed using query pool objects. Each query pool is a collection of a specific number
of queries of a particular type.

Query pools are represented by VkQueryPool handles:

// Provided by VK_VERSION_1_0
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkQueryPool)

To create a query pool, call:

// Provided by VK_VERSION_1_0
VkResult vkCreateQueryPool(
 VkDevice device,
 const VkQueryPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkQueryPool* pQueryPool);

• device is the logical device that creates the query pool.

• pCreateInfo is a pointer to a VkQueryPoolCreateInfo structure containing the number and type
of queries to be managed by the pool.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pQueryPool is a pointer to a VkQueryPool handle in which the resulting query pool object is
returned.

Valid Usage (Implicit)

• VUID-vkCreateQueryPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkCreateQueryPool-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkQueryPoolCreateInfo structure

• VUID-vkCreateQueryPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid

738

VkAllocationCallbacks structure

• VUID-vkCreateQueryPool-pQueryPool-parameter
pQueryPool must be a valid pointer to a VkQueryPool handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkQueryPoolCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkQueryPoolCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkQueryPoolCreateFlags flags;
 VkQueryType queryType;
 uint32_t queryCount;
 VkQueryPipelineStatisticFlags pipelineStatistics;
} VkQueryPoolCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• queryType is a VkQueryType value specifying the type of queries managed by the pool.

• queryCount is the number of queries managed by the pool.

• pipelineStatistics is a bitmask of VkQueryPipelineStatisticFlagBits specifying which counters
will be returned in queries on the new pool, as described below in Pipeline Statistics Queries.

pipelineStatistics is ignored if queryType is not VK_QUERY_TYPE_PIPELINE_STATISTICS.

Valid Usage

• VUID-VkQueryPoolCreateInfo-queryType-00791
If the pipelineStatisticsQuery feature is not enabled, queryType must not be
VK_QUERY_TYPE_PIPELINE_STATISTICS

• VUID-VkQueryPoolCreateInfo-queryType-00792
If queryType is VK_QUERY_TYPE_PIPELINE_STATISTICS, pipelineStatistics must be a valid
combination of VkQueryPipelineStatisticFlagBits values

739

• VUID-VkQueryPoolCreateInfo-queryType-09534
If queryType is VK_QUERY_TYPE_PIPELINE_STATISTICS, pipelineStatistics must not be zero

• VUID-VkQueryPoolCreateInfo-queryCount-02763
queryCount must be greater than 0

Valid Usage (Implicit)

• VUID-VkQueryPoolCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO

• VUID-VkQueryPoolCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkQueryPoolCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkQueryPoolCreateInfo-queryType-parameter
queryType must be a valid VkQueryType value

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueryPoolCreateFlags;

VkQueryPoolCreateFlags is a bitmask type for setting a mask, but is currently reserved for future use.

To destroy a query pool, call:

// Provided by VK_VERSION_1_0
void vkDestroyQueryPool(
 VkDevice device,
 VkQueryPool queryPool,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the query pool.

• queryPool is the query pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• VUID-vkDestroyQueryPool-queryPool-00793
All submitted commands that refer to queryPool must have completed execution

• VUID-vkDestroyQueryPool-queryPool-00794
If VkAllocationCallbacks were provided when queryPool was created, a compatible set of
callbacks must be provided here

• VUID-vkDestroyQueryPool-queryPool-00795

740

If no VkAllocationCallbacks were provided when queryPool was created, pAllocator must
be NULL

Note

Applications can verify that queryPool can be destroyed by checking that
vkGetQueryPoolResults() without the VK_QUERY_RESULT_PARTIAL_BIT flag returns
VK_SUCCESS for all queries that are used in command buffers submitted for
execution.

Valid Usage (Implicit)

• VUID-vkDestroyQueryPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyQueryPool-queryPool-parameter
If queryPool is not VK_NULL_HANDLE, queryPool must be a valid VkQueryPool handle

• VUID-vkDestroyQueryPool-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyQueryPool-queryPool-parent
If queryPool is a valid handle, it must have been created, allocated, or retrieved from
device

Host Synchronization

• Host access to queryPool must be externally synchronized

Possible values of VkQueryPoolCreateInfo::queryType, specifying the type of queries managed by the
pool, are:

// Provided by VK_VERSION_1_0
typedef enum VkQueryType {
 VK_QUERY_TYPE_OCCLUSION = 0,
 VK_QUERY_TYPE_PIPELINE_STATISTICS = 1,
 VK_QUERY_TYPE_TIMESTAMP = 2,
} VkQueryType;

• VK_QUERY_TYPE_OCCLUSION specifies an occlusion query.

• VK_QUERY_TYPE_PIPELINE_STATISTICS specifies a pipeline statistics query.

• VK_QUERY_TYPE_TIMESTAMP specifies a timestamp query.

741

17.2. Query Operation
The operation of queries is controlled by the commands vkCmdBeginQuery, vkCmdEndQuery,
vkCmdResetQueryPool, vkCmdCopyQueryPoolResults, vkCmdWriteTimestamp2, and
vkCmdWriteTimestamp.

In order for a VkCommandBuffer to record query management commands, the queue family for which
its VkCommandPool was created must support the appropriate type of operations (graphics, compute)
suitable for the query type of a given query pool.

Each query in a query pool has a status that is either unavailable or available, and also has state to
store the numerical results of a query operation of the type requested when the query pool was
created. Resetting a query via vkCmdResetQueryPool or vkResetQueryPool sets the status to
unavailable and makes the numerical results undefined. A query is made available by the
operation of vkCmdEndQuery, vkCmdWriteTimestamp2, or vkCmdWriteTimestamp. Both the
availability status and numerical results can be retrieved by calling either vkGetQueryPoolResults
or vkCmdCopyQueryPoolResults.

After query pool creation, each query is in an uninitialized state and must be reset before it is used.
Queries must also be reset between uses.

If a logical device includes multiple physical devices, then each command that writes a query must
execute on a single physical device, and any call to vkCmdBeginQuery must execute the
corresponding vkCmdEndQuery command on the same physical device.

To reset a range of queries in a query pool on a queue, call:

// Provided by VK_VERSION_1_0
void vkCmdResetQueryPool(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t firstQuery,
 uint32_t queryCount);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the handle of the query pool managing the queries being reset.

• firstQuery is the initial query index to reset.

• queryCount is the number of queries to reset.

When executed on a queue, this command sets the status of query indices [firstQuery, firstQuery +
queryCount - 1] to unavailable.

This command defines an execution dependency between other query commands that reference
the same query.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by firstQuery and queryCount that occur earlier in submission order.

742

The second synchronization scope includes all commands which reference the queries in queryPool
indicated by firstQuery and queryCount that occur later in submission order.

The operation of this command happens after the first scope and happens before the second scope.

Valid Usage

• VUID-vkCmdResetQueryPool-firstQuery-09436
firstQuery must be less than the number of queries in queryPool

• VUID-vkCmdResetQueryPool-firstQuery-09437
The sum of firstQuery and queryCount must be less than or equal to the number of queries
in queryPool

• VUID-vkCmdResetQueryPool-None-02841
All queries used by the command must not be active

Valid Usage (Implicit)

• VUID-vkCmdResetQueryPool-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResetQueryPool-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdResetQueryPool-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResetQueryPool-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdResetQueryPool-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdResetQueryPool-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

743

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics
Compute

Action

To reset a range of queries in a query pool on the host, call:

// Provided by VK_VERSION_1_2
void vkResetQueryPool(
 VkDevice device,
 VkQueryPool queryPool,
 uint32_t firstQuery,
 uint32_t queryCount);

• device is the logical device that owns the query pool.

• queryPool is the handle of the query pool managing the queries being reset.

• firstQuery is the initial query index to reset.

• queryCount is the number of queries to reset.

This command sets the status of query indices [firstQuery, firstQuery + queryCount - 1] to
unavailable.

Valid Usage

• VUID-vkResetQueryPool-firstQuery-09436
firstQuery must be less than the number of queries in queryPool

• VUID-vkResetQueryPool-firstQuery-09437
The sum of firstQuery and queryCount must be less than or equal to the number of queries
in queryPool

• VUID-vkResetQueryPool-None-02665
The hostQueryReset feature must be enabled

• VUID-vkResetQueryPool-firstQuery-02741
Submitted commands that refer to the range specified by firstQuery and queryCount in
queryPool must have completed execution

• VUID-vkResetQueryPool-firstQuery-02742
The range of queries specified by firstQuery and queryCount in queryPool must not be in
use by calls to vkGetQueryPoolResults or vkResetQueryPool in other threads

744

Valid Usage (Implicit)

• VUID-vkResetQueryPool-device-parameter
device must be a valid VkDevice handle

• VUID-vkResetQueryPool-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkResetQueryPool-queryPool-parent
queryPool must have been created, allocated, or retrieved from device

Once queries are reset and ready for use, query commands can be issued to a command buffer.
Occlusion queries and pipeline statistics queries count events - drawn samples and pipeline stage
invocations, respectively - resulting from commands that are recorded between a
vkCmdBeginQuery command and a vkCmdEndQuery command within a specified command
buffer, effectively scoping a set of drawing and/or dispatching commands. Timestamp queries write
timestamps to a query pool.

A query must begin and end in the same command buffer, although if it is a primary command
buffer, and the inheritedQueries feature is enabled, it can execute secondary command buffers
during the query operation. For a secondary command buffer to be executed while a query is
active, it must set the occlusionQueryEnable, queryFlags, and/or pipelineStatistics members of
VkCommandBufferInheritanceInfo to conservative values, as described in the Command Buffer
Recording section. A query must either begin and end inside the same subpass of a render pass
instance, or must both begin and end outside of a render pass instance (i.e. contain entire render
pass instances).

If queries are used while executing a render pass instance that has multiview enabled, the query
uses N consecutive query indices in the query pool (starting at query) where N is the number of bits
set in the view mask in the subpass the query is used in. How the numerical results of the query are
distributed among the queries is implementation-dependent. For example, some implementations
may write each view’s results to a distinct query, while other implementations may write the total
result to the first query and write zero to the other queries. However, the sum of the results in all
the queries must accurately reflect the total result of the query summed over all views.
Applications can sum the results from all the queries to compute the total result.

Queries used with multiview rendering must not span subpasses, i.e. they must begin and end in
the same subpass.

To begin a query, call:

// Provided by VK_VERSION_1_0
void vkCmdBeginQuery(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t query,
 VkQueryControlFlags flags);

745

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that will manage the results of the query.

• query is the query index within the query pool that will contain the results.

• flags is a bitmask of VkQueryControlFlagBits specifying constraints on the types of queries that
can be performed.

If the queryType of the pool is VK_QUERY_TYPE_OCCLUSION and flags contains
VK_QUERY_CONTROL_PRECISE_BIT, an implementation must return a result that matches the actual
number of samples passed. This is described in more detail in Occlusion Queries.

After beginning a query, that query is considered active within the command buffer it was called in
until that same query is ended. Queries active in a primary command buffer when secondary
command buffers are executed are considered active for those secondary command buffers.

This command defines an execution dependency between other query commands that reference
the same query.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur earlier in submission order.

The second synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur later in submission order.

The operation of this command happens after the first scope and happens before the second scope.

Valid Usage

• VUID-vkCmdBeginQuery-None-00807
All queries used by the command must be unavailable

• VUID-vkCmdBeginQuery-queryType-02804
The queryType used to create queryPool must not be VK_QUERY_TYPE_TIMESTAMP

• VUID-vkCmdBeginQuery-queryType-00800
If the occlusionQueryPrecise feature is not enabled, or the queryType used to create
queryPool was not VK_QUERY_TYPE_OCCLUSION, flags must not contain
VK_QUERY_CONTROL_PRECISE_BIT

• VUID-vkCmdBeginQuery-query-00802
query must be less than the number of queries in queryPool

• VUID-vkCmdBeginQuery-queryType-00803
If the queryType used to create queryPool was VK_QUERY_TYPE_OCCLUSION, the VkCommandPool
that commandBuffer was allocated from must support graphics operations

• VUID-vkCmdBeginQuery-queryType-00804
If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any
of the pipelineStatistics indicate graphics operations, the VkCommandPool that
commandBuffer was allocated from must support graphics operations

• VUID-vkCmdBeginQuery-queryType-00805

746

If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any
of the pipelineStatistics indicate compute operations, the VkCommandPool that
commandBuffer was allocated from must support compute operations

• VUID-vkCmdBeginQuery-commandBuffer-01885
commandBuffer must not be a protected command buffer

• VUID-vkCmdBeginQuery-query-00808
If called within a render pass instance, the sum of query and the number of bits set in the
current subpass’s view mask must be less than or equal to the number of queries in
queryPool

• VUID-vkCmdBeginQuery-queryPool-01922
queryPool must have been created with a queryType that differs from that of any queries
that are active within commandBuffer

Valid Usage (Implicit)

• VUID-vkCmdBeginQuery-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBeginQuery-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdBeginQuery-flags-parameter
flags must be a valid combination of VkQueryControlFlagBits values

• VUID-vkCmdBeginQuery-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBeginQuery-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdBeginQuery-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

747

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics
Compute

Action
State

Bits which can be set in vkCmdBeginQuery::flags, specifying constraints on the types of queries
that can be performed, are:

// Provided by VK_VERSION_1_0
typedef enum VkQueryControlFlagBits {
 VK_QUERY_CONTROL_PRECISE_BIT = 0x00000001,
} VkQueryControlFlagBits;

• VK_QUERY_CONTROL_PRECISE_BIT specifies the precision of occlusion queries.

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueryControlFlags;

VkQueryControlFlags is a bitmask type for setting a mask of zero or more VkQueryControlFlagBits.

To end a query after the set of desired drawing or dispatching commands is executed, call:

// Provided by VK_VERSION_1_0
void vkCmdEndQuery(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t query);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that is managing the results of the query.

• query is the query index within the query pool where the result is stored.

The command completes the query in queryPool identified by query, and marks it as available.

This command defines an execution dependency between other query commands that reference
the same query.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur earlier in submission order.

The second synchronization scope includes only the operation of this command.

748

Valid Usage

• VUID-vkCmdEndQuery-None-01923
All queries used by the command must be active

• VUID-vkCmdEndQuery-query-00810
query must be less than the number of queries in queryPool

• VUID-vkCmdEndQuery-commandBuffer-01886
commandBuffer must not be a protected command buffer

• VUID-vkCmdEndQuery-query-00812
If vkCmdEndQuery is called within a render pass instance, the sum of query and the number
of bits set in the current subpass’s view mask must be less than or equal to the number of
queries in queryPool

• VUID-vkCmdEndQuery-None-07007
If called within a subpass of a render pass instance, the corresponding vkCmdBeginQuery*
command must have been called previously within the same subpass

Valid Usage (Implicit)

• VUID-vkCmdEndQuery-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdEndQuery-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdEndQuery-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdEndQuery-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdEndQuery-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

749

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics
Compute

Action
State

An application can retrieve results either by requesting they be written into application-provided
memory, or by requesting they be copied into a VkBuffer. In either case, the layout in memory is
defined as follows:

• The first query’s result is written starting at the first byte requested by the command, and each
subsequent query’s result begins stride bytes later.

• Occlusion queries, pipeline statistics queries, and timestamp queries store results in a tightly
packed array of unsigned integers, either 32- or 64-bits as requested by the command, storing
the numerical results and, if requested, the availability status.

• If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is used, the final element of each query’s result is an
integer indicating whether the query’s result is available, with any non-zero value indicating
that it is available.

• Occlusion queries write one integer value - the number of samples passed. Pipeline statistics
queries write one integer value for each bit that is enabled in the pipelineStatistics when the
pool is created, and the statistics values are written in bit order starting from the least
significant bit. Timestamp queries write one integer value.

• If more than one query is retrieved and stride is not at least as large as the size of the array of
values corresponding to a single query, the values written to memory are undefined.

To retrieve status and results for a set of queries, call:

// Provided by VK_VERSION_1_0
VkResult vkGetQueryPoolResults(
 VkDevice device,
 VkQueryPool queryPool,
 uint32_t firstQuery,
 uint32_t queryCount,
 size_t dataSize,
 void* pData,
 VkDeviceSize stride,
 VkQueryResultFlags flags);

• device is the logical device that owns the query pool.

• queryPool is the query pool managing the queries containing the desired results.

• firstQuery is the initial query index.

• queryCount is the number of queries to read.

750

• dataSize is the size in bytes of the buffer pointed to by pData.

• pData is a pointer to a user-allocated buffer where the results will be written

• stride is the stride in bytes between results for individual queries within pData.

• flags is a bitmask of VkQueryResultFlagBits specifying how and when results are returned.

Any results written for a query are written according to a layout dependent on the query type.

If no bits are set in flags, and all requested queries are in the available state, results are written as
an array of 32-bit unsigned integer values. Behavior when not all queries are available is described
below.

If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, results for all queries in queryPool identified by
firstQuery and queryCount are copied to pData, along with an extra availability value written
directly after the results of each query and interpreted as an unsigned integer. A value of zero
indicates that the results are not yet available, otherwise the query is complete and results are
available. The size of the availability values is 64 bits if VK_QUERY_RESULT_64_BIT is set in flags.
Otherwise, it is 32 bits.

Note

If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, the layout of data in the buffer is a
(result,availability) pair for each query returned, and stride is the stride between
each pair.

Results for any available query written by this command are final and represent the final result of
the query. If VK_QUERY_RESULT_PARTIAL_BIT is set, then for any query that is unavailable, an
intermediate result between zero and the final result value is written for that query. Otherwise, any
result written by this command is undefined.

If VK_QUERY_RESULT_64_BIT is set, results and, if returned, availability values for all queries are
written as an array of 64-bit values. Otherwise, results and availability values are written as an
array of 32-bit values. If an unsigned integer query’s value overflows the result type, the value may
either wrap or saturate.

If VK_QUERY_RESULT_WAIT_BIT is set, this command defines an execution dependency with any earlier
commands that writes one of the identified queries. The first synchronization scope includes all
instances of vkCmdEndQuery, vkCmdWriteTimestamp2, and vkCmdWriteTimestamp that
reference any query in queryPool indicated by firstQuery and queryCount. The second
synchronization scope includes the host operations of this command.

If VK_QUERY_RESULT_WAIT_BIT is not set, vkGetQueryPoolResults may return VK_NOT_READY if there are
queries in the unavailable state.

Note

Applications must take care to ensure that use of the VK_QUERY_RESULT_WAIT_BIT bit
has the desired effect.

For example, if a query has been used previously and a command buffer records
the commands vkCmdResetQueryPool, vkCmdBeginQuery, and vkCmdEndQuery for that

751

query, then the query will remain in the available state until vkResetQueryPool is
called or the vkCmdResetQueryPool command executes on a queue. Applications can
use fences or events to ensure that a query has already been reset before checking
for its results or availability status. Otherwise, a stale value could be returned
from a previous use of the query.

The above also applies when VK_QUERY_RESULT_WAIT_BIT is used in combination with
VK_QUERY_RESULT_WITH_AVAILABILITY_BIT. In this case, the returned availability
status may reflect the result of a previous use of the query unless vkResetQueryPool
is called or the vkCmdResetQueryPool command has been executed since the last use
of the query.

Note

Applications can double-buffer query pool usage, with a pool per frame, and reset
queries at the end of the frame in which they are read.

Valid Usage

• VUID-vkGetQueryPoolResults-firstQuery-09436
firstQuery must be less than the number of queries in queryPool

• VUID-vkGetQueryPoolResults-firstQuery-09437
The sum of firstQuery and queryCount must be less than or equal to the number of queries
in queryPool

• VUID-vkGetQueryPoolResults-queryCount-09438
If queryCount is greater than 1, stride must not be zero

• VUID-vkGetQueryPoolResults-queryType-09439
If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not
contain VK_QUERY_RESULT_PARTIAL_BIT

• VUID-vkGetQueryPoolResults-None-09401
All queries used by the command must not be uninitialized

• VUID-vkGetQueryPoolResults-flags-02828
If VK_QUERY_RESULT_64_BIT is not set in flags then pData and stride must be multiples of 4

• VUID-vkGetQueryPoolResults-flags-00815
If VK_QUERY_RESULT_64_BIT is set in flags then pData and stride must be multiples of 8

• VUID-vkGetQueryPoolResults-stride-08993
If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, stride must be large enough to contain
the unsigned integer representing availability in addition to the query result.

• VUID-vkGetQueryPoolResults-dataSize-00817
dataSize must be large enough to contain the result of each query, as described here

752

Valid Usage (Implicit)

• VUID-vkGetQueryPoolResults-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetQueryPoolResults-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkGetQueryPoolResults-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

• VUID-vkGetQueryPoolResults-flags-parameter
flags must be a valid combination of VkQueryResultFlagBits values

• VUID-vkGetQueryPoolResults-dataSize-arraylength
dataSize must be greater than 0

• VUID-vkGetQueryPoolResults-queryPool-parent
queryPool must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_NOT_READY

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

Bits which can be set in vkGetQueryPoolResults::flags and vkCmdCopyQueryPoolResults::flags,
specifying how and when results are returned, are:

// Provided by VK_VERSION_1_0
typedef enum VkQueryResultFlagBits {
 VK_QUERY_RESULT_64_BIT = 0x00000001,
 VK_QUERY_RESULT_WAIT_BIT = 0x00000002,
 VK_QUERY_RESULT_WITH_AVAILABILITY_BIT = 0x00000004,
 VK_QUERY_RESULT_PARTIAL_BIT = 0x00000008,
} VkQueryResultFlagBits;

• VK_QUERY_RESULT_64_BIT specifies the results will be written as an array of 64-bit unsigned
integer values. If this bit is not set, the results will be written as an array of 32-bit unsigned
integer values.

• VK_QUERY_RESULT_WAIT_BIT specifies that Vulkan will wait for each query’s status to become
available before retrieving its results.

753

• VK_QUERY_RESULT_WITH_AVAILABILITY_BIT specifies that the availability status accompanies the
results.

• VK_QUERY_RESULT_PARTIAL_BIT specifies that returning partial results is acceptable.

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueryResultFlags;

VkQueryResultFlags is a bitmask type for setting a mask of zero or more VkQueryResultFlagBits.

To copy query statuses and numerical results directly to buffer memory, call:

// Provided by VK_VERSION_1_0
void vkCmdCopyQueryPoolResults(
 VkCommandBuffer commandBuffer,
 VkQueryPool queryPool,
 uint32_t firstQuery,
 uint32_t queryCount,
 VkBuffer dstBuffer,
 VkDeviceSize dstOffset,
 VkDeviceSize stride,
 VkQueryResultFlags flags);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool managing the queries containing the desired results.

• firstQuery is the initial query index.

• queryCount is the number of queries. firstQuery and queryCount together define a range of
queries.

• dstBuffer is a VkBuffer object that will receive the results of the copy command.

• dstOffset is an offset into dstBuffer.

• stride is the stride in bytes between results for individual queries within dstBuffer. The
required size of the backing memory for dstBuffer is determined as described above for
vkGetQueryPoolResults.

• flags is a bitmask of VkQueryResultFlagBits specifying how and when results are returned.

Any results written for a query are written according to a layout dependent on the query type.

Results for any query in queryPool identified by firstQuery and queryCount that is available are
copied to dstBuffer.

If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, results for all queries in queryPool identified by
firstQuery and queryCount are copied to dstBuffer, along with an extra availability value written
directly after the results of each query and interpreted as an unsigned integer. A value of zero
indicates that the results are not yet available, otherwise the query is complete and results are
available.

754

Results for any available query written by this command are final and represent the final result of
the query. If VK_QUERY_RESULT_PARTIAL_BIT is set, then for any query that is unavailable, an
intermediate result between zero and the final result value is written for that query. Otherwise, any
result written by this command is undefined.

If VK_QUERY_RESULT_64_BIT is set, results and availability values for all queries are written as an
array of 64-bit values. Otherwise, results and availability values are written as an array of 32-bit
values. If an unsigned integer query’s value overflows the result type, the value may either wrap or
saturate.

This command defines an execution dependency between other query commands that reference
the same query.

The first synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur earlier in submission order. If flags does not include
VK_QUERY_RESULT_WAIT_BIT, vkCmdWriteTimestamp2, vkCmdEndQuery, and vkCmdWriteTimestamp
are excluded from this scope.

The second synchronization scope includes all commands which reference the queries in queryPool
indicated by query that occur later in submission order.

The operation of this command happens after the first scope and happens before the second scope.

vkCmdCopyQueryPoolResults is considered to be a transfer operation, and its writes to buffer memory
must be synchronized using VK_PIPELINE_STAGE_TRANSFER_BIT and VK_ACCESS_TRANSFER_WRITE_BIT
before using the results.

Valid Usage

• VUID-vkCmdCopyQueryPoolResults-firstQuery-09436
firstQuery must be less than the number of queries in queryPool

• VUID-vkCmdCopyQueryPoolResults-firstQuery-09437
The sum of firstQuery and queryCount must be less than or equal to the number of queries
in queryPool

• VUID-vkCmdCopyQueryPoolResults-queryCount-09438
If queryCount is greater than 1, stride must not be zero

• VUID-vkCmdCopyQueryPoolResults-queryType-09439
If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not
contain VK_QUERY_RESULT_PARTIAL_BIT

• VUID-vkCmdCopyQueryPoolResults-None-09402
All queries used by the command must not be uninitialized when the command is
executed

• VUID-vkCmdCopyQueryPoolResults-dstOffset-00819
dstOffset must be less than the size of dstBuffer

• VUID-vkCmdCopyQueryPoolResults-flags-00822
If VK_QUERY_RESULT_64_BIT is not set in flags then dstOffset and stride must be multiples

755

of 4

• VUID-vkCmdCopyQueryPoolResults-flags-00823
If VK_QUERY_RESULT_64_BIT is set in flags then dstOffset and stride must be multiples of 8

• VUID-vkCmdCopyQueryPoolResults-dstBuffer-00824
dstBuffer must have enough storage, from dstOffset, to contain the result of each query,
as described here

• VUID-vkCmdCopyQueryPoolResults-dstBuffer-00825
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdCopyQueryPoolResults-dstBuffer-00826
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdCopyQueryPoolResults-None-07429
All queries used by the command must not be active

• VUID-vkCmdCopyQueryPoolResults-None-08752
All queries used by the command must have been made available by prior executed
commands

Valid Usage (Implicit)

• VUID-vkCmdCopyQueryPoolResults-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyQueryPoolResults-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdCopyQueryPoolResults-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyQueryPoolResults-flags-parameter
flags must be a valid combination of VkQueryResultFlagBits values

• VUID-vkCmdCopyQueryPoolResults-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyQueryPoolResults-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdCopyQueryPoolResults-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyQueryPoolResults-commonparent
Each of commandBuffer, dstBuffer, and queryPool must have been created, allocated, or
retrieved from the same VkDevice

756

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics
Compute

Action

Rendering operations such as clears, MSAA resolves, attachment load/store operations, and blits
may count towards the results of queries. This behavior is implementation-dependent and may
vary depending on the path used within an implementation. For example, some implementations
have several types of clears, some of which may include vertices and some not.

17.3. Occlusion Queries
Occlusion queries track the number of samples that pass the per-fragment tests for a set of drawing
commands. As such, occlusion queries are only available on queue families supporting graphics
operations. The application can then use these results to inform future rendering decisions. An
occlusion query is begun and ended by calling vkCmdBeginQuery and vkCmdEndQuery, respectively.
When an occlusion query begins, the count of passing samples always starts at zero. For each
drawing command, the count is incremented as described in Sample Counting. If flags does not
contain VK_QUERY_CONTROL_PRECISE_BIT an implementation may generate any non-zero result value
for the query if the count of passing samples is non-zero.

Note

Not setting VK_QUERY_CONTROL_PRECISE_BIT mode may be more efficient on some
implementations, and should be used where it is sufficient to know a boolean
result on whether any samples passed the per-fragment tests. In this case, some
implementations may only return zero or one, indifferent to the actual number of
samples passing the per-fragment tests.

Setting VK_QUERY_CONTROL_PRECISE_BIT does not guarantee that different
implementations return the same number of samples in an occlusion query. Some
implementations may kill fragments in the pre-rasterization shader stage, and
these killed fragments do not contribute to the final result of the query. It is
possible that some implementations generate a zero result value for the query,
while others generate a non-zero value.

When an occlusion query finishes, the result for that query is marked as available. The application

757

can then either copy the result to a buffer (via vkCmdCopyQueryPoolResults) or request it be put into
host memory (via vkGetQueryPoolResults).

Note

If occluding geometry is not drawn first, samples can pass the depth test, but still
not be visible in a final image.

17.4. Pipeline Statistics Queries
Pipeline statistics queries allow the application to sample a specified set of VkPipeline counters.
These counters are accumulated by Vulkan for a set of either drawing or dispatching commands
while a pipeline statistics query is active. As such, pipeline statistics queries are available on queue
families supporting either graphics or compute operations. The availability of pipeline statistics
queries is indicated by the pipelineStatisticsQuery member of the VkPhysicalDeviceFeatures object
(see vkGetPhysicalDeviceFeatures and vkCreateDevice for detecting and requesting this query type
on a VkDevice).

A pipeline statistics query is begun and ended by calling vkCmdBeginQuery and vkCmdEndQuery,
respectively. When a pipeline statistics query begins, all statistics counters are set to zero. While the
query is active, the pipeline type determines which set of statistics are available, but these must be
configured on the query pool when it is created. If a statistic counter is issued on a command buffer
that does not support the corresponding operation, the value of that counter is undefined after the
query has been made available. At least one statistic counter relevant to the operations supported
on the recording command buffer must be enabled.

Bits which can be set in VkQueryPoolCreateInfo::pipelineStatistics for query pools and in
VkCommandBufferInheritanceInfo::pipelineStatistics for secondary command buffers,
individually enabling pipeline statistics counters, are:

// Provided by VK_VERSION_1_0
typedef enum VkQueryPipelineStatisticFlagBits {
 VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT = 0x00000001,
 VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT = 0x00000002,
 VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT = 0x00000004,
 VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT = 0x00000008,
 VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT = 0x00000010,
 VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT = 0x00000020,
 VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT = 0x00000040,
 VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT = 0x00000080,
 VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT = 0x00000100,
 VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT =
0x00000200,
 VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT = 0x00000400,
} VkQueryPipelineStatisticFlagBits;

• VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT specifies that queries managed by the
pool will count the number of vertices processed by the input assembly stage. Vertices

758

corresponding to incomplete primitives may contribute to the count.

• VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT specifies that queries managed by
the pool will count the number of primitives processed by the input assembly stage. If primitive
restart is enabled, restarting the primitive topology has no effect on the count. Incomplete
primitives may be counted.

• VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT specifies that queries managed by
the pool will count the number of vertex shader invocations. This counter’s value is
incremented each time a vertex shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT specifies that queries managed
by the pool will count the number of geometry shader invocations. This counter’s value is
incremented each time a geometry shader is invoked. In the case of instanced geometry
shaders, the geometry shader invocations count is incremented for each separate instanced
invocation.

• VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT specifies that queries managed by
the pool will count the number of primitives generated by geometry shader invocations. The
counter’s value is incremented each time the geometry shader emits a primitive. Restarting
primitive topology using the SPIR-V instructions OpEndPrimitive or OpEndStreamPrimitive has no
effect on the geometry shader output primitives count.

• VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT specifies that queries managed by the
pool will count the number of primitives processed by the Primitive Clipping stage of the
pipeline. The counter’s value is incremented each time a primitive reaches the primitive
clipping stage.

• VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT specifies that queries managed by the
pool will count the number of primitives output by the Primitive Clipping stage of the pipeline.
The counter’s value is incremented each time a primitive passes the primitive clipping stage.
The actual number of primitives output by the primitive clipping stage for a particular input
primitive is implementation-dependent but must satisfy the following conditions:

◦ If at least one vertex of the input primitive lies inside the clipping volume, the counter is
incremented by one or more.

◦ Otherwise, the counter is incremented by zero or more.

• VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT specifies that queries managed
by the pool will count the number of fragment shader invocations. The counter’s value is
incremented each time the fragment shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT specifies that queries
managed by the pool will count the number of patches processed by the tessellation control
shader. The counter’s value is incremented once for each patch for which a tessellation control
shader is invoked.

• VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT specifies that
queries managed by the pool will count the number of invocations of the tessellation evaluation
shader. The counter’s value is incremented each time the tessellation evaluation shader is
invoked.

• VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT specifies that queries managed by
the pool will count the number of compute shader invocations. The counter’s value is

759

incremented every time the compute shader is invoked. Implementations may skip the
execution of certain compute shader invocations or execute additional compute shader
invocations for implementation-dependent reasons as long as the results of rendering
otherwise remain unchanged.

These values are intended to measure relative statistics on one implementation. Various device
architectures will count these values differently. Any or all counters may be affected by the issues
described in Query Operation.

Note

For example, tile-based rendering devices may need to replay the scene multiple
times, affecting some of the counts.

If a pipeline has rasterizerDiscardEnable enabled, implementations may discard primitives after
the final pre-rasterization shader stage. As a result, if rasterizerDiscardEnable is enabled, the
clipping input and output primitives counters may not be incremented.

When a pipeline statistics query finishes, the result for that query is marked as available. The
application can copy the result to a buffer (via vkCmdCopyQueryPoolResults), or request it be put into
host memory (via vkGetQueryPoolResults).

// Provided by VK_VERSION_1_0
typedef VkFlags VkQueryPipelineStatisticFlags;

VkQueryPipelineStatisticFlags is a bitmask type for setting a mask of zero or more
VkQueryPipelineStatisticFlagBits.

17.5. Timestamp Queries
Timestamps provide applications with a mechanism for timing the execution of commands. A
timestamp is an integer value generated by the VkPhysicalDevice. Unlike other queries, timestamps
do not operate over a range, and so do not use vkCmdBeginQuery or vkCmdEndQuery. The
mechanism is built around a set of commands that allow the application to tell the VkPhysicalDevice
to write timestamp values to a query pool and then either read timestamp values on the host (using
vkGetQueryPoolResults) or copy timestamp values to a VkBuffer (using
vkCmdCopyQueryPoolResults). The application can then compute differences between timestamps
to determine execution time.

The number of valid bits in a timestamp value is determined by the VkQueueFamilyProperties
::timestampValidBits property of the queue on which the timestamp is written. Timestamps are
supported on any queue which reports a non-zero value for timestampValidBits via
vkGetPhysicalDeviceQueueFamilyProperties. If the timestampComputeAndGraphics limit is VK_TRUE,
timestamps are supported by every queue family that supports either graphics or compute
operations (see VkQueueFamilyProperties).

The number of nanoseconds it takes for a timestamp value to be incremented by 1 can be obtained
from VkPhysicalDeviceLimits::timestampPeriod after a call to vkGetPhysicalDeviceProperties.

760

To request a timestamp and write the value to memory, call:

// Provided by VK_VERSION_1_3
void vkCmdWriteTimestamp2(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlags2 stage,
 VkQueryPool queryPool,
 uint32_t query);

• commandBuffer is the command buffer into which the command will be recorded.

• stage specifies a stage of the pipeline.

• queryPool is the query pool that will manage the timestamp.

• query is the query within the query pool that will contain the timestamp.

When vkCmdWriteTimestamp2 is submitted to a queue, it defines an execution dependency on
commands that were submitted before it, and writes a timestamp to a query pool.

The first synchronization scope includes all commands that occur earlier in submission order. The
synchronization scope is limited to operations on the pipeline stage specified by stage.

The second synchronization scope includes only the timestamp write operation.

Note

Implementations may write the timestamp at any stage that is logically later than
stage.

Any timestamp write that happens-after another timestamp write in the same submission must not
have a lower value unless its value overflows the maximum supported integer bit width of the
query. If an overflow occurs, the timestamp value must wrap back to zero.

Note

Comparisons between timestamps should be done between timestamps where
they are guaranteed to not decrease. For example, subtracting an older timestamp
from a newer one to determine the execution time of a sequence of commands is
only a reliable measurement if the two timestamp writes were performed in the
same submission.

If vkCmdWriteTimestamp2 is called while executing a render pass instance that has multiview enabled,
the timestamp uses N consecutive query indices in the query pool (starting at query) where N is the
number of bits set in the view mask of the subpass the command is executed in. The resulting query
values are determined by an implementation-dependent choice of one of the following behaviors:

• The first query is a timestamp value and (if more than one bit is set in the view mask) zero is
written to the remaining queries. If two timestamps are written in the same subpass, the sum of
the execution time of all views between those commands is the difference between the first
query written by each command.

761

• All N queries are timestamp values. If two timestamps are written in the same subpass, the sum
of the execution time of all views between those commands is the sum of the difference
between corresponding queries written by each command. The difference between
corresponding queries may be the execution time of a single view.

In either case, the application can sum the differences between all N queries to determine the total
execution time.

Valid Usage

• VUID-vkCmdWriteTimestamp2-stage-03929
If the geometryShader feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT

• VUID-vkCmdWriteTimestamp2-stage-03930
If the tessellationShader feature is not enabled, stage must not contain
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWriteTimestamp2-synchronization2-03858
The synchronization2 feature must be enabled

• VUID-vkCmdWriteTimestamp2-stage-03859
stage must only include a single pipeline stage

• VUID-vkCmdWriteTimestamp2-stage-03860
stage must only include stages valid for the queue family that was used to create the
command pool that commandBuffer was allocated from

• VUID-vkCmdWriteTimestamp2-queryPool-03861
queryPool must have been created with a queryType of VK_QUERY_TYPE_TIMESTAMP

• VUID-vkCmdWriteTimestamp2-timestampValidBits-03863
The command pool’s queue family must support a non-zero timestampValidBits

• VUID-vkCmdWriteTimestamp2-query-04903
query must be less than the number of queries in queryPool

• VUID-vkCmdWriteTimestamp2-None-03864
All queries used by the command must be unavailable

• VUID-vkCmdWriteTimestamp2-query-03865
If vkCmdWriteTimestamp2 is called within a render pass instance, the sum of query and the
number of bits set in the current subpass’s view mask must be less than or equal to the
number of queries in queryPool

Valid Usage (Implicit)

• VUID-vkCmdWriteTimestamp2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWriteTimestamp2-stage-parameter
stage must be a valid combination of VkPipelineStageFlagBits2 values

762

• VUID-vkCmdWriteTimestamp2-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdWriteTimestamp2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWriteTimestamp2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdWriteTimestamp2-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Transfer
Graphics
Compute

Action

To request a timestamp and write the value to memory, call:

// Provided by VK_VERSION_1_0
void vkCmdWriteTimestamp(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlagBits pipelineStage,
 VkQueryPool queryPool,
 uint32_t query);

• commandBuffer is the command buffer into which the command will be recorded.

• pipelineStage is a VkPipelineStageFlagBits value, specifying a stage of the pipeline.

• queryPool is the query pool that will manage the timestamp.

• query is the query within the query pool that will contain the timestamp.

When vkCmdWriteTimestamp is submitted to a queue, it defines an execution dependency on
commands that were submitted before it, and writes a timestamp to a query pool.

763

The first synchronization scope includes all commands that occur earlier in submission order. The
synchronization scope is limited to operations on the pipeline stage specified by pipelineStage.

The second synchronization scope includes only the timestamp write operation.

Note

Implementations may write the timestamp at any stage that is logically later than
stage.

Any timestamp write that happens-after another timestamp write in the same submission must not
have a lower value unless its value overflows the maximum supported integer bit width of the
query. If an overflow occurs, the timestamp value must wrap back to zero.

Note

Comparisons between timestamps should be done between timestamps where
they are guaranteed to not decrease. For example, subtracting an older timestamp
from a newer one to determine the execution time of a sequence of commands is
only a reliable measurement if the two timestamp writes were performed in the
same submission.

If vkCmdWriteTimestamp is called while executing a render pass instance that has multiview enabled,
the timestamp uses N consecutive query indices in the query pool (starting at query) where N is the
number of bits set in the view mask of the subpass the command is executed in. The resulting query
values are determined by an implementation-dependent choice of one of the following behaviors:

• The first query is a timestamp value and (if more than one bit is set in the view mask) zero is
written to the remaining queries. If two timestamps are written in the same subpass, the sum of
the execution time of all views between those commands is the difference between the first
query written by each command.

• All N queries are timestamp values. If two timestamps are written in the same subpass, the sum
of the execution time of all views between those commands is the sum of the difference
between corresponding queries written by each command. The difference between
corresponding queries may be the execution time of a single view.

In either case, the application can sum the differences between all N queries to determine the total
execution time.

Valid Usage

• VUID-vkCmdWriteTimestamp-pipelineStage-04074
pipelineStage must be a valid stage for the queue family that was used to create the
command pool that commandBuffer was allocated from

• VUID-vkCmdWriteTimestamp-pipelineStage-04075
If the geometryShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VUID-vkCmdWriteTimestamp-pipelineStage-04076

764

If the tessellationShader feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VUID-vkCmdWriteTimestamp-synchronization2-06489
If the synchronization2 feature is not enabled, pipelineStage must not be
VK_PIPELINE_STAGE_NONE

• VUID-vkCmdWriteTimestamp-queryPool-01416
queryPool must have been created with a queryType of VK_QUERY_TYPE_TIMESTAMP

• VUID-vkCmdWriteTimestamp-timestampValidBits-00829
The command pool’s queue family must support a non-zero timestampValidBits

• VUID-vkCmdWriteTimestamp-query-04904
query must be less than the number of queries in queryPool

• VUID-vkCmdWriteTimestamp-None-00830
All queries used by the command must be unavailable

• VUID-vkCmdWriteTimestamp-query-00831
If vkCmdWriteTimestamp is called within a render pass instance, the sum of query and the
number of bits set in the current subpass’s view mask must be less than or equal to the
number of queries in queryPool

Valid Usage (Implicit)

• VUID-vkCmdWriteTimestamp-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdWriteTimestamp-pipelineStage-parameter
pipelineStage must be a valid VkPipelineStageFlagBits value

• VUID-vkCmdWriteTimestamp-queryPool-parameter
queryPool must be a valid VkQueryPool handle

• VUID-vkCmdWriteTimestamp-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdWriteTimestamp-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdWriteTimestamp-commonparent
Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

765

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Transfer
Graphics
Compute

Action

766

Chapter 18. Clear Commands

18.1. Clearing Images Outside a Render Pass Instance
Color and depth/stencil images can be cleared outside a render pass instance using
vkCmdClearColorImage or vkCmdClearDepthStencilImage, respectively. These commands are only
allowed outside of a render pass instance.

To clear one or more subranges of a color image, call:

// Provided by VK_VERSION_1_0
void vkCmdClearColorImage(
 VkCommandBuffer commandBuffer,
 VkImage image,
 VkImageLayout imageLayout,
 const VkClearColorValue* pColor,
 uint32_t rangeCount,
 const VkImageSubresourceRange* pRanges);

• commandBuffer is the command buffer into which the command will be recorded.

• image is the image to be cleared.

• imageLayout specifies the current layout of the image subresource ranges to be cleared, and
must be VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

• pColor is a pointer to a VkClearColorValue structure containing the values that the image
subresource ranges will be cleared to (see Clear Values below).

• rangeCount is the number of image subresource range structures in pRanges.

• pRanges is a pointer to an array of VkImageSubresourceRange structures describing a range of
mipmap levels, array layers, and aspects to be cleared, as described in Image Views.

Each specified range in pRanges is cleared to the value specified by pColor.

Valid Usage

• VUID-vkCmdClearColorImage-image-01993
The format features of image must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-vkCmdClearColorImage-image-00002
image must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdClearColorImage-image-01545
image must not use any of the formats that require a sampler Y′CBCR conversion

• VUID-vkCmdClearColorImage-image-00003
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdClearColorImage-imageLayout-00004

767

imageLayout must specify the layout of the image subresource ranges of image specified in
pRanges at the time this command is executed on a VkDevice

• VUID-vkCmdClearColorImage-imageLayout-01394
imageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdClearColorImage-aspectMask-02498
The VkImageSubresourceRange::aspectMask members of the elements of the pRanges array
must each only include VK_IMAGE_ASPECT_COLOR_BIT

• VUID-vkCmdClearColorImage-baseMipLevel-01470
The VkImageSubresourceRange::baseMipLevel members of the elements of the pRanges
array must each be less than the mipLevels specified in VkImageCreateInfo when image
was created

• VUID-vkCmdClearColorImage-pRanges-01692
For each VkImageSubresourceRange element of pRanges, if the levelCount member is not
VK_REMAINING_MIP_LEVELS, then baseMipLevel + levelCount must be less than or equal to the
mipLevels specified in VkImageCreateInfo when image was created

• VUID-vkCmdClearColorImage-baseArrayLayer-01472
The VkImageSubresourceRange::baseArrayLayer members of the elements of the pRanges
array must each be less than the arrayLayers specified in VkImageCreateInfo when image
was created

• VUID-vkCmdClearColorImage-pRanges-01693
For each VkImageSubresourceRange element of pRanges, if the layerCount member is not
VK_REMAINING_ARRAY_LAYERS, then baseArrayLayer + layerCount must be less than or equal to
the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-vkCmdClearColorImage-image-00007
image must not have a compressed or depth/stencil format

• VUID-vkCmdClearColorImage-pColor-04961
pColor must be a valid pointer to a VkClearColorValue union

• VUID-vkCmdClearColorImage-commandBuffer-01805
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
image must not be a protected image

• VUID-vkCmdClearColorImage-commandBuffer-01806
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdClearColorImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdClearColorImage-image-parameter
image must be a valid VkImage handle

• VUID-vkCmdClearColorImage-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

768

• VUID-vkCmdClearColorImage-pRanges-parameter
pRanges must be a valid pointer to an array of rangeCount valid VkImageSubresourceRange
structures

• VUID-vkCmdClearColorImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdClearColorImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics, or
compute operations

• VUID-vkCmdClearColorImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdClearColorImage-rangeCount-arraylength
rangeCount must be greater than 0

• VUID-vkCmdClearColorImage-commonparent
Both of commandBuffer, and image must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics
Compute

Action

To clear one or more subranges of a depth/stencil image, call:

// Provided by VK_VERSION_1_0
void vkCmdClearDepthStencilImage(
 VkCommandBuffer commandBuffer,
 VkImage image,
 VkImageLayout imageLayout,
 const VkClearDepthStencilValue* pDepthStencil,
 uint32_t rangeCount,
 const VkImageSubresourceRange* pRanges);

• commandBuffer is the command buffer into which the command will be recorded.

769

• image is the image to be cleared.

• imageLayout specifies the current layout of the image subresource ranges to be cleared, and
must be VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

• pDepthStencil is a pointer to a VkClearDepthStencilValue structure containing the values that
the depth and stencil image subresource ranges will be cleared to (see Clear Values below).

• rangeCount is the number of image subresource range structures in pRanges.

• pRanges is a pointer to an array of VkImageSubresourceRange structures describing a range of
mipmap levels, array layers, and aspects to be cleared, as described in Image Views.

Valid Usage

• VUID-vkCmdClearDepthStencilImage-image-01994
The format features of image must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-vkCmdClearDepthStencilImage-pRanges-02658
If the aspect member of any element of pRanges includes VK_IMAGE_ASPECT_STENCIL_BIT, and
image was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_DST_BIT must have
been included in the VkImageStencilUsageCreateInfo::stencilUsage used to create image

• VUID-vkCmdClearDepthStencilImage-pRanges-02659
If the aspect member of any element of pRanges includes VK_IMAGE_ASPECT_STENCIL_BIT, and
image was not created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_DST_BIT must
have been included in the VkImageCreateInfo::usage used to create image

• VUID-vkCmdClearDepthStencilImage-pRanges-02660
If the aspect member of any element of pRanges includes VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_USAGE_TRANSFER_DST_BIT must have been included in the VkImageCreateInfo
::usage used to create image

• VUID-vkCmdClearDepthStencilImage-image-00010
If image is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdClearDepthStencilImage-imageLayout-00011
imageLayout must specify the layout of the image subresource ranges of image specified in
pRanges at the time this command is executed on a VkDevice

• VUID-vkCmdClearDepthStencilImage-imageLayout-00012
imageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or
VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdClearDepthStencilImage-aspectMask-02824
The VkImageSubresourceRange::aspectMask member of each element of the pRanges array
must not include bits other than VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkCmdClearDepthStencilImage-image-02825
If the image’s format does not have a stencil component, then the
VkImageSubresourceRange::aspectMask member of each element of the pRanges array
must not include the VK_IMAGE_ASPECT_STENCIL_BIT bit

770

• VUID-vkCmdClearDepthStencilImage-image-02826
If the image’s format does not have a depth component, then the
VkImageSubresourceRange::aspectMask member of each element of the pRanges array
must not include the VK_IMAGE_ASPECT_DEPTH_BIT bit

• VUID-vkCmdClearDepthStencilImage-baseMipLevel-01474
The VkImageSubresourceRange::baseMipLevel members of the elements of the pRanges
array must each be less than the mipLevels specified in VkImageCreateInfo when image
was created

• VUID-vkCmdClearDepthStencilImage-pRanges-01694
For each VkImageSubresourceRange element of pRanges, if the levelCount member is not
VK_REMAINING_MIP_LEVELS, then baseMipLevel + levelCount must be less than or equal to the
mipLevels specified in VkImageCreateInfo when image was created

• VUID-vkCmdClearDepthStencilImage-baseArrayLayer-01476
The VkImageSubresourceRange::baseArrayLayer members of the elements of the pRanges
array must each be less than the arrayLayers specified in VkImageCreateInfo when image
was created

• VUID-vkCmdClearDepthStencilImage-pRanges-01695
For each VkImageSubresourceRange element of pRanges, if the layerCount member is not
VK_REMAINING_ARRAY_LAYERS, then baseArrayLayer + layerCount must be less than or equal to
the arrayLayers specified in VkImageCreateInfo when image was created

• VUID-vkCmdClearDepthStencilImage-image-00014
image must have a depth/stencil format

• VUID-vkCmdClearDepthStencilImage-commandBuffer-01807
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
image must not be a protected image

• VUID-vkCmdClearDepthStencilImage-commandBuffer-01808
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
image must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdClearDepthStencilImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdClearDepthStencilImage-image-parameter
image must be a valid VkImage handle

• VUID-vkCmdClearDepthStencilImage-imageLayout-parameter
imageLayout must be a valid VkImageLayout value

• VUID-vkCmdClearDepthStencilImage-pDepthStencil-parameter
pDepthStencil must be a valid pointer to a valid VkClearDepthStencilValue structure

• VUID-vkCmdClearDepthStencilImage-pRanges-parameter
pRanges must be a valid pointer to an array of rangeCount valid VkImageSubresourceRange
structures

771

• VUID-vkCmdClearDepthStencilImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdClearDepthStencilImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdClearDepthStencilImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdClearDepthStencilImage-rangeCount-arraylength
rangeCount must be greater than 0

• VUID-vkCmdClearDepthStencilImage-commonparent
Both of commandBuffer, and image must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics Action

Clears outside render pass instances are treated as transfer operations for the purposes of memory
barriers.

18.2. Clearing Images Inside a Render Pass Instance
To clear one or more regions of color and depth/stencil attachments inside a render pass instance,
call:

// Provided by VK_VERSION_1_0
void vkCmdClearAttachments(
 VkCommandBuffer commandBuffer,
 uint32_t attachmentCount,
 const VkClearAttachment* pAttachments,
 uint32_t rectCount,
 const VkClearRect* pRects);

772

• commandBuffer is the command buffer into which the command will be recorded.

• attachmentCount is the number of entries in the pAttachments array.

• pAttachments is a pointer to an array of VkClearAttachment structures defining the attachments
to clear and the clear values to use.

• rectCount is the number of entries in the pRects array.

• pRects is a pointer to an array of VkClearRect structures defining regions within each selected
attachment to clear.

Unlike other clear commands, vkCmdClearAttachments is not a transfer command. It performs its
operations in rasterization order. For color attachments, the operations are executed as color
attachment writes, by the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT stage. For depth/stencil
attachments, the operations are executed as depth writes and stencil writes by the
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT and VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT stages.

vkCmdClearAttachments is not affected by the bound pipeline state.

Note

It is generally preferable to clear attachments by using the
VK_ATTACHMENT_LOAD_OP_CLEAR load operation at the start of rendering, as it is more
efficient on some implementations.

If any attachment’s aspectMask to be cleared is not backed by an image view, the clear has no effect
on that aspect.

If an attachment being cleared refers to an image view created with an aspectMask equal to one of
VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT or VK_IMAGE_ASPECT_PLANE_2_BIT, it is
considered to be VK_IMAGE_ASPECT_COLOR_BIT for purposes of this command, and must be cleared
with the VK_IMAGE_ASPECT_COLOR_BIT aspect as specified by image view creation.

Valid Usage

• VUID-vkCmdClearAttachments-aspectMask-07884
If the current render pass instance does not use dynamic rendering, and the aspectMask
member of any element of pAttachments contains VK_IMAGE_ASPECT_DEPTH_BIT, the current
subpass instance’s depth-stencil attachment must be either VK_ATTACHMENT_UNUSED or the
attachment format must contain a depth component

• VUID-vkCmdClearAttachments-aspectMask-07885
If the current render pass instance does not use dynamic rendering, and the aspectMask
member of any element of pAttachments contains VK_IMAGE_ASPECT_STENCIL_BIT, the current
subpass instance’s depth-stencil attachment must be either VK_ATTACHMENT_UNUSED or the
attachment format must contain a stencil component

• VUID-vkCmdClearAttachments-aspectMask-07271
If the aspectMask member of any element of pAttachments contains
VK_IMAGE_ASPECT_COLOR_BIT, the colorAttachment must be a valid color attachment index in
the current render pass instance

773

• VUID-vkCmdClearAttachments-rect-02682
The rect member of each element of pRects must have an extent.width greater than 0

• VUID-vkCmdClearAttachments-rect-02683
The rect member of each element of pRects must have an extent.height greater than 0

• VUID-vkCmdClearAttachments-pRects-00016
The rectangular region specified by each element of pRects must be contained within the
render area of the current render pass instance

• VUID-vkCmdClearAttachments-pRects-06937
The layers specified by each element of pRects must be contained within every
attachment that pAttachments refers to, i.e. for each element of pRects, VkClearRect
::baseArrayLayer + VkClearRect::layerCount must be less than or equal to the number of
layers rendered to in the current render pass instance

• VUID-vkCmdClearAttachments-layerCount-01934
The layerCount member of each element of pRects must not be 0

• VUID-vkCmdClearAttachments-commandBuffer-02504
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
each attachment to be cleared must not be a protected image

• VUID-vkCmdClearAttachments-commandBuffer-02505
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
each attachment to be cleared must not be an unprotected image

• VUID-vkCmdClearAttachments-baseArrayLayer-00018
If the render pass instance this is recorded in uses multiview, then baseArrayLayer must
be zero and layerCount must be one

Valid Usage (Implicit)

• VUID-vkCmdClearAttachments-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdClearAttachments-pAttachments-parameter
pAttachments must be a valid pointer to an array of attachmentCount valid
VkClearAttachment structures

• VUID-vkCmdClearAttachments-pRects-parameter
pRects must be a valid pointer to an array of rectCount VkClearRect structures

• VUID-vkCmdClearAttachments-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdClearAttachments-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdClearAttachments-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdClearAttachments-attachmentCount-arraylength
attachmentCount must be greater than 0

774

• VUID-vkCmdClearAttachments-rectCount-arraylength
rectCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Inside Graphics Action

The VkClearRect structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkClearRect {
 VkRect2D rect;
 uint32_t baseArrayLayer;
 uint32_t layerCount;
} VkClearRect;

• rect is the two-dimensional region to be cleared.

• baseArrayLayer is the first layer to be cleared.

• layerCount is the number of layers to clear.

The layers [baseArrayLayer, baseArrayLayer + layerCount) counting from the base layer of the
attachment image view are cleared.

The VkClearAttachment structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkClearAttachment {
 VkImageAspectFlags aspectMask;
 uint32_t colorAttachment;
 VkClearValue clearValue;
} VkClearAttachment;

• aspectMask is a mask selecting the color, depth and/or stencil aspects of the attachment to be

775

cleared.

• colorAttachment is only meaningful if VK_IMAGE_ASPECT_COLOR_BIT is set in aspectMask, in which
case it is an index into the currently bound color attachments.

• clearValue is the color or depth/stencil value to clear the attachment to, as described in Clear
Values below.

Valid Usage

• VUID-VkClearAttachment-aspectMask-00019
If aspectMask includes VK_IMAGE_ASPECT_COLOR_BIT, it must not include
VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkClearAttachment-aspectMask-00020
aspectMask must not include VK_IMAGE_ASPECT_METADATA_BIT

Valid Usage (Implicit)

• VUID-VkClearAttachment-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkClearAttachment-aspectMask-requiredbitmask
aspectMask must not be 0

18.3. Clear Values
The VkClearColorValue structure is defined as:

// Provided by VK_VERSION_1_0
typedef union VkClearColorValue {
 float float32[4];
 int32_t int32[4];
 uint32_t uint32[4];
} VkClearColorValue;

• float32 are the color clear values when the format of the image or attachment is one of the
numeric formats with a numeric type that is floating-point. Floating point values are
automatically converted to the format of the image, with the clear value being treated as linear
if the image is sRGB.

• int32 are the color clear values when the format of the image or attachment has a numeric type
that is signed integer (SINT). Signed integer values are converted to the format of the image by
casting to the smaller type (with negative 32-bit values mapping to negative values in the
smaller type). If the integer clear value is not representable in the target type (e.g. would
overflow in conversion to that type), the clear value is undefined.

• uint32 are the color clear values when the format of the image or attachment has a numeric

776

type that is unsigned integer (UINT). Unsigned integer values are converted to the format of the
image by casting to the integer type with fewer bits.

The four array elements of the clear color map to R, G, B, and A components of image formats, in
order.

If the image has more than one sample, the same value is written to all samples for any pixels being
cleared.

The VkClearDepthStencilValue structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkClearDepthStencilValue {
 float depth;
 uint32_t stencil;
} VkClearDepthStencilValue;

• depth is the clear value for the depth aspect of the depth/stencil attachment. It is a floating-point
value which is automatically converted to the attachment’s format.

• stencil is the clear value for the stencil aspect of the depth/stencil attachment. It is a 32-bit
integer value which is converted to the attachment’s format by taking the appropriate number
of LSBs.

Valid Usage

• VUID-VkClearDepthStencilValue-depth-00022
depth must be between 0.0 and 1.0, inclusive

The VkClearValue union is defined as:

// Provided by VK_VERSION_1_0
typedef union VkClearValue {
 VkClearColorValue color;
 VkClearDepthStencilValue depthStencil;
} VkClearValue;

• color specifies the color image clear values to use when clearing a color image or attachment.

• depthStencil specifies the depth and stencil clear values to use when clearing a depth/stencil
image or attachment.

This union is used where part of the API requires either color or depth/stencil clear values,
depending on the attachment, and defines the initial clear values in the VkRenderPassBeginInfo
structure.

777

18.4. Filling Buffers
To clear buffer data, call:

// Provided by VK_VERSION_1_0
void vkCmdFillBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer dstBuffer,
 VkDeviceSize dstOffset,
 VkDeviceSize size,
 uint32_t data);

• commandBuffer is the command buffer into which the command will be recorded.

• dstBuffer is the buffer to be filled.

• dstOffset is the byte offset into the buffer at which to start filling, and must be a multiple of 4.

• size is the number of bytes to fill, and must be either a multiple of 4, or VK_WHOLE_SIZE to fill the
range from offset to the end of the buffer. If VK_WHOLE_SIZE is used and the remaining size of the
buffer is not a multiple of 4, then the nearest smaller multiple is used.

• data is the 4-byte word written repeatedly to the buffer to fill size bytes of data. The data word
is written to memory according to the host endianness.

vkCmdFillBuffer is treated as a “transfer” operation for the purposes of synchronization barriers.
The VK_BUFFER_USAGE_TRANSFER_DST_BIT must be specified in usage of VkBufferCreateInfo in order for
the buffer to be compatible with vkCmdFillBuffer.

Valid Usage

• VUID-vkCmdFillBuffer-dstOffset-00024
dstOffset must be less than the size of dstBuffer

• VUID-vkCmdFillBuffer-dstOffset-00025
dstOffset must be a multiple of 4

• VUID-vkCmdFillBuffer-size-00026
If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• VUID-vkCmdFillBuffer-size-00027
If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of
dstBuffer minus dstOffset

• VUID-vkCmdFillBuffer-size-00028
If size is not equal to VK_WHOLE_SIZE, size must be a multiple of 4

• VUID-vkCmdFillBuffer-dstBuffer-00029
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdFillBuffer-apiVersion-07894
If the VK_KHR_maintenance1 extension is not enabled and VkPhysicalDeviceProperties
::apiVersion is less than Vulkan 1.1, the VkCommandPool that commandBuffer was allocated

778

from must support graphics or compute operations

• VUID-vkCmdFillBuffer-dstBuffer-00031
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdFillBuffer-commandBuffer-01811
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdFillBuffer-commandBuffer-01812
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

Valid Usage (Implicit)

• VUID-vkCmdFillBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdFillBuffer-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdFillBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdFillBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics
or compute operations

• VUID-vkCmdFillBuffer-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdFillBuffer-commonparent
Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

779

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

18.5. Updating Buffers
To update buffer data inline in a command buffer, call:

// Provided by VK_VERSION_1_0
void vkCmdUpdateBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer dstBuffer,
 VkDeviceSize dstOffset,
 VkDeviceSize dataSize,
 const void* pData);

• commandBuffer is the command buffer into which the command will be recorded.

• dstBuffer is a handle to the buffer to be updated.

• dstOffset is the byte offset into the buffer to start updating, and must be a multiple of 4.

• dataSize is the number of bytes to update, and must be a multiple of 4.

• pData is a pointer to the source data for the buffer update, and must be at least dataSize bytes in
size.

dataSize must be less than or equal to 65536 bytes. For larger updates, applications can use buffer
to buffer copies.

Note

Buffer updates performed with vkCmdUpdateBuffer first copy the data into
command buffer memory when the command is recorded (which requires
additional storage and may incur an additional allocation), and then copy the data
from the command buffer into dstBuffer when the command is executed on a
device.

The additional cost of this functionality compared to buffer to buffer copies means
it is only recommended for very small amounts of data, and is why it is limited to
only 65536 bytes.

Applications can work around this by issuing multiple vkCmdUpdateBuffer
commands to different ranges of the same buffer, but it is strongly recommended

780

that they should not.

The source data is copied from the user pointer to the command buffer when the command is
called.

vkCmdUpdateBuffer is only allowed outside of a render pass. This command is treated as a “transfer”
operation for the purposes of synchronization barriers. The VK_BUFFER_USAGE_TRANSFER_DST_BIT must
be specified in usage of VkBufferCreateInfo in order for the buffer to be compatible with
vkCmdUpdateBuffer.

Valid Usage

• VUID-vkCmdUpdateBuffer-dstOffset-00032
dstOffset must be less than the size of dstBuffer

• VUID-vkCmdUpdateBuffer-dataSize-00033
dataSize must be less than or equal to the size of dstBuffer minus dstOffset

• VUID-vkCmdUpdateBuffer-dstBuffer-00034
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdUpdateBuffer-dstBuffer-00035
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdUpdateBuffer-dstOffset-00036
dstOffset must be a multiple of 4

• VUID-vkCmdUpdateBuffer-dataSize-00037
dataSize must be less than or equal to 65536

• VUID-vkCmdUpdateBuffer-dataSize-00038
dataSize must be a multiple of 4

• VUID-vkCmdUpdateBuffer-commandBuffer-01813
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdUpdateBuffer-commandBuffer-01814
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

Valid Usage (Implicit)

• VUID-vkCmdUpdateBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdUpdateBuffer-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdUpdateBuffer-pData-parameter
pData must be a valid pointer to an array of dataSize bytes

781

• VUID-vkCmdUpdateBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdUpdateBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdUpdateBuffer-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdUpdateBuffer-dataSize-arraylength
dataSize must be greater than 0

• VUID-vkCmdUpdateBuffer-commonparent
Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

Note

The pData parameter was of type uint32_t* instead of void* prior to version 1.0.19
of the Specification and VK_HEADER_VERSION 19 of the Vulkan Header Files. This
was a historical anomaly, as the source data may be of other types.

782

Chapter 19. Copy Commands
An application can copy buffer and image data using several methods described in this chapter,
depending on the type of data transfer.

All copy commands are treated as “transfer” operations for the purposes of synchronization
barriers.

All copy commands that have a source format with an X component in its format description read
undefined values from those bits.

All copy commands that have a destination format with an X component in its format description
write undefined values to those bits.

19.1. Copying Data Between Buffers
To copy data between buffer objects, call:

// Provided by VK_VERSION_1_0
void vkCmdCopyBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer srcBuffer,
 VkBuffer dstBuffer,
 uint32_t regionCount,
 const VkBufferCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcBuffer is the source buffer.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferCopy structures specifying the regions to copy.

Each source region specified by pRegions is copied from the source buffer to the destination region
of the destination buffer. If any of the specified regions in srcBuffer overlaps in memory with any
of the specified regions in dstBuffer, values read from those overlapping regions are undefined.

Valid Usage

• VUID-vkCmdCopyBuffer-commandBuffer-01822
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcBuffer must not be a protected buffer

• VUID-vkCmdCopyBuffer-commandBuffer-01823
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdCopyBuffer-commandBuffer-01824

783

If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

• VUID-vkCmdCopyBuffer-srcOffset-00113
The srcOffset member of each element of pRegions must be less than the size of srcBuffer

• VUID-vkCmdCopyBuffer-dstOffset-00114
The dstOffset member of each element of pRegions must be less than the size of dstBuffer

• VUID-vkCmdCopyBuffer-size-00115
The size member of each element of pRegions must be less than or equal to the size of
srcBuffer minus srcOffset

• VUID-vkCmdCopyBuffer-size-00116
The size member of each element of pRegions must be less than or equal to the size of
dstBuffer minus dstOffset

• VUID-vkCmdCopyBuffer-pRegions-00117
The union of the source regions, and the union of the destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdCopyBuffer-srcBuffer-00118
srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-vkCmdCopyBuffer-srcBuffer-00119
If srcBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdCopyBuffer-dstBuffer-00120
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdCopyBuffer-dstBuffer-00121
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

Valid Usage (Implicit)

• VUID-vkCmdCopyBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyBuffer-srcBuffer-parameter
srcBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyBuffer-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyBuffer-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferCopy structures

• VUID-vkCmdCopyBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

784

• VUID-vkCmdCopyBuffer-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyBuffer-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdCopyBuffer-commonparent
Each of commandBuffer, dstBuffer, and srcBuffer must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

The VkBufferCopy structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferCopy {
 VkDeviceSize srcOffset;
 VkDeviceSize dstOffset;
 VkDeviceSize size;
} VkBufferCopy;

• srcOffset is the starting offset in bytes from the start of srcBuffer.

• dstOffset is the starting offset in bytes from the start of dstBuffer.

• size is the number of bytes to copy.

Valid Usage

• VUID-VkBufferCopy-size-01988
The size must be greater than 0

A more extensible version of the copy buffer command is defined below.

785

To copy data between buffer objects, call:

// Provided by VK_VERSION_1_3
void vkCmdCopyBuffer2(
 VkCommandBuffer commandBuffer,
 const VkCopyBufferInfo2* pCopyBufferInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pCopyBufferInfo is a pointer to a VkCopyBufferInfo2 structure describing the copy parameters.

Each source region specified by pCopyBufferInfo->pRegions is copied from the source buffer to the
destination region of the destination buffer. If any of the specified regions in pCopyBufferInfo-
>srcBuffer overlaps in memory with any of the specified regions in pCopyBufferInfo->dstBuffer,
values read from those overlapping regions are undefined.

Valid Usage

• VUID-vkCmdCopyBuffer2-commandBuffer-01822
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcBuffer must not be a protected buffer

• VUID-vkCmdCopyBuffer2-commandBuffer-01823
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdCopyBuffer2-commandBuffer-01824
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

Valid Usage (Implicit)

• VUID-vkCmdCopyBuffer2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyBuffer2-pCopyBufferInfo-parameter
pCopyBufferInfo must be a valid pointer to a valid VkCopyBufferInfo2 structure

• VUID-vkCmdCopyBuffer2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyBuffer2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyBuffer2-renderpass
This command must only be called outside of a render pass instance

786

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

The VkCopyBufferInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCopyBufferInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkBuffer srcBuffer;
 VkBuffer dstBuffer;
 uint32_t regionCount;
 const VkBufferCopy2* pRegions;
} VkCopyBufferInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcBuffer is the source buffer.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferCopy2 structures specifying the regions to copy.

Valid Usage

• VUID-VkCopyBufferInfo2-srcOffset-00113
The srcOffset member of each element of pRegions must be less than the size of srcBuffer

• VUID-VkCopyBufferInfo2-dstOffset-00114
The dstOffset member of each element of pRegions must be less than the size of dstBuffer

• VUID-VkCopyBufferInfo2-size-00115
The size member of each element of pRegions must be less than or equal to the size of

787

srcBuffer minus srcOffset

• VUID-VkCopyBufferInfo2-size-00116
The size member of each element of pRegions must be less than or equal to the size of
dstBuffer minus dstOffset

• VUID-VkCopyBufferInfo2-pRegions-00117
The union of the source regions, and the union of the destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkCopyBufferInfo2-srcBuffer-00118
srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkCopyBufferInfo2-srcBuffer-00119
If srcBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkCopyBufferInfo2-dstBuffer-00120
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkCopyBufferInfo2-dstBuffer-00121
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

Valid Usage (Implicit)

• VUID-VkCopyBufferInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2

• VUID-VkCopyBufferInfo2-pNext-pNext
pNext must be NULL

• VUID-VkCopyBufferInfo2-srcBuffer-parameter
srcBuffer must be a valid VkBuffer handle

• VUID-VkCopyBufferInfo2-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-VkCopyBufferInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferCopy2
structures

• VUID-VkCopyBufferInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkCopyBufferInfo2-commonparent
Both of dstBuffer, and srcBuffer must have been created, allocated, or retrieved from the
same VkDevice

The VkBufferCopy2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkBufferCopy2 {

788

 VkStructureType sType;
 const void* pNext;
 VkDeviceSize srcOffset;
 VkDeviceSize dstOffset;
 VkDeviceSize size;
} VkBufferCopy2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcOffset is the starting offset in bytes from the start of srcBuffer.

• dstOffset is the starting offset in bytes from the start of dstBuffer.

• size is the number of bytes to copy.

Valid Usage

• VUID-VkBufferCopy2-size-01988
The size must be greater than 0

Valid Usage (Implicit)

• VUID-VkBufferCopy2-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_COPY_2

• VUID-VkBufferCopy2-pNext-pNext
pNext must be NULL

19.2. Copying Data Between Images
To copy data between image objects, call:

// Provided by VK_VERSION_1_0
void vkCmdCopyImage(
 VkCommandBuffer commandBuffer,
 VkImage srcImage,
 VkImageLayout srcImageLayout,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the current layout of the source image subresource.

789

• dstImage is the destination image.

• dstImageLayout is the current layout of the destination image subresource.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkImageCopy structures specifying the regions to copy.

Each source region specified by pRegions is copied from the source image to the destination region
of the destination image. If any of the specified regions in srcImage overlaps in memory with any of
the specified regions in dstImage, values read from those overlapping regions are undefined.

Multi-planar images can only be copied on a per-plane basis, and the subresources used in each
region when copying to or from such images must specify only one plane, though different regions
can specify different planes. When copying planes of multi-planar images, the format considered is
the compatible format for that plane, rather than the format of the multi-planar image.

If the format of the destination image has a different block extent than the source image (e.g. one is
a compressed format), the offset and extent for each of the regions specified is scaled according to
the block extents of each format to match in size. Copy regions for each image must be aligned to a
multiple of the texel block extent in each dimension, except at the edges of the image, where region
extents must match the edge of the image.

Image data can be copied between images with different image types. If one image is
VK_IMAGE_TYPE_3D and the other image is VK_IMAGE_TYPE_2D with multiple layers, then each slice is
copied to or from a different layer; depth slices in the 3D image correspond to layerCount layers in
the 2D image, with an effective depth of 1 used for the 2D image. Other combinations of image types
are disallowed.

Valid Usage

• VUID-vkCmdCopyImage-commandBuffer-01825
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdCopyImage-commandBuffer-01826
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdCopyImage-commandBuffer-01827
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdCopyImage-pRegions-00124
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdCopyImage-srcImage-01995
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-vkCmdCopyImage-srcImageLayout-00128
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

790

• VUID-vkCmdCopyImage-srcImageLayout-01917
srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyImage-srcImage-09460
If srcImage and dstImage are the same, and any elements of pRegions contains the
srcSubresource and dstSubresource with matching mipLevel and overlapping array layers,
then the srcImageLayout and dstImageLayout must be VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyImage-dstImage-01996
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-vkCmdCopyImage-dstImageLayout-00133
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdCopyImage-dstImageLayout-01395
dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyImage-srcImage-01548
If the VkFormat of each of srcImage and dstImage is not a multi-planar format, the
VkFormat of each of srcImage and dstImage must be size-compatible

• VUID-vkCmdCopyImage-None-01549
In a copy to or from a plane of a multi-planar image, the VkFormat of the image and plane
must be compatible according to the description of compatible planes for the plane being
copied

• VUID-vkCmdCopyImage-srcImage-09247
If the VkFormat of each of srcImage and dstImage is a compressed image format, the
formats must have the same texel block extent

• VUID-vkCmdCopyImage-srcImage-00136
The sample count of srcImage and dstImage must match

• VUID-vkCmdCopyImage-srcOffset-01783
The srcOffset and extent members of each element of pRegions must respect the image
transfer granularity requirements of commandBuffer’s command pool’s queue family, as
described in VkQueueFamilyProperties

• VUID-vkCmdCopyImage-dstOffset-01784
The dstOffset and extent members of each element of pRegions must respect the image
transfer granularity requirements of commandBuffer’s command pool’s queue family, as
described in VkQueueFamilyProperties

• VUID-vkCmdCopyImage-srcImage-01551
If neither srcImage nor dstImage has a multi-planar image format then for each element of
pRegions, srcSubresource.aspectMask and dstSubresource.aspectMask must match

• VUID-vkCmdCopyImage-srcImage-08713
If srcImage has a multi-planar image format, then for each element of pRegions,
srcSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-vkCmdCopyImage-dstImage-08714
If dstImage has a multi-planar image format, then for each element of pRegions,
dstSubresource.aspectMask must be a single valid multi-planar aspect mask bit

791

• VUID-vkCmdCopyImage-srcImage-01556
If srcImage has a multi-planar image format and the dstImage does not have a multi-planar
image format, then for each element of pRegions, dstSubresource.aspectMask must be
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-vkCmdCopyImage-dstImage-01557
If dstImage has a multi-planar image format and the srcImage does not have a multi-planar
image format, then for each element of pRegions, srcSubresource.aspectMask must be
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-vkCmdCopyImage-apiVersion-07932
If or VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, and either srcImage
or dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
srcSubresource.baseArrayLayer and dstSubresource.baseArrayLayer must both be 0, and
srcSubresource.layerCount and dstSubresource.layerCount must both be 1

• VUID-vkCmdCopyImage-srcImage-04443
If srcImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
srcSubresource.baseArrayLayer must be 0 and srcSubresource.layerCount must be 1

• VUID-vkCmdCopyImage-dstImage-04444
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
dstSubresource.baseArrayLayer must be 0 and dstSubresource.layerCount must be 1

• VUID-vkCmdCopyImage-aspectMask-00142
For each element of pRegions, srcSubresource.aspectMask must specify aspects present in
srcImage

• VUID-vkCmdCopyImage-aspectMask-00143
For each element of pRegions, dstSubresource.aspectMask must specify aspects present in
dstImage

• VUID-vkCmdCopyImage-srcOffset-00144
For each element of pRegions, srcOffset.x and (extent.width + srcOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
srcSubresource of srcImage

• VUID-vkCmdCopyImage-srcOffset-00145
For each element of pRegions, srcOffset.y and (extent.height + srcOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
srcSubresource of srcImage

• VUID-vkCmdCopyImage-srcImage-00146
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.y
must be 0 and extent.height must be 1

• VUID-vkCmdCopyImage-srcOffset-00147
If srcImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions, srcOffset.z and
(extent.depth + srcOffset.z) must both be greater than or equal to 0 and less than or
equal to the depth of the specified srcSubresource of srcImage

• VUID-vkCmdCopyImage-srcImage-01785
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.z
must be 0 and extent.depth must be 1

792

• VUID-vkCmdCopyImage-dstImage-01786
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.z
must be 0 and extent.depth must be 1

• VUID-vkCmdCopyImage-srcImage-01787
If srcImage is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, srcOffset.z
must be 0

• VUID-vkCmdCopyImage-dstImage-01788
If dstImage is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, dstOffset.z
must be 0

• VUID-vkCmdCopyImage-apiVersion-07933
If and VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, srcImage and
dstImage must have the same VkImageType

• VUID-vkCmdCopyImage-apiVersion-08969
If and VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, srcImage or dstImage
is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, extent.depth must be 1

• VUID-vkCmdCopyImage-srcImage-07743
If srcImage and dstImage have a different VkImageType, one must be VK_IMAGE_TYPE_3D and
the other must be VK_IMAGE_TYPE_2D

• VUID-vkCmdCopyImage-srcImage-08793
If srcImage and dstImage have the same VkImageType, for each element of pRegions, the
layerCount members of srcSubresource or dstSubresource must match

• VUID-vkCmdCopyImage-srcImage-01790
If srcImage and dstImage are both of type VK_IMAGE_TYPE_2D, then for each element of
pRegions, extent.depth must be 1

• VUID-vkCmdCopyImage-srcImage-01791
If srcImage is of type VK_IMAGE_TYPE_2D, and dstImage is of type VK_IMAGE_TYPE_3D, then for
each element of pRegions, extent.depth must equal srcSubresource.layerCount

• VUID-vkCmdCopyImage-dstImage-01792
If dstImage is of type VK_IMAGE_TYPE_2D, and srcImage is of type VK_IMAGE_TYPE_3D, then for
each element of pRegions, extent.depth must equal dstSubresource.layerCount

• VUID-vkCmdCopyImage-dstOffset-00150
For each element of pRegions, dstOffset.x and (extent.width + dstOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
dstSubresource of dstImage

• VUID-vkCmdCopyImage-dstOffset-00151
For each element of pRegions, dstOffset.y and (extent.height + dstOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
dstSubresource of dstImage

• VUID-vkCmdCopyImage-dstImage-00152
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.y
must be 0 and extent.height must be 1

• VUID-vkCmdCopyImage-dstOffset-00153
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions, dstOffset.z and

793

(extent.depth + dstOffset.z) must both be greater than or equal to 0 and less than or
equal to the depth of the specified dstSubresource of dstImage

• VUID-vkCmdCopyImage-pRegions-07278
For each element of pRegions, srcOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-vkCmdCopyImage-pRegions-07279
For each element of pRegions, srcOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-vkCmdCopyImage-pRegions-07280
For each element of pRegions, srcOffset.z must be a multiple of the texel block extent
depth of the VkFormat of srcImage

• VUID-vkCmdCopyImage-pRegions-07281
For each element of pRegions, dstOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-vkCmdCopyImage-pRegions-07282
For each element of pRegions, dstOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

• VUID-vkCmdCopyImage-pRegions-07283
For each element of pRegions, dstOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-vkCmdCopyImage-srcImage-01728
For each element of pRegions, if the sum of srcOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-vkCmdCopyImage-srcImage-01729
For each element of pRegions, if the sum of srcOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-vkCmdCopyImage-srcImage-01730
For each element of pRegions, if the sum of srcOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

• VUID-vkCmdCopyImage-dstImage-01732
For each element of pRegions, if the sum of dstOffset.x and extent.width does not equal
the width of the subresource specified by dstSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-vkCmdCopyImage-dstImage-01733
For each element of pRegions, if the sum of dstOffset.y and extent.height does not equal
the height of the subresource specified by dstSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

• VUID-vkCmdCopyImage-dstImage-01734
For each element of pRegions, if the sum of dstOffset.z and extent.depth does not equal
the depth of the subresource specified by dstSubresource, extent.depth must be a multiple

794

of the texel block extent depth of the VkFormat of dstImage

• VUID-vkCmdCopyImage-aspect-06662
If the aspect member of any element of pRegions includes any flag other than
VK_IMAGE_ASPECT_STENCIL_BIT or srcImage was not created with separate stencil usage,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT must have been included in the VkImageCreateInfo
::usage used to create srcImage

• VUID-vkCmdCopyImage-aspect-06663
If the aspect member of any element of pRegions includes any flag other than
VK_IMAGE_ASPECT_STENCIL_BIT or dstImage was not created with separate stencil usage,
VK_IMAGE_USAGE_TRANSFER_DST_BIT must have been included in the VkImageCreateInfo
::usage used to create dstImage

• VUID-vkCmdCopyImage-aspect-06664
If the aspect member of any element of pRegions includes VK_IMAGE_ASPECT_STENCIL_BIT,
and srcImage was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_SRC_BIT
must have been included in the VkImageStencilUsageCreateInfo::stencilUsage used to
create srcImage

• VUID-vkCmdCopyImage-aspect-06665
If the aspect member of any element of pRegions includes VK_IMAGE_ASPECT_STENCIL_BIT,
and dstImage was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_DST_BIT
must have been included in the VkImageStencilUsageCreateInfo::stencilUsage used to
create dstImage

• VUID-vkCmdCopyImage-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyImage-srcSubresource-07967
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-vkCmdCopyImage-srcSubresource-07968
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-vkCmdCopyImage-dstImage-07966
If dstImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyImage-dstSubresource-07967
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-vkCmdCopyImage-dstSubresource-07968
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

795

Valid Usage (Implicit)

• VUID-vkCmdCopyImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyImage-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-vkCmdCopyImage-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-vkCmdCopyImage-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-vkCmdCopyImage-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-vkCmdCopyImage-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageCopy structures

• VUID-vkCmdCopyImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyImage-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdCopyImage-commonparent
Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

796

The VkImageCopy structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageCopy {
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffset;
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffset;
 VkExtent3D extent;
} VkImageCopy;

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the
image subresources of the images used for the source and destination image data, respectively.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the
source and destination image data.

• extent is the size in texels of the image to copy in width, height and depth.

Valid Usage

• VUID-VkImageCopy-apiVersion-07940
If and VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, the aspectMask
member of srcSubresource and dstSubresource must match

• VUID-VkImageCopy-apiVersion-07941
If and VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, the layerCount
member of srcSubresource and dstSubresource must match

• VUID-VkImageCopy-extent-06668
extent.width must not be 0

• VUID-VkImageCopy-extent-06669
extent.height must not be 0

• VUID-VkImageCopy-extent-06670
extent.depth must not be 0

Valid Usage (Implicit)

• VUID-VkImageCopy-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageCopy-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

The VkImageSubresourceLayers structure is defined as:

// Provided by VK_VERSION_1_0

797

typedef struct VkImageSubresourceLayers {
 VkImageAspectFlags aspectMask;
 uint32_t mipLevel;
 uint32_t baseArrayLayer;
 uint32_t layerCount;
} VkImageSubresourceLayers;

• aspectMask is a combination of VkImageAspectFlagBits, selecting the color, depth and/or stencil
aspects to be copied.

• mipLevel is the mipmap level to copy

• baseArrayLayer and layerCount are the starting layer and number of layers to copy.

Valid Usage

• VUID-VkImageSubresourceLayers-aspectMask-00167
If aspectMask contains VK_IMAGE_ASPECT_COLOR_BIT, it must not contain either of
VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-VkImageSubresourceLayers-aspectMask-00168
aspectMask must not contain VK_IMAGE_ASPECT_METADATA_BIT

• VUID-VkImageSubresourceLayers-layerCount-09243
layerCount must not be VK_REMAINING_ARRAY_LAYERS

• VUID-VkImageSubresourceLayers-layerCount-01700
If layerCount is not VK_REMAINING_ARRAY_LAYERS, it must be greater than 0

Valid Usage (Implicit)

• VUID-VkImageSubresourceLayers-aspectMask-parameter
aspectMask must be a valid combination of VkImageAspectFlagBits values

• VUID-VkImageSubresourceLayers-aspectMask-requiredbitmask
aspectMask must not be 0

A more extensible version of the copy image command is defined below.

To copy data between image objects, call:

// Provided by VK_VERSION_1_3
void vkCmdCopyImage2(
 VkCommandBuffer commandBuffer,
 const VkCopyImageInfo2* pCopyImageInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pCopyImageInfo is a pointer to a VkCopyImageInfo2 structure describing the copy parameters.

798

This command is functionally identical to vkCmdCopyImage, but includes extensible sub-structures
that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage

• VUID-vkCmdCopyImage2-commandBuffer-01825
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdCopyImage2-commandBuffer-01826
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdCopyImage2-commandBuffer-01827
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdCopyImage2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyImage2-pCopyImageInfo-parameter
pCopyImageInfo must be a valid pointer to a valid VkCopyImageInfo2 structure

• VUID-vkCmdCopyImage2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyImage2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyImage2-renderpass
This command must only be called outside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

799

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

The VkCopyImageInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCopyImageInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 VkImage dstImage;
 VkImageLayout dstImageLayout;
 uint32_t regionCount;
 const VkImageCopy2* pRegions;
} VkCopyImageInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcImage is the source image.

• srcImageLayout is the current layout of the source image subresource.

• dstImage is the destination image.

• dstImageLayout is the current layout of the destination image subresource.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkImageCopy2 structures specifying the regions to copy.

Valid Usage

• VUID-VkCopyImageInfo2-pRegions-00124
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkCopyImageInfo2-srcImage-01995
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-VkCopyImageInfo2-srcImageLayout-00128
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

800

• VUID-VkCopyImageInfo2-srcImageLayout-01917
srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkCopyImageInfo2-srcImage-09460
If srcImage and dstImage are the same, and any elements of pRegions contains the
srcSubresource and dstSubresource with matching mipLevel and overlapping array layers,
then the srcImageLayout and dstImageLayout must be VK_IMAGE_LAYOUT_GENERAL

• VUID-VkCopyImageInfo2-dstImage-01996
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-VkCopyImageInfo2-dstImageLayout-00133
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkCopyImageInfo2-dstImageLayout-01395
dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkCopyImageInfo2-srcImage-01548
If the VkFormat of each of srcImage and dstImage is not a multi-planar format, the
VkFormat of each of srcImage and dstImage must be size-compatible

• VUID-VkCopyImageInfo2-None-01549
In a copy to or from a plane of a multi-planar image, the VkFormat of the image and plane
must be compatible according to the description of compatible planes for the plane being
copied

• VUID-VkCopyImageInfo2-srcImage-09247
If the VkFormat of each of srcImage and dstImage is a compressed image format, the
formats must have the same texel block extent

• VUID-VkCopyImageInfo2-srcImage-00136
The sample count of srcImage and dstImage must match

• VUID-VkCopyImageInfo2-srcOffset-01783
The srcOffset and extent members of each element of pRegions must respect the image
transfer granularity requirements of commandBuffer’s command pool’s queue family, as
described in VkQueueFamilyProperties

• VUID-VkCopyImageInfo2-dstOffset-01784
The dstOffset and extent members of each element of pRegions must respect the image
transfer granularity requirements of commandBuffer’s command pool’s queue family, as
described in VkQueueFamilyProperties

• VUID-VkCopyImageInfo2-srcImage-01551
If neither srcImage nor dstImage has a multi-planar image format then for each element of
pRegions, srcSubresource.aspectMask and dstSubresource.aspectMask must match

• VUID-VkCopyImageInfo2-srcImage-08713
If srcImage has a multi-planar image format, then for each element of pRegions,
srcSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyImageInfo2-dstImage-08714
If dstImage has a multi-planar image format, then for each element of pRegions,
dstSubresource.aspectMask must be a single valid multi-planar aspect mask bit

801

• VUID-VkCopyImageInfo2-srcImage-01556
If srcImage has a multi-planar image format and the dstImage does not have a multi-planar
image format, then for each element of pRegions, dstSubresource.aspectMask must be
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkCopyImageInfo2-dstImage-01557
If dstImage has a multi-planar image format and the srcImage does not have a multi-planar
image format, then for each element of pRegions, srcSubresource.aspectMask must be
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkCopyImageInfo2-apiVersion-07932
If or VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, and either srcImage
or dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
srcSubresource.baseArrayLayer and dstSubresource.baseArrayLayer must both be 0, and
srcSubresource.layerCount and dstSubresource.layerCount must both be 1

• VUID-VkCopyImageInfo2-srcImage-04443
If srcImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
srcSubresource.baseArrayLayer must be 0 and srcSubresource.layerCount must be 1

• VUID-VkCopyImageInfo2-dstImage-04444
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
dstSubresource.baseArrayLayer must be 0 and dstSubresource.layerCount must be 1

• VUID-VkCopyImageInfo2-aspectMask-00142
For each element of pRegions, srcSubresource.aspectMask must specify aspects present in
srcImage

• VUID-VkCopyImageInfo2-aspectMask-00143
For each element of pRegions, dstSubresource.aspectMask must specify aspects present in
dstImage

• VUID-VkCopyImageInfo2-srcOffset-00144
For each element of pRegions, srcOffset.x and (extent.width + srcOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
srcSubresource of srcImage

• VUID-VkCopyImageInfo2-srcOffset-00145
For each element of pRegions, srcOffset.y and (extent.height + srcOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
srcSubresource of srcImage

• VUID-VkCopyImageInfo2-srcImage-00146
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.y
must be 0 and extent.height must be 1

• VUID-VkCopyImageInfo2-srcOffset-00147
If srcImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions, srcOffset.z and
(extent.depth + srcOffset.z) must both be greater than or equal to 0 and less than or
equal to the depth of the specified srcSubresource of srcImage

• VUID-VkCopyImageInfo2-srcImage-01785
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.z
must be 0 and extent.depth must be 1

802

• VUID-VkCopyImageInfo2-dstImage-01786
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.z
must be 0 and extent.depth must be 1

• VUID-VkCopyImageInfo2-srcImage-01787
If srcImage is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, srcOffset.z
must be 0

• VUID-VkCopyImageInfo2-dstImage-01788
If dstImage is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, dstOffset.z
must be 0

• VUID-VkCopyImageInfo2-apiVersion-07933
If and VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, srcImage and
dstImage must have the same VkImageType

• VUID-VkCopyImageInfo2-apiVersion-08969
If and VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, srcImage or dstImage
is of type VK_IMAGE_TYPE_2D, then for each element of pRegions, extent.depth must be 1

• VUID-VkCopyImageInfo2-srcImage-07743
If srcImage and dstImage have a different VkImageType, one must be VK_IMAGE_TYPE_3D and
the other must be VK_IMAGE_TYPE_2D

• VUID-VkCopyImageInfo2-srcImage-08793
If srcImage and dstImage have the same VkImageType, for each element of pRegions, the
layerCount members of srcSubresource or dstSubresource must match

• VUID-VkCopyImageInfo2-srcImage-01790
If srcImage and dstImage are both of type VK_IMAGE_TYPE_2D, then for each element of
pRegions, extent.depth must be 1

• VUID-VkCopyImageInfo2-srcImage-01791
If srcImage is of type VK_IMAGE_TYPE_2D, and dstImage is of type VK_IMAGE_TYPE_3D, then for
each element of pRegions, extent.depth must equal srcSubresource.layerCount

• VUID-VkCopyImageInfo2-dstImage-01792
If dstImage is of type VK_IMAGE_TYPE_2D, and srcImage is of type VK_IMAGE_TYPE_3D, then for
each element of pRegions, extent.depth must equal dstSubresource.layerCount

• VUID-VkCopyImageInfo2-dstOffset-00150
For each element of pRegions, dstOffset.x and (extent.width + dstOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
dstSubresource of dstImage

• VUID-VkCopyImageInfo2-dstOffset-00151
For each element of pRegions, dstOffset.y and (extent.height + dstOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
dstSubresource of dstImage

• VUID-VkCopyImageInfo2-dstImage-00152
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.y
must be 0 and extent.height must be 1

• VUID-VkCopyImageInfo2-dstOffset-00153
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions, dstOffset.z and

803

(extent.depth + dstOffset.z) must both be greater than or equal to 0 and less than or
equal to the depth of the specified dstSubresource of dstImage

• VUID-VkCopyImageInfo2-pRegions-07278
For each element of pRegions, srcOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-pRegions-07279
For each element of pRegions, srcOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-pRegions-07280
For each element of pRegions, srcOffset.z must be a multiple of the texel block extent
depth of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-pRegions-07281
For each element of pRegions, dstOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-pRegions-07282
For each element of pRegions, dstOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-pRegions-07283
For each element of pRegions, dstOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-srcImage-01728
For each element of pRegions, if the sum of srcOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-srcImage-01729
For each element of pRegions, if the sum of srcOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-srcImage-01730
For each element of pRegions, if the sum of srcOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

• VUID-VkCopyImageInfo2-dstImage-01732
For each element of pRegions, if the sum of dstOffset.x and extent.width does not equal
the width of the subresource specified by dstSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-dstImage-01733
For each element of pRegions, if the sum of dstOffset.y and extent.height does not equal
the height of the subresource specified by dstSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-dstImage-01734
For each element of pRegions, if the sum of dstOffset.z and extent.depth does not equal
the depth of the subresource specified by dstSubresource, extent.depth must be a multiple

804

of the texel block extent depth of the VkFormat of dstImage

• VUID-VkCopyImageInfo2-aspect-06662
If the aspect member of any element of pRegions includes any flag other than
VK_IMAGE_ASPECT_STENCIL_BIT or srcImage was not created with separate stencil usage,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT must have been included in the VkImageCreateInfo
::usage used to create srcImage

• VUID-VkCopyImageInfo2-aspect-06663
If the aspect member of any element of pRegions includes any flag other than
VK_IMAGE_ASPECT_STENCIL_BIT or dstImage was not created with separate stencil usage,
VK_IMAGE_USAGE_TRANSFER_DST_BIT must have been included in the VkImageCreateInfo
::usage used to create dstImage

• VUID-VkCopyImageInfo2-aspect-06664
If the aspect member of any element of pRegions includes VK_IMAGE_ASPECT_STENCIL_BIT,
and srcImage was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_SRC_BIT
must have been included in the VkImageStencilUsageCreateInfo::stencilUsage used to
create srcImage

• VUID-VkCopyImageInfo2-aspect-06665
If the aspect member of any element of pRegions includes VK_IMAGE_ASPECT_STENCIL_BIT,
and dstImage was created with separate stencil usage, VK_IMAGE_USAGE_TRANSFER_DST_BIT
must have been included in the VkImageStencilUsageCreateInfo::stencilUsage used to
create dstImage

• VUID-VkCopyImageInfo2-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyImageInfo2-srcSubresource-07967
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkCopyImageInfo2-srcSubresource-07968
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-VkCopyImageInfo2-dstImage-07966
If dstImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyImageInfo2-dstSubresource-07967
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-VkCopyImageInfo2-dstSubresource-07968
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

805

Valid Usage (Implicit)

• VUID-VkCopyImageInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2

• VUID-VkCopyImageInfo2-pNext-pNext
pNext must be NULL

• VUID-VkCopyImageInfo2-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkCopyImageInfo2-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-VkCopyImageInfo2-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkCopyImageInfo2-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-VkCopyImageInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageCopy2
structures

• VUID-VkCopyImageInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkCopyImageInfo2-commonparent
Both of dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

The VkImageCopy2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkImageCopy2 {
 VkStructureType sType;
 const void* pNext;
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffset;
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffset;
 VkExtent3D extent;
} VkImageCopy2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the
image subresources of the images used for the source and destination image data, respectively.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the
source and destination image data.

806

• extent is the size in texels of the image to copy in width, height and depth.

Valid Usage

• VUID-VkImageCopy2-apiVersion-07940
If and VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, the aspectMask
member of srcSubresource and dstSubresource must match

• VUID-VkImageCopy2-apiVersion-07941
If and VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.1, the layerCount
member of srcSubresource and dstSubresource must match

• VUID-VkImageCopy2-extent-06668
extent.width must not be 0

• VUID-VkImageCopy2-extent-06669
extent.height must not be 0

• VUID-VkImageCopy2-extent-06670
extent.depth must not be 0

Valid Usage (Implicit)

• VUID-VkImageCopy2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_COPY_2

• VUID-VkImageCopy2-pNext-pNext
pNext must be NULL

• VUID-VkImageCopy2-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageCopy2-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

19.3. Copying Data Between Buffers and Images
Data can be copied between buffers and images, enabling applications to load and store data
between images and user defined offsets in buffer memory.

When copying between a buffer and an image, whole texel blocks are always copied; each texel
block in the specified extent in the image to be copied will be written to a region in the buffer,
specified according to the position of the texel block, and the texel block extent and size of the
format being copied.

For a set of coordinates (x,y,z,layer), where:

x is in the range [imageOffset.x / blockWidth, ⌈(imageOffset.x + imageExtent.width) /
blockWidth⌉),

807

y is in the range [imageOffset.y / blockHeight, ⌈(imageOffset.y + imageExtent.height) /
blockHeight⌉),

z is in the range [imageOffset.z / blockDepth, ⌈(imageOffset.z + imageExtent.depth) / blockDepth⌉),

layer is in the range [imageSubresource.baseArrayLayer, imageSubresource.baseArrayLayer +
imageSubresource.layerCount),

and where blockWidth, blockHeight, and blockDepth are the dimensions of the texel block extent of
the image’s format.

For each (x,y,z,layer) coordinate, texels in the image layer selected by layer are accessed in the
following ranges:

[x × blockWidth, max((x × blockWidth) + blockWidth, imageWidth))

[y × blockHeight, max((y × blockHeight) + blockHeight, imageHeight))

[z × blockDepth, max((z × blockDepth) + blockDepth, imageDepth))

where imageWidth, imageHeight, and imageDepth are the dimensions of the image subresource.

For each (x,y,z,layer) coordinate, bytes in the buffer are accessed at offsets in the range [texelOffset,
texelOffset + blockSize), where:

texelOffset = bufferOffset + (x × blockSize) + (y × rowExtent) + (z × sliceExtent) + (layer ×
layerExtent)

blockSize is the size of the block in bytes for the format

rowExtent = max(bufferRowLength, ⌈imageExtent.width / blockWidth⌉ × blockSize)

sliceExtent = max(bufferImageHeight, imageExtent.height × rowExtent)

layerExtent = imageExtent.depth × sliceExtent

When copying between a buffer and the depth or stencil aspect of an image, data in the buffer is
assumed to be laid out as separate planes rather than interleaved. Addressing calculations are thus

808

performed for a different format than the base image, according to the aspect, as described in the
following table:

Table 19. Depth/Stencil Aspect Copy Table

Base Format Depth Aspect Format Stencil Aspect Format

VK_FORMAT_D16_UNORM VK_FORMAT_D16_UNORM -

VK_FORMAT_X8_D24_UNORM_PACK32 VK_FORMAT_X8_D24_UNORM_PACK32 -

VK_FORMAT_D32_SFLOAT VK_FORMAT_D32_SFLOAT -

VK_FORMAT_S8_UINT - VK_FORMAT_S8_UINT

VK_FORMAT_D16_UNORM_S8_UINT VK_FORMAT_D16_UNORM VK_FORMAT_S8_UINT

VK_FORMAT_D24_UNORM_S8_UINT VK_FORMAT_X8_D24_UNORM_PACK32 VK_FORMAT_S8_UINT

VK_FORMAT_D32_SFLOAT_S8_UINT VK_FORMAT_D32_SFLOAT VK_FORMAT_S8_UINT

When copying between a buffer and any plane of a multi-planar image, addressing calculations are
performed using the compatible format for that plane, rather than the format of the multi-planar
image.

Each texel block is copied from one resource to the other according to the above addressing
equations.

To copy data from a buffer object to an image object, call:

// Provided by VK_VERSION_1_0
void vkCmdCopyBufferToImage(
 VkCommandBuffer commandBuffer,
 VkBuffer srcBuffer,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkBufferImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcBuffer is the source buffer.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the copy.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy structures specifying the regions to copy.

Each source region specified by pRegions is copied from the source buffer to the destination region
of the destination image according to the addressing calculations for each resource. If any of the
specified regions in srcBuffer overlaps in memory with any of the specified regions in dstImage,
values read from those overlapping regions are undefined. If any region accesses a depth aspect in
dstImage values copied from srcBuffer outside of the range [0,1] will be be written as undefined
values to the destination image.

809

Copy regions for the image must be aligned to a multiple of the texel block extent in each
dimension, except at the edges of the image, where region extents must match the edge of the
image.

Valid Usage

• VUID-vkCmdCopyBufferToImage-dstImage-07966
If dstImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyBufferToImage-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-vkCmdCopyBufferToImage-imageSubresource-07968
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when dstImage was created

• VUID-vkCmdCopyBufferToImage-imageSubresource-07970
The image region specified by each element of pRegions must be contained within the
specified imageSubresource of dstImage

• VUID-vkCmdCopyBufferToImage-imageSubresource-07971
For each element of pRegions, imageOffset.x and (imageExtent.width + imageOffset.x) must
both be greater than or equal to 0 and less than or equal to the width of the specified
imageSubresource of dstImage

• VUID-vkCmdCopyBufferToImage-imageSubresource-07972
For each element of pRegions, imageOffset.y and (imageExtent.height + imageOffset.y)
must both be greater than or equal to 0 and less than or equal to the height of the
specified imageSubresource of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-07973
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdCopyBufferToImage-commandBuffer-01828
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcBuffer must not be a protected buffer

• VUID-vkCmdCopyBufferToImage-commandBuffer-01829
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdCopyBufferToImage-commandBuffer-01830
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdCopyBufferToImage-commandBuffer-07737
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, the bufferOffset
member of any element of pRegions must be a multiple of 4

810

• VUID-vkCmdCopyBufferToImage-imageOffset-07738
The imageOffset and imageExtent members of each element of pRegions must respect the
image transfer granularity requirements of commandBuffer’s command pool’s queue family,
as described in VkQueueFamilyProperties

• VUID-vkCmdCopyBufferToImage-commandBuffer-07739
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT, for each element of pRegions, the aspectMask
member of imageSubresource must not be VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT

• VUID-vkCmdCopyBufferToImage-pRegions-00171
srcBuffer must be large enough to contain all buffer locations that are accessed according
to Buffer and Image Addressing, for each element of pRegions

• VUID-vkCmdCopyBufferToImage-pRegions-00173
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdCopyBufferToImage-srcBuffer-00174
srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-vkCmdCopyBufferToImage-dstImage-01997
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-vkCmdCopyBufferToImage-srcBuffer-00176
If srcBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdCopyBufferToImage-dstImage-00177
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdCopyBufferToImage-dstImageLayout-00180
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdCopyBufferToImage-dstImageLayout-01396
dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyBufferToImage-pRegions-07931
For each element of pRegions whose imageSubresource contains a depth aspect, the data in
srcBuffer must be in the range [0,1]

• VUID-vkCmdCopyBufferToImage-dstImage-07979
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-vkCmdCopyBufferToImage-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must
both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-07980
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

811

• VUID-vkCmdCopyBufferToImage-dstImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
dstImage

• VUID-vkCmdCopyBufferToImage-dstImage-07981
If dstImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-vkCmdCopyBufferToImage-dstImage-07983
If dstImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-vkCmdCopyBufferToImage-bufferRowLength-09106
For each element of pRegions, bufferRowLength must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-bufferImageHeight-09107
For each element of pRegions, bufferImageHeight must be a multiple of the texel block
extent height of the VkFormat of dstImage

• VUID-vkCmdCopyBufferToImage-bufferRowLength-09108
For each element of pRegions, bufferRowLength divided by the texel block extent width and
then multiplied by the texel block size of dstImage must be less than or equal to 231-1

• VUID-vkCmdCopyBufferToImage-dstImage-07975
If dstImage does not have either a depth/stencil format or a multi-planar format, then for
each element of pRegions, bufferOffset must be a multiple of the texel block size

812

• VUID-vkCmdCopyBufferToImage-dstImage-07976
If dstImage has a multi-planar format, then for each element of pRegions, bufferOffset
must be a multiple of the element size of the compatible format for the format and the
aspectMask of the imageSubresource as defined in Compatible Formats of Planes of Multi-
Planar Formats

• VUID-vkCmdCopyBufferToImage-dstImage-07978
If dstImage has a depth/stencil format, the bufferOffset member of any element of
pRegions must be a multiple of 4

Valid Usage (Implicit)

• VUID-vkCmdCopyBufferToImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyBufferToImage-srcBuffer-parameter
srcBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyBufferToImage-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-vkCmdCopyBufferToImage-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-vkCmdCopyBufferToImage-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferImageCopy
structures

• VUID-vkCmdCopyBufferToImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyBufferToImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyBufferToImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyBufferToImage-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdCopyBufferToImage-commonparent
Each of commandBuffer, dstImage, and srcBuffer must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

813

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

To copy data from an image object to a buffer object, call:

// Provided by VK_VERSION_1_0
void vkCmdCopyImageToBuffer(
 VkCommandBuffer commandBuffer,
 VkImage srcImage,
 VkImageLayout srcImageLayout,
 VkBuffer dstBuffer,
 uint32_t regionCount,
 const VkBufferImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the copy.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy structures specifying the regions to copy.

Each source region specified by pRegions is copied from the source image to the destination region
of the destination buffer according to the addressing calculations for each resource. If any of the
specified regions in srcImage overlaps in memory with any of the specified regions in dstBuffer,
values read from those overlapping regions are undefined.

Copy regions for the image must be aligned to a multiple of the texel block extent in each
dimension, except at the edges of the image, where region extents must match the edge of the
image.

Valid Usage

• VUID-vkCmdCopyImageToBuffer-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

814

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07968
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when srcImage was created

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07970
The image region specified by each element of pRegions must be contained within the
specified imageSubresource of srcImage

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07971
For each element of pRegions, imageOffset.x and (imageExtent.width + imageOffset.x) must
both be greater than or equal to 0 and less than or equal to the width of the specified
imageSubresource of srcImage

• VUID-vkCmdCopyImageToBuffer-imageSubresource-07972
For each element of pRegions, imageOffset.y and (imageExtent.height + imageOffset.y)
must both be greater than or equal to 0 and less than or equal to the height of the
specified imageSubresource of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07973
srcImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdCopyImageToBuffer-commandBuffer-01831
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdCopyImageToBuffer-commandBuffer-01832
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdCopyImageToBuffer-commandBuffer-01833
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

• VUID-vkCmdCopyImageToBuffer-commandBuffer-07746
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, the bufferOffset
member of any element of pRegions must be a multiple of 4

• VUID-vkCmdCopyImageToBuffer-imageOffset-07747
The imageOffset and imageExtent members of each element of pRegions must respect the
image transfer granularity requirements of commandBuffer’s command pool’s queue family,
as described in VkQueueFamilyProperties

• VUID-vkCmdCopyImageToBuffer-pRegions-00183
dstBuffer must be large enough to contain all buffer locations that are accessed according
to Buffer and Image Addressing, for each element of pRegions

• VUID-vkCmdCopyImageToBuffer-pRegions-00184
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdCopyImageToBuffer-srcImage-00186

815

srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-vkCmdCopyImageToBuffer-srcImage-01998
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-vkCmdCopyImageToBuffer-dstBuffer-00191
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdCopyImageToBuffer-dstBuffer-00192
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdCopyImageToBuffer-srcImageLayout-00189
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdCopyImageToBuffer-srcImageLayout-01397
srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdCopyImageToBuffer-srcImage-07979
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-vkCmdCopyImageToBuffer-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must
both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07980
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

• VUID-vkCmdCopyImageToBuffer-srcImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal

816

the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
srcImage

• VUID-vkCmdCopyImageToBuffer-srcImage-07981
If srcImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-vkCmdCopyImageToBuffer-srcImage-07983
If srcImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-vkCmdCopyImageToBuffer-bufferRowLength-09106
For each element of pRegions, bufferRowLength must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-bufferImageHeight-09107
For each element of pRegions, bufferImageHeight must be a multiple of the texel block
extent height of the VkFormat of srcImage

• VUID-vkCmdCopyImageToBuffer-bufferRowLength-09108
For each element of pRegions, bufferRowLength divided by the texel block extent width and
then multiplied by the texel block size of srcImage must be less than or equal to 231-1

• VUID-vkCmdCopyImageToBuffer-srcImage-07975
If srcImage does not have either a depth/stencil format or a multi-planar format, then for
each element of pRegions, bufferOffset must be a multiple of the texel block size

• VUID-vkCmdCopyImageToBuffer-srcImage-07976
If srcImage has a multi-planar format, then for each element of pRegions, bufferOffset
must be a multiple of the element size of the compatible format for the format and the
aspectMask of the imageSubresource as defined in Compatible Formats of Planes of Multi-
Planar Formats

• VUID-vkCmdCopyImageToBuffer-srcImage-07978
If srcImage has a depth/stencil format, the bufferOffset member of any element of
pRegions must be a multiple of 4

Valid Usage (Implicit)

• VUID-vkCmdCopyImageToBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyImageToBuffer-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-vkCmdCopyImageToBuffer-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-vkCmdCopyImageToBuffer-dstBuffer-parameter

817

dstBuffer must be a valid VkBuffer handle

• VUID-vkCmdCopyImageToBuffer-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferImageCopy
structures

• VUID-vkCmdCopyImageToBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyImageToBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyImageToBuffer-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdCopyImageToBuffer-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdCopyImageToBuffer-commonparent
Each of commandBuffer, dstBuffer, and srcImage must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

For both vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer, each element of pRegions is a
structure defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBufferImageCopy {
 VkDeviceSize bufferOffset;
 uint32_t bufferRowLength;
 uint32_t bufferImageHeight;
 VkImageSubresourceLayers imageSubresource;
 VkOffset3D imageOffset;
 VkExtent3D imageExtent;

818

} VkBufferImageCopy;

• bufferOffset is the offset in bytes from the start of the buffer object where the image data is
copied from or to.

• bufferRowLength and bufferImageHeight specify in texels a subregion of a larger two- or three-
dimensional image in buffer memory, and control the addressing calculations. If either of these
values is zero, that aspect of the buffer memory is considered to be tightly packed according to
the imageExtent.

• imageSubresource is a VkImageSubresourceLayers used to specify the specific image
subresources of the image used for the source or destination image data.

• imageOffset selects the initial x, y, z offsets in texels of the sub-region of the source or
destination image data.

• imageExtent is the size in texels of the image to copy in width, height and depth.

Valid Usage

• VUID-VkBufferImageCopy-bufferRowLength-09101
bufferRowLength must be 0, or greater than or equal to the width member of imageExtent

• VUID-VkBufferImageCopy-bufferImageHeight-09102
bufferImageHeight must be 0, or greater than or equal to the height member of imageExtent

• VUID-VkBufferImageCopy-aspectMask-09103
The aspectMask member of imageSubresource must only have a single bit set

• VUID-VkBufferImageCopy-imageExtent-06659
imageExtent.width must not be 0

• VUID-VkBufferImageCopy-imageExtent-06660
imageExtent.height must not be 0

• VUID-VkBufferImageCopy-imageExtent-06661
imageExtent.depth must not be 0

Valid Usage (Implicit)

• VUID-VkBufferImageCopy-imageSubresource-parameter
imageSubresource must be a valid VkImageSubresourceLayers structure

More extensible versions of the commands to copy between buffers and images are defined below.

To copy data from a buffer object to an image object, call:

// Provided by VK_VERSION_1_3
void vkCmdCopyBufferToImage2(
 VkCommandBuffer commandBuffer,

819

 const VkCopyBufferToImageInfo2* pCopyBufferToImageInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pCopyBufferToImageInfo is a pointer to a VkCopyBufferToImageInfo2 structure describing the
copy parameters.

This command is functionally identical to vkCmdCopyBufferToImage, but includes extensible sub-
structures that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage

• VUID-vkCmdCopyBufferToImage2-commandBuffer-01828
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcBuffer must not be a protected buffer

• VUID-vkCmdCopyBufferToImage2-commandBuffer-01829
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdCopyBufferToImage2-commandBuffer-01830
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdCopyBufferToImage2-commandBuffer-07737
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, the bufferOffset
member of any element of pCopyBufferToImageInfo->pRegions must be a multiple of 4

• VUID-vkCmdCopyBufferToImage2-imageOffset-07738
The imageOffset and imageExtent members of each element of pCopyBufferToImageInfo-
>pRegions must respect the image transfer granularity requirements of commandBuffer’s
command pool’s queue family, as described in VkQueueFamilyProperties

• VUID-vkCmdCopyBufferToImage2-commandBuffer-07739
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT, for each element of pCopyBufferToImageInfo-
>pRegions, the aspectMask member of imageSubresource must not be
VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

Valid Usage (Implicit)

• VUID-vkCmdCopyBufferToImage2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyBufferToImage2-pCopyBufferToImageInfo-parameter
pCopyBufferToImageInfo must be a valid pointer to a valid VkCopyBufferToImageInfo2
structure

• VUID-vkCmdCopyBufferToImage2-commandBuffer-recording
commandBuffer must be in the recording state

820

• VUID-vkCmdCopyBufferToImage2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyBufferToImage2-renderpass
This command must only be called outside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

The VkCopyBufferToImageInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCopyBufferToImageInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkBuffer srcBuffer;
 VkImage dstImage;
 VkImageLayout dstImageLayout;
 uint32_t regionCount;
 const VkBufferImageCopy2* pRegions;
} VkCopyBufferToImageInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcBuffer is the source buffer.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the copy.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy2 structures specifying the regions to
copy.

821

Valid Usage

• VUID-VkCopyBufferToImageInfo2-pRegions-04565
The image region specified by each element of pRegions must be contained within the
specified imageSubresource of dstImage

• VUID-VkCopyBufferToImageInfo2-pRegions-00171
srcBuffer must be large enough to contain all buffer locations that are accessed according
to Buffer and Image Addressing, for each element of pRegions

• VUID-VkCopyBufferToImageInfo2-pRegions-00173
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkCopyBufferToImageInfo2-srcBuffer-00174
srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkCopyBufferToImageInfo2-dstImage-01997
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

• VUID-VkCopyBufferToImageInfo2-srcBuffer-00176
If srcBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkCopyBufferToImageInfo2-dstImage-00177
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkCopyBufferToImageInfo2-dstImageLayout-00180
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkCopyBufferToImageInfo2-dstImageLayout-01396
dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkCopyBufferToImageInfo2-pRegions-07931
For each element of pRegions whose imageSubresource contains a depth aspect, the data in
srcBuffer must be in the range [0,1]

• VUID-VkCopyBufferToImageInfo2-dstImage-07966
If dstImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyBufferToImageInfo2-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-VkCopyBufferToImageInfo2-imageSubresource-07968
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo
when dstImage was created

• VUID-VkCopyBufferToImageInfo2-dstImage-07973
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

822

• VUID-VkCopyBufferToImageInfo2-dstImage-07979
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-VkCopyBufferToImageInfo2-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must
both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-07980
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

• VUID-VkCopyBufferToImageInfo2-dstImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
dstImage

• VUID-VkCopyBufferToImageInfo2-dstImage-07981
If dstImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyBufferToImageInfo2-dstImage-07983
If dstImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,
imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-VkCopyBufferToImageInfo2-bufferRowLength-09106
For each element of pRegions, bufferRowLength must be a multiple of the texel block extent
width of the VkFormat of dstImage

823

• VUID-VkCopyBufferToImageInfo2-bufferImageHeight-09107
For each element of pRegions, bufferImageHeight must be a multiple of the texel block
extent height of the VkFormat of dstImage

• VUID-VkCopyBufferToImageInfo2-bufferRowLength-09108
For each element of pRegions, bufferRowLength divided by the texel block extent width and
then multiplied by the texel block size of dstImage must be less than or equal to 231-1

• VUID-VkCopyBufferToImageInfo2-dstImage-07975
If dstImage does not have either a depth/stencil format or a multi-planar format, then for
each element of pRegions, bufferOffset must be a multiple of the texel block size

• VUID-VkCopyBufferToImageInfo2-dstImage-07976
If dstImage has a multi-planar format, then for each element of pRegions, bufferOffset
must be a multiple of the element size of the compatible format for the format and the
aspectMask of the imageSubresource as defined in Compatible Formats of Planes of Multi-
Planar Formats

• VUID-VkCopyBufferToImageInfo2-dstImage-07978
If dstImage has a depth/stencil format, the bufferOffset member of any element of
pRegions must be a multiple of 4

• VUID-VkCopyBufferToImageInfo2-pRegions-06223
For each element of pRegions not containing VkCopyCommandTransformInfoQCOM in its pNext
chain, imageOffset.x and (imageExtent.width + imageOffset.x) must both be greater than or
equal to 0 and less than or equal to the width of the specified imageSubresource of dstImage

• VUID-VkCopyBufferToImageInfo2-pRegions-06224
For each element of pRegions not containing VkCopyCommandTransformInfoQCOM in its pNext
chain, imageOffset.y and (imageExtent.height + imageOffset.y) must both be greater than
or equal to 0 and less than or equal to the height of the specified imageSubresource of
dstImage

Valid Usage (Implicit)

• VUID-VkCopyBufferToImageInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_BUFFER_TO_IMAGE_INFO_2

• VUID-VkCopyBufferToImageInfo2-pNext-pNext
pNext must be NULL

• VUID-VkCopyBufferToImageInfo2-srcBuffer-parameter
srcBuffer must be a valid VkBuffer handle

• VUID-VkCopyBufferToImageInfo2-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkCopyBufferToImageInfo2-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-VkCopyBufferToImageInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferImageCopy2
structures

824

• VUID-VkCopyBufferToImageInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkCopyBufferToImageInfo2-commonparent
Both of dstImage, and srcBuffer must have been created, allocated, or retrieved from the
same VkDevice

To copy data from an image object to a buffer object, call:

// Provided by VK_VERSION_1_3
void vkCmdCopyImageToBuffer2(
 VkCommandBuffer commandBuffer,
 const VkCopyImageToBufferInfo2* pCopyImageToBufferInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pCopyImageToBufferInfo is a pointer to a VkCopyImageToBufferInfo2 structure describing the
copy parameters.

This command is functionally identical to vkCmdCopyImageToBuffer, but includes extensible sub-
structures that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-01831
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-01832
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstBuffer must not be a protected buffer

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-01833
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstBuffer must not be an unprotected buffer

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-07746
If the queue family used to create the VkCommandPool which commandBuffer was allocated
from does not support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, the bufferOffset
member of any element of pCopyImageToBufferInfo->pRegions must be a multiple of 4

• VUID-vkCmdCopyImageToBuffer2-imageOffset-07747
The imageOffset and imageExtent members of each element of pCopyImageToBufferInfo-
>pRegions must respect the image transfer granularity requirements of commandBuffer’s
command pool’s queue family, as described in VkQueueFamilyProperties

Valid Usage (Implicit)

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-parameter

825

commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdCopyImageToBuffer2-pCopyImageToBufferInfo-parameter
pCopyImageToBufferInfo must be a valid pointer to a valid VkCopyImageToBufferInfo2
structure

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdCopyImageToBuffer2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support transfer, graphics,
or compute operations

• VUID-vkCmdCopyImageToBuffer2-renderpass
This command must only be called outside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Transfer
Graphics
Compute

Action

The VkCopyImageToBufferInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkCopyImageToBufferInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 VkBuffer dstBuffer;
 uint32_t regionCount;
 const VkBufferImageCopy2* pRegions;
} VkCopyImageToBufferInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

826

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the copy.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy2 structures specifying the regions to
copy.

Valid Usage

• VUID-VkCopyImageToBufferInfo2-pRegions-04566
The image region specified by each element of pRegions must be contained within the
specified imageSubresource of srcImage

• VUID-VkCopyImageToBufferInfo2-pRegions-00183
dstBuffer must be large enough to contain all buffer locations that are accessed according
to Buffer and Image Addressing, for each element of pRegions

• VUID-VkCopyImageToBufferInfo2-pRegions-00184
The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-VkCopyImageToBufferInfo2-srcImage-00186
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkCopyImageToBufferInfo2-srcImage-01998
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-VkCopyImageToBufferInfo2-dstBuffer-00191
dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkCopyImageToBufferInfo2-dstBuffer-00192
If dstBuffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkCopyImageToBufferInfo2-srcImageLayout-00189
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkCopyImageToBufferInfo2-srcImageLayout-01397
srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkCopyImageToBufferInfo2-srcImage-07966
If srcImage is non-sparse then the image or the specified disjoint plane must be bound
completely and contiguously to a single VkDeviceMemory object

• VUID-VkCopyImageToBufferInfo2-imageSubresource-07967
The imageSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkCopyImageToBufferInfo2-imageSubresource-07968
imageSubresource.baseArrayLayer + imageSubresource.layerCount of each element of
pRegions must be less than or equal to the arrayLayers specified in VkImageCreateInfo

827

when srcImage was created

• VUID-VkCopyImageToBufferInfo2-srcImage-07973
srcImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-VkCopyImageToBufferInfo2-srcImage-07979
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, imageOffset.y
must be 0 and imageExtent.height must be 1

• VUID-VkCopyImageToBufferInfo2-imageOffset-09104
For each element of pRegions, imageOffset.z and (imageExtent.depth + imageOffset.z) must
both be greater than or equal to 0 and less than or equal to the depth of the specified
imageSubresource of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-07980
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, imageOffset.z must be 0 and imageExtent.depth must be 1

• VUID-VkCopyImageToBufferInfo2-srcImage-07274
For each element of pRegions, imageOffset.x must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-07275
For each element of pRegions, imageOffset.y must be a multiple of the texel block extent
height of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-07276
For each element of pRegions, imageOffset.z must be a multiple of the texel block extent
depth of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-00207
For each element of pRegions, if the sum of imageOffset.x and extent.width does not equal
the width of the subresource specified by srcSubresource, extent.width must be a multiple
of the texel block extent width of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-00208
For each element of pRegions, if the sum of imageOffset.y and extent.height does not equal
the height of the subresource specified by srcSubresource, extent.height must be a
multiple of the texel block extent height of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-00209
For each element of pRegions, if the sum of imageOffset.z and extent.depth does not equal
the depth of the subresource specified by srcSubresource, extent.depth must be a multiple
of the texel block extent depth of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-imageSubresource-09105
For each element of pRegions, imageSubresource.aspectMask must specify aspects present in
srcImage

• VUID-VkCopyImageToBufferInfo2-srcImage-07981
If srcImage has a multi-planar image format, then for each element of pRegions,
imageSubresource.aspectMask must be a single valid multi-planar aspect mask bit

• VUID-VkCopyImageToBufferInfo2-srcImage-07983
If srcImage is of type VK_IMAGE_TYPE_3D, for each element of pRegions,

828

imageSubresource.baseArrayLayer must be 0 and imageSubresource.layerCount must be 1

• VUID-VkCopyImageToBufferInfo2-bufferRowLength-09106
For each element of pRegions, bufferRowLength must be a multiple of the texel block extent
width of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-bufferImageHeight-09107
For each element of pRegions, bufferImageHeight must be a multiple of the texel block
extent height of the VkFormat of srcImage

• VUID-VkCopyImageToBufferInfo2-bufferRowLength-09108
For each element of pRegions, bufferRowLength divided by the texel block extent width and
then multiplied by the texel block size of srcImage must be less than or equal to 231-1

• VUID-VkCopyImageToBufferInfo2-srcImage-07975
If srcImage does not have either a depth/stencil format or a multi-planar format, then for
each element of pRegions, bufferOffset must be a multiple of the texel block size

• VUID-VkCopyImageToBufferInfo2-srcImage-07976
If srcImage has a multi-planar format, then for each element of pRegions, bufferOffset
must be a multiple of the element size of the compatible format for the format and the
aspectMask of the imageSubresource as defined in Compatible Formats of Planes of Multi-
Planar Formats

• VUID-VkCopyImageToBufferInfo2-srcImage-07978
If srcImage has a depth/stencil format, the bufferOffset member of any element of
pRegions must be a multiple of 4

• VUID-VkCopyImageToBufferInfo2-imageOffset-00197
For each element of pRegions not containing VkCopyCommandTransformInfoQCOM in its pNext
chain, imageOffset.x and (imageExtent.width + imageOffset.x) must both be greater than or
equal to 0 and less than or equal to the width of the specified imageSubresource of srcImage

• VUID-VkCopyImageToBufferInfo2-imageOffset-00198
For each element of pRegions not containing VkCopyCommandTransformInfoQCOM in its pNext
chain, imageOffset.y and (imageExtent.height + imageOffset.y) must both be greater than
or equal to 0 and less than or equal to the height of the specified imageSubresource of
srcImage

Valid Usage (Implicit)

• VUID-VkCopyImageToBufferInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_COPY_IMAGE_TO_BUFFER_INFO_2

• VUID-VkCopyImageToBufferInfo2-pNext-pNext
pNext must be NULL

• VUID-VkCopyImageToBufferInfo2-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkCopyImageToBufferInfo2-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

829

• VUID-VkCopyImageToBufferInfo2-dstBuffer-parameter
dstBuffer must be a valid VkBuffer handle

• VUID-VkCopyImageToBufferInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkBufferImageCopy2
structures

• VUID-VkCopyImageToBufferInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkCopyImageToBufferInfo2-commonparent
Both of dstBuffer, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

For both vkCmdCopyBufferToImage2 and vkCmdCopyImageToBuffer2, each element of pRegions is
a structure defined as:

// Provided by VK_VERSION_1_3
typedef struct VkBufferImageCopy2 {
 VkStructureType sType;
 const void* pNext;
 VkDeviceSize bufferOffset;
 uint32_t bufferRowLength;
 uint32_t bufferImageHeight;
 VkImageSubresourceLayers imageSubresource;
 VkOffset3D imageOffset;
 VkExtent3D imageExtent;
} VkBufferImageCopy2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• bufferOffset is the offset in bytes from the start of the buffer object where the image data is
copied from or to.

• bufferRowLength and bufferImageHeight specify in texels a subregion of a larger two- or three-
dimensional image in buffer memory, and control the addressing calculations. If either of these
values is zero, that aspect of the buffer memory is considered to be tightly packed according to
the imageExtent.

• imageSubresource is a VkImageSubresourceLayers used to specify the specific image
subresources of the image used for the source or destination image data.

• imageOffset selects the initial x, y, z offsets in texels of the sub-region of the source or
destination image data.

• imageExtent is the size in texels of the image to copy in width, height and depth.

This structure is functionally identical to VkBufferImageCopy, but adds sType and pNext parameters,
allowing it to be more easily extended.

830

Valid Usage

• VUID-VkBufferImageCopy2-bufferRowLength-09101
bufferRowLength must be 0, or greater than or equal to the width member of imageExtent

• VUID-VkBufferImageCopy2-bufferImageHeight-09102
bufferImageHeight must be 0, or greater than or equal to the height member of imageExtent

• VUID-VkBufferImageCopy2-aspectMask-09103
The aspectMask member of imageSubresource must only have a single bit set

• VUID-VkBufferImageCopy2-imageExtent-06659
imageExtent.width must not be 0

• VUID-VkBufferImageCopy2-imageExtent-06660
imageExtent.height must not be 0

• VUID-VkBufferImageCopy2-imageExtent-06661
imageExtent.depth must not be 0

Valid Usage (Implicit)

• VUID-VkBufferImageCopy2-sType-sType
sType must be VK_STRUCTURE_TYPE_BUFFER_IMAGE_COPY_2

• VUID-VkBufferImageCopy2-pNext-pNext
pNext must be NULL

• VUID-VkBufferImageCopy2-imageSubresource-parameter
imageSubresource must be a valid VkImageSubresourceLayers structure

19.4. Image Copies With Scaling
To copy regions of a source image into a destination image, potentially performing format
conversion, arbitrary scaling, and filtering, call:

// Provided by VK_VERSION_1_0
void vkCmdBlitImage(
 VkCommandBuffer commandBuffer,
 VkImage srcImage,
 VkImageLayout srcImageLayout,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkImageBlit* pRegions,
 VkFilter filter);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

831

• srcImageLayout is the layout of the source image subresources for the blit.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the blit.

• regionCount is the number of regions to blit.

• pRegions is a pointer to an array of VkImageBlit structures specifying the regions to blit.

• filter is a VkFilter specifying the filter to apply if the blits require scaling.

vkCmdBlitImage must not be used for multisampled source or destination images. Use
vkCmdResolveImage for this purpose.

As the sizes of the source and destination extents can differ in any dimension, texels in the source
extent are scaled and filtered to the destination extent. Scaling occurs via the following operations:

• For each destination texel, the integer coordinate of that texel is converted to an unnormalized
texture coordinate, using the effective inverse of the equations described in unnormalized to
integer conversion:

ubase = i + ½

vbase = j + ½

wbase = k + ½

• These base coordinates are then offset by the first destination offset:

uoffset = ubase - xdst0

voffset = vbase - ydst0

woffset = wbase - zdst0

aoffset = a - baseArrayCountdst

• The scale is determined from the source and destination regions, and applied to the offset
coordinates:

scaleu = (xsrc1 - xsrc0) / (xdst1 - xdst0)

832

scalev = (ysrc1 - ysrc0) / (ydst1 - ydst0)

scalew = (zsrc1 - zsrc0) / (zdst1 - zdst0)

uscaled = uoffset × scaleu

vscaled = voffset × scalev

wscaled = woffset × scalew

• Finally the source offset is added to the scaled coordinates, to determine the final unnormalized
coordinates used to sample from srcImage:

u = uscaled + xsrc0

v = vscaled + ysrc0

w = wscaled + zsrc0

q = mipLevel

a = aoffset + baseArrayCountsrc

These coordinates are used to sample from the source image, as described in Image Operations
chapter, with the filter mode equal to that of filter, a mipmap mode of
VK_SAMPLER_MIPMAP_MODE_NEAREST and an address mode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.
Implementations must clamp at the edge of the source image, and may additionally clamp to the
edge of the source region.

Note

Due to allowable rounding errors in the generation of the source texture
coordinates, it is not always possible to guarantee exactly which source texels will
be sampled for a given blit. As rounding errors are implementation-dependent, the
exact results of a blitting operation are also implementation-dependent.

Blits are done layer by layer starting with the baseArrayLayer member of srcSubresource for the
source and dstSubresource for the destination. layerCount layers are blitted to the destination image.

833

When blitting 3D textures, slices in the destination region bounded by dstOffsets[0].z and
dstOffsets[1].z are sampled from slices in the source region bounded by srcOffsets[0].z and
srcOffsets[1].z. If the filter parameter is VK_FILTER_LINEAR then the value sampled from the source
image is taken by doing linear filtering using the interpolated z coordinate represented by w in the
previous equations. If the filter parameter is VK_FILTER_NEAREST then the value sampled from the
source image is taken from the single nearest slice, with an implementation-dependent arithmetic
rounding mode.

The following filtering and conversion rules apply:

• Integer formats can only be converted to other integer formats with the same signedness.

• No format conversion is supported between depth/stencil images. The formats must match.

• Format conversions on unorm, snorm, scaled and packed float formats of the copied aspect of
the image are performed by first converting the pixels to float values.

• For sRGB source formats, nonlinear RGB values are converted to linear representation prior to
filtering.

• After filtering, the float values are first clamped and then cast to the destination image format.
In case of sRGB destination format, linear RGB values are converted to nonlinear representation
before writing the pixel to the image.

Signed and unsigned integers are converted by first clamping to the representable range of the
destination format, then casting the value.

Valid Usage

• VUID-vkCmdBlitImage-commandBuffer-01834
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdBlitImage-commandBuffer-01835
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdBlitImage-commandBuffer-01836
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdBlitImage-pRegions-00215
The source region specified by each element of pRegions must be a region that is
contained within srcImage

• VUID-vkCmdBlitImage-pRegions-00216
The destination region specified by each element of pRegions must be a region that is
contained within dstImage

• VUID-vkCmdBlitImage-pRegions-00217
The union of all destination regions, specified by the elements of pRegions, must not
overlap in memory with any texel that may be sampled during the blit operation

• VUID-vkCmdBlitImage-srcImage-01999

834

The format features of srcImage must contain VK_FORMAT_FEATURE_BLIT_SRC_BIT

• VUID-vkCmdBlitImage-srcImage-06421
srcImage must not use a format that requires a sampler Y′CBCR conversion

• VUID-vkCmdBlitImage-srcImage-00219
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-vkCmdBlitImage-srcImage-00220
If srcImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBlitImage-srcImageLayout-00221
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdBlitImage-srcImageLayout-00222
srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdBlitImage-srcImage-09459
If srcImage and dstImage are the same, and an elements of pRegions contains the
srcSubresource and dstSubresource with matching mipLevel and overlapping array layers,
then the srcImageLayout and dstImageLayout must be VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdBlitImage-dstImage-02000
The format features of dstImage must contain VK_FORMAT_FEATURE_BLIT_DST_BIT

• VUID-vkCmdBlitImage-dstImage-06422
dstImage must not use a format that requires a sampler Y′CBCR conversion

• VUID-vkCmdBlitImage-dstImage-00224
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdBlitImage-dstImage-00225
If dstImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBlitImage-dstImageLayout-00226
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdBlitImage-dstImageLayout-00227
dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdBlitImage-srcImage-00229
If either of srcImage or dstImage was created with a signed integer VkFormat, the other
must also have been created with a signed integer VkFormat

• VUID-vkCmdBlitImage-srcImage-00230
If either of srcImage or dstImage was created with an unsigned integer VkFormat, the other
must also have been created with an unsigned integer VkFormat

• VUID-vkCmdBlitImage-srcImage-00231
If either of srcImage or dstImage was created with a depth/stencil format, the other must
have exactly the same format

• VUID-vkCmdBlitImage-srcImage-00232

835

If srcImage was created with a depth/stencil format, filter must be VK_FILTER_NEAREST

• VUID-vkCmdBlitImage-srcImage-00233
srcImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdBlitImage-dstImage-00234
dstImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdBlitImage-filter-02001
If filter is VK_FILTER_LINEAR, then the format features of srcImage must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdBlitImage-srcSubresource-01705
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-vkCmdBlitImage-dstSubresource-01706
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-vkCmdBlitImage-srcSubresource-01707
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-vkCmdBlitImage-dstSubresource-01708
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-vkCmdBlitImage-srcImage-00240
If either srcImage or dstImage is of type VK_IMAGE_TYPE_3D, then for each element of
pRegions, srcSubresource.baseArrayLayer and dstSubresource.baseArrayLayer must each be
0, and srcSubresource.layerCount and dstSubresource.layerCount must each be 1

• VUID-vkCmdBlitImage-aspectMask-00241
For each element of pRegions, srcSubresource.aspectMask must specify aspects present in
srcImage

• VUID-vkCmdBlitImage-aspectMask-00242
For each element of pRegions, dstSubresource.aspectMask must specify aspects present in
dstImage

• VUID-vkCmdBlitImage-srcOffset-00243
For each element of pRegions, srcOffsets[0].x and srcOffsets[1].x must both be greater
than or equal to 0 and less than or equal to the width of the specified srcSubresource of
srcImage

• VUID-vkCmdBlitImage-srcOffset-00244
For each element of pRegions, srcOffsets[0].y and srcOffsets[1].y must both be greater
than or equal to 0 and less than or equal to the height of the specified srcSubresource of
srcImage

• VUID-vkCmdBlitImage-srcImage-00245
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffsets[0].y
must be 0 and srcOffsets[1].y must be 1

836

• VUID-vkCmdBlitImage-srcOffset-00246
For each element of pRegions, srcOffsets[0].z and srcOffsets[1].z must both be greater
than or equal to 0 and less than or equal to the depth of the specified srcSubresource of
srcImage

• VUID-vkCmdBlitImage-srcImage-00247
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, srcOffsets[0].z must be 0 and srcOffsets[1].z must be 1

• VUID-vkCmdBlitImage-dstOffset-00248
For each element of pRegions, dstOffsets[0].x and dstOffsets[1].x must both be greater
than or equal to 0 and less than or equal to the width of the specified dstSubresource of
dstImage

• VUID-vkCmdBlitImage-dstOffset-00249
For each element of pRegions, dstOffsets[0].y and dstOffsets[1].y must both be greater
than or equal to 0 and less than or equal to the height of the specified dstSubresource of
dstImage

• VUID-vkCmdBlitImage-dstImage-00250
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffsets[0].y
must be 0 and dstOffsets[1].y must be 1

• VUID-vkCmdBlitImage-dstOffset-00251
For each element of pRegions, dstOffsets[0].z and dstOffsets[1].z must both be greater
than or equal to 0 and less than or equal to the depth of the specified dstSubresource of
dstImage

• VUID-vkCmdBlitImage-dstImage-00252
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, dstOffsets[0].z must be 0 and dstOffsets[1].z must be 1

Valid Usage (Implicit)

• VUID-vkCmdBlitImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBlitImage-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-vkCmdBlitImage-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-vkCmdBlitImage-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-vkCmdBlitImage-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-vkCmdBlitImage-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageBlit structures

• VUID-vkCmdBlitImage-filter-parameter
filter must be a valid VkFilter value

837

• VUID-vkCmdBlitImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBlitImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBlitImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdBlitImage-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdBlitImage-commonparent
Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics Action

The VkImageBlit structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageBlit {
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffsets[2];
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffsets[2];
} VkImageBlit;

• srcSubresource is the subresource to blit from.

• srcOffsets is a pointer to an array of two VkOffset3D structures specifying the bounds of the
source region within srcSubresource.

• dstSubresource is the subresource to blit into.

• dstOffsets is a pointer to an array of two VkOffset3D structures specifying the bounds of the

838

destination region within dstSubresource.

For each element of the pRegions array, a blit operation is performed for the specified source and
destination regions.

Valid Usage

• VUID-VkImageBlit-aspectMask-00238
The aspectMask member of srcSubresource and dstSubresource must match

• VUID-VkImageBlit-layerCount-08800
The layerCount members of srcSubresource or dstSubresource must match

Valid Usage (Implicit)

• VUID-VkImageBlit-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageBlit-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

A more extensible version of the blit image command is defined below.

To copy regions of a source image into a destination image, potentially performing format
conversion, arbitrary scaling, and filtering, call:

// Provided by VK_VERSION_1_3
void vkCmdBlitImage2(
 VkCommandBuffer commandBuffer,
 const VkBlitImageInfo2* pBlitImageInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pBlitImageInfo is a pointer to a VkBlitImageInfo2 structure describing the blit parameters.

This command is functionally identical to vkCmdBlitImage, but includes extensible sub-structures
that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage

• VUID-vkCmdBlitImage2-commandBuffer-01834
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdBlitImage2-commandBuffer-01835
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

839

• VUID-vkCmdBlitImage2-commandBuffer-01836
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdBlitImage2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBlitImage2-pBlitImageInfo-parameter
pBlitImageInfo must be a valid pointer to a valid VkBlitImageInfo2 structure

• VUID-vkCmdBlitImage2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBlitImage2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBlitImage2-renderpass
This command must only be called outside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics Action

The VkBlitImageInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkBlitImageInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 VkImage dstImage;
 VkImageLayout dstImageLayout;

840

 uint32_t regionCount;
 const VkImageBlit2* pRegions;
 VkFilter filter;
} VkBlitImageInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the blit.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the blit.

• regionCount is the number of regions to blit.

• pRegions is a pointer to an array of VkImageBlit2 structures specifying the regions to blit.

• filter is a VkFilter specifying the filter to apply if the blits require scaling.

Valid Usage

• VUID-VkBlitImageInfo2-pRegions-00215
The source region specified by each element of pRegions must be a region that is
contained within srcImage

• VUID-VkBlitImageInfo2-pRegions-00216
The destination region specified by each element of pRegions must be a region that is
contained within dstImage

• VUID-VkBlitImageInfo2-pRegions-00217
The union of all destination regions, specified by the elements of pRegions, must not
overlap in memory with any texel that may be sampled during the blit operation

• VUID-VkBlitImageInfo2-srcImage-01999
The format features of srcImage must contain VK_FORMAT_FEATURE_BLIT_SRC_BIT

• VUID-VkBlitImageInfo2-srcImage-06421
srcImage must not use a format that requires a sampler Y′CBCR conversion

• VUID-VkBlitImageInfo2-srcImage-00219
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkBlitImageInfo2-srcImage-00220
If srcImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBlitImageInfo2-srcImageLayout-00221
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkBlitImageInfo2-srcImageLayout-00222
srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkBlitImageInfo2-srcImage-09459

841

If srcImage and dstImage are the same, and an elements of pRegions contains the
srcSubresource and dstSubresource with matching mipLevel and overlapping array layers,
then the srcImageLayout and dstImageLayout must be VK_IMAGE_LAYOUT_GENERAL

• VUID-VkBlitImageInfo2-dstImage-02000
The format features of dstImage must contain VK_FORMAT_FEATURE_BLIT_DST_BIT

• VUID-VkBlitImageInfo2-dstImage-06422
dstImage must not use a format that requires a sampler Y′CBCR conversion

• VUID-VkBlitImageInfo2-dstImage-00224
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkBlitImageInfo2-dstImage-00225
If dstImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkBlitImageInfo2-dstImageLayout-00226
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkBlitImageInfo2-dstImageLayout-00227
dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkBlitImageInfo2-srcImage-00229
If either of srcImage or dstImage was created with a signed integer VkFormat, the other
must also have been created with a signed integer VkFormat

• VUID-VkBlitImageInfo2-srcImage-00230
If either of srcImage or dstImage was created with an unsigned integer VkFormat, the other
must also have been created with an unsigned integer VkFormat

• VUID-VkBlitImageInfo2-srcImage-00231
If either of srcImage or dstImage was created with a depth/stencil format, the other must
have exactly the same format

• VUID-VkBlitImageInfo2-srcImage-00232
If srcImage was created with a depth/stencil format, filter must be VK_FILTER_NEAREST

• VUID-VkBlitImageInfo2-srcImage-00233
srcImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• VUID-VkBlitImageInfo2-dstImage-00234
dstImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• VUID-VkBlitImageInfo2-filter-02001
If filter is VK_FILTER_LINEAR, then the format features of srcImage must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-VkBlitImageInfo2-srcSubresource-01705
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkBlitImageInfo2-dstSubresource-01706
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

842

• VUID-VkBlitImageInfo2-srcSubresource-01707
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-VkBlitImageInfo2-dstSubresource-01708
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-VkBlitImageInfo2-srcImage-00240
If either srcImage or dstImage is of type VK_IMAGE_TYPE_3D, then for each element of
pRegions, srcSubresource.baseArrayLayer and dstSubresource.baseArrayLayer must each be
0, and srcSubresource.layerCount and dstSubresource.layerCount must each be 1

• VUID-VkBlitImageInfo2-aspectMask-00241
For each element of pRegions, srcSubresource.aspectMask must specify aspects present in
srcImage

• VUID-VkBlitImageInfo2-aspectMask-00242
For each element of pRegions, dstSubresource.aspectMask must specify aspects present in
dstImage

• VUID-VkBlitImageInfo2-srcOffset-00243
For each element of pRegions, srcOffsets[0].x and srcOffsets[1].x must both be greater
than or equal to 0 and less than or equal to the width of the specified srcSubresource of
srcImage

• VUID-VkBlitImageInfo2-srcOffset-00244
For each element of pRegions, srcOffsets[0].y and srcOffsets[1].y must both be greater
than or equal to 0 and less than or equal to the height of the specified srcSubresource of
srcImage

• VUID-VkBlitImageInfo2-srcImage-00245
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffsets[0].y
must be 0 and srcOffsets[1].y must be 1

• VUID-VkBlitImageInfo2-srcOffset-00246
For each element of pRegions, srcOffsets[0].z and srcOffsets[1].z must both be greater
than or equal to 0 and less than or equal to the depth of the specified srcSubresource of
srcImage

• VUID-VkBlitImageInfo2-srcImage-00247
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, srcOffsets[0].z must be 0 and srcOffsets[1].z must be 1

• VUID-VkBlitImageInfo2-dstOffset-00248
For each element of pRegions, dstOffsets[0].x and dstOffsets[1].x must both be greater
than or equal to 0 and less than or equal to the width of the specified dstSubresource of
dstImage

• VUID-VkBlitImageInfo2-dstOffset-00249
For each element of pRegions, dstOffsets[0].y and dstOffsets[1].y must both be greater
than or equal to 0 and less than or equal to the height of the specified dstSubresource of

843

dstImage

• VUID-VkBlitImageInfo2-dstImage-00250
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffsets[0].y
must be 0 and dstOffsets[1].y must be 1

• VUID-VkBlitImageInfo2-dstOffset-00251
For each element of pRegions, dstOffsets[0].z and dstOffsets[1].z must both be greater
than or equal to 0 and less than or equal to the depth of the specified dstSubresource of
dstImage

• VUID-VkBlitImageInfo2-dstImage-00252
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, dstOffsets[0].z must be 0 and dstOffsets[1].z must be 1

Valid Usage (Implicit)

• VUID-VkBlitImageInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2

• VUID-VkBlitImageInfo2-pNext-pNext
pNext must be NULL

• VUID-VkBlitImageInfo2-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkBlitImageInfo2-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-VkBlitImageInfo2-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkBlitImageInfo2-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-VkBlitImageInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageBlit2 structures

• VUID-VkBlitImageInfo2-filter-parameter
filter must be a valid VkFilter value

• VUID-VkBlitImageInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkBlitImageInfo2-commonparent
Both of dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

The VkImageBlit2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkImageBlit2 {
 VkStructureType sType;

844

 const void* pNext;
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffsets[2];
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffsets[2];
} VkImageBlit2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcSubresource is the subresource to blit from.

• srcOffsets is a pointer to an array of two VkOffset3D structures specifying the bounds of the
source region within srcSubresource.

• dstSubresource is the subresource to blit into.

• dstOffsets is a pointer to an array of two VkOffset3D structures specifying the bounds of the
destination region within dstSubresource.

For each element of the pRegions array, a blit operation is performed for the specified source and
destination regions.

Valid Usage

• VUID-VkImageBlit2-aspectMask-00238
The aspectMask member of srcSubresource and dstSubresource must match

• VUID-VkImageBlit2-layerCount-08800
The layerCount members of srcSubresource or dstSubresource must match

Valid Usage (Implicit)

• VUID-VkImageBlit2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_BLIT_2

• VUID-VkImageBlit2-pNext-pNext
pNext must be NULL

• VUID-VkImageBlit2-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageBlit2-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

19.5. Resolving Multisample Images
To resolve a multisample color image to a non-multisample color image, call:

845

// Provided by VK_VERSION_1_0
void vkCmdResolveImage(
 VkCommandBuffer commandBuffer,
 VkImage srcImage,
 VkImageLayout srcImageLayout,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkImageResolve* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the resolve.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the resolve.

• regionCount is the number of regions to resolve.

• pRegions is a pointer to an array of VkImageResolve structures specifying the regions to resolve.

During the resolve the samples corresponding to each pixel location in the source are converted to
a single sample before being written to the destination. If the source formats are floating-point or
normalized types, the sample values for each pixel are resolved in an implementation-dependent
manner. If the source formats are integer types, a single sample’s value is selected for each pixel.

srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the source
and destination image data. extent is the size in texels of the source image to resolve in width,
height and depth. Each element of pRegions must be a region that is contained within its
corresponding image.

Resolves are done layer by layer starting with baseArrayLayer member of srcSubresource for the
source and dstSubresource for the destination. layerCount layers are resolved to the destination
image.

Valid Usage

• VUID-vkCmdResolveImage-commandBuffer-01837
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdResolveImage-commandBuffer-01838
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdResolveImage-commandBuffer-01839
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

• VUID-vkCmdResolveImage-pRegions-00255

846

The union of all source regions, and the union of all destination regions, specified by the
elements of pRegions, must not overlap in memory

• VUID-vkCmdResolveImage-srcImage-00256
If srcImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdResolveImage-srcImage-00257
srcImage must have a sample count equal to any valid sample count value other than
VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdResolveImage-dstImage-00258
If dstImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdResolveImage-dstImage-00259
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-vkCmdResolveImage-srcImageLayout-00260
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdResolveImage-srcImageLayout-01400
srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdResolveImage-dstImageLayout-00262
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-vkCmdResolveImage-dstImageLayout-01401
dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-vkCmdResolveImage-dstImage-02003
The format features of dstImage must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-vkCmdResolveImage-srcImage-01386
srcImage and dstImage must have been created with the same image format

• VUID-vkCmdResolveImage-srcSubresource-01709
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-vkCmdResolveImage-dstSubresource-01710
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-vkCmdResolveImage-srcSubresource-01711
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-vkCmdResolveImage-dstSubresource-01712
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-vkCmdResolveImage-srcImage-04446

847

If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
srcSubresource.layerCount must be 1

• VUID-vkCmdResolveImage-srcImage-04447
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
dstSubresource.baseArrayLayer must be 0 and dstSubresource.layerCount must be 1

• VUID-vkCmdResolveImage-srcOffset-00269
For each element of pRegions, srcOffset.x and (extent.width + srcOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
srcSubresource of srcImage

• VUID-vkCmdResolveImage-srcOffset-00270
For each element of pRegions, srcOffset.y and (extent.height + srcOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
srcSubresource of srcImage

• VUID-vkCmdResolveImage-srcImage-00271
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.y
must be 0 and extent.height must be 1

• VUID-vkCmdResolveImage-srcOffset-00272
For each element of pRegions, srcOffset.z and (extent.depth + srcOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
srcSubresource of srcImage

• VUID-vkCmdResolveImage-srcImage-00273
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, srcOffset.z must be 0 and extent.depth must be 1

• VUID-vkCmdResolveImage-dstOffset-00274
For each element of pRegions, dstOffset.x and (extent.width + dstOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
dstSubresource of dstImage

• VUID-vkCmdResolveImage-dstOffset-00275
For each element of pRegions, dstOffset.y and (extent.height + dstOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
dstSubresource of dstImage

• VUID-vkCmdResolveImage-dstImage-00276
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.y
must be 0 and extent.height must be 1

• VUID-vkCmdResolveImage-dstOffset-00277
For each element of pRegions, dstOffset.z and (extent.depth + dstOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
dstSubresource of dstImage

• VUID-vkCmdResolveImage-dstImage-00278
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, dstOffset.z must be 0 and extent.depth must be 1

• VUID-vkCmdResolveImage-srcImage-06762
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

848

• VUID-vkCmdResolveImage-srcImage-06763
The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-vkCmdResolveImage-dstImage-06764
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-vkCmdResolveImage-dstImage-06765
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

Valid Usage (Implicit)

• VUID-vkCmdResolveImage-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResolveImage-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-vkCmdResolveImage-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-vkCmdResolveImage-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-vkCmdResolveImage-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-vkCmdResolveImage-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageResolve
structures

• VUID-vkCmdResolveImage-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResolveImage-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdResolveImage-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdResolveImage-regionCount-arraylength
regionCount must be greater than 0

• VUID-vkCmdResolveImage-commonparent
Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

849

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics Action

The VkImageResolve structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkImageResolve {
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffset;
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffset;
 VkExtent3D extent;
} VkImageResolve;

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the
image subresources of the images used for the source and destination image data, respectively.
Resolve of depth/stencil images is not supported.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the
source and destination image data.

• extent is the size in texels of the source image to resolve in width, height and depth.

Valid Usage

• VUID-VkImageResolve-aspectMask-00266
The aspectMask member of srcSubresource and dstSubresource must only contain
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageResolve-layerCount-08803
The layerCount member of srcSubresource and dstSubresource must match

Valid Usage (Implicit)

• VUID-VkImageResolve-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageResolve-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

A more extensible version of the resolve image command is defined below.

850

To resolve a multisample image to a non-multisample image, call:

// Provided by VK_VERSION_1_3
void vkCmdResolveImage2(
 VkCommandBuffer commandBuffer,
 const VkResolveImageInfo2* pResolveImageInfo);

• commandBuffer is the command buffer into which the command will be recorded.

• pResolveImageInfo is a pointer to a VkResolveImageInfo2 structure describing the resolve
parameters.

This command is functionally identical to vkCmdResolveImage, but includes extensible sub-
structures that include sType and pNext parameters, allowing them to be more easily extended.

Valid Usage

• VUID-vkCmdResolveImage2-commandBuffer-01837
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
srcImage must not be a protected image

• VUID-vkCmdResolveImage2-commandBuffer-01838
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
dstImage must not be a protected image

• VUID-vkCmdResolveImage2-commandBuffer-01839
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
dstImage must not be an unprotected image

Valid Usage (Implicit)

• VUID-vkCmdResolveImage2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdResolveImage2-pResolveImageInfo-parameter
pResolveImageInfo must be a valid pointer to a valid VkResolveImageInfo2 structure

• VUID-vkCmdResolveImage2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdResolveImage2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdResolveImage2-renderpass
This command must only be called outside of a render pass instance

851

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Graphics Action

The VkResolveImageInfo2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkResolveImageInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage srcImage;
 VkImageLayout srcImageLayout;
 VkImage dstImage;
 VkImageLayout dstImageLayout;
 uint32_t regionCount;
 const VkImageResolve2* pRegions;
} VkResolveImageInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the resolve.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the resolve.

• regionCount is the number of regions to resolve.

• pRegions is a pointer to an array of VkImageResolve2 structures specifying the regions to
resolve.

Valid Usage

• VUID-VkResolveImageInfo2-pRegions-00255
The union of all source regions, and the union of all destination regions, specified by the

852

elements of pRegions, must not overlap in memory

• VUID-VkResolveImageInfo2-srcImage-00256
If srcImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkResolveImageInfo2-srcImage-00257
srcImage must have a sample count equal to any valid sample count value other than
VK_SAMPLE_COUNT_1_BIT

• VUID-VkResolveImageInfo2-dstImage-00258
If dstImage is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-VkResolveImageInfo2-dstImage-00259
dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• VUID-VkResolveImageInfo2-srcImageLayout-00260
srcImageLayout must specify the layout of the image subresources of srcImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkResolveImageInfo2-srcImageLayout-01400
srcImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkResolveImageInfo2-dstImageLayout-00262
dstImageLayout must specify the layout of the image subresources of dstImage specified in
pRegions at the time this command is executed on a VkDevice

• VUID-VkResolveImageInfo2-dstImageLayout-01401
dstImageLayout must be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_GENERAL

• VUID-VkResolveImageInfo2-dstImage-02003
The format features of dstImage must contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

• VUID-VkResolveImageInfo2-srcImage-01386
srcImage and dstImage must have been created with the same image format

• VUID-VkResolveImageInfo2-srcSubresource-01709
The srcSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when srcImage was created

• VUID-VkResolveImageInfo2-dstSubresource-01710
The dstSubresource.mipLevel member of each element of pRegions must be less than the
mipLevels specified in VkImageCreateInfo when dstImage was created

• VUID-VkResolveImageInfo2-srcSubresource-01711
srcSubresource.baseArrayLayer + srcSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
srcImage was created

• VUID-VkResolveImageInfo2-dstSubresource-01712
dstSubresource.baseArrayLayer + dstSubresource.layerCount of each element of pRegions
must be less than or equal to the arrayLayers specified in VkImageCreateInfo when
dstImage was created

• VUID-VkResolveImageInfo2-srcImage-04446
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,

853

srcSubresource.layerCount must be 1

• VUID-VkResolveImageInfo2-srcImage-04447
If dstImage is of type VK_IMAGE_TYPE_3D, then for each element of pRegions,
dstSubresource.baseArrayLayer must be 0 and dstSubresource.layerCount must be 1

• VUID-VkResolveImageInfo2-srcOffset-00269
For each element of pRegions, srcOffset.x and (extent.width + srcOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
srcSubresource of srcImage

• VUID-VkResolveImageInfo2-srcOffset-00270
For each element of pRegions, srcOffset.y and (extent.height + srcOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
srcSubresource of srcImage

• VUID-VkResolveImageInfo2-srcImage-00271
If srcImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, srcOffset.y
must be 0 and extent.height must be 1

• VUID-VkResolveImageInfo2-srcOffset-00272
For each element of pRegions, srcOffset.z and (extent.depth + srcOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
srcSubresource of srcImage

• VUID-VkResolveImageInfo2-srcImage-00273
If srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, srcOffset.z must be 0 and extent.depth must be 1

• VUID-VkResolveImageInfo2-dstOffset-00274
For each element of pRegions, dstOffset.x and (extent.width + dstOffset.x) must both be
greater than or equal to 0 and less than or equal to the width of the specified
dstSubresource of dstImage

• VUID-VkResolveImageInfo2-dstOffset-00275
For each element of pRegions, dstOffset.y and (extent.height + dstOffset.y) must both be
greater than or equal to 0 and less than or equal to the height of the specified
dstSubresource of dstImage

• VUID-VkResolveImageInfo2-dstImage-00276
If dstImage is of type VK_IMAGE_TYPE_1D, then for each element of pRegions, dstOffset.y
must be 0 and extent.height must be 1

• VUID-VkResolveImageInfo2-dstOffset-00277
For each element of pRegions, dstOffset.z and (extent.depth + dstOffset.z) must both be
greater than or equal to 0 and less than or equal to the depth of the specified
dstSubresource of dstImage

• VUID-VkResolveImageInfo2-dstImage-00278
If dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then for each element of
pRegions, dstOffset.z must be 0 and extent.depth must be 1

• VUID-VkResolveImageInfo2-srcImage-06762
srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• VUID-VkResolveImageInfo2-srcImage-06763

854

The format features of srcImage must contain VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• VUID-VkResolveImageInfo2-dstImage-06764
dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• VUID-VkResolveImageInfo2-dstImage-06765
The format features of dstImage must contain VK_FORMAT_FEATURE_TRANSFER_DST_BIT

Valid Usage (Implicit)

• VUID-VkResolveImageInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_RESOLVE_IMAGE_INFO_2

• VUID-VkResolveImageInfo2-pNext-pNext
pNext must be NULL

• VUID-VkResolveImageInfo2-srcImage-parameter
srcImage must be a valid VkImage handle

• VUID-VkResolveImageInfo2-srcImageLayout-parameter
srcImageLayout must be a valid VkImageLayout value

• VUID-VkResolveImageInfo2-dstImage-parameter
dstImage must be a valid VkImage handle

• VUID-VkResolveImageInfo2-dstImageLayout-parameter
dstImageLayout must be a valid VkImageLayout value

• VUID-VkResolveImageInfo2-pRegions-parameter
pRegions must be a valid pointer to an array of regionCount valid VkImageResolve2
structures

• VUID-VkResolveImageInfo2-regionCount-arraylength
regionCount must be greater than 0

• VUID-VkResolveImageInfo2-commonparent
Both of dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

The VkImageResolve2 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkImageResolve2 {
 VkStructureType sType;
 const void* pNext;
 VkImageSubresourceLayers srcSubresource;
 VkOffset3D srcOffset;
 VkImageSubresourceLayers dstSubresource;
 VkOffset3D dstOffset;
 VkExtent3D extent;
} VkImageResolve2;

855

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the
image subresources of the images used for the source and destination image data, respectively.
Resolve of depth/stencil images is not supported.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the
source and destination image data.

• extent is the size in texels of the source image to resolve in width, height and depth.

Valid Usage

• VUID-VkImageResolve2-aspectMask-00266
The aspectMask member of srcSubresource and dstSubresource must only contain
VK_IMAGE_ASPECT_COLOR_BIT

• VUID-VkImageResolve2-layerCount-08803
The layerCount member of srcSubresource and dstSubresource must match

Valid Usage (Implicit)

• VUID-VkImageResolve2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2

• VUID-VkImageResolve2-pNext-pNext
pNext must be NULL

• VUID-VkImageResolve2-srcSubresource-parameter
srcSubresource must be a valid VkImageSubresourceLayers structure

• VUID-VkImageResolve2-dstSubresource-parameter
dstSubresource must be a valid VkImageSubresourceLayers structure

856

Chapter 20. Drawing Commands
Drawing commands (commands with Draw in the name) provoke work in a graphics pipeline.
Drawing commands are recorded into a command buffer and when executed by a queue, will
produce work which executes according to the bound graphics pipeline. A graphics pipeline must
be bound to a command buffer before any drawing commands are recorded in that command
buffer.

Each draw is made up of zero or more vertices and zero or more instances, which are processed by
the device and result in the assembly of primitives. Primitives are assembled according to the
pInputAssemblyState member of the VkGraphicsPipelineCreateInfo structure, which is of type
VkPipelineInputAssemblyStateCreateInfo:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineInputAssemblyStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineInputAssemblyStateCreateFlags flags;
 VkPrimitiveTopology topology;
 VkBool32 primitiveRestartEnable;
} VkPipelineInputAssemblyStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• topology is a VkPrimitiveTopology defining the primitive topology, as described below.

• primitiveRestartEnable controls whether a special vertex index value is treated as restarting the
assembly of primitives. This enable only applies to indexed draws (vkCmdDrawIndexed, and
vkCmdDrawIndexedIndirect), and the special index value is either 0xFFFFFFFF when the
indexType parameter of vkCmdBindIndexBuffer is equal to VK_INDEX_TYPE_UINT32, or 0xFFFF when
indexType is equal to VK_INDEX_TYPE_UINT16. Primitive restart is not allowed for “list” topologies.

Restarting the assembly of primitives discards the most recent index values if those elements
formed an incomplete primitive, and restarts the primitive assembly using the subsequent indices,
but only assembling the immediately following element through the end of the originally specified
elements. The primitive restart index value comparison is performed before adding the
vertexOffset value to the index value.

Valid Usage

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-06252
If topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, primitiveRestartEnable must be
VK_FALSE

857

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-06253
If topology is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, primitiveRestartEnable must be VK_FALSE

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-00429
If the geometryShader feature is not enabled, topology must not be any of
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-00430
If the tessellationShader feature is not enabled, topology must not be
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

Valid Usage (Implicit)

• VUID-VkPipelineInputAssemblyStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO

• VUID-VkPipelineInputAssemblyStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineInputAssemblyStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineInputAssemblyStateCreateInfo-topology-parameter
topology must be a valid VkPrimitiveTopology value

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineInputAssemblyStateCreateFlags;

VkPipelineInputAssemblyStateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

To dynamically control whether a special vertex index value is treated as restarting the assembly of
primitives, call:

// Provided by VK_VERSION_1_3
void vkCmdSetPrimitiveRestartEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 primitiveRestartEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• primitiveRestartEnable controls whether a special vertex index value is treated as restarting the
assembly of primitives. It behaves in the same way as VkPipelineInputAssemblyStateCreateInfo
::primitiveRestartEnable

858

This command sets the primitive restart enable for subsequent drawing commands when the
graphics pipeline is created with VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineInputAssemblyStateCreateInfo::primitiveRestartEnable value used to create the
currently active pipeline.

Valid Usage

• VUID-vkCmdSetPrimitiveRestartEnable-None-08970
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetPrimitiveRestartEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetPrimitiveRestartEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetPrimitiveRestartEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

20.1. Primitive Topologies
Primitive topology determines how consecutive vertices are organized into primitives, and
determines the type of primitive that is used at the beginning of the graphics pipeline. The effective
topology for later stages of the pipeline is altered by tessellation or geometry shading (if either is in

859

use) and depends on the execution modes of those shaders.

The primitive topologies defined by VkPrimitiveTopology are:

// Provided by VK_VERSION_1_0
typedef enum VkPrimitiveTopology {
 VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,
 VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,
 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,
 VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,
 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY = 8,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY = 9,
 VK_PRIMITIVE_TOPOLOGY_PATCH_LIST = 10,
} VkPrimitiveTopology;

• VK_PRIMITIVE_TOPOLOGY_POINT_LIST specifies a series of separate point primitives.

• VK_PRIMITIVE_TOPOLOGY_LINE_LIST specifies a series of separate line primitives.

• VK_PRIMITIVE_TOPOLOGY_LINE_STRIP specifies a series of connected line primitives with
consecutive lines sharing a vertex.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST specifies a series of separate triangle primitives.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP specifies a series of connected triangle primitives with
consecutive triangles sharing an edge.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN specifies a series of connected triangle primitives with all
triangles sharing a common vertex.

• VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY specifies a series of separate line primitives
with adjacency.

• VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY specifies a series of connected line primitives
with adjacency, with consecutive primitives sharing three vertices.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY specifies a series of separate triangle
primitives with adjacency.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY specifies connected triangle primitives
with adjacency, with consecutive triangles sharing an edge.

• VK_PRIMITIVE_TOPOLOGY_PATCH_LIST specifies separate patch primitives.

Each primitive topology, and its construction from a list of vertices, is described in detail below
with a supporting diagram, according to the following key:

Vertex
A point in 3-dimensional space. Positions chosen within the diagrams are
arbitrary and for illustration only.

5 Vertex Number Sequence position of a vertex within the provided vertex data.

860

Provoking
Vertex

Provoking vertex within the main primitive. The tail is angled towards
the relevant primitive. Used in flat shading.

Primitive Edge An edge connecting the points of a main primitive.

Adjacency
Edge

Points connected by these lines do not contribute to a main primitive, and
are only accessible in a geometry shader.

Winding Order
The relative order in which vertices are defined within a primitive, used
in the facing determination. This ordering has no specific start or end
point.

The diagrams are supported with mathematical definitions where the vertices (v) and primitives (p)
are numbered starting from 0; v0 is the first vertex in the provided data and p0 is the first primitive
in the set of primitives defined by the vertices and topology.

To dynamically set primitive topology, call:

// Provided by VK_VERSION_1_3
void vkCmdSetPrimitiveTopology(
 VkCommandBuffer commandBuffer,
 VkPrimitiveTopology primitiveTopology);

• commandBuffer is the command buffer into which the command will be recorded.

• primitiveTopology specifies the primitive topology to use for drawing.

This command sets the primitive topology for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineInputAssemblyStateCreateInfo::topology value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetPrimitiveTopology-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetPrimitiveTopology-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetPrimitiveTopology-primitiveTopology-parameter
primitiveTopology must be a valid VkPrimitiveTopology value

• VUID-vkCmdSetPrimitiveTopology-commandBuffer-recording

861

commandBuffer must be in the recording state

• VUID-vkCmdSetPrimitiveTopology-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

20.1.1. Topology Class

The primitive topologies are grouped into the following topology classes:

Table 20. Topology classes

Topology Class Primitive Topology

Point VK_PRIMITIVE_TOPOLOGY_POINT_LIST

Line VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENC
Y

Triangle VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJAC
ENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJA
CENCY

Patch VK_PRIMITIVE_TOPOLOGY_PATCH_LIST

20.1.2. Point Lists

When the topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, each consecutive vertex defines a single

862

point primitive, according to the equation:

pi = {vi}

As there is only one vertex, that vertex is the provoking vertex. The number of primitives generated
is equal to vertexCount.

0
4

2
1

3

20.1.3. Line Lists

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_LINE_LIST, each consecutive pair of vertices
defines a single line primitive, according to the equation:

pi = {v2i, v2i+1}

The number of primitives generated is equal to ⌊vertexCount/2⌋.

The provoking vertex for pi is v2i.

0

2

1

3

20.1.4. Line Strips

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, one line primitive is defined by
each vertex and the following vertex, according to the equation:

pi = {vi, vi+1}

The number of primitives generated is equal to max(0,vertexCount-1).

The provoking vertex for pi is vi.

863

0 21 3

20.1.5. Triangle Lists

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, each consecutive set of three
vertices defines a single triangle primitive, according to the equation:

pi = {v3i, v3i+1, v3i+2}

The number of primitives generated is equal to ⌊vertexCount/3⌋.

The provoking vertex for pi is v3i.

2

1

0

3

5

4

20.1.6. Triangle Strips

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, one triangle primitive is
defined by each vertex and the two vertices that follow it, according to the equation:

pi = {vi, vi+(1+i%2), vi+(2-i%2)}

The number of primitives generated is equal to max(0,vertexCount-2).

The provoking vertex for pi is vi.

0 42

1 3

Note

The ordering of the vertices in each successive triangle is reversed, so that the
winding order is consistent throughout the strip.

20.1.7. Triangle Fans

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN, triangle primitives are defined

864

around a shared common vertex, according to the equation:

pi = {vi+1, vi+2, v0}

The number of primitives generated is equal to max(0,vertexCount-2).

The provoking vertex for pi is vi+1.

0 4

2

1

3

20.1.8. Line Lists With Adjacency

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, each consecutive
set of four vertices defines a single line primitive with adjacency, according to the equation:

pi = {v4i, v4i+1, v4i+2,v4i+3}

A line primitive is described by the second and third vertices of the total primitive, with the
remaining two vertices only accessible in a geometry shader.

The number of primitives generated is equal to ⌊vertexCount/4⌋.

The provoking vertex for pi is v4i+1.

0 21 3

4 65 7

20.1.9. Line Strips With Adjacency

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, one line
primitive with adjacency is defined by each vertex and the following vertex, according to the
equation:

pi = {vi, vi+1, vi+2, vi+3}

A line primitive is described by the second and third vertices of the total primitive, with the

865

remaining two vertices only accessible in a geometry shader.

The number of primitives generated is equal to max(0,vertexCount-3).

The provoking vertex for pi is vi+1.

0 21 3 4 5

20.1.10. Triangle Lists With Adjacency

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, each
consecutive set of six vertices defines a single triangle primitive with adjacency, according to the
equations:

pi = {v6i, v6i+1, v6i+2, v6i+3, v6i+4, v6i+5}

A triangle primitive is described by the first, third, and fifth vertices of the total primitive, with the
remaining three vertices only accessible in a geometry shader.

The number of primitives generated is equal to ⌊vertexCount/6⌋.

The provoking vertex for pi is v6i.

0 4

21

5

3

6 8

1011

7

9

20.1.11. Triangle Strips With Adjacency

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, one triangle
primitive with adjacency is defined by each vertex and the following 5 vertices.

The number of primitives generated, n, is equal to ⌊max(0, vertexCount - 4)/2⌋.

If n=1, the primitive is defined as:

p = {v0, v1, v2, v5, v4, v3}

If n>1, the total primitive consists of different vertices according to where it is in the strip:

866

pi = {v2i, v2i+1, v2i+2, v2i+6, v2i+4, v2i+3} when i=0

pi = {v2i, v2i+3, v2i+4, v2i+6, v2i+2, v2i-2} when i>0, i<n-1, and i%2=1

pi = {v2i, v2i-2, v2i+2, v2i+6, v2i+4, v2i+3} when i>0, i<n-1, and i%2=0

pi = {v2i, v2i+3, v2i+4, v2i+5, v2i+2, v2i-2} when i=n-1 and i%2=1

pi = {v2i, v2i-2, v2i+2, v2i+5, v2i+4, v2i+3} when i=n-1 and i%2=0

A triangle primitive is described by the first, third, and fifth vertices of the total primitive in all
cases, with the remaining three vertices only accessible in a geometry shader.

Note

The ordering of the vertices in each successive triangle is altered so that the
winding order is consistent throughout the strip.

The provoking vertex for pi is always v2i.

0 4

21 5

3

2 6

5

7

7

8

9

7

8

10

9

11

0 4

1

3

2 6

5

0 4

1

3

2 6

5

0 4

1

3

867

20.1.12. Patch Lists

When the primitive topology is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, each consecutive set of m
vertices defines a single patch primitive, according to the equation:

pi = {vmi, vmi+1, …, vmi+(m-2), vmi+(m-1)}

where m is equal to VkPipelineTessellationStateCreateInfo::patchControlPoints.

Patch lists are never passed to vertex post-processing, and as such no provoking vertex is defined
for patch primitives. The number of primitives generated is equal to ⌊vertexCount/m⌋.

The vertices comprising a patch have no implied geometry, and are used as inputs to tessellation
shaders and the fixed-function tessellator to generate new point, line, or triangle primitives.

20.2. Primitive Order
Primitives generated by drawing commands progress through the stages of the graphics pipeline in
primitive order. Primitive order is initially determined in the following way:

1. Submission order determines the initial ordering

2. For indirect drawing commands, the order in which accessed instances of the
VkDrawIndirectCommand are stored in buffer, from lower indirect buffer addresses to higher
addresses.

3. If a drawing command includes multiple instances, the order in which instances are executed,
from lower numbered instances to higher.

4. The order in which primitives are specified by a drawing command:

◦ For non-indexed draws, from vertices with a lower numbered vertexIndex to a higher
numbered vertexIndex.

◦ For indexed draws, vertices sourced from a lower index buffer addresses to higher
addresses.

Within this order implementations further sort primitives:

5. If tessellation shading is active, by an implementation-dependent order of new primitives
generated by tessellation.

6. If geometry shading is active, by the order new primitives are generated by geometry shading.

7. If the polygon mode is not VK_POLYGON_MODE_FILL, by an implementation-dependent ordering of
the new primitives generated within the original primitive.

Primitive order is later used to define rasterization order, which determines the order in which
fragments output results to a framebuffer.

868

20.3. Programmable Primitive Shading
Once primitives are assembled, they proceed to the vertex shading stage of the pipeline. If the draw
includes multiple instances, then the set of primitives is sent to the vertex shading stage multiple
times, once for each instance.

It is implementation-dependent whether vertex shading occurs on vertices that are discarded as
part of incomplete primitives, but if it does occur then it operates as if they were vertices in
complete primitives and such invocations can have side effects.

Vertex shading receives two per-vertex inputs from the primitive assembly stage - the vertexIndex
and the instanceIndex. How these values are generated is defined below, with each command.

Drawing commands fall roughly into two categories:

• Non-indexed drawing commands present a sequential vertexIndex to the vertex shader. The
sequential index is generated automatically by the device (see Fixed-Function Vertex Processing
for details on both specifying the vertex attributes indexed by vertexIndex, as well as binding
vertex buffers containing those attributes to a command buffer). These commands are:

◦ vkCmdDraw

◦ vkCmdDrawIndirect

◦ vkCmdDrawIndirectCount

• Indexed drawing commands read index values from an index buffer and use this to compute the
vertexIndex value for the vertex shader. These commands are:

◦ vkCmdDrawIndexed

◦ vkCmdDrawIndexedIndirect

◦ vkCmdDrawIndexedIndirectCount

To bind an index buffer to a command buffer, call:

// Provided by VK_VERSION_1_0
void vkCmdBindIndexBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkIndexType indexType);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer being bound.

• offset is the starting offset in bytes within buffer used in index buffer address calculations.

• indexType is a VkIndexType value specifying the size of the indices.

869

Valid Usage

• VUID-vkCmdBindIndexBuffer-offset-08782
offset must be less than the size of buffer

• VUID-vkCmdBindIndexBuffer-offset-08783
The sum of offset and the base address of the range of VkDeviceMemory object that is
backing buffer, must be a multiple of the size of the type indicated by indexType

• VUID-vkCmdBindIndexBuffer-buffer-08784
buffer must have been created with the VK_BUFFER_USAGE_INDEX_BUFFER_BIT flag

• VUID-vkCmdBindIndexBuffer-buffer-08785
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdBindIndexBuffer-None-09493
buffer must not be VK_NULL_HANDLE

Valid Usage (Implicit)

• VUID-vkCmdBindIndexBuffer-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindIndexBuffer-buffer-parameter
If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• VUID-vkCmdBindIndexBuffer-indexType-parameter
indexType must be a valid VkIndexType value

• VUID-vkCmdBindIndexBuffer-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindIndexBuffer-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBindIndexBuffer-commonparent
Both of buffer, and commandBuffer that are valid handles of non-ignored parameters must
have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

870

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

Possible values of vkCmdBindIndexBuffer::indexType, specifying the size of indices, are:

// Provided by VK_VERSION_1_0
typedef enum VkIndexType {
 VK_INDEX_TYPE_UINT16 = 0,
 VK_INDEX_TYPE_UINT32 = 1,
} VkIndexType;

• VK_INDEX_TYPE_UINT16 specifies that indices are 16-bit unsigned integer values.

• VK_INDEX_TYPE_UINT32 specifies that indices are 32-bit unsigned integer values.

The parameters for each drawing command are specified directly in the command or read from
buffer memory, depending on the command. Drawing commands that source their parameters
from buffer memory are known as indirect drawing commands.

All drawing commands interact with the robustBufferAccess feature.

To record a non-indexed draw, call:

// Provided by VK_VERSION_1_0
void vkCmdDraw(
 VkCommandBuffer commandBuffer,
 uint32_t vertexCount,
 uint32_t instanceCount,
 uint32_t firstVertex,
 uint32_t firstInstance);

• commandBuffer is the command buffer into which the command is recorded.

• vertexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstVertex is the index of the first vertex to draw.

• firstInstance is the instance ID of the first instance to draw.

When the command is executed, primitives are assembled using the current primitive topology and
vertexCount consecutive vertex indices with the first vertexIndex value equal to firstVertex. The
primitives are drawn instanceCount times with instanceIndex starting with firstInstance and
increasing sequentially for each instance. The assembled primitives execute the bound graphics

871

pipeline.

Valid Usage

• VUID-vkCmdDraw-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDraw-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDraw-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDraw-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDraw-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDraw-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDraw-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDraw-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDraw-OpTypeImage-07028

872

For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDraw-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDraw-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDraw-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDraw-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline , as described in Pipeline Layout Compatibility

• VUID-vkCmdDraw-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline , as described in Pipeline Layout
Compatibility

• VUID-vkCmdDraw-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by a bound shader

• VUID-vkCmdDraw-None-08606
A valid pipeline must be bound to the pipeline bind point used by this command

• VUID-vkCmdDraw-None-08608
There must not have been any calls to dynamic state setting commands for any state not
specified as dynamic in the VkPipeline object bound to the pipeline bind point used by
this command, since that pipeline was bound

• VUID-vkCmdDraw-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used to
sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,
VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDraw-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command accesses a

873

VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with
ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDraw-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a
LOD bias or any offset values, in any shader stage

• VUID-vkCmdDraw-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDraw-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDraw-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDraw-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDraw-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDraw-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDraw-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDraw-OpImageWrite-08795
If a VkImageView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the image view’s format

• VUID-vkCmdDraw-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

874

• VUID-vkCmdDraw-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDraw-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDraw-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDraw-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDraw-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDraw-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDraw-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDraw-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDraw-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDraw-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDraw-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

875

• VUID-vkCmdDraw-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDraw-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDraw-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDraw-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDraw-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current

876

stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDraw-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDraw-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDraw-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

877

• VUID-vkCmdDraw-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDraw-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDraw-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDraw-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDraw-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDraw-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDraw-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDraw-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline,

878

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDraw-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDraw-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDraw-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDraw-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDraw-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDraw-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDraw-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDraw-colorAttachmentCount-06179
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08910
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView not equal to

879

VK_NULL_HANDLE must have been created with a VkFormat equal to the corresponding
element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the
currently bound graphics pipeline

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08912
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView equal to VK_NULL_HANDLE
must have the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the currently bound pipeline equal to
VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDraw-multisampledRenderToSingleSampled-07285
If the current render pass instance was begun with vkCmdBeginRendering with a
VkRenderingInfo::colorAttachmentCount parameter greater than 0, then each element of
the VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDraw-multisampledRenderToSingleSampled-07286
If VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDraw-multisampledRenderToSingleSampled-07287
If VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value
of rasterizationSamples for the currently bound graphics pipeline must be equal to the

880

sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDraw-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDraw-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDraw-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDraw-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDraw-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

• VUID-vkCmdDraw-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDraw-None-04008

881

If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDraw-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDraw-None-07842
If then vkCmdSetPrimitiveTopology must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDraw-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled then the primitiveTopology
parameter of vkCmdSetPrimitiveTopology must be of the same topology class as the
pipeline VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDraw-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer prior
to this draw command, and the pStrides parameter of vkCmdBindVertexBuffers2EXT must
not be NULL

• VUID-vkCmdDraw-None-04879
If then vkCmdSetPrimitiveRestartEnable must have been called in the current command
buffer prior to this drawing command

Valid Usage (Implicit)

• VUID-vkCmdDraw-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDraw-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDraw-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDraw-renderpass
This command must only be called inside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

882

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Inside Graphics Action

To record an indexed draw, call:

// Provided by VK_VERSION_1_0
void vkCmdDrawIndexed(
 VkCommandBuffer commandBuffer,
 uint32_t indexCount,
 uint32_t instanceCount,
 uint32_t firstIndex,
 int32_t vertexOffset,
 uint32_t firstInstance);

• commandBuffer is the command buffer into which the command is recorded.

• indexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstIndex is the base index within the index buffer.

• vertexOffset is the value added to the vertex index before indexing into the vertex buffer.

• firstInstance is the instance ID of the first instance to draw.

When the command is executed, primitives are assembled using the current primitive topology and
indexCount vertices whose indices are retrieved from the index buffer. The index buffer is treated
as an array of tightly packed unsigned integers of size defined by the vkCmdBindIndexBuffer
::indexType parameter with which the buffer was bound.

The first vertex index is at an offset of firstIndex × indexSize + offset within the bound index
buffer, where offset is the offset specified by vkCmdBindIndexBuffer and indexSize is the byte size of
the type specified by indexType. Subsequent index values are retrieved from consecutive locations
in the index buffer. Indices are first compared to the primitive restart value, then zero extended to
32 bits (if the indexType is VK_INDEX_TYPE_UINT16) and have vertexOffset added to them, before being
supplied as the vertexIndex value.

The primitives are drawn instanceCount times with instanceIndex starting with firstInstance and
increasing sequentially for each instance. The assembled primitives execute the bound graphics
pipeline.

Valid Usage

• VUID-vkCmdDrawIndexed-magFilter-04553

883

If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexed-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexed-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexed-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexed-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndexed-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndexed-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndexed-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexed-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexed-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format

884

field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexed-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexed-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexed-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline , as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexed-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline , as described in Pipeline Layout
Compatibility

• VUID-vkCmdDrawIndexed-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by a bound shader

• VUID-vkCmdDrawIndexed-None-08606
A valid pipeline must be bound to the pipeline bind point used by this command

• VUID-vkCmdDrawIndexed-None-08608
There must not have been any calls to dynamic state setting commands for any state not
specified as dynamic in the VkPipeline object bound to the pipeline bind point used by
this command, since that pipeline was bound

• VUID-vkCmdDrawIndexed-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used to
sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,
VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndexed-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with
ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndexed-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command accesses a

885

VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a
LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndexed-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexed-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexed-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndexed-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndexed-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndexed-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndexed-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndexed-OpImageWrite-08795
If a VkImageView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the image view’s format

• VUID-vkCmdDrawIndexed-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawIndexed-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndexed-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a

886

result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndexed-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexed-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexed-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndexed-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndexed-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndexed-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndexed-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndexed-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndexed-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndexed-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndexed-None-06886

887

If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndexed-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndexed-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexed-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current

888

stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndexed-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexed-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-viewportCount-03417

889

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndexed-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndexed-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndexed-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexed-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexed-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndexed-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline,

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndexed-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of

890

pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndexed-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexed-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndexed-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexed-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndexed-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndexed-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndexed-colorAttachmentCount-06179
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08910
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView not equal to
VK_NULL_HANDLE must have been created with a VkFormat equal to the corresponding
element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the
currently bound graphics pipeline

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08912
If the current render pass instance was begun with vkCmdBeginRendering and

891

VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView equal to VK_NULL_HANDLE
must have the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the currently bound pipeline equal to
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexed-multisampledRenderToSingleSampled-07285
If the current render pass instance was begun with vkCmdBeginRendering with a
VkRenderingInfo::colorAttachmentCount parameter greater than 0, then each element of
the VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndexed-multisampledRenderToSingleSampled-07286
If VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexed-multisampledRenderToSingleSampled-07287
If VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value
of rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexed-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

892

• VUID-vkCmdDrawIndexed-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexed-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndexed-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDrawIndexed-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

• VUID-vkCmdDrawIndexed-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndexed-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndexed-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

893

• VUID-vkCmdDrawIndexed-None-07842
If then vkCmdSetPrimitiveTopology must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled then the primitiveTopology
parameter of vkCmdSetPrimitiveTopology must be of the same topology class as the
pipeline VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndexed-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer prior
to this draw command, and the pStrides parameter of vkCmdBindVertexBuffers2EXT must
not be NULL

• VUID-vkCmdDrawIndexed-None-04879
If then vkCmdSetPrimitiveRestartEnable must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexed-None-07312
A valid index buffer must be bound

• VUID-vkCmdDrawIndexed-robustBufferAccess2-07825
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer

• VUID-vkCmdDrawIndexed-robustBufferAccess2-08798
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer

Valid Usage (Implicit)

• VUID-vkCmdDrawIndexed-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndexed-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndexed-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndexed-renderpass
This command must only be called inside of a render pass instance

894

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Inside Graphics Action

To record a non-indexed indirect drawing command, call:

// Provided by VK_VERSION_1_0
void vkCmdDrawIndirect(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 uint32_t drawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndirect behaves similarly to vkCmdDraw except that the parameters are read by the
device from a buffer during execution. drawCount draws are executed by the command, with
parameters taken from buffer starting at offset and increasing by stride bytes for each successive
draw. The parameters of each draw are encoded in an array of VkDrawIndirectCommand
structures. If drawCount is less than or equal to one, stride is ignored.

Valid Usage

• VUID-vkCmdDrawIndirect-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain

895

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndirect-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirect-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndirect-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirect-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndirect-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndirect-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndirect-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirect-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirect-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirect-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of

896

the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirect-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirect-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline , as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirect-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline , as described in Pipeline Layout
Compatibility

• VUID-vkCmdDrawIndirect-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by a bound shader

• VUID-vkCmdDrawIndirect-None-08606
A valid pipeline must be bound to the pipeline bind point used by this command

• VUID-vkCmdDrawIndirect-None-08608
There must not have been any calls to dynamic state setting commands for any state not
specified as dynamic in the VkPipeline object bound to the pipeline bind point used by
this command, since that pipeline was bound

• VUID-vkCmdDrawIndirect-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used to
sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,
VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndirect-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with
ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndirect-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a
LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndirect-uniformBuffers-06935

897

If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndirect-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndirect-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndirect-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndirect-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndirect-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndirect-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndirect-OpImageWrite-08795
If a VkImageView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the image view’s format

• VUID-vkCmdDrawIndirect-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawIndirect-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndirect-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndirect-renderPass-02684
The current render pass must be compatible with the renderPass member of the

898

VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirect-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirect-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndirect-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndirect-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndirect-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndirect-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndirect-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndirect-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndirect-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndirect-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndirect-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only

899

layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndirect-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirect-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum

900

instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndirect-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirect-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer

901

prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndirect-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndirect-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndirect-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirect-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirect-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndirect-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline,

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndirect-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndirect-imageView-06173

902

If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirect-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndirect-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirect-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndirect-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndirect-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndirect-colorAttachmentCount-06179
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08910
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView not equal to
VK_NULL_HANDLE must have been created with a VkFormat equal to the corresponding
element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the
currently bound graphics pipeline

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08912
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView equal to VK_NULL_HANDLE
must have the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the currently bound pipeline equal to

903

VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirect-multisampledRenderToSingleSampled-07285
If the current render pass instance was begun with vkCmdBeginRendering with a
VkRenderingInfo::colorAttachmentCount parameter greater than 0, then each element of
the VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndirect-multisampledRenderToSingleSampled-07286
If VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirect-multisampledRenderToSingleSampled-07287
If VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value
of rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirect-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawIndirect-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color

904

attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirect-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndirect-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndirect-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndirect-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndirect-None-07842
If then vkCmdSetPrimitiveTopology must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled then the primitiveTopology
parameter of vkCmdSetPrimitiveTopology must be of the same topology class as the
pipeline VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndirect-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer prior

905

to this draw command, and the pStrides parameter of vkCmdBindVertexBuffers2EXT must
not be NULL

• VUID-vkCmdDrawIndirect-None-04879
If then vkCmdSetPrimitiveRestartEnable must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirect-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawIndirect-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndirect-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawIndirect-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawIndirect-drawCount-02718
If the multiDrawIndirect feature is not enabled, drawCount must be 0 or 1

• VUID-vkCmdDrawIndirect-drawCount-02719
drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• VUID-vkCmdDrawIndirect-drawCount-00476
If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or
equal to sizeof(VkDrawIndirectCommand)

• VUID-vkCmdDrawIndirect-drawCount-00487
If drawCount is equal to 1, (offset + sizeof(VkDrawIndirectCommand)) must be less than or
equal to the size of buffer

• VUID-vkCmdDrawIndirect-drawCount-00488
If drawCount is greater than 1, (stride × (drawCount - 1) + offset + sizeof
(VkDrawIndirectCommand)) must be less than or equal to the size of buffer

Valid Usage (Implicit)

• VUID-vkCmdDrawIndirect-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndirect-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndirect-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndirect-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndirect-renderpass

906

This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndirect-commonparent
Both of buffer, and commandBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Inside Graphics Action

The VkDrawIndirectCommand structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDrawIndirectCommand {
 uint32_t vertexCount;
 uint32_t instanceCount;
 uint32_t firstVertex;
 uint32_t firstInstance;
} VkDrawIndirectCommand;

• vertexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstVertex is the index of the first vertex to draw.

• firstInstance is the instance ID of the first instance to draw.

The members of VkDrawIndirectCommand have the same meaning as the similarly named parameters
of vkCmdDraw.

Valid Usage

• VUID-VkDrawIndirectCommand-None-00500
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

907

• VUID-VkDrawIndirectCommand-firstInstance-00501
If the drawIndirectFirstInstance feature is not enabled, firstInstance must be 0

To record a non-indexed draw call with a draw call count sourced from a buffer, call:

// Provided by VK_VERSION_1_2
void vkCmdDrawIndirectCount(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,
 uint32_t maxDrawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• countBuffer is the buffer containing the draw count.

• countBufferOffset is the byte offset into countBuffer where the draw count begins.

• maxDrawCount specifies the maximum number of draws that will be executed. The actual number
of executed draw calls is the minimum of the count specified in countBuffer and maxDrawCount.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndirectCount behaves similarly to vkCmdDrawIndirect except that the draw count is read
by the device from a buffer during execution. The command will read an unsigned 32-bit integer
from countBuffer located at countBufferOffset and use this as the draw count.

Valid Usage

• VUID-vkCmdDrawIndirectCount-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndirectCount-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirectCount-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,

908

reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndirectCount-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndirectCount-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndirectCount-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndirectCount-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndirectCount-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirectCount-None-08601
For each push constant that is statically used by a bound shader, a push constant value

909

must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline , as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndirectCount-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline , as described in Pipeline Layout
Compatibility

• VUID-vkCmdDrawIndirectCount-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by a bound shader

• VUID-vkCmdDrawIndirectCount-None-08606
A valid pipeline must be bound to the pipeline bind point used by this command

• VUID-vkCmdDrawIndirectCount-None-08608
There must not have been any calls to dynamic state setting commands for any state not
specified as dynamic in the VkPipeline object bound to the pipeline bind point used by
this command, since that pipeline was bound

• VUID-vkCmdDrawIndirectCount-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used to
sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,
VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndirectCount-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with
ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndirectCount-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a
LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndirectCount-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndirectCount-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

910

• VUID-vkCmdDrawIndirectCount-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndirectCount-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndirectCount-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndirectCount-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndirectCount-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndirectCount-OpImageWrite-08795
If a VkImageView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the image view’s format

• VUID-vkCmdDrawIndirectCount-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawIndirectCount-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndirectCount-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndirectCount-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirectCount-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndirectCount-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

911

• VUID-vkCmdDrawIndirectCount-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndirectCount-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndirectCount-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndirectCount-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndirectCount-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndirectCount-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndirectCount-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndirectCount-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndirectCount-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndirectCount-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

912

• VUID-vkCmdDrawIndirectCount-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirectCount-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndirectCount-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

913

• VUID-vkCmdDrawIndirectCount-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndirectCount-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndirectCount-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndirectCount-viewportCount-03419

914

If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndirectCount-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndirectCount-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndirectCount-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndirectCount-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline,

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndirectCount-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndirectCount-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirectCount-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndirectCount-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView

915

member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndirectCount-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndirectCount-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndirectCount-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndirectCount-colorAttachmentCount-06179
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08910
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView not equal to
VK_NULL_HANDLE must have been created with a VkFormat equal to the corresponding
element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the
currently bound graphics pipeline

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08912
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView equal to VK_NULL_HANDLE
must have the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the currently bound pipeline equal to
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo

916

::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirectCount-multisampledRenderToSingleSampled-07285
If the current render pass instance was begun with vkCmdBeginRendering with a
VkRenderingInfo::colorAttachmentCount parameter greater than 0, then each element of
the VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndirectCount-multisampledRenderToSingleSampled-07286
If VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndirectCount-multisampledRenderToSingleSampled-07287
If VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value
of rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndirectCount-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawIndirectCount-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-pStencilAttachment-08965

917

If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndirectCount-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndirectCount-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndirectCount-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndirectCount-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndirectCount-None-07842
If then vkCmdSetPrimitiveTopology must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled then the primitiveTopology
parameter of vkCmdSetPrimitiveTopology must be of the same topology class as the
pipeline VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndirectCount-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer prior
to this draw command, and the pStrides parameter of vkCmdBindVertexBuffers2EXT must
not be NULL

• VUID-vkCmdDrawIndirectCount-None-04879
If then vkCmdSetPrimitiveRestartEnable must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndirectCount-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawIndirectCount-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

918

• VUID-vkCmdDrawIndirectCount-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawIndirectCount-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawIndirectCount-countBuffer-02714
If countBuffer is non-sparse then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdDrawIndirectCount-countBuffer-02715
countBuffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndirectCount-countBufferOffset-02716
countBufferOffset must be a multiple of 4

• VUID-vkCmdDrawIndirectCount-countBuffer-02717
The count stored in countBuffer must be less than or equal to VkPhysicalDeviceLimits
::maxDrawIndirectCount

• VUID-vkCmdDrawIndirectCount-countBufferOffset-04129
(countBufferOffset + sizeof(uint32_t)) must be less than or equal to the size of countBuffer

• VUID-vkCmdDrawIndirectCount-None-04445
If drawIndirectCount is not enabled this function must not be used

• VUID-vkCmdDrawIndirectCount-stride-03110
stride must be a multiple of 4 and must be greater than or equal to
sizeof(VkDrawIndirectCommand)

• VUID-vkCmdDrawIndirectCount-maxDrawCount-03111
If maxDrawCount is greater than or equal to 1, (stride × (maxDrawCount - 1) + offset +
sizeof(VkDrawIndirectCommand)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawIndirectCount-countBuffer-03121
If the count stored in countBuffer is equal to 1, (offset + sizeof(VkDrawIndirectCommand))
must be less than or equal to the size of buffer

• VUID-vkCmdDrawIndirectCount-countBuffer-03122
If the count stored in countBuffer is greater than 1, (stride × (drawCount - 1) + offset +
sizeof(VkDrawIndirectCommand)) must be less than or equal to the size of buffer

Valid Usage (Implicit)

• VUID-vkCmdDrawIndirectCount-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndirectCount-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndirectCount-countBuffer-parameter
countBuffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndirectCount-commandBuffer-recording
commandBuffer must be in the recording state

919

• VUID-vkCmdDrawIndirectCount-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndirectCount-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndirectCount-commonparent
Each of buffer, commandBuffer, and countBuffer must have been created, allocated, or
retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Inside Graphics Action

To record an indexed indirect drawing command, call:

// Provided by VK_VERSION_1_0
void vkCmdDrawIndexedIndirect(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 uint32_t drawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndexedIndirect behaves similarly to vkCmdDrawIndexed except that the parameters are
read by the device from a buffer during execution. drawCount draws are executed by the command,
with parameters taken from buffer starting at offset and increasing by stride bytes for each

920

successive draw. The parameters of each draw are encoded in an array of
VkDrawIndexedIndirectCommand structures. If drawCount is less than or equal to one, stride is
ignored.

Valid Usage

• VUID-vkCmdDrawIndexedIndirect-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexedIndirect-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexedIndirect-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexedIndirect-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexedIndirect-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndexedIndirect-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndexedIndirect-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

921

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirect-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirect-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline , as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirect-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline , as described in Pipeline Layout
Compatibility

• VUID-vkCmdDrawIndexedIndirect-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by a bound shader

• VUID-vkCmdDrawIndexedIndirect-None-08606
A valid pipeline must be bound to the pipeline bind point used by this command

• VUID-vkCmdDrawIndexedIndirect-None-08608
There must not have been any calls to dynamic state setting commands for any state not
specified as dynamic in the VkPipeline object bound to the pipeline bind point used by
this command, since that pipeline was bound

• VUID-vkCmdDrawIndexedIndirect-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used to
sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,
VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndexedIndirect-None-08610

922

If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with
ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndexedIndirect-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a
LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndexedIndirect-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexedIndirect-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndexedIndirect-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndexedIndirect-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndexedIndirect-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndexedIndirect-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndexedIndirect-OpImageWrite-08795
If a VkImageView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the image view’s format

• VUID-vkCmdDrawIndexedIndirect-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

923

• VUID-vkCmdDrawIndexedIndirect-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndexedIndirect-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndexedIndirect-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexedIndirect-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexedIndirect-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndexedIndirect-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndexedIndirect-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndexedIndirect-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirect-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirect-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirect-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

924

• VUID-vkCmdDrawIndexedIndirect-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndexedIndirect-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndexedIndirect-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndexedIndirect-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07837
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current

925

stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndexedIndirect-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

926

• VUID-vkCmdDrawIndexedIndirect-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndexedIndirect-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndexedIndirect-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndexedIndirect-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirect-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color
attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndexedIndirect-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline,

927

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndexedIndirect-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirect-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirect-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndexedIndirect-colorAttachmentCount-06179
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08910
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView not equal to

928

VK_NULL_HANDLE must have been created with a VkFormat equal to the corresponding
element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the
currently bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08912
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView equal to VK_NULL_HANDLE
must have the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the currently bound pipeline equal to
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-multisampledRenderToSingleSampled-07285
If the current render pass instance was begun with vkCmdBeginRendering with a
VkRenderingInfo::colorAttachmentCount parameter greater than 0, then each element of
the VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirect-multisampledRenderToSingleSampled-07286
If VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-multisampledRenderToSingleSampled-07287
If VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value
of rasterizationSamples for the currently bound graphics pipeline must be equal to the

929

sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirect-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawIndexedIndirect-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirect-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndexedIndirect-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndexedIndirect-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

• VUID-vkCmdDrawIndexedIndirect-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndexedIndirect-None-07842
If then vkCmdSetPrimitiveTopology must have been called in the current command
buffer prior to this drawing command

930

• VUID-vkCmdDrawIndexedIndirect-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled then the primitiveTopology
parameter of vkCmdSetPrimitiveTopology must be of the same topology class as the
pipeline VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndexedIndirect-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer prior
to this draw command, and the pStrides parameter of vkCmdBindVertexBuffers2EXT must
not be NULL

• VUID-vkCmdDrawIndexedIndirect-None-04879
If then vkCmdSetPrimitiveRestartEnable must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirect-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawIndexedIndirect-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndexedIndirect-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawIndexedIndirect-drawCount-02718
If the multiDrawIndirect feature is not enabled, drawCount must be 0 or 1

• VUID-vkCmdDrawIndexedIndirect-drawCount-02719
drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• VUID-vkCmdDrawIndexedIndirect-None-07312
A valid index buffer must be bound

• VUID-vkCmdDrawIndexedIndirect-robustBufferAccess2-07825
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer

• VUID-vkCmdDrawIndexedIndirect-drawCount-00528
If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or
equal to sizeof(VkDrawIndexedIndirectCommand)

• VUID-vkCmdDrawIndexedIndirect-drawCount-00539
If drawCount is equal to 1, (offset + sizeof(VkDrawIndexedIndirectCommand)) must be less
than or equal to the size of buffer

• VUID-vkCmdDrawIndexedIndirect-drawCount-00540

931

If drawCount is greater than 1, (stride × (drawCount - 1) + offset + sizeof
(VkDrawIndexedIndirectCommand)) must be less than or equal to the size of buffer

Valid Usage (Implicit)

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndexedIndirect-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndexedIndirect-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndexedIndirect-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndexedIndirect-commonparent
Both of buffer, and commandBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Inside Graphics Action

The VkDrawIndexedIndirectCommand structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDrawIndexedIndirectCommand {
 uint32_t indexCount;
 uint32_t instanceCount;
 uint32_t firstIndex;
 int32_t vertexOffset;

932

 uint32_t firstInstance;
} VkDrawIndexedIndirectCommand;

• indexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstIndex is the base index within the index buffer.

• vertexOffset is the value added to the vertex index before indexing into the vertex buffer.

• firstInstance is the instance ID of the first instance to draw.

The members of VkDrawIndexedIndirectCommand have the same meaning as the similarly named
parameters of vkCmdDrawIndexed.

Valid Usage

• VUID-VkDrawIndexedIndirectCommand-robustBufferAccess2-08798
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer

• VUID-VkDrawIndexedIndirectCommand-None-00552
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-VkDrawIndexedIndirectCommand-firstInstance-00554
If the drawIndirectFirstInstance feature is not enabled, firstInstance must be 0

To record an indexed draw call with a draw call count sourced from a buffer, call:

// Provided by VK_VERSION_1_2
void vkCmdDrawIndexedIndirectCount(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkBuffer countBuffer,
 VkDeviceSize countBufferOffset,
 uint32_t maxDrawCount,
 uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• countBuffer is the buffer containing the draw count.

• countBufferOffset is the byte offset into countBuffer where the draw count begins.

933

• maxDrawCount specifies the maximum number of draws that will be executed. The actual number
of executed draw calls is the minimum of the count specified in countBuffer and maxDrawCount.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndexedIndirectCount behaves similarly to vkCmdDrawIndexedIndirect except that the
draw count is read by the device from a buffer during execution. The command will read an
unsigned 32-bit integer from countBuffer located at countBufferOffset and use this as the draw
count.

Valid Usage

• VUID-vkCmdDrawIndexedIndirectCount-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexedIndirectCount-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexedIndirectCount-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDrawIndexedIndirectCount-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features

934

must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDrawIndexedIndirectCount-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirectCount-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline , as described in Pipeline Layout Compatibility

• VUID-vkCmdDrawIndexedIndirectCount-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline , as described in Pipeline Layout
Compatibility

• VUID-vkCmdDrawIndexedIndirectCount-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by a bound shader

• VUID-vkCmdDrawIndexedIndirectCount-None-08606
A valid pipeline must be bound to the pipeline bind point used by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-08608
There must not have been any calls to dynamic state setting commands for any state not
specified as dynamic in the VkPipeline object bound to the pipeline bind point used by
this command, since that pipeline was bound

• VUID-vkCmdDrawIndexedIndirectCount-None-08609

935

If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used to
sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,
VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDrawIndexedIndirectCount-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with
ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDrawIndexedIndirectCount-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a
LOD bias or any offset values, in any shader stage

• VUID-vkCmdDrawIndexedIndirectCount-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexedIndirectCount-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDrawIndexedIndirectCount-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDrawIndexedIndirectCount-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDrawIndexedIndirectCount-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDrawIndexedIndirectCount-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDrawIndexedIndirectCount-OpImageWrite-08795
If a VkImageView is accessed using OpImageWrite as a result of this command, then the

936

Type of the Texel operand of that instruction must have at least as many components as
the image view’s format

• VUID-vkCmdDrawIndexedIndirectCount-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDrawIndexedIndirectCount-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDrawIndexedIndirectCount-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDrawIndexedIndirectCount-renderPass-02684
The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexedIndirectCount-subpass-02685
The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline bound to
VK_PIPELINE_BIND_POINT_GRAPHICS

• VUID-vkCmdDrawIndexedIndirectCount-None-07748
If any shader statically accesses an input attachment, a valid descriptor must be bound to
the pipeline via a descriptor set

• VUID-vkCmdDrawIndexedIndirectCount-OpTypeImage-07468
If any shader executed by this pipeline accesses an OpTypeImage variable with a Dim
operand of SubpassData, it must be decorated with an InputAttachmentIndex that
corresponds to a valid input attachment in the current subpass

• VUID-vkCmdDrawIndexedIndirectCount-None-07469
Input attachment views accessed in a subpass must be created with the same VkFormat
as the corresponding subpass definition, and be created with a VkImageView that is
compatible with the attachment referenced by the subpass' pInputAttachments
[InputAttachmentIndex] in the currently bound VkFramebuffer as specified by Fragment
Input Attachment Compatibility

• VUID-vkCmdDrawIndexedIndirectCount-None-06537
Memory backing image subresources used as attachments in the current render pass
must not be written in any way other than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-09000
If a color attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-09001
If a depth attachment is written by any prior command in this subpass or by the load,

937

store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-09002
If a stencil attachment is written by any prior command in this subpass or by the load,
store, or resolve operations for this subpass, it must not be accessed in any way other
than as an attachment by this command

• VUID-vkCmdDrawIndexedIndirectCount-None-06539
If any previously recorded command in the current subpass accessed an image
subresource used as an attachment in this subpass in any way other than as an
attachment, this command must not write to that image subresource as an attachment

• VUID-vkCmdDrawIndexedIndirectCount-None-06886
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the depth aspect, depth writes must be disabled

• VUID-vkCmdDrawIndexedIndirectCount-None-06887
If the current render pass instance uses a depth/stencil attachment with a read-only
layout for the stencil aspect, both front and back writeMask are not zero, and stencil test is
enabled, all stencil ops must be VK_STENCIL_OP_KEEP

• VUID-vkCmdDrawIndexedIndirectCount-None-07831
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled then vkCmdSetViewport must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07832
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled then vkCmdSetScissor must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07833
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled then vkCmdSetLineWidth must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07834
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled then vkCmdSetDepthBias must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07835
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled then vkCmdSetBlendConstants
must have been called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07836
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_DEPTH_BOUNDS
dynamic state enabled, and if the current depthBoundsTestEnable state is VK_TRUE, then
vkCmdSetDepthBounds must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07837

938

If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilCompareMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07838
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilWriteMask must have been
called in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07839
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled, and if the current
stencilTestEnable state is VK_TRUE, then vkCmdSetStencilReference must have been called
in the current command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-maxMultiviewInstanceIndex-02688
If the draw is recorded in a render pass instance with multiview enabled, the maximum
instance index must be less than or equal to VkPhysicalDeviceMultiviewProperties
::maxMultiviewInstanceIndex

• VUID-vkCmdDrawIndexedIndirectCount-None-07840
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_CULL_MODE
dynamic state enabled then vkCmdSetCullMode must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07841
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_FRONT_FACE
dynamic state enabled then vkCmdSetFrontFace must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07843
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE dynamic state enabled then
vkCmdSetDepthTestEnable must have been called in the current command buffer prior to
this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07844
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE dynamic state enabled then
vkCmdSetDepthWriteEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07845
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP dynamic state enabled then
vkCmdSetDepthCompareOp must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07846
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE dynamic state enabled then

939

vkCmdSetDepthBoundsTestEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07847
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE dynamic state enabled then
vkCmdSetStencilTestEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-07848
If the bound graphics pipeline state was created with the VK_DYNAMIC_STATE_STENCIL_OP
dynamic state enabled then vkCmdSetStencilOp must have been called in the current
command buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-03417
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, then
vkCmdSetViewportWithCount must have been called in the current command buffer
prior to this drawing command, and the viewportCount parameter of
vkCmdSetViewportWithCount must match the VkPipelineViewportStateCreateInfo
::scissorCount of the pipeline

• VUID-vkCmdDrawIndexedIndirectCount-scissorCount-03418
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT dynamic state enabled, but not the
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic state enabled, then
vkCmdSetScissorWithCount must have been called in the current command buffer prior
to this drawing command, and the scissorCount parameter of vkCmdSetScissorWithCount
must match the VkPipelineViewportStateCreateInfo::viewportCount of the pipeline

• VUID-vkCmdDrawIndexedIndirectCount-viewportCount-03419
If the bound graphics pipeline state was created with both the
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT dynamic
states enabled then both vkCmdSetViewportWithCount and vkCmdSetScissorWithCount
must have been called in the current command buffer prior to this drawing command,
and the viewportCount parameter of vkCmdSetViewportWithCount must match the
scissorCount parameter of vkCmdSetScissorWithCount

• VUID-vkCmdDrawIndexedIndirectCount-None-04876
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE dynamic state enabled then
vkCmdSetRasterizerDiscardEnable must have been called in the current command buffer
prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-None-04877
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE dynamic state enabled then
vkCmdSetDepthBiasEnable must have been called in the current command buffer prior
to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-blendEnable-04727
If rasterization is not disabled in the bound graphics pipeline, then for each color

940

attachment in the subpass, if the corresponding image view’s format features do not
contain VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, then the blendEnable member of
the corresponding element of the pAttachments member of pColorBlendState must be
VK_FALSE

• VUID-vkCmdDrawIndexedIndirectCount-multisampledRenderToSingleSampled-07284
If rasterization is not disabled in the bound graphics pipeline,

then rasterizationSamples for the currently bound graphics pipeline must be the same as
the current subpass color and/or depth/stencil attachments

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06172
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command must
not write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06173
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, this command
must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06174
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL, this
command must not write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06175
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL, this
command must not write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06176
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pDepthAttachment is not VK_NULL_HANDLE, and the layout member of
pDepthAttachment is VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, this command must not
write any values to the depth attachment

• VUID-vkCmdDrawIndexedIndirectCount-imageView-06177
If the current render pass instance was begun with vkCmdBeginRendering, the imageView
member of pStencilAttachment is not VK_NULL_HANDLE, and the layout member of
pStencilAttachment is VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, this command must not
write any values to the stencil attachment

• VUID-vkCmdDrawIndexedIndirectCount-viewMask-06178
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::viewMask equal to VkRenderingInfo::viewMask

• VUID-vkCmdDrawIndexedIndirectCount-colorAttachmentCount-06179

941

If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound graphics pipeline must have been created with a VkPipelineRenderingCreateInfo
::colorAttachmentCount equal to VkRenderingInfo::colorAttachmentCount

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08910
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView not equal to
VK_NULL_HANDLE must have been created with a VkFormat equal to the corresponding
element of VkPipelineRenderingCreateInfo::pColorAttachmentFormats used to create the
currently bound graphics pipeline

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08912
If the current render pass instance was begun with vkCmdBeginRendering and
VkRenderingInfo::colorAttachmentCount greater than 0, then each element of the
VkRenderingInfo::pColorAttachments array with an imageView equal to VK_NULL_HANDLE
must have the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the currently bound pipeline equal to
VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08913
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08914
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the currently bound
graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08916
If the current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-dynamicRenderingUnusedAttachments-08917
If current render pass instance was begun with vkCmdBeginRendering, and
VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value of
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the currently
bound graphics pipeline must be equal to the VkFormat used to create VkRenderingInfo
::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-multisampledRenderToSingleSampled-07285
If the current render pass instance was begun with vkCmdBeginRendering with a
VkRenderingInfo::colorAttachmentCount parameter greater than 0, then each element of
the VkRenderingInfo::pColorAttachments array with a imageView not equal to
VK_NULL_HANDLE must have been created with a sample count equal to the value of
rasterizationSamples for the currently bound graphics pipeline

942

• VUID-vkCmdDrawIndexedIndirectCount-multisampledRenderToSingleSampled-07286
If VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, the value of
rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pDepthAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-multisampledRenderToSingleSampled-07287
If VkRenderingInfo::pStencilAttachment->imageView was not VK_NULL_HANDLE, the value
of rasterizationSamples for the currently bound graphics pipeline must be equal to the
sample count used to create VkRenderingInfo::pStencilAttachment->imageView

• VUID-vkCmdDrawIndexedIndirectCount-renderPass-06198
If the current render pass instance was begun with vkCmdBeginRendering, the currently
bound pipeline must have been created with a VkGraphicsPipelineCreateInfo::renderPass
equal to VK_NULL_HANDLE

• VUID-vkCmdDrawIndexedIndirectCount-pColorAttachments-08963
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound with a fragment shader that statically writes to a color
attachment, the color write mask is not zero, color writes are enabled, and the
corresponding element of the VkRenderingInfo::pColorAttachments->imageView was not
VK_NULL_HANDLE, then the corresponding element of VkPipelineRenderingCreateInfo
::pColorAttachmentFormats used to create the pipeline must not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-pDepthAttachment-08964
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, depth test is enabled, depth write is enabled, and the
VkRenderingInfo::pDepthAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::depthAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-pStencilAttachment-08965
If the current render pass instance was begun with vkCmdBeginRendering, there is a
graphics pipeline bound, stencil test is enabled and the VkRenderingInfo
::pStencilAttachment->imageView was not VK_NULL_HANDLE, then the
VkPipelineRenderingCreateInfo::stencilAttachmentFormat used to create the pipeline must
not be VK_FORMAT_UNDEFINED

• VUID-vkCmdDrawIndexedIndirectCount-maxFragmentDualSrcAttachments-09239
If blending is enabled for any attachment where either the source or destination blend
factors for that attachment use the secondary color input, the maximum value of Location
for any output attachment statically used in the Fragment Execution Model executed by this
command must be less than maxFragmentDualSrcAttachments

• VUID-vkCmdDrawIndexedIndirectCount-None-04007
All vertex input bindings accessed via vertex input variables declared in the vertex
shader entry point’s interface must have either valid or VK_NULL_HANDLE buffers
bound

• VUID-vkCmdDrawIndexedIndirectCount-None-04008
If the nullDescriptor feature is not enabled, all vertex input bindings accessed via vertex
input variables declared in the vertex shader entry point’s interface must not be
VK_NULL_HANDLE

943

• VUID-vkCmdDrawIndexedIndirectCount-None-02721
For a given vertex buffer binding, any attribute data fetched must be entirely contained
within the corresponding vertex buffer binding, as described in Vertex Input Description

• VUID-vkCmdDrawIndexedIndirectCount-None-07842
If then vkCmdSetPrimitiveTopology must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-dynamicPrimitiveTopologyUnrestricted-07500
If the bound graphics pipeline state was created with the
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY dynamic state enabled then the primitiveTopology
parameter of vkCmdSetPrimitiveTopology must be of the same topology class as the
pipeline VkPipelineInputAssemblyStateCreateInfo::topology state

• VUID-vkCmdDrawIndexedIndirectCount-pStrides-04913
If the bound graphics pipeline was created with the
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT dynamic state enabled, then
vkCmdBindVertexBuffers2EXT must have been called in the current command buffer prior
to this draw command, and the pStrides parameter of vkCmdBindVertexBuffers2EXT must
not be NULL

• VUID-vkCmdDrawIndexedIndirectCount-None-04879
If then vkCmdSetPrimitiveRestartEnable must have been called in the current command
buffer prior to this drawing command

• VUID-vkCmdDrawIndexedIndirectCount-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDrawIndexedIndirectCount-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndexedIndirectCount-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-02714
If countBuffer is non-sparse then it must be bound completely and contiguously to a
single VkDeviceMemory object

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-02715
countBuffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDrawIndexedIndirectCount-countBufferOffset-02716
countBufferOffset must be a multiple of 4

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-02717
The count stored in countBuffer must be less than or equal to VkPhysicalDeviceLimits
::maxDrawIndirectCount

• VUID-vkCmdDrawIndexedIndirectCount-countBufferOffset-04129
(countBufferOffset + sizeof(uint32_t)) must be less than or equal to the size of countBuffer

944

• VUID-vkCmdDrawIndexedIndirectCount-None-04445
If drawIndirectCount is not enabled this function must not be used

• VUID-vkCmdDrawIndexedIndirectCount-None-07312
A valid index buffer must be bound

• VUID-vkCmdDrawIndexedIndirectCount-robustBufferAccess2-07825
If robustBufferAccess2 is not enabled, (indexSize × (firstIndex + indexCount) + offset) must
be less than or equal to the size of the bound index buffer, with indexSize being based on
the type specified by indexType, where the index buffer, indexType, and offset are
specified via vkCmdBindIndexBuffer

• VUID-vkCmdDrawIndexedIndirectCount-stride-03142
stride must be a multiple of 4 and must be greater than or equal to
sizeof(VkDrawIndexedIndirectCommand)

• VUID-vkCmdDrawIndexedIndirectCount-maxDrawCount-03143
If maxDrawCount is greater than or equal to 1, (stride × (maxDrawCount - 1) + offset +
sizeof(VkDrawIndexedIndirectCommand)) must be less than or equal to the size of buffer

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-03153
If count stored in countBuffer is equal to 1, (offset + sizeof(VkDrawIndexedIndirectCommand))
must be less than or equal to the size of buffer

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-03154
If count stored in countBuffer is greater than 1, (stride × (drawCount - 1) + offset +
sizeof(VkDrawIndexedIndirectCommand)) must be less than or equal to the size of buffer

Valid Usage (Implicit)

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDrawIndexedIndirectCount-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndexedIndirectCount-countBuffer-parameter
countBuffer must be a valid VkBuffer handle

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDrawIndexedIndirectCount-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdDrawIndexedIndirectCount-renderpass
This command must only be called inside of a render pass instance

• VUID-vkCmdDrawIndexedIndirectCount-commonparent
Each of buffer, commandBuffer, and countBuffer must have been created, allocated, or
retrieved from the same VkDevice

945

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Inside Graphics Action

946

Chapter 21. Fixed-Function Vertex
Processing
Vertex fetching is controlled via configurable state, as a logically distinct graphics pipeline stage.

21.1. Vertex Attributes
Vertex shaders can define input variables, which receive vertex attribute data transferred from one
or more VkBuffer(s) by drawing commands. Vertex shader input variables are bound to buffers via
an indirect binding where the vertex shader associates a vertex input attribute number with each
variable, vertex input attributes are associated to vertex input bindings on a per-pipeline basis, and
vertex input bindings are associated with specific buffers on a per-draw basis via the
vkCmdBindVertexBuffers command. Vertex input attribute and vertex input binding descriptions also
contain format information controlling how data is extracted from buffer memory and converted
to the format expected by the vertex shader.

There are VkPhysicalDeviceLimits::maxVertexInputAttributes number of vertex input attributes and
VkPhysicalDeviceLimits::maxVertexInputBindings number of vertex input bindings (each referred to
by zero-based indices), where there are at least as many vertex input attributes as there are vertex
input bindings. Applications can store multiple vertex input attributes interleaved in a single
buffer, and use a single vertex input binding to access those attributes.

In GLSL, vertex shaders associate input variables with a vertex input attribute number using the
location layout qualifier. The Component layout qualifier associates components of a vertex shader
input variable with components of a vertex input attribute.

GLSL example

// Assign location M to variableName
layout (location=M, component=2) in vec2 variableName;

// Assign locations [N,N+L) to the array elements of variableNameArray
layout (location=N) in vec4 variableNameArray[L];

In SPIR-V, vertex shaders associate input variables with a vertex input attribute number using the
Location decoration. The Component decoration associates components of a vertex shader input
variable with components of a vertex input attribute. The Location and Component decorations are
specified via the OpDecorate instruction.

SPIR-V example

 ...
 %1 = OpExtInstImport "GLSL.std.450"
 ...
 OpName %9 "variableName"
 OpName %15 "variableNameArray"
 OpDecorate %18 BuiltIn VertexIndex

947

 OpDecorate %19 BuiltIn InstanceIndex
 OpDecorate %9 Location M
 OpDecorate %9 Component 2
 OpDecorate %15 Location N
 ...
 %2 = OpTypeVoid
 %3 = OpTypeFunction %2
 %6 = OpTypeFloat 32
 %7 = OpTypeVector %6 2
 %8 = OpTypePointer Input %7
 %9 = OpVariable %8 Input
 %10 = OpTypeVector %6 4
 %11 = OpTypeInt 32 0
 %12 = OpConstant %11 L
 %13 = OpTypeArray %10 %12
 %14 = OpTypePointer Input %13
 %15 = OpVariable %14 Input
 ...

21.1.1. Attribute Location and Component Assignment

The Location decoration specifies which vertex input attribute is used to read and interpret the data
that a variable will consume.

When a vertex shader input variable declared using a 16- or 32-bit scalar or vector data type is
assigned a Location, its value(s) are taken from the components of the input attribute specified with
the corresponding VkVertexInputAttributeDescription::location. The components used depend on
the type of variable and the Component decoration specified in the variable declaration, as identified
in Input attribute components accessed by 16-bit and 32-bit input variables. Any 16-bit or 32-bit
scalar or vector input will consume a single Location. For 16-bit and 32-bit data types, missing
components are filled in with default values as described below.

If an implementation supports storageInputOutput16, vertex shader input variables can have a
width of 16 bits.

Table 21. Input attribute components accessed by 16-bit and 32-bit
input variables

16-bit or 32-bit data type Component
decoration

Components
consumed

scalar 0 or unspecified (x, o, o, o)

scalar 1 (o, y, o, o)

scalar 2 (o, o, z, o)

scalar 3 (o, o, o, w)

two-component vector 0 or unspecified (x, y, o, o)

two-component vector 1 (o, y, z, o)

two-component vector 2 (o, o, z, w)

948

16-bit or 32-bit data type Component
decoration

Components
consumed

three-component vector 0 or unspecified (x, y, z, o)

three-component vector 1 (o, y, z, w)

four-component vector 0 or unspecified (x, y, z, w)

Components indicated by “o” are available for use by other input variables which are sourced from
the same attribute, and if used, are either filled with the corresponding component from the input
format (if present), or the default value.

When a vertex shader input variable declared using a 32-bit floating point matrix type is assigned a
Location i, its values are taken from consecutive input attributes starting with the corresponding
VkVertexInputAttributeDescription::location. Such matrices are treated as an array of column
vectors with values taken from the input attributes identified in Input attributes accessed by 32-bit
input matrix variables. The VkVertexInputAttributeDescription::format must be specified with a
VkFormat that corresponds to the appropriate type of column vector. The Component decoration
must not be used with matrix types.

Table 22. Input attributes accessed by 32-bit input matrix variables

Data
type

Column vector type Locations
consumed

Components consumed

mat2 two-component vector i, i+1 (x, y, o, o), (x, y, o, o)

mat2x3 three-component
vector

i, i+1 (x, y, z, o), (x, y, z, o)

mat2x4 four-component
vector

i, i+1 (x, y, z, w), (x, y, z, w)

mat3x2 two-component vector i, i+1, i+2 (x, y, o, o), (x, y, o, o), (x, y, o, o)

mat3 three-component
vector

i, i+1, i+2 (x, y, z, o), (x, y, z, o), (x, y, z, o)

mat3x4 four-component
vector

i, i+1, i+2 (x, y, z, w), (x, y, z, w), (x, y, z, w)

mat4x2 two-component vector i, i+1, i+2, i+3 (x, y, o, o), (x, y, o, o), (x, y, o, o), (x, y, o, o)

mat4x3 three-component
vector

i, i+1, i+2, i+3 (x, y, z, o), (x, y, z, o), (x, y, z, o), (x, y, z, o)

mat4 four-component
vector

i, i+1, i+2, i+3 (x, y, z, w), (x, y, z, w), (x, y, z, w), (x, y, z, w)

Components indicated by “o” are available for use by other input variables which are sourced from
the same attribute, and if used, are either filled with the corresponding component from the input
(if present), or the default value.

When a vertex shader input variable declared using a scalar or vector 64-bit data type is assigned a
Location i, its values are taken from consecutive input attributes starting with the corresponding

949

VkVertexInputAttributeDescription::location. The Location slots and Component words used depend
on the type of variable and the Component decoration specified in the variable declaration, as
identified in Input attribute locations and components accessed by 64-bit input variables. For 64-bit
data types, no default attribute values are provided. Input variables must not use more
components than provided by the attribute.

Table 23. Input attribute locations and components accessed by 64-bit input variables

Input format

Locations
consumed

64-bit data type

Location
decoration

Component
decoration

32-bit
component

s
consumed

R64 i scalar i 0 or unspecified (x, y, -, -)

R64G64 i

scalar i 0 or unspecified (x, y, o, o)

scalar i 2 (o, o, z, w)

two-component vector i 0 or unspecified (x, y, z, w)

R64G64B64 i, i+1

scalar i 0 or unspecified (x, y, o, o),
(o, o, -, -)

scalar i 2 (o, o, z, w),
(o, o, -, -)

scalar i+1 0 or unspecified (o, o, o, o),
(x, y, -, -)

two-component vector i 0 or unspecified (x, y, z, w),
(o, o, -, -)

three-component
vector

i unspecified (x, y, z, w),
(x, y, -, -)

R64G64B64A64 i, i+1

scalar i 0 or unspecified (x, y, o, o),
(o, o, o, o)

scalar i 2 (o, o, z, w),
(o, o, o, o)

scalar i+1 0 or unspecified (o, o, o, o),
(x, y, o, o)

scalar i+1 2 (o, o, o, o),
(o, o, z, w)

two-component vector i 0 or unspecified (x, y, z, w),
(o, o, o, o)

two-component vector i+1 0 or unspecified (o, o, o, o),
(x, y, z, w)

three-component
vector

i unspecified (x, y, z, w),
(x, y, o, o)

four-component vector i unspecified (x, y, z, w),
(x, y, z, w)

950

Components indicated by “o” are available for use by other input variables which are sourced from
the same attribute. Components indicated by “-” are not available for input variables as there are
no default values provided for 64-bit data types, and there is no data provided by the input format.

When a vertex shader input variable declared using a 64-bit floating-point matrix type is assigned a
Location i, its values are taken from consecutive input attribute locations. Such matrices are treated
as an array of column vectors with values taken from the input attributes as shown in Input
attribute locations and components accessed by 64-bit input variables. Each column vector starts at
the Location immediately following the last Location of the previous column vector. The number of
attributes and components assigned to each matrix is determined by the matrix dimensions and
ranges from two to eight locations.

When a vertex shader input variable declared using an array type is assigned a location, its values
are taken from consecutive input attributes starting with the corresponding
VkVertexInputAttributeDescription::location. The number of attributes and components assigned to
each element are determined according to the data type of the array elements and Component
decoration (if any) specified in the declaration of the array, as described above. Each element of the
array, in order, is assigned to consecutive locations, but all at the same specified component within
each location.

Only input variables declared with the data types and component decorations as specified above
are supported. Two variables are allowed to share the same Location slot only if their Component
words do not overlap. If multiple variables share the same Location slot, they must all have the
same SPIR-V floating-point component type or all have the same width scalar type components.

21.2. Vertex Input Description
Applications specify vertex input attribute and vertex input binding descriptions as part of graphics
pipeline creation by setting the VkGraphicsPipelineCreateInfo::pVertexInputState pointer to a
VkPipelineVertexInputStateCreateInfo structure.

The VkPipelineVertexInputStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineVertexInputStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineVertexInputStateCreateFlags flags;
 uint32_t vertexBindingDescriptionCount;
 const VkVertexInputBindingDescription* pVertexBindingDescriptions;
 uint32_t vertexAttributeDescriptionCount;
 const VkVertexInputAttributeDescription* pVertexAttributeDescriptions;
} VkPipelineVertexInputStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

951

• vertexBindingDescriptionCount is the number of vertex binding descriptions provided in
pVertexBindingDescriptions.

• pVertexBindingDescriptions is a pointer to an array of VkVertexInputBindingDescription
structures.

• vertexAttributeDescriptionCount is the number of vertex attribute descriptions provided in
pVertexAttributeDescriptions.

• pVertexAttributeDescriptions is a pointer to an array of VkVertexInputAttributeDescription
structures.

Valid Usage

• VUID-VkPipelineVertexInputStateCreateInfo-vertexBindingDescriptionCount-00613
vertexBindingDescriptionCount must be less than or equal to VkPhysicalDeviceLimits
::maxVertexInputBindings

• VUID-VkPipelineVertexInputStateCreateInfo-vertexAttributeDescriptionCount-00614
vertexAttributeDescriptionCount must be less than or equal to VkPhysicalDeviceLimits
::maxVertexInputAttributes

• VUID-VkPipelineVertexInputStateCreateInfo-binding-00615
For every binding specified by each element of pVertexAttributeDescriptions, a
VkVertexInputBindingDescription must exist in pVertexBindingDescriptions with the same
value of binding

• VUID-VkPipelineVertexInputStateCreateInfo-pVertexBindingDescriptions-00616
All elements of pVertexBindingDescriptions must describe distinct binding numbers

• VUID-VkPipelineVertexInputStateCreateInfo-pVertexAttributeDescriptions-00617
All elements of pVertexAttributeDescriptions must describe distinct attribute locations

Valid Usage (Implicit)

• VUID-VkPipelineVertexInputStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO

• VUID-VkPipelineVertexInputStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineVertexInputStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineVertexInputStateCreateInfo-pVertexBindingDescriptions-parameter
If vertexBindingDescriptionCount is not 0, pVertexBindingDescriptions must be a valid
pointer to an array of vertexBindingDescriptionCount valid
VkVertexInputBindingDescription structures

• VUID-VkPipelineVertexInputStateCreateInfo-pVertexAttributeDescriptions-parameter
If vertexAttributeDescriptionCount is not 0, pVertexAttributeDescriptions must be a valid
pointer to an array of vertexAttributeDescriptionCount valid
VkVertexInputAttributeDescription structures

952

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineVertexInputStateCreateFlags;

VkPipelineVertexInputStateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

Each vertex input binding is specified by the VkVertexInputBindingDescription structure, defined as:

// Provided by VK_VERSION_1_0
typedef struct VkVertexInputBindingDescription {
 uint32_t binding;
 uint32_t stride;
 VkVertexInputRate inputRate;
} VkVertexInputBindingDescription;

• binding is the binding number that this structure describes.

• stride is the byte stride between consecutive elements within the buffer.

• inputRate is a VkVertexInputRate value specifying whether vertex attribute addressing is a
function of the vertex index or of the instance index.

Valid Usage

• VUID-VkVertexInputBindingDescription-binding-00618
binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-VkVertexInputBindingDescription-stride-00619
stride must be less than or equal to VkPhysicalDeviceLimits::maxVertexInputBindingStride

Valid Usage (Implicit)

• VUID-VkVertexInputBindingDescription-inputRate-parameter
inputRate must be a valid VkVertexInputRate value

Possible values of VkVertexInputBindingDescription::inputRate, specifying the rate at which vertex
attributes are pulled from buffers, are:

// Provided by VK_VERSION_1_0
typedef enum VkVertexInputRate {
 VK_VERTEX_INPUT_RATE_VERTEX = 0,
 VK_VERTEX_INPUT_RATE_INSTANCE = 1,
} VkVertexInputRate;

• VK_VERTEX_INPUT_RATE_VERTEX specifies that vertex attribute addressing is a function of the vertex
index.

953

• VK_VERTEX_INPUT_RATE_INSTANCE specifies that vertex attribute addressing is a function of the
instance index.

Each vertex input attribute is specified by the VkVertexInputAttributeDescription structure, defined
as:

// Provided by VK_VERSION_1_0
typedef struct VkVertexInputAttributeDescription {
 uint32_t location;
 uint32_t binding;
 VkFormat format;
 uint32_t offset;
} VkVertexInputAttributeDescription;

• location is the shader input location number for this attribute.

• binding is the binding number which this attribute takes its data from.

• format is the size and type of the vertex attribute data.

• offset is a byte offset of this attribute relative to the start of an element in the vertex input
binding.

Valid Usage

• VUID-VkVertexInputAttributeDescription-location-00620
location must be less than VkPhysicalDeviceLimits::maxVertexInputAttributes

• VUID-VkVertexInputAttributeDescription-binding-00621
binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-VkVertexInputAttributeDescription-offset-00622
offset must be less than or equal to VkPhysicalDeviceLimits
::maxVertexInputAttributeOffset

• VUID-VkVertexInputAttributeDescription-format-00623
The format features of format must contain VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

Valid Usage (Implicit)

• VUID-VkVertexInputAttributeDescription-format-parameter
format must be a valid VkFormat value

To bind vertex buffers to a command buffer for use in subsequent drawing commands, call:

// Provided by VK_VERSION_1_0
void vkCmdBindVertexBuffers(
 VkCommandBuffer commandBuffer,
 uint32_t firstBinding,

954

 uint32_t bindingCount,
 const VkBuffer* pBuffers,
 const VkDeviceSize* pOffsets);

• commandBuffer is the command buffer into which the command is recorded.

• firstBinding is the index of the first vertex input binding whose state is updated by the
command.

• bindingCount is the number of vertex input bindings whose state is updated by the command.

• pBuffers is a pointer to an array of buffer handles.

• pOffsets is a pointer to an array of buffer offsets.

The values taken from elements i of pBuffers and pOffsets replace the current state for the vertex
input binding firstBinding + i, for i in [0, bindingCount). The vertex input binding is updated to start
at the offset indicated by pOffsets[i] from the start of the buffer pBuffers[i]. All vertex input
attributes that use each of these bindings will use these updated addresses in their address
calculations for subsequent drawing commands.

Valid Usage

• VUID-vkCmdBindVertexBuffers-firstBinding-00624
firstBinding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-vkCmdBindVertexBuffers-firstBinding-00625
The sum of firstBinding and bindingCount must be less than or equal to
VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-vkCmdBindVertexBuffers-pOffsets-00626
All elements of pOffsets must be less than the size of the corresponding element in
pBuffers

• VUID-vkCmdBindVertexBuffers-pBuffers-00627
All elements of pBuffers must have been created with the
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT flag

• VUID-vkCmdBindVertexBuffers-pBuffers-00628
Each element of pBuffers that is non-sparse must be bound completely and contiguously
to a single VkDeviceMemory object

• VUID-vkCmdBindVertexBuffers-pBuffers-04001
If the nullDescriptor feature is not enabled, all elements of pBuffers must not be
VK_NULL_HANDLE

Valid Usage (Implicit)

• VUID-vkCmdBindVertexBuffers-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindVertexBuffers-pBuffers-parameter

955

pBuffers must be a valid pointer to an array of bindingCount valid or VK_NULL_HANDLE
VkBuffer handles

• VUID-vkCmdBindVertexBuffers-pOffsets-parameter
pOffsets must be a valid pointer to an array of bindingCount VkDeviceSize values

• VUID-vkCmdBindVertexBuffers-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindVertexBuffers-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBindVertexBuffers-bindingCount-arraylength
bindingCount must be greater than 0

• VUID-vkCmdBindVertexBuffers-commonparent
Both of commandBuffer, and the elements of pBuffers that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

Alternatively, to bind vertex buffers, along with their sizes and strides, to a command buffer for use
in subsequent drawing commands, call:

// Provided by VK_VERSION_1_3
void vkCmdBindVertexBuffers2(
 VkCommandBuffer commandBuffer,
 uint32_t firstBinding,
 uint32_t bindingCount,
 const VkBuffer* pBuffers,
 const VkDeviceSize* pOffsets,
 const VkDeviceSize* pSizes,
 const VkDeviceSize* pStrides);

• commandBuffer is the command buffer into which the command is recorded.

956

• firstBinding is the index of the first vertex input binding whose state is updated by the
command.

• bindingCount is the number of vertex input bindings whose state is updated by the command.

• pBuffers is a pointer to an array of buffer handles.

• pOffsets is a pointer to an array of buffer offsets.

• pSizes is NULL or a pointer to an array of the size in bytes of vertex data bound from pBuffers.

• pStrides is NULL or a pointer to an array of buffer strides.

The values taken from elements i of pBuffers and pOffsets replace the current state for the vertex
input binding firstBinding + i, for i in [0, bindingCount). The vertex input binding is updated to start
at the offset indicated by pOffsets[i] from the start of the buffer pBuffers[i]. If pSizes is not NULL then
pSizes[i] specifies the bound size of the vertex buffer starting from the corresponding elements of
pBuffers[i] plus pOffsets[i]. All vertex input attributes that use each of these bindings will use these
updated addresses in their address calculations for subsequent drawing commands.

This command also dynamically sets the byte strides between consecutive elements within buffer
pBuffers[i] to the corresponding pStrides[i] value when the graphics pipeline is created with
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, strides are specified by the VkVertexInputBindingDescription::stride
values used to create the currently active pipeline.

Note

Unlike the static state to set the same, pStrides must be between 0 and the
maximum extent of the attributes in the binding.

Valid Usage

• VUID-vkCmdBindVertexBuffers2-firstBinding-03355
firstBinding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-vkCmdBindVertexBuffers2-firstBinding-03356
The sum of firstBinding and bindingCount must be less than or equal to
VkPhysicalDeviceLimits::maxVertexInputBindings

• VUID-vkCmdBindVertexBuffers2-pOffsets-03357
If pSizes is not NULL, all elements of pOffsets must be less than the size of the
corresponding element in pBuffers

• VUID-vkCmdBindVertexBuffers2-pSizes-03358
If pSizes is not NULL, all elements of pOffsets plus pSizes must be less than or equal to the
size of the corresponding element in pBuffers

• VUID-vkCmdBindVertexBuffers2-pBuffers-03359
All elements of pBuffers must have been created with the
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT flag

• VUID-vkCmdBindVertexBuffers2-pBuffers-03360
Each element of pBuffers that is non-sparse must be bound completely and contiguously

957

to a single VkDeviceMemory object

• VUID-vkCmdBindVertexBuffers2-pBuffers-04111
If the nullDescriptor feature is not enabled, all elements of pBuffers must not be
VK_NULL_HANDLE

• VUID-vkCmdBindVertexBuffers2-pStrides-03362
If pStrides is not NULL each element of pStrides must be less than or equal to
VkPhysicalDeviceLimits::maxVertexInputBindingStride

• VUID-vkCmdBindVertexBuffers2-pStrides-06209
If pStrides is not NULL each element of pStrides must be either 0 or greater than or equal
to the maximum extent of all vertex input attributes fetched from the corresponding
binding, where the extent is calculated as the VkVertexInputAttributeDescription::offset
plus VkVertexInputAttributeDescription::format size

Valid Usage (Implicit)

• VUID-vkCmdBindVertexBuffers2-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdBindVertexBuffers2-pBuffers-parameter
pBuffers must be a valid pointer to an array of bindingCount valid or VK_NULL_HANDLE
VkBuffer handles

• VUID-vkCmdBindVertexBuffers2-pOffsets-parameter
pOffsets must be a valid pointer to an array of bindingCount VkDeviceSize values

• VUID-vkCmdBindVertexBuffers2-pSizes-parameter
If pSizes is not NULL, pSizes must be a valid pointer to an array of bindingCount
VkDeviceSize values

• VUID-vkCmdBindVertexBuffers2-pStrides-parameter
If pStrides is not NULL, pStrides must be a valid pointer to an array of bindingCount
VkDeviceSize values

• VUID-vkCmdBindVertexBuffers2-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdBindVertexBuffers2-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdBindVertexBuffers2-bindingCount-arraylength
If any of pSizes, or pStrides are not NULL, bindingCount must be greater than 0

• VUID-vkCmdBindVertexBuffers2-commonparent
Both of commandBuffer, and the elements of pBuffers that are valid handles of non-ignored
parameters must have been created, allocated, or retrieved from the same VkDevice

958

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

21.3. Vertex Input Address Calculation
The address of each attribute for each vertexIndex and instanceIndex is calculated as follows:

• Let attribDesc be the member of VkPipelineVertexInputStateCreateInfo
::pVertexAttributeDescriptions with VkVertexInputAttributeDescription::location equal to the
vertex input attribute number.

• Let bindingDesc be the member of VkPipelineVertexInputStateCreateInfo
::pVertexBindingDescriptions with VkVertexInputAttributeDescription::binding equal to
attribDesc.binding.

• Let vertexIndex be the index of the vertex within the draw (a value between firstVertex and
firstVertex+vertexCount for vkCmdDraw, or a value taken from the index buffer plus vertexOffset
for vkCmdDrawIndexed), and let instanceIndex be the instance number of the draw (a value
between firstInstance and firstInstance+instanceCount).

• Let offset be an array of offsets into the currently bound vertex buffers specified during
vkCmdBindVertexBuffers or vkCmdBindVertexBuffers2 with pOffsets.

• Let stride be the member of VkPipelineVertexInputStateCreateInfo
::pVertexBindingDescriptions->stride unless there is dynamic state causing the value to be
ignored. In this case the value is set from the last value from one of the following

◦ vkCmdBindVertexBuffers2EXT::pStride, if not NULL

bufferBindingAddress = buffer[binding].baseAddress + offset[binding];

if (bindingDesc.inputRate == VK_VERTEX_INPUT_RATE_VERTEX)
 effectiveVertexOffset = vertexIndex * stride;
else
 effectiveVertexOffset = instanceIndex * stride;

959

attribAddress = bufferBindingAddress + effectiveVertexOffset + attribDesc.offset;

21.3.1. Vertex Input Extraction

For each attribute, raw data is extracted starting at attribAddress and is converted from the
VkVertexInputAttributeDescription’s format to either floating-point, unsigned integer, or signed
integer based on the numeric type of format. The numeric type of format must match the numeric
type of the input variable in the shader. The input variable in the shader must be declared as a 64-
bit data type if and only if format is a 64-bit data type. If format is a packed format, attribAddress
must be a multiple of the size in bytes of the whole attribute data type as described in Packed
Formats. Otherwise, attribAddress must be a multiple of the size in bytes of the component type
indicated by format (see Formats). For attributes that are not 64-bit data types, each component is
converted to the format of the input variable based on its type and size (as defined in the Format
Definition section for each VkFormat), using the appropriate equations in 16-Bit Floating-Point
Numbers, Unsigned 11-Bit Floating-Point Numbers, Unsigned 10-Bit Floating-Point Numbers, Fixed-
Point Data Conversion, and Shared Exponent to RGB. Signed integer components smaller than 32
bits are sign-extended. Attributes that are not 64-bit data types are expanded to four components in
the same way as described in conversion to RGBA. The number of components in the vertex shader
input variable need not exactly match the number of components in the format. If the vertex
shader has fewer components, the extra components are discarded.

960

Chapter 22. Tessellation
Tessellation involves three pipeline stages. First, a tessellation control shader transforms control
points of a patch and can produce per-patch data. Second, a fixed-function tessellator generates
multiple primitives corresponding to a tessellation of the patch in (u,v) or (u,v,w) parameter space.
Third, a tessellation evaluation shader transforms the vertices of the tessellated patch, for example
to compute their positions and attributes as part of the tessellated surface. The tessellator is
enabled when the pipeline contains both a tessellation control shader and a tessellation evaluation
shader.

22.1. Tessellator
If a pipeline includes both tessellation shaders (control and evaluation), the tessellator consumes
each input patch (after vertex shading) and produces a new set of independent primitives (points,
lines, or triangles). These primitives are logically produced by subdividing a geometric primitive
(rectangle or triangle) according to the per-patch outer and inner tessellation levels written by the
tessellation control shader. These levels are specified using the built-in variables TessLevelOuter
and TessLevelInner, respectively. This subdivision is performed in an implementation-dependent
manner. If no tessellation shaders are present in the pipeline, the tessellator is disabled and
incoming primitives are passed through without modification.

The type of subdivision performed by the tessellator is specified by an OpExecutionMode instruction
using one of the Triangles, Quads, or IsoLines execution modes. This instruction may be specified in
either the tessellation evaluation or tessellation control shader. Other tessellation-related execution
modes can also be specified in either the tessellation control or tessellation evaluation shaders.

Any tessellation-related modes specified in both the tessellation control and tessellation evaluation
shaders must be the same.

Tessellation execution modes include:

• Triangles, Quads, and IsoLines. These control the type of subdivision and topology of the output
primitives. One mode must be set in at least one of the tessellation shader stages.

• VertexOrderCw and VertexOrderCcw. These control the orientation of triangles generated by the
tessellator. One mode must be set in at least one of the tessellation shader stages.

• PointMode. Controls generation of points rather than triangles or lines. This functionality
defaults to disabled, and is enabled if either shader stage includes the execution mode.

• SpacingEqual, SpacingFractionalEven, and SpacingFractionalOdd. Controls the spacing of segments
on the edges of tessellated primitives. One mode must be set in at least one of the tessellation
shader stages.

• OutputVertices. Controls the size of the output patch of the tessellation control shader. One
value must be set in at least one of the tessellation shader stages.

For triangles, the tessellator subdivides a triangle primitive into smaller triangles. For quads, the
tessellator subdivides a rectangle primitive into smaller triangles. For isolines, the tessellator
subdivides a rectangle primitive into a collection of line segments arranged in strips stretching

961

across the rectangle in the u dimension (i.e. the coordinates in TessCoord are of the form (0,x)
through (1,x) for all tessellation evaluation shader invocations that share a line).

Each vertex produced by the tessellator has an associated (u,v,w) or (u,v) position in a normalized
parameter space, with parameter values in the range [0,1], as illustrated in figures Domain
parameterization for tessellation primitive modes (upper-left origin) and Domain parameterization
for tessellation primitive modes (lower-left origin). The domain space can have either an upper-left
or lower-left origin, selected by the domainOrigin member of
VkPipelineTessellationDomainOriginStateCreateInfo.

(no edge)
(0,1) (1,1)

(0,0) (1,0)

(0,1,0)

(1,0,0)(0,0,1)

(0,1) (1,1)

(0,0) (1,0)

OL0

OL1

OL0

OL3

OL1

OL2

IL0

IL1 OL0 OL2

OL1

IL0

Quads Triangles

Isolines

Figure 11. Domain parameterization for tessellation primitive modes (upper-left origin)

962

(no edge)
(0,1) (1,1)

(0,0) (1,0)

(0,1,0)

(1,0,0)(0,0,1)

(0,1) (1,1)

(0,0) (1,0)

OL0

OL1

OL0

OL1

OL3

OL2

IL0

IL1 OL0 OL2

OL1

IL0

Quads Triangles

Isolines

Figure 12. Domain parameterization for tessellation primitive modes (lower-left origin)

Caption

In the domain parameterization diagrams, the coordinates illustrate the value of TessCoord at
the corners of the domain. The labels on the edges indicate the inner (IL0 and IL1) and outer
(OL0 through OL3) tessellation level values used to control the number of subdivisions along
each edge of the domain.

For triangles, the vertex’s position is a barycentric coordinate (u,v,w), where u + v + w = 1.0, and
indicates the relative influence of the three vertices of the triangle on the position of the vertex. For
quads and isolines, the position is a (u,v) coordinate indicating the relative horizontal and vertical
position of the vertex relative to the subdivided rectangle. The subdivision process is explained in
more detail in subsequent sections.

22.2. Tessellator Patch Discard
A patch is discarded by the tessellator if any relevant outer tessellation level is less than or equal to
zero.

Patches will also be discarded if any relevant outer tessellation level corresponds to a floating-point

963

NaN (not a number) in implementations supporting NaN.

No new primitives are generated and the tessellation evaluation shader is not executed for patches
that are discarded. For Quads, all four outer levels are relevant. For Triangles and IsoLines, only the
first three or two outer levels, respectively, are relevant. Negative inner levels will not cause a
patch to be discarded; they will be clamped as described below.

22.3. Tessellator Spacing
Each of the tessellation levels is used to determine the number and spacing of segments used to
subdivide a corresponding edge. The method used to derive the number and spacing of segments is
specified by an OpExecutionMode in the tessellation control or tessellation evaluation shader using
one of the identifiers SpacingEqual, SpacingFractionalEven, or SpacingFractionalOdd.

If SpacingEqual is used, the floating-point tessellation level is first clamped to [1, maxLevel], where
maxLevel is the implementation-dependent maximum tessellation level (VkPhysicalDeviceLimits
::maxTessellationGenerationLevel). The result is rounded up to the nearest integer n, and the
corresponding edge is divided into n segments of equal length in (u,v) space.

If SpacingFractionalEven is used, the tessellation level is first clamped to [2, maxLevel] and then
rounded up to the nearest even integer n. If SpacingFractionalOdd is used, the tessellation level is
clamped to [1, maxLevel - 1] and then rounded up to the nearest odd integer n. If n is one, the edge
will not be subdivided. Otherwise, the corresponding edge will be divided into n - 2 segments of
equal length, and two additional segments of equal length that are typically shorter than the other
segments. The length of the two additional segments relative to the others will decrease
monotonically with n - f, where f is the clamped floating-point tessellation level. When n - f is zero,
the additional segments will have equal length to the other segments. As n - f approaches 2.0, the
relative length of the additional segments approaches zero. The two additional segments must be
placed symmetrically on opposite sides of the subdivided edge. The relative location of these two
segments is implementation-dependent, but must be identical for any pair of subdivided edges
with identical values of f.

When tessellating triangles or quads using point mode with fractional odd spacing, the tessellator
may produce interior vertices that are positioned on the edge of the patch if an inner tessellation
level is less than or equal to one. Such vertices are considered distinct from vertices produced by
subdividing the outer edge of the patch, even if there are pairs of vertices with identical
coordinates.

22.4. Tessellation Primitive Ordering
Few guarantees are provided for the relative ordering of primitives produced by tessellation, as
they pertain to primitive order.

• The output primitives generated from each input primitive are passed to subsequent pipeline
stages in an implementation-dependent order.

• All output primitives generated from a given input primitive are passed to subsequent pipeline
stages before any output primitives generated from subsequent input primitives.

964

22.5. Tessellator Vertex Winding Order
When the tessellator produces triangles (in the Triangles or Quads modes), the orientation of all
triangles is specified with an OpExecutionMode of VertexOrderCw or VertexOrderCcw in the tessellation
control or tessellation evaluation shaders. If the order is VertexOrderCw, the vertices of all generated
triangles will have clockwise ordering in (u,v) or (u,v,w) space. If the order is VertexOrderCcw, the
vertices will have counter-clockwise ordering in that space.

If the tessellation domain has an upper-left origin, the vertices of a triangle have counter-clockwise
ordering if

a = u0 v1 - u1 v0 + u1 v2 - u2 v1 + u2 v0 - u0 v2

is negative, and clockwise ordering if a is positive. ui and vi are the u and v coordinates in
normalized parameter space of the ith vertex of the triangle. If the tessellation domain has a lower-
left origin, the vertices of a triangle have counter-clockwise ordering if a is positive, and clockwise
ordering if a is negative.

Note

The value a is proportional (with a positive factor) to the signed area of the
triangle.

In Triangles mode, even though the vertex coordinates have a w value, it does not
participate directly in the computation of a, being an affine combination of u and
v.

22.6. Triangle Tessellation
If the tessellation primitive mode is Triangles, an equilateral triangle is subdivided into a collection
of triangles covering the area of the original triangle. First, the original triangle is subdivided into a
collection of concentric equilateral triangles. The edges of each of these triangles are subdivided,
and the area between each triangle pair is filled by triangles produced by joining the vertices on the
subdivided edges. The number of concentric triangles and the number of subdivisions along each
triangle except the outermost is derived from the first inner tessellation level. The edges of the
outermost triangle are subdivided independently, using the first, second, and third outer
tessellation levels to control the number of subdivisions of the u = 0 (left), v = 0 (bottom), and w = 0
(right) edges, respectively. The second inner tessellation level and the fourth outer tessellation level
have no effect in this mode.

If the first inner tessellation level and all three outer tessellation levels are exactly one after
clamping and rounding, only a single triangle with (u,v,w) coordinates of (0,0,1), (1,0,0), and (0,1,0)
is generated. If the inner tessellation level is one and any of the outer tessellation levels is greater
than one, the inner tessellation level is treated as though it were originally specified as 1 + ε and
will result in a two- or three-segment subdivision depending on the tessellation spacing. When used
with fractional odd spacing, the three-segment subdivision may produce inner vertices positioned
on the edge of the triangle.

965

If any tessellation level is greater than one, tessellation begins by producing a set of concentric
inner triangles and subdividing their edges. First, the three outer edges are temporarily subdivided
using the clamped and rounded first inner tessellation level and the specified tessellation spacing,
generating n segments. For the outermost inner triangle, the inner triangle is degenerate — a single
point at the center of the triangle — if n is two. Otherwise, for each corner of the outer triangle, an
inner triangle corner is produced at the intersection of two lines extended perpendicular to the
corner’s two adjacent edges running through the vertex of the subdivided outer edge nearest that
corner. If n is three, the edges of the inner triangle are not subdivided and it is the final triangle in
the set of concentric triangles. Otherwise, each edge of the inner triangle is divided into n - 2
segments, with the n - 1 vertices of this subdivision produced by intersecting the inner edge with
lines perpendicular to the edge running through the n - 1 innermost vertices of the subdivision of
the outer edge. Once the outermost inner triangle is subdivided, the previous subdivision process
repeats itself, using the generated triangle as an outer triangle. This subdivision process is
illustrated in Inner Triangle Tessellation.

(0,1,0)

(a) (b)(1,0,0)(0,0,1)

(0,1,0)

(1,0,0)(0,0,1)

Figure 13. Inner Triangle Tessellation

Caption

In the Inner Triangle Tessellation diagram, inner tessellation levels of (a) four and (b) five are
shown (not to scale). Solid black circles depict vertices along the edges of the concentric
triangles. The edges of inner triangles are subdivided by intersecting the edge with segments
perpendicular to the edge passing through each inner vertex of the subdivided outer edge.
Dotted lines depict edges connecting corresponding vertices on the inner and outer triangle
edges.

Once all the concentric triangles are produced and their edges are subdivided, the area between
each pair of adjacent inner triangles is filled completely with a set of non-overlapping triangles. In
this subdivision, two of the three vertices of each triangle are taken from adjacent vertices on a
subdivided edge of one triangle; the third is one of the vertices on the corresponding edge of the
other triangle. If the innermost triangle is degenerate (i.e., a point), the triangle containing it is
subdivided into six triangles by connecting each of the six vertices on that triangle with the center
point. If the innermost triangle is not degenerate, that triangle is added to the set of generated
triangles as-is.

966

After the area corresponding to any inner triangles is filled, the tessellator generates triangles to
cover the area between the outermost triangle and the outermost inner triangle. To do this, the
temporary subdivision of the outer triangle edge above is discarded. Instead, the u = 0, v = 0, and w
= 0 edges are subdivided according to the first, second, and third outer tessellation levels,
respectively, and the tessellation spacing. The original subdivision of the first inner triangle is
retained. The area between the outer and first inner triangles is completely filled by non-
overlapping triangles as described above. If the first (and only) inner triangle is degenerate, a set of
triangles is produced by connecting each vertex on the outer triangle edges with the center point.

After all triangles are generated, each vertex in the subdivided triangle is assigned a barycentric
(u,v,w) coordinate based on its location relative to the three vertices of the outer triangle.

The algorithm used to subdivide the triangular domain in (u,v,w) space into individual triangles is
implementation-dependent. However, the set of triangles produced will completely cover the
domain, and no portion of the domain will be covered by multiple triangles.

Output triangles are generated with a topology similar to triangle lists, except that the order in
which each triangle is generated, and the order in which the vertices are generated for each
triangle, are implementation-dependent. However, the order of vertices in each triangle is
consistent across the domain as described in Tessellator Vertex Winding Order.

22.7. Quad Tessellation
If the tessellation primitive mode is Quads, a rectangle is subdivided into a collection of triangles
covering the area of the original rectangle. First, the original rectangle is subdivided into a regular
mesh of rectangles, where the number of rectangles along the u = 0 and u = 1 (vertical) and v = 0
and v = 1 (horizontal) edges are derived from the first and second inner tessellation levels,
respectively. All rectangles, except those adjacent to one of the outer rectangle edges, are
decomposed into triangle pairs. The outermost rectangle edges are subdivided independently, using
the first, second, third, and fourth outer tessellation levels to control the number of subdivisions of
the u = 0 (left), v = 0 (bottom), u = 1 (right), and v = 1 (top) edges, respectively. The area between the
inner rectangles of the mesh and the outer rectangle edges are filled by triangles produced by
joining the vertices on the subdivided outer edges to the vertices on the edge of the inner rectangle
mesh.

If both clamped inner tessellation levels and all four clamped outer tessellation levels are exactly
one, only a single triangle pair covering the outer rectangle is generated. Otherwise, if either
clamped inner tessellation level is one, that tessellation level is treated as though it was originally
specified as 1 + ε and will result in a two- or three-segment subdivision depending on the
tessellation spacing. When used with fractional odd spacing, the three-segment subdivision may
produce inner vertices positioned on the edge of the rectangle.

If any tessellation level is greater than one, tessellation begins by subdividing the u = 0 and u = 1
edges of the outer rectangle into m segments using the clamped and rounded first inner tessellation
level and the tessellation spacing. The v = 0 and v = 1 edges are subdivided into n segments using
the second inner tessellation level. Each vertex on the u = 0 and v = 0 edges are joined with the
corresponding vertex on the u = 1 and v = 1 edges to produce a set of vertical and horizontal lines
that divide the rectangle into a grid of smaller rectangles. The primitive generator emits a pair of

967

non-overlapping triangles covering each such rectangle not adjacent to an edge of the outer
rectangle. The boundary of the region covered by these triangles forms an inner rectangle, the
edges of which are subdivided by the grid vertices that lie on the edge. If either m or n is two, the
inner rectangle is degenerate, and one or both of the rectangle’s edges consist of a single point. This
subdivision is illustrated in Figure Inner Quad Tessellation.

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(a)

(b)

Figure 14. Inner Quad Tessellation

Caption

In the Inner Quad Tessellation diagram, inner quad tessellation levels of (a) (4,2) and (b) (7,4)
are shown. The regions highlighted in red in figure (b) depict the 10 inner rectangles, each of
which will be subdivided into two triangles. Solid black circles depict vertices on the
boundary of the outer and inner rectangles, where the inner rectangle of figure (a) is
degenerate (a single line segment). Dotted lines depict the horizontal and vertical edges
connecting corresponding vertices on the inner and outer rectangle edges.

After the area corresponding to the inner rectangle is filled, the tessellator must produce triangles
to cover the area between the inner and outer rectangles. To do this, the subdivision of the outer
rectangle edge above is discarded. Instead, the u = 0, v = 0, u = 1, and v = 1 edges are subdivided
according to the first, second, third, and fourth outer tessellation levels, respectively, and the
tessellation spacing. The original subdivision of the inner rectangle is retained. The area between
the outer and inner rectangles is completely filled by non-overlapping triangles. Two of the three
vertices of each triangle are adjacent vertices on a subdivided edge of one rectangle; the third is
one of the vertices on the corresponding edge of the other rectangle. If either edge of the innermost
rectangle is degenerate, the area near the corresponding outer edges is filled by connecting each
vertex on the outer edge with the single vertex making up the inner edge.

The algorithm used to subdivide the rectangular domain in (u,v) space into individual triangles is
implementation-dependent. However, the set of triangles produced will completely cover the
domain, and no portion of the domain will be covered by multiple triangles.

Output triangles are generated with a topology similar to triangle lists, except that the order in
which each triangle is generated, and the order in which the vertices are generated for each
triangle, are implementation-dependent. However, the order of vertices in each triangle is

968

consistent across the domain as described in Tessellator Vertex Winding Order.

22.8. Isoline Tessellation
If the tessellation primitive mode is IsoLines, a set of independent horizontal line segments is
drawn. The segments are arranged into connected strips called isolines, where the vertices of each
isoline have a constant v coordinate and u coordinates covering the full range [0,1]. The number of
isolines generated is derived from the first outer tessellation level; the number of segments in each
isoline is derived from the second outer tessellation level. Both inner tessellation levels and the
third and fourth outer tessellation levels have no effect in this mode.

As with quad tessellation above, isoline tessellation begins with a rectangle. The u = 0 and u = 1
edges of the rectangle are subdivided according to the first outer tessellation level. For the purposes
of this subdivision, the tessellation spacing mode is ignored and treated as equal_spacing. An
isoline is drawn connecting each vertex on the u = 0 rectangle edge to the corresponding vertex on
the u = 1 rectangle edge, except that no line is drawn between (0,1) and (1,1). If the number of
isolines on the subdivided u = 0 and u = 1 edges is n, this process will result in n equally spaced
lines with constant v coordinates of 0, .

Each of the n isolines is then subdivided according to the second outer tessellation level and the
tessellation spacing, resulting in m line segments. Each segment of each line is emitted by the
tessellator. These line segments are generated with a topology similar to line lists, except that the
order in which each line is generated, and the order in which the vertices are generated for each
line segment, are implementation-dependent.

22.9. Tessellation Point Mode
For all primitive modes, the tessellator is capable of generating points instead of lines or triangles.
If the tessellation control or tessellation evaluation shader specifies the OpExecutionMode PointMode,
the primitive generator will generate one point for each distinct vertex produced by tessellation,
rather than emitting triangles or lines. Otherwise, the tessellator will produce a collection of line
segments or triangles according to the primitive mode. These points are generated with a topology
similar to point lists, except the order in which the points are generated for each input primitive is
undefined.

22.10. Tessellation Pipeline State
The pTessellationState member of VkGraphicsPipelineCreateInfo is a pointer to a
VkPipelineTessellationStateCreateInfo structure.

The VkPipelineTessellationStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineTessellationStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineTessellationStateCreateFlags flags;

969

 uint32_t patchControlPoints;
} VkPipelineTessellationStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• patchControlPoints is the number of control points per patch.

Valid Usage

• VUID-VkPipelineTessellationStateCreateInfo-patchControlPoints-01214
patchControlPoints must be greater than zero and less than or equal to
VkPhysicalDeviceLimits::maxTessellationPatchSize

Valid Usage (Implicit)

• VUID-VkPipelineTessellationStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO

• VUID-VkPipelineTessellationStateCreateInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of
VkPipelineTessellationDomainOriginStateCreateInfo

• VUID-VkPipelineTessellationStateCreateInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPipelineTessellationStateCreateInfo-flags-zerobitmask
flags must be 0

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineTessellationStateCreateFlags;

VkPipelineTessellationStateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

The VkPipelineTessellationDomainOriginStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPipelineTessellationDomainOriginStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkTessellationDomainOrigin domainOrigin;
} VkPipelineTessellationDomainOriginStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

970

• pNext is NULL or a pointer to a structure extending this structure.

• domainOrigin is a VkTessellationDomainOrigin value controlling the origin of the tessellation
domain space.

If the VkPipelineTessellationDomainOriginStateCreateInfo structure is included in the pNext chain of
VkPipelineTessellationStateCreateInfo, it controls the origin of the tessellation domain. If this
structure is not present, it is as if domainOrigin was VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT.

Valid Usage (Implicit)

• VUID-VkPipelineTessellationDomainOriginStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO

• VUID-VkPipelineTessellationDomainOriginStateCreateInfo-domainOrigin-parameter
domainOrigin must be a valid VkTessellationDomainOrigin value

The possible tessellation domain origins are specified by the VkTessellationDomainOrigin
enumeration:

// Provided by VK_VERSION_1_1
typedef enum VkTessellationDomainOrigin {
 VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT = 0,
 VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT = 1,
} VkTessellationDomainOrigin;

• VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT specifies that the origin of the domain space is in the
upper left corner, as shown in figure Domain parameterization for tessellation primitive modes
(upper-left origin).

• VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT specifies that the origin of the domain space is in the
lower left corner, as shown in figure Domain parameterization for tessellation primitive modes
(lower-left origin).

This enum affects how the VertexOrderCw and VertexOrderCcw tessellation execution modes are
interpreted, since the winding is defined relative to the orientation of the domain.

971

Chapter 23. Geometry Shading
The geometry shader operates on a group of vertices and their associated data assembled from a
single input primitive, and emits zero or more output primitives and the group of vertices and their
associated data required for each output primitive. Geometry shading is enabled when a geometry
shader is included in the pipeline.

23.1. Geometry Shader Input Primitives
Each geometry shader invocation has access to all vertices in the primitive (and their associated
data), which are presented to the shader as an array of inputs.

The input primitive type expected by the geometry shader is specified with an OpExecutionMode
instruction in the geometry shader, and must match the incoming primitive type specified by
either the pipeline’s primitive topology if tessellation is inactive, or the tessellation mode if
tessellation is active, as follows:

• An input primitive type of InputPoints must only be used with a pipeline topology of
VK_PRIMITIVE_TOPOLOGY_POINT_LIST, or with a tessellation shader specifying PointMode. The input
arrays always contain one element, as described by the point list topology or tessellation in
point mode.

• An input primitive type of InputLines must only be used with a pipeline topology of
VK_PRIMITIVE_TOPOLOGY_LINE_LIST or VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, or with a tessellation
shader specifying IsoLines that does not specify PointMode. The input arrays always contain two
elements, as described by the line list topology or line strip topology, or by isoline tessellation.

• An input primitive type of InputLinesAdjacency must only be used when tessellation is inactive,
with a pipeline topology of VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY or
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY. The input arrays always contain four
elements, as described by the line list with adjacency topology or line strip with adjacency
topology.

• An input primitive type of Triangles must only be used with a pipeline topology of
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN; or with a tessellation shader specifying Quads or Triangles
that does not specify PointMode. The input arrays always contain three elements, as described by
the triangle list topology, triangle strip topology, or triangle fan topology, or by triangle or quad
tessellation. Vertices may be in a different absolute order than specified by the topology, but
must adhere to the specified winding order.

• An input primitive type of InputTrianglesAdjacency must only be used when tessellation is
inactive, with a pipeline topology of VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY. The input arrays always contain six
elements, as described by the triangle list with adjacency topology or triangle strip with
adjacency topology. Vertices may be in a different absolute order than specified by the topology,
but must adhere to the specified winding order, and the vertices making up the main primitive
must still occur at the first, third, and fifth index.

972

23.2. Geometry Shader Output Primitives
A geometry shader generates primitives in one of three output modes: points, line strips, or triangle
strips. The primitive mode is specified in the shader using an OpExecutionMode instruction with the
OutputPoints, OutputLineStrip or OutputTriangleStrip modes, respectively. Each geometry shader
must include exactly one output primitive mode.

The vertices output by the geometry shader are assembled into points, lines, or triangles based on
the output primitive type and the resulting primitives are then further processed as described in
Rasterization. If the number of vertices emitted by the geometry shader is not sufficient to produce
a single primitive, vertices corresponding to incomplete primitives are not processed by subsequent
pipeline stages. The number of vertices output by the geometry shader is limited to a maximum
count specified in the shader.

The maximum output vertex count is specified in the shader using an OpExecutionMode instruction
with the mode set to OutputVertices and the maximum number of vertices that will be produced by
the geometry shader specified as a literal. Each geometry shader must specify a maximum output
vertex count.

23.3. Multiple Invocations of Geometry Shaders
Geometry shaders can be invoked more than one time for each input primitive. This is known as
geometry shader instancing and is requested by including an OpExecutionMode instruction with mode
specified as Invocations and the number of invocations specified as an integer literal.

In this mode, the geometry shader will execute at least n times for each input primitive, where n is
the number of invocations specified in the OpExecutionMode instruction. The instance number is
available to each invocation as a built-in input using InvocationId.

23.4. Geometry Shader Primitive Ordering
Limited guarantees are provided for the relative ordering of primitives produced by a geometry
shader, as they pertain to primitive order.

• For instanced geometry shaders, the output primitives generated from each input primitive are
passed to subsequent pipeline stages using the invocation number to order the primitives, from
least to greatest.

• All output primitives generated from a given input primitive are passed to subsequent pipeline
stages before any output primitives generated from subsequent input primitives.

973

Chapter 24. Fixed-Function Vertex Post-
Processing
After pre-rasterization shader stages, the following fixed-function operations are applied to vertices
of the resulting primitives:

• Flat shading (see Flat Shading).

• Primitive clipping, including client-defined half-spaces (see Primitive Clipping).

• Shader output attribute clipping (see Clipping Shader Outputs).

• Perspective division on clip coordinates (see Coordinate Transformations).

• Viewport mapping, including depth range scaling (see Controlling the Viewport).

• Front face determination for polygon primitives (see Basic Polygon Rasterization).

Next, rasterization is performed on primitives as described in chapter Rasterization.

24.1. Flat Shading
Flat shading a vertex output attribute means to assign all vertices of the primitive the same value
for that output. The output values assigned are those of the provoking vertex of the primitive. Flat
shading is applied to those vertex attributes that match fragment input attributes which are
decorated as Flat.

If neither geometry nor tessellation shading is active, the provoking vertex is determined by the
primitive topology defined by VkPipelineInputAssemblyStateCreateInfo:topology used to execute
the drawing command.

If geometry shading is active, the provoking vertex is determined by the primitive topology defined
by the OutputPoints, OutputLineStrip, or OutputTriangleStrip execution mode.

If tessellation shading is active but geometry shading is not, the provoking vertex may be any of the
vertices in each primitive.

24.2. Primitive Clipping
Primitives are culled against the cull volume and then clipped to the clip volume. In clip coordinates,
the view volume is defined by:

where zm is equal to zero.

This view volume can be further restricted by as many as VkPhysicalDeviceLimits::maxClipDistances
client-defined half-spaces.

974

The cull volume is the intersection of up to VkPhysicalDeviceLimits::maxCullDistances client-defined
half-spaces (if no client-defined cull half-spaces are enabled, culling against the cull volume is
skipped).

A shader must write a single cull distance for each enabled cull half-space to elements of the
CullDistance array. If the cull distance for any enabled cull half-space is negative for all of the
vertices of the primitive under consideration, the primitive is discarded. Otherwise the primitive is
clipped against the clip volume as defined below.

The clip volume is the intersection of up to VkPhysicalDeviceLimits::maxClipDistances client-defined
half-spaces with the view volume (if no client-defined clip half-spaces are enabled, the clip volume
is the view volume).

A shader must write a single clip distance for each enabled clip half-space to elements of the
ClipDistance array. Clip half-space i is then given by the set of points satisfying the inequality

ci(P) ≥ 0

where ci(P) is the clip distance i at point P. For point primitives, ci(P) is simply the clip distance for
the vertex in question. For line and triangle primitives, per-vertex clip distances are interpolated
using a weighted mean, with weights derived according to the algorithms described in sections
Basic Line Segment Rasterization and Basic Polygon Rasterization, using the perspective
interpolation equations.

The number of client-defined clip and cull half-spaces that are enabled is determined by the explicit
size of the built-in arrays ClipDistance and CullDistance, respectively, declared as an output in the
interface of the entry point of the final shader stage before clipping.

Depth clamping is enabled or disabled via the depthClampEnable enable of the
VkPipelineRasterizationStateCreateInfo structure. Depth clipping is disabled when depthClampEnable
is VK_TRUE.

When depth clipping is disabled, the plane equation

zm ≤ zc ≤ wc

(see the clip volume definition above) is ignored by view volume clipping (effectively, there is no
near or far plane clipping).

If the primitive under consideration is a point or line segment, then clipping passes it unchanged if
its vertices lie entirely within the clip volume.

Possible values of VkPhysicalDevicePointClippingProperties::pointClippingBehavior, specifying
clipping behavior of a point primitive whose vertex lies outside the clip volume, are:

// Provided by VK_VERSION_1_1
typedef enum VkPointClippingBehavior {
 VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES = 0,

975

 VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY = 1,
} VkPointClippingBehavior;

• VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES specifies that the primitive is discarded if the
vertex lies outside any clip plane, including the planes bounding the view volume.

• VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY specifies that the primitive is discarded only
if the vertex lies outside any user clip plane.

If either of a line segment’s vertices lie outside of the clip volume, the line segment may be clipped,
with new vertex coordinates computed for each vertex that lies outside the clip volume. A clipped
line segment endpoint lies on both the original line segment and the boundary of the clip volume.

This clipping produces a value, 0 ≤ t ≤ 1, for each clipped vertex. If the coordinates of a clipped
vertex are P and the unclipped line segment’s vertex coordinates are P1 and P2, then t satisfies the
following equation

P = t P1 + (1-t) P2.

t is used to clip vertex output attributes as described in Clipping Shader Outputs.

If the primitive is a polygon, it passes unchanged if every one of its edges lies entirely inside the clip
volume, and is either clipped or discarded otherwise. If the edges of the polygon intersect the
boundary of the clip volume, the intersecting edges are reconnected by new edges that lie along the
boundary of the clip volume - in some cases requiring the introduction of new vertices into a
polygon.

If a polygon intersects an edge of the clip volume’s boundary, the clipped polygon must include a
point on this boundary edge.

Primitives rendered with user-defined half-spaces must satisfy a complementarity criterion.
Suppose a series of primitives is drawn where each vertex i has a single specified clip distance di (or
a number of similarly specified clip distances, if multiple half-spaces are enabled). Next, suppose
that the same series of primitives are drawn again with each such clip distance replaced by -di (and
the graphics pipeline is otherwise the same). In this case, primitives must not be missing any pixels,
and pixels must not be drawn twice in regions where those primitives are cut by the clip planes.

24.3. Clipping Shader Outputs
Next, vertex output attributes are clipped. The output values associated with a vertex that lies
within the clip volume are unaffected by clipping. If a primitive is clipped, however, the output
values assigned to vertices produced by clipping are clipped.

Let the output values assigned to the two vertices P1 and P2 of an unclipped edge be c1 and c2. The
value of t (see Primitive Clipping) for a clipped point P is used to obtain the output value associated
with P as

976

c = t c1 + (1-t) c2.

(Multiplying an output value by a scalar means multiplying each of x, y, z, and w by the scalar.)

Since this computation is performed in clip space before division by wc, clipped output values are
perspective-correct.

Polygon clipping creates a clipped vertex along an edge of the clip volume’s boundary. This
situation is handled by noting that polygon clipping proceeds by clipping against one half-space at a
time. Output value clipping is done in the same way, so that clipped points always occur at the
intersection of polygon edges (possibly already clipped) with the clip volume’s boundary.

For vertex output attributes whose matching fragment input attributes are decorated with
NoPerspective, the value of t used to obtain the output value associated with P will be adjusted to
produce results that vary linearly in framebuffer space.

Output attributes of integer or unsigned integer type must always be flat shaded. Flat shaded
attributes are constant over the primitive being rasterized (see Basic Line Segment Rasterization
and Basic Polygon Rasterization), and no interpolation is performed. The output value c is taken
from either c1 or c2, since flat shading has already occurred and the two values are identical.

24.4. Coordinate Transformations
Clip coordinates for a vertex result from shader execution, which yields a vertex coordinate
Position.

Perspective division on clip coordinates yields normalized device coordinates, followed by a
viewport transformation (see Controlling the Viewport) to convert these coordinates into
framebuffer coordinates.

If a vertex in clip coordinates has a position given by

then the vertex’s normalized device coordinates are

977

24.5. Controlling the Viewport
The viewport transformation is determined by the selected viewport’s width and height in pixels, px

and py, respectively, and its center (ox, oy) (also in pixels), as well as its depth range min and max
determining a depth range scale value pz and a depth range bias value oz (defined below). The
vertex’s framebuffer coordinates (xf, yf, zf) are given by

xf = (px / 2) xd + ox

yf = (py / 2) yd + oy

zf = pz × zd + oz

Multiple viewports are available, numbered zero up to VkPhysicalDeviceLimits::maxViewports minus
one. The number of viewports used by a pipeline is controlled by the viewportCount member of the
VkPipelineViewportStateCreateInfo structure used in pipeline creation.

xf and yf have limited precision, where the number of fractional bits retained is specified by
VkPhysicalDeviceLimits::subPixelPrecisionBits.

The VkPipelineViewportStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineViewportStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineViewportStateCreateFlags flags;
 uint32_t viewportCount;
 const VkViewport* pViewports;
 uint32_t scissorCount;
 const VkRect2D* pScissors;
} VkPipelineViewportStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• viewportCount is the number of viewports used by the pipeline.

• pViewports is a pointer to an array of VkViewport structures, defining the viewport transforms.
If the viewport state is dynamic, this member is ignored.

• scissorCount is the number of scissors and must match the number of viewports.

• pScissors is a pointer to an array of VkRect2D structures defining the rectangular bounds of the
scissor for the corresponding viewport. If the scissor state is dynamic, this member is ignored.

978

Valid Usage

• VUID-VkPipelineViewportStateCreateInfo-viewportCount-01216
If the multiViewport feature is not enabled, viewportCount must not be greater than 1

• VUID-VkPipelineViewportStateCreateInfo-scissorCount-01217
If the multiViewport feature is not enabled, scissorCount must not be greater than 1

• VUID-VkPipelineViewportStateCreateInfo-viewportCount-01218
viewportCount must be less than or equal to VkPhysicalDeviceLimits::maxViewports

• VUID-VkPipelineViewportStateCreateInfo-scissorCount-01219
scissorCount must be less than or equal to VkPhysicalDeviceLimits::maxViewports

• VUID-VkPipelineViewportStateCreateInfo-x-02821
The x and y members of offset member of any element of pScissors must be greater than
or equal to 0

• VUID-VkPipelineViewportStateCreateInfo-offset-02822
Evaluation of (offset.x + extent.width) must not cause a signed integer addition overflow
for any element of pScissors

• VUID-VkPipelineViewportStateCreateInfo-offset-02823
Evaluation of (offset.y + extent.height) must not cause a signed integer addition
overflow for any element of pScissors

• VUID-VkPipelineViewportStateCreateInfo-scissorCount-04134
If scissorCount and viewportCount are both not dynamic, then scissorCount and
viewportCount must be identical

• VUID-VkPipelineViewportStateCreateInfo-viewportCount-04135
If the graphics pipeline is being created with VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT set
then viewportCount must be 0, otherwise viewportCount must be greater than 0

• VUID-VkPipelineViewportStateCreateInfo-scissorCount-04136
If the graphics pipeline is being created with VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT set
then scissorCount must be 0, otherwise scissorCount must be greater than 0

Valid Usage (Implicit)

• VUID-VkPipelineViewportStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO

• VUID-VkPipelineViewportStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineViewportStateCreateInfo-flags-zerobitmask
flags must be 0

To dynamically set the viewport count and viewports, call:

// Provided by VK_VERSION_1_3

979

void vkCmdSetViewportWithCount(
 VkCommandBuffer commandBuffer,
 uint32_t viewportCount,
 const VkViewport* pViewports);

• commandBuffer is the command buffer into which the command will be recorded.

• viewportCount specifies the viewport count.

• pViewports specifies the viewports to use for drawing.

This command sets the viewport count and viewports state for subsequent drawing commands
when the graphics pipeline is created with VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
corresponding VkPipelineViewportStateCreateInfo::viewportCount and pViewports values used to
create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetViewportWithCount-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

• VUID-vkCmdSetViewportWithCount-viewportCount-03394
viewportCount must be between 1 and VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetViewportWithCount-viewportCount-03395
If the multiViewport feature is not enabled, viewportCount must be 1

Valid Usage (Implicit)

• VUID-vkCmdSetViewportWithCount-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetViewportWithCount-pViewports-parameter
pViewports must be a valid pointer to an array of viewportCount valid VkViewport
structures

• VUID-vkCmdSetViewportWithCount-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetViewportWithCount-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetViewportWithCount-viewportCount-arraylength
viewportCount must be greater than 0

980

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

To dynamically set the scissor count and scissor rectangular bounds, call:

// Provided by VK_VERSION_1_3
void vkCmdSetScissorWithCount(
 VkCommandBuffer commandBuffer,
 uint32_t scissorCount,
 const VkRect2D* pScissors);

• commandBuffer is the command buffer into which the command will be recorded.

• scissorCount specifies the scissor count.

• pScissors specifies the scissors to use for drawing.

This command sets the scissor count and scissor rectangular bounds state for subsequent drawing
commands when the graphics pipeline is created with VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
corresponding VkPipelineViewportStateCreateInfo::scissorCount and pScissors values used to
create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetScissorWithCount-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

• VUID-vkCmdSetScissorWithCount-scissorCount-03397
scissorCount must be between 1 and VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetScissorWithCount-scissorCount-03398
If the multiViewport feature is not enabled, scissorCount must be 1

981

• VUID-vkCmdSetScissorWithCount-x-03399
The x and y members of offset member of any element of pScissors must be greater than
or equal to 0

• VUID-vkCmdSetScissorWithCount-offset-03400
Evaluation of (offset.x + extent.width) must not cause a signed integer addition overflow
for any element of pScissors

• VUID-vkCmdSetScissorWithCount-offset-03401
Evaluation of (offset.y + extent.height) must not cause a signed integer addition
overflow for any element of pScissors

Valid Usage (Implicit)

• VUID-vkCmdSetScissorWithCount-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetScissorWithCount-pScissors-parameter
pScissors must be a valid pointer to an array of scissorCount VkRect2D structures

• VUID-vkCmdSetScissorWithCount-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetScissorWithCount-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetScissorWithCount-scissorCount-arraylength
scissorCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineViewportStateCreateFlags;

982

VkPipelineViewportStateCreateFlags is a bitmask type for setting a mask, but is currently reserved
for future use.

A pre-rasterization shader stage can direct each primitive to one of several viewports. The
destination viewport for a primitive is selected by the last active pre-rasterization shader stage that
has an output variable decorated with ViewportIndex. The viewport transform uses the viewport
corresponding to the value assigned to ViewportIndex, and taken from an implementation-
dependent vertex of each primitive. If ViewportIndex is outside the range zero to viewportCount
minus one for a primitive, or if the last active pre-rasterization shader stage did not assign a value
to ViewportIndex for all vertices of a primitive due to flow control, the values resulting from the
viewport transformation of the vertices of such primitives are undefined. If the last pre-
rasterization shader stage does not have an output decorated with ViewportIndex, the viewport
numbered zero is used by the viewport transformation.

A single vertex can be used in more than one individual primitive, in primitives such as
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP. In this case, the viewport transformation is applied
separately for each primitive.

To dynamically set the viewport transformation parameters, call:

// Provided by VK_VERSION_1_0
void vkCmdSetViewport(
 VkCommandBuffer commandBuffer,
 uint32_t firstViewport,
 uint32_t viewportCount,
 const VkViewport* pViewports);

• commandBuffer is the command buffer into which the command will be recorded.

• firstViewport is the index of the first viewport whose parameters are updated by the command.

• viewportCount is the number of viewports whose parameters are updated by the command.

• pViewports is a pointer to an array of VkViewport structures specifying viewport parameters.

This command sets the viewport transformation parameters state for subsequent drawing
commands when the graphics pipeline is created with VK_DYNAMIC_STATE_VIEWPORT set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineViewportStateCreateInfo::pViewports values used to create the currently active pipeline.

The viewport parameters taken from element i of pViewports replace the current state for the
viewport index firstViewport + i, for i in [0, viewportCount).

Valid Usage

• VUID-vkCmdSetViewport-firstViewport-01223
The sum of firstViewport and viewportCount must be between 1 and
VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetViewport-firstViewport-01224

983

If the multiViewport feature is not enabled, firstViewport must be 0

• VUID-vkCmdSetViewport-viewportCount-01225
If the multiViewport feature is not enabled, viewportCount must be 1

Valid Usage (Implicit)

• VUID-vkCmdSetViewport-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetViewport-pViewports-parameter
pViewports must be a valid pointer to an array of viewportCount valid VkViewport
structures

• VUID-vkCmdSetViewport-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetViewport-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetViewport-viewportCount-arraylength
viewportCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

Both VkPipelineViewportStateCreateInfo and vkCmdSetViewport use VkViewport to set the viewport
transformation parameters.

The VkViewport structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkViewport {
 float x;
 float y;

984

 float width;
 float height;
 float minDepth;
 float maxDepth;
} VkViewport;

• x and y are the viewport’s upper left corner (x,y).

• width and height are the viewport’s width and height, respectively.

• minDepth and maxDepth are the depth range for the viewport.

Note

Despite their names, minDepth can be less than, equal to, or greater than maxDepth.

The framebuffer depth coordinate zf may be represented using either a fixed-point or floating-point
representation. However, a floating-point representation must be used if the depth/stencil
attachment has a floating-point depth component. If an m-bit fixed-point representation is used, we
assume that it represents each value , where k ∈ { 0, 1, …, 2m-1 }, as k (e.g. 1.0 is represented in
binary as a string of all ones).

The viewport parameters shown in the above equations are found from these values as

ox = x + width / 2

oy = y + height / 2

oz = minDepth

px = width

py = height

pz = maxDepth - minDepth

The application can specify a negative term for height, which has the effect of negating the y
coordinate in clip space before performing the transform. When using a negative height, the
application should also adjust the y value to point to the lower left corner of the viewport instead of
the upper left corner. Using the negative height allows the application to avoid having to negate the
y component of the Position output from the last pre-rasterization shader stage.

The width and height of the implementation-dependent maximum viewport dimensions must be
greater than or equal to the width and height of the largest image which can be created and

985

attached to a framebuffer.

The floating-point viewport bounds are represented with an implementation-dependent precision.

Valid Usage

• VUID-VkViewport-width-01770
width must be greater than 0.0

• VUID-VkViewport-width-01771
width must be less than or equal to VkPhysicalDeviceLimits::maxViewportDimensions[0]

• VUID-VkViewport-apiVersion-07917
If the VK_KHR_maintenance1 extension is not enabled, the VK_AMD_negative_viewport_height
extension is not enabled, and VkPhysicalDeviceProperties::apiVersion is less than Vulkan
1.1, height must be greater than 0.0

• VUID-VkViewport-height-01773
The absolute value of height must be less than or equal to VkPhysicalDeviceLimits
::maxViewportDimensions[1]

• VUID-VkViewport-x-01774
x must be greater than or equal to viewportBoundsRange[0]

• VUID-VkViewport-x-01232
(x + width) must be less than or equal to viewportBoundsRange[1]

• VUID-VkViewport-y-01775
y must be greater than or equal to viewportBoundsRange[0]

• VUID-VkViewport-y-01776
y must be less than or equal to viewportBoundsRange[1]

• VUID-VkViewport-y-01777
(y + height) must be greater than or equal to viewportBoundsRange[0]

• VUID-VkViewport-y-01233
(y + height) must be less than or equal to viewportBoundsRange[1]

• VUID-VkViewport-minDepth-01234
minDepth must be between 0.0 and 1.0, inclusive

• VUID-VkViewport-maxDepth-01235
maxDepth must be between 0.0 and 1.0, inclusive

986

Chapter 25. Rasterization
Rasterization is the process by which a primitive is converted to a two-dimensional image. Each
discrete location of this image contains associated data such as depth, color, or other attributes.

Rasterizing a primitive begins by determining which squares of an integer grid in framebuffer
coordinates are occupied by the primitive, and assigning one or more depth values to each such
square. This process is described below for points, lines, and polygons.

A grid square, including its (x,y) framebuffer coordinates, z (depth), and associated data added by
fragment shaders, is called a fragment. A fragment is located by its upper left corner, which lies on
integer grid coordinates.

Rasterization operations also refer to a fragment’s sample locations, which are offset by fractional
values from its upper left corner. The rasterization rules for points, lines, and triangles involve
testing whether each sample location is inside the primitive. Fragments need not actually be
square, and rasterization rules are not affected by the aspect ratio of fragments. Display of non-
square grids, however, will cause rasterized points and line segments to appear fatter in one
direction than the other.

We assume that fragments are square, since it simplifies antialiasing and texturing. After
rasterization, fragments are processed by fragment operations.

Several factors affect rasterization, including the members of
VkPipelineRasterizationStateCreateInfo and VkPipelineMultisampleStateCreateInfo.

The VkPipelineRasterizationStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineRasterizationStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineRasterizationStateCreateFlags flags;
 VkBool32 depthClampEnable;
 VkBool32 rasterizerDiscardEnable;
 VkPolygonMode polygonMode;
 VkCullModeFlags cullMode;
 VkFrontFace frontFace;
 VkBool32 depthBiasEnable;
 float depthBiasConstantFactor;
 float depthBiasClamp;
 float depthBiasSlopeFactor;
 float lineWidth;
} VkPipelineRasterizationStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

987

• depthClampEnable controls whether to clamp the fragment’s depth values as described in Depth
Test. Enabling depth clamp will also disable clipping primitives to the z planes of the frustum as
described in Primitive Clipping.

• rasterizerDiscardEnable controls whether primitives are discarded immediately before the
rasterization stage.

• polygonMode is the triangle rendering mode. See VkPolygonMode.

• cullMode is the triangle facing direction used for primitive culling. See VkCullModeFlagBits.

• frontFace is a VkFrontFace value specifying the front-facing triangle orientation to be used for
culling.

• depthBiasEnable controls whether to bias fragment depth values.

• depthBiasConstantFactor is a scalar factor controlling the constant depth value added to each
fragment.

• depthBiasClamp is the maximum (or minimum) depth bias of a fragment.

• depthBiasSlopeFactor is a scalar factor applied to a fragment’s slope in depth bias calculations.

• lineWidth is the width of rasterized line segments.

Valid Usage

• VUID-VkPipelineRasterizationStateCreateInfo-depthClampEnable-00782
If the depthClamp feature is not enabled, depthClampEnable must be VK_FALSE

• VUID-VkPipelineRasterizationStateCreateInfo-polygonMode-01507
If the fillModeNonSolid feature is not enabled, polygonMode must be VK_POLYGON_MODE_FILL

Valid Usage (Implicit)

• VUID-VkPipelineRasterizationStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO

• VUID-VkPipelineRasterizationStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineRasterizationStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineRasterizationStateCreateInfo-polygonMode-parameter
polygonMode must be a valid VkPolygonMode value

• VUID-VkPipelineRasterizationStateCreateInfo-cullMode-parameter
cullMode must be a valid combination of VkCullModeFlagBits values

• VUID-VkPipelineRasterizationStateCreateInfo-frontFace-parameter
frontFace must be a valid VkFrontFace value

// Provided by VK_VERSION_1_0

988

typedef VkFlags VkPipelineRasterizationStateCreateFlags;

VkPipelineRasterizationStateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

The VkPipelineMultisampleStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineMultisampleStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineMultisampleStateCreateFlags flags;
 VkSampleCountFlagBits rasterizationSamples;
 VkBool32 sampleShadingEnable;
 float minSampleShading;
 const VkSampleMask* pSampleMask;
 VkBool32 alphaToCoverageEnable;
 VkBool32 alphaToOneEnable;
} VkPipelineMultisampleStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

• rasterizationSamples is a VkSampleCountFlagBits value specifying the number of samples used
in rasterization.

• sampleShadingEnable can be used to enable Sample Shading.

• minSampleShading specifies a minimum fraction of sample shading if sampleShadingEnable is set to
VK_TRUE.

• pSampleMask is a pointer to an array of VkSampleMask values used in the sample mask test.

• alphaToCoverageEnable controls whether a temporary coverage value is generated based on the
alpha component of the fragment’s first color output as specified in the Multisample Coverage
section.

• alphaToOneEnable controls whether the alpha component of the fragment’s first color output is
replaced with one as described in Multisample Coverage.

Each bit in the sample mask is associated with a unique sample index as defined for the coverage
mask. Each bit b for mask word w in the sample mask corresponds to sample index i, where i = 32 ×
w + b. pSampleMask has a length equal to ⌈ rasterizationSamples / 32 ⌉ words.

If pSampleMask is NULL, it is treated as if the mask has all bits set to 1.

Valid Usage

• VUID-VkPipelineMultisampleStateCreateInfo-sampleShadingEnable-00784

989

If the sampleRateShading feature is not enabled, sampleShadingEnable must be VK_FALSE

• VUID-VkPipelineMultisampleStateCreateInfo-alphaToOneEnable-00785
If the alphaToOne feature is not enabled, alphaToOneEnable must be VK_FALSE

• VUID-VkPipelineMultisampleStateCreateInfo-minSampleShading-00786
minSampleShading must be in the range [0,1]

Valid Usage (Implicit)

• VUID-VkPipelineMultisampleStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO

• VUID-VkPipelineMultisampleStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineMultisampleStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineMultisampleStateCreateInfo-rasterizationSamples-parameter
rasterizationSamples must be a valid VkSampleCountFlagBits value

• VUID-VkPipelineMultisampleStateCreateInfo-pSampleMask-parameter
If pSampleMask is not NULL, pSampleMask must be a valid pointer to an array of

 VkSampleMask values

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineMultisampleStateCreateFlags;

VkPipelineMultisampleStateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

The elements of the sample mask array are of type VkSampleMask, each representing 32 bits of
coverage information:

// Provided by VK_VERSION_1_0
typedef uint32_t VkSampleMask;

Rasterization only generates fragments which cover one or more pixels inside the framebuffer.
Pixels outside the framebuffer are never considered covered in the fragment. Fragments which
would be produced by application of any of the primitive rasterization rules described below but
which lie outside the framebuffer are not produced, nor are they processed by any later stage of the
pipeline, including any of the fragment operations.

Surviving fragments are processed by fragment shaders. Fragment shaders determine associated
data for fragments, and can also modify or replace their assigned depth values.

990

25.1. Discarding Primitives Before Rasterization
Primitives are discarded before rasterization if the rasterizerDiscardEnable member of
VkPipelineRasterizationStateCreateInfo is enabled. When enabled, primitives are discarded after
they are processed by the last active shader stage in the pipeline before rasterization.

To dynamically enable whether primitives are discarded before the rasterization stage, call:

// Provided by VK_VERSION_1_3
void vkCmdSetRasterizerDiscardEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 rasterizerDiscardEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• rasterizerDiscardEnable controls whether primitives are discarded immediately before the
rasterization stage.

This command sets the discard enable for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationStateCreateInfo::rasterizerDiscardEnable value used to create the currently
active pipeline.

Valid Usage

• VUID-vkCmdSetRasterizerDiscardEnable-None-08970
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetRasterizerDiscardEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetRasterizerDiscardEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetRasterizerDiscardEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

991

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

25.2. Rasterization Order
Within a subpass of a render pass instance, for a given (x,y,layer,sample) sample location, the
following operations are guaranteed to execute in rasterization order, for each separate primitive
that includes that sample location:

1. Fragment operations, in the order defined

2. Blending, logic operations, and color writes

Execution of these operations for each primitive in a subpass occurs in primitive order.

25.3. Multisampling
Multisampling is a mechanism to antialias all Vulkan primitives: points, lines, and polygons. The
technique is to sample all primitives multiple times at each pixel. Each sample in each framebuffer
attachment has storage for a color, depth, and/or stencil value, such that per-fragment operations
apply to each sample independently. The color sample values can be later resolved to a single color
(see Resolving Multisample Images and the Render Pass chapter for more details on how to resolve
multisample images to non-multisample images).

Vulkan defines rasterization rules for single-sample modes in a way that is equivalent to a
multisample mode with a single sample in the center of each fragment.

Each fragment includes a coverage mask with a single bit for each sample in the fragment, and a
number of depth values and associated data for each sample.

It is understood that each pixel has rasterizationSamples locations associated with it. These
locations are exact positions, rather than regions or areas, and each is referred to as a sample point.
The sample points associated with a pixel must be located inside or on the boundary of the unit
square that is considered to bound the pixel. Furthermore, the relative locations of sample points
may be identical for each pixel in the framebuffer, or they may differ.

If the current pipeline includes a fragment shader with one or more variables in its interface
decorated with Sample and Input, the data associated with those variables will be assigned
independently for each sample. The values for each sample must be evaluated at the location of the

992

sample. The data associated with any other variables not decorated with Sample and Input need not
be evaluated independently for each sample.

A coverage mask is generated for each fragment, based on which samples within that fragment are
determined to be within the area of the primitive that generated the fragment.

Single pixel fragments have one set of samples. Each set of samples has a number of samples
determined by VkPipelineMultisampleStateCreateInfo::rasterizationSamples. Each sample in a set is
assigned a unique sample index i in the range [0, rasterizationSamples).

Each sample in a fragment is also assigned a unique coverage index j in the range [0, n ×
rasterizationSamples), where n is the number of sets in the fragment. If the fragment contains a
single set of samples, the coverage index is always equal to the sample index.

The coverage mask includes B bits packed into W words, defined as:

B = n × rasterizationSamples

W = ⌈B/32⌉

Bit b in coverage mask word w is 1 if the sample with coverage index j = 32×w + b is covered, and 0
otherwise.

If the standardSampleLocations member of VkPhysicalDeviceLimits is VK_TRUE, then the sample
counts VK_SAMPLE_COUNT_1_BIT, VK_SAMPLE_COUNT_2_BIT, VK_SAMPLE_COUNT_4_BIT, VK_SAMPLE_COUNT_8_BIT,
and VK_SAMPLE_COUNT_16_BIT have sample locations as listed in the following table, with the ith entry
in the table corresponding to sample index i. VK_SAMPLE_COUNT_32_BIT and VK_SAMPLE_COUNT_64_BIT do
not have standard sample locations. Locations are defined relative to an origin in the upper left
corner of the fragment.

993

Table 24. Standard sample locations

Sample count Sample Locations

VK_SAMPLE_COUNT_1_BIT (0.5,0.5)

0

VK_SAMPLE_COUNT_2_BIT (0.75,0.75)
(0.25,0.25)

0

1

VK_SAMPLE_COUNT_4_BIT (0.375, 0.125)
(0.875, 0.375)
(0.125, 0.625)
(0.625, 0.875)

0

1

2

3

VK_SAMPLE_COUNT_8_BIT (0.5625, 0.3125)
(0.4375, 0.6875)
(0.8125, 0.5625)
(0.3125, 0.1875)
(0.1875, 0.8125)
(0.0625, 0.4375)
(0.6875, 0.9375)
(0.9375, 0.0625)

0

1
2

3

4

5

6

7

VK_SAMPLE_COUNT_16_BIT (0.5625, 0.5625)
(0.4375, 0.3125)
(0.3125, 0.625)
(0.75, 0.4375)
(0.1875, 0.375)
(0.625, 0.8125)
(0.8125, 0.6875)
(0.6875, 0.1875)
(0.375, 0.875)
(0.5, 0.0625)
(0.25, 0.125)
(0.125, 0.75)
(0.0, 0.5)
(0.9375, 0.25)
(0.875, 0.9375)
(0.0625, 0.0)

0

1

2

34

5
6

7

8

910

11

12

13

14

15

994

25.4. Sample Shading
Sample shading can be used to specify a minimum number of unique samples to process for each
fragment. If sample shading is enabled, an implementation must invoke the fragment shader at
least max(⌈ VkPipelineMultisampleStateCreateInfo::minSampleShading ×
VkPipelineMultisampleStateCreateInfo::rasterizationSamples ⌉, 1) times per fragment. If
VkPipelineMultisampleStateCreateInfo::sampleShadingEnable is set to VK_TRUE, sample shading is
enabled.

If a fragment shader entry point statically uses an input variable decorated with a BuiltIn of
SampleId or SamplePosition, sample shading is enabled and a value of 1.0 is used instead of
minSampleShading. If a fragment shader entry point statically uses an input variable decorated with
Sample, sample shading may be enabled and a value of 1.0 will be used instead of minSampleShading
if it is.

Note

If a shader decorates an input variable with Sample and that value meaningfully
impacts the output of a shader, sample shading will be enabled to ensure that the
input is in fact interpolated per-sample. This is inherent to the specification and
not spelled out here - if an application simply declares such a variable it is
implementation-defined whether sample shading is enabled or not. It is possible to
see the effects of this by using atomics in the shader or using a pipeline statistics
query to query the number of fragment invocations, even if the shader itself does
not use any per-sample variables.

If there are fewer fragment invocations than covered samples, implementations may include those
samples in fragment shader invocations in any manner as long as covered samples are all shaded
at least once, and each invocation that is not a helper invocation covers at least one sample.

25.5. Points
A point is drawn by generating a set of fragments in the shape of a square centered around the
vertex of the point. Each vertex has an associated point size controlling the width/height of that
square. The point size is taken from the (potentially clipped) shader built-in PointSize written by:

• the geometry shader, if active;

• the tessellation evaluation shader, if active and no geometry shader is active;

• the vertex shader, otherwise

and clamped to the implementation-dependent point size range [pointSizeRange[0],
pointSizeRange[1]]. The value written to PointSize must be greater than zero.

Not all point sizes need be supported, but the size 1.0 must be supported. The range of supported
sizes and the size of evenly-spaced gradations within that range are implementation-dependent.
The range and gradations are obtained from the pointSizeRange and pointSizeGranularity members
of VkPhysicalDeviceLimits. If, for instance, the size range is from 0.1 to 2.0 and the gradation size is
0.1, then the sizes 0.1, 0.2, …, 1.9, 2.0 are supported. Additional point sizes may also be supported.

995

There is no requirement that these sizes be equally spaced. If an unsupported size is requested, the
nearest supported size is used instead.

25.5.1. Basic Point Rasterization

Point rasterization produces a fragment for each fragment area group of framebuffer pixels with
one or more sample points that intersect a region centered at the point’s (xf,yf). This region is a
square with side equal to the current point size. Coverage bits that correspond to sample points that
intersect the region are 1, other coverage bits are 0. All fragments produced in rasterizing a point
are assigned the same associated data, which are those of the vertex corresponding to the point.
However, the fragment shader built-in PointCoord contains point sprite texture coordinates. The s
and t point sprite texture coordinates vary from zero to one across the point horizontally left-to-
right and vertically top-to-bottom, respectively. The following formulas are used to evaluate s and t:

where size is the point’s size; (xp,yp) is the location at which the point sprite coordinates are
evaluated - this may be the framebuffer coordinates of the fragment center, or the location of a
sample; and (xf,yf) is the exact, unrounded framebuffer coordinate of the vertex for the point.

25.6. Line Segments
To dynamically set the line width, call:

// Provided by VK_VERSION_1_0
void vkCmdSetLineWidth(
 VkCommandBuffer commandBuffer,
 float lineWidth);

• commandBuffer is the command buffer into which the command will be recorded.

• lineWidth is the width of rasterized line segments.

This command sets the line width for subsequent drawing commands when the graphics pipeline is
created with VK_DYNAMIC_STATE_LINE_WIDTH set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineRasterizationStateCreateInfo::lineWidth value
used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetLineWidth-lineWidth-00788
If the wideLines feature is not enabled, lineWidth must be 1.0

996

Valid Usage (Implicit)

• VUID-vkCmdSetLineWidth-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetLineWidth-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetLineWidth-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

Not all line widths need be supported for line segment rasterization, but width 1.0 antialiased
segments must be provided. The range and gradations are obtained from the lineWidthRange and
lineWidthGranularity members of VkPhysicalDeviceLimits. If, for instance, the size range is from 0.1
to 2.0 and the gradation size is 0.1, then the sizes 0.1, 0.2, …, 1.9, 2.0 are supported. Additional line
widths may also be supported. There is no requirement that these widths be equally spaced. If an
unsupported width is requested, the nearest supported width is used instead.

25.6.1. Basic Line Segment Rasterization

Rasterized line segments produce fragments which intersect a rectangle centered on the line
segment. Two of the edges are parallel to the specified line segment; each is at a distance of one-half
the current width from that segment in directions perpendicular to the direction of the line. The
other two edges pass through the line endpoints and are perpendicular to the direction of the
specified line segment. Coverage bits that correspond to sample points that intersect the rectangle
are 1, other coverage bits are 0.

Next we specify how the data associated with each rasterized fragment are obtained. Let pr = (xd, yd)
be the framebuffer coordinates at which associated data are evaluated. This may be the center of a
fragment or the location of a sample within the fragment. When rasterizationSamples is
VK_SAMPLE_COUNT_1_BIT, the fragment center must be used. Let pa = (xa, ya) and pb = (xb,yb) be initial

997

and final endpoints of the line segment, respectively. Set

(Note that t = 0 at pa and t = 1 at pb. Also note that this calculation projects the vector from pa to pr

onto the line, and thus computes the normalized distance of the fragment along the line.)

If strictLines is VK_TRUE, line segments are rasterized using perspective or linear interpolation.

Perspective interpolation for a line segment interpolates two values in a manner that is correct
when taking the perspective of the viewport into consideration, by way of the line segment’s clip
coordinates. An interpolated value f can be determined by

where fa and fb are the data associated with the starting and ending endpoints of the segment,
respectively; wa and wb are the clip w coordinates of the starting and ending endpoints of the
segment, respectively.

Linear interpolation for a line segment directly interpolates two values, and an interpolated value f
can be determined by

f = (1 - t) fa + t fb

where fa and fb are the data associated with the starting and ending endpoints of the segment,
respectively.

The clip coordinate w for a sample is determined using perspective interpolation. The depth value z
for a sample is determined using linear interpolation. Interpolation of fragment shader input
values are determined by Interpolation decorations.

The above description documents the preferred method of line rasterization, and must be used
when the implementation advertises the strictLines limit in VkPhysicalDeviceLimits as VK_TRUE.

When strictLines is VK_FALSE, the edges of the lines are generated as a parallelogram surrounding
the original line. The major axis is chosen by noting the axis in which there is the greatest distance
between the line start and end points. If the difference is equal in both directions then the X axis is
chosen as the major axis. Edges 2 and 3 are aligned to the minor axis and are centered on the
endpoints of the line as in Non strict lines, and each is lineWidth long. Edges 0 and 1 are parallel to
the line and connect the endpoints of edges 2 and 3. Coverage bits that correspond to sample points
that intersect the parallelogram are 1, other coverage bits are 0.

Samples that fall exactly on the edge of the parallelogram follow the polygon rasterization rules.

Interpolation occurs as if the parallelogram was decomposed into two triangles where each pair of
vertices at each end of the line has identical attributes.

998

Edge 0

Edge 1

Edge 3

Edge 2

Original

Line

(Xb,Yb,Zb)

(Xa,Ya,Za)

Line
Width

Figure 15. Non strict lines

Only when strictLines is VK_FALSE implementations may deviate from the non-strict line algorithm
described above in the following ways:

• Implementations may instead interpolate each fragment according to the formula in Basic Line
Segment Rasterization using the original line segment endpoints.

• Rasterization of non-antialiased non-strict line segments may be performed using the rules
defined in Bresenham Line Segment Rasterization.

25.6.2. Bresenham Line Segment Rasterization

Non-strict lines may also follow these rasterization rules for non-antialiased lines.

Line segment rasterization begins by characterizing the segment as either x-major or y-major. x-
major line segments have slope in the closed interval [-1,1]; all other line segments are y-major
(slope is determined by the segment’s endpoints). We specify rasterization only for x-major
segments except in cases where the modifications for y-major segments are not self-evident.

Ideally, Vulkan uses a diamond-exit rule to determine those fragments that are produced by
rasterizing a line segment. For each fragment f with center at framebuffer coordinates xf and yf,
define a diamond-shaped region that is the intersection of four half planes:

Essentially, a line segment starting at pa and ending at pb produces those fragments f for which the
segment intersects Rf, except if pb is contained in Rf.

999

Figure 16. Visualization of Bresenham’s algorithm

To avoid difficulties when an endpoint lies on a boundary of Rf we (in principle) perturb the
supplied endpoints by a tiny amount. Let pa and pb have framebuffer coordinates (xa, ya) and (xb, yb),
respectively. Obtain the perturbed endpoints pa' given by (xa, ya) - (ε, ε2) and pb' given by (xb, yb) - (ε,
ε2). Rasterizing the line segment starting at pa and ending at pb produces those fragments f for
which the segment starting at pa' and ending on pb' intersects Rf, except if pb' is contained in Rf. ε is
chosen to be so small that rasterizing the line segment produces the same fragments when δ is
substituted for ε for any 0 < δ ≤ ε.

When pa and pb lie on fragment centers, this characterization of fragments reduces to Bresenham’s
algorithm with one modification: lines produced in this description are “half-open”, meaning that
the final fragment (corresponding to pb) is not drawn. This means that when rasterizing a series of
connected line segments, shared endpoints will be produced only once rather than twice (as would
occur with Bresenham’s algorithm).

Implementations may use other line segment rasterization algorithms, subject to the following
rules:

• The coordinates of a fragment produced by the algorithm must not deviate by more than one
unit in either x or y framebuffer coordinates from a corresponding fragment produced by the
diamond-exit rule.

• The total number of fragments produced by the algorithm must not differ from that produced
by the diamond-exit rule by more than one.

• For an x-major line, two fragments that lie in the same framebuffer-coordinate column must
not be produced (for a y-major line, two fragments that lie in the same framebuffer-coordinate
row must not be produced).

1000

• If two line segments share a common endpoint, and both segments are either x-major (both left-
to-right or both right-to-left) or y-major (both bottom-to-top or both top-to-bottom), then
rasterizing both segments must not produce duplicate fragments. Fragments also must not be
omitted so as to interrupt continuity of the connected segments.

The actual width w of Bresenham lines is determined by rounding the line width to the nearest
integer, clamping it to the implementation-dependent lineWidthRange (with both values rounded to
the nearest integer), then clamping it to be no less than 1.

Bresenham line segments of width other than one are rasterized by offsetting them in the minor
direction (for an x-major line, the minor direction is y, and for a y-major line, the minor direction is
x) and producing a row or column of fragments in the minor direction. If the line segment has
endpoints given by (x0, y0) and (x1, y1) in framebuffer coordinates, the segment with endpoints

 and is rasterized, but instead of a single fragment, a column of fragments
of height w (a row of fragments of length w for a y-major segment) is produced at each x (y for y-
major) location. The lowest fragment of this column is the fragment that would be produced by
rasterizing the segment of width 1 with the modified coordinates.

The preferred method of attribute interpolation for a wide line is to generate the same attribute
values for all fragments in the row or column described above, as if the adjusted line was used for
interpolation and those values replicated to the other fragments, except for FragCoord which is
interpolated as usual. Implementations may instead interpolate each fragment according to the
formula in Basic Line Segment Rasterization, using the original line segment endpoints.

When Bresenham lines are being rasterized, sample locations may all be treated as being at the
pixel center (this may affect attribute and depth interpolation).

Note

The sample locations described above are not used for determining coverage, they
are only used for things like attribute interpolation. The rasterization rules that
determine coverage are defined in terms of whether the line intersects pixels, as
opposed to the point sampling rules used for other primitive types. So these rules
are independent of the sample locations. One consequence of this is that
Bresenham lines cover the same pixels regardless of the number of rasterization
samples, and cover all samples in those pixels (unless masked out or killed).

25.7. Polygons
A polygon results from the decomposition of a triangle strip, triangle fan or a series of independent
triangles. Like points and line segments, polygon rasterization is controlled by several variables in
the VkPipelineRasterizationStateCreateInfo structure.

25.7.1. Basic Polygon Rasterization

The first step of polygon rasterization is to determine whether the triangle is back-facing or front-
facing. This determination is made based on the sign of the (clipped or unclipped) polygon’s area
computed in framebuffer coordinates. One way to compute this area is:

1001

where and are the x and y framebuffer coordinates of the ith vertex of the n-vertex polygon
(vertices are numbered starting at zero for the purposes of this computation) and i ⊕ 1 is (i + 1) mod
n.

The interpretation of the sign of a is determined by the VkPipelineRasterizationStateCreateInfo
::frontFace property of the currently active pipeline. Possible values are:

// Provided by VK_VERSION_1_0
typedef enum VkFrontFace {
 VK_FRONT_FACE_COUNTER_CLOCKWISE = 0,
 VK_FRONT_FACE_CLOCKWISE = 1,
} VkFrontFace;

• VK_FRONT_FACE_COUNTER_CLOCKWISE specifies that a triangle with positive area is considered front-
facing.

• VK_FRONT_FACE_CLOCKWISE specifies that a triangle with negative area is considered front-facing.

Any triangle which is not front-facing is back-facing, including zero-area triangles.

To dynamically set the front face orientation, call:

// Provided by VK_VERSION_1_3
void vkCmdSetFrontFace(
 VkCommandBuffer commandBuffer,
 VkFrontFace frontFace);

• commandBuffer is the command buffer into which the command will be recorded.

• frontFace is a VkFrontFace value specifying the front-facing triangle orientation to be used for
culling.

This command sets the front face orientation for subsequent drawing commands when the
graphics pipeline is created with VK_DYNAMIC_STATE_FRONT_FACE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationStateCreateInfo::frontFace value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetFrontFace-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

1002

Valid Usage (Implicit)

• VUID-vkCmdSetFrontFace-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetFrontFace-frontFace-parameter
frontFace must be a valid VkFrontFace value

• VUID-vkCmdSetFrontFace-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetFrontFace-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

Once the orientation of triangles is determined, they are culled according to the
VkPipelineRasterizationStateCreateInfo::cullMode property of the currently active pipeline. Possible
values are:

// Provided by VK_VERSION_1_0
typedef enum VkCullModeFlagBits {
 VK_CULL_MODE_NONE = 0,
 VK_CULL_MODE_FRONT_BIT = 0x00000001,
 VK_CULL_MODE_BACK_BIT = 0x00000002,
 VK_CULL_MODE_FRONT_AND_BACK = 0x00000003,
} VkCullModeFlagBits;

• VK_CULL_MODE_NONE specifies that no triangles are discarded

• VK_CULL_MODE_FRONT_BIT specifies that front-facing triangles are discarded

• VK_CULL_MODE_BACK_BIT specifies that back-facing triangles are discarded

1003

• VK_CULL_MODE_FRONT_AND_BACK specifies that all triangles are discarded.

Following culling, fragments are produced for any triangles which have not been discarded.

// Provided by VK_VERSION_1_0
typedef VkFlags VkCullModeFlags;

VkCullModeFlags is a bitmask type for setting a mask of zero or more VkCullModeFlagBits.

To dynamically set the cull mode, call:

// Provided by VK_VERSION_1_3
void vkCmdSetCullMode(
 VkCommandBuffer commandBuffer,
 VkCullModeFlags cullMode);

• commandBuffer is the command buffer into which the command will be recorded.

• cullMode specifies the cull mode property to use for drawing.

This command sets the cull mode for subsequent drawing commands when the graphics pipeline is
created with VK_DYNAMIC_STATE_CULL_MODE set in VkPipelineDynamicStateCreateInfo::pDynamicStates.
Otherwise, this state is specified by the VkPipelineRasterizationStateCreateInfo::cullMode value used
to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetCullMode-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetCullMode-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetCullMode-cullMode-parameter
cullMode must be a valid combination of VkCullModeFlagBits values

• VUID-vkCmdSetCullMode-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetCullMode-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

1004

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

The rule for determining which fragments are produced by polygon rasterization is called point
sampling. The two-dimensional projection obtained by taking the x and y framebuffer coordinates
of the polygon’s vertices is formed. Fragments are produced for any fragment area groups of pixels
for which any sample points lie inside of this polygon. Coverage bits that correspond to sample
points that satisfy the point sampling criteria are 1, other coverage bits are 0. Special treatment is
given to a sample whose sample location lies on a polygon edge. In such a case, if two polygons lie
on either side of a common edge (with identical endpoints) on which a sample point lies, then
exactly one of the polygons must result in a covered sample for that fragment during rasterization.
As for the data associated with each fragment produced by rasterizing a polygon, we begin by
specifying how these values are produced for fragments in a triangle.

Barycentric coordinates are a set of three numbers, a, b, and c, each in the range [0,1], with a + b + c
= 1. These coordinates uniquely specify any point p within the triangle or on the triangle’s
boundary as

p = a pa + b pb + c pc

where pa, pb, and pc are the vertices of the triangle. a, b, and c are determined by:

where A(lmn) denotes the area in framebuffer coordinates of the triangle with vertices l, m, and n.

Denote an associated datum at pa, pb, or pc as fa, fb, or fc, respectively.

Perspective interpolation for a triangle interpolates three values in a manner that is correct when
taking the perspective of the viewport into consideration, by way of the triangle’s clip coordinates.
An interpolated value f can be determined by

1005

where wa, wb, and wc are the clip w coordinates of pa, pb, and pc, respectively. a, b, and c are the
barycentric coordinates of the location at which the data are produced.

Linear interpolation for a triangle directly interpolates three values, and an interpolated value f can
be determined by

f = a fa + b fb + c fc

where fa, fb, and fc are the data associated with pa, pb, and pc, respectively.

The clip coordinate w for a sample is determined using perspective interpolation. The depth value z
for a sample is determined using linear interpolation. Interpolation of fragment shader input
values are determined by Interpolation decorations.

For a polygon with more than three edges, such as are produced by clipping a triangle, a convex
combination of the values of the datum at the polygon’s vertices must be used to obtain the value
assigned to each fragment produced by the rasterization algorithm. That is, it must be the case that
at every fragment

where n is the number of vertices in the polygon and fi is the value of f at vertex i. For each i, 0 ≤ ai ≤
1 and . The values of ai may differ from fragment to fragment, but at vertex i, ai = 1 and aj

= 0 for j ≠ i.

Note

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case the numerator and denominator of
perspective interpolation are iterated independently, and a division is performed
for each fragment).

25.7.2. Polygon Mode

Possible values of the VkPipelineRasterizationStateCreateInfo::polygonMode property of the currently
active pipeline, specifying the method of rasterization for polygons, are:

// Provided by VK_VERSION_1_0
typedef enum VkPolygonMode {
 VK_POLYGON_MODE_FILL = 0,
 VK_POLYGON_MODE_LINE = 1,
 VK_POLYGON_MODE_POINT = 2,
} VkPolygonMode;

1006

• VK_POLYGON_MODE_POINT specifies that polygon vertices are drawn as points.

• VK_POLYGON_MODE_LINE specifies that polygon edges are drawn as line segments.

• VK_POLYGON_MODE_FILL specifies that polygons are rendered using the polygon rasterization rules
in this section.

These modes affect only the final rasterization of polygons: in particular, a polygon’s vertices are
shaded and the polygon is clipped and possibly culled before these modes are applied.

The point size of the final rasterization of polygons when polygon mode is VK_POLYGON_MODE_POINT is
implementation-dependent, and the point size may either be PointSize or 1.0.

25.7.3. Depth Bias

The depth values of all fragments generated by the rasterization of a polygon can be biased (offset)
by a single depth bias value that is computed for that polygon.

Depth Bias Enable

The depth bias computation is enabled by the depthBiasEnable set with vkCmdSetDepthBiasEnable
or the corresponding VkPipelineRasterizationStateCreateInfo::depthBiasEnable value used to create
the currently active pipeline. If the depth bias enable is VK_FALSE, no bias is applied and the
fragment’s depth values are unchanged.

To dynamically enable whether to bias fragment depth values, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthBiasEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 depthBiasEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthBiasEnable controls whether to bias fragment depth values.

This command sets the depth bias enable for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineRasterizationStateCreateInfo::depthBiasEnable value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetDepthBiasEnable-None-08970
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

1007

Valid Usage (Implicit)

• VUID-vkCmdSetDepthBiasEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthBiasEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthBiasEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

Depth Bias Computation

The depth bias depends on three parameters:

• depthBiasSlopeFactor scales the maximum depth slope m of the polygon

• depthBiasConstantFactor scales the parameter r of the depth attachment

• the scaled terms are summed to produce a value which is then clamped to a minimum or
maximum value specified by depthBiasClamp

depthBiasSlopeFactor, depthBiasConstantFactor, and depthBiasClamp can each be positive, negative,
or zero. These parameters are set as described for vkCmdSetDepthBias below.

The maximum depth slope m of a triangle is

where (xf, yf, zf) is a point on the triangle. m may be approximated as

1008

r is the minimum resolvable difference that depends on the depth attachment representation. It is
the smallest difference in framebuffer coordinate z values that is guaranteed to remain distinct
throughout polygon rasterization and in the depth attachment. All pairs of fragments generated by
the rasterization of two polygons with otherwise identical vertices, but zf values that differ by r, will
have distinct depth values.

For fixed-point depth attachment representations, r is constant throughout the range of the entire
depth attachment.

Its value is implementation-dependent but must be at most

r = 2 × 2-n

where n is the number of bits used for the depth aspect.

For floating-point depth attachment, there is no single minimum resolvable difference. In this case,
the minimum resolvable difference for a given polygon is dependent on the maximum exponent, e,
in the range of z values spanned by the primitive. If n is the number of bits in the floating-point
mantissa, the minimum resolvable difference, r, for the given primitive is defined as

r = 2e-n

If no depth attachment is present, r is undefined.

The bias value o for a polygon is

m is computed as described above. If the depth attachment uses a fixed-point representation, m is a
function of depth values in the range [0,1], and o is applied to depth values in the same range.

Depth bias is applied to triangle topology primitives received by the rasterizer regardless of
polygon mode. Depth bias may also be applied to line and point topology primitives received by the
rasterizer.

To dynamically set the depth bias parameters, call:

// Provided by VK_VERSION_1_0
void vkCmdSetDepthBias(
 VkCommandBuffer commandBuffer,
 float depthBiasConstantFactor,

1009

 float depthBiasClamp,
 float depthBiasSlopeFactor);

• commandBuffer is the command buffer into which the command will be recorded.

• depthBiasConstantFactor is a scalar factor controlling the constant depth value added to each
fragment.

• depthBiasClamp is the maximum (or minimum) depth bias of a fragment.

• depthBiasSlopeFactor is a scalar factor applied to a fragment’s slope in depth bias calculations.

This command sets the depth bias parameters for subsequent drawing commands when the
graphics pipeline is created with VK_DYNAMIC_STATE_DEPTH_BIAS set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
corresponding VkPipelineRasterizationStateCreateInfo::depthBiasConstantFactor, depthBiasClamp,
and depthBiasSlopeFactor values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetDepthBias-depthBiasClamp-00790
If the depthBiasClamp feature is not enabled, depthBiasClamp must be 0.0

Valid Usage (Implicit)

• VUID-vkCmdSetDepthBias-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthBias-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthBias-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

1010

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

1011

Chapter 26. Fragment Operations
Fragments produced by rasterization go through a number of operations to determine whether or
how values produced by fragment shading are written to the framebuffer.

The following fragment operations adhere to rasterization order, and are typically performed in
this order:

1. Scissor test

2. Sample mask test

3. Certain Fragment shading operations:

◦ Sample Mask Accesses

◦ Depth Replacement

4. Multisample coverage

5. Depth bounds test

6. Stencil test

7. Depth test

8. Sample counting

9. Coverage reduction

The coverage mask generated by rasterization describes the initial coverage of each sample covered
by the fragment. Fragment operations will update the coverage mask to add or subtract coverage
where appropriate. If a fragment operation results in all bits of the coverage mask being 0, the
fragment is discarded, and no further operations are performed. Fragments can also be
programmatically discarded in a fragment shader by executing one of

• OpTerminateInvocation

• OpDemoteToHelperInvocationEXT

• OpKill.

When one of the fragment operations in this chapter is described as “replacing” a fragment shader
output, that output is replaced unconditionally, even if no fragment shader previously wrote to that
output.

If there is a fragment shader and it declares the EarlyFragmentTests execution mode, fragment
shading and multisample coverage operations should instead be performed after sample counting,
and sample mask test may instead be performed after sample counting.

For a pipeline with the following properties:

• a fragment shader is specified

• the fragment shader does not write to storage resources;

• the fragment shader specifies the DepthReplacing execution mode; and

1012

• either

◦ the fragment shader specifies the DepthUnchanged execution mode;

◦ the fragment shader specifies the DepthLess execution mode and the pipeline uses a
VkPipelineDepthStencilStateCreateInfo::depthCompareOp of VK_COMPARE_OP_GREATER or
VK_COMPARE_OP_GREATER_OR_EQUAL; or

◦ the fragment shader specifies the DepthGreater execution mode and the pipeline uses a
VkPipelineDepthStencilStateCreateInfo::depthCompareOp of VK_COMPARE_OP_LESS or
VK_COMPARE_OP_LESS_OR_EQUAL

the implementation may perform depth bounds test before fragment shading and perform an
additional depth test immediately after that using the interpolated depth value generated by
rasterization.

Once all fragment operations have completed, fragment shader outputs for covered color
attachment samples pass through framebuffer operations.

26.1. Scissor Test
The scissor test compares the framebuffer coordinates (xf,yf) of each sample covered by a fragment
against a scissor rectangle at the index equal to the fragment’s ViewportIndex.

Each scissor rectangle is defined by a VkRect2D. These values are either set by the
VkPipelineViewportStateCreateInfo structure during pipeline creation, or dynamically by the
vkCmdSetScissor command.

A given sample is considered inside a scissor rectangle if xf is in the range [VkRect2D::offset.x,
VkRect2D::offset.x + VkRect2D::extent.x), and yf is in the range [VkRect2D::offset.y, VkRect2D
::offset.y + VkRect2D::extent.y). Samples with coordinates outside the scissor rectangle at the
corresponding ViewportIndex will have their coverage set to 0.

To dynamically set the scissor rectangles, call:

// Provided by VK_VERSION_1_0
void vkCmdSetScissor(
 VkCommandBuffer commandBuffer,
 uint32_t firstScissor,
 uint32_t scissorCount,
 const VkRect2D* pScissors);

• commandBuffer is the command buffer into which the command will be recorded.

• firstScissor is the index of the first scissor whose state is updated by the command.

• scissorCount is the number of scissors whose rectangles are updated by the command.

• pScissors is a pointer to an array of VkRect2D structures defining scissor rectangles.

The scissor rectangles taken from element i of pScissors replace the current state for the scissor
index firstScissor + i, for i in [0, scissorCount).

1013

This command sets the scissor rectangles for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_SCISSOR set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkPipelineViewportStateCreateInfo
::pScissors values used to create the currently active pipeline.

Valid Usage

• VUID-vkCmdSetScissor-firstScissor-00592
The sum of firstScissor and scissorCount must be between 1 and
VkPhysicalDeviceLimits::maxViewports, inclusive

• VUID-vkCmdSetScissor-firstScissor-00593
If the multiViewport feature is not enabled, firstScissor must be 0

• VUID-vkCmdSetScissor-scissorCount-00594
If the multiViewport feature is not enabled, scissorCount must be 1

• VUID-vkCmdSetScissor-x-00595
The x and y members of offset member of any element of pScissors must be greater than
or equal to 0

• VUID-vkCmdSetScissor-offset-00596
Evaluation of (offset.x + extent.width) must not cause a signed integer addition overflow
for any element of pScissors

• VUID-vkCmdSetScissor-offset-00597
Evaluation of (offset.y + extent.height) must not cause a signed integer addition
overflow for any element of pScissors

Valid Usage (Implicit)

• VUID-vkCmdSetScissor-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetScissor-pScissors-parameter
pScissors must be a valid pointer to an array of scissorCount VkRect2D structures

• VUID-vkCmdSetScissor-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetScissor-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

• VUID-vkCmdSetScissor-scissorCount-arraylength
scissorCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

1014

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

26.2. Sample Mask Test
The sample mask test compares the coverage mask for a fragment with the sample mask defined by
VkPipelineMultisampleStateCreateInfo::pSampleMask.

Each bit of the coverage mask is associated with a sample index as described in the rasterization
chapter. If the bit in VkPipelineMultisampleStateCreateInfo::pSampleMask which is associated with
that same sample index is set to 0, the coverage mask bit is set to 0.

26.3. Fragment Shading
Fragment shaders are invoked for each fragment, or as helper invocations.

Most operations in the fragment shader are not performed in rasterization order, with exceptions
called out in the following sections.

For fragment shaders invoked by fragments, the following rules apply:

• A fragment shader must not be executed if a fragment operation that executes before fragment
shading discards the fragment.

• A fragment shader may not be executed if:

◦ An implementation determines that another fragment shader, invoked by a subsequent
primitive in primitive order, overwrites all results computed by the shader (including writes
to storage resources).

◦ Any other fragment operation discards the fragment, and the shader does not write to any
storage resources.

◦ If a fragment shader statically computes the same values for different framebuffer locations,
and does not write to any storage resources, multiple fragments may be shaded by one
fragment shader invocation. This may affect
VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT results, but must otherwise
not be visible behavior to applications.

• Otherwise, at least one fragment shader must be executed.

◦ If sample shading is enabled and multiple invocations per fragment are required,

1015

additional invocations must be executed as specified.

◦ Each covered sample must be included in at least one fragment shader invocation.

If no fragment shader is included in the pipeline, no fragment shader is executed, and undefined
values may be written to all color attachment outputs during this fragment operation.

Note

Multiple fragment shader invocations may be executed for the same fragment for
any number of implementation-dependent reasons. When there is more than one
fragment shader invocation per fragment, the association of samples to
invocations is implementation-dependent. Stores and atomics performed by these
additional invocations have the normal effect.

For example, if the subpass includes multiple views in its view mask, a fragment
shader may be invoked separately for each view.

26.3.1. Sample Mask

Reading from the SampleMask built-in in the Input storage class will return the coverage mask for the
current fragment as calculated by fragment operations that executed prior to fragment shading.

If sample shading is enabled, fragment shaders will only see values of 1 for samples being shaded -
other bits will be 0.

Each bit of the coverage mask is associated with a sample index as described in the rasterization
chapter. If the bit in SampleMask which is associated with that same sample index is set to 0, that
coverage mask bit is set to 0.

Values written to the SampleMask built-in in the Output storage class will be used by the multisample
coverage operation, with the same encoding as the input built-in.

26.3.2. Depth Replacement

Writing to the FragDepth built-in will replace the fragment’s calculated depth values for each sample
in the input SampleMask. Depth testing performed after the fragment shader for this fragment will
use this new value as zf.

26.4. Multisample Coverage
If a fragment shader is active and its entry point’s interface includes a built-in output variable
decorated with SampleMask, the coverage mask is ANDed with the bits of the SampleMask built-in to
generate a new coverage mask. If sample shading is enabled, bits written to SampleMask
corresponding to samples that are not being shaded by the fragment shader invocation are ignored.
If no fragment shader is active, or if the active fragment shader does not include SampleMask in its
interface, the coverage mask is not modified.

Next, the fragment alpha value and coverage mask are modified based on the
alphaToCoverageEnable and alphaToOneEnable members of the VkPipelineMultisampleStateCreateInfo

1016

structure.

All alpha values in this section refer only to the alpha component of the fragment shader output
that has a Location and Index decoration of zero (see the Fragment Output Interface section). If that
shader output has an integer or unsigned integer type, then these operations are skipped.

If alphaToCoverageEnable is enabled, a temporary coverage mask is generated where each bit is
determined by the fragment’s alpha value, which is ANDed with the fragment coverage mask.

No specific algorithm is specified for converting the alpha value to a temporary coverage mask. It is
intended that the number of 1’s in this value be proportional to the alpha value (clamped to [0,1]),
with all 1’s corresponding to a value of 1.0 and all 0’s corresponding to 0.0. The algorithm may be
different at different framebuffer coordinates.

Note

Using different algorithms at different framebuffer coordinates may help to avoid
artifacts caused by regular coverage sample locations.

Finally, if alphaToOneEnable is enabled, each alpha value is replaced by the maximum representable
alpha value for fixed-point color attachments, or by 1.0 for floating-point attachments. Otherwise,
the alpha values are not changed.

26.5. Depth and Stencil Operations
Pipeline state controlling the depth bounds tests, stencil test, and depth test is specified through the
members of the VkPipelineDepthStencilStateCreateInfo structure.

The VkPipelineDepthStencilStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineDepthStencilStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineDepthStencilStateCreateFlags flags;
 VkBool32 depthTestEnable;
 VkBool32 depthWriteEnable;
 VkCompareOp depthCompareOp;
 VkBool32 depthBoundsTestEnable;
 VkBool32 stencilTestEnable;
 VkStencilOpState front;
 VkStencilOpState back;
 float minDepthBounds;
 float maxDepthBounds;
} VkPipelineDepthStencilStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

1017

• flags is reserved for future use.

• depthTestEnable controls whether depth testing is enabled.

• depthWriteEnable controls whether depth writes are enabled when depthTestEnable is VK_TRUE.
Depth writes are always disabled when depthTestEnable is VK_FALSE.

• depthCompareOp is a VkCompareOp value specifying the comparison operator to use in the Depth
Comparison step of the depth test.

• depthBoundsTestEnable controls whether depth bounds testing is enabled.

• stencilTestEnable controls whether stencil testing is enabled.

• front and back are VkStencilOpState values controlling the corresponding parameters of the
stencil test.

• minDepthBounds is the minimum depth bound used in the depth bounds test.

• maxDepthBounds is the maximum depth bound used in the depth bounds test.

Valid Usage

• VUID-VkPipelineDepthStencilStateCreateInfo-depthBoundsTestEnable-00598
If the depthBounds feature is not enabled, depthBoundsTestEnable must be VK_FALSE

Valid Usage (Implicit)

• VUID-VkPipelineDepthStencilStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO

• VUID-VkPipelineDepthStencilStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineDepthStencilStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineDepthStencilStateCreateInfo-depthCompareOp-parameter
depthCompareOp must be a valid VkCompareOp value

• VUID-VkPipelineDepthStencilStateCreateInfo-front-parameter
front must be a valid VkStencilOpState structure

• VUID-VkPipelineDepthStencilStateCreateInfo-back-parameter
back must be a valid VkStencilOpState structure

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineDepthStencilStateCreateFlags;

VkPipelineDepthStencilStateCreateFlags is a bitmask type for setting a mask, but is currently
reserved for future use.

1018

26.6. Depth Bounds Test
The depth bounds test compares the depth value za in the depth/stencil attachment at each sample’s
framebuffer coordinates (xf,yf) and sample index i against a set of depth bounds.

The depth bounds are determined by two floating point values defining a minimum (
minDepthBounds) and maximum (maxDepthBounds) depth value. These values are either set by the
VkPipelineDepthStencilStateCreateInfo structure during pipeline creation, or dynamically by
vkCmdSetDepthBoundsTestEnable and vkCmdSetDepthBounds.

A given sample is considered within the depth bounds if za is in the range [minDepthBounds
,maxDepthBounds]. Samples with depth attachment values outside of the depth bounds will have their
coverage set to 0.

If the depth bounds test is disabled, or if there is no depth attachment, the coverage mask is
unmodified by this operation.

To dynamically enable or disable the depth bounds test, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthBoundsTestEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 depthBoundsTestEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthBoundsTestEnable specifies if the depth bounds test is enabled.

This command sets the depth bounds enable for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::depthBoundsTestEnable value used to create the currently
active pipeline.

Valid Usage

• VUID-vkCmdSetDepthBoundsTestEnable-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetDepthBoundsTestEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthBoundsTestEnable-commandBuffer-recording

1019

commandBuffer must be in the recording state

• VUID-vkCmdSetDepthBoundsTestEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

To dynamically set the depth bounds range, call:

// Provided by VK_VERSION_1_0
void vkCmdSetDepthBounds(
 VkCommandBuffer commandBuffer,
 float minDepthBounds,
 float maxDepthBounds);

• commandBuffer is the command buffer into which the command will be recorded.

• minDepthBounds is the minimum depth bound.

• maxDepthBounds is the maximum depth bound.

This command sets the depth bounds range for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_DEPTH_BOUNDS set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkPipelineDepthStencilStateCreateInfo
::minDepthBounds and VkPipelineDepthStencilStateCreateInfo::maxDepthBounds values used to create
the currently active pipeline.

Valid Usage

• VUID-vkCmdSetDepthBounds-minDepthBounds-00600
minDepthBounds must be between 0.0 and 1.0, inclusive

• VUID-vkCmdSetDepthBounds-maxDepthBounds-00601
maxDepthBounds must be between 0.0 and 1.0, inclusive

1020

Valid Usage (Implicit)

• VUID-vkCmdSetDepthBounds-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthBounds-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthBounds-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

26.7. Stencil Test
The stencil test compares the stencil attachment value sa in the depth/stencil attachment at each
sample’s framebuffer coordinates (xf,yf) and sample index i against a stencil reference value.

If the stencil test is not enabled, as specified by vkCmdSetStencilTestEnable or
VkPipelineDepthStencilStateCreateInfo::stencilTestEnable, or if there is no stencil attachment, the
coverage mask is unmodified by this operation.

The stencil test is controlled by one of two sets of stencil-related state, the front stencil state and the
back stencil state. Stencil tests and writes use the back stencil state when processing fragments
generated by back-facing polygons, and the front stencil state when processing fragments
generated by front-facing polygons or any other primitives.

The comparison operation performed is determined by the VkCompareOp value set by
vkCmdSetStencilOp::compareOp, or by VkStencilOpState::compareOp during pipeline creation.

The compare mask sc and stencil reference value sr of the front or the back stencil state set
determine arguments of the comparison operation. sc is set by the
VkPipelineDepthStencilStateCreateInfo structure during pipeline creation, or by the

1021

vkCmdSetStencilCompareMask command. sr is set by VkPipelineDepthStencilStateCreateInfo or by
vkCmdSetStencilReference.

sr and sa are each independently combined with sc using a bitwise AND operation to create masked
reference and attachment values s'r and s'a. s'r and s'a are used as the reference and test values,
respectively, in the operation specified by the VkCompareOp.

If the comparison evaluates to false, the coverage for the sample is set to 0.

A new stencil value sg is generated according to a stencil operation defined by VkStencilOp
parameters set by vkCmdSetStencilOp or VkPipelineDepthStencilStateCreateInfo. If the stencil test
fails, failOp defines the stencil operation used. If the stencil test passes however, the stencil op used
is based on the depth test - if it passes, VkPipelineDepthStencilStateCreateInfo::passOp is used,
otherwise VkPipelineDepthStencilStateCreateInfo::depthFailOp is used.

The stencil attachment value sa is then updated with the generated stencil value sg according to the
write mask sw defined by writeMask in VkPipelineDepthStencilStateCreateInfo::front and
VkPipelineDepthStencilStateCreateInfo::back as:

sa = (sa & ¬sw) | (sg & sw)

To dynamically enable or disable the stencil test, call:

// Provided by VK_VERSION_1_3
void vkCmdSetStencilTestEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 stencilTestEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• stencilTestEnable specifies if the stencil test is enabled.

This command sets the stencil test enable for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::stencilTestEnable value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetStencilTestEnable-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

1022

Valid Usage (Implicit)

• VUID-vkCmdSetStencilTestEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilTestEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilTestEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

To dynamically set the stencil operation, call:

// Provided by VK_VERSION_1_3
void vkCmdSetStencilOp(
 VkCommandBuffer commandBuffer,
 VkStencilFaceFlags faceMask,
 VkStencilOp failOp,
 VkStencilOp passOp,
 VkStencilOp depthFailOp,
 VkCompareOp compareOp);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to
update the stencil operation.

• failOp is a VkStencilOp value specifying the action performed on samples that fail the stencil
test.

• passOp is a VkStencilOp value specifying the action performed on samples that pass both the
depth and stencil tests.

1023

• depthFailOp is a VkStencilOp value specifying the action performed on samples that pass the
stencil test and fail the depth test.

• compareOp is a VkCompareOp value specifying the comparison operator used in the stencil test.

This command sets the stencil operation for subsequent drawing commands when when the
graphics pipeline is created with VK_DYNAMIC_STATE_STENCIL_OP set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
corresponding VkPipelineDepthStencilStateCreateInfo::failOp, passOp, depthFailOp, and compareOp
values used to create the currently active pipeline, for both front and back faces.

Valid Usage

• VUID-vkCmdSetStencilOp-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetStencilOp-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilOp-faceMask-parameter
faceMask must be a valid combination of VkStencilFaceFlagBits values

• VUID-vkCmdSetStencilOp-faceMask-requiredbitmask
faceMask must not be 0

• VUID-vkCmdSetStencilOp-failOp-parameter
failOp must be a valid VkStencilOp value

• VUID-vkCmdSetStencilOp-passOp-parameter
passOp must be a valid VkStencilOp value

• VUID-vkCmdSetStencilOp-depthFailOp-parameter
depthFailOp must be a valid VkStencilOp value

• VUID-vkCmdSetStencilOp-compareOp-parameter
compareOp must be a valid VkCompareOp value

• VUID-vkCmdSetStencilOp-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilOp-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

1024

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

The VkStencilOpState structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkStencilOpState {
 VkStencilOp failOp;
 VkStencilOp passOp;
 VkStencilOp depthFailOp;
 VkCompareOp compareOp;
 uint32_t compareMask;
 uint32_t writeMask;
 uint32_t reference;
} VkStencilOpState;

• failOp is a VkStencilOp value specifying the action performed on samples that fail the stencil
test.

• passOp is a VkStencilOp value specifying the action performed on samples that pass both the
depth and stencil tests.

• depthFailOp is a VkStencilOp value specifying the action performed on samples that pass the
stencil test and fail the depth test.

• compareOp is a VkCompareOp value specifying the comparison operator used in the stencil test.

• compareMask selects the bits of the unsigned integer stencil values participating in the stencil test.

• writeMask selects the bits of the unsigned integer stencil values updated by the stencil test in the
stencil framebuffer attachment.

• reference is an integer stencil reference value that is used in the unsigned stencil comparison.

Valid Usage (Implicit)

• VUID-VkStencilOpState-failOp-parameter
failOp must be a valid VkStencilOp value

• VUID-VkStencilOpState-passOp-parameter
passOp must be a valid VkStencilOp value

• VUID-VkStencilOpState-depthFailOp-parameter

1025

depthFailOp must be a valid VkStencilOp value

• VUID-VkStencilOpState-compareOp-parameter
compareOp must be a valid VkCompareOp value

To dynamically set the stencil compare mask, call:

// Provided by VK_VERSION_1_0
void vkCmdSetStencilCompareMask(
 VkCommandBuffer commandBuffer,
 VkStencilFaceFlags faceMask,
 uint32_t compareMask);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to
update the compare mask.

• compareMask is the new value to use as the stencil compare mask.

This command sets the stencil compare mask for subsequent drawing commands when the
graphics pipeline is created with VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkStencilOpState::compareMask value used to create the currently active pipeline, for both front and
back faces.

Valid Usage (Implicit)

• VUID-vkCmdSetStencilCompareMask-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilCompareMask-faceMask-parameter
faceMask must be a valid combination of VkStencilFaceFlagBits values

• VUID-vkCmdSetStencilCompareMask-faceMask-requiredbitmask
faceMask must not be 0

• VUID-vkCmdSetStencilCompareMask-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilCompareMask-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

1026

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

VkStencilFaceFlagBits values are:

// Provided by VK_VERSION_1_0
typedef enum VkStencilFaceFlagBits {
 VK_STENCIL_FACE_FRONT_BIT = 0x00000001,
 VK_STENCIL_FACE_BACK_BIT = 0x00000002,
 VK_STENCIL_FACE_FRONT_AND_BACK = 0x00000003,
 VK_STENCIL_FRONT_AND_BACK = VK_STENCIL_FACE_FRONT_AND_BACK,
} VkStencilFaceFlagBits;

• VK_STENCIL_FACE_FRONT_BIT specifies that only the front set of stencil state is updated.

• VK_STENCIL_FACE_BACK_BIT specifies that only the back set of stencil state is updated.

• VK_STENCIL_FACE_FRONT_AND_BACK is the combination of VK_STENCIL_FACE_FRONT_BIT and
VK_STENCIL_FACE_BACK_BIT, and specifies that both sets of stencil state are updated.

// Provided by VK_VERSION_1_0
typedef VkFlags VkStencilFaceFlags;

VkStencilFaceFlags is a bitmask type for setting a mask of zero or more VkStencilFaceFlagBits.

To dynamically set the stencil write mask, call:

// Provided by VK_VERSION_1_0
void vkCmdSetStencilWriteMask(
 VkCommandBuffer commandBuffer,
 VkStencilFaceFlags faceMask,
 uint32_t writeMask);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to
update the write mask, as described above for vkCmdSetStencilCompareMask.

• writeMask is the new value to use as the stencil write mask.

This command sets the stencil write mask for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_STENCIL_WRITE_MASK set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the

1027

writeMask value used to create the currently active pipeline, for both
VkPipelineDepthStencilStateCreateInfo::front and VkPipelineDepthStencilStateCreateInfo::back
faces.

Valid Usage (Implicit)

• VUID-vkCmdSetStencilWriteMask-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilWriteMask-faceMask-parameter
faceMask must be a valid combination of VkStencilFaceFlagBits values

• VUID-vkCmdSetStencilWriteMask-faceMask-requiredbitmask
faceMask must not be 0

• VUID-vkCmdSetStencilWriteMask-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilWriteMask-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

To dynamically set the stencil reference value, call:

// Provided by VK_VERSION_1_0
void vkCmdSetStencilReference(
 VkCommandBuffer commandBuffer,
 VkStencilFaceFlags faceMask,
 uint32_t reference);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to

1028

update the reference value, as described above for vkCmdSetStencilCompareMask.

• reference is the new value to use as the stencil reference value.

This command sets the stencil reference value for subsequent drawing commands when the
graphics pipeline is created with VK_DYNAMIC_STATE_STENCIL_REFERENCE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::reference value used to create the currently active pipeline,
for both front and back faces.

Valid Usage (Implicit)

• VUID-vkCmdSetStencilReference-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetStencilReference-faceMask-parameter
faceMask must be a valid combination of VkStencilFaceFlagBits values

• VUID-vkCmdSetStencilReference-faceMask-requiredbitmask
faceMask must not be 0

• VUID-vkCmdSetStencilReference-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetStencilReference-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

Possible values of the failOp, passOp, and depthFailOp members of VkStencilOpState, specifying what
happens to the stored stencil value if this or certain subsequent tests fail or pass, are:

// Provided by VK_VERSION_1_0
typedef enum VkStencilOp {
 VK_STENCIL_OP_KEEP = 0,

1029

 VK_STENCIL_OP_ZERO = 1,
 VK_STENCIL_OP_REPLACE = 2,
 VK_STENCIL_OP_INCREMENT_AND_CLAMP = 3,
 VK_STENCIL_OP_DECREMENT_AND_CLAMP = 4,
 VK_STENCIL_OP_INVERT = 5,
 VK_STENCIL_OP_INCREMENT_AND_WRAP = 6,
 VK_STENCIL_OP_DECREMENT_AND_WRAP = 7,
} VkStencilOp;

• VK_STENCIL_OP_KEEP keeps the current value.

• VK_STENCIL_OP_ZERO sets the value to 0.

• VK_STENCIL_OP_REPLACE sets the value to reference.

• VK_STENCIL_OP_INCREMENT_AND_CLAMP increments the current value and clamps to the maximum
representable unsigned value.

• VK_STENCIL_OP_DECREMENT_AND_CLAMP decrements the current value and clamps to 0.

• VK_STENCIL_OP_INVERT bitwise-inverts the current value.

• VK_STENCIL_OP_INCREMENT_AND_WRAP increments the current value and wraps to 0 when the
maximum value would have been exceeded.

• VK_STENCIL_OP_DECREMENT_AND_WRAP decrements the current value and wraps to the maximum
possible value when the value would go below 0.

For purposes of increment and decrement, the stencil bits are considered as an unsigned integer.

26.8. Depth Test
The depth test compares the depth value za in the depth/stencil attachment at each sample’s
framebuffer coordinates (xf,yf) and sample index i against the sample’s depth value zf. If there is no
depth attachment then the depth test is skipped.

The depth test occurs in three stages, as detailed in the following sections.

26.8.1. Depth Clamping and Range Adjustment

If VkPipelineRasterizationStateCreateInfo::depthClampEnable is enabled, zf is clamped to [zmin, zmax],
where zmin = min(n,f), zmax = max(n,f)], and n and f are the minDepth and maxDepth depth range values
of the viewport used by this fragment, respectively.

Following depth clamping:

• If zf is not in the range [zmin, zmax], then zf is undefined following this step.

26.8.2. Depth Comparison

If the depth test is not enabled, as specified by vkCmdSetDepthTestEnable or
VkPipelineDepthStencilStateCreateInfo::depthTestEnable, then this step is skipped.

1030

The comparison operation performed is determined by the VkCompareOp value set by
vkCmdSetDepthCompareOp, or by VkPipelineDepthStencilStateCreateInfo::depthCompareOp during
pipeline creation. zf and za are used as the reference and test values, respectively, in the operation
specified by the VkCompareOp.

If the comparison evaluates to false, the coverage for the sample is set to 0.

26.8.3. Depth Attachment Writes

If depth writes are enabled, as specified by vkCmdSetDepthWriteEnable or
VkPipelineDepthStencilStateCreateInfo::depthWriteEnable, and the comparison evaluated to true,
the depth attachment value za is set to the sample’s depth value zf. If there is no depth attachment,
no value is written.

To dynamically enable or disable the depth test, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthTestEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 depthTestEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthTestEnable specifies if the depth test is enabled.

This command sets the depth test enable for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::depthTestEnable value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetDepthTestEnable-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetDepthTestEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthTestEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthTestEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics

1031

operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

To dynamically set the depth compare operator, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthCompareOp(
 VkCommandBuffer commandBuffer,
 VkCompareOp depthCompareOp);

• commandBuffer is the command buffer into which the command will be recorded.

• depthCompareOp is a VkCompareOp value specifying the comparison operator used for the Depth
Comparison step of the depth test.

This command sets the depth comparison operator for subsequent drawing commands when the
graphics pipeline is created with VK_DYNAMIC_STATE_DEPTH_COMPARE_OP set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::depthCompareOp value used to create the currently active
pipeline.

Valid Usage

• VUID-vkCmdSetDepthCompareOp-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

1032

Valid Usage (Implicit)

• VUID-vkCmdSetDepthCompareOp-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthCompareOp-depthCompareOp-parameter
depthCompareOp must be a valid VkCompareOp value

• VUID-vkCmdSetDepthCompareOp-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthCompareOp-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

To dynamically set the depth write enable, call:

// Provided by VK_VERSION_1_3
void vkCmdSetDepthWriteEnable(
 VkCommandBuffer commandBuffer,
 VkBool32 depthWriteEnable);

• commandBuffer is the command buffer into which the command will be recorded.

• depthWriteEnable specifies if depth writes are enabled.

This command sets the depth write enable for subsequent drawing commands when the graphics
pipeline is created with VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE set in
VkPipelineDynamicStateCreateInfo::pDynamicStates. Otherwise, this state is specified by the
VkPipelineDepthStencilStateCreateInfo::depthWriteEnable value used to create the currently active
pipeline.

1033

Valid Usage

• VUID-vkCmdSetDepthWriteEnable-None-08971
At least one of the following must be true:

◦ the value of VkApplicationInfo::apiVersion used to create the VkInstance parent of
commandBuffer is greater than or equal to Version 1.3

Valid Usage (Implicit)

• VUID-vkCmdSetDepthWriteEnable-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetDepthWriteEnable-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetDepthWriteEnable-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

26.9. Sample Counting
Occlusion queries use query pool entries to track the number of samples that pass all the per-
fragment tests. The mechanism of collecting an occlusion query value is described in Occlusion
Queries.

The occlusion query sample counter increments by one for each sample with a coverage value of 1
in each fragment that survives all the per-fragment tests, including scissor, sample mask, alpha to
coverage, stencil, and depth tests.

1034

26.10. Coverage Reduction
Coverage reduction takes the coverage information for a fragment and converts that to a boolean
coverage value for each color sample in each pixel covered by the fragment.

26.10.1. Pixel Coverage

Coverage for each pixel is first extracted from the total fragment coverage mask. This consists of
rasterizationSamples unique coverage samples for each pixel in the fragment area, each with a
unique sample index. If the fragment only contains a single pixel, coverage for the pixel is
equivalent to the fragment coverage.

26.10.2. Color Sample Coverage

Once pixel coverage is determined, coverage for each individual color sample corresponding to that
pixel is determined.

The number of rasterizationSamples is identical to the number of samples in the color attachments.
A color sample is covered if the pixel coverage sample with the same sample index i is covered.

1035

Chapter 27. The Framebuffer

27.1. Blending
Blending combines the incoming source fragment’s R, G, B, and A values with the destination R, G, B,
and A values of each sample stored in the framebuffer at the fragment’s (xf,yf) location. Blending is
performed for each color sample covered by the fragment, rather than just once for each fragment.

Source and destination values are combined according to the blend operation, quadruplets of
source and destination weighting factors determined by the blend factors, and a blend constant, to
obtain a new set of R, G, B, and A values, as described below.

Blending is computed and applied separately to each color attachment used by the subpass, with
separate controls for each attachment.

Prior to performing the blend operation, signed and unsigned normalized fixed-point color
components undergo an implied conversion to floating-point as specified by Conversion from
Normalized Fixed-Point to Floating-Point. Blending computations are treated as if carried out in
floating-point, and basic blend operations are performed with a precision and dynamic range no
lower than that used to represent destination components.

Note

Blending is only defined for floating-point, UNORM, SNORM, and sRGB formats.
Within those formats, the implementation may only support blending on some
subset of them. Which formats support blending is indicated by
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT.

The pipeline blend state is included in the VkPipelineColorBlendStateCreateInfo structure during
graphics pipeline creation:

The VkPipelineColorBlendStateCreateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineColorBlendStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineColorBlendStateCreateFlags flags;
 VkBool32 logicOpEnable;
 VkLogicOp logicOp;
 uint32_t attachmentCount;
 const VkPipelineColorBlendAttachmentState* pAttachments;
 float blendConstants[4];
} VkPipelineColorBlendStateCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

1036

• flags is reserved for future use.

• logicOpEnable controls whether to apply Logical Operations.

• logicOp selects which logical operation to apply.

• attachmentCount is the number of VkPipelineColorBlendAttachmentState elements in
pAttachments.

• pAttachments is a pointer to an array of VkPipelineColorBlendAttachmentState structures
defining blend state for each color attachment.

• blendConstants is a pointer to an array of four values used as the R, G, B, and A components of
the blend constant that are used in blending, depending on the blend factor.

Valid Usage

• VUID-VkPipelineColorBlendStateCreateInfo-pAttachments-00605
If the independentBlend feature is not enabled, all elements of pAttachments must be
identical

• VUID-VkPipelineColorBlendStateCreateInfo-logicOpEnable-00606
If the logicOp feature is not enabled, logicOpEnable must be VK_FALSE

• VUID-VkPipelineColorBlendStateCreateInfo-logicOpEnable-00607
If logicOpEnable is VK_TRUE, logicOp must be a valid VkLogicOp value

• VUID-VkPipelineColorBlendStateCreateInfo-pAttachments-07353
If attachmentCount is not 0 pAttachments must be a valid pointer to an array of
attachmentCount valid VkPipelineColorBlendAttachmentState structures

Valid Usage (Implicit)

• VUID-VkPipelineColorBlendStateCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO

• VUID-VkPipelineColorBlendStateCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPipelineColorBlendStateCreateInfo-flags-zerobitmask
flags must be 0

• VUID-VkPipelineColorBlendStateCreateInfo-pAttachments-parameter
If attachmentCount is not 0, and pAttachments is not NULL, pAttachments must be a valid
pointer to an array of attachmentCount valid VkPipelineColorBlendAttachmentState
structures

// Provided by VK_VERSION_1_0
typedef VkFlags VkPipelineColorBlendStateCreateFlags;

VkPipelineColorBlendStateCreateFlags is a bitmask type for setting a mask, but is currently reserved

1037

for future use.

The VkPipelineColorBlendAttachmentState structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPipelineColorBlendAttachmentState {
 VkBool32 blendEnable;
 VkBlendFactor srcColorBlendFactor;
 VkBlendFactor dstColorBlendFactor;
 VkBlendOp colorBlendOp;
 VkBlendFactor srcAlphaBlendFactor;
 VkBlendFactor dstAlphaBlendFactor;
 VkBlendOp alphaBlendOp;
 VkColorComponentFlags colorWriteMask;
} VkPipelineColorBlendAttachmentState;

• blendEnable controls whether blending is enabled for the corresponding color attachment. If
blending is not enabled, the source fragment’s color for that attachment is passed through
unmodified.

• srcColorBlendFactor selects which blend factor is used to determine the source factors (Sr,Sg,Sb).

• dstColorBlendFactor selects which blend factor is used to determine the destination factors (Dr

,Dg,Db).

• colorBlendOp selects which blend operation is used to calculate the RGB values to write to the
color attachment.

• srcAlphaBlendFactor selects which blend factor is used to determine the source factor Sa.

• dstAlphaBlendFactor selects which blend factor is used to determine the destination factor Da.

• alphaBlendOp selects which blend operation is used to calculate the alpha values to write to the
color attachment.

• colorWriteMask is a bitmask of VkColorComponentFlagBits specifying which of the R, G, B, and/or
A components are enabled for writing, as described for the Color Write Mask.

Valid Usage

• VUID-VkPipelineColorBlendAttachmentState-srcColorBlendFactor-00608
If the dualSrcBlend feature is not enabled, srcColorBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkPipelineColorBlendAttachmentState-dstColorBlendFactor-00609
If the dualSrcBlend feature is not enabled, dstColorBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkPipelineColorBlendAttachmentState-srcAlphaBlendFactor-00610
If the dualSrcBlend feature is not enabled, srcAlphaBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,

1038

VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• VUID-VkPipelineColorBlendAttachmentState-dstAlphaBlendFactor-00611
If the dualSrcBlend feature is not enabled, dstAlphaBlendFactor must not be
VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, or VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

Valid Usage (Implicit)

• VUID-VkPipelineColorBlendAttachmentState-srcColorBlendFactor-parameter
srcColorBlendFactor must be a valid VkBlendFactor value

• VUID-VkPipelineColorBlendAttachmentState-dstColorBlendFactor-parameter
dstColorBlendFactor must be a valid VkBlendFactor value

• VUID-VkPipelineColorBlendAttachmentState-colorBlendOp-parameter
colorBlendOp must be a valid VkBlendOp value

• VUID-VkPipelineColorBlendAttachmentState-srcAlphaBlendFactor-parameter
srcAlphaBlendFactor must be a valid VkBlendFactor value

• VUID-VkPipelineColorBlendAttachmentState-dstAlphaBlendFactor-parameter
dstAlphaBlendFactor must be a valid VkBlendFactor value

• VUID-VkPipelineColorBlendAttachmentState-alphaBlendOp-parameter
alphaBlendOp must be a valid VkBlendOp value

• VUID-VkPipelineColorBlendAttachmentState-colorWriteMask-parameter
colorWriteMask must be a valid combination of VkColorComponentFlagBits values

27.1.1. Blend Factors

The source and destination color and alpha blending factors are selected from the enum:

// Provided by VK_VERSION_1_0
typedef enum VkBlendFactor {
 VK_BLEND_FACTOR_ZERO = 0,
 VK_BLEND_FACTOR_ONE = 1,
 VK_BLEND_FACTOR_SRC_COLOR = 2,
 VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR = 3,
 VK_BLEND_FACTOR_DST_COLOR = 4,
 VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR = 5,
 VK_BLEND_FACTOR_SRC_ALPHA = 6,
 VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA = 7,
 VK_BLEND_FACTOR_DST_ALPHA = 8,
 VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA = 9,
 VK_BLEND_FACTOR_CONSTANT_COLOR = 10,
 VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR = 11,
 VK_BLEND_FACTOR_CONSTANT_ALPHA = 12,
 VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA = 13,
 VK_BLEND_FACTOR_SRC_ALPHA_SATURATE = 14,

1039

 VK_BLEND_FACTOR_SRC1_COLOR = 15,
 VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR = 16,
 VK_BLEND_FACTOR_SRC1_ALPHA = 17,
 VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA = 18,
} VkBlendFactor;

The semantics of the enum values are described in the table below:

Table 25. Blend Factors

VkBlendFactor RGB Blend Factors (Sr,S

g,Sb) or (Dr,Dg,Db)
Alpha
Blend
Factor (Sa

or Da)

VK_BLEND_FACTOR_ZERO (0,0,0) 0

VK_BLEND_FACTOR_ONE (1,1,1) 1

VK_BLEND_FACTOR_SRC_COLOR (Rs0,Gs0,Bs0) As0

VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR (1-Rs0,1-Gs0,1-Bs0) 1-As0

VK_BLEND_FACTOR_DST_COLOR (Rd,Gd,Bd) Ad

VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR (1-Rd,1-Gd,1-Bd) 1-Ad

VK_BLEND_FACTOR_SRC_ALPHA (As0,As0,As0) As0

VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA (1-As0,1-As0,1-As0) 1-As0

VK_BLEND_FACTOR_DST_ALPHA (Ad,Ad,Ad) Ad

VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA (1-Ad,1-Ad,1-Ad) 1-Ad

VK_BLEND_FACTOR_CONSTANT_COLOR (Rc,Gc,Bc) Ac

VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR (1-Rc,1-Gc,1-Bc) 1-Ac

VK_BLEND_FACTOR_CONSTANT_ALPHA (Ac,Ac,Ac) Ac

VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA (1-Ac,1-Ac,1-Ac) 1-Ac

VK_BLEND_FACTOR_SRC_ALPHA_SATURATE (f,f,f); f = min(As0,1-Ad) 1

VK_BLEND_FACTOR_SRC1_COLOR (Rs1,Gs1,Bs1) As1

VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR (1-Rs1,1-Gs1,1-Bs1) 1-As1

VK_BLEND_FACTOR_SRC1_ALPHA (As1,As1,As1) As1

VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA (1-As1,1-As1,1-As1) 1-As1

In this table, the following conventions are used:

• Rs0,Gs0,Bs0 and As0 represent the first source color R, G, B, and A components, respectively, for the
fragment output location corresponding to the color attachment being blended.

• Rs1,Gs1,Bs1 and As1 represent the second source color R, G, B, and A components, respectively,
used in dual source blending modes, for the fragment output location corresponding to the
color attachment being blended.

1040

• Rd,Gd,Bd and Ad represent the R, G, B, and A components of the destination color. That is, the
color currently in the corresponding color attachment for this fragment/sample.

• Rc,Gc,Bc and Ac represent the blend constant R, G, B, and A components, respectively.

To dynamically set and change the blend constants, call:

// Provided by VK_VERSION_1_0
void vkCmdSetBlendConstants(
 VkCommandBuffer commandBuffer,
 const float blendConstants[4]);

• commandBuffer is the command buffer into which the command will be recorded.

• blendConstants is a pointer to an array of four values specifying the Rc, Gc, Bc, and Ac components
of the blend constant color used in blending, depending on the blend factor.

This command sets blend constants for subsequent drawing commands when the graphics pipeline
is created with VK_DYNAMIC_STATE_BLEND_CONSTANTS set in VkPipelineDynamicStateCreateInfo
::pDynamicStates. Otherwise, this state is specified by the VkPipelineColorBlendStateCreateInfo
::blendConstants values used to create the currently active pipeline.

Valid Usage (Implicit)

• VUID-vkCmdSetBlendConstants-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdSetBlendConstants-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdSetBlendConstants-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support graphics
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Both Graphics State

1041

27.1.2. Dual-Source Blending

Blend factors that use the secondary color input (Rs1,Gs1,Bs1,As1) (VK_BLEND_FACTOR_SRC1_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, and
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA) may consume implementation resources that could
otherwise be used for rendering to multiple color attachments. Therefore, the number of color
attachments that can be used in a framebuffer may be lower when using dual-source blending.

Dual-source blending is only supported if the dualSrcBlend feature is enabled.

The maximum number of color attachments that can be used in a subpass when using dual-source
blending functions is implementation-dependent and is reported as the
maxFragmentDualSrcAttachments member of VkPhysicalDeviceLimits.

Color outputs can be bound to the first and second inputs of the blender using the Index decoration,
as described in Fragment Output Interface. If the second color input to the blender is not written in
the shader, or if no output is bound to the second input of a blender, the value of the second input
is undefined.

27.1.3. Blend Operations

Once the source and destination blend factors have been selected, they along with the source and
destination components are passed to the blending operations. RGB and alpha components can use
different operations. Possible values of VkBlendOp, specifying the operations, are:

// Provided by VK_VERSION_1_0
typedef enum VkBlendOp {
 VK_BLEND_OP_ADD = 0,
 VK_BLEND_OP_SUBTRACT = 1,
 VK_BLEND_OP_REVERSE_SUBTRACT = 2,
 VK_BLEND_OP_MIN = 3,
 VK_BLEND_OP_MAX = 4,
} VkBlendOp;

1042

The semantics of the basic blend operations are described in the table below:

Table 26. Basic Blend Operations

VkBlendOp RGB Components Alpha Component

VK_BLEND_OP_ADD R = Rs0 × Sr + Rd × Dr

G = Gs0 × Sg + Gd × Dg

B = Bs0 × Sb + Bd × Db

A = As0 × Sa + Ad × Da

VK_BLEND_OP_SUBTRACT R = Rs0 × Sr - Rd × Dr

G = Gs0 × Sg - Gd × Dg

B = Bs0 × Sb - Bd × Db

A = As0 × Sa - Ad × Da

VK_BLEND_OP_REVERSE_SUBTRACT R = Rd × Dr - Rs0 × Sr

G = Gd × Dg - Gs0 × Sg

B = Bd × Db - Bs0 × Sb

A = Ad × Da - As0 × Sa

VK_BLEND_OP_MIN R = min(Rs0,Rd)
G = min(Gs0,Gd)
B = min(Bs0,Bd)

A = min(As0,Ad)

VK_BLEND_OP_MAX R = max(Rs0,Rd)
G = max(Gs0,Gd)
B = max(Bs0,Bd)

A = max(As0,Ad)

In this table, the following conventions are used:

• Rs0, Gs0, Bs0 and As0 represent the first source color R, G, B, and A components, respectively.

• Rd, Gd, Bd and Ad represent the R, G, B, and A components of the destination color. That is, the
color currently in the corresponding color attachment for this fragment/sample.

• Sr, Sg, Sb and Sa represent the source blend factor R, G, B, and A components, respectively.

• Dr, Dg, Db and Da represent the destination blend factor R, G, B, and A components, respectively.

The blending operation produces a new set of values R, G, B and A, which are written to the
framebuffer attachment. If blending is not enabled for this attachment, then R, G, B and A are
assigned Rs0, Gs0, Bs0 and As0, respectively.

If the color attachment is fixed-point, the components of the source and destination values and
blend factors are each clamped to [0,1] or [-1,1] respectively for an unsigned normalized or signed
normalized color attachment prior to evaluating the blend operations. If the color attachment is
floating-point, no clamping occurs.

If the numeric format of a framebuffer attachment uses sRGB encoding, the R, G, and B destination
color values (after conversion from fixed-point to floating-point) are considered to be encoded for
the sRGB color space and hence are linearized prior to their use in blending. Each R, G, and B
component is converted from nonlinear to linear as described in the “sRGB EOTF” section of the
Khronos Data Format Specification. If the format is not sRGB, no linearization is performed.

If the numeric format of a framebuffer attachment uses sRGB encoding, then the final R, G and B
values are converted into the nonlinear sRGB representation before being written to the
framebuffer attachment as described in the “sRGB EOTF -1” section of the Khronos Data Format

1043

Specification.

If the numeric format of a framebuffer color attachment is not sRGB encoded then the resulting cs

values for R, G and B are unmodified. The value of A is never sRGB encoded. That is, the alpha
component is always stored in memory as linear.

If the framebuffer color attachment is VK_ATTACHMENT_UNUSED, no writes are performed through that
attachment. Writes are not performed to framebuffer color attachments greater than or equal to
the VkSubpassDescription::colorAttachmentCount or VkSubpassDescription2::colorAttachmentCount
value.

27.2. Logical Operations
The application can enable a logical operation between the fragment’s color values and the existing
value in the framebuffer attachment. This logical operation is applied prior to updating the
framebuffer attachment. Logical operations are applied only for signed and unsigned integer and
normalized integer framebuffers. Logical operations are not applied to floating-point or sRGB
format color attachments.

Logical operations are controlled by the logicOpEnable and logicOp members of
VkPipelineColorBlendStateCreateInfo. If logicOpEnable is VK_TRUE, then a logical operation selected
by logicOp is applied between each color attachment and the fragment’s corresponding output
value, and blending of all attachments is treated as if it were disabled. Any attachments using color
formats for which logical operations are not supported simply pass through the color values
unmodified. The logical operation is applied independently for each of the red, green, blue, and
alpha components. The logicOp is selected from the following operations:

// Provided by VK_VERSION_1_0
typedef enum VkLogicOp {
 VK_LOGIC_OP_CLEAR = 0,
 VK_LOGIC_OP_AND = 1,
 VK_LOGIC_OP_AND_REVERSE = 2,
 VK_LOGIC_OP_COPY = 3,
 VK_LOGIC_OP_AND_INVERTED = 4,
 VK_LOGIC_OP_NO_OP = 5,
 VK_LOGIC_OP_XOR = 6,
 VK_LOGIC_OP_OR = 7,
 VK_LOGIC_OP_NOR = 8,
 VK_LOGIC_OP_EQUIVALENT = 9,
 VK_LOGIC_OP_INVERT = 10,
 VK_LOGIC_OP_OR_REVERSE = 11,
 VK_LOGIC_OP_COPY_INVERTED = 12,
 VK_LOGIC_OP_OR_INVERTED = 13,
 VK_LOGIC_OP_NAND = 14,
 VK_LOGIC_OP_SET = 15,
} VkLogicOp;

1044

The logical operations supported by Vulkan are summarized in the following table in which

• ¬ is bitwise invert,

• ∧ is bitwise and,

• ∨ is bitwise or,

• ⊕ is bitwise exclusive or,

• s is the fragment’s Rs0, Gs0, Bs0 or As0 component value for the fragment output corresponding to
the color attachment being updated, and

• d is the color attachment’s R, G, B or A component value:

Table 27. Logical Operations

Mode Operation

VK_LOGIC_OP_CLEAR 0

VK_LOGIC_OP_AND s ∧ d

VK_LOGIC_OP_AND_REVERSE s ∧ ¬ d

VK_LOGIC_OP_COPY s

VK_LOGIC_OP_AND_INVERTED ¬ s ∧ d

VK_LOGIC_OP_NO_OP d

VK_LOGIC_OP_XOR s ⊕ d

VK_LOGIC_OP_OR s ∨ d

VK_LOGIC_OP_NOR ¬ (s ∨ d)

VK_LOGIC_OP_EQUIVALENT ¬ (s ⊕ d)

VK_LOGIC_OP_INVERT ¬ d

VK_LOGIC_OP_OR_REVERSE s ∨ ¬ d

VK_LOGIC_OP_COPY_INVERTED ¬ s

VK_LOGIC_OP_OR_INVERTED ¬ s ∨ d

VK_LOGIC_OP_NAND ¬ (s ∧ d)

VK_LOGIC_OP_SET all 1s

The result of the logical operation is then written to the color attachment as controlled by the
component write mask, described in Blend Operations.

27.3. Color Write Mask
Bits which can be set in VkPipelineColorBlendAttachmentState::colorWriteMask, determining
whether the final color values R, G, B and A are written to the framebuffer attachment, are:

// Provided by VK_VERSION_1_0
typedef enum VkColorComponentFlagBits {

1045

 VK_COLOR_COMPONENT_R_BIT = 0x00000001,
 VK_COLOR_COMPONENT_G_BIT = 0x00000002,
 VK_COLOR_COMPONENT_B_BIT = 0x00000004,
 VK_COLOR_COMPONENT_A_BIT = 0x00000008,
} VkColorComponentFlagBits;

• VK_COLOR_COMPONENT_R_BIT specifies that the R value is written to the color attachment for the
appropriate sample. Otherwise, the value in memory is unmodified.

• VK_COLOR_COMPONENT_G_BIT specifies that the G value is written to the color attachment for the
appropriate sample. Otherwise, the value in memory is unmodified.

• VK_COLOR_COMPONENT_B_BIT specifies that the B value is written to the color attachment for the
appropriate sample. Otherwise, the value in memory is unmodified.

• VK_COLOR_COMPONENT_A_BIT specifies that the A value is written to the color attachment for the
appropriate sample. Otherwise, the value in memory is unmodified.

The color write mask operation is applied regardless of whether blending is enabled.

// Provided by VK_VERSION_1_0
typedef VkFlags VkColorComponentFlags;

VkColorComponentFlags is a bitmask type for setting a mask of zero or more
VkColorComponentFlagBits.

1046

Chapter 28. Dispatching Commands
Dispatching commands (commands with Dispatch in the name) provoke work in a compute pipeline.
Dispatching commands are recorded into a command buffer and when executed by a queue, will
produce work which executes according to the bound compute pipeline. A compute pipeline must
be bound to a command buffer before any dispatching commands are recorded in that command
buffer.

To record a dispatch, call:

// Provided by VK_VERSION_1_0
void vkCmdDispatch(
 VkCommandBuffer commandBuffer,
 uint32_t groupCountX,
 uint32_t groupCountY,
 uint32_t groupCountZ);

• commandBuffer is the command buffer into which the command will be recorded.

• groupCountX is the number of local workgroups to dispatch in the X dimension.

• groupCountY is the number of local workgroups to dispatch in the Y dimension.

• groupCountZ is the number of local workgroups to dispatch in the Z dimension.

When the command is executed, a global workgroup consisting of groupCountX × groupCountY ×
groupCountZ local workgroups is assembled.

Valid Usage

• VUID-vkCmdDispatch-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatch-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatch-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

1047

• VUID-vkCmdDispatch-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatch-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDispatch-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDispatch-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDispatch-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatch-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatch-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatch-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatch-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatch-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline , as described in Pipeline Layout Compatibility

• VUID-vkCmdDispatch-maintenance4-08602

1048

If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline , as described in Pipeline Layout
Compatibility

• VUID-vkCmdDispatch-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by a bound shader

• VUID-vkCmdDispatch-None-08606
A valid pipeline must be bound to the pipeline bind point used by this command

• VUID-vkCmdDispatch-None-08608
There must not have been any calls to dynamic state setting commands for any state not
specified as dynamic in the VkPipeline object bound to the pipeline bind point used by
this command, since that pipeline was bound

• VUID-vkCmdDispatch-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used to
sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,
VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDispatch-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with
ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDispatch-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a
LOD bias or any offset values, in any shader stage

• VUID-vkCmdDispatch-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatch-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatch-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDispatch-None-06550

1049

If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDispatch-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDispatch-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDispatch-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDispatch-OpImageWrite-08795
If a VkImageView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the image view’s format

• VUID-vkCmdDispatch-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDispatch-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDispatch-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDispatch-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDispatch-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

• VUID-vkCmdDispatch-groupCountX-00386
groupCountX must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[0]

• VUID-vkCmdDispatch-groupCountY-00387
groupCountY must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[1]

1050

• VUID-vkCmdDispatch-groupCountZ-00388
groupCountZ must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[2]

Valid Usage (Implicit)

• VUID-vkCmdDispatch-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDispatch-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDispatch-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdDispatch-renderpass
This command must only be called outside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Compute Action

To record an indirect dispatching command, call:

// Provided by VK_VERSION_1_0
void vkCmdDispatchIndirect(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset);

• commandBuffer is the command buffer into which the command will be recorded.

• buffer is the buffer containing dispatch parameters.

• offset is the byte offset into buffer where parameters begin.

1051

vkCmdDispatchIndirect behaves similarly to vkCmdDispatch except that the parameters are read by
the device from a buffer during execution. The parameters of the dispatch are encoded in a
VkDispatchIndirectCommand structure taken from buffer starting at offset.

Valid Usage

• VUID-vkCmdDispatchIndirect-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchIndirect-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchIndirect-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchIndirect-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchIndirect-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDispatchIndirect-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDispatchIndirect-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDispatchIndirect-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

1052

• VUID-vkCmdDispatchIndirect-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchIndirect-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchIndirect-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchIndirect-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchIndirect-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline , as described in Pipeline Layout Compatibility

• VUID-vkCmdDispatchIndirect-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline , as described in Pipeline Layout
Compatibility

• VUID-vkCmdDispatchIndirect-None-08114
Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by a bound shader

• VUID-vkCmdDispatchIndirect-None-08606
A valid pipeline must be bound to the pipeline bind point used by this command

• VUID-vkCmdDispatchIndirect-None-08608
There must not have been any calls to dynamic state setting commands for any state not
specified as dynamic in the VkPipeline object bound to the pipeline bind point used by
this command, since that pipeline was bound

• VUID-vkCmdDispatchIndirect-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used to
sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,
VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDispatchIndirect-None-08610

1053

If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with
ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDispatchIndirect-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a
LOD bias or any offset values, in any shader stage

• VUID-vkCmdDispatchIndirect-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatchIndirect-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatchIndirect-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDispatchIndirect-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDispatchIndirect-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

• VUID-vkCmdDispatchIndirect-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDispatchIndirect-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDispatchIndirect-OpImageWrite-08795
If a VkImageView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the image view’s format

• VUID-vkCmdDispatchIndirect-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

1054

• VUID-vkCmdDispatchIndirect-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDispatchIndirect-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDispatchIndirect-buffer-02708
If buffer is non-sparse then it must be bound completely and contiguously to a single
VkDeviceMemory object

• VUID-vkCmdDispatchIndirect-buffer-02709
buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• VUID-vkCmdDispatchIndirect-offset-02710
offset must be a multiple of 4

• VUID-vkCmdDispatchIndirect-commandBuffer-02711
commandBuffer must not be a protected command buffer

• VUID-vkCmdDispatchIndirect-offset-00407
The sum of offset and the size of VkDispatchIndirectCommand must be less than or equal to
the size of buffer

Valid Usage (Implicit)

• VUID-vkCmdDispatchIndirect-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDispatchIndirect-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-vkCmdDispatchIndirect-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDispatchIndirect-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdDispatchIndirect-renderpass
This command must only be called outside of a render pass instance

• VUID-vkCmdDispatchIndirect-commonparent
Both of buffer, and commandBuffer must have been created, allocated, or retrieved from
the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

1055

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Compute Action

The VkDispatchIndirectCommand structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkDispatchIndirectCommand {
 uint32_t x;
 uint32_t y;
 uint32_t z;
} VkDispatchIndirectCommand;

• x is the number of local workgroups to dispatch in the X dimension.

• y is the number of local workgroups to dispatch in the Y dimension.

• z is the number of local workgroups to dispatch in the Z dimension.

The members of VkDispatchIndirectCommand have the same meaning as the corresponding
parameters of vkCmdDispatch.

Valid Usage

• VUID-VkDispatchIndirectCommand-x-00417
x must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

• VUID-VkDispatchIndirectCommand-y-00418
y must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

• VUID-VkDispatchIndirectCommand-z-00419
z must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

To record a dispatch using non-zero base values for the components of WorkgroupId, call:

// Provided by VK_VERSION_1_1
void vkCmdDispatchBase(
 VkCommandBuffer commandBuffer,
 uint32_t baseGroupX,
 uint32_t baseGroupY,
 uint32_t baseGroupZ,

1056

 uint32_t groupCountX,
 uint32_t groupCountY,
 uint32_t groupCountZ);

• commandBuffer is the command buffer into which the command will be recorded.

• baseGroupX is the start value for the X component of WorkgroupId.

• baseGroupY is the start value for the Y component of WorkgroupId.

• baseGroupZ is the start value for the Z component of WorkgroupId.

• groupCountX is the number of local workgroups to dispatch in the X dimension.

• groupCountY is the number of local workgroups to dispatch in the Y dimension.

• groupCountZ is the number of local workgroups to dispatch in the Z dimension.

When the command is executed, a global workgroup consisting of groupCountX × groupCountY ×
groupCountZ local workgroups is assembled, with WorkgroupId values ranging from [baseGroup*,
baseGroup* + groupCount*) in each component. vkCmdDispatch is equivalent to
vkCmdDispatchBase(0,0,0,groupCountX,groupCountY,groupCountZ).

Valid Usage

• VUID-vkCmdDispatchBase-magFilter-04553
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchBase-magFilter-09598
If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• VUID-vkCmdDispatchBase-mipmapMode-04770
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR,
reductionMode equal to VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE, and compareEnable
equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the
image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

• VUID-vkCmdDispatchBase-mipmapMode-09599
If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and
reductionMode equal to either VK_SAMPLER_REDUCTION_MODE_MIN or
VK_SAMPLER_REDUCTION_MODE_MAX is used to sample a VkImageView as a result of this
command, then the image view’s format features must contain
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

1057

• VUID-vkCmdDispatchBase-None-06479
If a VkImageView is sampled with depth comparison, the image view’s format features
must contain VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT

• VUID-vkCmdDispatchBase-None-02691
If a VkImageView is accessed using atomic operations as a result of this command, then
the image view’s format features must contain
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

• VUID-vkCmdDispatchBase-None-07888
If a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor is accessed using atomic
operations as a result of this command, then the storage texel buffer’s format features
must contain VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

• VUID-vkCmdDispatchBase-OpTypeImage-07027
For any VkImageView being written as a storage image where the image format field of
the OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchBase-OpTypeImage-07028
For any VkImageView being read as a storage image where the image format field of the
OpTypeImage is Unknown, the view’s format features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchBase-OpTypeImage-07029
For any VkBufferView being written as a storage texel buffer where the image format
field of the OpTypeImage is Unknown, the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchBase-OpTypeImage-07030
Any VkBufferView being read as a storage texel buffer where the image format field of
the OpTypeImage is Unknown then the view’s buffer features must contain
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT

• VUID-vkCmdDispatchBase-None-08600
For each set n that is statically used by a bound shader, a descriptor set must have been
bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for
set n, with the VkPipelineLayout used to create the current VkPipeline , as described in
Pipeline Layout Compatibility

• VUID-vkCmdDispatchBase-None-08601
For each push constant that is statically used by a bound shader, a push constant value
must have been set for the same pipeline bind point, with a VkPipelineLayout that is
compatible for push constants, with the VkPipelineLayout used to create the current
VkPipeline , as described in Pipeline Layout Compatibility

• VUID-vkCmdDispatchBase-maintenance4-08602
If the maintenance4 feature is not enabled, then for each push constant that is statically
used by a bound shader, a push constant value must have been set for the same pipeline
bind point, with a VkPipelineLayout that is compatible for push constants, with the
VkPipelineLayout used to create the current VkPipeline , as described in Pipeline Layout
Compatibility

• VUID-vkCmdDispatchBase-None-08114

1058

Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be
valid as described by descriptor validity if they are statically used by a bound shader

• VUID-vkCmdDispatchBase-None-08606
A valid pipeline must be bound to the pipeline bind point used by this command

• VUID-vkCmdDispatchBase-None-08608
There must not have been any calls to dynamic state setting commands for any state not
specified as dynamic in the VkPipeline object bound to the pipeline bind point used by
this command, since that pipeline was bound

• VUID-vkCmdDispatchBase-None-08609
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used to
sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D,
VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

• VUID-vkCmdDispatchBase-None-08610
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with
ImplicitLod, Dref or Proj in their name, in any shader stage

• VUID-vkCmdDispatchBase-None-08611
If the VkPipeline object bound to the pipeline bind point used by this command accesses a
VkSampler object that uses unnormalized coordinates, that sampler must not be used
with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a
LOD bias or any offset values, in any shader stage

• VUID-vkCmdDispatchBase-uniformBuffers-06935
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a uniform buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatchBase-storageBuffers-06936
If any stage of the VkPipeline object bound to the pipeline bind point used by this
command accesses a storage buffer, and the robustBufferAccess feature is not enabled,
that stage must not access values outside of the range of the buffer as specified in the
descriptor set bound to the same pipeline bind point

• VUID-vkCmdDispatchBase-commandBuffer-02707
If commandBuffer is an unprotected command buffer and protectedNoFault is not supported,
any resource accessed by bound shaders must not be a protected resource

• VUID-vkCmdDispatchBase-None-06550
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must only be used with OpImageSample* or OpImageSparseSample*
instructions

• VUID-vkCmdDispatchBase-ConstOffset-06551
If a bound shader accesses a VkSampler or VkImageView object that enables sampler Y′C

BCR conversion, that object must not use the ConstOffset and Offset operands

1059

• VUID-vkCmdDispatchBase-viewType-07752
If a VkImageView is accessed as a result of this command, then the image view’s viewType
must match the Dim operand of the OpTypeImage as described in Instruction/Sampler/Image
View Validation

• VUID-vkCmdDispatchBase-format-07753
If a VkImageView is accessed as a result of this command, then the numeric type of the
image view’s format and the Sampled Type operand of the OpTypeImage must match

• VUID-vkCmdDispatchBase-OpImageWrite-08795
If a VkImageView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the image view’s format

• VUID-vkCmdDispatchBase-OpImageWrite-04469
If a VkBufferView is accessed using OpImageWrite as a result of this command, then the
Type of the Texel operand of that instruction must have at least as many components as
the buffer view’s format

• VUID-vkCmdDispatchBase-None-07288
Any shader invocation executed by this command must terminate

• VUID-vkCmdDispatchBase-None-09600
If a descriptor with type equal to any of VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT is accessed as a
result of this command, the image subresource identified by that descriptor must be in
the image layout identified when the descriptor was written

• VUID-vkCmdDispatchBase-commandBuffer-02712
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
any resource written to by the VkPipeline object bound to the pipeline bind point used by
this command must not be an unprotected resource

• VUID-vkCmdDispatchBase-commandBuffer-02713
If commandBuffer is a protected command buffer and protectedNoFault is not supported,
pipeline stages other than the framebuffer-space and compute stages in the VkPipeline
object bound to the pipeline bind point used by this command must not write to any
resource

• VUID-vkCmdDispatchBase-baseGroupX-00421
baseGroupX must be less than VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

• VUID-vkCmdDispatchBase-baseGroupX-00422
baseGroupY must be less than VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

• VUID-vkCmdDispatchBase-baseGroupZ-00423
baseGroupZ must be less than VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

• VUID-vkCmdDispatchBase-groupCountX-00424
groupCountX must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[0] minus baseGroupX

• VUID-vkCmdDispatchBase-groupCountY-00425
groupCountY must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[1] minus baseGroupY

1060

• VUID-vkCmdDispatchBase-groupCountZ-00426
groupCountZ must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupCount[2] minus baseGroupZ

• VUID-vkCmdDispatchBase-baseGroupX-00427
If any of baseGroupX, baseGroupY, or baseGroupZ are not zero, then the bound compute
pipeline must have been created with the VK_PIPELINE_CREATE_DISPATCH_BASE flag

Valid Usage (Implicit)

• VUID-vkCmdDispatchBase-commandBuffer-parameter
commandBuffer must be a valid VkCommandBuffer handle

• VUID-vkCmdDispatchBase-commandBuffer-recording
commandBuffer must be in the recording state

• VUID-vkCmdDispatchBase-commandBuffer-cmdpool
The VkCommandPool that commandBuffer was allocated from must support compute
operations

• VUID-vkCmdDispatchBase-renderpass
This command must only be called outside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally
synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

Primary
Secondary

Outside Compute Action

1061

Chapter 29. Sparse Resources
As documented in Resource Memory Association, VkBuffer and VkImage resources in Vulkan must
be bound completely and contiguously to a single VkDeviceMemory object. This binding must be done
before the resource is used, and the binding is immutable for the lifetime of the resource.

Sparse resources relax these restrictions and provide these additional features:

• Sparse resources can be bound non-contiguously to one or more VkDeviceMemory allocations.

• Sparse resources can be re-bound to different memory allocations over the lifetime of the
resource.

• Sparse resources can have descriptors generated and used orthogonally with memory binding
commands.

29.1. Sparse Resource Features
Sparse resources have several features that must be enabled explicitly at resource creation time.
The features are enabled by including bits in the flags parameter of VkImageCreateInfo or
VkBufferCreateInfo. Each feature also has one or more corresponding feature enables specified in
VkPhysicalDeviceFeatures.

• The sparseBinding feature is the base, and provides the following capabilities:

◦ Resources can be bound at some defined (sparse block) granularity.

◦ The entire resource must be bound to memory before use regardless of regions actually
accessed.

◦ No specific mapping of image region to memory offset is defined, i.e. the location that each
texel corresponds to in memory is implementation-dependent.

◦ Sparse buffers have a well-defined mapping of buffer range to memory range, where an
offset into a range of the buffer that is bound to a single contiguous range of memory
corresponds to an identical offset within that range of memory.

◦ Requested via the VK_IMAGE_CREATE_SPARSE_BINDING_BIT and
VK_BUFFER_CREATE_SPARSE_BINDING_BIT bits.

◦ A sparse image created using VK_IMAGE_CREATE_SPARSE_BINDING_BIT (but not
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) supports all formats that non-sparse usage supports,
and supports both VK_IMAGE_TILING_OPTIMAL and VK_IMAGE_TILING_LINEAR tiling.

• Sparse Residency builds on (and requires) the sparseBinding feature. It includes the following
capabilities:

◦ Resources do not have to be completely bound to memory before use on the device.

◦ Images have a prescribed sparse image block layout, allowing specific rectangular regions of
the image to be bound to specific offsets in memory allocations.

◦ Consistency of access to unbound regions of the resource is defined by the absence or
presence of VkPhysicalDeviceSparseProperties::residencyNonResidentStrict. If this property is
present, accesses to unbound regions of the resource are well defined and behave as if the

1062

data bound is populated with all zeros; writes are discarded. When this property is absent,
accesses are considered safe, but reads will return undefined values.

◦ Requested via the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT and
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT bits.

◦ Sparse residency support is advertised on a finer grain via the following features:

▪ The sparseResidencyBuffer feature provides support for creating VkBuffer objects with
the VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidencyImage2D feature provides support for creating 2D single-sampled
VkImage objects with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidencyImage3D feature provides support for creating 3D VkImage objects with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidency2Samples feature provides support for creating 2D VkImage objects
with 2 samples and VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidency4Samples feature provides support for creating 2D VkImage objects
with 4 samples and VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidency8Samples feature provides support for creating 2D VkImage objects
with 8 samples and VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

▪ The sparseResidency16Samples feature provides support for creating 2D VkImage objects
with 16 samples and VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

Implementations supporting sparseResidencyImage2D are only required to support sparse
2D, single-sampled images. Support for sparse 3D and MSAA images is optional and can be
enabled via sparseResidencyImage3D, sparseResidency2Samples, sparseResidency4Samples,
sparseResidency8Samples, and sparseResidency16Samples.

◦ A sparse image created using VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT supports all non-
compressed color formats with power-of-two element size that non-sparse usage supports.
Additional formats may also be supported and can be queried via
vkGetPhysicalDeviceSparseImageFormatProperties. VK_IMAGE_TILING_LINEAR tiling is not
supported.

• The sparseResidencyAliased feature provides the following capability that can be enabled per
resource:

Allows physical memory ranges to be shared between multiple locations in the same sparse
resource or between multiple sparse resources, with each binding of a memory location
observing a consistent interpretation of the memory contents.

See Sparse Memory Aliasing for more information.

29.2. Sparse Buffers and Fully-Resident Images
Both VkBuffer and VkImage objects created with the VK_IMAGE_CREATE_SPARSE_BINDING_BIT or
VK_BUFFER_CREATE_SPARSE_BINDING_BIT bits can be thought of as a linear region of address space. In
the VkImage case if VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT is not used, this linear region is entirely

1063

opaque, meaning that there is no application-visible mapping between texel location and memory
offset.

Unless VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT or VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT are also
used, the entire resource must be bound to one or more VkDeviceMemory objects before use.

29.2.1. Sparse Buffer and Fully-Resident Image Block Size

The sparse block size in bytes for sparse buffers and fully-resident images is reported as
VkMemoryRequirements::alignment. alignment represents both the memory alignment requirement and
the binding granularity (in bytes) for sparse resources.

29.3. Sparse Partially-Resident Buffers
VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT bit allow the buffer to be
made only partially resident. Partially resident VkBuffer objects are allocated and bound identically
to VkBuffer objects using only the VK_BUFFER_CREATE_SPARSE_BINDING_BIT feature. The only difference
is the ability for some regions of the buffer to be unbound during device use.

29.4. Sparse Partially-Resident Images
VkImage objects created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT bit allow specific rectangular
regions of the image called sparse image blocks to be bound to specific ranges of memory. This
allows the application to manage residency at either image subresource or sparse image block
granularity. Each image subresource (outside of the mip tail) starts on a sparse block boundary and
has dimensions that are integer multiples of the corresponding dimensions of the sparse image
block.

Note

Applications can use these types of images to control LOD based on total memory
consumption. If memory pressure becomes an issue the application can unbind
and disable specific mipmap levels of images without having to recreate resources
or modify texel data of unaffected levels.

The application can also use this functionality to access subregions of the image in
a “megatexture” fashion. The application can create a large image and only
populate the region of the image that is currently being used in the scene.

29.4.1. Accessing Unbound Regions

The following member of VkPhysicalDeviceSparseProperties affects how data in unbound regions of
sparse resources are handled by the implementation:

• residencyNonResidentStrict

If this property is not present, reads of unbound regions of the image will return undefined values.
Both reads and writes are still considered safe and will not affect other resources or populated
regions of the image.

1064

If this property is present, all reads of unbound regions of the image will behave as if the region
was bound to memory populated with all zeros; writes will be discarded.

Image operations performed on unbound memory may still alter some component values in the
natural way for those accesses, e.g. substituting a value of one for alpha in formats that do not have
an alpha component.

Example: Reading the alpha component of an unbacked VK_FORMAT_R8_UNORM image will return a
value of 1.0f.

See Physical Device Enumeration for instructions for retrieving physical device properties.

Implementor’s Note

For implementations that cannot natively handle access to unbound regions of a resource,
the implementation may allocate and bind memory to the unbound regions. Reads and
writes to unbound regions will access the implementation-managed memory instead.

Given that the values resulting from reads of unbound regions are undefined in this scenario,
implementations may use the same physical memory for all unbound regions of multiple
resources within the same process.

29.4.2. Mip Tail Regions

Sparse images created using VK_IMAGE_CREATE_SPARSE_BINDING_BIT (without also using
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) have no specific mapping of image region or image
subresource to memory offset defined, so the entire image can be thought of as a linear opaque
address region. However, images created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT do have a
prescribed sparse image block layout, and hence each image subresource must start on a sparse
block boundary. Within each array layer, the set of mip levels that have a smaller size than the
sparse block size in bytes are grouped together into a mip tail region.

If the VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT flag is present in the flags member of
VkSparseImageFormatProperties, for the image’s format, then any mip level which has dimensions
that are not integer multiples of the corresponding dimensions of the sparse image block, and all
subsequent mip levels, are also included in the mip tail region.

The following member of VkPhysicalDeviceSparseProperties may affect how the implementation
places mip levels in the mip tail region:

• residencyAlignedMipSize

Each mip tail region is bound to memory as an opaque region (i.e. must be bound using a
VkSparseImageOpaqueMemoryBindInfo structure) and may be of a size greater than or equal to
the sparse block size in bytes. This size is guaranteed to be an integer multiple of the sparse block
size in bytes.

1065

An implementation may choose to allow each array-layer’s mip tail region to be bound to memory
independently or require that all array-layer’s mip tail regions be treated as one. This is dictated by
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT in VkSparseImageMemoryRequirements::flags.

The following diagrams depict how VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT alter memory usage and requirements.

Array Layer 0 Array Layer 1 Array Layer 2

Mip
Level 0

Mip
Level 1

Mip
Level 3

Mip
Level 2

Mip Tail

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 17. Sparse Image

In the absence of VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, each array layer contains a mip tail region containing
texel data for all mip levels smaller than the sparse image block in any dimension.

Mip levels that are as large or larger than a sparse image block in all dimensions can be bound
individually. Right-edges and bottom-edges of each level are allowed to have partially used sparse
blocks. Any bound partially-used-sparse-blocks must still have their full sparse block size in bytes
allocated in memory.

1066

Array Layer 0 Array Layer 1 Array Layer 2

Mip
Level 0

Mip
Level 1

Mip
Level 3

Mip
Level 2

Mip Tail

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 18. Sparse Image with Single Mip Tail

When VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT is present all array layers will share a single mip
tail region.

Array Layer 0 Array Layer 1 Array Layer 2

Mip
Level 0

Mip
Level 1

Mip Tail

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 19. Sparse Image with Aligned Mip Size

 Note

1067

The mip tail regions are presented here in 2D arrays simply for figure size reasons.
Each mip tail is logically a single array of sparse blocks with an implementation-
dependent mapping of texels or compressed texel blocks to sparse blocks.

When VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT is present the first mip level that would contain
partially used sparse blocks begins the mip tail region. This level and all subsequent levels are
placed in the mip tail. Only the first N mip levels whose dimensions are an exact multiple of the
sparse image block dimensions can be bound and unbound on a sparse block basis.

Array Layer 0 Array Layer 1 Array Layer 2

Mip
Level 0

Mip
Level 1

Mip Tail

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 20. Sparse Image with Aligned Mip Size and Single Mip Tail

Note

The mip tail region is presented here in a 2D array simply for figure size reasons. It
is logically a single array of sparse blocks with an implementation-dependent
mapping of texels or compressed texel blocks to sparse blocks.

When both VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT are present the constraints from each of these flags are
in effect.

29.4.3. Standard Sparse Image Block Shapes

Standard sparse image block shapes define a standard set of dimensions for sparse image blocks
that depend on the format of the image. Layout of texels or compressed texel blocks within a sparse
image block is implementation-dependent. All currently defined standard sparse image block
shapes are 64 KB in size.

For block-compressed formats (e.g. VK_FORMAT_BC5_UNORM_BLOCK), the texel size is the size of the
compressed texel block (e.g. 128-bit for BC5) thus the dimensions of the standard sparse image block

1068

shapes apply in terms of compressed texel blocks.

Note

For block-compressed formats, the dimensions of a sparse image block in terms of
texels can be calculated by multiplying the sparse image block dimensions by the
compressed texel block dimensions.

1069

Table 28. Standard Sparse Image Block Shapes (Single Sample)

TEXEL SIZE (bits) Block Shape (2D) Block Shape (3D)

8-Bit 256 × 256 × 1 64 × 32 × 32

16-Bit 256 × 128 × 1 32 × 32 × 32

32-Bit 128 × 128 × 1 32 × 32 × 16

64-Bit 128 × 64 × 1 32 × 16 × 16

128-Bit 64 × 64 × 1 16 × 16 × 16

Table 29. Standard Sparse Image Block Shapes (MSAA)

TEXEL SIZE (bits) Block Shape (2X) Block Shape (4X) Block Shape (8X) Block Shape
(16X)

8-Bit 128 × 256 × 1 128 × 128 × 1 64 × 128 × 1 64 × 64 × 1

16-Bit 128 × 128 × 1 128 × 64 × 1 64 × 64 × 1 64 × 32 × 1

32-Bit 64 × 128 × 1 64 × 64 × 1 32 × 64 × 1 32 × 32 × 1

64-Bit 64 × 64 × 1 64 × 32 × 1 32 × 32 × 1 32 × 16 × 1

128-Bit 32 × 64 × 1 32 × 32 × 1 16 × 32 × 1 16 × 16 × 1

Implementations that support the standard sparse image block shape for all formats listed in the
Standard Sparse Image Block Shapes (Single Sample) and Standard Sparse Image Block Shapes
(MSAA) tables may advertise the following VkPhysicalDeviceSparseProperties:

• residencyStandard2DBlockShape

• residencyStandard2DMultisampleBlockShape

• residencyStandard3DBlockShape

Reporting each of these features does not imply that all possible image types are supported as
sparse. Instead, this indicates that no supported sparse image of the corresponding type will use
custom sparse image block dimensions for any formats that have a corresponding standard sparse
image block shape.

29.4.4. Custom Sparse Image Block Shapes

An implementation that does not support a standard image block shape for a particular sparse
partially-resident image may choose to support a custom sparse image block shape for it instead.
The dimensions of such a custom sparse image block shape are reported in
VkSparseImageFormatProperties::imageGranularity. As with standard sparse image block shapes, the
size in bytes of the custom sparse image block shape will be reported in VkMemoryRequirements
::alignment.

Custom sparse image block dimensions are reported through
vkGetPhysicalDeviceSparseImageFormatProperties and vkGetImageSparseMemoryRequirements.

An implementation must not support both the standard sparse image block shape and a custom

1070

sparse image block shape for the same image. The standard sparse image block shape must be used
if it is supported.

29.4.5. Multiple Aspects

Partially resident images are allowed to report separate sparse properties for different aspects of
the image. One example is for depth/stencil images where the implementation separates the depth
and stencil data into separate planes. Another reason for multiple aspects is to allow the application
to manage memory allocation for implementation-private metadata associated with the image. See
the figure below:

Depth Stencil

Mip
Level 0

Mip
Level 1

Mip
Level 3

Mip
Level 2

Mip Tail

Mip Tail

Metadata

Legend

Image Pixel Data

Sparse Memory Block

Mip Tail Data

Figure 21. Multiple Aspect Sparse Image

Note

The mip tail regions are presented here in 2D arrays simply for figure size reasons.
Each mip tail is logically a single array of sparse blocks with an implementation-
dependent mapping of texels or compressed texel blocks to sparse blocks.

In the figure above the depth, stencil, and metadata aspects all have unique sparse properties. The

1071

per-texel stencil data is ¼ the size of the depth data, hence the stencil sparse blocks include 4 × the
number of texels. The sparse block size in bytes for all of the aspects is identical and defined by
VkMemoryRequirements::alignment.

Metadata

The metadata aspect of an image has the following constraints:

• All metadata is reported in the mip tail region of the metadata aspect.

• All metadata must be bound prior to device use of the sparse image.

29.5. Sparse Memory Aliasing
By default sparse resources have the same aliasing rules as non-sparse resources. See Memory
Aliasing for more information.

VkDevice objects that have the sparseResidencyAliased feature enabled are able to use the
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags for resource
creation. These flags allow resources to access physical memory bound into multiple locations
within one or more sparse resources in a data consistent fashion. This means that reading physical
memory from multiple aliased locations will return the same value.

Care must be taken when performing a write operation to aliased physical memory. Memory
dependencies must be used to separate writes to one alias from reads or writes to another alias.
Writes to aliased memory that are not properly guarded against accesses to different aliases will
have undefined results for all accesses to the aliased memory.

Applications that wish to make use of data consistent sparse memory aliasing must abide by the
following guidelines:

• All sparse resources that are bound to aliased physical memory must be created with the
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT / VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flag.

• All resources that access aliased physical memory must interpret the memory in the same way.
This implies the following:

◦ Buffers and images cannot alias the same physical memory in a data consistent fashion. The
physical memory ranges must be used exclusively by buffers or used exclusively by images
for data consistency to be guaranteed.

◦ Memory in sparse image mip tail regions cannot access aliased memory in a data consistent
fashion.

◦ Sparse images that alias the same physical memory must have compatible formats and be
using the same sparse image block shape in order to access aliased memory in a data
consistent fashion.

Failure to follow any of the above guidelines will require the application to abide by the normal,
non-sparse resource aliasing rules. In this case memory cannot be accessed in a data consistent
fashion.

1072

Note

Enabling sparse resource memory aliasing can be a way to lower physical memory
use, but it may reduce performance on some implementations. An application
developer can test on their target HW and balance the memory / performance
trade-offs measured.

29.6. Sparse Resource Implementation Guidelines
(Informative)

This section is Informative. It is included to aid in implementors’ understanding of sparse
resources.

Device Virtual Address

The basic sparseBinding feature allows the resource to reserve its own device virtual address
range at resource creation time rather than relying on a bind operation to set this. Without
any other creation flags, no other constraints are relaxed compared to normal resources. All
pages must be bound to physical memory before the device accesses the resource.

The sparseResidency features allow sparse resources to be used even when not all pages are
bound to memory. Implementations that support access to unbound pages without causing a
fault may support residencyNonResidentStrict.

Not faulting on access to unbound pages is not enough to support residencyNonResidentStrict.
An implementation must also guarantee that reads after writes to unbound regions of the
resource always return data for the read as if the memory contains zeros. Depending on any
caching hierarchy of the implementation this may not always be possible.

Any implementation that does not fault, but does not guarantee correct read values must not
support residencyNonResidentStrict.

Any implementation that cannot access unbound pages without causing a fault will require
the implementation to bind the entire device virtual address range to physical memory. Any
pages that the application does not bind to memory may be bound to one (or more)
"`placeholder" physical page(s) allocated by the implementation. Given the following
properties:

• A process must not access memory from another process

• Reads return undefined values

It is sufficient for each host process to allocate these placeholder pages and use them for all
resources in that process. Implementations may allocate more often (per instance, per device,
or per resource).

Binding Memory

The byte size reported in VkMemoryRequirements::size must be greater than or equal to the
amount of physical memory required to fully populate the resource. Some implementations

1073

require “holes” in the device virtual address range that are never accessed. These holes may
be included in the size reported for the resource.

Including or not including the device virtual address holes in the resource size will alter how
the implementation provides support for VkSparseImageOpaqueMemoryBindInfo. This operation
must be supported for all sparse images, even ones created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• If the holes are included in the size, this bind function becomes very easy. In most cases
the resourceOffset is simply a device virtual address offset and the implementation can
easily determine what device virtual address to bind. The cost is that the application may
allocate more physical memory for the resource than it needs.

• If the holes are not included in the size, the application can allocate less physical memory
than otherwise for the resource. However, in this case the implementation must account
for the holes when mapping resourceOffset to the actual device virtual address intended
to be mapped.

Note

If the application always uses VkSparseImageMemoryBindInfo to bind memory
for the non-tail mip levels, any holes that are present in the resource size
may never be bound.

Since VkSparseImageMemoryBindInfo uses texel locations to determine which
device virtual addresses to bind, it is impossible to bind device virtual
address holes with this operation.

Binding Metadata Memory

All metadata for sparse images have their own sparse properties and are embedded in the
mip tail region for said properties. See the Multiaspect section for details.

Given that metadata is in a mip tail region, and the mip tail region must be reported as
contiguous (either globally or per-array-layer), some implementations will have to resort to
complicated offset → device virtual address mapping for handling
VkSparseImageOpaqueMemoryBindInfo.

To make this easier on the implementation, the VK_SPARSE_MEMORY_BIND_METADATA_BIT explicitly
specifies when metadata is bound with VkSparseImageOpaqueMemoryBindInfo. When this flag is
not present, the resourceOffset may be treated as a strict device virtual address offset.

When VK_SPARSE_MEMORY_BIND_METADATA_BIT is present, the resourceOffset must have been
derived explicitly from the imageMipTailOffset in the sparse resource properties returned for
the metadata aspect. By manipulating the value returned for imageMipTailOffset, the
resourceOffset does not have to correlate directly to a device virtual address offset, and may
instead be whatever value makes it easiest for the implementation to derive the correct
device virtual address.

1074

29.7. Sparse Resource API
The APIs related to sparse resources are grouped into the following categories:

• Physical Device Features

• Physical Device Sparse Properties

• Sparse Image Format Properties

• Sparse Resource Creation

• Sparse Resource Memory Requirements

• Binding Resource Memory

29.7.1. Physical Device Features

Some sparse-resource related features are reported and enabled in VkPhysicalDeviceFeatures. These
features must be supported and enabled on the VkDevice object before applications can use them.
See Physical Device Features for information on how to get and set enabled device features, and for
more detailed explanations of these features.

Sparse Physical Device Features

• sparseBinding: Support for creating VkBuffer and VkImage objects with the
VK_BUFFER_CREATE_SPARSE_BINDING_BIT and VK_IMAGE_CREATE_SPARSE_BINDING_BIT flags, respectively.

• sparseResidencyBuffer: Support for creating VkBuffer objects with the
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag.

• sparseResidencyImage2D: Support for creating 2D single-sampled VkImage objects with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidencyImage3D: Support for creating 3D VkImage objects with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency2Samples: Support for creating 2D VkImage objects with 2 samples and
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency4Samples: Support for creating 2D VkImage objects with 4 samples and
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency8Samples: Support for creating 2D VkImage objects with 8 samples and
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency16Samples: Support for creating 2D VkImage objects with 16 samples and
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidencyAliased: Support for creating VkBuffer and VkImage objects with the
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags, respectively.

29.7.2. Physical Device Sparse Properties

Some features of the implementation are not possible to disable, and are reported to allow
applications to alter their sparse resource usage accordingly. These read-only capabilities are

1075

reported in the VkPhysicalDeviceProperties::sparseProperties member, which is a
VkPhysicalDeviceSparseProperties structure.

The VkPhysicalDeviceSparseProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPhysicalDeviceSparseProperties {
 VkBool32 residencyStandard2DBlockShape;
 VkBool32 residencyStandard2DMultisampleBlockShape;
 VkBool32 residencyStandard3DBlockShape;
 VkBool32 residencyAlignedMipSize;
 VkBool32 residencyNonResidentStrict;
} VkPhysicalDeviceSparseProperties;

• residencyStandard2DBlockShape is VK_TRUE if the physical device will access all single-sample 2D
sparse resources using the standard sparse image block shapes (based on image format), as
described in the Standard Sparse Image Block Shapes (Single Sample) table. If this property is
not supported the value returned in the imageGranularity member of the
VkSparseImageFormatProperties structure for single-sample 2D images is not required to match
the standard sparse image block dimensions listed in the table.

• residencyStandard2DMultisampleBlockShape is VK_TRUE if the physical device will access all
multisample 2D sparse resources using the standard sparse image block shapes (based on image
format), as described in the Standard Sparse Image Block Shapes (MSAA) table. If this property
is not supported, the value returned in the imageGranularity member of the
VkSparseImageFormatProperties structure for multisample 2D images is not required to match
the standard sparse image block dimensions listed in the table.

• residencyStandard3DBlockShape is VK_TRUE if the physical device will access all 3D sparse
resources using the standard sparse image block shapes (based on image format), as described
in the Standard Sparse Image Block Shapes (Single Sample) table. If this property is not
supported, the value returned in the imageGranularity member of the
VkSparseImageFormatProperties structure for 3D images is not required to match the standard
sparse image block dimensions listed in the table.

• residencyAlignedMipSize is VK_TRUE if images with mip level dimensions that are not integer
multiples of the corresponding dimensions of the sparse image block may be placed in the mip
tail. If this property is not reported, only mip levels with dimensions smaller than the
imageGranularity member of the VkSparseImageFormatProperties structure will be placed in the
mip tail. If this property is reported the implementation is allowed to return
VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT in the flags member of
VkSparseImageFormatProperties, indicating that mip level dimensions that are not integer
multiples of the corresponding dimensions of the sparse image block will be placed in the mip
tail.

• residencyNonResidentStrict specifies whether the physical device can consistently access non-
resident regions of a resource. If this property is VK_TRUE, access to non-resident regions of
resources will be guaranteed to return values as if the resource was populated with 0; writes to
non-resident regions will be discarded.

1076

29.7.3. Sparse Image Format Properties

Given that certain aspects of sparse image support, including the sparse image block dimensions,
may be implementation-dependent, vkGetPhysicalDeviceSparseImageFormatProperties can be
used to query for sparse image format properties prior to resource creation. This command is used
to check whether a given set of sparse image parameters is supported and what the sparse image
block shape will be.

Sparse Image Format Properties API

The VkSparseImageFormatProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageFormatProperties {
 VkImageAspectFlags aspectMask;
 VkExtent3D imageGranularity;
 VkSparseImageFormatFlags flags;
} VkSparseImageFormatProperties;

• aspectMask is a bitmask VkImageAspectFlagBits specifying which aspects of the image the
properties apply to.

• imageGranularity is the width, height, and depth of the sparse image block in texels or
compressed texel blocks.

• flags is a bitmask of VkSparseImageFormatFlagBits specifying additional information about the
sparse resource.

Bits which may be set in VkSparseImageFormatProperties::flags, specifying additional information
about the sparse resource, are:

// Provided by VK_VERSION_1_0
typedef enum VkSparseImageFormatFlagBits {
 VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT = 0x00000001,
 VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT = 0x00000002,
 VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT = 0x00000004,
} VkSparseImageFormatFlagBits;

• VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT specifies that the image uses a single mip tail region
for all array layers.

• VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT specifies that the first mip level whose dimensions
are not integer multiples of the corresponding dimensions of the sparse image block begins the
mip tail region.

• VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT specifies that the image uses non-standard
sparse image block dimensions, and the imageGranularity values do not match the standard
sparse image block dimensions for the given format.

1077

// Provided by VK_VERSION_1_0
typedef VkFlags VkSparseImageFormatFlags;

VkSparseImageFormatFlags is a bitmask type for setting a mask of zero or more
VkSparseImageFormatFlagBits.

vkGetPhysicalDeviceSparseImageFormatProperties returns an array of
VkSparseImageFormatProperties. Each element describes properties for one set of image aspects
that are bound simultaneously for a VkImage created with the provided image creation parameters.
This is usually one element for each aspect in the image, but for interleaved depth/stencil images
there is only one element describing the combined aspects.

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceSparseImageFormatProperties(
 VkPhysicalDevice physicalDevice,
 VkFormat format,
 VkImageType type,
 VkSampleCountFlagBits samples,
 VkImageUsageFlags usage,
 VkImageTiling tiling,
 uint32_t* pPropertyCount,
 VkSparseImageFormatProperties* pProperties);

• physicalDevice is the physical device from which to query the sparse image format properties.

• format is the image format.

• type is the dimensionality of the image.

• samples is a VkSampleCountFlagBits value specifying the number of samples per texel.

• usage is a bitmask describing the intended usage of the image.

• tiling is the tiling arrangement of the texel blocks in memory.

• pPropertyCount is a pointer to an integer related to the number of sparse format properties
available or queried, as described below.

• pProperties is either NULL or a pointer to an array of VkSparseImageFormatProperties
structures.

If pProperties is NULL, then the number of sparse format properties available is returned in
pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of
elements in the pProperties array, and on return the variable is overwritten with the number of
structures actually written to pProperties. If pPropertyCount is less than the number of sparse
format properties available, at most pPropertyCount structures will be written.

If VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT is not supported for the given arguments, pPropertyCount
will be set to zero upon return, and no data will be written to pProperties.

Multiple aspects are returned for depth/stencil images that are implemented as separate planes by
the implementation. The depth and stencil data planes each have unique

1078

VkSparseImageFormatProperties data.

Depth/stencil images with depth and stencil data interleaved into a single plane will return a single
VkSparseImageFormatProperties structure with the aspectMask set to VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT.

Valid Usage

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-samples-01094
samples must be a valid VkSampleCountFlagBits value that is set in
VkImageFormatProperties::sampleCounts returned by
vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, and usage equal to
those in this command

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-format-parameter
format must be a valid VkFormat value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-type-parameter
type must be a valid VkImageType value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-usage-requiredbitmask
usage must not be 0

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-tiling-parameter
tiling must be a valid VkImageTiling value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkSparseImageFormatProperties
structures

vkGetPhysicalDeviceSparseImageFormatProperties2 returns an array of
VkSparseImageFormatProperties2. Each element describes properties for one set of image aspects
that are bound simultaneously for a VkImage created with the provided image creation parameters.
This is usually one element for each aspect in the image, but for interleaved depth/stencil images
there is only one element describing the combined aspects.

1079

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceSparseImageFormatProperties2(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo,
 uint32_t* pPropertyCount,
 VkSparseImageFormatProperties2* pProperties);

• physicalDevice is the physical device from which to query the sparse image format properties.

• pFormatInfo is a pointer to a VkPhysicalDeviceSparseImageFormatInfo2 structure containing
input parameters to the command.

• pPropertyCount is a pointer to an integer related to the number of sparse format properties
available or queried, as described below.

• pProperties is either NULL or a pointer to an array of VkSparseImageFormatProperties2
structures.

vkGetPhysicalDeviceSparseImageFormatProperties2 behaves identically to
vkGetPhysicalDeviceSparseImageFormatProperties, with the ability to return extended information
by adding extending structures to the pNext chain of its pProperties parameter.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties2-pFormatInfo-parameter
pFormatInfo must be a valid pointer to a valid VkPhysicalDeviceSparseImageFormatInfo2
structure

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties2-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceSparseImageFormatProperties2-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkSparseImageFormatProperties2
structures

The VkPhysicalDeviceSparseImageFormatInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceSparseImageFormatInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkFormat format;
 VkImageType type;
 VkSampleCountFlagBits samples;
 VkImageUsageFlags usage;
 VkImageTiling tiling;

1080

} VkPhysicalDeviceSparseImageFormatInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• format is the image format.

• type is the dimensionality of the image.

• samples is a VkSampleCountFlagBits value specifying the number of samples per texel.

• usage is a bitmask describing the intended usage of the image.

• tiling is the tiling arrangement of the texel blocks in memory.

Valid Usage

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-samples-01095
samples must be a valid VkSampleCountFlagBits value that is set in
VkImageFormatProperties::sampleCounts returned by
vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, and usage equal to
those in this command

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-pNext-pNext
pNext must be NULL

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-format-parameter
format must be a valid VkFormat value

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-type-parameter
type must be a valid VkImageType value

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-samples-parameter
samples must be a valid VkSampleCountFlagBits value

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-usage-requiredbitmask
usage must not be 0

• VUID-VkPhysicalDeviceSparseImageFormatInfo2-tiling-parameter
tiling must be a valid VkImageTiling value

The VkSparseImageFormatProperties2 structure is defined as:

// Provided by VK_VERSION_1_1

1081

typedef struct VkSparseImageFormatProperties2 {
 VkStructureType sType;
 void* pNext;
 VkSparseImageFormatProperties properties;
} VkSparseImageFormatProperties2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• properties is a VkSparseImageFormatProperties structure which is populated with the same
values as in vkGetPhysicalDeviceSparseImageFormatProperties.

Valid Usage (Implicit)

• VUID-VkSparseImageFormatProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2

• VUID-VkSparseImageFormatProperties2-pNext-pNext
pNext must be NULL

29.7.4. Sparse Resource Creation

Sparse resources require that one or more sparse feature flags be specified (as part of the
VkPhysicalDeviceFeatures structure described previously in the Physical Device Features section)
when calling vkCreateDevice. When the appropriate device features are enabled, the
VK_BUFFER_CREATE_SPARSE_* and VK_IMAGE_CREATE_SPARSE_* flags can be used. See vkCreateBuffer and
vkCreateImage for details of the resource creation APIs.

Note

Specifying VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT or
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT requires specifying
VK_BUFFER_CREATE_SPARSE_BINDING_BIT or VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
respectively, as well. This means that resources must be created with the
appropriate *_SPARSE_BINDING_BIT to be used with the sparse binding command
(vkQueueBindSparse).

29.7.5. Sparse Resource Memory Requirements

Sparse resources have specific memory requirements related to binding sparse memory. These
memory requirements are reported differently for VkBuffer objects and VkImage objects.

Buffer and Fully-Resident Images

Buffers (both fully and partially resident) and fully-resident images can be bound to memory using
only the data from VkMemoryRequirements. For all sparse resources the VkMemoryRequirements
::alignment member specifies both the bindable sparse block size in bytes and required alignment
of VkDeviceMemory.

1082

Partially Resident Images

Partially resident images have a different method for binding memory. As with buffers and fully
resident images, the VkMemoryRequirements::alignment field specifies the bindable sparse block size in
bytes for the image.

Requesting sparse memory requirements for VkImage objects using
vkGetImageSparseMemoryRequirements will return an array of one or more
VkSparseImageMemoryRequirements structures. Each structure describes the sparse memory
requirements for a group of aspects of the image.

The sparse image must have been created using the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag to
retrieve valid sparse image memory requirements.

Sparse Image Memory Requirements

The VkSparseImageMemoryRequirements structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageMemoryRequirements {
 VkSparseImageFormatProperties formatProperties;
 uint32_t imageMipTailFirstLod;
 VkDeviceSize imageMipTailSize;
 VkDeviceSize imageMipTailOffset;
 VkDeviceSize imageMipTailStride;
} VkSparseImageMemoryRequirements;

• formatProperties is a VkSparseImageFormatProperties structure specifying properties of the
image format.

• imageMipTailFirstLod is the first mip level at which image subresources are included in the mip
tail region.

• imageMipTailSize is the memory size (in bytes) of the mip tail region. If formatProperties.flags
contains VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, this is the size of the whole mip tail,
otherwise this is the size of the mip tail of a single array layer. This value is guaranteed to be a
multiple of the sparse block size in bytes.

• imageMipTailOffset is the opaque memory offset used with
VkSparseImageOpaqueMemoryBindInfo to bind the mip tail region(s).

• imageMipTailStride is the offset stride between each array-layer’s mip tail, if
formatProperties.flags does not contain VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT (otherwise
the value is undefined).

To query sparse memory requirements for an image, call:

// Provided by VK_VERSION_1_0
void vkGetImageSparseMemoryRequirements(
 VkDevice device,
 VkImage image,

1083

 uint32_t* pSparseMemoryRequirementCount,
 VkSparseImageMemoryRequirements* pSparseMemoryRequirements);

• device is the logical device that owns the image.

• image is the VkImage object to get the memory requirements for.

• pSparseMemoryRequirementCount is a pointer to an integer related to the number of sparse
memory requirements available or queried, as described below.

• pSparseMemoryRequirements is either NULL or a pointer to an array of
VkSparseImageMemoryRequirements structures.

If pSparseMemoryRequirements is NULL, then the number of sparse memory requirements available is
returned in pSparseMemoryRequirementCount. Otherwise, pSparseMemoryRequirementCount must point to
a variable set by the user to the number of elements in the pSparseMemoryRequirements array, and on
return the variable is overwritten with the number of structures actually written to
pSparseMemoryRequirements. If pSparseMemoryRequirementCount is less than the number of sparse
memory requirements available, at most pSparseMemoryRequirementCount structures will be written.

If the image was not created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then
pSparseMemoryRequirementCount will be set to zero and pSparseMemoryRequirements will not be written
to.

Note

It is legal for an implementation to report a larger value in VkMemoryRequirements
::size than would be obtained by adding together memory sizes for all
VkSparseImageMemoryRequirements returned by vkGetImageSparseMemoryRequirements.
This may occur when the implementation requires unused padding in the address
range describing the resource.

Valid Usage (Implicit)

• VUID-vkGetImageSparseMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageSparseMemoryRequirements-image-parameter
image must be a valid VkImage handle

• VUID-vkGetImageSparseMemoryRequirements-pSparseMemoryRequirementCount-
parameter
pSparseMemoryRequirementCount must be a valid pointer to a uint32_t value

• VUID-vkGetImageSparseMemoryRequirements-pSparseMemoryRequirements-parameter
If the value referenced by pSparseMemoryRequirementCount is not 0, and
pSparseMemoryRequirements is not NULL, pSparseMemoryRequirements must be a valid pointer
to an array of pSparseMemoryRequirementCount VkSparseImageMemoryRequirements
structures

• VUID-vkGetImageSparseMemoryRequirements-image-parent
image must have been created, allocated, or retrieved from device

1084

To query sparse memory requirements for an image, call:

// Provided by VK_VERSION_1_1
void vkGetImageSparseMemoryRequirements2(
 VkDevice device,
 const VkImageSparseMemoryRequirementsInfo2* pInfo,
 uint32_t* pSparseMemoryRequirementCount,
 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements);

• device is the logical device that owns the image.

• pInfo is a pointer to a VkImageSparseMemoryRequirementsInfo2 structure containing parameters
required for the memory requirements query.

• pSparseMemoryRequirementCount is a pointer to an integer related to the number of sparse
memory requirements available or queried, as described below.

• pSparseMemoryRequirements is either NULL or a pointer to an array of
VkSparseImageMemoryRequirements2 structures.

Valid Usage (Implicit)

• VUID-vkGetImageSparseMemoryRequirements2-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetImageSparseMemoryRequirements2-pInfo-parameter
pInfo must be a valid pointer to a valid VkImageSparseMemoryRequirementsInfo2
structure

• VUID-vkGetImageSparseMemoryRequirements2-pSparseMemoryRequirementCount-
parameter
pSparseMemoryRequirementCount must be a valid pointer to a uint32_t value

• VUID-vkGetImageSparseMemoryRequirements2-pSparseMemoryRequirements-
parameter
If the value referenced by pSparseMemoryRequirementCount is not 0, and
pSparseMemoryRequirements is not NULL, pSparseMemoryRequirements must be a valid pointer
to an array of pSparseMemoryRequirementCount VkSparseImageMemoryRequirements2
structures

To determine the sparse memory requirements for an image resource without creating an object,
call:

// Provided by VK_VERSION_1_3
void vkGetDeviceImageSparseMemoryRequirements(
 VkDevice device,
 const VkDeviceImageMemoryRequirements* pInfo,
 uint32_t* pSparseMemoryRequirementCount,
 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements);

1085

• device is the logical device intended to own the image.

• pInfo is a pointer to a VkDeviceImageMemoryRequirements structure containing parameters
required for the memory requirements query.

• pSparseMemoryRequirementCount is a pointer to an integer related to the number of sparse
memory requirements available or queried, as described below.

• pSparseMemoryRequirements is either NULL or a pointer to an array of
VkSparseImageMemoryRequirements2 structures.

Valid Usage (Implicit)

• VUID-vkGetDeviceImageSparseMemoryRequirements-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetDeviceImageSparseMemoryRequirements-pInfo-parameter
pInfo must be a valid pointer to a valid VkDeviceImageMemoryRequirements structure

• VUID-vkGetDeviceImageSparseMemoryRequirements-
pSparseMemoryRequirementCount-parameter
pSparseMemoryRequirementCount must be a valid pointer to a uint32_t value

• VUID-vkGetDeviceImageSparseMemoryRequirements-pSparseMemoryRequirements-
parameter
If the value referenced by pSparseMemoryRequirementCount is not 0, and
pSparseMemoryRequirements is not NULL, pSparseMemoryRequirements must be a valid pointer
to an array of pSparseMemoryRequirementCount VkSparseImageMemoryRequirements2
structures

The VkImageSparseMemoryRequirementsInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImageSparseMemoryRequirementsInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkImage image;
} VkImageSparseMemoryRequirementsInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• image is the image to query.

Valid Usage (Implicit)

• VUID-VkImageSparseMemoryRequirementsInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2

• VUID-VkImageSparseMemoryRequirementsInfo2-pNext-pNext

1086

pNext must be NULL

• VUID-VkImageSparseMemoryRequirementsInfo2-image-parameter
image must be a valid VkImage handle

The VkSparseImageMemoryRequirements2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkSparseImageMemoryRequirements2 {
 VkStructureType sType;
 void* pNext;
 VkSparseImageMemoryRequirements memoryRequirements;
} VkSparseImageMemoryRequirements2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• memoryRequirements is a VkSparseImageMemoryRequirements structure describing the memory
requirements of the sparse image.

Valid Usage (Implicit)

• VUID-VkSparseImageMemoryRequirements2-sType-sType
sType must be VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2

• VUID-VkSparseImageMemoryRequirements2-pNext-pNext
pNext must be NULL

29.7.6. Binding Resource Memory

Non-sparse resources are backed by a single physical allocation prior to device use (via
vkBindImageMemory or vkBindBufferMemory), and their backing must not be changed. On the other
hand, sparse resources can be bound to memory non-contiguously and these bindings can be
altered during the lifetime of the resource.

Note

It is important to note that freeing a VkDeviceMemory object with vkFreeMemory will
not cause resources (or resource regions) bound to the memory object to become
unbound. Applications must not access resources bound to memory that has been
freed.

Sparse memory bindings execute on a queue that includes the VK_QUEUE_SPARSE_BINDING_BIT bit.
Applications must use synchronization primitives to guarantee that other queues do not access
ranges of memory concurrently with a binding change. Applications can access other ranges of the
same resource while a bind operation is executing.

 Note

1087

Implementations must provide a guarantee that simultaneously binding sparse
blocks while another queue accesses those same sparse blocks via a sparse
resource must not access memory owned by another process or otherwise corrupt
the system.

While some implementations may include VK_QUEUE_SPARSE_BINDING_BIT support in queue families
that also include graphics and compute support, other implementations may only expose a
VK_QUEUE_SPARSE_BINDING_BIT-only queue family. In either case, applications must use
synchronization primitives to explicitly request any ordering dependencies between sparse
memory binding operations and other graphics/compute/transfer operations, as sparse binding
operations are not automatically ordered against command buffer execution, even within a single
queue.

When binding memory explicitly for the VK_IMAGE_ASPECT_METADATA_BIT the application must use the
VK_SPARSE_MEMORY_BIND_METADATA_BIT in the VkSparseMemoryBind::flags field when binding memory.
Binding memory for metadata is done the same way as binding memory for the mip tail, with the
addition of the VK_SPARSE_MEMORY_BIND_METADATA_BIT flag.

Binding the mip tail for any aspect must only be performed using
VkSparseImageOpaqueMemoryBindInfo. If formatProperties.flags contains
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, then it can be bound with a single
VkSparseMemoryBind structure, with resourceOffset = imageMipTailOffset and size =
imageMipTailSize.

If formatProperties.flags does not contain VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT then the
offset for the mip tail in each array layer is given as:

arrayMipTailOffset = imageMipTailOffset + arrayLayer * imageMipTailStride;

and the mip tail can be bound with layerCount VkSparseMemoryBind structures, each using size =
imageMipTailSize and resourceOffset = arrayMipTailOffset as defined above.

Sparse memory binding is handled by the following APIs and related data structures.

Sparse Memory Binding Functions

The VkSparseMemoryBind structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSparseMemoryBind {
 VkDeviceSize resourceOffset;
 VkDeviceSize size;
 VkDeviceMemory memory;
 VkDeviceSize memoryOffset;
 VkSparseMemoryBindFlags flags;
} VkSparseMemoryBind;

• resourceOffset is the offset into the resource.

1088

• size is the size of the memory region to be bound.

• memory is the VkDeviceMemory object that the range of the resource is bound to. If memory is
VK_NULL_HANDLE, the range is unbound.

• memoryOffset is the offset into the VkDeviceMemory object to bind the resource range to. If
memory is VK_NULL_HANDLE, this value is ignored.

• flags is a bitmask of VkSparseMemoryBindFlagBits specifying usage of the binding operation.

The binding range [resourceOffset, resourceOffset + size) has different constraints based on flags. If
flags contains VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range must be within the mip tail
region of the metadata aspect. This metadata region is defined by:

metadataRegion = [base, base + imageMipTailSize)

base = imageMipTailOffset + imageMipTailStride × n

and imageMipTailOffset, imageMipTailSize, and imageMipTailStride values are from the
VkSparseImageMemoryRequirements corresponding to the metadata aspect of the image, and n is a
valid array layer index for the image,

imageMipTailStride is considered to be zero for aspects where VkSparseImageMemoryRequirements
::formatProperties.flags contains VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT.

If flags does not contain VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range must be within the
range [0,VkMemoryRequirements::size).

Valid Usage

• VUID-VkSparseMemoryBind-memory-01096
If memory is not VK_NULL_HANDLE, memory and memoryOffset must match the memory
requirements of the resource, as described in section Resource Memory Association

• VUID-VkSparseMemoryBind-resourceOffset-09491
If the resource being bound is a VkBuffer, resourceOffset and memoryOffset must be an
integer multiple of the alignment of the VkMemoryRequirements structure returned from
a call to vkGetBufferMemoryRequirements with the buffer resource

• VUID-VkSparseMemoryBind-resourceOffset-09492
If the resource being bound is a VkImage, resourceOffset and memoryOffset must be an
integer multiple of the alignment of the VkMemoryRequirements structure returned from
a call to vkGetImageMemoryRequirements with the image resource

• VUID-VkSparseMemoryBind-memory-01097
If memory is not VK_NULL_HANDLE, memory must not have been created with a memory
type that reports VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set

• VUID-VkSparseMemoryBind-size-01098
size must be greater than 0

1089

• VUID-VkSparseMemoryBind-resourceOffset-01099
resourceOffset must be less than the size of the resource

• VUID-VkSparseMemoryBind-size-01100
size must be less than or equal to the size of the resource minus resourceOffset

• VUID-VkSparseMemoryBind-memoryOffset-01101
memoryOffset must be less than the size of memory

• VUID-VkSparseMemoryBind-size-01102
size must be less than or equal to the size of memory minus memoryOffset

• VUID-VkSparseMemoryBind-memory-02730
If memory was created with VkExportMemoryAllocateInfo::handleTypes not equal to 0, at
least one handle type it contained must also have been set in
VkExternalMemoryBufferCreateInfo::handleTypes or
VkExternalMemoryImageCreateInfo::handleTypes when the resource was created

• VUID-VkSparseMemoryBind-memory-02731
If memory was created by a memory import operation, the external handle type of the
imported memory must also have been set in VkExternalMemoryBufferCreateInfo
::handleTypes or VkExternalMemoryImageCreateInfo::handleTypes when the resource was
created

Valid Usage (Implicit)

• VUID-VkSparseMemoryBind-memory-parameter
If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• VUID-VkSparseMemoryBind-flags-parameter
flags must be a valid combination of VkSparseMemoryBindFlagBits values

Bits which can be set in VkSparseMemoryBind::flags, specifying usage of a sparse memory binding
operation, are:

// Provided by VK_VERSION_1_0
typedef enum VkSparseMemoryBindFlagBits {
 VK_SPARSE_MEMORY_BIND_METADATA_BIT = 0x00000001,
} VkSparseMemoryBindFlagBits;

• VK_SPARSE_MEMORY_BIND_METADATA_BIT specifies that the memory being bound is only for the
metadata aspect.

// Provided by VK_VERSION_1_0
typedef VkFlags VkSparseMemoryBindFlags;

VkSparseMemoryBindFlags is a bitmask type for setting a mask of zero or more
VkSparseMemoryBindFlagBits.

1090

Memory is bound to VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag
using the following structure:

// Provided by VK_VERSION_1_0
typedef struct VkSparseBufferMemoryBindInfo {
 VkBuffer buffer;
 uint32_t bindCount;
 const VkSparseMemoryBind* pBinds;
} VkSparseBufferMemoryBindInfo;

• buffer is the VkBuffer object to be bound.

• bindCount is the number of VkSparseMemoryBind structures in the pBinds array.

• pBinds is a pointer to an array of VkSparseMemoryBind structures.

Valid Usage (Implicit)

• VUID-VkSparseBufferMemoryBindInfo-buffer-parameter
buffer must be a valid VkBuffer handle

• VUID-VkSparseBufferMemoryBindInfo-pBinds-parameter
pBinds must be a valid pointer to an array of bindCount valid VkSparseMemoryBind
structures

• VUID-VkSparseBufferMemoryBindInfo-bindCount-arraylength
bindCount must be greater than 0

Memory is bound to opaque regions of VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag using the following structure:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageOpaqueMemoryBindInfo {
 VkImage image;
 uint32_t bindCount;
 const VkSparseMemoryBind* pBinds;
} VkSparseImageOpaqueMemoryBindInfo;

• image is the VkImage object to be bound.

• bindCount is the number of VkSparseMemoryBind structures in the pBinds array.

• pBinds is a pointer to an array of VkSparseMemoryBind structures.

Valid Usage

• VUID-VkSparseImageOpaqueMemoryBindInfo-pBinds-01103
If the flags member of any element of pBinds contains
VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range defined must be within the mip

1091

tail region of the metadata aspect of image

Valid Usage (Implicit)

• VUID-VkSparseImageOpaqueMemoryBindInfo-image-parameter
image must be a valid VkImage handle

• VUID-VkSparseImageOpaqueMemoryBindInfo-pBinds-parameter
pBinds must be a valid pointer to an array of bindCount valid VkSparseMemoryBind
structures

• VUID-VkSparseImageOpaqueMemoryBindInfo-bindCount-arraylength
bindCount must be greater than 0

Note

This operation is normally used to bind memory to fully-resident sparse images or
for mip tail regions of partially resident images. However, it can also be used to
bind memory for the entire binding range of partially resident images.

In case flags does not contain VK_SPARSE_MEMORY_BIND_METADATA_BIT, the
resourceOffset is in the range [0, VkMemoryRequirements::size), This range
includes data from all aspects of the image, including metadata. For most
implementations this will probably mean that the resourceOffset is a simple
device address offset within the resource. It is possible for an application to bind a
range of memory that includes both resource data and metadata. However, the
application would not know what part of the image the memory is used for, or if
any range is being used for metadata.

When flags contains VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range
specified must be within the mip tail region of the metadata aspect. In this case
the resourceOffset is not required to be a simple device address offset within the
resource. However, it is defined to be within [imageMipTailOffset,
imageMipTailOffset + imageMipTailSize) for the metadata aspect. See
VkSparseMemoryBind for the full constraints on binding region with this flag
present.

Memory can be bound to sparse image blocks of VkImage objects created with the
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag using the following structure:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageMemoryBindInfo {
 VkImage image;
 uint32_t bindCount;
 const VkSparseImageMemoryBind* pBinds;
} VkSparseImageMemoryBindInfo;

• image is the VkImage object to be bound

1092

• bindCount is the number of VkSparseImageMemoryBind structures in pBinds array

• pBinds is a pointer to an array of VkSparseImageMemoryBind structures

Valid Usage

• VUID-VkSparseImageMemoryBindInfo-subresource-01722
The subresource.mipLevel member of each element of pBinds must be less than the
mipLevels specified in VkImageCreateInfo when image was created

• VUID-VkSparseImageMemoryBindInfo-subresource-01723
The subresource.arrayLayer member of each element of pBinds must be less than the
arrayLayers specified in VkImageCreateInfo when image was created

• VUID-VkSparseImageMemoryBindInfo-subresource-01106
The subresource.aspectMask member of each element of pBinds must be valid for the
format specified in VkImageCreateInfo when image was created

• VUID-VkSparseImageMemoryBindInfo-image-02901
image must have been created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set

Valid Usage (Implicit)

• VUID-VkSparseImageMemoryBindInfo-image-parameter
image must be a valid VkImage handle

• VUID-VkSparseImageMemoryBindInfo-pBinds-parameter
pBinds must be a valid pointer to an array of bindCount valid VkSparseImageMemoryBind
structures

• VUID-VkSparseImageMemoryBindInfo-bindCount-arraylength
bindCount must be greater than 0

The VkSparseImageMemoryBind structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkSparseImageMemoryBind {
 VkImageSubresource subresource;
 VkOffset3D offset;
 VkExtent3D extent;
 VkDeviceMemory memory;
 VkDeviceSize memoryOffset;
 VkSparseMemoryBindFlags flags;
} VkSparseImageMemoryBind;

• subresource is the image aspect and region of interest in the image.

• offset are the coordinates of the first texel within the image subresource to bind.

• extent is the size in texels of the region within the image subresource to bind. The extent must

1093

be a multiple of the sparse image block dimensions, except when binding sparse image blocks
along the edge of an image subresource it can instead be such that any coordinate of offset +
extent equals the corresponding dimensions of the image subresource.

• memory is the VkDeviceMemory object that the sparse image blocks of the image are bound to. If
memory is VK_NULL_HANDLE, the sparse image blocks are unbound.

• memoryOffset is an offset into VkDeviceMemory object. If memory is VK_NULL_HANDLE, this value
is ignored.

• flags are sparse memory binding flags.

Valid Usage

• VUID-VkSparseImageMemoryBind-memory-01104
If the sparseResidencyAliased feature is not enabled, and if any other resources are bound
to ranges of memory, the range of memory being bound must not overlap with those bound
ranges

• VUID-VkSparseImageMemoryBind-memory-01105
memory and memoryOffset must match the memory requirements of the calling command’s
image, as described in section Resource Memory Association

• VUID-VkSparseImageMemoryBind-offset-01107
offset.x must be a multiple of the sparse image block width
(VkSparseImageFormatProperties::imageGranularity.width) of the image

• VUID-VkSparseImageMemoryBind-extent-09388
extent.width must be greater than 0

• VUID-VkSparseImageMemoryBind-extent-01108
extent.width must either be a multiple of the sparse image block width of the image, or
else (extent.width + offset.x) must equal the width of the image subresource

• VUID-VkSparseImageMemoryBind-offset-01109
offset.y must be a multiple of the sparse image block height
(VkSparseImageFormatProperties::imageGranularity.height) of the image

• VUID-VkSparseImageMemoryBind-extent-09389
extent.height must be greater than 0

• VUID-VkSparseImageMemoryBind-extent-01110
extent.height must either be a multiple of the sparse image block height of the image, or
else (extent.height + offset.y) must equal the height of the image subresource

• VUID-VkSparseImageMemoryBind-offset-01111
offset.z must be a multiple of the sparse image block depth
(VkSparseImageFormatProperties::imageGranularity.depth) of the image

• VUID-VkSparseImageMemoryBind-extent-09390
extent.depth must be greater than 0

• VUID-VkSparseImageMemoryBind-extent-01112
extent.depth must either be a multiple of the sparse image block depth of the image, or
else (extent.depth + offset.z) must equal the depth of the image subresource

1094

• VUID-VkSparseImageMemoryBind-memory-02732
If memory was created with VkExportMemoryAllocateInfo::handleTypes not equal to 0, at
least one handle type it contained must also have been set in
VkExternalMemoryImageCreateInfo::handleTypes when the image was created

• VUID-VkSparseImageMemoryBind-memory-02733
If memory was created by a memory import operation, the external handle type of the
imported memory must also have been set in VkExternalMemoryImageCreateInfo
::handleTypes when image was created

Valid Usage (Implicit)

• VUID-VkSparseImageMemoryBind-subresource-parameter
subresource must be a valid VkImageSubresource structure

• VUID-VkSparseImageMemoryBind-memory-parameter
If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• VUID-VkSparseImageMemoryBind-flags-parameter
flags must be a valid combination of VkSparseMemoryBindFlagBits values

To submit sparse binding operations to a queue, call:

// Provided by VK_VERSION_1_0
VkResult vkQueueBindSparse(
 VkQueue queue,
 uint32_t bindInfoCount,
 const VkBindSparseInfo* pBindInfo,
 VkFence fence);

• queue is the queue that the sparse binding operations will be submitted to.

• bindInfoCount is the number of elements in the pBindInfo array.

• pBindInfo is a pointer to an array of VkBindSparseInfo structures, each specifying a sparse
binding submission batch.

• fence is an optional handle to a fence to be signaled. If fence is not VK_NULL_HANDLE, it
defines a fence signal operation.

vkQueueBindSparse is a queue submission command, with each batch defined by an element of
pBindInfo as a VkBindSparseInfo structure. Batches begin execution in the order they appear in
pBindInfo, but may complete out of order.

Within a batch, a given range of a resource must not be bound more than once. Across batches, if a
range is to be bound to one allocation and offset and then to another allocation and offset, then the
application must guarantee (usually using semaphores) that the binding operations are executed in
the correct order, as well as to order binding operations against the execution of command buffer
submissions.

1095

As no operation to vkQueueBindSparse causes any pipeline stage to access memory,
synchronization primitives used in this command effectively only define execution dependencies.

Additional information about fence and semaphore operation is described in the synchronization
chapter.

Valid Usage

• VUID-vkQueueBindSparse-fence-01113
If fence is not VK_NULL_HANDLE, fence must be unsignaled

• VUID-vkQueueBindSparse-fence-01114
If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue
command that has not yet completed execution on that queue

• VUID-vkQueueBindSparse-pSignalSemaphores-01115
Each element of the pSignalSemaphores member of each element of pBindInfo must be
unsignaled when the semaphore signal operation it defines is executed on the device

• VUID-vkQueueBindSparse-pWaitSemaphores-01116
When a semaphore wait operation referring to a binary semaphore defined by any
element of the pWaitSemaphores member of any element of pBindInfo executes on queue,
there must be no other queues waiting on the same semaphore

• VUID-vkQueueBindSparse-pWaitSemaphores-03245
All elements of the pWaitSemaphores member of all elements of pBindInfo referring to a
semaphore created with a VkSemaphoreType of VK_SEMAPHORE_TYPE_BINARY must reference
a semaphore signal operation that has been submitted for execution and any semaphore
signal operations on which it depends must have also been submitted for execution

Valid Usage (Implicit)

• VUID-vkQueueBindSparse-queue-parameter
queue must be a valid VkQueue handle

• VUID-vkQueueBindSparse-pBindInfo-parameter
If bindInfoCount is not 0, pBindInfo must be a valid pointer to an array of bindInfoCount
valid VkBindSparseInfo structures

• VUID-vkQueueBindSparse-fence-parameter
If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• VUID-vkQueueBindSparse-queuetype
The queue must support sparse binding operations

• VUID-vkQueueBindSparse-commonparent
Both of fence, and queue that are valid handles of non-ignored parameters must have
been created, allocated, or retrieved from the same VkDevice

1096

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to fence must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Command Type

- - SPARSE_BINDING -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkBindSparseInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkBindSparseInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const VkSemaphore* pWaitSemaphores;
 uint32_t bufferBindCount;
 const VkSparseBufferMemoryBindInfo* pBufferBinds;
 uint32_t imageOpaqueBindCount;
 const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
 uint32_t imageBindCount;
 const VkSparseImageMemoryBindInfo* pImageBinds;
 uint32_t signalSemaphoreCount;
 const VkSemaphore* pSignalSemaphores;
} VkBindSparseInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• waitSemaphoreCount is the number of semaphores upon which to wait before executing the

1097

sparse binding operations for the batch.

• pWaitSemaphores is a pointer to an array of semaphores upon which to wait on before the sparse
binding operations for this batch begin execution. If semaphores to wait on are provided, they
define a semaphore wait operation.

• bufferBindCount is the number of sparse buffer bindings to perform in the batch.

• pBufferBinds is a pointer to an array of VkSparseBufferMemoryBindInfo structures.

• imageOpaqueBindCount is the number of opaque sparse image bindings to perform.

• pImageOpaqueBinds is a pointer to an array of VkSparseImageOpaqueMemoryBindInfo structures,
indicating opaque sparse image bindings to perform.

• imageBindCount is the number of sparse image bindings to perform.

• pImageBinds is a pointer to an array of VkSparseImageMemoryBindInfo structures, indicating
sparse image bindings to perform.

• signalSemaphoreCount is the number of semaphores to be signaled once the sparse binding
operations specified by the structure have completed execution.

• pSignalSemaphores is a pointer to an array of semaphores which will be signaled when the
sparse binding operations for this batch have completed execution. If semaphores to be
signaled are provided, they define a semaphore signal operation.

Valid Usage

• VUID-VkBindSparseInfo-pWaitSemaphores-03246
If any element of pWaitSemaphores or pSignalSemaphores was created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE then the pNext chain must include a
VkTimelineSemaphoreSubmitInfo structure

• VUID-VkBindSparseInfo-pNext-03247
If the pNext chain of this structure includes a VkTimelineSemaphoreSubmitInfo structure
and any element of pWaitSemaphores was created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE then its waitSemaphoreValueCount member must equal
waitSemaphoreCount

• VUID-VkBindSparseInfo-pNext-03248
If the pNext chain of this structure includes a VkTimelineSemaphoreSubmitInfo structure
and any element of pSignalSemaphores was created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE then its signalSemaphoreValueCount member must equal
signalSemaphoreCount

• VUID-VkBindSparseInfo-pSignalSemaphores-03249
For each element of pSignalSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pSignalSemaphoreValues must have a value greater
than the current value of the semaphore when the semaphore signal operation is
executed

• VUID-VkBindSparseInfo-pWaitSemaphores-03250
For each element of pWaitSemaphores created with a VkSemaphoreType of

1098

VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pWaitSemaphoreValues must have a value which does
not differ from the current value of the semaphore or from the value of any outstanding
semaphore wait or signal operation on that semaphore by more than
maxTimelineSemaphoreValueDifference

• VUID-VkBindSparseInfo-pSignalSemaphores-03251
For each element of pSignalSemaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE the corresponding element of
VkTimelineSemaphoreSubmitInfo::pSignalSemaphoreValues must have a value which does
not differ from the current value of the semaphore or from the value of any outstanding
semaphore wait or signal operation on that semaphore by more than
maxTimelineSemaphoreValueDifference

Valid Usage (Implicit)

• VUID-VkBindSparseInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_BIND_SPARSE_INFO

• VUID-VkBindSparseInfo-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkDeviceGroupBindSparseInfo or
VkTimelineSemaphoreSubmitInfo

• VUID-VkBindSparseInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkBindSparseInfo-pWaitSemaphores-parameter
If waitSemaphoreCount is not 0, pWaitSemaphores must be a valid pointer to an array of
waitSemaphoreCount valid VkSemaphore handles

• VUID-VkBindSparseInfo-pBufferBinds-parameter
If bufferBindCount is not 0, pBufferBinds must be a valid pointer to an array of
bufferBindCount valid VkSparseBufferMemoryBindInfo structures

• VUID-VkBindSparseInfo-pImageOpaqueBinds-parameter
If imageOpaqueBindCount is not 0, pImageOpaqueBinds must be a valid pointer to an array of
imageOpaqueBindCount valid VkSparseImageOpaqueMemoryBindInfo structures

• VUID-VkBindSparseInfo-pImageBinds-parameter
If imageBindCount is not 0, pImageBinds must be a valid pointer to an array of
imageBindCount valid VkSparseImageMemoryBindInfo structures

• VUID-VkBindSparseInfo-pSignalSemaphores-parameter
If signalSemaphoreCount is not 0, pSignalSemaphores must be a valid pointer to an array of
signalSemaphoreCount valid VkSemaphore handles

• VUID-VkBindSparseInfo-commonparent
Both of the elements of pSignalSemaphores, and the elements of pWaitSemaphores that are
valid handles of non-ignored parameters must have been created, allocated, or retrieved
from the same VkDevice

1099

To specify the values to use when waiting for and signaling semaphores created with a
VkSemaphoreType of VK_SEMAPHORE_TYPE_TIMELINE, add a VkTimelineSemaphoreSubmitInfo
structure to the pNext chain of the VkBindSparseInfo structure.

If the pNext chain of VkBindSparseInfo includes a VkDeviceGroupBindSparseInfo structure, then that
structure includes device indices specifying which instance of the resources and memory are
bound.

The VkDeviceGroupBindSparseInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkDeviceGroupBindSparseInfo {
 VkStructureType sType;
 const void* pNext;
 uint32_t resourceDeviceIndex;
 uint32_t memoryDeviceIndex;
} VkDeviceGroupBindSparseInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• resourceDeviceIndex is a device index indicating which instance of the resource is bound.

• memoryDeviceIndex is a device index indicating which instance of the memory the resource
instance is bound to.

These device indices apply to all buffer and image memory binds included in the batch pointing to
this structure. The semaphore waits and signals for the batch are executed only by the physical
device specified by the resourceDeviceIndex.

If this structure is not present, resourceDeviceIndex and memoryDeviceIndex are assumed to be zero.

Valid Usage

• VUID-VkDeviceGroupBindSparseInfo-resourceDeviceIndex-01118
resourceDeviceIndex and memoryDeviceIndex must both be valid device indices

• VUID-VkDeviceGroupBindSparseInfo-memoryDeviceIndex-01119
Each memory allocation bound in this batch must have allocated an instance for
memoryDeviceIndex

Valid Usage (Implicit)

• VUID-VkDeviceGroupBindSparseInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO

1100

Chapter 30. Private Data
The private data extension provides a way for users to associate arbitrary user defined data with
Vulkan objects. This association is accomplished by storing 64-bit unsigned integers of user defined
data in private data slots. A private data slot represents a storage allocation for one data item for
each child object of the device.

An application can reserve private data slots at device creation. To reserve private data slots, insert
a VkDevicePrivateDataCreateInfo in the pNext chain in VkDeviceCreateInfo before device creation.
Multiple VkDevicePrivateDataCreateInfo structures can be chained together, and the sum of the
requested slots will be reserved. This is an exception to the specified valid usage for structure
pointer chains. Reserving slots in this manner is not strictly necessary but it may improve
performance.

Private data slots are represented by VkPrivateDataSlot handles:

// Provided by VK_VERSION_1_3
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPrivateDataSlot)

To create a private data slot, call:

// Provided by VK_VERSION_1_3
VkResult vkCreatePrivateDataSlot(
 VkDevice device,
 const VkPrivateDataSlotCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPrivateDataSlot* pPrivateDataSlot);

• device is the logical device associated with the creation of the object(s) holding the private data
slot.

• pCreateInfo is a pointer to a VkPrivateDataSlotCreateInfo

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPrivateDataSlot is a pointer to a VkPrivateDataSlot handle in which the resulting private data
slot is returned

Valid Usage

• VUID-vkCreatePrivateDataSlot-privateData-04564
The privateData feature must be enabled

Valid Usage (Implicit)

• VUID-vkCreatePrivateDataSlot-device-parameter
device must be a valid VkDevice handle

1101

• VUID-vkCreatePrivateDataSlot-pCreateInfo-parameter
pCreateInfo must be a valid pointer to a valid VkPrivateDataSlotCreateInfo structure

• VUID-vkCreatePrivateDataSlot-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkCreatePrivateDataSlot-pPrivateDataSlot-parameter
pPrivateDataSlot must be a valid pointer to a VkPrivateDataSlot handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkPrivateDataSlotCreateInfo structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPrivateDataSlotCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPrivateDataSlotCreateFlags flags;
} VkPrivateDataSlotCreateInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• flags is reserved for future use.

Valid Usage (Implicit)

• VUID-VkPrivateDataSlotCreateInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PRIVATE_DATA_SLOT_CREATE_INFO

• VUID-VkPrivateDataSlotCreateInfo-pNext-pNext
pNext must be NULL

• VUID-VkPrivateDataSlotCreateInfo-flags-zerobitmask
flags must be 0

// Provided by VK_VERSION_1_3
typedef VkFlags VkPrivateDataSlotCreateFlags;

VkPrivateDataSlotCreateFlags is a bitmask type for setting a mask, but is currently reserved for

1102

future use.

To destroy a private data slot, call:

// Provided by VK_VERSION_1_3
void vkDestroyPrivateDataSlot(
 VkDevice device,
 VkPrivateDataSlot privateDataSlot,
 const VkAllocationCallbacks* pAllocator);

• device is the logical device associated with the creation of the object(s) holding the private data
slot.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• privateDataSlot is the private data slot to destroy.

Valid Usage

• VUID-vkDestroyPrivateDataSlot-privateDataSlot-04062
If VkAllocationCallbacks were provided when privateDataSlot was created, a compatible
set of callbacks must be provided here

• VUID-vkDestroyPrivateDataSlot-privateDataSlot-04063
If no VkAllocationCallbacks were provided when privateDataSlot was created, pAllocator
must be NULL

Valid Usage (Implicit)

• VUID-vkDestroyPrivateDataSlot-device-parameter
device must be a valid VkDevice handle

• VUID-vkDestroyPrivateDataSlot-privateDataSlot-parameter
If privateDataSlot is not VK_NULL_HANDLE, privateDataSlot must be a valid
VkPrivateDataSlot handle

• VUID-vkDestroyPrivateDataSlot-pAllocator-parameter
If pAllocator is not NULL, pAllocator must be a valid pointer to a valid
VkAllocationCallbacks structure

• VUID-vkDestroyPrivateDataSlot-privateDataSlot-parent
If privateDataSlot is a valid handle, it must have been created, allocated, or retrieved
from device

Host Synchronization

• Host access to privateDataSlot must be externally synchronized

1103

To store user defined data in a slot associated with a Vulkan object, call:

// Provided by VK_VERSION_1_3
VkResult vkSetPrivateData(
 VkDevice device,
 VkObjectType objectType,
 uint64_t objectHandle,
 VkPrivateDataSlot privateDataSlot,
 uint64_t data);

• device is the device that created the object.

• objectType is a VkObjectType specifying the type of object to associate data with.

• objectHandle is a handle to the object to associate data with.

• privateDataSlot is a handle to a VkPrivateDataSlot specifying location of private data storage.

• data is user defined data to associate the object with. This data will be stored at privateDataSlot.

Valid Usage

• VUID-vkSetPrivateData-objectHandle-04016
objectHandle must be device or a child of device

• VUID-vkSetPrivateData-objectHandle-04017
objectHandle must be a valid handle to an object of type objectType

Valid Usage (Implicit)

• VUID-vkSetPrivateData-device-parameter
device must be a valid VkDevice handle

• VUID-vkSetPrivateData-objectType-parameter
objectType must be a valid VkObjectType value

• VUID-vkSetPrivateData-privateDataSlot-parameter
privateDataSlot must be a valid VkPrivateDataSlot handle

• VUID-vkSetPrivateData-privateDataSlot-parent
privateDataSlot must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

1104

To retrieve user defined data from a slot associated with a Vulkan object, call:

// Provided by VK_VERSION_1_3
void vkGetPrivateData(
 VkDevice device,
 VkObjectType objectType,
 uint64_t objectHandle,
 VkPrivateDataSlot privateDataSlot,
 uint64_t* pData);

• device is the device that created the object

• objectType is a VkObjectType specifying the type of object data is associated with.

• objectHandle is a handle to the object data is associated with.

• privateDataSlot is a handle to a VkPrivateDataSlot specifying location of private data pointer
storage.

• pData is a pointer to specify where user data is returned. 0 will be written in the absence of a
previous call to vkSetPrivateData using the object specified by objectHandle.

Note

Due to platform details on Android, implementations might not be able to reliably
return 0 from calls to vkGetPrivateData for VkSwapchainKHR objects on which
vkSetPrivateData has not previously been called. This erratum is exclusive to the
Android platform and objects of type VkSwapchainKHR.

Valid Usage

• VUID-vkGetPrivateData-objectType-04018
objectHandle must be device or a child of device

• VUID-vkGetPrivateData-objectHandle-09498
objectHandle must be a valid handle to an object of type objectType

Valid Usage (Implicit)

• VUID-vkGetPrivateData-device-parameter
device must be a valid VkDevice handle

• VUID-vkGetPrivateData-objectType-parameter
objectType must be a valid VkObjectType value

• VUID-vkGetPrivateData-privateDataSlot-parameter
privateDataSlot must be a valid VkPrivateDataSlot handle

• VUID-vkGetPrivateData-pData-parameter
pData must be a valid pointer to a uint64_t value

• VUID-vkGetPrivateData-privateDataSlot-parent

1105

privateDataSlot must have been created, allocated, or retrieved from device

1106

Chapter 31. Extending Vulkan
New functionality may be added to Vulkan via either new extensions or new versions of the core,
or new versions of an extension in some cases.

This chapter describes how Vulkan is versioned, how compatibility is affected between different
versions, and compatibility rules that are followed by the Vulkan Working Group.

31.1. Instance and Device Functionality
Commands that enumerate instance properties, or that accept a VkInstance object as a parameter,
are considered instance-level functionality.

Commands that dispatch from a VkDevice object or a child object of a VkDevice, or take any of them
as a parameter, are considered device-level functionality. Types defined by a device extension are
also considered device-level functionality.

Commands that dispatch from VkPhysicalDevice, or accept a VkPhysicalDevice object as a
parameter, are considered either instance-level or device-level functionality depending if the
functionality is specified by an instance extension or device extension respectively.

Additionally, commands that enumerate physical device properties are considered device-level
functionality.

Note

Applications usually interface to Vulkan using a loader that implements only
instance-level functionality, passing device-level functionality to implementations
of the full Vulkan API on the system. In some circumstances, as these may be
implemented independently, it is possible that the loader and device
implementations on a given installation will support different versions. To allow
for this and call out when it happens, the Vulkan specification enumerates device
and instance level functionality separately - they have independent version
queries.

Note

Vulkan 1.0 initially specified new physical device enumeration functionality as
instance-level, requiring it to be included in an instance extension. As the
capabilities of device-level functionality require discovery via physical device
enumeration, this led to the situation where many device extensions required an
instance extension as well. To alleviate this extra work,
VK_KHR_get_physical_device_properties2 (and subsequently Vulkan 1.1) redefined
device-level functionality to include physical device enumeration.

31.2. Core Versions
The Vulkan Specification is regularly updated with bug fixes and clarifications. Occasionally new

1107

functionality is added to the core and at some point it is expected that there will be a desire to
perform a large, breaking change to the API. In order to indicate to developers how and when these
changes are made to the specification, and to provide a way to identify each set of changes, the
Vulkan API maintains a version number.

31.2.1. Version Numbers

The Vulkan version number comprises four parts indicating the variant, major, minor and patch
version of the Vulkan API Specification.

The variant indicates the variant of the Vulkan API supported by the implementation. This is always
0 for the Vulkan API.

Note

A non-zero variant indicates the API is a variant of the Vulkan API and
applications will typically need to be modified to run against it. The variant field
was a later addition to the version number, added in version 1.2.175 of the
Specification. As Vulkan uses variant 0, this change is fully backwards compatible
with the previous version number format for Vulkan implementations. New
version number macros have been added for this change and the old macros
deprecated. For existing applications using the older format and macros, an
implementation with non-zero variant will decode as a very high Vulkan version.
The high version number should be detectable by applications performing suitable
version checking.

The major version indicates a significant change in the API, which will encompass a wholly new
version of the specification.

The minor version indicates the incorporation of new functionality into the core specification.

The patch version indicates bug fixes, clarifications, and language improvements have been
incorporated into the specification.

Compatibility guarantees made about versions of the API sharing any of the same version numbers
are documented in Core Versions

The version number is used in several places in the API. In each such use, the version numbers are
packed into a 32-bit integer as follows:

• The variant is a 3-bit integer packed into bits 31-29.

• The major version is a 7-bit integer packed into bits 28-22.

• The minor version number is a 10-bit integer packed into bits 21-12.

• The patch version number is a 12-bit integer packed into bits 11-0.

VK_API_VERSION_VARIANT extracts the API variant number from a packed version number:

// Provided by VK_VERSION_1_0

1108

#define VK_API_VERSION_VARIANT(version) ((uint32_t)(version) >> 29U)

VK_API_VERSION_MAJOR extracts the API major version number from a packed version number:

// Provided by VK_VERSION_1_0
#define VK_API_VERSION_MAJOR(version) (((uint32_t)(version) >> 22U) & 0x7FU)

VK_VERSION_MAJOR extracts the API major version number from a packed version number:

// Provided by VK_VERSION_1_0
// DEPRECATED: This define is deprecated. VK_API_VERSION_MAJOR should be used instead.
#define VK_VERSION_MAJOR(version) ((uint32_t)(version) >> 22U)

VK_API_VERSION_MINOR extracts the API minor version number from a packed version number:

// Provided by VK_VERSION_1_0
#define VK_API_VERSION_MINOR(version) (((uint32_t)(version) >> 12U) & 0x3FFU)

VK_VERSION_MINOR extracts the API minor version number from a packed version number:

// Provided by VK_VERSION_1_0
// DEPRECATED: This define is deprecated. VK_API_VERSION_MINOR should be used instead.
#define VK_VERSION_MINOR(version) (((uint32_t)(version) >> 12U) & 0x3FFU)

VK_API_VERSION_PATCH extracts the API patch version number from a packed version number:

// Provided by VK_VERSION_1_0
#define VK_API_VERSION_PATCH(version) ((uint32_t)(version) & 0xFFFU)

VK_VERSION_PATCH extracts the API patch version number from a packed version number:

// Provided by VK_VERSION_1_0
// DEPRECATED: This define is deprecated. VK_API_VERSION_PATCH should be used instead.
#define VK_VERSION_PATCH(version) ((uint32_t)(version) & 0xFFFU)

VK_MAKE_API_VERSION constructs an API version number.

// Provided by VK_VERSION_1_0
#define VK_MAKE_API_VERSION(variant, major, minor, patch) \
 ((((uint32_t)(variant)) << 29U) | (((uint32_t)(major)) << 22U) |
(((uint32_t)(minor)) << 12U) | ((uint32_t)(patch)))

1109

• variant is the variant number.

• major is the major version number.

• minor is the minor version number.

• patch is the patch version number.

VK_MAKE_VERSION constructs an API version number.

// Provided by VK_VERSION_1_0
// DEPRECATED: This define is deprecated. VK_MAKE_API_VERSION should be used instead.
#define VK_MAKE_VERSION(major, minor, patch) \
 ((((uint32_t)(major)) << 22U) | (((uint32_t)(minor)) << 12U) |
((uint32_t)(patch)))

• major is the major version number.

• minor is the minor version number.

• patch is the patch version number.

VK_API_VERSION_1_0 returns the API version number for Vulkan 1.0.0.

// Provided by VK_VERSION_1_0
// Vulkan 1.0 version number
#define VK_API_VERSION_1_0 VK_MAKE_API_VERSION(0, 1, 0, 0)// Patch version should
always be set to 0

VK_API_VERSION_1_1 returns the API version number for Vulkan 1.1.0.

// Provided by VK_VERSION_1_1
// Vulkan 1.1 version number
#define VK_API_VERSION_1_1 VK_MAKE_API_VERSION(0, 1, 1, 0)// Patch version should
always be set to 0

VK_API_VERSION_1_2 returns the API version number for Vulkan 1.2.0.

// Provided by VK_VERSION_1_2
// Vulkan 1.2 version number
#define VK_API_VERSION_1_2 VK_MAKE_API_VERSION(0, 1, 2, 0)// Patch version should
always be set to 0

VK_API_VERSION_1_3 returns the API version number for Vulkan 1.3.0.

// Provided by VK_VERSION_1_3
// Vulkan 1.3 version number
#define VK_API_VERSION_1_3 VK_MAKE_API_VERSION(0, 1, 3, 0)// Patch version should

1110

always be set to 0

31.2.2. Querying Version Support

The version of instance-level functionality can be queried by calling vkEnumerateInstanceVersion.

The version of device-level functionality can be queried by calling vkGetPhysicalDeviceProperties
or vkGetPhysicalDeviceProperties2, and is returned in VkPhysicalDeviceProperties::apiVersion,
encoded as described in Version Numbers.

31.3. Layers
When a layer is enabled, it inserts itself into the call chain for Vulkan commands the layer is
interested in. Layers can be used for a variety of tasks that extend the base behavior of Vulkan
beyond what is required by the specification - such as call logging, tracing, validation, or providing
additional extensions.

Note

For example, an implementation is not expected to check that the value of enums
used by the application fall within allowed ranges. Instead, a validation layer
would do those checks and flag issues. This avoids a performance penalty during
production use of the application because those layers would not be enabled in
production.

Note

Vulkan layers may wrap object handles (i.e. return a different handle value to the
application than that generated by the implementation). This is generally
discouraged, as it increases the probability of incompatibilities with new
extensions. The validation layers wrap handles in order to track the proper use
and destruction of each object. See the “Architecture of the Vulkan Loader
Interfaces” document for additional information.

To query the available layers, call:

// Provided by VK_VERSION_1_0
VkResult vkEnumerateInstanceLayerProperties(
 uint32_t* pPropertyCount,
 VkLayerProperties* pProperties);

• pPropertyCount is a pointer to an integer related to the number of layer properties available or
queried, as described below.

• pProperties is either NULL or a pointer to an array of VkLayerProperties structures.

If pProperties is NULL, then the number of layer properties available is returned in pPropertyCount.
Otherwise, pPropertyCount must point to a variable set by the user to the number of elements in the
pProperties array, and on return the variable is overwritten with the number of structures actually

1111

written to pProperties. If pPropertyCount is less than the number of layer properties available, at
most pPropertyCount structures will be written, and VK_INCOMPLETE will be returned instead of
VK_SUCCESS, to indicate that not all the available properties were returned.

The list of available layers may change at any time due to actions outside of the Vulkan
implementation, so two calls to vkEnumerateInstanceLayerProperties with the same parameters may
return different results, or retrieve different pPropertyCount values or pProperties contents. Once an
instance has been created, the layers enabled for that instance will continue to be enabled and
valid for the lifetime of that instance, even if some of them become unavailable for future
instances.

Valid Usage (Implicit)

• VUID-vkEnumerateInstanceLayerProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkEnumerateInstanceLayerProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkLayerProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkLayerProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkLayerProperties {
 char layerName[VK_MAX_EXTENSION_NAME_SIZE];
 uint32_t specVersion;
 uint32_t implementationVersion;
 char description[VK_MAX_DESCRIPTION_SIZE];
} VkLayerProperties;

• layerName is an array of VK_MAX_EXTENSION_NAME_SIZE char containing a null-terminated UTF-8
string which is the name of the layer. Use this name in the ppEnabledLayerNames array passed in
the VkInstanceCreateInfo structure to enable this layer for an instance.

• specVersion is the Vulkan version the layer was written to, encoded as described in Version
Numbers.

1112

• implementationVersion is the version of this layer. It is an integer, increasing with backward
compatible changes.

• description is an array of VK_MAX_DESCRIPTION_SIZE char containing a null-terminated UTF-8
string which provides additional details that can be used by the application to identify the layer.

VK_MAX_EXTENSION_NAME_SIZE is the length in char values of an array containing a layer or extension
name string, as returned in VkLayerProperties::layerName, VkExtensionProperties::extensionName,
and other queries.

#define VK_MAX_EXTENSION_NAME_SIZE 256U

VK_MAX_DESCRIPTION_SIZE is the length in char values of an array containing a string with additional
descriptive information about a query, as returned in VkLayerProperties::description and other
queries.

#define VK_MAX_DESCRIPTION_SIZE 256U

To enable a layer, the name of the layer should be added to the ppEnabledLayerNames member of
VkInstanceCreateInfo when creating a VkInstance.

Loader implementations may provide mechanisms outside the Vulkan API for enabling specific
layers. Layers enabled through such a mechanism are implicitly enabled, while layers enabled by
including the layer name in the ppEnabledLayerNames member of VkInstanceCreateInfo are explicitly
enabled. Implicitly enabled layers are loaded before explicitly enabled layers, such that implicitly
enabled layers are closer to the application, and explicitly enabled layers are closer to the driver.
Except where otherwise specified, implicitly enabled and explicitly enabled layers differ only in the
way they are enabled, and the order in which they are loaded. Explicitly enabling a layer that is
implicitly enabled results in this layer being loaded as an implicitly enabled layer; it has no
additional effect.

31.3.1. Device Layer Deprecation

Previous versions of this specification distinguished between instance and device layers. Instance
layers were only able to intercept commands that operate on VkInstance and VkPhysicalDevice,
except they were not able to intercept vkCreateDevice. Device layers were enabled for individual
devices when they were created, and could only intercept commands operating on that device or its
child objects.

Device-only layers are now deprecated, and this specification no longer distinguishes between
instance and device layers. Layers are enabled during instance creation, and are able to intercept
all commands operating on that instance or any of its child objects. At the time of deprecation there
were no known device-only layers and no compelling reason to create one.

In order to maintain compatibility with implementations released prior to device-layer
deprecation, applications should still enumerate and enable device layers. The behavior of
vkEnumerateDeviceLayerProperties and valid usage of the ppEnabledLayerNames member of
VkDeviceCreateInfo maximizes compatibility with applications written to work with the previous

1113

requirements.

To enumerate device layers, call:

// Provided by VK_VERSION_1_0
VkResult vkEnumerateDeviceLayerProperties(
 VkPhysicalDevice physicalDevice,
 uint32_t* pPropertyCount,
 VkLayerProperties* pProperties);

• physicalDevice is the physical device that will be queried.

• pPropertyCount is a pointer to an integer related to the number of layer properties available or
queried.

• pProperties is either NULL or a pointer to an array of VkLayerProperties structures.

If pProperties is NULL, then the number of layer properties available is returned in pPropertyCount.
Otherwise, pPropertyCount must point to a variable set by the user to the number of elements in the
pProperties array, and on return the variable is overwritten with the number of structures actually
written to pProperties. If pPropertyCount is less than the number of layer properties available, at
most pPropertyCount structures will be written, and VK_INCOMPLETE will be returned instead of
VK_SUCCESS, to indicate that not all the available properties were returned.

The list of layers enumerated by vkEnumerateDeviceLayerProperties must be exactly the sequence of
layers enabled for the instance. The members of VkLayerProperties for each enumerated layer must
be the same as the properties when the layer was enumerated by
vkEnumerateInstanceLayerProperties.

Note

Due to platform details on Android, vkEnumerateDeviceLayerProperties may be
called with physicalDevice equal to NULL during layer discovery. This behaviour
will only be observed by layer implementations, and not the underlying Vulkan
driver.

Valid Usage (Implicit)

• VUID-vkEnumerateDeviceLayerProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkEnumerateDeviceLayerProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkEnumerateDeviceLayerProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkLayerProperties structures

1114

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated
and their values must be ignored by implementations. However, for compatibility, only an empty
list of layers or a list that exactly matches the sequence enabled at instance creation time are valid,
and validation layers should issue diagnostics for other cases.

Regardless of the enabled layer list provided in VkDeviceCreateInfo, the sequence of layers active
for a device will be exactly the sequence of layers enabled when the parent instance was created.

31.4. Extensions
Extensions may define new Vulkan commands, structures, and enumerants. For compilation
purposes, the interfaces defined by registered extensions, including new structures and
enumerants as well as function pointer types for new commands, are defined in the Khronos-
supplied vulkan_core.h together with the core API. However, commands defined by extensions may
not be available for static linking - in which case function pointers to these commands should be
queried at runtime as described in Command Function Pointers. Extensions may be provided by
layers as well as by a Vulkan implementation.

Because extensions may extend or change the behavior of the Vulkan API, extension authors
should add support for their extensions to the Khronos validation layers. This is especially
important for new commands whose parameters have been wrapped by the validation layers. See
the “Architecture of the Vulkan Loader Interfaces” document for additional information.

Note

To enable an instance extension, the name of the extension can be added to the
ppEnabledExtensionNames member of VkInstanceCreateInfo when creating a
VkInstance.

To enable a device extension, the name of the extension can be added to the
ppEnabledExtensionNames member of VkDeviceCreateInfo when creating a VkDevice.

Physical-Device-Level functionality does not have any enabling mechanism and
can be used as long as the VkPhysicalDevice supports the device extension as
determined by vkEnumerateDeviceExtensionProperties.

Enabling an extension (with no further use of that extension) does not change the
behavior of functionality exposed by the core Vulkan API or any other extension,

1115

other than making valid the use of the commands, enums and structures defined
by that extension.

Valid Usage sections for individual commands and structures do not currently
contain which extensions have to be enabled in order to make their use valid,
although they might do so in the future. It is defined only in the Valid Usage for
Extensions section.

31.4.1. Instance Extensions

Instance extensions add new instance-level functionality to the API, outside of the core
specification.

To query the available instance extensions, call:

// Provided by VK_VERSION_1_0
VkResult vkEnumerateInstanceExtensionProperties(
 const char* pLayerName,
 uint32_t* pPropertyCount,
 VkExtensionProperties* pProperties);

• pLayerName is either NULL or a pointer to a null-terminated UTF-8 string naming the layer to
retrieve extensions from.

• pPropertyCount is a pointer to an integer related to the number of extension properties available
or queried, as described below.

• pProperties is either NULL or a pointer to an array of VkExtensionProperties structures.

When pLayerName parameter is NULL, only extensions provided by the Vulkan implementation or by
implicitly enabled layers are returned. When pLayerName is the name of a layer, the instance
extensions provided by that layer are returned.

If pProperties is NULL, then the number of extensions properties available is returned in
pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of
elements in the pProperties array, and on return the variable is overwritten with the number of
structures actually written to pProperties. If pPropertyCount is less than the number of extension
properties available, at most pPropertyCount structures will be written, and VK_INCOMPLETE will be
returned instead of VK_SUCCESS, to indicate that not all the available properties were returned.

Because the list of available layers may change externally between calls to
vkEnumerateInstanceExtensionProperties, two calls may retrieve different results if a pLayerName is
available in one call but not in another. The extensions supported by a layer may also change
between two calls, e.g. if the layer implementation is replaced by a different version between those
calls.

Implementations must not advertise any pair of extensions that cannot be enabled together due to
behavioral differences, or any extension that cannot be enabled against the advertised version.

1116

Valid Usage (Implicit)

• VUID-vkEnumerateInstanceExtensionProperties-pLayerName-parameter
If pLayerName is not NULL, pLayerName must be a null-terminated UTF-8 string

• VUID-vkEnumerateInstanceExtensionProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

• VUID-vkEnumerateInstanceExtensionProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkExtensionProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_LAYER_NOT_PRESENT

31.4.2. Device Extensions

Device extensions add new device-level functionality to the API, outside of the core specification.

To query the extensions available to a given physical device, call:

// Provided by VK_VERSION_1_0
VkResult vkEnumerateDeviceExtensionProperties(
 VkPhysicalDevice physicalDevice,
 const char* pLayerName,
 uint32_t* pPropertyCount,
 VkExtensionProperties* pProperties);

• physicalDevice is the physical device that will be queried.

• pLayerName is either NULL or a pointer to a null-terminated UTF-8 string naming the layer to
retrieve extensions from.

• pPropertyCount is a pointer to an integer related to the number of extension properties available
or queried, and is treated in the same fashion as the vkEnumerateInstanceExtensionProperties
::pPropertyCount parameter.

• pProperties is either NULL or a pointer to an array of VkExtensionProperties structures.

1117

When pLayerName parameter is NULL, only extensions provided by the Vulkan implementation or by
implicitly enabled layers are returned. When pLayerName is the name of a layer, the device
extensions provided by that layer are returned.

Implementations must not advertise any pair of extensions that cannot be enabled together due to
behavioral differences, or any extension that cannot be enabled against the advertised version.

Implementations claiming support for the Roadmap 2022 profile must advertise the
VK_KHR_global_priority extension in pProperties.

Implementations claiming support for the Roadmap 2024 profile must advertise the following
extensions in pProperties:

• VK_KHR_dynamic_rendering_local_read

• VK_KHR_load_store_op_none

• VK_KHR_shader_quad_control

• VK_KHR_shader_maximal_reconvergence

• VK_KHR_shader_subgroup_uniform_control_flow

• VK_KHR_shader_subgroup_rotate

• VK_KHR_shader_float_controls2

• VK_KHR_shader_expect_assume

• VK_KHR_line_rasterization

• VK_KHR_vertex_attribute_divisor

• VK_KHR_index_type_uint8

• VK_KHR_map_memory2

• VK_KHR_maintenance5

• VK_KHR_push_descriptor

Note

Due to platform details on Android, vkEnumerateDeviceExtensionProperties may be
called with physicalDevice equal to NULL during layer discovery. This behaviour
will only be observed by layer implementations, and not the underlying Vulkan
driver.

Valid Usage (Implicit)

• VUID-vkEnumerateDeviceExtensionProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkEnumerateDeviceExtensionProperties-pLayerName-parameter
If pLayerName is not NULL, pLayerName must be a null-terminated UTF-8 string

• VUID-vkEnumerateDeviceExtensionProperties-pPropertyCount-parameter
pPropertyCount must be a valid pointer to a uint32_t value

1118

• VUID-vkEnumerateDeviceExtensionProperties-pProperties-parameter
If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties
must be a valid pointer to an array of pPropertyCount VkExtensionProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_LAYER_NOT_PRESENT

The VkExtensionProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkExtensionProperties {
 char extensionName[VK_MAX_EXTENSION_NAME_SIZE];
 uint32_t specVersion;
} VkExtensionProperties;

• extensionName is an array of VK_MAX_EXTENSION_NAME_SIZE char containing a null-terminated UTF-8
string which is the name of the extension.

• specVersion is the version of this extension. It is an integer, incremented with backward
compatible changes.

Accessing Device-Level Functionality From a VkPhysicalDevice

Some device extensions also add support for physical-device-level functionality. Physical-device-
level functionality can be used, if the required extension is supported as advertised by
vkEnumerateDeviceExtensionProperties for a given VkPhysicalDevice.

Accessing Device-Level Functionality From a VkDevice

For commands that are dispatched from a VkDevice, or from a child object of a VkDevice, device
extensions must be enabled in vkCreateDevice.

31.5. Extension Dependencies
Some extensions are dependent on other extensions, or on specific core API versions, to function.
To enable extensions with dependencies, any required extensions must also be enabled through the
same API mechanisms when creating an instance with vkCreateInstance or a device with

1119

vkCreateDevice. Each extension which has such dependencies documents them in the appendix
summarizing that extension.

If an extension is supported (as queried by vkEnumerateInstanceExtensionProperties or
vkEnumerateDeviceExtensionProperties), then required extensions of that extension must also be
supported for the same instance or physical device.

Any device extension that has an instance extension dependency that is not enabled by
vkCreateInstance is considered to be unsupported, hence it must not be returned by
vkEnumerateDeviceExtensionProperties for any VkPhysicalDevice child of the instance. Instance
extensions do not have dependencies on device extensions.

If a required extension has been promoted to another extension or to a core API version, then as a
general rule, the dependency is also satisfied by the promoted extension or core version. This will
be true so long as any features required by the original extension are also required or enabled by
the promoted extension or core version. However, in some cases an extension is promoted while
making some of its features optional in the promoted extension or core version. In this case, the
dependency may not be satisfied. The only way to be certain is to look at the descriptions of the
original dependency and the promoted version in the Layers & Extensions and Core Revisions
appendices.

Note

There is metadata in vk.xml describing some aspects of promotion, especially
requires, promotedto and deprecatedby attributes of <extension> tags. However, the
metadata does not yet fully describe this scenario. In the future, we may extend
the XML schema to describe the full set of extensions and versions satisfying a
dependency. As discussed in more detail for Promotion below, when an extension
is promoted it does not mean that a mechanical substitution of an extension API by
the corresponding promoted API will work in exactly the same fashion; be
supported at runtime; or even exist.

31.6. Compatibility Guarantees (Informative)
This section is marked as informal as there is no binding responsibility on implementations of the
Vulkan API - these guarantees are however a contract between the Vulkan Working Group and
developers using this Specification.

31.6.1. Core Versions

Each of the major, minor, and patch versions of the Vulkan specification provide different
compatibility guarantees.

Patch Versions

A difference in the patch version indicates that a set of bug fixes or clarifications have been made
to the Specification. Informative enums returned by Vulkan commands that will not affect the
runtime behavior of a valid application may be added in a patch version (e.g. VkVendorId).

1120

The specification’s patch version is strictly increasing for a given major version of the specification;
any change to a specification as described above will result in the patch version being increased by
1. Patch versions are applied to all minor versions, even if a given minor version is not affected by
the provoking change.

Specifications with different patch versions but the same major and minor version are fully
compatible with each other - such that a valid application written against one will work with an
implementation of another.

Note

If a patch version includes a bug fix or clarification that could have a significant
impact on developer expectations, these will be highlighted in the change log.
Generally the Vulkan Working Group tries to avoid these kinds of changes, instead
fixing them in either an extension or core version.

Minor Versions

Changes in the minor version of the specification indicate that new functionality has been added to
the core specification. This will usually include new interfaces in the header, and may also include
behavior changes and bug fixes. Core functionality may be deprecated in a minor version, but will
not be obsoleted or removed.

The specification’s minor version is strictly increasing for a given major version of the
specification; any change to a specification as described above will result in the minor version
being increased by 1. Changes that can be accommodated in a patch version will not increase the
minor version.

Specifications with a lower minor version are backwards compatible with an implementation of a
specification with a higher minor version for core functionality and extensions issued with the KHR
vendor tag. Vendor and multi-vendor extensions are not guaranteed to remain functional across
minor versions, though in general they are with few exceptions - see Obsoletion for more
information.

Major Versions

A difference in the major version of specifications indicates a large set of changes which will likely
include interface changes, behavioral changes, removal of deprecated functionality, and the
modification, addition, or replacement of other functionality.

The specification’s major version is monotonically increasing; any change to the specification as
described above will result in the major version being increased. Changes that can be
accommodated in a patch or minor version will not increase the major version.

The Vulkan Working Group intends to only issue a new major version of the Specification in order
to realise significant improvements to the Vulkan API that will necessarily require breaking
compatibility.

A new major version will likely include a wholly new version of the specification to be issued -
which could include an overhaul of the versioning semantics for the minor and patch versions. The

1121

patch and minor versions of a specification are therefore not meaningful across major versions. If a
major version of the specification includes similar versioning semantics, it is expected that the
patch and the minor version will be reset to 0 for that major version.

31.6.2. Extensions

A KHR extension must be able to be enabled alongside any other KHR extension, and for any minor
or patch version of the core Specification beyond the minimum version it requires. A multi-vendor
extension should be able to be enabled alongside any KHR extension or other multi-vendor
extension, and for any minor or patch version of the core Specification beyond the minimum
version it requires. A vendor extension should be able to be enabled alongside any KHR extension,
multi-vendor extension, or other vendor extension from the same vendor, and for any minor or
patch version of the core Specification beyond the minimum version it requires. A vendor
extension may be able to be enabled alongside vendor extensions from another vendor.

The one other exception to this is if a vendor or multi-vendor extension is made obsolete by either a
core version or another extension, which will be highlighted in the extension appendix.

Promotion

Extensions, or features of an extension, may be promoted to a new core version of the API, or a
newer extension which an equal or greater number of implementors are in favour of.

When extension functionality is promoted, minor changes may be introduced, limited to the
following:

• Naming

• Non-intrusive parameter changes

• Feature advertisement/enablement

• Combining structure parameters into larger structures

• Author ID suffixes changed or removed

Note

If extension functionality is promoted, there is no guarantee of direct
compatibility, however it should require little effort to port code from the original
feature to the promoted one.

The Vulkan Working Group endeavours to ensure that larger changes are marked
as either deprecated or obsoleted as appropriate, and can do so retroactively if
necessary.

Extensions that are promoted are listed as being promoted in their extension appendices, with
reference to where they were promoted to.

When an extension is promoted, any backwards compatibility aliases which exist in the extension
will not be promoted.

 Note

1122

As a hypothetical example, if the VK_KHR_surface extension were promoted to part
of a future core version, the VK_COLOR_SPACE_SRGB_NONLINEAR_KHR token defined by
that extension would be promoted to VK_COLOR_SPACE_SRGB_NONLINEAR. However, the
VK_COLORSPACE_SRGB_NONLINEAR_KHR token aliases VK_COLOR_SPACE_SRGB_NONLINEAR_KHR.
The VK_COLORSPACE_SRGB_NONLINEAR_KHR would not be promoted, because it is a
backwards compatibility alias that exists only due to a naming mistake when the
extension was initially published.

Deprecation

Extensions may be marked as deprecated when the intended use cases either become irrelevant or
can be solved in other ways. Generally, a new feature will become available to solve the use case in
another extension or core version of the API, but it is not guaranteed.

Note

Features that are intended to replace deprecated functionality have no guarantees
of compatibility, and applications may require drastic modification in order to
make use of the new features.

Extensions that are deprecated are listed as being deprecated in their extension appendices, with
an explanation of the deprecation and any features that are relevant.

Obsoletion

Occasionally, an extension will be marked as obsolete if a new version of the core API or a new
extension is fundamentally incompatible with it. An obsoleted extension must not be used with the
extension or core version that obsoleted it.

Extensions that are obsoleted are listed as being obsoleted in their extension appendices, with
reference to what they were obsoleted by.

Aliases

When an extension is promoted or deprecated by a newer feature, some or all of its functionality
may be replicated into the newer feature. Rather than duplication of all the documentation and
definitions, the specification instead identifies the identical commands and types as aliases of one
another. Each alias is mentioned together with the definition it aliases, with the older aliases
marked as “equivalents”. Each alias of the same command has identical behavior, and each alias of
the same type has identical meaning - they can be used interchangeably in an application with no
compatibility issues.

Note

For promoted types, the aliased extension type is semantically identical to the new
core type. The C99 headers simply typedef the older aliases to the promoted types.

For promoted command aliases, however, there are two separate entry point
definitions, due to the fact that the C99 ABI has no way to alias command
definitions without resorting to macros. Calling via either entry point definition

1123

will produce identical behavior within the bounds of the specification, and should
still invoke the same entry point in the implementation. Debug tools may use
separate entry points with different debug behavior; to write the appropriate
command name to an output log, for instance.

Special Use Extensions

Some extensions exist only to support a specific purpose or specific class of application. These are
referred to as “special use extensions”. Use of these extensions in applications not meeting the
special use criteria is not recommended.

Special use cases are restricted, and only those defined below are used to describe extensions:

Table 30. Extension Special Use Cases

Special Use XML Tag Full Description

CAD support cadsupport Extension is intended to support specialized functionality
used by CAD/CAM applications.

D3D support d3demulatio
n

Extension is intended to support D3D emulation layers,
and applications ported from D3D, by adding functionality
specific to D3D.

Developer tools devtools Extension is intended to support developer tools such as
capture-replay libraries.

Debugging tools debugging Extension is intended for use by applications when
debugging.

OpenGL / ES support glemulation Extension is intended to support OpenGL and/or OpenGL
ES emulation layers, and applications ported from those
APIs, by adding functionality specific to those APIs.

Special use extensions are identified in the metadata for each such extension in the Layers &
Extensions appendix, using the name in the “Special Use” column above.

Special use extensions are also identified in vk.xml with the short name in “XML Tag” column
above, as described in the “API Extensions (extension tag)” section of the registry schema
documentation.

1124

Chapter 32. Features
Features describe functionality which is not supported on all implementations. Features are
properties of the physical device. Features are optional, and must be explicitly enabled before use.
Support for features is reported and enabled on a per-feature basis.

Note

Features are reported via the basic VkPhysicalDeviceFeatures structure, as well as
the extensible structure VkPhysicalDeviceFeatures2, which was added in the
VK_KHR_get_physical_device_properties2 extension and included in Vulkan 1.1.
When new features are added in future Vulkan versions or extensions, each
extension should introduce one new feature structure, if needed. This structure
can be added to the pNext chain of the VkPhysicalDeviceFeatures2 structure.

For convenience, new core versions of Vulkan may introduce new unified feature structures for
features promoted from extensions. At the same time, the extension’s original feature structure (if
any) is also promoted to the core API, and is an alias of the extension’s structure. This results in
multiple names for the same feature: in the original extension’s feature structure and the promoted
structure alias, in the unified feature structure. When a feature was implicitly supported and
enabled in the extension, but an explicit name was added during promotion, then the extension
itself acts as an alias for the feature as listed in the table below.

All aliases of the same feature in the core API must be reported consistently: either all must be
reported as supported, or none of them. When a promoted extension is available, any
corresponding feature aliases must be supported.

Table 31. Extension Feature Aliases

Extension Feature(s)

To query supported features, call:

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceFeatures(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceFeatures* pFeatures);

• physicalDevice is the physical device from which to query the supported features.

• pFeatures is a pointer to a VkPhysicalDeviceFeatures structure in which the physical device
features are returned. For each feature, a value of VK_TRUE specifies that the feature is supported
on this physical device, and VK_FALSE specifies that the feature is not supported.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceFeatures-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

1125

• VUID-vkGetPhysicalDeviceFeatures-pFeatures-parameter
pFeatures must be a valid pointer to a VkPhysicalDeviceFeatures structure

Fine-grained features used by a logical device must be enabled at VkDevice creation time. If a
feature is enabled that the physical device does not support, VkDevice creation will fail and return
VK_ERROR_FEATURE_NOT_PRESENT.

The fine-grained features are enabled by passing a pointer to the VkPhysicalDeviceFeatures
structure via the pEnabledFeatures member of the VkDeviceCreateInfo structure that is passed into
the vkCreateDevice call. If a member of pEnabledFeatures is set to VK_TRUE or VK_FALSE, then the device
will be created with the indicated feature enabled or disabled, respectively. Features can also be
enabled by using the VkPhysicalDeviceFeatures2 structure.

If an application wishes to enable all features supported by a device, it can simply pass in the
VkPhysicalDeviceFeatures structure that was previously returned by vkGetPhysicalDeviceFeatures.
To disable an individual feature, the application can set the desired member to VK_FALSE in the
same structure. Setting pEnabledFeatures to NULL and not including a VkPhysicalDeviceFeatures2 in
the pNext chain of VkDeviceCreateInfo is equivalent to setting all members of the structure to
VK_FALSE.

Note

Some features, such as robustBufferAccess, may incur a runtime performance cost.
Application writers should carefully consider the implications of enabling all
supported features.

To query supported features defined by the core or extensions, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceFeatures2(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceFeatures2* pFeatures);

• physicalDevice is the physical device from which to query the supported features.

• pFeatures is a pointer to a VkPhysicalDeviceFeatures2 structure in which the physical device
features are returned.

Each structure in pFeatures and its pNext chain contains members corresponding to fine-grained
features. vkGetPhysicalDeviceFeatures2 writes each member to a boolean value indicating whether
that feature is supported.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceFeatures2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceFeatures2-pFeatures-parameter
pFeatures must be a valid pointer to a VkPhysicalDeviceFeatures2 structure

1126

The VkPhysicalDeviceFeatures2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceFeatures2 {
 VkStructureType sType;
 void* pNext;
 VkPhysicalDeviceFeatures features;
} VkPhysicalDeviceFeatures2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• features is a VkPhysicalDeviceFeatures structure describing the fine-grained features of the
Vulkan 1.0 API.

The pNext chain of this structure is used to extend the structure with features defined by extensions.
This structure can be used in vkGetPhysicalDeviceFeatures2 or can be included in the pNext chain
of a VkDeviceCreateInfo structure, in which case it controls which features are enabled on the
device in lieu of pEnabledFeatures.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFeatures2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2

The VkPhysicalDeviceFeatures structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPhysicalDeviceFeatures {
 VkBool32 robustBufferAccess;
 VkBool32 fullDrawIndexUint32;
 VkBool32 imageCubeArray;
 VkBool32 independentBlend;
 VkBool32 geometryShader;
 VkBool32 tessellationShader;
 VkBool32 sampleRateShading;
 VkBool32 dualSrcBlend;
 VkBool32 logicOp;
 VkBool32 multiDrawIndirect;
 VkBool32 drawIndirectFirstInstance;
 VkBool32 depthClamp;
 VkBool32 depthBiasClamp;
 VkBool32 fillModeNonSolid;
 VkBool32 depthBounds;
 VkBool32 wideLines;
 VkBool32 largePoints;
 VkBool32 alphaToOne;
 VkBool32 multiViewport;

1127

 VkBool32 samplerAnisotropy;
 VkBool32 textureCompressionETC2;
 VkBool32 textureCompressionASTC_LDR;
 VkBool32 textureCompressionBC;
 VkBool32 occlusionQueryPrecise;
 VkBool32 pipelineStatisticsQuery;
 VkBool32 vertexPipelineStoresAndAtomics;
 VkBool32 fragmentStoresAndAtomics;
 VkBool32 shaderTessellationAndGeometryPointSize;
 VkBool32 shaderImageGatherExtended;
 VkBool32 shaderStorageImageExtendedFormats;
 VkBool32 shaderStorageImageMultisample;
 VkBool32 shaderStorageImageReadWithoutFormat;
 VkBool32 shaderStorageImageWriteWithoutFormat;
 VkBool32 shaderUniformBufferArrayDynamicIndexing;
 VkBool32 shaderSampledImageArrayDynamicIndexing;
 VkBool32 shaderStorageBufferArrayDynamicIndexing;
 VkBool32 shaderStorageImageArrayDynamicIndexing;
 VkBool32 shaderClipDistance;
 VkBool32 shaderCullDistance;
 VkBool32 shaderFloat64;
 VkBool32 shaderInt64;
 VkBool32 shaderInt16;
 VkBool32 shaderResourceResidency;
 VkBool32 shaderResourceMinLod;
 VkBool32 sparseBinding;
 VkBool32 sparseResidencyBuffer;
 VkBool32 sparseResidencyImage2D;
 VkBool32 sparseResidencyImage3D;
 VkBool32 sparseResidency2Samples;
 VkBool32 sparseResidency4Samples;
 VkBool32 sparseResidency8Samples;
 VkBool32 sparseResidency16Samples;
 VkBool32 sparseResidencyAliased;
 VkBool32 variableMultisampleRate;
 VkBool32 inheritedQueries;
} VkPhysicalDeviceFeatures;

This structure describes the following features:

• robustBufferAccess specifies that accesses to buffers are bounds-checked against the range of
the buffer descriptor (as determined by VkDescriptorBufferInfo::range,
VkBufferViewCreateInfo::range, or the size of the buffer). Out of bounds accesses must not
cause application termination, and the effects of shader loads, stores, and atomics must
conform to an implementation-dependent behavior as described below.

◦ A buffer access is considered to be out of bounds if any of the following are true:

▪ The pointer was formed by OpImageTexelPointer and the coordinate is less than zero or
greater than or equal to the number of whole elements in the bound range.

▪ The pointer was not formed by OpImageTexelPointer and the object pointed to is not

1128

wholly contained within the bound range. This includes accesses performed via variable
pointers where the buffer descriptor being accessed cannot be statically determined.
Uninitialized pointers and pointers equal to OpConstantNull are treated as pointing to a
zero-sized object, so all accesses through such pointers are considered to be out of
bounds. Buffer accesses through buffer device addresses are not bounds-checked.

Note

If a SPIR-V OpLoad instruction loads a structure and the tail end of the
structure is out of bounds, then all members of the structure are
considered out of bounds even if the members at the end are not
statically used.

▪ If any buffer access is determined to be out of bounds, then any other access of the same
type (load, store, or atomic) to the same buffer that accesses an address less than 16
bytes away from the out of bounds address may also be considered out of bounds.

▪ If the access is a load that reads from the same memory locations as a prior store in the
same shader invocation, with no other intervening accesses to the same memory
locations in that shader invocation, then the result of the load may be the value stored
by the store instruction, even if the access is out of bounds. If the load is Volatile, then
an out of bounds load must return the appropriate out of bounds value.

◦ Out-of-bounds buffer loads will return any of the following values:

▪ Values from anywhere within the memory range(s) bound to the buffer (possibly
including bytes of memory past the end of the buffer, up to the end of the bound range).

▪ Zero values, or (0,0,0,x) vectors for vector reads where x is a valid value represented in
the type of the vector components and may be any of:

▪ 0, 1, or the maximum representable positive integer value, for signed or unsigned
integer components

▪ 0.0 or 1.0, for floating-point components

◦ Out-of-bounds writes may modify values within the memory range(s) bound to the buffer,
but must not modify any other memory.

◦ Out-of-bounds atomics may modify values within the memory range(s) bound to the buffer,
but must not modify any other memory, and return an undefined value.

◦ Vertex input attributes are considered out of bounds if the offset of the attribute in the
bound vertex buffer range plus the size of the attribute is greater than either:

▪ vertexBufferRangeSize, if bindingStride == 0; or

▪ (vertexBufferRangeSize - (vertexBufferRangeSize % bindingStride))

where vertexBufferRangeSize is the byte size of the memory range bound to the vertex
buffer binding and bindingStride is the byte stride of the corresponding vertex input
binding. Further, if any vertex input attribute using a specific vertex input binding is out of
bounds, then all vertex input attributes using that vertex input binding for that vertex
shader invocation are considered out of bounds.

▪ If a vertex input attribute is out of bounds, it will be assigned one of the following

1129

values:

▪ Values from anywhere within the memory range(s) bound to the buffer, converted
according to the format of the attribute.

▪ Zero values, format converted according to the format of the attribute.

▪ Zero values, or (0,0,0,x) vectors, as described above.

◦ If robustBufferAccess is not enabled, applications must not perform out of bounds accesses .

• fullDrawIndexUint32 specifies the full 32-bit range of indices is supported for indexed draw calls
when using a VkIndexType of VK_INDEX_TYPE_UINT32. maxDrawIndexedIndexValue is the maximum
index value that may be used (aside from the primitive restart index, which is always 232-1
when the VkIndexType is VK_INDEX_TYPE_UINT32). If this feature is supported,
maxDrawIndexedIndexValue must be 232-1; otherwise it must be no smaller than 224-1. See
maxDrawIndexedIndexValue.

• imageCubeArray specifies whether image views with a VkImageViewType of
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY can be created, and that the corresponding SampledCubeArray and
ImageCubeArray SPIR-V capabilities can be used in shader code.

• independentBlend specifies whether the VkPipelineColorBlendAttachmentState settings are
controlled independently per-attachment. If this feature is not enabled, the
VkPipelineColorBlendAttachmentState settings for all color attachments must be identical.
Otherwise, a different VkPipelineColorBlendAttachmentState can be provided for each bound
color attachment.

• geometryShader specifies whether geometry shaders are supported. If this feature is not enabled,
the VK_SHADER_STAGE_GEOMETRY_BIT and VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT enum values must
not be used. This also specifies whether shader modules can declare the Geometry capability.

• tessellationShader specifies whether tessellation control and evaluation shaders are supported.
If this feature is not enabled, the VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, and
VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO enum values must not be used.
This also specifies whether shader modules can declare the Tessellation capability.

• sampleRateShading specifies whether Sample Shading and multisample interpolation are
supported. If this feature is not enabled, the sampleShadingEnable member of the
VkPipelineMultisampleStateCreateInfo structure must be set to VK_FALSE and the
minSampleShading member is ignored. This also specifies whether shader modules can declare
the SampleRateShading capability.

• dualSrcBlend specifies whether blend operations which take two sources are supported. If this
feature is not enabled, the VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA, and VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA enum values must not
be used as source or destination blending factors. See Dual-Source Blending.

• logicOp specifies whether logic operations are supported. If this feature is not enabled, the
logicOpEnable member of the VkPipelineColorBlendStateCreateInfo structure must be set to
VK_FALSE, and the logicOp member is ignored.

• multiDrawIndirect specifies whether multiple draw indirect is supported. If this feature is not

1130

enabled, the drawCount parameter to the vkCmdDrawIndirect and vkCmdDrawIndexedIndirect
commands must be 0 or 1. The maxDrawIndirectCount member of the VkPhysicalDeviceLimits
structure must also be 1 if this feature is not supported. See maxDrawIndirectCount.

• drawIndirectFirstInstance specifies whether indirect drawing calls support the firstInstance
parameter. If this feature is not enabled, the firstInstance member of all VkDrawIndirectCommand
and VkDrawIndexedIndirectCommand structures that are provided to the vkCmdDrawIndirect and
vkCmdDrawIndexedIndirect commands must be 0.

• depthClamp specifies whether depth clamping is supported. If this feature is not enabled, the
depthClampEnable member of the VkPipelineRasterizationStateCreateInfo structure must be set
to VK_FALSE. Otherwise, setting depthClampEnable to VK_TRUE will enable depth clamping.

• depthBiasClamp specifies whether depth bias clamping is supported. If this feature is not
enabled, the depthBiasClamp member of the VkPipelineRasterizationStateCreateInfo structure
must be set to 0.0 unless the VK_DYNAMIC_STATE_DEPTH_BIAS dynamic state is enabled, and the
depthBiasClamp parameter to vkCmdSetDepthBias must be set to 0.0.

• fillModeNonSolid specifies whether point and wireframe fill modes are supported. If this feature
is not enabled, the VK_POLYGON_MODE_POINT and VK_POLYGON_MODE_LINE enum values must not be
used.

• depthBounds specifies whether depth bounds tests are supported. If this feature is not enabled,
the depthBoundsTestEnable member of the VkPipelineDepthStencilStateCreateInfo structure
must be set to VK_FALSE. When depthBoundsTestEnable is set to VK_FALSE, the minDepthBounds and
maxDepthBounds members of the VkPipelineDepthStencilStateCreateInfo structure are ignored.

• wideLines specifies whether lines with width other than 1.0 are supported. If this feature is not
enabled, the lineWidth member of the VkPipelineRasterizationStateCreateInfo structure must
be set to 1.0 unless the VK_DYNAMIC_STATE_LINE_WIDTH dynamic state is enabled, and the lineWidth
parameter to vkCmdSetLineWidth must be set to 1.0. When this feature is supported, the range
and granularity of supported line widths are indicated by the lineWidthRange and
lineWidthGranularity members of the VkPhysicalDeviceLimits structure, respectively.

• largePoints specifies whether points with size greater than 1.0 are supported. If this feature is
not enabled, only a point size of 1.0 written by a shader is supported. The range and granularity
of supported point sizes are indicated by the pointSizeRange and pointSizeGranularity members
of the VkPhysicalDeviceLimits structure, respectively.

• alphaToOne specifies whether the implementation is able to replace the alpha value of the
fragment shader color output in the Multisample Coverage fragment operation. If this feature is
not enabled, then the alphaToOneEnable member of the VkPipelineMultisampleStateCreateInfo
structure must be set to VK_FALSE. Otherwise setting alphaToOneEnable to VK_TRUE will enable
alpha-to-one behavior.

• multiViewport specifies whether more than one viewport is supported. If this feature is not
enabled:

◦ The viewportCount and scissorCount members of the VkPipelineViewportStateCreateInfo
structure must be set to 1.

◦ The firstViewport and viewportCount parameters to the vkCmdSetViewport command must be
set to 0 and 1, respectively.

◦ The firstScissor and scissorCount parameters to the vkCmdSetScissor command must be set

1131

to 0 and 1, respectively.

• samplerAnisotropy specifies whether anisotropic filtering is supported. If this feature is not
enabled, the anisotropyEnable member of the VkSamplerCreateInfo structure must be VK_FALSE.

• textureCompressionETC2 specifies whether all of the ETC2 and EAC compressed texture formats
are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK

◦ VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK

◦ VK_FORMAT_EAC_R11_UNORM_BLOCK

◦ VK_FORMAT_EAC_R11_SNORM_BLOCK

◦ VK_FORMAT_EAC_R11G11_UNORM_BLOCK

◦ VK_FORMAT_EAC_R11G11_SNORM_BLOCK

To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

• textureCompressionASTC_LDR specifies whether all of the ASTC LDR compressed texture formats
are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ASTC_4x4_UNORM_BLOCK

◦ VK_FORMAT_ASTC_4x4_SRGB_BLOCK

◦ VK_FORMAT_ASTC_5x4_UNORM_BLOCK

◦ VK_FORMAT_ASTC_5x4_SRGB_BLOCK

◦ VK_FORMAT_ASTC_5x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_5x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_6x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_6x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_6x6_UNORM_BLOCK

◦ VK_FORMAT_ASTC_6x6_SRGB_BLOCK

◦ VK_FORMAT_ASTC_8x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_8x5_SRGB_BLOCK

1132

◦ VK_FORMAT_ASTC_8x6_UNORM_BLOCK

◦ VK_FORMAT_ASTC_8x6_SRGB_BLOCK

◦ VK_FORMAT_ASTC_8x8_UNORM_BLOCK

◦ VK_FORMAT_ASTC_8x8_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x5_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x5_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x6_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x6_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x8_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x8_SRGB_BLOCK

◦ VK_FORMAT_ASTC_10x10_UNORM_BLOCK

◦ VK_FORMAT_ASTC_10x10_SRGB_BLOCK

◦ VK_FORMAT_ASTC_12x10_UNORM_BLOCK

◦ VK_FORMAT_ASTC_12x10_SRGB_BLOCK

◦ VK_FORMAT_ASTC_12x12_UNORM_BLOCK

◦ VK_FORMAT_ASTC_12x12_SRGB_BLOCK

To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

• textureCompressionBC specifies whether all of the BC compressed texture formats are supported.
If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_BC1_RGB_UNORM_BLOCK

◦ VK_FORMAT_BC1_RGB_SRGB_BLOCK

◦ VK_FORMAT_BC1_RGBA_UNORM_BLOCK

◦ VK_FORMAT_BC1_RGBA_SRGB_BLOCK

◦ VK_FORMAT_BC2_UNORM_BLOCK

◦ VK_FORMAT_BC2_SRGB_BLOCK

◦ VK_FORMAT_BC3_UNORM_BLOCK

◦ VK_FORMAT_BC3_SRGB_BLOCK

◦ VK_FORMAT_BC4_UNORM_BLOCK

◦ VK_FORMAT_BC4_SNORM_BLOCK

◦ VK_FORMAT_BC5_UNORM_BLOCK

◦ VK_FORMAT_BC5_SNORM_BLOCK

1133

◦ VK_FORMAT_BC6H_UFLOAT_BLOCK

◦ VK_FORMAT_BC6H_SFLOAT_BLOCK

◦ VK_FORMAT_BC7_UNORM_BLOCK

◦ VK_FORMAT_BC7_SRGB_BLOCK

To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

• occlusionQueryPrecise specifies whether occlusion queries returning actual sample counts are
supported. Occlusion queries are created in a VkQueryPool by specifying the queryType of
VK_QUERY_TYPE_OCCLUSION in the VkQueryPoolCreateInfo structure which is passed to
vkCreateQueryPool. If this feature is enabled, queries of this type can enable
VK_QUERY_CONTROL_PRECISE_BIT in the flags parameter to vkCmdBeginQuery. If this feature is not
supported, the implementation supports only boolean occlusion queries. When any samples are
passed, boolean queries will return a non-zero result value, otherwise a result value of zero is
returned. When this feature is enabled and VK_QUERY_CONTROL_PRECISE_BIT is set, occlusion
queries will report the actual number of samples passed.

• pipelineStatisticsQuery specifies whether the pipeline statistics queries are supported. If this
feature is not enabled, queries of type VK_QUERY_TYPE_PIPELINE_STATISTICS cannot be created,
and none of the VkQueryPipelineStatisticFlagBits bits can be set in the pipelineStatistics
member of the VkQueryPoolCreateInfo structure.

• vertexPipelineStoresAndAtomics specifies whether storage buffers and images support stores
and atomic operations in the vertex, tessellation, and geometry shader stages. If this feature is
not enabled, all storage image, storage texel buffer, and storage buffer variables used by these
stages in shader modules must be decorated with the NonWritable decoration (or the readonly
memory qualifier in GLSL).

• fragmentStoresAndAtomics specifies whether storage buffers and images support stores and
atomic operations in the fragment shader stage. If this feature is not enabled, all storage image,
storage texel buffer, and storage buffer variables used by the fragment stage in shader modules
must be decorated with the NonWritable decoration (or the readonly memory qualifier in GLSL).

• shaderTessellationAndGeometryPointSize specifies whether the PointSize built-in decoration is
available in the tessellation control, tessellation evaluation, and geometry shader stages. If this
feature is not enabled, members decorated with the PointSize built-in decoration must not be
read from or written to and all points written from a tessellation or geometry shader will have a
size of 1.0. This also specifies whether shader modules can declare the TessellationPointSize
capability for tessellation control and evaluation shaders, or if the shader modules can declare
the GeometryPointSize capability for geometry shaders. An implementation supporting this
feature must also support one or both of the tessellationShader or geometryShader features.

• shaderImageGatherExtended specifies whether the extended set of image gather instructions are
available in shader code. If this feature is not enabled, the OpImage*Gather instructions do not
support the Offset and ConstOffsets operands. This also specifies whether shader modules can
declare the ImageGatherExtended capability.

• shaderStorageImageExtendedFormats specifies whether all the “storage image extended formats”
below are supported; if this feature is supported, then the VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

1134

must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_R16G16_SFLOAT

◦ VK_FORMAT_B10G11R11_UFLOAT_PACK32

◦ VK_FORMAT_R16_SFLOAT

◦ VK_FORMAT_R16G16B16A16_UNORM

◦ VK_FORMAT_A2B10G10R10_UNORM_PACK32

◦ VK_FORMAT_R16G16_UNORM

◦ VK_FORMAT_R8G8_UNORM

◦ VK_FORMAT_R16_UNORM

◦ VK_FORMAT_R8_UNORM

◦ VK_FORMAT_R16G16B16A16_SNORM

◦ VK_FORMAT_R16G16_SNORM

◦ VK_FORMAT_R8G8_SNORM

◦ VK_FORMAT_R16_SNORM

◦ VK_FORMAT_R8_SNORM

◦ VK_FORMAT_R16G16_SINT

◦ VK_FORMAT_R8G8_SINT

◦ VK_FORMAT_R16_SINT

◦ VK_FORMAT_R8_SINT

◦ VK_FORMAT_A2B10G10R10_UINT_PACK32

◦ VK_FORMAT_R16G16_UINT

◦ VK_FORMAT_R8G8_UINT

◦ VK_FORMAT_R16_UINT

◦ VK_FORMAT_R8_UINT

Note

shaderStorageImageExtendedFormats feature only adds a guarantee of format
support, which is specified for the whole physical device. Therefore enabling
or disabling the feature via vkCreateDevice has no practical effect.

To query for additional properties, or if the feature is not supported,
vkGetPhysicalDeviceFormatProperties and
vkGetPhysicalDeviceImageFormatProperties can be used to check for
supported properties of individual formats, as usual rules allow.

VK_FORMAT_R32G32_UINT, VK_FORMAT_R32G32_SINT, and VK_FORMAT_R32G32_SFLOAT
from StorageImageExtendedFormats SPIR-V capability, are already covered by
core Vulkan mandatory format support.

1135

• shaderStorageImageMultisample specifies whether multisampled storage images are supported. If
this feature is not enabled, images that are created with a usage that includes
VK_IMAGE_USAGE_STORAGE_BIT must be created with samples equal to VK_SAMPLE_COUNT_1_BIT. This
also specifies whether shader modules can declare the StorageImageMultisample and
ImageMSArray capabilities.

• shaderStorageImageReadWithoutFormat specifies whether storage images and storage texel buffers
require a format qualifier to be specified when reading. shaderStorageImageReadWithoutFormat
applies only to formats listed in the storage without format list.

• shaderStorageImageWriteWithoutFormat specifies whether storage images and storage texel
buffers require a format qualifier to be specified when writing.
shaderStorageImageWriteWithoutFormat applies only to formats listed in the storage without
format list.

• shaderUniformBufferArrayDynamicIndexing specifies whether arrays of uniform buffers can be
indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must be indexed only by constant integral
expressions when aggregated into arrays in shader code. This also specifies whether shader
modules can declare the UniformBufferArrayDynamicIndexing capability.

• shaderSampledImageArrayDynamicIndexing specifies whether arrays of samplers or sampled
images can be indexed by dynamically uniform integer expressions in shader code. If this
feature is not enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_SAMPLER,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also specifies whether shader modules can declare the SampledImageArrayDynamicIndexing
capability.

• shaderStorageBufferArrayDynamicIndexing specifies whether arrays of storage buffers can be
indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must be indexed only by constant integral
expressions when aggregated into arrays in shader code. This also specifies whether shader
modules can declare the StorageBufferArrayDynamicIndexing capability.

• shaderStorageImageArrayDynamicIndexing specifies whether arrays of storage images can be
indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must be indexed
only by constant integral expressions when aggregated into arrays in shader code. This also
specifies whether shader modules can declare the StorageImageArrayDynamicIndexing capability.

• shaderClipDistance specifies whether clip distances are supported in shader code. If this feature
is not enabled, any members decorated with the ClipDistance built-in decoration must not be
read from or written to in shader modules. This also specifies whether shader modules can
declare the ClipDistance capability.

• shaderCullDistance specifies whether cull distances are supported in shader code. If this feature
is not enabled, any members decorated with the CullDistance built-in decoration must not be
read from or written to in shader modules. This also specifies whether shader modules can
declare the CullDistance capability.

1136

• shaderFloat64 specifies whether 64-bit floats (doubles) are supported in shader code. If this
feature is not enabled, 64-bit floating-point types must not be used in shader code. This also
specifies whether shader modules can declare the Float64 capability. Declaring and using 64-bit
floats is enabled for all storage classes that SPIR-V allows with the Float64 capability.

• shaderInt64 specifies whether 64-bit integers (signed and unsigned) are supported in shader
code. If this feature is not enabled, 64-bit integer types must not be used in shader code. This
also specifies whether shader modules can declare the Int64 capability. Declaring and using 64-
bit integers is enabled for all storage classes that SPIR-V allows with the Int64 capability.

• shaderInt16 specifies whether 16-bit integers (signed and unsigned) are supported in shader
code. If this feature is not enabled, 16-bit integer types must not be used in shader code. This
also specifies whether shader modules can declare the Int16 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Int16 SPIR-V capability:
Declaring and using 16-bit integers in the Private, Workgroup, and Function storage classes is
enabled, while declaring them in the interface storage classes (e.g., UniformConstant, Uniform,
StorageBuffer, Input, Output, and PushConstant) is not enabled.

• shaderResourceResidency specifies whether image operations that return resource residency
information are supported in shader code. If this feature is not enabled, the OpImageSparse*
instructions must not be used in shader code. This also specifies whether shader modules can
declare the SparseResidency capability. The feature requires at least one of the sparseResidency*
features to be supported.

• shaderResourceMinLod specifies whether image operations specifying the minimum resource LOD
are supported in shader code. If this feature is not enabled, the MinLod image operand must not
be used in shader code. This also specifies whether shader modules can declare the MinLod
capability.

• sparseBinding specifies whether resource memory can be managed at opaque sparse block level
instead of at the object level. If this feature is not enabled, resource memory must be bound
only on a per-object basis using the vkBindBufferMemory and vkBindImageMemory commands. In
this case, buffers and images must not be created with VK_BUFFER_CREATE_SPARSE_BINDING_BIT
and VK_IMAGE_CREATE_SPARSE_BINDING_BIT set in the flags member of the VkBufferCreateInfo and
VkImageCreateInfo structures, respectively. Otherwise resource memory can be managed as
described in Sparse Resource Features.

• sparseResidencyBuffer specifies whether the device can access partially resident buffers. If this
feature is not enabled, buffers must not be created with VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT
set in the flags member of the VkBufferCreateInfo structure.

• sparseResidencyImage2D specifies whether the device can access partially resident 2D images
with 1 sample per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_1_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidencyImage3D specifies whether the device can access partially resident 3D images. If
this feature is not enabled, images with an imageType of VK_IMAGE_TYPE_3D must not be created
with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidency2Samples specifies whether the physical device can access partially resident 2D

1137

images with 2 samples per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_2_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidency4Samples specifies whether the physical device can access partially resident 2D
images with 4 samples per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_4_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidency8Samples specifies whether the physical device can access partially resident 2D
images with 8 samples per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_8_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidency16Samples specifies whether the physical device can access partially resident 2D
images with 16 samples per pixel. If this feature is not enabled, images with an imageType of
VK_IMAGE_TYPE_2D and samples set to VK_SAMPLE_COUNT_16_BIT must not be created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo
structure.

• sparseResidencyAliased specifies whether the physical device can correctly access data aliased
into multiple locations. If this feature is not enabled, the VK_BUFFER_CREATE_SPARSE_ALIASED_BIT
and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT enum values must not be used in flags members of the
VkBufferCreateInfo and VkImageCreateInfo structures, respectively.

• variableMultisampleRate specifies whether all pipelines that will be bound to a command buffer
during a subpass which uses no attachments must have the same value for
VkPipelineMultisampleStateCreateInfo::rasterizationSamples. If set to VK_TRUE, the
implementation supports variable multisample rates in a subpass which uses no attachments. If
set to VK_FALSE, then all pipelines bound in such a subpass must have the same multisample
rate. This has no effect in situations where a subpass uses any attachments.

• inheritedQueries specifies whether a secondary command buffer may be executed while a
query is active.

The VkPhysicalDeviceVulkan11Features structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkan11Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 storageBuffer16BitAccess;
 VkBool32 uniformAndStorageBuffer16BitAccess;
 VkBool32 storagePushConstant16;
 VkBool32 storageInputOutput16;
 VkBool32 multiview;
 VkBool32 multiviewGeometryShader;
 VkBool32 multiviewTessellationShader;
 VkBool32 variablePointersStorageBuffer;

1138

 VkBool32 variablePointers;
 VkBool32 protectedMemory;
 VkBool32 samplerYcbcrConversion;
 VkBool32 shaderDrawParameters;
} VkPhysicalDeviceVulkan11Features;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• storageBuffer16BitAccess specifies whether objects in the StorageBuffer, or
PhysicalStorageBuffer storage class with the Block decoration can have 16-bit integer and 16-bit
floating-point members. If this feature is not enabled, 16-bit integer or 16-bit floating-point
members must not be used in such objects. This also specifies whether shader modules can
declare the StorageBuffer16BitAccess capability.

• uniformAndStorageBuffer16BitAccess specifies whether objects in the Uniform storage class with
the Block decoration can have 16-bit integer and 16-bit floating-point members. If this feature is
not enabled, 16-bit integer or 16-bit floating-point members must not be used in such objects.
This also specifies whether shader modules can declare the UniformAndStorageBuffer16BitAccess
capability.

• storagePushConstant16 specifies whether objects in the PushConstant storage class can have 16-
bit integer and 16-bit floating-point members. If this feature is not enabled, 16-bit integer or
floating-point members must not be used in such objects. This also specifies whether shader
modules can declare the StoragePushConstant16 capability.

• storageInputOutput16 specifies whether objects in the Input and Output storage classes can have
16-bit integer and 16-bit floating-point members. If this feature is not enabled, 16-bit integer or
16-bit floating-point members must not be used in such objects. This also specifies whether
shader modules can declare the StorageInputOutput16 capability.

• multiview specifies whether the implementation supports multiview rendering within a render
pass. If this feature is not enabled, the view mask of each subpass must always be zero.

• multiviewGeometryShader specifies whether the implementation supports multiview rendering
within a render pass, with geometry shaders. If this feature is not enabled, then a pipeline
compiled against a subpass with a non-zero view mask must not include a geometry shader.

• multiviewTessellationShader specifies whether the implementation supports multiview
rendering within a render pass, with tessellation shaders. If this feature is not enabled, then a
pipeline compiled against a subpass with a non-zero view mask must not include any
tessellation shaders.

• variablePointersStorageBuffer specifies whether the implementation supports the SPIR-V
VariablePointersStorageBuffer capability. When this feature is not enabled, shader modules
must not declare the SPV_KHR_variable_pointers extension or the VariablePointersStorageBuffer
capability.

• variablePointers specifies whether the implementation supports the SPIR-V VariablePointers
capability. When this feature is not enabled, shader modules must not declare the

1139

VariablePointers capability.

• protectedMemory specifies whether protected memory is supported.

• samplerYcbcrConversion specifies whether the implementation supports sampler Y′CBCR

conversion. If samplerYcbcrConversion is VK_FALSE, sampler Y′CBCR conversion is not supported,
and samplers using sampler Y′CBCR conversion must not be used.

• shaderDrawParameters specifies whether the implementation supports the SPIR-V DrawParameters
capability. When this feature is not enabled, shader modules must not declare the
SPV_KHR_shader_draw_parameters extension or the DrawParameters capability.

If the VkPhysicalDeviceVulkan11Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceVulkan11Features can
also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan11Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES

The VkPhysicalDeviceVulkan12Features structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkan12Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 samplerMirrorClampToEdge;
 VkBool32 drawIndirectCount;
 VkBool32 storageBuffer8BitAccess;
 VkBool32 uniformAndStorageBuffer8BitAccess;
 VkBool32 storagePushConstant8;
 VkBool32 shaderBufferInt64Atomics;
 VkBool32 shaderSharedInt64Atomics;
 VkBool32 shaderFloat16;
 VkBool32 shaderInt8;
 VkBool32 descriptorIndexing;
 VkBool32 shaderInputAttachmentArrayDynamicIndexing;
 VkBool32 shaderUniformTexelBufferArrayDynamicIndexing;
 VkBool32 shaderStorageTexelBufferArrayDynamicIndexing;
 VkBool32 shaderUniformBufferArrayNonUniformIndexing;
 VkBool32 shaderSampledImageArrayNonUniformIndexing;
 VkBool32 shaderStorageBufferArrayNonUniformIndexing;
 VkBool32 shaderStorageImageArrayNonUniformIndexing;
 VkBool32 shaderInputAttachmentArrayNonUniformIndexing;
 VkBool32 shaderUniformTexelBufferArrayNonUniformIndexing;
 VkBool32 shaderStorageTexelBufferArrayNonUniformIndexing;
 VkBool32 descriptorBindingUniformBufferUpdateAfterBind;
 VkBool32 descriptorBindingSampledImageUpdateAfterBind;

1140

 VkBool32 descriptorBindingStorageImageUpdateAfterBind;
 VkBool32 descriptorBindingStorageBufferUpdateAfterBind;
 VkBool32 descriptorBindingUniformTexelBufferUpdateAfterBind;
 VkBool32 descriptorBindingStorageTexelBufferUpdateAfterBind;
 VkBool32 descriptorBindingUpdateUnusedWhilePending;
 VkBool32 descriptorBindingPartiallyBound;
 VkBool32 descriptorBindingVariableDescriptorCount;
 VkBool32 runtimeDescriptorArray;
 VkBool32 samplerFilterMinmax;
 VkBool32 scalarBlockLayout;
 VkBool32 imagelessFramebuffer;
 VkBool32 uniformBufferStandardLayout;
 VkBool32 shaderSubgroupExtendedTypes;
 VkBool32 separateDepthStencilLayouts;
 VkBool32 hostQueryReset;
 VkBool32 timelineSemaphore;
 VkBool32 bufferDeviceAddress;
 VkBool32 bufferDeviceAddressCaptureReplay;
 VkBool32 bufferDeviceAddressMultiDevice;
 VkBool32 vulkanMemoryModel;
 VkBool32 vulkanMemoryModelDeviceScope;
 VkBool32 vulkanMemoryModelAvailabilityVisibilityChains;
 VkBool32 shaderOutputViewportIndex;
 VkBool32 shaderOutputLayer;
 VkBool32 subgroupBroadcastDynamicId;
} VkPhysicalDeviceVulkan12Features;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• samplerMirrorClampToEdge indicates whether the implementation supports the
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE sampler address mode. If this feature is not
enabled, the VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE sampler address mode must not be
used.

• drawIndirectCount indicates whether the implementation supports the
vkCmdDrawIndirectCount and vkCmdDrawIndexedIndirectCount functions. If this feature is
not enabled, these functions must not be used.

• storageBuffer8BitAccess indicates whether objects in the StorageBuffer, or
PhysicalStorageBuffer storage class with the Block decoration can have 8-bit integer members. If
this feature is not enabled, 8-bit integer members must not be used in such objects. This also
indicates whether shader modules can declare the StorageBuffer8BitAccess capability.

• uniformAndStorageBuffer8BitAccess indicates whether objects in the Uniform storage class with
the Block decoration can have 8-bit integer members. If this feature is not enabled, 8-bit integer
members must not be used in such objects. This also indicates whether shader modules can
declare the UniformAndStorageBuffer8BitAccess capability.

1141

• storagePushConstant8 indicates whether objects in the PushConstant storage class can have 8-bit
integer members. If this feature is not enabled, 8-bit integer members must not be used in such
objects. This also indicates whether shader modules can declare the StoragePushConstant8
capability.

• shaderBufferInt64Atomics indicates whether shaders can perform 64-bit unsigned and signed
integer atomic operations on buffers.

• shaderSharedInt64Atomics indicates whether shaders can perform 64-bit unsigned and signed
integer atomic operations on shared memory.

• shaderFloat16 indicates whether 16-bit floats (halfs) are supported in shader code. This also
indicates whether shader modules can declare the Float16 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Float16 SPIR-V capability:
Declaring and using 16-bit floats in the Private, Workgroup, and Function storage classes is
enabled, while declaring them in the interface storage classes (e.g., UniformConstant, Uniform,
StorageBuffer, Input, Output, and PushConstant) is not enabled.

• shaderInt8 indicates whether 8-bit integers (signed and unsigned) are supported in shader code.
This also indicates whether shader modules can declare the Int8 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Int8 SPIR-V capability:
Declaring and using 8-bit integers in the Private, Workgroup, and Function storage classes is
enabled, while declaring them in the interface storage classes (e.g., UniformConstant, Uniform,
StorageBuffer, Input, Output, and PushConstant) is not enabled.

• descriptorIndexing indicates whether the implementation supports the minimum set of
descriptor indexing features as described in the Feature Requirements section. Enabling the
descriptorIndexing member when vkCreateDevice is called does not imply the other minimum
descriptor indexing features are also enabled. Those other descriptor indexing features must be
enabled individually as needed by the application.

• shaderInputAttachmentArrayDynamicIndexing indicates whether arrays of input attachments can
be indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the InputAttachmentArrayDynamicIndexing
capability.

• shaderUniformTexelBufferArrayDynamicIndexing indicates whether arrays of uniform texel
buffers can be indexed by dynamically uniform integer expressions in shader code. If this
feature is not enabled, resources with a descriptor type of
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must be indexed only by constant integral expressions
when aggregated into arrays in shader code. This also indicates whether shader modules can
declare the UniformTexelBufferArrayDynamicIndexing capability.

• shaderStorageTexelBufferArrayDynamicIndexing indicates whether arrays of storage texel buffers
can be indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the StorageTexelBufferArrayDynamicIndexing
capability.

• shaderUniformBufferArrayNonUniformIndexing indicates whether arrays of uniform buffers can be

1142

indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must not be indexed by non-uniform integer
expressions when aggregated into arrays in shader code. This also indicates whether shader
modules can declare the UniformBufferArrayNonUniformIndexing capability.

• shaderSampledImageArrayNonUniformIndexing indicates whether arrays of samplers or sampled
images can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_SAMPLER,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must not be
indexed by non-uniform integer expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the SampledImageArrayNonUniformIndexing
capability.

• shaderStorageBufferArrayNonUniformIndexing indicates whether arrays of storage buffers can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must not be indexed by non-uniform integer
expressions when aggregated into arrays in shader code. This also indicates whether shader
modules can declare the StorageBufferArrayNonUniformIndexing capability.

• shaderStorageImageArrayNonUniformIndexing indicates whether arrays of storage images can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must not be indexed by
non-uniform integer expressions when aggregated into arrays in shader code. This also
indicates whether shader modules can declare the StorageImageArrayNonUniformIndexing
capability.

• shaderInputAttachmentArrayNonUniformIndexing indicates whether arrays of input attachments
can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT must not be
indexed by non-uniform integer expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the InputAttachmentArrayNonUniformIndexing
capability.

• shaderUniformTexelBufferArrayNonUniformIndexing indicates whether arrays of uniform texel
buffers can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must not
be indexed by non-uniform integer expressions when aggregated into arrays in shader code.
This also indicates whether shader modules can declare the
UniformTexelBufferArrayNonUniformIndexing capability.

• shaderStorageTexelBufferArrayNonUniformIndexing indicates whether arrays of storage texel
buffers can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must not
be indexed by non-uniform integer expressions when aggregated into arrays in shader code.
This also indicates whether shader modules can declare the
StorageTexelBufferArrayNonUniformIndexing capability.

• descriptorBindingUniformBufferUpdateAfterBind indicates whether the implementation supports
updating uniform buffer descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with

1143

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER.

• descriptorBindingSampledImageUpdateAfterBind indicates whether the implementation supports
updating sampled image descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE.

• descriptorBindingStorageImageUpdateAfterBind indicates whether the implementation supports
updating storage image descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

• descriptorBindingStorageBufferUpdateAfterBind indicates whether the implementation supports
updating storage buffer descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER.

• descriptorBindingUniformTexelBufferUpdateAfterBind indicates whether the implementation
supports updating uniform texel buffer descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER.

• descriptorBindingStorageTexelBufferUpdateAfterBind indicates whether the implementation
supports updating storage texel buffer descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER.

• descriptorBindingUpdateUnusedWhilePending indicates whether the implementation supports
updating descriptors while the set is in use. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT must not be used.

• descriptorBindingPartiallyBound indicates whether the implementation supports statically
using a descriptor set binding in which some descriptors are not valid. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT must not be used.

• descriptorBindingVariableDescriptorCount indicates whether the implementation supports
descriptor sets with a variable-sized last binding. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT must not be used.

• runtimeDescriptorArray indicates whether the implementation supports the SPIR-V
RuntimeDescriptorArray capability. If this feature is not enabled, descriptors must not be
declared in runtime arrays.

• samplerFilterMinmax indicates whether the implementation supports a minimum set of required
formats supporting min/max filtering as defined by the filterMinmaxSingleComponentFormats
property minimum requirements. If this feature is not enabled, then
VkSamplerReductionModeCreateInfo must only use
VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE.

• scalarBlockLayout indicates that the implementation supports the layout of resource blocks in
shaders using scalar alignment.

• imagelessFramebuffer indicates that the implementation supports specifying the image view for
attachments at render pass begin time via VkRenderPassAttachmentBeginInfo.

1144

• uniformBufferStandardLayout indicates that the implementation supports the same layouts for
uniform buffers as for storage and other kinds of buffers. See Standard Buffer Layout.

• shaderSubgroupExtendedTypes is a boolean specifying whether subgroup operations can use 8-bit
integer, 16-bit integer, 64-bit integer, 16-bit floating-point, and vectors of these types in group
operations with subgroup scope, if the implementation supports the types.

• separateDepthStencilLayouts indicates whether the implementation supports a
VkImageMemoryBarrier for a depth/stencil image with only one of VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT set, and whether VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL can be used.

• hostQueryReset indicates that the implementation supports resetting queries from the host with
vkResetQueryPool.

• timelineSemaphore indicates whether semaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE are supported.

• bufferDeviceAddress indicates that the implementation supports accessing buffer memory in
shaders as storage buffers via an address queried from vkGetBufferDeviceAddress.

• bufferDeviceAddressCaptureReplay indicates that the implementation supports saving and
reusing buffer and device addresses, e.g. for trace capture and replay.

• bufferDeviceAddressMultiDevice indicates that the implementation supports the
bufferDeviceAddress feature for logical devices created with multiple physical devices. If this
feature is not supported, buffer addresses must not be queried on a logical device created with
more than one physical device.

• vulkanMemoryModel indicates whether shader modules can declare the VulkanMemoryModel
capability.

• vulkanMemoryModelDeviceScope indicates whether the Vulkan Memory Model can use Device
scope synchronization. This also indicates whether shader modules can declare the
VulkanMemoryModelDeviceScope capability.

• vulkanMemoryModelAvailabilityVisibilityChains indicates whether the Vulkan Memory Model
can use availability and visibility chains with more than one element.

• shaderOutputViewportIndex indicates whether the implementation supports the
ShaderViewportIndex SPIR-V capability enabling variables decorated with the ViewportIndex built-
in to be exported from vertex or tessellation evaluation shaders. If this feature is not enabled,
the ViewportIndex built-in decoration must not be used on outputs in vertex or tessellation
evaluation shaders.

• shaderOutputLayer indicates whether the implementation supports the ShaderLayer SPIR-V
capability enabling variables decorated with the Layer built-in to be exported from vertex or
tessellation evaluation shaders. If this feature is not enabled, the Layer built-in decoration must
not be used on outputs in vertex or tessellation evaluation shaders.

• If subgroupBroadcastDynamicId is VK_TRUE, the “Id” operand of OpGroupNonUniformBroadcast can be
dynamically uniform within a subgroup, and the “Index” operand of
OpGroupNonUniformQuadBroadcast can be dynamically uniform within the derivative group. If it is
VK_FALSE, these operands must be constants.

1145

If the VkPhysicalDeviceVulkan12Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceVulkan12Features can
also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan12Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES

The VkPhysicalDeviceVulkan13Features structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceVulkan13Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 robustImageAccess;
 VkBool32 inlineUniformBlock;
 VkBool32 descriptorBindingInlineUniformBlockUpdateAfterBind;
 VkBool32 pipelineCreationCacheControl;
 VkBool32 privateData;
 VkBool32 shaderDemoteToHelperInvocation;
 VkBool32 shaderTerminateInvocation;
 VkBool32 subgroupSizeControl;
 VkBool32 computeFullSubgroups;
 VkBool32 synchronization2;
 VkBool32 textureCompressionASTC_HDR;
 VkBool32 shaderZeroInitializeWorkgroupMemory;
 VkBool32 dynamicRendering;
 VkBool32 shaderIntegerDotProduct;
 VkBool32 maintenance4;
} VkPhysicalDeviceVulkan13Features;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• robustImageAccess indicates whether image accesses are tightly bounds-checked against the
dimensions of the image view. Invalid texels resulting from out of bounds image loads will be
replaced as described in Texel Replacement, with either (0,0,1) or (0,0,0) values inserted for
missing G, B, or A components based on the format.

• inlineUniformBlock indicates whether the implementation supports inline uniform block
descriptors. If this feature is not enabled, VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK must not be
used.

• descriptorBindingInlineUniformBlockUpdateAfterBind indicates whether the implementation

1146

supports updating inline uniform block descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK.

• pipelineCreationCacheControl indicates that the implementation supports:

◦ The following can be used in Vk*PipelineCreateInfo::flags:

▪ VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT

▪ VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

◦ The following can be used in VkPipelineCacheCreateInfo::flags:

▪ VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

• privateData indicates whether the implementation supports private data. See Private Data.

• shaderDemoteToHelperInvocation indicates whether the implementation supports the SPIR-V
DemoteToHelperInvocationEXT capability.

• shaderTerminateInvocation specifies whether the implementation supports SPIR-V modules that
use the SPV_KHR_terminate_invocation extension.

• subgroupSizeControl indicates whether the implementation supports controlling shader
subgroup sizes via the VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag
and the VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure.

• computeFullSubgroups indicates whether the implementation supports requiring full subgroups
in compute shaders via the VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag.

• synchronization2 indicates whether the implementation supports the new set of
synchronization commands introduced in VK_KHR_synchronization2.

• textureCompressionASTC_HDR indicates whether all of the ASTC HDR compressed texture formats
are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK

1147

◦ VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK

To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

• shaderZeroInitializeWorkgroupMemory specifies whether the implementation supports initializing
a variable in Workgroup storage class.

• dynamicRendering specifies that the implementation supports dynamic render pass instances
using the vkCmdBeginRendering command.

• shaderIntegerDotProduct specifies whether shader modules can declare the
DotProductInputAllKHR, DotProductInput4x8BitKHR, DotProductInput4x8BitPackedKHR and
DotProductKHR capabilities.

• maintenance4 indicates that the implementation supports the following:

◦ The application may destroy a VkPipelineLayout object immediately after using it to create
another object.

◦ LocalSizeId can be used as an alternative to LocalSize to specify the local workgroup size
with specialization constants.

◦ Images created with identical creation parameters will always have the same alignment
requirements.

◦ The size memory requirement of a buffer or image is never greater than that of another
buffer or image created with a greater or equal size.

◦ Push constants do not have to be initialized before they are dynamically accessed.

◦ The interface matching rules allow a larger output vector to match with a smaller input
vector, with additional values being discarded.

If the VkPhysicalDeviceVulkan13Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceVulkan13Features can
also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkan13Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES

The VkPhysicalDeviceVariablePointersFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceVariablePointersFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 variablePointersStorageBuffer;

1148

 VkBool32 variablePointers;
} VkPhysicalDeviceVariablePointersFeatures;

// Provided by VK_VERSION_1_1
typedef VkPhysicalDeviceVariablePointersFeatures
VkPhysicalDeviceVariablePointerFeatures;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• variablePointersStorageBuffer specifies whether the implementation supports the SPIR-V
VariablePointersStorageBuffer capability. When this feature is not enabled, shader modules
must not declare the SPV_KHR_variable_pointers extension or the VariablePointersStorageBuffer
capability.

• variablePointers specifies whether the implementation supports the SPIR-V VariablePointers
capability. When this feature is not enabled, shader modules must not declare the
VariablePointers capability.

If the VkPhysicalDeviceVariablePointersFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceVariablePointersFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage

• VUID-VkPhysicalDeviceVariablePointersFeatures-variablePointers-01431
If variablePointers is enabled then variablePointersStorageBuffer must also be enabled

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVariablePointersFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES

The VkPhysicalDeviceMultiviewFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceMultiviewFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 multiview;
 VkBool32 multiviewGeometryShader;

1149

 VkBool32 multiviewTessellationShader;
} VkPhysicalDeviceMultiviewFeatures;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• multiview specifies whether the implementation supports multiview rendering within a render
pass. If this feature is not enabled, the view mask of each subpass must always be zero.

• multiviewGeometryShader specifies whether the implementation supports multiview rendering
within a render pass, with geometry shaders. If this feature is not enabled, then a pipeline
compiled against a subpass with a non-zero view mask must not include a geometry shader.

• multiviewTessellationShader specifies whether the implementation supports multiview
rendering within a render pass, with tessellation shaders. If this feature is not enabled, then a
pipeline compiled against a subpass with a non-zero view mask must not include any
tessellation shaders.

If the VkPhysicalDeviceMultiviewFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceMultiviewFeatures can
also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage

• VUID-VkPhysicalDeviceMultiviewFeatures-multiviewGeometryShader-00580
If multiviewGeometryShader is enabled then multiview must also be enabled

• VUID-VkPhysicalDeviceMultiviewFeatures-multiviewTessellationShader-00581
If multiviewTessellationShader is enabled then multiview must also be enabled

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultiviewFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES

The VkPhysicalDeviceShaderAtomicInt64Features structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceShaderAtomicInt64Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderBufferInt64Atomics;
 VkBool32 shaderSharedInt64Atomics;
} VkPhysicalDeviceShaderAtomicInt64Features;

1150

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderBufferInt64Atomics indicates whether shaders can perform 64-bit unsigned and signed
integer atomic operations on buffers.

• shaderSharedInt64Atomics indicates whether shaders can perform 64-bit unsigned and signed
integer atomic operations on shared memory.

If the VkPhysicalDeviceShaderAtomicInt64Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderAtomicInt64Features can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderAtomicInt64Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES

The VkPhysicalDevice8BitStorageFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDevice8BitStorageFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 storageBuffer8BitAccess;
 VkBool32 uniformAndStorageBuffer8BitAccess;
 VkBool32 storagePushConstant8;
} VkPhysicalDevice8BitStorageFeatures;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• storageBuffer8BitAccess indicates whether objects in the StorageBuffer, or
PhysicalStorageBuffer storage class with the Block decoration can have 8-bit integer members. If
this feature is not enabled, 8-bit integer members must not be used in such objects. This also
indicates whether shader modules can declare the StorageBuffer8BitAccess capability.

• uniformAndStorageBuffer8BitAccess indicates whether objects in the Uniform storage class with
the Block decoration can have 8-bit integer members. If this feature is not enabled, 8-bit integer
members must not be used in such objects. This also indicates whether shader modules can
declare the UniformAndStorageBuffer8BitAccess capability.

• storagePushConstant8 indicates whether objects in the PushConstant storage class can have 8-bit

1151

integer members. If this feature is not enabled, 8-bit integer members must not be used in such
objects. This also indicates whether shader modules can declare the StoragePushConstant8
capability.

If the VkPhysicalDevice8BitStorageFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevice8BitStorageFeatures
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevice8BitStorageFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES

The VkPhysicalDevice16BitStorageFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDevice16BitStorageFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 storageBuffer16BitAccess;
 VkBool32 uniformAndStorageBuffer16BitAccess;
 VkBool32 storagePushConstant16;
 VkBool32 storageInputOutput16;
} VkPhysicalDevice16BitStorageFeatures;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• storageBuffer16BitAccess specifies whether objects in the StorageBuffer, or
PhysicalStorageBuffer storage class with the Block decoration can have 16-bit integer and 16-bit
floating-point members. If this feature is not enabled, 16-bit integer or 16-bit floating-point
members must not be used in such objects. This also specifies whether shader modules can
declare the StorageBuffer16BitAccess capability.

• uniformAndStorageBuffer16BitAccess specifies whether objects in the Uniform storage class with
the Block decoration can have 16-bit integer and 16-bit floating-point members. If this feature is
not enabled, 16-bit integer or 16-bit floating-point members must not be used in such objects.
This also specifies whether shader modules can declare the UniformAndStorageBuffer16BitAccess
capability.

• storagePushConstant16 specifies whether objects in the PushConstant storage class can have 16-
bit integer and 16-bit floating-point members. If this feature is not enabled, 16-bit integer or
floating-point members must not be used in such objects. This also specifies whether shader
modules can declare the StoragePushConstant16 capability.

• storageInputOutput16 specifies whether objects in the Input and Output storage classes can have

1152

16-bit integer and 16-bit floating-point members. If this feature is not enabled, 16-bit integer or
16-bit floating-point members must not be used in such objects. This also specifies whether
shader modules can declare the StorageInputOutput16 capability.

If the VkPhysicalDevice16BitStorageFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevice16BitStorageFeatures
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevice16BitStorageFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES

The VkPhysicalDeviceShaderFloat16Int8Features structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceShaderFloat16Int8Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderFloat16;
 VkBool32 shaderInt8;
} VkPhysicalDeviceShaderFloat16Int8Features;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderFloat16 indicates whether 16-bit floats (halfs) are supported in shader code. This also
indicates whether shader modules can declare the Float16 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Float16 SPIR-V capability:
Declaring and using 16-bit floats in the Private, Workgroup, and Function storage classes is
enabled, while declaring them in the interface storage classes (e.g., UniformConstant, Uniform,
StorageBuffer, Input, Output, and PushConstant) is not enabled.

• shaderInt8 indicates whether 8-bit integers (signed and unsigned) are supported in shader code.
This also indicates whether shader modules can declare the Int8 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Int8 SPIR-V capability:
Declaring and using 8-bit integers in the Private, Workgroup, and Function storage classes is
enabled, while declaring them in the interface storage classes (e.g., UniformConstant, Uniform,
StorageBuffer, Input, Output, and PushConstant) is not enabled.

If the VkPhysicalDeviceShaderFloat16Int8Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderFloat16Int8Features can also be used in the pNext chain of

1153

VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderFloat16Int8Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES

The VkPhysicalDeviceSamplerYcbcrConversionFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceSamplerYcbcrConversionFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 samplerYcbcrConversion;
} VkPhysicalDeviceSamplerYcbcrConversionFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• samplerYcbcrConversion specifies whether the implementation supports sampler Y′CBCR

conversion. If samplerYcbcrConversion is VK_FALSE, sampler Y′CBCR conversion is not supported,
and samplers using sampler Y′CBCR conversion must not be used.

If the VkPhysicalDeviceSamplerYcbcrConversionFeatures structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSamplerYcbcrConversionFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSamplerYcbcrConversionFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES

The VkPhysicalDeviceProtectedMemoryFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceProtectedMemoryFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 protectedMemory;
} VkPhysicalDeviceProtectedMemoryFeatures;

1154

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• protectedMemory specifies whether protected memory is supported.

If the VkPhysicalDeviceProtectedMemoryFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceProtectedMemoryFeatures can also be used in the pNext chain of VkDeviceCreateInfo
to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceProtectedMemoryFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES

The VkPhysicalDeviceShaderDrawParametersFeatures structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceShaderDrawParametersFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderDrawParameters;
} VkPhysicalDeviceShaderDrawParametersFeatures;

// Provided by VK_VERSION_1_1
typedef VkPhysicalDeviceShaderDrawParametersFeatures
VkPhysicalDeviceShaderDrawParameterFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderDrawParameters specifies whether the implementation supports the SPIR-V DrawParameters
capability. When this feature is not enabled, shader modules must not declare the
SPV_KHR_shader_draw_parameters extension or the DrawParameters capability.

If the VkPhysicalDeviceShaderDrawParametersFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderDrawParametersFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

1155

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderDrawParametersFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES

The VkPhysicalDeviceDescriptorIndexingFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceDescriptorIndexingFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderInputAttachmentArrayDynamicIndexing;
 VkBool32 shaderUniformTexelBufferArrayDynamicIndexing;
 VkBool32 shaderStorageTexelBufferArrayDynamicIndexing;
 VkBool32 shaderUniformBufferArrayNonUniformIndexing;
 VkBool32 shaderSampledImageArrayNonUniformIndexing;
 VkBool32 shaderStorageBufferArrayNonUniformIndexing;
 VkBool32 shaderStorageImageArrayNonUniformIndexing;
 VkBool32 shaderInputAttachmentArrayNonUniformIndexing;
 VkBool32 shaderUniformTexelBufferArrayNonUniformIndexing;
 VkBool32 shaderStorageTexelBufferArrayNonUniformIndexing;
 VkBool32 descriptorBindingUniformBufferUpdateAfterBind;
 VkBool32 descriptorBindingSampledImageUpdateAfterBind;
 VkBool32 descriptorBindingStorageImageUpdateAfterBind;
 VkBool32 descriptorBindingStorageBufferUpdateAfterBind;
 VkBool32 descriptorBindingUniformTexelBufferUpdateAfterBind;
 VkBool32 descriptorBindingStorageTexelBufferUpdateAfterBind;
 VkBool32 descriptorBindingUpdateUnusedWhilePending;
 VkBool32 descriptorBindingPartiallyBound;
 VkBool32 descriptorBindingVariableDescriptorCount;
 VkBool32 runtimeDescriptorArray;
} VkPhysicalDeviceDescriptorIndexingFeatures;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderInputAttachmentArrayDynamicIndexing indicates whether arrays of input attachments can
be indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the InputAttachmentArrayDynamicIndexing
capability.

• shaderUniformTexelBufferArrayDynamicIndexing indicates whether arrays of uniform texel
buffers can be indexed by dynamically uniform integer expressions in shader code. If this
feature is not enabled, resources with a descriptor type of

1156

VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must be indexed only by constant integral expressions
when aggregated into arrays in shader code. This also indicates whether shader modules can
declare the UniformTexelBufferArrayDynamicIndexing capability.

• shaderStorageTexelBufferArrayDynamicIndexing indicates whether arrays of storage texel buffers
can be indexed by dynamically uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must be
indexed only by constant integral expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the StorageTexelBufferArrayDynamicIndexing
capability.

• shaderUniformBufferArrayNonUniformIndexing indicates whether arrays of uniform buffers can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC must not be indexed by non-uniform integer
expressions when aggregated into arrays in shader code. This also indicates whether shader
modules can declare the UniformBufferArrayNonUniformIndexing capability.

• shaderSampledImageArrayNonUniformIndexing indicates whether arrays of samplers or sampled
images can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_SAMPLER,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must not be
indexed by non-uniform integer expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the SampledImageArrayNonUniformIndexing
capability.

• shaderStorageBufferArrayNonUniformIndexing indicates whether arrays of storage buffers can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC must not be indexed by non-uniform integer
expressions when aggregated into arrays in shader code. This also indicates whether shader
modules can declare the StorageBufferArrayNonUniformIndexing capability.

• shaderStorageImageArrayNonUniformIndexing indicates whether arrays of storage images can be
indexed by non-uniform integer expressions in shader code. If this feature is not enabled,
resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must not be indexed by
non-uniform integer expressions when aggregated into arrays in shader code. This also
indicates whether shader modules can declare the StorageImageArrayNonUniformIndexing
capability.

• shaderInputAttachmentArrayNonUniformIndexing indicates whether arrays of input attachments
can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT must not be
indexed by non-uniform integer expressions when aggregated into arrays in shader code. This
also indicates whether shader modules can declare the InputAttachmentArrayNonUniformIndexing
capability.

• shaderUniformTexelBufferArrayNonUniformIndexing indicates whether arrays of uniform texel
buffers can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER must not
be indexed by non-uniform integer expressions when aggregated into arrays in shader code.
This also indicates whether shader modules can declare the

1157

UniformTexelBufferArrayNonUniformIndexing capability.

• shaderStorageTexelBufferArrayNonUniformIndexing indicates whether arrays of storage texel
buffers can be indexed by non-uniform integer expressions in shader code. If this feature is not
enabled, resources with a descriptor type of VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER must not
be indexed by non-uniform integer expressions when aggregated into arrays in shader code.
This also indicates whether shader modules can declare the
StorageTexelBufferArrayNonUniformIndexing capability.

• descriptorBindingUniformBufferUpdateAfterBind indicates whether the implementation supports
updating uniform buffer descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER.

• descriptorBindingSampledImageUpdateAfterBind indicates whether the implementation supports
updating sampled image descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, or
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE.

• descriptorBindingStorageImageUpdateAfterBind indicates whether the implementation supports
updating storage image descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

• descriptorBindingStorageBufferUpdateAfterBind indicates whether the implementation supports
updating storage buffer descriptors after a set is bound. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER.

• descriptorBindingUniformTexelBufferUpdateAfterBind indicates whether the implementation
supports updating uniform texel buffer descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER.

• descriptorBindingStorageTexelBufferUpdateAfterBind indicates whether the implementation
supports updating storage texel buffer descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER.

• descriptorBindingUpdateUnusedWhilePending indicates whether the implementation supports
updating descriptors while the set is in use. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT must not be used.

• descriptorBindingPartiallyBound indicates whether the implementation supports statically
using a descriptor set binding in which some descriptors are not valid. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT must not be used.

• descriptorBindingVariableDescriptorCount indicates whether the implementation supports
descriptor sets with a variable-sized last binding. If this feature is not enabled,
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT must not be used.

• runtimeDescriptorArray indicates whether the implementation supports the SPIR-V
RuntimeDescriptorArray capability. If this feature is not enabled, descriptors must not be

1158

declared in runtime arrays.

If the VkPhysicalDeviceDescriptorIndexingFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDescriptorIndexingFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDescriptorIndexingFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES

The VkPhysicalDeviceVulkanMemoryModelFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceVulkanMemoryModelFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 vulkanMemoryModel;
 VkBool32 vulkanMemoryModelDeviceScope;
 VkBool32 vulkanMemoryModelAvailabilityVisibilityChains;
} VkPhysicalDeviceVulkanMemoryModelFeatures;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• vulkanMemoryModel indicates whether shader modules can declare the VulkanMemoryModel
capability.

• vulkanMemoryModelDeviceScope indicates whether the Vulkan Memory Model can use Device
scope synchronization. This also indicates whether shader modules can declare the
VulkanMemoryModelDeviceScope capability.

• vulkanMemoryModelAvailabilityVisibilityChains indicates whether the Vulkan Memory Model
can use availability and visibility chains with more than one element.

If the VkPhysicalDeviceVulkanMemoryModelFeaturesKHR structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceVulkanMemoryModelFeaturesKHR can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceVulkanMemoryModelFeatures-sType-sType

1159

sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES

The VkPhysicalDeviceInlineUniformBlockFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceInlineUniformBlockFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 inlineUniformBlock;
 VkBool32 descriptorBindingInlineUniformBlockUpdateAfterBind;
} VkPhysicalDeviceInlineUniformBlockFeatures;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• inlineUniformBlock indicates whether the implementation supports inline uniform block
descriptors. If this feature is not enabled, VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK must not be
used.

• descriptorBindingInlineUniformBlockUpdateAfterBind indicates whether the implementation
supports updating inline uniform block descriptors after a set is bound. If this feature is not
enabled, VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT must not be used with
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK.

If the VkPhysicalDeviceInlineUniformBlockFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceInlineUniformBlockFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceInlineUniformBlockFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES

The VkPhysicalDeviceScalarBlockLayoutFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceScalarBlockLayoutFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 scalarBlockLayout;
} VkPhysicalDeviceScalarBlockLayoutFeatures;

1160

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• scalarBlockLayout indicates that the implementation supports the layout of resource blocks in
shaders using scalar alignment.

If the VkPhysicalDeviceScalarBlockLayoutFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceScalarBlockLayoutFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceScalarBlockLayoutFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES

The VkPhysicalDeviceUniformBufferStandardLayoutFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceUniformBufferStandardLayoutFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 uniformBufferStandardLayout;
} VkPhysicalDeviceUniformBufferStandardLayoutFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• uniformBufferStandardLayout indicates that the implementation supports the same layouts for
uniform buffers as for storage and other kinds of buffers. See Standard Buffer Layout.

If the VkPhysicalDeviceUniformBufferStandardLayoutFeatures structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceUniformBufferStandardLayoutFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceUniformBufferStandardLayoutFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES

1161

The VkPhysicalDeviceBufferDeviceAddressFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceBufferDeviceAddressFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 bufferDeviceAddress;
 VkBool32 bufferDeviceAddressCaptureReplay;
 VkBool32 bufferDeviceAddressMultiDevice;
} VkPhysicalDeviceBufferDeviceAddressFeatures;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• bufferDeviceAddress indicates that the implementation supports accessing buffer memory in
shaders as storage buffers via an address queried from vkGetBufferDeviceAddress.

• bufferDeviceAddressCaptureReplay indicates that the implementation supports saving and
reusing buffer and device addresses, e.g. for trace capture and replay.

• bufferDeviceAddressMultiDevice indicates that the implementation supports the
bufferDeviceAddress feature for logical devices created with multiple physical devices. If this
feature is not supported, buffer addresses must not be queried on a logical device created with
more than one physical device.

Note

bufferDeviceAddressMultiDevice exists to allow certain legacy platforms to be able
to support bufferDeviceAddress without needing to support shared GPU virtual
addresses for multi-device configurations.

See vkGetBufferDeviceAddress for more information.

If the VkPhysicalDeviceBufferDeviceAddressFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceBufferDeviceAddressFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceBufferDeviceAddressFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES

The VkPhysicalDeviceImagelessFramebufferFeatures structure is defined as:

1162

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceImagelessFramebufferFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 imagelessFramebuffer;
} VkPhysicalDeviceImagelessFramebufferFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• imagelessFramebuffer indicates that the implementation supports specifying the image view for
attachments at render pass begin time via VkRenderPassAttachmentBeginInfo.

If the VkPhysicalDeviceImagelessFramebufferFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImagelessFramebufferFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImagelessFramebufferFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES

The VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderSubgroupExtendedTypes;
} VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderSubgroupExtendedTypes is a boolean specifying whether subgroup operations can use 8-bit
integer, 16-bit integer, 64-bit integer, 16-bit floating-point, and vectors of these types in group
operations with subgroup scope, if the implementation supports the types.

If the VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to

1163

indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES

The VkPhysicalDeviceHostQueryResetFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceHostQueryResetFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 hostQueryReset;
} VkPhysicalDeviceHostQueryResetFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• hostQueryReset indicates that the implementation supports resetting queries from the host with
vkResetQueryPool.

If the VkPhysicalDeviceHostQueryResetFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceHostQueryResetFeatures
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceHostQueryResetFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES

The VkPhysicalDeviceTimelineSemaphoreFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceTimelineSemaphoreFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 timelineSemaphore;
} VkPhysicalDeviceTimelineSemaphoreFeatures;

1164

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• timelineSemaphore indicates whether semaphores created with a VkSemaphoreType of
VK_SEMAPHORE_TYPE_TIMELINE are supported.

If the VkPhysicalDeviceTimelineSemaphoreFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceTimelineSemaphoreFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTimelineSemaphoreFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES

The VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 separateDepthStencilLayouts;
} VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• separateDepthStencilLayouts indicates whether the implementation supports a
VkImageMemoryBarrier for a depth/stencil image with only one of VK_IMAGE_ASPECT_DEPTH_BIT or
VK_IMAGE_ASPECT_STENCIL_BIT set, and whether VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL, or
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL can be used.

If the VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures structure is included in the pNext chain
of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

1165

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES

The VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderDemoteToHelperInvocation;
} VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderDemoteToHelperInvocation indicates whether the implementation supports the SPIR-V
DemoteToHelperInvocationEXT capability.

If the VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES

The VkPhysicalDeviceTextureCompressionASTCHDRFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceTextureCompressionASTCHDRFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 textureCompressionASTC_HDR;
} VkPhysicalDeviceTextureCompressionASTCHDRFeatures;

This structure describes the following feature:

1166

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• textureCompressionASTC_HDR indicates whether all of the ASTC HDR compressed texture formats
are supported. If this feature is enabled, then the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
features must be supported in optimalTilingFeatures for the following formats:

◦ VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK
To query for additional properties, or if the feature is not enabled,
vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceImageFormatProperties can be
used to check for supported properties of individual formats as normal.

If the VkPhysicalDeviceTextureCompressionASTCHDRFeatures structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceTextureCompressionASTCHDRFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTextureCompressionASTCHDRFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES

The VkPhysicalDeviceSubgroupSizeControlFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceSubgroupSizeControlFeatures {
 VkStructureType sType;

1167

 void* pNext;
 VkBool32 subgroupSizeControl;
 VkBool32 computeFullSubgroups;
} VkPhysicalDeviceSubgroupSizeControlFeatures;

This structure describes the following features:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• subgroupSizeControl indicates whether the implementation supports controlling shader
subgroup sizes via the VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT flag
and the VkPipelineShaderStageRequiredSubgroupSizeCreateInfo structure.

• computeFullSubgroups indicates whether the implementation supports requiring full subgroups
in compute shaders via the VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT flag.

If the VkPhysicalDeviceSubgroupSizeControlFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSubgroupSizeControlFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Note

The VkPhysicalDeviceSubgroupSizeControlFeaturesEXT structure was added in
version 2 of the VK_EXT_subgroup_size_control extension. Version 1
implementations of this extension will not fill out the features structure but
applications may assume that both subgroupSizeControl and computeFullSubgroups
are supported if the extension is supported. (See also the Feature Requirements
section.) Applications are advised to add a
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT structure to the pNext chain of
VkDeviceCreateInfo to enable the features regardless of the version of the
extension supported by the implementation. If the implementation only supports
version 1, it will safely ignore the VkPhysicalDeviceSubgroupSizeControlFeaturesEXT
structure.

Vulkan 1.3 implementations always support the features structure.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSubgroupSizeControlFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES

The VkPhysicalDevicePipelineCreationCacheControlFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDevicePipelineCreationCacheControlFeatures {

1168

 VkStructureType sType;
 void* pNext;
 VkBool32 pipelineCreationCacheControl;
} VkPhysicalDevicePipelineCreationCacheControlFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pipelineCreationCacheControl indicates that the implementation supports:

◦ The following can be used in Vk*PipelineCreateInfo::flags:

▪ VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT

▪ VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

◦ The following can be used in VkPipelineCacheCreateInfo::flags:

▪ VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

If the VkPhysicalDevicePipelineCreationCacheControlFeatures structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDevicePipelineCreationCacheControlFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePipelineCreationCacheControlFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES

The VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderZeroInitializeWorkgroupMemory;
} VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderZeroInitializeWorkgroupMemory specifies whether the implementation supports initializing
a variable in Workgroup storage class.

1169

If the VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures structure is included in the pNext
chain of the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is
filled in to indicate whether each corresponding feature is supported.
VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures-sType-sType
sType must be
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES

The VkPhysicalDevicePrivateDataFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDevicePrivateDataFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 privateData;
} VkPhysicalDevicePrivateDataFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• privateData indicates whether the implementation supports private data. See Private Data.

If the VkPhysicalDevicePrivateDataFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDevicePrivateDataFeatures
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePrivateDataFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES

nullDescriptor support requires the VK_EXT_robustness2 extension.

The VkPhysicalDeviceImageRobustnessFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceImageRobustnessFeatures {
 VkStructureType sType;
 void* pNext;

1170

 VkBool32 robustImageAccess;
} VkPhysicalDeviceImageRobustnessFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• robustImageAccess indicates whether image accesses are tightly bounds-checked against the
dimensions of the image view. Invalid texels resulting from out of bounds image loads will be
replaced as described in Texel Replacement, with either (0,0,1) or (0,0,0) values inserted for
missing G, B, or A components based on the format.

If the VkPhysicalDeviceImageRobustnessFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceImageRobustnessFeatures can also be used in the pNext chain of VkDeviceCreateInfo
to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageRobustnessFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES

The VkPhysicalDeviceShaderTerminateInvocationFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceShaderTerminateInvocationFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderTerminateInvocation;
} VkPhysicalDeviceShaderTerminateInvocationFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• shaderTerminateInvocation specifies whether the implementation supports SPIR-V modules that
use the SPV_KHR_terminate_invocation extension.

If the VkPhysicalDeviceShaderTerminateInvocationFeatures structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderTerminateInvocationFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

1171

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderTerminateInvocationFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES

The VkPhysicalDeviceSynchronization2Features structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceSynchronization2Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 synchronization2;
} VkPhysicalDeviceSynchronization2Features;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• synchronization2 indicates whether the implementation supports the new set of
synchronization commands introduced in VK_KHR_synchronization2.

If the VkPhysicalDeviceSynchronization2Features structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceSynchronization2Features can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSynchronization2Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES

The VkPhysicalDeviceShaderIntegerDotProductFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceShaderIntegerDotProductFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 shaderIntegerDotProduct;
} VkPhysicalDeviceShaderIntegerDotProductFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

1172

• pNext is NULL or a pointer to a structure extending this structure.

• shaderIntegerDotProduct specifies whether shader modules can declare the
DotProductInputAllKHR, DotProductInput4x8BitKHR, DotProductInput4x8BitPackedKHR and
DotProductKHR capabilities.

If the VkPhysicalDeviceShaderIntegerDotProductFeatures structure is included in the pNext chain of
the VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceShaderIntegerDotProductFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceShaderIntegerDotProductFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES

The VkPhysicalDeviceMaintenance4Features structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceMaintenance4Features {
 VkStructureType sType;
 void* pNext;
 VkBool32 maintenance4;
} VkPhysicalDeviceMaintenance4Features;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maintenance4 indicates that the implementation supports the following:

◦ The application may destroy a VkPipelineLayout object immediately after using it to create
another object.

◦ LocalSizeId can be used as an alternative to LocalSize to specify the local workgroup size
with specialization constants.

◦ Images created with identical creation parameters will always have the same alignment
requirements.

◦ The size memory requirement of a buffer or image is never greater than that of another
buffer or image created with a greater or equal size.

◦ Push constants do not have to be initialized before they are dynamically accessed.

◦ The interface matching rules allow a larger output vector to match with a smaller input
vector, with additional values being discarded.

If the VkPhysicalDeviceMaintenance4Features structure is included in the pNext chain of the

1173

VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported. VkPhysicalDeviceMaintenance4Features
can also be used in the pNext chain of VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance4Features-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES

The VkPhysicalDeviceDynamicRenderingFeatures structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceDynamicRenderingFeatures {
 VkStructureType sType;
 void* pNext;
 VkBool32 dynamicRendering;
} VkPhysicalDeviceDynamicRenderingFeatures;

This structure describes the following feature:

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• dynamicRendering specifies that the implementation supports dynamic render pass instances
using the vkCmdBeginRendering command.

If the VkPhysicalDeviceDynamicRenderingFeatures structure is included in the pNext chain of the
VkPhysicalDeviceFeatures2 structure passed to vkGetPhysicalDeviceFeatures2, it is filled in to
indicate whether each corresponding feature is supported.
VkPhysicalDeviceDynamicRenderingFeatures can also be used in the pNext chain of
VkDeviceCreateInfo to selectively enable these features.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDynamicRenderingFeatures-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES

32.1. Feature Requirements
All Vulkan graphics implementations must support the following features:

• robustBufferAccess

• multiview, if Vulkan 1.1 is supported.

• uniformBufferStandardLayout, if Vulkan 1.2 or the VK_KHR_uniform_buffer_standard_layout
extension is supported.

1174

• storageBuffer8BitAccess, if uniformAndStorageBuffer8BitAccess is enabled.

• If the descriptorIndexing feature is supported, or if the VK_EXT_descriptor_indexing extension is
supported:

◦ shaderSampledImageArrayDynamicIndexing

◦ shaderStorageBufferArrayDynamicIndexing

◦ shaderUniformTexelBufferArrayDynamicIndexing

◦ shaderStorageTexelBufferArrayDynamicIndexing

◦ shaderSampledImageArrayNonUniformIndexing

◦ shaderStorageBufferArrayNonUniformIndexing

◦ shaderUniformTexelBufferArrayNonUniformIndexing

◦ descriptorBindingSampledImageUpdateAfterBind

◦ descriptorBindingStorageImageUpdateAfterBind

◦ descriptorBindingStorageBufferUpdateAfterBind (see also robustBufferAccessUpdateAfterBind)

◦ descriptorBindingUniformTexelBufferUpdateAfterBind (see also
robustBufferAccessUpdateAfterBind)

◦ descriptorBindingStorageTexelBufferUpdateAfterBind (see also
robustBufferAccessUpdateAfterBind)

◦ descriptorBindingUpdateUnusedWhilePending

◦ descriptorBindingPartiallyBound

◦ runtimeDescriptorArray

• If Vulkan 1.3 is supported:

◦ vulkanMemoryModel

◦ vulkanMemoryModelDeviceScope

• inlineUniformBlock, if Vulkan 1.3 or the VK_EXT_inline_uniform_block extension is supported.

• descriptorBindingInlineUniformBlockUpdateAfterBind, if Vulkan 1.3 or the
VK_EXT_inline_uniform_block extension is supported; and if the descriptorIndexing feature is
supported, or the VK_EXT_descriptor_indexing extension is supported.

• subgroupBroadcastDynamicId, if Vulkan 1.2 is supported.

• subgroupSizeControl, if Vulkan 1.3 or the VK_EXT_subgroup_size_control extension is supported.

• computeFullSubgroups, if Vulkan 1.3 or the VK_EXT_subgroup_size_control extension is supported.

• imagelessFramebuffer, if Vulkan 1.2 or the VK_KHR_imageless_framebuffer extension is supported.

• separateDepthStencilLayouts, if Vulkan 1.2 or the VK_KHR_separate_depth_stencil_layouts
extension is supported.

• hostQueryReset, if Vulkan 1.2 or the VK_EXT_host_query_reset extension is supported.

• timelineSemaphore, if Vulkan 1.2 or the VK_KHR_timeline_semaphore extension is supported.

• pipelineCreationCacheControl, if Vulkan 1.3 or the VK_EXT_pipeline_creation_cache_control
extension is supported.

1175

• shaderSubgroupExtendedTypes, if Vulkan 1.2 or the VK_KHR_shader_subgroup_extended_types
extension is supported.

• textureCompressionASTC_HDR, if the VK_EXT_texture_compression_astc_hdr extension is supported.

• shaderDemoteToHelperInvocation, if Vulkan 1.3 or the VK_EXT_shader_demote_to_helper_invocation
extension is supported.

• texelBufferAlignment, if Vulkan 1.3 or the VK_EXT_texel_buffer_alignment extension is supported.

• bufferDeviceAddress, if Vulkan 1.3 or the VK_KHR_buffer_device_address extension is supported.

• shaderInt64, if the shaderSharedInt64Atomics or shaderBufferInt64Atomics features are supported.

• storageBuffer16BitAccess, if uniformAndStorageBuffer16BitAccess is enabled.

• robustImageAccess, if Vulkan 1.3 or the VK_EXT_image_robustness extension is supported.

• shaderTerminateInvocation if Vulkan 1.3 or the VK_KHR_shader_terminate_invocation extension is
supported.

• shaderZeroInitializeWorkgroupMemory, if Vulkan 1.3 or the
VK_KHR_zero_initialize_workgroup_memory extension is supported.

• synchronization2 if Vulkan 1.3 or the VK_KHR_synchronization2 extension is supported.

• shaderIntegerDotProduct if Vulkan 1.3 or the VK_KHR_shader_integer_dot_product extension is
supported.

• maintenance4, if Vulkan 1.3 or the VK_KHR_maintenance4 extension is supported.

• privateData, if Vulkan 1.3 or the VK_EXT_private_data extension is supported.

• dynamicRendering, if Vulkan 1.3 or the VK_KHR_dynamic_rendering extension is supported.

All other features defined in the Specification are optional.

32.2. Profile Features

32.2.1. Roadmap 2022

Implementations that claim support for the Roadmap 2022 profile must support the following
features:

• fullDrawIndexUint32

• imageCubeArray

• independentBlend

• sampleRateShading

• drawIndirectFirstInstance

• depthClamp

• depthBiasClamp

• samplerAnisotropy

• occlusionQueryPrecise

1176

• fragmentStoresAndAtomics

• shaderStorageImageExtendedFormats

• shaderUniformBufferArrayDynamicIndexing

• shaderSampledImageArrayDynamicIndexing

• shaderStorageBufferArrayDynamicIndexing

• shaderStorageImageArrayDynamicIndexing

• samplerYcbcrConversion

• samplerMirrorClampToEdge

• descriptorIndexing

• shaderUniformTexelBufferArrayDynamicIndexing

• shaderStorageTexelBufferArrayDynamicIndexing

• shaderUniformBufferArrayNonUniformIndexing

• shaderSampledImageArrayNonUniformIndexing

• shaderStorageBufferArrayNonUniformIndexing

• shaderStorageImageArrayNonUniformIndexing

• shaderUniformTexelBufferArrayNonUniformIndexing

• shaderStorageTexelBufferArrayNonUniformIndexing

• descriptorBindingSampledImageUpdateAfterBind

• descriptorBindingStorageImageUpdateAfterBind

• descriptorBindingStorageBufferUpdateAfterBind

• descriptorBindingUniformTexelBufferUpdateAfterBind

• descriptorBindingStorageTexelBufferUpdateAfterBind

• descriptorBindingUpdateUnusedWhilePending

• descriptorBindingPartiallyBound

• descriptorBindingVariableDescriptorCount

• runtimeDescriptorArray

• scalarBlockLayout

32.2.2. Roadmap 2024

Implementations that claim support for the Roadmap 2024 profile must support the following
features:

• multiDrawIndirect

• shaderImageGatherExtended

• shaderDrawParameters

• shaderInt8

1177

• shaderInt16

• shaderFloat16

• storageBuffer16BitAccess

• storageBuffer8BitAccess

1178

Chapter 33. Limits
Limits are implementation-dependent minimums, maximums, and other device characteristics that
an application may need to be aware of.

Note

Limits are reported via the basic VkPhysicalDeviceLimits structure as well as the
extensible structure VkPhysicalDeviceProperties2, which was added in
VK_KHR_get_physical_device_properties2 and included in Vulkan 1.1. When limits
are added in future Vulkan versions or extensions, each extension should
introduce one new limit structure, if needed. This structure can be added to the
pNext chain of the VkPhysicalDeviceProperties2 structure.

The VkPhysicalDeviceLimits structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkPhysicalDeviceLimits {
 uint32_t maxImageDimension1D;
 uint32_t maxImageDimension2D;
 uint32_t maxImageDimension3D;
 uint32_t maxImageDimensionCube;
 uint32_t maxImageArrayLayers;
 uint32_t maxTexelBufferElements;
 uint32_t maxUniformBufferRange;
 uint32_t maxStorageBufferRange;
 uint32_t maxPushConstantsSize;
 uint32_t maxMemoryAllocationCount;
 uint32_t maxSamplerAllocationCount;
 VkDeviceSize bufferImageGranularity;
 VkDeviceSize sparseAddressSpaceSize;
 uint32_t maxBoundDescriptorSets;
 uint32_t maxPerStageDescriptorSamplers;
 uint32_t maxPerStageDescriptorUniformBuffers;
 uint32_t maxPerStageDescriptorStorageBuffers;
 uint32_t maxPerStageDescriptorSampledImages;
 uint32_t maxPerStageDescriptorStorageImages;
 uint32_t maxPerStageDescriptorInputAttachments;
 uint32_t maxPerStageResources;
 uint32_t maxDescriptorSetSamplers;
 uint32_t maxDescriptorSetUniformBuffers;
 uint32_t maxDescriptorSetUniformBuffersDynamic;
 uint32_t maxDescriptorSetStorageBuffers;
 uint32_t maxDescriptorSetStorageBuffersDynamic;
 uint32_t maxDescriptorSetSampledImages;
 uint32_t maxDescriptorSetStorageImages;
 uint32_t maxDescriptorSetInputAttachments;
 uint32_t maxVertexInputAttributes;
 uint32_t maxVertexInputBindings;
 uint32_t maxVertexInputAttributeOffset;

1179

 uint32_t maxVertexInputBindingStride;
 uint32_t maxVertexOutputComponents;
 uint32_t maxTessellationGenerationLevel;
 uint32_t maxTessellationPatchSize;
 uint32_t maxTessellationControlPerVertexInputComponents;
 uint32_t maxTessellationControlPerVertexOutputComponents;
 uint32_t maxTessellationControlPerPatchOutputComponents;
 uint32_t maxTessellationControlTotalOutputComponents;
 uint32_t maxTessellationEvaluationInputComponents;
 uint32_t maxTessellationEvaluationOutputComponents;
 uint32_t maxGeometryShaderInvocations;
 uint32_t maxGeometryInputComponents;
 uint32_t maxGeometryOutputComponents;
 uint32_t maxGeometryOutputVertices;
 uint32_t maxGeometryTotalOutputComponents;
 uint32_t maxFragmentInputComponents;
 uint32_t maxFragmentOutputAttachments;
 uint32_t maxFragmentDualSrcAttachments;
 uint32_t maxFragmentCombinedOutputResources;
 uint32_t maxComputeSharedMemorySize;
 uint32_t maxComputeWorkGroupCount[3];
 uint32_t maxComputeWorkGroupInvocations;
 uint32_t maxComputeWorkGroupSize[3];
 uint32_t subPixelPrecisionBits;
 uint32_t subTexelPrecisionBits;
 uint32_t mipmapPrecisionBits;
 uint32_t maxDrawIndexedIndexValue;
 uint32_t maxDrawIndirectCount;
 float maxSamplerLodBias;
 float maxSamplerAnisotropy;
 uint32_t maxViewports;
 uint32_t maxViewportDimensions[2];
 float viewportBoundsRange[2];
 uint32_t viewportSubPixelBits;
 size_t minMemoryMapAlignment;
 VkDeviceSize minTexelBufferOffsetAlignment;
 VkDeviceSize minUniformBufferOffsetAlignment;
 VkDeviceSize minStorageBufferOffsetAlignment;
 int32_t minTexelOffset;
 uint32_t maxTexelOffset;
 int32_t minTexelGatherOffset;
 uint32_t maxTexelGatherOffset;
 float minInterpolationOffset;
 float maxInterpolationOffset;
 uint32_t subPixelInterpolationOffsetBits;
 uint32_t maxFramebufferWidth;
 uint32_t maxFramebufferHeight;
 uint32_t maxFramebufferLayers;
 VkSampleCountFlags framebufferColorSampleCounts;
 VkSampleCountFlags framebufferDepthSampleCounts;
 VkSampleCountFlags framebufferStencilSampleCounts;

1180

 VkSampleCountFlags framebufferNoAttachmentsSampleCounts;
 uint32_t maxColorAttachments;
 VkSampleCountFlags sampledImageColorSampleCounts;
 VkSampleCountFlags sampledImageIntegerSampleCounts;
 VkSampleCountFlags sampledImageDepthSampleCounts;
 VkSampleCountFlags sampledImageStencilSampleCounts;
 VkSampleCountFlags storageImageSampleCounts;
 uint32_t maxSampleMaskWords;
 VkBool32 timestampComputeAndGraphics;
 float timestampPeriod;
 uint32_t maxClipDistances;
 uint32_t maxCullDistances;
 uint32_t maxCombinedClipAndCullDistances;
 uint32_t discreteQueuePriorities;
 float pointSizeRange[2];
 float lineWidthRange[2];
 float pointSizeGranularity;
 float lineWidthGranularity;
 VkBool32 strictLines;
 VkBool32 standardSampleLocations;
 VkDeviceSize optimalBufferCopyOffsetAlignment;
 VkDeviceSize optimalBufferCopyRowPitchAlignment;
 VkDeviceSize nonCoherentAtomSize;
} VkPhysicalDeviceLimits;

The VkPhysicalDeviceLimits are properties of the physical device. These are available in the limits
member of the VkPhysicalDeviceProperties structure which is returned from
vkGetPhysicalDeviceProperties.

• maxImageDimension1D is the largest dimension (width) that is guaranteed to be supported for all
images created with an imageType of VK_IMAGE_TYPE_1D. Some combinations of image parameters
(format, usage, etc.) may allow support for larger dimensions, which can be queried using
vkGetPhysicalDeviceImageFormatProperties.

• maxImageDimension2D is the largest dimension (width or height) that is guaranteed to be supported
for all images created with an imageType of VK_IMAGE_TYPE_2D and without
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set in flags. Some combinations of image parameters
(format, usage, etc.) may allow support for larger dimensions, which can be queried using
vkGetPhysicalDeviceImageFormatProperties.

• maxImageDimension3D is the largest dimension (width, height, or depth) that is guaranteed to be
supported for all images created with an imageType of VK_IMAGE_TYPE_3D. Some combinations of
image parameters (format, usage, etc.) may allow support for larger dimensions, which can be
queried using vkGetPhysicalDeviceImageFormatProperties.

• maxImageDimensionCube is the largest dimension (width or height) that is guaranteed to be
supported for all images created with an imageType of VK_IMAGE_TYPE_2D and with
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set in flags. Some combinations of image parameters
(format, usage, etc.) may allow support for larger dimensions, which can be queried using
vkGetPhysicalDeviceImageFormatProperties.

1181

• maxImageArrayLayers is the maximum number of layers (arrayLayers) for an image.

• maxTexelBufferElements is the maximum number of addressable texels for a buffer view created
on a buffer which was created with the VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT set in the usage member of the VkBufferCreateInfo
structure.

• maxUniformBufferRange is the maximum value that can be specified in the range member of a
VkDescriptorBufferInfo structure passed to vkUpdateDescriptorSets for descriptors of type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• maxStorageBufferRange is the maximum value that can be specified in the range member of a
VkDescriptorBufferInfo structure passed to vkUpdateDescriptorSets for descriptors of type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

• maxPushConstantsSize is the maximum size, in bytes, of the pool of push constant memory. For
each of the push constant ranges indicated by the pPushConstantRanges member of the
VkPipelineLayoutCreateInfo structure, (offset + size) must be less than or equal to this limit.

• maxMemoryAllocationCount is the maximum number of device memory allocations, as created by
vkAllocateMemory, which can simultaneously exist.

• maxSamplerAllocationCount is the maximum number of sampler objects, as created by
vkCreateSampler, which can simultaneously exist on a device.

• bufferImageGranularity is the granularity, in bytes, at which buffer or linear image resources,
and optimal image resources can be bound to adjacent offsets in the same VkDeviceMemory object
without aliasing. See Buffer-Image Granularity for more details.

• sparseAddressSpaceSize is the total amount of address space available, in bytes, for sparse
memory resources. This is an upper bound on the sum of the sizes of all sparse resources,
regardless of whether any memory is bound to them.

• maxBoundDescriptorSets is the maximum number of descriptor sets that can be simultaneously
used by a pipeline. All DescriptorSet decorations in shader modules must have a value less than
maxBoundDescriptorSets. See Descriptor Sets.

• maxPerStageDescriptorSamplers is the maximum number of samplers that can be accessible to a
single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. A
descriptor is accessible to a shader stage when the stageFlags member of the
VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Sampler and
Combined Image Sampler.

• maxPerStageDescriptorUniformBuffers is the maximum number of uniform buffers that can be
accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against
this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. A
descriptor is accessible to a shader stage when the stageFlags member of the
VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Uniform Buffer
and Dynamic Uniform Buffer.

1182

• maxPerStageDescriptorStorageBuffers is the maximum number of storage buffers that can be
accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against
this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. A
descriptor is accessible to a pipeline shader stage when the stageFlags member of the
VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Storage Buffer
and Dynamic Storage Buffer.

• maxPerStageDescriptorSampledImages is the maximum number of sampled images that can be
accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER count against this limit. Only descriptors in descriptor
set layouts created without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit
set count against this limit. A descriptor is accessible to a pipeline shader stage when the
stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for that shader
stage set. See Combined Image Sampler, Sampled Image, and Uniform Texel Buffer.

• maxPerStageDescriptorStorageImages is the maximum number of storage images that can be
accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count against
this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. A
descriptor is accessible to a pipeline shader stage when the stageFlags member of the
VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Storage Image,
and Storage Texel Buffer.

• maxPerStageDescriptorInputAttachments is the maximum number of input attachments that can
be accessible to a single shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count against this limit. Only descriptors in descriptor set
layouts created without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set
count against this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags
member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set.
These are only supported for the fragment stage. See Input Attachment.

• maxPerStageResources is the maximum number of resources that can be accessible to a single
shader stage in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count
against this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. For
the fragment shader stage the framebuffer color attachments also count against this limit.

• maxDescriptorSetSamplers is the maximum number of samplers that can be included in a
pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See

1183

Sampler and Combined Image Sampler.

• maxDescriptorSetUniformBuffers is the maximum number of uniform buffers that can be
included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Uniform Buffer and Dynamic Uniform Buffer.

• maxDescriptorSetUniformBuffersDynamic is the maximum number of dynamic uniform buffers
that can be included in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Dynamic Uniform Buffer.

• maxDescriptorSetStorageBuffers is the maximum number of storage buffers that can be included
in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Storage Buffer and Dynamic Storage Buffer.

• maxDescriptorSetStorageBuffersDynamic is the maximum number of dynamic storage buffers that
can be included in a pipeline layout. Descriptors with a type of
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. Only descriptors in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Dynamic Storage Buffer.

• maxDescriptorSetSampledImages is the maximum number of sampled images that can be included
in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER count against
this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Combined Image Sampler, Sampled Image, and Uniform Texel Buffer.

• maxDescriptorSetStorageImages is the maximum number of storage images that can be included
in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count against this limit. Only descriptors in descriptor
set layouts created without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit
set count against this limit. See Storage Image, and Storage Texel Buffer.

• maxDescriptorSetInputAttachments is the maximum number of input attachments that can be
included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT
count against this limit. Only descriptors in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit. See
Input Attachment.

• maxVertexInputAttributes is the maximum number of vertex input attributes that can be
specified for a graphics pipeline. These are described in the array of
VkVertexInputAttributeDescription structures that are provided at graphics pipeline creation
time via the pVertexAttributeDescriptions member of the VkPipelineVertexInputStateCreateInfo

1184

structure. See Vertex Attributes and Vertex Input Description.

• maxVertexInputBindings is the maximum number of vertex buffers that can be specified for
providing vertex attributes to a graphics pipeline. These are described in the array of
VkVertexInputBindingDescription structures that are provided at graphics pipeline creation time
via the pVertexBindingDescriptions member of the VkPipelineVertexInputStateCreateInfo
structure. The binding member of VkVertexInputBindingDescription must be less than this limit.
See Vertex Input Description.

• maxVertexInputAttributeOffset is the maximum vertex input attribute offset that can be added
to the vertex input binding stride. The offset member of the VkVertexInputAttributeDescription
structure must be less than or equal to this limit. See Vertex Input Description.

• maxVertexInputBindingStride is the maximum vertex input binding stride that can be specified
in a vertex input binding. The stride member of the VkVertexInputBindingDescription structure
must be less than or equal to this limit. See Vertex Input Description.

• maxVertexOutputComponents is the maximum number of components of output variables which
can be output by a vertex shader. See Vertex Shaders.

• maxTessellationGenerationLevel is the maximum tessellation generation level supported by the
fixed-function tessellation primitive generator. See Tessellation.

• maxTessellationPatchSize is the maximum patch size, in vertices, of patches that can be
processed by the tessellation control shader and tessellation primitive generator. The
patchControlPoints member of the VkPipelineTessellationStateCreateInfo structure specified at
pipeline creation time and the value provided in the OutputVertices execution mode of shader
modules must be less than or equal to this limit. See Tessellation.

• maxTessellationControlPerVertexInputComponents is the maximum number of components of
input variables which can be provided as per-vertex inputs to the tessellation control shader
stage.

• maxTessellationControlPerVertexOutputComponents is the maximum number of components of
per-vertex output variables which can be output from the tessellation control shader stage.

• maxTessellationControlPerPatchOutputComponents is the maximum number of components of per-
patch output variables which can be output from the tessellation control shader stage.

• maxTessellationControlTotalOutputComponents is the maximum total number of components of
per-vertex and per-patch output variables which can be output from the tessellation control
shader stage.

• maxTessellationEvaluationInputComponents is the maximum number of components of input
variables which can be provided as per-vertex inputs to the tessellation evaluation shader
stage.

• maxTessellationEvaluationOutputComponents is the maximum number of components of per-
vertex output variables which can be output from the tessellation evaluation shader stage.

• maxGeometryShaderInvocations is the maximum invocation count supported for instanced
geometry shaders. The value provided in the Invocations execution mode of shader modules
must be less than or equal to this limit. See Geometry Shading.

• maxGeometryInputComponents is the maximum number of components of input variables which
can be provided as inputs to the geometry shader stage.

1185

• maxGeometryOutputComponents is the maximum number of components of output variables which
can be output from the geometry shader stage.

• maxGeometryOutputVertices is the maximum number of vertices which can be emitted by any
geometry shader.

• maxGeometryTotalOutputComponents is the maximum total number of components of output
variables, across all emitted vertices, which can be output from the geometry shader stage.

• maxFragmentInputComponents is the maximum number of components of input variables which
can be provided as inputs to the fragment shader stage.

• maxFragmentOutputAttachments is the maximum number of output attachments which can be
written to by the fragment shader stage.

• maxFragmentDualSrcAttachments is the maximum number of output attachments which can be
written to by the fragment shader stage when blending is enabled and one of the dual source
blend modes is in use. See Dual-Source Blending and dualSrcBlend.

• maxFragmentCombinedOutputResources is the total number of storage buffers, storage images, and
output Location decorated color attachments (described in Fragment Output Interface) which
can be used in the fragment shader stage.

• maxComputeSharedMemorySize is the maximum total storage size, in bytes, available for variables
declared with the Workgroup storage class in shader modules (or with the shared storage qualifier
in GLSL) in the compute shader stage.

• maxComputeWorkGroupCount[3] is the maximum number of local workgroups that can be
dispatched by a single dispatching command. These three values represent the maximum
number of local workgroups for the X, Y, and Z dimensions, respectively. The workgroup count
parameters to the dispatching commands must be less than or equal to the corresponding limit.
See Dispatching Commands.

• maxComputeWorkGroupInvocations is the maximum total number of compute shader invocations in
a single local workgroup. The product of the X, Y, and Z sizes, as specified by the LocalSize or
LocalSizeId execution mode in shader modules or by the object decorated by the WorkgroupSize
decoration, must be less than or equal to this limit.

• maxComputeWorkGroupSize[3] is the maximum size of a local compute workgroup, per dimension.
These three values represent the maximum local workgroup size in the X, Y, and Z dimensions,
respectively. The x, y, and z sizes, as specified by the LocalSize or LocalSizeId execution mode or
by the object decorated by the WorkgroupSize decoration in shader modules, must be less than or
equal to the corresponding limit.

• subPixelPrecisionBits is the number of bits of subpixel precision in framebuffer coordinates xf

and yf. See Rasterization.

• subTexelPrecisionBits is the number of bits of precision in the division along an axis of an
image used for minification and magnification filters. 2subTexelPrecisionBits is the actual number of
divisions along each axis of the image represented. Sub-texel values calculated during image
sampling will snap to these locations when generating the filtered results.

• mipmapPrecisionBits is the number of bits of division that the LOD calculation for mipmap
fetching get snapped to when determining the contribution from each mip level to the mip
filtered results. 2mipmapPrecisionBits is the actual number of divisions.

1186

• maxDrawIndexedIndexValue is the maximum index value that can be used for indexed draw calls
when using 32-bit indices. This excludes the primitive restart index value of 0xFFFFFFFF. See
fullDrawIndexUint32.

• maxDrawIndirectCount is the maximum draw count that is supported for indirect drawing calls.
See multiDrawIndirect.

• maxSamplerLodBias is the maximum absolute sampler LOD bias. The sum of the mipLodBias
member of the VkSamplerCreateInfo structure and the Bias operand of image sampling
operations in shader modules (or 0 if no Bias operand is provided to an image sampling
operation) are clamped to the range [-maxSamplerLodBias,+maxSamplerLodBias]. See [samplers-
mipLodBias].

• maxSamplerAnisotropy is the maximum degree of sampler anisotropy. The maximum degree of
anisotropic filtering used for an image sampling operation is the minimum of the maxAnisotropy
member of the VkSamplerCreateInfo structure and this limit. See [samplers-maxAnisotropy].

• maxViewports is the maximum number of active viewports. The viewportCount member of the
VkPipelineViewportStateCreateInfo structure that is provided at pipeline creation must be less
than or equal to this limit.

• maxViewportDimensions[2] are the maximum viewport dimensions in the X (width) and Y (height)
dimensions, respectively. The maximum viewport dimensions must be greater than or equal to
the largest image which can be created and used as a framebuffer attachment. See Controlling
the Viewport.

• viewportBoundsRange[2] is the [minimum, maximum] range that the corners of a viewport must
be contained in. This range must be at least [-2 × size, 2 × size - 1], where size =
max(maxViewportDimensions[0], maxViewportDimensions[1]). See Controlling the Viewport.

Note

The intent of the viewportBoundsRange limit is to allow a maximum sized
viewport to be arbitrarily shifted relative to the output target as long as at least
some portion intersects. This would give a bounds limit of [-size + 1, 2 × size -
1] which would allow all possible non-empty-set intersections of the output
target and the viewport. Since these numbers are typically powers of two,
picking the signed number range using the smallest possible number of bits
ends up with the specified range.

• viewportSubPixelBits is the number of bits of subpixel precision for viewport bounds. The
subpixel precision that floating-point viewport bounds are interpreted at is given by this limit.

• minMemoryMapAlignment is the minimum required alignment, in bytes, of host visible memory
allocations within the host address space. When mapping a memory allocation with
vkMapMemory, subtracting offset bytes from the returned pointer will always produce an
integer multiple of this limit. See Host Access to Device Memory Objects. The value must be a
power of two.

• minTexelBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset
member of the VkBufferViewCreateInfo structure for texel buffers. The value must be a power
of two. If texelBufferAlignment is enabled, this limit is equivalent to the maximum of the
uniformTexelBufferOffsetAlignmentBytes and storageTexelBufferOffsetAlignmentBytes members

1187

of VkPhysicalDeviceTexelBufferAlignmentProperties, but smaller alignment is optionally
allowed by storageTexelBufferOffsetSingleTexelAlignment and
uniformTexelBufferOffsetSingleTexelAlignment. If texelBufferAlignment is not enabled,
VkBufferViewCreateInfo::offset must be a multiple of this value.

• minUniformBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset
member of the VkDescriptorBufferInfo structure for uniform buffers. When a descriptor of type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC is updated,
the offset must be an integer multiple of this limit. Similarly, dynamic offsets for uniform
buffers must be multiples of this limit. The value must be a power of two.

• minStorageBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset
member of the VkDescriptorBufferInfo structure for storage buffers. When a descriptor of type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC is updated,
the offset must be an integer multiple of this limit. Similarly, dynamic offsets for storage
buffers must be multiples of this limit. The value must be a power of two.

• minTexelOffset is the minimum offset value for the ConstOffset image operand of any of the
OpImageSample* or OpImageFetch* image instructions.

• maxTexelOffset is the maximum offset value for the ConstOffset image operand of any of the
OpImageSample* or OpImageFetch* image instructions.

• minTexelGatherOffset is the minimum offset value for the Offset, ConstOffset, or ConstOffsets
image operands of any of the OpImage*Gather image instructions.

• maxTexelGatherOffset is the maximum offset value for the Offset, ConstOffset, or ConstOffsets
image operands of any of the OpImage*Gather image instructions.

• minInterpolationOffset is the base minimum (inclusive) negative offset value for the Offset
operand of the InterpolateAtOffset extended instruction.

• maxInterpolationOffset is the base maximum (inclusive) positive offset value for the Offset
operand of the InterpolateAtOffset extended instruction.

• subPixelInterpolationOffsetBits is the number of fractional bits that the x and y offsets to the
InterpolateAtOffset extended instruction may be rounded to as fixed-point values.

• maxFramebufferWidth is the maximum width for a framebuffer. The width member of the
VkFramebufferCreateInfo structure must be less than or equal to this limit.

• maxFramebufferHeight is the maximum height for a framebuffer. The height member of the
VkFramebufferCreateInfo structure must be less than or equal to this limit.

• maxFramebufferLayers is the maximum layer count for a layered framebuffer. The layers
member of the VkFramebufferCreateInfo structure must be less than or equal to this limit.

• framebufferColorSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the color
sample counts that are supported for all framebuffer color attachments with floating- or fixed-
point formats. For color attachments with integer formats, see
framebufferIntegerColorSampleCounts.

• framebufferDepthSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the supported
depth sample counts for all framebuffer depth/stencil attachments, when the format includes a
depth component.

• framebufferStencilSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the

1188

supported stencil sample counts for all framebuffer depth/stencil attachments, when the format
includes a stencil component.

• framebufferNoAttachmentsSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the
supported sample counts for a subpass which uses no attachments.

• maxColorAttachments is the maximum number of color attachments that can be used by a
subpass in a render pass. The colorAttachmentCount member of the VkSubpassDescription or
VkSubpassDescription2 structure must be less than or equal to this limit.

• sampledImageColorSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing
VK_IMAGE_USAGE_SAMPLED_BIT, and a non-integer color format.

• sampledImageIntegerSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing
VK_IMAGE_USAGE_SAMPLED_BIT, and an integer color format.

• sampledImageDepthSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing
VK_IMAGE_USAGE_SAMPLED_BIT, and a depth format.

• sampledImageStencilSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing
VK_IMAGE_USAGE_SAMPLED_BIT, and a stencil format.

• storageImageSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample counts
supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, and usage containing
VK_IMAGE_USAGE_STORAGE_BIT.

• maxSampleMaskWords is the maximum number of array elements of a variable decorated with the
SampleMask built-in decoration.

• timestampComputeAndGraphics specifies support for timestamps on all graphics and compute
queues. If this limit is set to VK_TRUE, all queues that advertise the VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT in the VkQueueFamilyProperties::queueFlags support
VkQueueFamilyProperties::timestampValidBits of at least 36. See Timestamp Queries.

• timestampPeriod is the number of nanoseconds required for a timestamp query to be
incremented by 1. See Timestamp Queries.

• maxClipDistances is the maximum number of clip distances that can be used in a single shader
stage. The size of any array declared with the ClipDistance built-in decoration in a shader
module must be less than or equal to this limit.

• maxCullDistances is the maximum number of cull distances that can be used in a single shader
stage. The size of any array declared with the CullDistance built-in decoration in a shader
module must be less than or equal to this limit.

• maxCombinedClipAndCullDistances is the maximum combined number of clip and cull distances
that can be used in a single shader stage. The sum of the sizes of all arrays declared with the
ClipDistance and CullDistance built-in decoration used by a single shader stage in a shader
module must be less than or equal to this limit.

• discreteQueuePriorities is the number of discrete priorities that can be assigned to a queue
based on the value of each member of VkDeviceQueueCreateInfo::pQueuePriorities. This must

1189

be at least 2, and levels must be spread evenly over the range, with at least one level at 1.0, and
another at 0.0. See Queue Priority.

• pointSizeRange[2] is the range [minimum,maximum] of supported sizes for points. Values written to
variables decorated with the PointSize built-in decoration are clamped to this range.

• lineWidthRange[2] is the range [minimum,maximum] of supported widths for lines. Values specified
by the lineWidth member of the VkPipelineRasterizationStateCreateInfo or the lineWidth
parameter to vkCmdSetLineWidth are clamped to this range.

• pointSizeGranularity is the granularity of supported point sizes. Not all point sizes in the range
defined by pointSizeRange are supported. This limit specifies the granularity (or increment)
between successive supported point sizes.

• lineWidthGranularity is the granularity of supported line widths. Not all line widths in the range
defined by lineWidthRange are supported. This limit specifies the granularity (or increment)
between successive supported line widths.

• strictLines specifies whether lines are rasterized according to the preferred method of
rasterization. If set to VK_FALSE, lines may be rasterized under a relaxed set of rules. If set to
VK_TRUE, lines are rasterized as per the strict definition. See Basic Line Segment Rasterization.

• standardSampleLocations specifies whether rasterization uses the standard sample locations as
documented in Multisampling. If set to VK_TRUE, the implementation uses the documented
sample locations. If set to VK_FALSE, the implementation may use different sample locations.

• optimalBufferCopyOffsetAlignment is the optimal buffer offset alignment in bytes for
vkCmdCopyBufferToImage2, vkCmdCopyBufferToImage, vkCmdCopyImageToBuffer2, and
vkCmdCopyImageToBuffer. The per texel alignment requirements are enforced, but
applications should use the optimal alignment for optimal performance and power use. The
value must be a power of two.

• optimalBufferCopyRowPitchAlignment is the optimal buffer row pitch alignment in bytes for
vkCmdCopyBufferToImage2, vkCmdCopyBufferToImage, vkCmdCopyImageToBuffer2, and
vkCmdCopyImageToBuffer. Row pitch is the number of bytes between texels with the same X
coordinate in adjacent rows (Y coordinates differ by one). The per texel alignment requirements
are enforced, but applications should use the optimal alignment for optimal performance and
power use. The value must be a power of two.

• nonCoherentAtomSize is the size and alignment in bytes that bounds concurrent access to host-
mapped device memory. The value must be a power of two.

1

For all bitmasks of VkSampleCountFlagBits, the sample count limits defined above represent
the minimum supported sample counts for each image type. Individual images may support
additional sample counts, which are queried using
vkGetPhysicalDeviceImageFormatProperties as described in Supported Sample Counts.

Bits which may be set in the sample count limits returned by VkPhysicalDeviceLimits, as well as in
other queries and structures representing image sample counts, are:

// Provided by VK_VERSION_1_0
typedef enum VkSampleCountFlagBits {

1190

 VK_SAMPLE_COUNT_1_BIT = 0x00000001,
 VK_SAMPLE_COUNT_2_BIT = 0x00000002,
 VK_SAMPLE_COUNT_4_BIT = 0x00000004,
 VK_SAMPLE_COUNT_8_BIT = 0x00000008,
 VK_SAMPLE_COUNT_16_BIT = 0x00000010,
 VK_SAMPLE_COUNT_32_BIT = 0x00000020,
 VK_SAMPLE_COUNT_64_BIT = 0x00000040,
} VkSampleCountFlagBits;

• VK_SAMPLE_COUNT_1_BIT specifies an image with one sample per pixel.

• VK_SAMPLE_COUNT_2_BIT specifies an image with 2 samples per pixel.

• VK_SAMPLE_COUNT_4_BIT specifies an image with 4 samples per pixel.

• VK_SAMPLE_COUNT_8_BIT specifies an image with 8 samples per pixel.

• VK_SAMPLE_COUNT_16_BIT specifies an image with 16 samples per pixel.

• VK_SAMPLE_COUNT_32_BIT specifies an image with 32 samples per pixel.

• VK_SAMPLE_COUNT_64_BIT specifies an image with 64 samples per pixel.

// Provided by VK_VERSION_1_0
typedef VkFlags VkSampleCountFlags;

VkSampleCountFlags is a bitmask type for setting a mask of zero or more VkSampleCountFlagBits.

The VkPhysicalDeviceMultiviewProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceMultiviewProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t maxMultiviewViewCount;
 uint32_t maxMultiviewInstanceIndex;
} VkPhysicalDeviceMultiviewProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxMultiviewViewCount is one greater than the maximum view index that can be used in a
subpass.

• maxMultiviewInstanceIndex is the maximum valid value of instance index allowed to be
generated by a drawing command recorded within a subpass of a multiview render pass
instance.

If the VkPhysicalDeviceMultiviewProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

1191

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMultiviewProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES

The VkPhysicalDeviceFloatControlsProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceFloatControlsProperties {
 VkStructureType sType;
 void* pNext;
 VkShaderFloatControlsIndependence denormBehaviorIndependence;
 VkShaderFloatControlsIndependence roundingModeIndependence;
 VkBool32 shaderSignedZeroInfNanPreserveFloat16;
 VkBool32 shaderSignedZeroInfNanPreserveFloat32;
 VkBool32 shaderSignedZeroInfNanPreserveFloat64;
 VkBool32 shaderDenormPreserveFloat16;
 VkBool32 shaderDenormPreserveFloat32;
 VkBool32 shaderDenormPreserveFloat64;
 VkBool32 shaderDenormFlushToZeroFloat16;
 VkBool32 shaderDenormFlushToZeroFloat32;
 VkBool32 shaderDenormFlushToZeroFloat64;
 VkBool32 shaderRoundingModeRTEFloat16;
 VkBool32 shaderRoundingModeRTEFloat32;
 VkBool32 shaderRoundingModeRTEFloat64;
 VkBool32 shaderRoundingModeRTZFloat16;
 VkBool32 shaderRoundingModeRTZFloat32;
 VkBool32 shaderRoundingModeRTZFloat64;
} VkPhysicalDeviceFloatControlsProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• denormBehaviorIndependence is a VkShaderFloatControlsIndependence value indicating whether,
and how, denorm behavior can be set independently for different bit widths.

• roundingModeIndependence is a VkShaderFloatControlsIndependence value indicating whether,
and how, rounding modes can be set independently for different bit widths.

• shaderSignedZeroInfNanPreserveFloat16 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 16-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 16-bit floating-point types.

• shaderSignedZeroInfNanPreserveFloat32 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 32-bit floating-point computations. It also indicates whether
the SignedZeroInfNanPreserve execution mode can be used for 32-bit floating-point types.

• shaderSignedZeroInfNanPreserveFloat64 is a boolean value indicating whether sign of a zero,
Nans and can be preserved in 64-bit floating-point computations. It also indicates whether

1192

the SignedZeroInfNanPreserve execution mode can be used for 64-bit floating-point types.

• shaderDenormPreserveFloat16 is a boolean value indicating whether denormals can be preserved
in 16-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 16-bit floating-point types.

• shaderDenormPreserveFloat32 is a boolean value indicating whether denormals can be preserved
in 32-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 32-bit floating-point types.

• shaderDenormPreserveFloat64 is a boolean value indicating whether denormals can be preserved
in 64-bit floating-point computations. It also indicates whether the DenormPreserve execution
mode can be used for 64-bit floating-point types.

• shaderDenormFlushToZeroFloat16 is a boolean value indicating whether denormals can be flushed
to zero in 16-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 16-bit floating-point types.

• shaderDenormFlushToZeroFloat32 is a boolean value indicating whether denormals can be flushed
to zero in 32-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 32-bit floating-point types.

• shaderDenormFlushToZeroFloat64 is a boolean value indicating whether denormals can be flushed
to zero in 64-bit floating-point computations. It also indicates whether the DenormFlushToZero
execution mode can be used for 64-bit floating-point types.

• shaderRoundingModeRTEFloat16 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 16-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 16-bit floating-point types.

• shaderRoundingModeRTEFloat32 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 32-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 32-bit floating-point types.

• shaderRoundingModeRTEFloat64 is a boolean value indicating whether an implementation
supports the round-to-nearest-even rounding mode for 64-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be
used for 64-bit floating-point types.

• shaderRoundingModeRTZFloat16 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 16-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 16-bit floating-point types.

• shaderRoundingModeRTZFloat32 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 32-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 32-bit floating-point types.

• shaderRoundingModeRTZFloat64 is a boolean value indicating whether an implementation
supports the round-towards-zero rounding mode for 64-bit floating-point arithmetic and
conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be
used for 64-bit floating-point types.

1193

If the VkPhysicalDeviceFloatControlsProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceFloatControlsProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES

Values which may be returned in the denormBehaviorIndependence and roundingModeIndependence
fields of VkPhysicalDeviceFloatControlsProperties are:

// Provided by VK_VERSION_1_2
typedef enum VkShaderFloatControlsIndependence {
 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY = 0,
 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL = 1,
 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE = 2,
} VkShaderFloatControlsIndependence;

• VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY specifies that shader float controls for 32-bit
floating point can be set independently; other bit widths must be set identically to each other.

• VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL specifies that shader float controls for all bit widths
can be set independently.

• VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE specifies that shader float controls for all bit widths
must be set identically.

The VkPhysicalDevicePointClippingProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDevicePointClippingProperties {
 VkStructureType sType;
 void* pNext;
 VkPointClippingBehavior pointClippingBehavior;
} VkPhysicalDevicePointClippingProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• pointClippingBehavior is a VkPointClippingBehavior value specifying the point clipping
behavior supported by the implementation.

If the VkPhysicalDevicePointClippingProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

1194

Valid Usage (Implicit)

• VUID-VkPhysicalDevicePointClippingProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES

The VkPhysicalDeviceSubgroupProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceSubgroupProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t subgroupSize;
 VkShaderStageFlags supportedStages;
 VkSubgroupFeatureFlags supportedOperations;
 VkBool32 quadOperationsInAllStages;
} VkPhysicalDeviceSubgroupProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• subgroupSize is the default number of invocations in each subgroup. subgroupSize is at least 1 if
any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT.
subgroupSize is a power-of-two.

• supportedStages is a bitfield of VkShaderStageFlagBits describing the shader stages that group
operations with subgroup scope are supported in. supportedStages will have the
VK_SHADER_STAGE_COMPUTE_BIT bit set if any of the physical device’s queues support
VK_QUEUE_COMPUTE_BIT.

• supportedOperations is a bitmask of VkSubgroupFeatureFlagBits specifying the sets of group
operations with subgroup scope supported on this device. supportedOperations will have the
VK_SUBGROUP_FEATURE_BASIC_BIT bit set if any of the physical device’s queues support
VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT.

• quadOperationsInAllStages is a boolean specifying whether quad group operations are available
in all stages, or are restricted to fragment and compute stages.

If the VkPhysicalDeviceSubgroupProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

If supportedOperations includes VK_SUBGROUP_FEATURE_QUAD_BIT, subgroupSize must be greater than or
equal to 4.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSubgroupProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES

1195

Bits which can be set in VkPhysicalDeviceSubgroupProperties::supportedOperations and
VkPhysicalDeviceVulkan11Properties::subgroupSupportedOperations to specify supported group
operations with subgroup scope are:

// Provided by VK_VERSION_1_1
typedef enum VkSubgroupFeatureFlagBits {
 VK_SUBGROUP_FEATURE_BASIC_BIT = 0x00000001,
 VK_SUBGROUP_FEATURE_VOTE_BIT = 0x00000002,
 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT = 0x00000004,
 VK_SUBGROUP_FEATURE_BALLOT_BIT = 0x00000008,
 VK_SUBGROUP_FEATURE_SHUFFLE_BIT = 0x00000010,
 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT = 0x00000020,
 VK_SUBGROUP_FEATURE_CLUSTERED_BIT = 0x00000040,
 VK_SUBGROUP_FEATURE_QUAD_BIT = 0x00000080,
} VkSubgroupFeatureFlagBits;

• VK_SUBGROUP_FEATURE_BASIC_BIT specifies the device will accept SPIR-V shader modules
containing the GroupNonUniform capability.

• VK_SUBGROUP_FEATURE_VOTE_BIT specifies the device will accept SPIR-V shader modules containing
the GroupNonUniformVote capability.

• VK_SUBGROUP_FEATURE_ARITHMETIC_BIT specifies the device will accept SPIR-V shader modules
containing the GroupNonUniformArithmetic capability.

• VK_SUBGROUP_FEATURE_BALLOT_BIT specifies the device will accept SPIR-V shader modules
containing the GroupNonUniformBallot capability.

• VK_SUBGROUP_FEATURE_SHUFFLE_BIT specifies the device will accept SPIR-V shader modules
containing the GroupNonUniformShuffle capability.

• VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT specifies the device will accept SPIR-V shader
modules containing the GroupNonUniformShuffleRelative capability.

• VK_SUBGROUP_FEATURE_CLUSTERED_BIT specifies the device will accept SPIR-V shader modules
containing the GroupNonUniformClustered capability.

• VK_SUBGROUP_FEATURE_QUAD_BIT specifies the device will accept SPIR-V shader modules containing
the GroupNonUniformQuad capability.

// Provided by VK_VERSION_1_1
typedef VkFlags VkSubgroupFeatureFlags;

VkSubgroupFeatureFlags is a bitmask type for setting a mask of zero or more
VkSubgroupFeatureFlagBits.

The VkPhysicalDeviceSubgroupSizeControlProperties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceSubgroupSizeControlProperties {
 VkStructureType sType;

1196

 void* pNext;
 uint32_t minSubgroupSize;
 uint32_t maxSubgroupSize;
 uint32_t maxComputeWorkgroupSubgroups;
 VkShaderStageFlags requiredSubgroupSizeStages;
} VkPhysicalDeviceSubgroupSizeControlProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• minSubgroupSize is the minimum subgroup size supported by this device. minSubgroupSize is at
least one if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT. minSubgroupSize is a power-of-two. minSubgroupSize is less than or equal to
maxSubgroupSize. minSubgroupSize is less than or equal to subgroupSize.

• maxSubgroupSize is the maximum subgroup size supported by this device. maxSubgroupSize is at
least one if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT. maxSubgroupSize is a power-of-two. maxSubgroupSize is greater than or
equal to minSubgroupSize. maxSubgroupSize is greater than or equal to subgroupSize.

• maxComputeWorkgroupSubgroups is the maximum number of subgroups supported by the
implementation within a workgroup.

• requiredSubgroupSizeStages is a bitfield of what shader stages support having a required
subgroup size specified.

If the VkPhysicalDeviceSubgroupSizeControlProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

If VkPhysicalDeviceSubgroupProperties::supportedOperations includes
VK_SUBGROUP_FEATURE_QUAD_BIT, minSubgroupSize must be greater than or equal to 4.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSubgroupSizeControlProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES

The VkPhysicalDeviceSamplerFilterMinmaxProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceSamplerFilterMinmaxProperties {
 VkStructureType sType;
 void* pNext;
 VkBool32 filterMinmaxSingleComponentFormats;
 VkBool32 filterMinmaxImageComponentMapping;
} VkPhysicalDeviceSamplerFilterMinmaxProperties;

1197

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• filterMinmaxSingleComponentFormats is a boolean value indicating whether a minimum set of
required formats support min/max filtering.

• filterMinmaxImageComponentMapping is a boolean value indicating whether the implementation
supports non-identity component mapping of the image when doing min/max filtering.

If the VkPhysicalDeviceSamplerFilterMinmaxProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

If filterMinmaxSingleComponentFormats is VK_TRUE, the following formats must support the
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT feature with VK_IMAGE_TILING_OPTIMAL, if they
support VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT:

• VK_FORMAT_R8_UNORM

• VK_FORMAT_R8_SNORM

• VK_FORMAT_R16_UNORM

• VK_FORMAT_R16_SNORM

• VK_FORMAT_R16_SFLOAT

• VK_FORMAT_R32_SFLOAT

• VK_FORMAT_D16_UNORM

• VK_FORMAT_X8_D24_UNORM_PACK32

• VK_FORMAT_D32_SFLOAT

• VK_FORMAT_D16_UNORM_S8_UINT

• VK_FORMAT_D24_UNORM_S8_UINT

• VK_FORMAT_D32_SFLOAT_S8_UINT

If the format is a depth/stencil format, this bit only specifies that the depth aspect (not the stencil
aspect) of an image of this format supports min/max filtering, and that min/max filtering of the
depth aspect is supported when depth compare is disabled in the sampler.

If filterMinmaxImageComponentMapping is VK_FALSE the component mapping of the image view used
with min/max filtering must have been created with the r component set to the identity swizzle.
Only the r component of the sampled image value is defined and the other component values are
undefined. If filterMinmaxImageComponentMapping is VK_TRUE this restriction does not apply and image
component mapping works as normal.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceSamplerFilterMinmaxProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES

1198

The VkPhysicalDeviceProtectedMemoryProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceProtectedMemoryProperties {
 VkStructureType sType;
 void* pNext;
 VkBool32 protectedNoFault;
} VkPhysicalDeviceProtectedMemoryProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• protectedNoFault specifies how an implementation behaves when an application attempts to
write to unprotected memory in a protected queue operation, read from protected memory in
an unprotected queue operation, or perform a query in a protected queue operation. If this limit
is VK_TRUE, such writes will be discarded or have undefined values written, reads and queries
will return undefined values. If this limit is VK_FALSE, applications must not perform these
operations. See Protected Memory Access Rules for more information.

If the VkPhysicalDeviceProtectedMemoryProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceProtectedMemoryProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES

The VkPhysicalDeviceMaintenance3Properties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceMaintenance3Properties {
 VkStructureType sType;
 void* pNext;
 uint32_t maxPerSetDescriptors;
 VkDeviceSize maxMemoryAllocationSize;
} VkPhysicalDeviceMaintenance3Properties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxPerSetDescriptors is a maximum number of descriptors (summed over all descriptor types)
in a single descriptor set that is guaranteed to satisfy any implementation-dependent
constraints on the size of a descriptor set itself. Applications can query whether a descriptor set
that goes beyond this limit is supported using vkGetDescriptorSetLayoutSupport.

1199

• maxMemoryAllocationSize is the maximum size of a memory allocation that can be created, even
if there is more space available in the heap.

If the VkPhysicalDeviceMaintenance3Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance3Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES

The VkPhysicalDeviceMaintenance4Properties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceMaintenance4Properties {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize maxBufferSize;
} VkPhysicalDeviceMaintenance4Properties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxBufferSize is the maximum size VkBuffer that can be created.

If the VkPhysicalDeviceMaintenance4Properties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceMaintenance4Properties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES

The VkPhysicalDeviceDescriptorIndexingProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceDescriptorIndexingProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t maxUpdateAfterBindDescriptorsInAllPools;
 VkBool32 shaderUniformBufferArrayNonUniformIndexingNative;
 VkBool32 shaderSampledImageArrayNonUniformIndexingNative;
 VkBool32 shaderStorageBufferArrayNonUniformIndexingNative;
 VkBool32 shaderStorageImageArrayNonUniformIndexingNative;

1200

 VkBool32 shaderInputAttachmentArrayNonUniformIndexingNative;
 VkBool32 robustBufferAccessUpdateAfterBind;
 VkBool32 quadDivergentImplicitLod;
 uint32_t maxPerStageDescriptorUpdateAfterBindSamplers;
 uint32_t maxPerStageDescriptorUpdateAfterBindUniformBuffers;
 uint32_t maxPerStageDescriptorUpdateAfterBindStorageBuffers;
 uint32_t maxPerStageDescriptorUpdateAfterBindSampledImages;
 uint32_t maxPerStageDescriptorUpdateAfterBindStorageImages;
 uint32_t maxPerStageDescriptorUpdateAfterBindInputAttachments;
 uint32_t maxPerStageUpdateAfterBindResources;
 uint32_t maxDescriptorSetUpdateAfterBindSamplers;
 uint32_t maxDescriptorSetUpdateAfterBindUniformBuffers;
 uint32_t maxDescriptorSetUpdateAfterBindUniformBuffersDynamic;
 uint32_t maxDescriptorSetUpdateAfterBindStorageBuffers;
 uint32_t maxDescriptorSetUpdateAfterBindStorageBuffersDynamic;
 uint32_t maxDescriptorSetUpdateAfterBindSampledImages;
 uint32_t maxDescriptorSetUpdateAfterBindStorageImages;
 uint32_t maxDescriptorSetUpdateAfterBindInputAttachments;
} VkPhysicalDeviceDescriptorIndexingProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxUpdateAfterBindDescriptorsInAllPools is the maximum number of descriptors (summed over
all descriptor types) that can be created across all pools that are created with the
VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT bit set. Pool creation may fail when this limit
is exceeded, or when the space this limit represents is unable to satisfy a pool creation due to
fragmentation.

• shaderUniformBufferArrayNonUniformIndexingNative is a boolean value indicating whether
uniform buffer descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of uniform
buffers may execute multiple times in order to access all the descriptors.

• shaderSampledImageArrayNonUniformIndexingNative is a boolean value indicating whether
sampler and image descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of samplers or
images may execute multiple times in order to access all the descriptors.

• shaderStorageBufferArrayNonUniformIndexingNative is a boolean value indicating whether
storage buffer descriptors natively support nonuniform indexing. If this is VK_FALSE, then a
single dynamic instance of an instruction that nonuniformly indexes an array of storage buffers
may execute multiple times in order to access all the descriptors.

• shaderStorageImageArrayNonUniformIndexingNative is a boolean value indicating whether storage
image descriptors natively support nonuniform indexing. If this is VK_FALSE, then a single
dynamic instance of an instruction that nonuniformly indexes an array of storage images may
execute multiple times in order to access all the descriptors.

• shaderInputAttachmentArrayNonUniformIndexingNative is a boolean value indicating whether
input attachment descriptors natively support nonuniform indexing. If this is VK_FALSE, then a

1201

single dynamic instance of an instruction that nonuniformly indexes an array of input
attachments may execute multiple times in order to access all the descriptors.

• robustBufferAccessUpdateAfterBind is a boolean value indicating whether robustBufferAccess
can be enabled on a device simultaneously with
descriptorBindingUniformBufferUpdateAfterBind, descriptorBindingStorageBufferUpdateAfterBind,
descriptorBindingUniformTexelBufferUpdateAfterBind, and/or
descriptorBindingStorageTexelBufferUpdateAfterBind. If this is VK_FALSE, then either
robustBufferAccess must be disabled or all of these update-after-bind features must be disabled.

• quadDivergentImplicitLod is a boolean value indicating whether implicit LOD calculations for
image operations have well-defined results when the image and/or sampler objects used for the
instruction are not uniform within a quad. See Derivative Image Operations.

• maxPerStageDescriptorUpdateAfterBindSamplers is similar to maxPerStageDescriptorSamplers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindUniformBuffers is similar to
maxPerStageDescriptorUniformBuffers but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindStorageBuffers is similar to
maxPerStageDescriptorStorageBuffers but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindSampledImages is similar to
maxPerStageDescriptorSampledImages but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindStorageImages is similar to
maxPerStageDescriptorStorageImages but counts descriptors from descriptor sets created with or
without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageDescriptorUpdateAfterBindInputAttachments is similar to
maxPerStageDescriptorInputAttachments but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxPerStageUpdateAfterBindResources is similar to maxPerStageResources but counts descriptors
from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindSamplers is similar to maxDescriptorSetSamplers but counts
descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindUniformBuffers is similar to maxDescriptorSetUniformBuffers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindUniformBuffersDynamic is similar to
maxDescriptorSetUniformBuffersDynamic but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set. While an
application can allocate dynamic uniform buffer descriptors from a pool created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT, bindings for these descriptors

1202

must not be present in any descriptor set layout that includes bindings created with
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT.

• maxDescriptorSetUpdateAfterBindStorageBuffers is similar to maxDescriptorSetStorageBuffers but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindStorageBuffersDynamic is similar to
maxDescriptorSetStorageBuffersDynamic but counts descriptors from descriptor sets created with
or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set. While an
application can allocate dynamic storage buffer descriptors from a pool created with the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT, bindings for these descriptors
must not be present in any descriptor set layout that includes bindings created with
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT.

• maxDescriptorSetUpdateAfterBindSampledImages is similar to maxDescriptorSetSampledImages but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindStorageImages is similar to maxDescriptorSetStorageImages but
counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetUpdateAfterBindInputAttachments is similar to maxDescriptorSetInputAttachments
but counts descriptors from descriptor sets created with or without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

If the VkPhysicalDeviceDescriptorIndexingProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDescriptorIndexingProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES

The VkPhysicalDeviceInlineUniformBlockProperties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceInlineUniformBlockProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t maxInlineUniformBlockSize;
 uint32_t maxPerStageDescriptorInlineUniformBlocks;
 uint32_t maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks;
 uint32_t maxDescriptorSetInlineUniformBlocks;
 uint32_t maxDescriptorSetUpdateAfterBindInlineUniformBlocks;
} VkPhysicalDeviceInlineUniformBlockProperties;

• sType is a VkStructureType value identifying this structure.

1203

• pNext is NULL or a pointer to a structure extending this structure.

• maxInlineUniformBlockSize is the maximum size in bytes of an inline uniform block binding.

• maxPerStageDescriptorInlineUniformBlocks is the maximum number of inline uniform block
bindings that can be accessible to a single shader stage in a pipeline layout. Descriptor bindings
with a descriptor type of VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit. Only
descriptor bindings in descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

• maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks is similar to
maxPerStageDescriptorInlineUniformBlocks but counts descriptor bindings from descriptor sets
created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

• maxDescriptorSetInlineUniformBlocks is the maximum number of inline uniform block bindings
that can be included in descriptor bindings in a pipeline layout across all pipeline shader stages
and descriptor set numbers. Descriptor bindings with a descriptor type of
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK count against this limit. Only descriptor bindings in
descriptor set layouts created without the
VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set count against this limit.

• maxDescriptorSetUpdateAfterBindInlineUniformBlocks is similar to
maxDescriptorSetInlineUniformBlocks but counts descriptor bindings from descriptor sets
created with or without the VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT bit set.

If the VkPhysicalDeviceInlineUniformBlockProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceInlineUniformBlockProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES

The VkPhysicalDeviceDepthStencilResolveProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceDepthStencilResolveProperties {
 VkStructureType sType;
 void* pNext;
 VkResolveModeFlags supportedDepthResolveModes;
 VkResolveModeFlags supportedStencilResolveModes;
 VkBool32 independentResolveNone;
 VkBool32 independentResolve;
} VkPhysicalDeviceDepthStencilResolveProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

1204

• supportedDepthResolveModes is a bitmask of VkResolveModeFlagBits indicating the set of
supported depth resolve modes. VK_RESOLVE_MODE_SAMPLE_ZERO_BIT must be included in the set
but implementations may support additional modes.

• supportedStencilResolveModes is a bitmask of VkResolveModeFlagBits indicating the set of
supported stencil resolve modes. VK_RESOLVE_MODE_SAMPLE_ZERO_BIT must be included in the set
but implementations may support additional modes. VK_RESOLVE_MODE_AVERAGE_BIT must not be
included in the set.

• independentResolveNone is VK_TRUE if the implementation supports setting the depth and stencil
resolve modes to different values when one of those modes is VK_RESOLVE_MODE_NONE. Otherwise
the implementation only supports setting both modes to the same value.

• independentResolve is VK_TRUE if the implementation supports all combinations of the supported
depth and stencil resolve modes, including setting either depth or stencil resolve mode to
VK_RESOLVE_MODE_NONE. An implementation that supports independentResolve must also support
independentResolveNone.

If the VkPhysicalDeviceDepthStencilResolveProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceDepthStencilResolveProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES

The VkPhysicalDeviceTexelBufferAlignmentProperties structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceTexelBufferAlignmentProperties {
 VkStructureType sType;
 void* pNext;
 VkDeviceSize storageTexelBufferOffsetAlignmentBytes;
 VkBool32 storageTexelBufferOffsetSingleTexelAlignment;
 VkDeviceSize uniformTexelBufferOffsetAlignmentBytes;
 VkBool32 uniformTexelBufferOffsetSingleTexelAlignment;
} VkPhysicalDeviceTexelBufferAlignmentProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• storageTexelBufferOffsetAlignmentBytes is a byte alignment that is sufficient for a storage texel
buffer of any format. The value must be a power of two.

• storageTexelBufferOffsetSingleTexelAlignment indicates whether single texel alignment is
sufficient for a storage texel buffer of any format.

• uniformTexelBufferOffsetAlignmentBytes is a byte alignment that is sufficient for a uniform texel
buffer of any format. The value must be a power of two.

1205

• uniformTexelBufferOffsetSingleTexelAlignment indicates whether single texel alignment is
sufficient for a uniform texel buffer of any format.

If the VkPhysicalDeviceTexelBufferAlignmentProperties structure is included in the pNext chain of
the VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in
with each corresponding implementation-dependent property.

If the single texel alignment property is VK_FALSE, then the buffer view’s offset must be aligned to
the corresponding byte alignment value. If the single texel alignment property is VK_TRUE, then the
buffer view’s offset must be aligned to the lesser of the corresponding byte alignment value or the
size of a single texel, based on VkBufferViewCreateInfo::format. If the size of a single texel is a
multiple of three bytes, then the size of a single component of the format is used instead.

These limits must not advertise a larger alignment than the required maximum minimum value of
VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment, for any format that supports use as a texel
buffer.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTexelBufferAlignmentProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES

The VkPhysicalDeviceTimelineSemaphoreProperties structure is defined as:

// Provided by VK_VERSION_1_2
typedef struct VkPhysicalDeviceTimelineSemaphoreProperties {
 VkStructureType sType;
 void* pNext;
 uint64_t maxTimelineSemaphoreValueDifference;
} VkPhysicalDeviceTimelineSemaphoreProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• maxTimelineSemaphoreValueDifference indicates the maximum difference allowed by the
implementation between the current value of a timeline semaphore and any pending signal or
wait operations.

If the VkPhysicalDeviceTimelineSemaphoreProperties structure is included in the pNext chain of the
VkPhysicalDeviceProperties2 structure passed to vkGetPhysicalDeviceProperties2, it is filled in with
each corresponding implementation-dependent property.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceTimelineSemaphoreProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES

1206

33.1. Limit Requirements
The following table specifies the required minimum/maximum for all Vulkan graphics
implementations. Where a limit corresponds to a fine-grained device feature which is optional, the
feature name is listed with two required limits, one when the feature is supported and one when it
is not supported. If an implementation supports a feature, the limits reported are the same whether
or not the feature is enabled.

Table 32. Required Limit Types

Type Limit Feature

uint32_t maxImageDimension1D -

uint32_t maxImageDimension2D -

uint32_t maxImageDimension3D -

uint32_t maxImageDimensionCube -

uint32_t maxImageArrayLayers -

uint32_t maxTexelBufferElements -

uint32_t maxUniformBufferRange -

uint32_t maxStorageBufferRange -

uint32_t maxPushConstantsSize -

uint32_t maxMemoryAllocationCount -

uint32_t maxSamplerAllocationCount -

VkDeviceSize bufferImageGranularity -

VkDeviceSize sparseAddressSpaceSize sparseBinding

uint32_t maxBoundDescriptorSets -

uint32_t maxPerStageDescriptorSamplers -

uint32_t maxPerStageDescriptorUniformBuffers -

uint32_t maxPerStageDescriptorStorageBuffers -

uint32_t maxPerStageDescriptorSampledImages -

uint32_t maxPerStageDescriptorStorageImages -

uint32_t maxPerStageDescriptorInputAttachments -

uint32_t maxPerStageResources -

uint32_t maxDescriptorSetSamplers -

uint32_t maxDescriptorSetUniformBuffers -

uint32_t maxDescriptorSetUniformBuffersDynamic -

uint32_t maxDescriptorSetStorageBuffers -

uint32_t maxDescriptorSetStorageBuffersDynamic -

uint32_t maxDescriptorSetSampledImages -

1207

Type Limit Feature

uint32_t maxDescriptorSetStorageImages -

uint32_t maxDescriptorSetInputAttachments -

uint32_t maxVertexInputAttributes -

uint32_t maxVertexInputBindings -

uint32_t maxVertexInputAttributeOffset -

uint32_t maxVertexInputBindingStride -

uint32_t maxVertexOutputComponents -

uint32_t maxTessellationGenerationLevel tessellationShader

uint32_t maxTessellationPatchSize tessellationShader

uint32_t maxTessellationControlPerVertexInputComponents tessellationShader

uint32_t maxTessellationControlPerVertexOutputComponent
s

tessellationShader

uint32_t maxTessellationControlPerPatchOutputComponents tessellationShader

uint32_t maxTessellationControlTotalOutputComponents tessellationShader

uint32_t maxTessellationEvaluationInputComponents tessellationShader

uint32_t maxTessellationEvaluationOutputComponents tessellationShader

uint32_t maxGeometryShaderInvocations geometryShader

uint32_t maxGeometryInputComponents geometryShader

uint32_t maxGeometryOutputComponents geometryShader

uint32_t maxGeometryOutputVertices geometryShader

uint32_t maxGeometryTotalOutputComponents geometryShader

uint32_t maxFragmentInputComponents -

uint32_t maxFragmentOutputAttachments -

uint32_t maxFragmentDualSrcAttachments dualSrcBlend

uint32_t maxFragmentCombinedOutputResources -

uint32_t maxComputeSharedMemorySize -

3 × uint32_t maxComputeWorkGroupCount -

uint32_t maxComputeWorkGroupInvocations -

3 × uint32_t maxComputeWorkGroupSize -

uint32_t subPixelPrecisionBits -

uint32_t subTexelPrecisionBits -

uint32_t mipmapPrecisionBits -

uint32_t maxDrawIndexedIndexValue fullDrawIndexUint32

uint32_t maxDrawIndirectCount multiDrawIndirect

float maxSamplerLodBias -

float maxSamplerAnisotropy samplerAnisotropy

1208

Type Limit Feature

uint32_t maxViewports multiViewport

2 × uint32_t maxViewportDimensions -

2 × float viewportBoundsRange -

uint32_t viewportSubPixelBits -

size_t minMemoryMapAlignment -

VkDeviceSize minTexelBufferOffsetAlignment -

VkDeviceSize minUniformBufferOffsetAlignment -

VkDeviceSize minStorageBufferOffsetAlignment -

int32_t minTexelOffset -

uint32_t maxTexelOffset -

int32_t minTexelGatherOffset shaderImageGatherExtended

uint32_t maxTexelGatherOffset shaderImageGatherExtended

float minInterpolationOffset sampleRateShading

float maxInterpolationOffset sampleRateShading

uint32_t subPixelInterpolationOffsetBits sampleRateShading

uint32_t maxFramebufferWidth -

uint32_t maxFramebufferHeight -

uint32_t maxFramebufferLayers -

VkSampleCountFl
ags

framebufferColorSampleCounts -

VkSampleCountFl
ags

framebufferIntegerColorSampleCounts -

VkSampleCountFl
ags

framebufferDepthSampleCounts -

VkSampleCountFl
ags

framebufferStencilSampleCounts -

VkSampleCountFl
ags

framebufferNoAttachmentsSampleCounts -

uint32_t maxColorAttachments -

VkSampleCountFl
ags

sampledImageColorSampleCounts -

VkSampleCountFl
ags

sampledImageIntegerSampleCounts -

VkSampleCountFl
ags

sampledImageDepthSampleCounts -

VkSampleCountFl
ags

sampledImageStencilSampleCounts -

1209

Type Limit Feature

VkSampleCountFl
ags

storageImageSampleCounts shaderStorageImageMultisamp
le

uint32_t maxSampleMaskWords -

VkBool32 timestampComputeAndGraphics -

float timestampPeriod -

uint32_t maxClipDistances shaderClipDistance

uint32_t maxCullDistances shaderCullDistance

uint32_t maxCombinedClipAndCullDistances shaderCullDistance

uint32_t discreteQueuePriorities -

2 × float pointSizeRange largePoints

2 × float lineWidthRange wideLines

float pointSizeGranularity largePoints

float lineWidthGranularity wideLines

VkBool32 strictLines -

VkBool32 standardSampleLocations -

VkDeviceSize optimalBufferCopyOffsetAlignment -

VkDeviceSize optimalBufferCopyRowPitchAlignment -

VkDeviceSize nonCoherentAtomSize -

VkBool32 filterMinmaxSingleComponentFormats samplerFilterMinmax

VkBool32 filterMinmaxImageComponentMapping samplerFilterMinmax

VkDeviceSize maxBufferSize maintenance4

uint32_t maxUpdateAfterBindDescriptorsInAllPools descriptorIndexing

VkBool32 shaderUniformBufferArrayNonUniformIndexingNati
ve

-

VkBool32 shaderSampledImageArrayNonUniformIndexingNativ
e

-

VkBool32 shaderStorageBufferArrayNonUniformIndexingNati
ve

-

VkBool32 shaderStorageImageArrayNonUniformIndexingNativ
e

-

VkBool32 shaderInputAttachmentArrayNonUniformIndexingNa
tive

-

uint32_t maxPerStageDescriptorUpdateAfterBindSamplers descriptorIndexing

uint32_t maxPerStageDescriptorUpdateAfterBindUniformBuf
fers

descriptorIndexing

uint32_t maxPerStageDescriptorUpdateAfterBindStorageBuf
fers

descriptorIndexing

uint32_t maxPerStageDescriptorUpdateAfterBindSampledIma
ges

descriptorIndexing

1210

Type Limit Feature

uint32_t maxPerStageDescriptorUpdateAfterBindStorageIma
ges

descriptorIndexing

uint32_t maxPerStageDescriptorUpdateAfterBindInputAttac
hments

descriptorIndexing

uint32_t maxPerStageUpdateAfterBindResources descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindSamplers descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindUniformBuffers descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindUniformBuffersD
ynamic

descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindStorageBuffers descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindStorageBuffersD
ynamic

descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindSampledImages descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindStorageImages descriptorIndexing

uint32_t maxDescriptorSetUpdateAfterBindInputAttachment
s

descriptorIndexing

uint32_t maxInlineUniformBlockSize inlineUniformBlock

uint32_t maxPerStageDescriptorInlineUniformBlocks inlineUniformBlock

uint32_t maxPerStageDescriptorUpdateAfterBindInlineUnif
ormBlocks

inlineUniformBlock

uint32_t maxDescriptorSetInlineUniformBlocks inlineUniformBlock

uint32_t maxDescriptorSetUpdateAfterBindInlineUniformBl
ocks

inlineUniformBlock

uint32_t maxInlineUniformTotalSize inlineUniformBlock

uint64_t maxTimelineSemaphoreValueDifference timelineSemaphore

Table 33. Required Limits

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxImageDimension1D - 4096 min

maxImageDimension2D - 4096 min

maxImageDimension3D - 256 min

maxImageDimensionCube - 4096 min

maxImageArrayLayers - 256 min

maxTexelBufferElements - 65536 min

maxUniformBufferRange - 16384 min

maxStorageBufferRange - 227 min

maxPushConstantsSize - 128 min

maxMemoryAllocationCount - 4096 min

1211

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxSamplerAllocationCount - 4000 min

bufferImageGranularity - 131072 max

sparseAddressSpaceSize 0 231 min

maxBoundDescriptorSets - 4 min

maxPerStageDescriptorSamplers - 16 min

maxPerStageDescriptorUniformBuffers - 12 min

maxPerStageDescriptorStorageBuffers - 4 min

maxPerStageDescriptorSampledImages - 16 min

maxPerStageDescriptorStorageImages - 4 min

maxPerStageDescriptorInputAttachments - 4 min

maxPerStageResources - 128 2 min

maxDescriptorSetSamplers - 96 8 min, n ×
PerStage

maxDescriptorSetUniformBuffers - 72 8 min, n ×
PerStage

maxDescriptorSetUniformBuffersDynamic - 8 min

maxDescriptorSetStorageBuffers - 24 8 min, n ×
PerStage

maxDescriptorSetStorageBuffersDynamic - 4 min

maxDescriptorSetSampledImages - 96 8 min, n ×
PerStage

maxDescriptorSetStorageImages - 24 8 min, n ×
PerStage

maxDescriptorSetInputAttachments - 4 min

maxVertexInputAttributes - 16 min

maxVertexInputBindings - 16 min

maxVertexInputAttributeOffset - 2047 min

maxVertexInputBindingStride - 2048 min

maxVertexOutputComponents - 64 min

maxTessellationGenerationLevel 0 64 min

maxTessellationPatchSize 0 32 min

maxTessellationControlPerVertexInputComponents 0 64 min

maxTessellationControlPerVertexOutputComponents 0 64 min

maxTessellationControlPerPatchOutputComponents 0 120 min

1212

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxTessellationControlTotalOutputComponents 0 2048 min

maxTessellationEvaluationInputComponents 0 64 min

maxTessellationEvaluationOutputComponents 0 64 min

maxGeometryShaderInvocations 0 32 min

maxGeometryInputComponents 0 64 min

maxGeometryOutputComponents 0 64 min

maxGeometryOutputVertices 0 256 min

maxGeometryTotalOutputComponents 0 1024 min

maxFragmentInputComponents - 64 min

maxFragmentOutputAttachments - 4 min

maxFragmentDualSrcAttachments 0 1 min

maxFragmentCombinedOutputResources - 4 min

maxComputeSharedMemorySize - 16384 min

maxComputeWorkGroupCount - (65535,65535,6553
5)

min

maxComputeWorkGroupInvocations - 128 min

maxComputeWorkGroupSize - (128,128,64) min

subPixelPrecisionBits - 4 min

subTexelPrecisionBits - 4 min

mipmapPrecisionBits - 4 min

maxDrawIndexedIndexValue 224-1 232-1 min

maxDrawIndirectCount 1 216-1 min

maxSamplerLodBias - 2 min

maxSamplerAnisotropy 1 16 min

maxViewports 1 16 min

maxViewportDimensions - (4096,4096) 3 min

viewportBoundsRange - (-8192,8191) 4 (max,min)

viewportSubPixelBits - 0 min

minMemoryMapAlignment - 64 min

minTexelBufferOffsetAlignment - 256 max

minUniformBufferOffsetAlignment - 256 max

minStorageBufferOffsetAlignment - 256 max

minTexelOffset - -8 max

1213

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxTexelOffset - 7 min

minTexelGatherOffset 0 -8 max

maxTexelGatherOffset 0 7 min

minInterpolationOffset 0.0 -0.5 5 max

maxInterpolationOffset 0.0 0.5 - (1 ULP) 5 min

subPixelInterpolationOffsetBits 0 4 5 min

maxFramebufferWidth - 4096 min

maxFramebufferHeight - 4096 min

maxFramebufferLayers - 256 min

framebufferColorSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

framebufferIntegerColorSampleCounts - (VK_SAMPLE_COUNT_1
_BIT)

min

framebufferDepthSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

framebufferStencilSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

framebufferNoAttachmentsSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

maxColorAttachments - 4 min

sampledImageColorSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

sampledImageIntegerSampleCounts - VK_SAMPLE_COUNT_1_
BIT

min

sampledImageDepthSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

1214

Limit Unsupport
ed Limit

Supported Limit Limit Type1

sampledImageStencilSampleCounts - (VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

storageImageSampleCounts VK_SAMPLE_C
OUNT_1_BIT

(VK_SAMPLE_COUNT_1
_BIT |
VK_SAMPLE_COUNT_4_
BIT)

min

maxSampleMaskWords - 1 min

timestampComputeAndGraphics - - implementatio
n-dependent

timestampPeriod - - duration

maxClipDistances 0 8 min

maxCullDistances 0 8 min

maxCombinedClipAndCullDistances 0 8 min

discreteQueuePriorities - 2 min

pointSizeRange (1.0,1.0) (1.0,64.0 - ULP)6 (max,min)

lineWidthRange (1.0,1.0) (1.0,8.0 - ULP)7 (max,min)

pointSizeGranularity 0.0 1.0 6 max, fixed
point
increment

lineWidthGranularity 0.0 1.0 7 max, fixed
point
increment

strictLines - - implementatio
n-dependent

standardSampleLocations - - implementatio
n-dependent

optimalBufferCopyOffsetAlignment - - recommendati
on

optimalBufferCopyRowPitchAlignment - - recommendati
on

nonCoherentAtomSize - 256 max

maxMultiviewViewCount - 6 min

maxMultiviewInstanceIndex - 227-1 min

filterMinmaxSingleComponentFormats - - implementatio
n-dependent

1215

Limit Unsupport
ed Limit

Supported Limit Limit Type1

filterMinmaxImageComponentMapping - - implementatio
n-dependent

maxPerSetDescriptors - 1024 min

maxMemoryAllocationSize - 230 min

maxBufferSize - 230 min

maxUpdateAfterBindDescriptorsInAllPools 0 500000 min

shaderUniformBufferArrayNonUniformIndexingNativ
e

- false implementatio
n-dependent

shaderSampledImageArrayNonUniformIndexingNative - false implementatio
n-dependent

shaderStorageBufferArrayNonUniformIndexingNativ
e

- false implementatio
n-dependent

shaderStorageImageArrayNonUniformIndexingNative - false implementatio
n-dependent

shaderInputAttachmentArrayNonUniformIndexingNat
ive

- false implementatio
n-dependent

maxPerStageDescriptorUpdateAfterBindSamplers 09 500000 9 min

maxPerStageDescriptorUpdateAfterBindUniformBuff
ers

09 12 9 min

maxPerStageDescriptorUpdateAfterBindStorageBuff
ers

09 500000 9 min

maxPerStageDescriptorUpdateAfterBindSampledImag
es

09 500000 9 min

maxPerStageDescriptorUpdateAfterBindStorageImag
es

09 500000 9 min

maxPerStageDescriptorUpdateAfterBindInputAttach
ments

09 4 9 min

maxPerStageUpdateAfterBindResources 09 500000 9 min

maxDescriptorSetUpdateAfterBindSamplers 09 500000 9 min

maxDescriptorSetUpdateAfterBindUniformBuffers 09 72 8 9 min, n ×
PerStage

maxDescriptorSetUpdateAfterBindUniformBuffersDy
namic

09 8 9 min

maxDescriptorSetUpdateAfterBindStorageBuffers 09 500000 9 min

maxDescriptorSetUpdateAfterBindStorageBuffersDy
namic

09 4 9 min

maxDescriptorSetUpdateAfterBindSampledImages 09 500000 9 min

maxDescriptorSetUpdateAfterBindStorageImages 09 500000 9 min

1216

Limit Unsupport
ed Limit

Supported Limit Limit Type1

maxDescriptorSetUpdateAfterBindInputAttachments 09 4 9 min

maxInlineUniformBlockSize - 256 min

maxPerStageDescriptorInlineUniformBlocks - 4 min

maxPerStageDescriptorUpdateAfterBindInlineUnifo
rmBlocks

- 4 min

maxDescriptorSetInlineUniformBlocks - 4 min

maxDescriptorSetUpdateAfterBindInlineUniformBlo
cks

- 4 min

maxInlineUniformTotalSize - 256 min

maxTimelineSemaphoreValueDifference - 231-1 min

1

The Limit Type column specifies the limit is either the minimum limit all implementations must
support, the maximum limit all implementations must support, or the exact value all
implementations must support. For bitmasks a minimum limit is the least bits all
implementations must set, but they may have additional bits set beyond this minimum.

2

The maxPerStageResources must be at least the smallest of the following:

• the sum of the maxPerStageDescriptorUniformBuffers, maxPerStageDescriptorStorageBuffers,
maxPerStageDescriptorSampledImages, maxPerStageDescriptorStorageImages,
maxPerStageDescriptorInputAttachments, maxColorAttachments limits, or

• 128.

It may not be possible to reach this limit in every stage.

3

See maxViewportDimensions for the required relationship to other limits.

4

See viewportBoundsRange for the required relationship to other limits.

5

The values minInterpolationOffset and maxInterpolationOffset describe the closed interval of
supported interpolation offsets: [minInterpolationOffset, maxInterpolationOffset]. The ULP is
determined by subPixelInterpolationOffsetBits. If subPixelInterpolationOffsetBits is 4, this
provides increments of (1/24) = 0.0625, and thus the range of supported interpolation offsets
would be [-0.5, 0.4375].

6

The point size ULP is determined by pointSizeGranularity. If the pointSizeGranularity is 0.125,
the range of supported point sizes must be at least [1.0, 63.875].

1217

7

The line width ULP is determined by lineWidthGranularity. If the lineWidthGranularity is 0.0625,
the range of supported line widths must be at least [1.0, 7.9375].

8

The minimum maxDescriptorSet* limit is n times the corresponding specification minimum
maxPerStageDescriptor* limit, where n is the number of shader stages supported by the
VkPhysicalDevice. If all shader stages are supported, n = 6 (vertex, tessellation control,
tessellation evaluation, geometry, fragment, compute).

9

The UpdateAfterBind descriptor limits must each be greater than or equal to the corresponding
non-UpdateAfterBind limit.

33.2. Profile Limits

33.2.1. Roadmap 2022

Implementations that claim support for the Roadmap 2022 profile must satisfy the following
additional limit requirements:

Limit Supported Limit Limit Type1

maxImageDimension1D 8192 min

maxImageDimension2D 8192 min

maxImageDimensionCube 8192 min

maxImageArrayLayers 2048 min

maxUniformBufferRange 65536 min

bufferImageGranularity 4096 max

maxPerStageDescriptorSamplers 64 min

maxPerStageDescriptorUniformBuffers 15 min

maxPerStageDescriptorStorageBuffers 30 min

maxPerStageDescriptorSampledImages 200 min

maxPerStageDescriptorStorageImages 16 min

maxPerStageResources 200 min

maxDescriptorSetSamplers 576 min

maxDescriptorSetUniformBuffers 90 min

maxDescriptorSetStorageBuffers 96 min

maxDescriptorSetSampledImages 1800 min

maxDescriptorSetStorageImages 144 min

maxFragmentCombinedOutputResources 16 min

1218

Limit Supported Limit Limit Type1

maxComputeWorkGroupInvocations 256 min

maxComputeWorkGroupSize (256,256,64) min

subTexelPrecisionBits 8 min

mipmapPrecisionBits 6 min

maxSamplerLodBias 14 min

pointSizeGranularity 0.125 max

lineWidthGranularity 0.5 max

standardSampleLocations VK_TRUE Boolean

maxColorAttachments 7 min

subgroupSize 4 min

subgroupSupportedStages VK_SHADER_STAGE_COMPU
TE_BIT
VK_SHADER_STAGE_FRAGM
ENT_BIT

bitfield

subgroupSupportedOperations VK_SUBGROUP_FEATURE_B
ASIC_BIT
VK_SUBGROUP_FEATURE_V
OTE_BIT
VK_SUBGROUP_FEATURE_A
RITHMETIC_BIT
VK_SUBGROUP_FEATURE_B
ALLOT_BIT
VK_SUBGROUP_FEATURE_S
HUFFLE_BIT
VK_SUBGROUP_FEATURE_S
HUFFLE_RELATIVE_BIT
VK_SUBGROUP_FEATURE_Q
UAD_BIT

bitfield

shaderSignedZeroInfNanPreserveFloat16 VK_TRUE Boolean

shaderSignedZeroInfNanPreserveFloat32 VK_TRUE Boolean

maxSubgroupSize 4 min

maxPerStageDescriptorUpdateAfterBindInputAttachments 7 min

33.2.2. Roadmap 2024

Implementations that claim support for the Roadmap 2024 profile must satisfy the following
additional limit requirements:

Limit Supported Limit Limit Type1

shaderRoundingModeRTEFloat16 VK_TRUE Boolean

1219

Limit Supported Limit Limit Type1

shaderRoundingModeRTEFloat32 VK_TRUE Boolean

timestampComputeAndGraphics VK_TRUE Boolean

maxColorAttachments 8 min

maxBoundDescriptorSets 7 min

1220

Chapter 34. Formats
Supported buffer and image formats may vary across implementations. A minimum set of format
features are guaranteed, but others must be explicitly queried before use to ensure they are
supported by the implementation.

The features for the set of formats (VkFormat) supported by the implementation are queried
individually using the vkGetPhysicalDeviceFormatProperties command.

34.1. Format Definition
The following image formats can be passed to, and may be returned from Vulkan commands. The
memory required to store each format is discussed with that format, and also summarized in the
Representation and Texel Block Size section and the Compatible formats table.

// Provided by VK_VERSION_1_0
typedef enum VkFormat {
 VK_FORMAT_UNDEFINED = 0,
 VK_FORMAT_R4G4_UNORM_PACK8 = 1,
 VK_FORMAT_R4G4B4A4_UNORM_PACK16 = 2,
 VK_FORMAT_B4G4R4A4_UNORM_PACK16 = 3,
 VK_FORMAT_R5G6B5_UNORM_PACK16 = 4,
 VK_FORMAT_B5G6R5_UNORM_PACK16 = 5,
 VK_FORMAT_R5G5B5A1_UNORM_PACK16 = 6,
 VK_FORMAT_B5G5R5A1_UNORM_PACK16 = 7,
 VK_FORMAT_A1R5G5B5_UNORM_PACK16 = 8,
 VK_FORMAT_R8_UNORM = 9,
 VK_FORMAT_R8_SNORM = 10,
 VK_FORMAT_R8_USCALED = 11,
 VK_FORMAT_R8_SSCALED = 12,
 VK_FORMAT_R8_UINT = 13,
 VK_FORMAT_R8_SINT = 14,
 VK_FORMAT_R8_SRGB = 15,
 VK_FORMAT_R8G8_UNORM = 16,
 VK_FORMAT_R8G8_SNORM = 17,
 VK_FORMAT_R8G8_USCALED = 18,
 VK_FORMAT_R8G8_SSCALED = 19,
 VK_FORMAT_R8G8_UINT = 20,
 VK_FORMAT_R8G8_SINT = 21,
 VK_FORMAT_R8G8_SRGB = 22,
 VK_FORMAT_R8G8B8_UNORM = 23,
 VK_FORMAT_R8G8B8_SNORM = 24,
 VK_FORMAT_R8G8B8_USCALED = 25,
 VK_FORMAT_R8G8B8_SSCALED = 26,
 VK_FORMAT_R8G8B8_UINT = 27,
 VK_FORMAT_R8G8B8_SINT = 28,
 VK_FORMAT_R8G8B8_SRGB = 29,
 VK_FORMAT_B8G8R8_UNORM = 30,
 VK_FORMAT_B8G8R8_SNORM = 31,

1221

 VK_FORMAT_B8G8R8_USCALED = 32,
 VK_FORMAT_B8G8R8_SSCALED = 33,
 VK_FORMAT_B8G8R8_UINT = 34,
 VK_FORMAT_B8G8R8_SINT = 35,
 VK_FORMAT_B8G8R8_SRGB = 36,
 VK_FORMAT_R8G8B8A8_UNORM = 37,
 VK_FORMAT_R8G8B8A8_SNORM = 38,
 VK_FORMAT_R8G8B8A8_USCALED = 39,
 VK_FORMAT_R8G8B8A8_SSCALED = 40,
 VK_FORMAT_R8G8B8A8_UINT = 41,
 VK_FORMAT_R8G8B8A8_SINT = 42,
 VK_FORMAT_R8G8B8A8_SRGB = 43,
 VK_FORMAT_B8G8R8A8_UNORM = 44,
 VK_FORMAT_B8G8R8A8_SNORM = 45,
 VK_FORMAT_B8G8R8A8_USCALED = 46,
 VK_FORMAT_B8G8R8A8_SSCALED = 47,
 VK_FORMAT_B8G8R8A8_UINT = 48,
 VK_FORMAT_B8G8R8A8_SINT = 49,
 VK_FORMAT_B8G8R8A8_SRGB = 50,
 VK_FORMAT_A8B8G8R8_UNORM_PACK32 = 51,
 VK_FORMAT_A8B8G8R8_SNORM_PACK32 = 52,
 VK_FORMAT_A8B8G8R8_USCALED_PACK32 = 53,
 VK_FORMAT_A8B8G8R8_SSCALED_PACK32 = 54,
 VK_FORMAT_A8B8G8R8_UINT_PACK32 = 55,
 VK_FORMAT_A8B8G8R8_SINT_PACK32 = 56,
 VK_FORMAT_A8B8G8R8_SRGB_PACK32 = 57,
 VK_FORMAT_A2R10G10B10_UNORM_PACK32 = 58,
 VK_FORMAT_A2R10G10B10_SNORM_PACK32 = 59,
 VK_FORMAT_A2R10G10B10_USCALED_PACK32 = 60,
 VK_FORMAT_A2R10G10B10_SSCALED_PACK32 = 61,
 VK_FORMAT_A2R10G10B10_UINT_PACK32 = 62,
 VK_FORMAT_A2R10G10B10_SINT_PACK32 = 63,
 VK_FORMAT_A2B10G10R10_UNORM_PACK32 = 64,
 VK_FORMAT_A2B10G10R10_SNORM_PACK32 = 65,
 VK_FORMAT_A2B10G10R10_USCALED_PACK32 = 66,
 VK_FORMAT_A2B10G10R10_SSCALED_PACK32 = 67,
 VK_FORMAT_A2B10G10R10_UINT_PACK32 = 68,
 VK_FORMAT_A2B10G10R10_SINT_PACK32 = 69,
 VK_FORMAT_R16_UNORM = 70,
 VK_FORMAT_R16_SNORM = 71,
 VK_FORMAT_R16_USCALED = 72,
 VK_FORMAT_R16_SSCALED = 73,
 VK_FORMAT_R16_UINT = 74,
 VK_FORMAT_R16_SINT = 75,
 VK_FORMAT_R16_SFLOAT = 76,
 VK_FORMAT_R16G16_UNORM = 77,
 VK_FORMAT_R16G16_SNORM = 78,
 VK_FORMAT_R16G16_USCALED = 79,
 VK_FORMAT_R16G16_SSCALED = 80,
 VK_FORMAT_R16G16_UINT = 81,
 VK_FORMAT_R16G16_SINT = 82,

1222

 VK_FORMAT_R16G16_SFLOAT = 83,
 VK_FORMAT_R16G16B16_UNORM = 84,
 VK_FORMAT_R16G16B16_SNORM = 85,
 VK_FORMAT_R16G16B16_USCALED = 86,
 VK_FORMAT_R16G16B16_SSCALED = 87,
 VK_FORMAT_R16G16B16_UINT = 88,
 VK_FORMAT_R16G16B16_SINT = 89,
 VK_FORMAT_R16G16B16_SFLOAT = 90,
 VK_FORMAT_R16G16B16A16_UNORM = 91,
 VK_FORMAT_R16G16B16A16_SNORM = 92,
 VK_FORMAT_R16G16B16A16_USCALED = 93,
 VK_FORMAT_R16G16B16A16_SSCALED = 94,
 VK_FORMAT_R16G16B16A16_UINT = 95,
 VK_FORMAT_R16G16B16A16_SINT = 96,
 VK_FORMAT_R16G16B16A16_SFLOAT = 97,
 VK_FORMAT_R32_UINT = 98,
 VK_FORMAT_R32_SINT = 99,
 VK_FORMAT_R32_SFLOAT = 100,
 VK_FORMAT_R32G32_UINT = 101,
 VK_FORMAT_R32G32_SINT = 102,
 VK_FORMAT_R32G32_SFLOAT = 103,
 VK_FORMAT_R32G32B32_UINT = 104,
 VK_FORMAT_R32G32B32_SINT = 105,
 VK_FORMAT_R32G32B32_SFLOAT = 106,
 VK_FORMAT_R32G32B32A32_UINT = 107,
 VK_FORMAT_R32G32B32A32_SINT = 108,
 VK_FORMAT_R32G32B32A32_SFLOAT = 109,
 VK_FORMAT_R64_UINT = 110,
 VK_FORMAT_R64_SINT = 111,
 VK_FORMAT_R64_SFLOAT = 112,
 VK_FORMAT_R64G64_UINT = 113,
 VK_FORMAT_R64G64_SINT = 114,
 VK_FORMAT_R64G64_SFLOAT = 115,
 VK_FORMAT_R64G64B64_UINT = 116,
 VK_FORMAT_R64G64B64_SINT = 117,
 VK_FORMAT_R64G64B64_SFLOAT = 118,
 VK_FORMAT_R64G64B64A64_UINT = 119,
 VK_FORMAT_R64G64B64A64_SINT = 120,
 VK_FORMAT_R64G64B64A64_SFLOAT = 121,
 VK_FORMAT_B10G11R11_UFLOAT_PACK32 = 122,
 VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 = 123,
 VK_FORMAT_D16_UNORM = 124,
 VK_FORMAT_X8_D24_UNORM_PACK32 = 125,
 VK_FORMAT_D32_SFLOAT = 126,
 VK_FORMAT_S8_UINT = 127,
 VK_FORMAT_D16_UNORM_S8_UINT = 128,
 VK_FORMAT_D24_UNORM_S8_UINT = 129,
 VK_FORMAT_D32_SFLOAT_S8_UINT = 130,
 VK_FORMAT_BC1_RGB_UNORM_BLOCK = 131,
 VK_FORMAT_BC1_RGB_SRGB_BLOCK = 132,
 VK_FORMAT_BC1_RGBA_UNORM_BLOCK = 133,

1223

 VK_FORMAT_BC1_RGBA_SRGB_BLOCK = 134,
 VK_FORMAT_BC2_UNORM_BLOCK = 135,
 VK_FORMAT_BC2_SRGB_BLOCK = 136,
 VK_FORMAT_BC3_UNORM_BLOCK = 137,
 VK_FORMAT_BC3_SRGB_BLOCK = 138,
 VK_FORMAT_BC4_UNORM_BLOCK = 139,
 VK_FORMAT_BC4_SNORM_BLOCK = 140,
 VK_FORMAT_BC5_UNORM_BLOCK = 141,
 VK_FORMAT_BC5_SNORM_BLOCK = 142,
 VK_FORMAT_BC6H_UFLOAT_BLOCK = 143,
 VK_FORMAT_BC6H_SFLOAT_BLOCK = 144,
 VK_FORMAT_BC7_UNORM_BLOCK = 145,
 VK_FORMAT_BC7_SRGB_BLOCK = 146,
 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK = 147,
 VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK = 148,
 VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK = 149,
 VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK = 150,
 VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK = 151,
 VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK = 152,
 VK_FORMAT_EAC_R11_UNORM_BLOCK = 153,
 VK_FORMAT_EAC_R11_SNORM_BLOCK = 154,
 VK_FORMAT_EAC_R11G11_UNORM_BLOCK = 155,
 VK_FORMAT_EAC_R11G11_SNORM_BLOCK = 156,
 VK_FORMAT_ASTC_4x4_UNORM_BLOCK = 157,
 VK_FORMAT_ASTC_4x4_SRGB_BLOCK = 158,
 VK_FORMAT_ASTC_5x4_UNORM_BLOCK = 159,
 VK_FORMAT_ASTC_5x4_SRGB_BLOCK = 160,
 VK_FORMAT_ASTC_5x5_UNORM_BLOCK = 161,
 VK_FORMAT_ASTC_5x5_SRGB_BLOCK = 162,
 VK_FORMAT_ASTC_6x5_UNORM_BLOCK = 163,
 VK_FORMAT_ASTC_6x5_SRGB_BLOCK = 164,
 VK_FORMAT_ASTC_6x6_UNORM_BLOCK = 165,
 VK_FORMAT_ASTC_6x6_SRGB_BLOCK = 166,
 VK_FORMAT_ASTC_8x5_UNORM_BLOCK = 167,
 VK_FORMAT_ASTC_8x5_SRGB_BLOCK = 168,
 VK_FORMAT_ASTC_8x6_UNORM_BLOCK = 169,
 VK_FORMAT_ASTC_8x6_SRGB_BLOCK = 170,
 VK_FORMAT_ASTC_8x8_UNORM_BLOCK = 171,
 VK_FORMAT_ASTC_8x8_SRGB_BLOCK = 172,
 VK_FORMAT_ASTC_10x5_UNORM_BLOCK = 173,
 VK_FORMAT_ASTC_10x5_SRGB_BLOCK = 174,
 VK_FORMAT_ASTC_10x6_UNORM_BLOCK = 175,
 VK_FORMAT_ASTC_10x6_SRGB_BLOCK = 176,
 VK_FORMAT_ASTC_10x8_UNORM_BLOCK = 177,
 VK_FORMAT_ASTC_10x8_SRGB_BLOCK = 178,
 VK_FORMAT_ASTC_10x10_UNORM_BLOCK = 179,
 VK_FORMAT_ASTC_10x10_SRGB_BLOCK = 180,
 VK_FORMAT_ASTC_12x10_UNORM_BLOCK = 181,
 VK_FORMAT_ASTC_12x10_SRGB_BLOCK = 182,
 VK_FORMAT_ASTC_12x12_UNORM_BLOCK = 183,
 VK_FORMAT_ASTC_12x12_SRGB_BLOCK = 184,

1224

 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8B8G8R8_422_UNORM = 1000156000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_B8G8R8G8_422_UNORM = 1000156001,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM = 1000156002,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8R8_2PLANE_420_UNORM = 1000156003,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM = 1000156004,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8R8_2PLANE_422_UNORM = 1000156005,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM = 1000156006,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R10X6_UNORM_PACK16 = 1000156007,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R10X6G10X6_UNORM_2PACK16 = 1000156008,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 = 1000156009,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16 = 1000156010,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16 = 1000156011,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16 = 1000156012,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16 = 1000156013,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16 = 1000156014,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16 = 1000156015,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16 = 1000156016,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R12X4_UNORM_PACK16 = 1000156017,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R12X4G12X4_UNORM_2PACK16 = 1000156018,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16 = 1000156019,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16 = 1000156020,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16 = 1000156021,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16 = 1000156022,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16 = 1000156023,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16 = 1000156024,
 // Provided by VK_VERSION_1_1

1225

 VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16 = 1000156025,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16 = 1000156026,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16B16G16R16_422_UNORM = 1000156027,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_B16G16R16G16_422_UNORM = 1000156028,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM = 1000156029,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16R16_2PLANE_420_UNORM = 1000156030,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM = 1000156031,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16R16_2PLANE_422_UNORM = 1000156032,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM = 1000156033,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_G8_B8R8_2PLANE_444_UNORM = 1000330000,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16 = 1000330001,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16 = 1000330002,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_G16_B16R16_2PLANE_444_UNORM = 1000330003,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_A4R4G4B4_UNORM_PACK16 = 1000340000,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_A4B4G4R4_UNORM_PACK16 = 1000340001,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK = 1000066000,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK = 1000066001,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK = 1000066002,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK = 1000066003,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK = 1000066004,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK = 1000066005,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK = 1000066006,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK = 1000066007,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK = 1000066008,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK = 1000066009,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK = 1000066010,

1226

 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK = 1000066011,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK = 1000066012,
 // Provided by VK_VERSION_1_3
 VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK = 1000066013,
} VkFormat;

• VK_FORMAT_UNDEFINED specifies that the format is not specified.

• VK_FORMAT_R4G4_UNORM_PACK8 specifies a two-component, 8-bit packed unsigned normalized
format that has a 4-bit R component in bits 4..7, and a 4-bit G component in bits 0..3.

• VK_FORMAT_R4G4B4A4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 4-bit R component in bits 12..15, a 4-bit G component in bits 8..11,
a 4-bit B component in bits 4..7, and a 4-bit A component in bits 0..3.

• VK_FORMAT_B4G4R4A4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 4-bit B component in bits 12..15, a 4-bit G component in bits 8..11,
a 4-bit R component in bits 4..7, and a 4-bit A component in bits 0..3.

• VK_FORMAT_A4R4G4B4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 4-bit A component in bits 12..15, a 4-bit R component in bits 8..11,
a 4-bit G component in bits 4..7, and a 4-bit B component in bits 0..3.

• VK_FORMAT_A4B4G4R4_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 4-bit A component in bits 12..15, a 4-bit B component in bits 8..11,
a 4-bit G component in bits 4..7, and a 4-bit R component in bits 0..3.

• VK_FORMAT_R5G6B5_UNORM_PACK16 specifies a three-component, 16-bit packed unsigned normalized
format that has a 5-bit R component in bits 11..15, a 6-bit G component in bits 5..10, and a 5-bit B
component in bits 0..4.

• VK_FORMAT_B5G6R5_UNORM_PACK16 specifies a three-component, 16-bit packed unsigned normalized
format that has a 5-bit B component in bits 11..15, a 6-bit G component in bits 5..10, and a 5-bit R
component in bits 0..4.

• VK_FORMAT_R5G5B5A1_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 5-bit R component in bits 11..15, a 5-bit G component in bits 6..10,
a 5-bit B component in bits 1..5, and a 1-bit A component in bit 0.

• VK_FORMAT_B5G5R5A1_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 5-bit B component in bits 11..15, a 5-bit G component in bits 6..10,
a 5-bit R component in bits 1..5, and a 1-bit A component in bit 0.

• VK_FORMAT_A1R5G5B5_UNORM_PACK16 specifies a four-component, 16-bit packed unsigned
normalized format that has a 1-bit A component in bit 15, a 5-bit R component in bits 10..14, a 5-
bit G component in bits 5..9, and a 5-bit B component in bits 0..4.

• VK_FORMAT_R8_UNORM specifies a one-component, 8-bit unsigned normalized format that has a
single 8-bit R component.

• VK_FORMAT_R8_SNORM specifies a one-component, 8-bit signed normalized format that has a single
8-bit R component.

• VK_FORMAT_R8_USCALED specifies a one-component, 8-bit unsigned scaled integer format that has a

1227

single 8-bit R component.

• VK_FORMAT_R8_SSCALED specifies a one-component, 8-bit signed scaled integer format that has a
single 8-bit R component.

• VK_FORMAT_R8_UINT specifies a one-component, 8-bit unsigned integer format that has a single 8-
bit R component.

• VK_FORMAT_R8_SINT specifies a one-component, 8-bit signed integer format that has a single 8-bit
R component.

• VK_FORMAT_R8_SRGB specifies a one-component, 8-bit unsigned normalized format that has a
single 8-bit R component stored with sRGB nonlinear encoding.

• VK_FORMAT_R8G8_UNORM specifies a two-component, 16-bit unsigned normalized format that has an
8-bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SNORM specifies a two-component, 16-bit signed normalized format that has an 8-
bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_USCALED specifies a two-component, 16-bit unsigned scaled integer format that
has an 8-bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SSCALED specifies a two-component, 16-bit signed scaled integer format that has
an 8-bit R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_UINT specifies a two-component, 16-bit unsigned integer format that has an 8-bit
R component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SINT specifies a two-component, 16-bit signed integer format that has an 8-bit R
component in byte 0, and an 8-bit G component in byte 1.

• VK_FORMAT_R8G8_SRGB specifies a two-component, 16-bit unsigned normalized format that has an
8-bit R component stored with sRGB nonlinear encoding in byte 0, and an 8-bit G component
stored with sRGB nonlinear encoding in byte 1.

• VK_FORMAT_R8G8B8_UNORM specifies a three-component, 24-bit unsigned normalized format that
has an 8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in
byte 2.

• VK_FORMAT_R8G8B8_SNORM specifies a three-component, 24-bit signed normalized format that has
an 8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in
byte 2.

• VK_FORMAT_R8G8B8_USCALED specifies a three-component, 24-bit unsigned scaled format that has an
8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_SSCALED specifies a three-component, 24-bit signed scaled format that has an 8-
bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_UINT specifies a three-component, 24-bit unsigned integer format that has an
8-bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_SINT specifies a three-component, 24-bit signed integer format that has an 8-
bit R component in byte 0, an 8-bit G component in byte 1, and an 8-bit B component in byte 2.

• VK_FORMAT_R8G8B8_SRGB specifies a three-component, 24-bit unsigned normalized format that has
an 8-bit R component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component
stored with sRGB nonlinear encoding in byte 1, and an 8-bit B component stored with sRGB

1228

nonlinear encoding in byte 2.

• VK_FORMAT_B8G8R8_UNORM specifies a three-component, 24-bit unsigned normalized format that
has an 8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in
byte 2.

• VK_FORMAT_B8G8R8_SNORM specifies a three-component, 24-bit signed normalized format that has
an 8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in
byte 2.

• VK_FORMAT_B8G8R8_USCALED specifies a three-component, 24-bit unsigned scaled format that has an
8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_SSCALED specifies a three-component, 24-bit signed scaled format that has an 8-
bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_UINT specifies a three-component, 24-bit unsigned integer format that has an
8-bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_SINT specifies a three-component, 24-bit signed integer format that has an 8-
bit B component in byte 0, an 8-bit G component in byte 1, and an 8-bit R component in byte 2.

• VK_FORMAT_B8G8R8_SRGB specifies a three-component, 24-bit unsigned normalized format that has
an 8-bit B component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component
stored with sRGB nonlinear encoding in byte 1, and an 8-bit R component stored with sRGB
nonlinear encoding in byte 2.

• VK_FORMAT_R8G8B8A8_UNORM specifies a four-component, 32-bit unsigned normalized format that
has an 8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte
2, and an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SNORM specifies a four-component, 32-bit signed normalized format that has
an 8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2,
and an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_USCALED specifies a four-component, 32-bit unsigned scaled format that has
an 8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2,
and an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SSCALED specifies a four-component, 32-bit signed scaled format that has an
8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_UINT specifies a four-component, 32-bit unsigned integer format that has an
8-bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SINT specifies a four-component, 32-bit signed integer format that has an 8-
bit R component in byte 0, an 8-bit G component in byte 1, an 8-bit B component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_R8G8B8A8_SRGB specifies a four-component, 32-bit unsigned normalized format that
has an 8-bit R component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component
stored with sRGB nonlinear encoding in byte 1, an 8-bit B component stored with sRGB
nonlinear encoding in byte 2, and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_UNORM specifies a four-component, 32-bit unsigned normalized format that

1229

has an 8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte
2, and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SNORM specifies a four-component, 32-bit signed normalized format that has
an 8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2,
and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_USCALED specifies a four-component, 32-bit unsigned scaled format that has
an 8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2,
and an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SSCALED specifies a four-component, 32-bit signed scaled format that has an
8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_UINT specifies a four-component, 32-bit unsigned integer format that has an
8-bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SINT specifies a four-component, 32-bit signed integer format that has an 8-
bit B component in byte 0, an 8-bit G component in byte 1, an 8-bit R component in byte 2, and
an 8-bit A component in byte 3.

• VK_FORMAT_B8G8R8A8_SRGB specifies a four-component, 32-bit unsigned normalized format that
has an 8-bit B component stored with sRGB nonlinear encoding in byte 0, an 8-bit G component
stored with sRGB nonlinear encoding in byte 1, an 8-bit R component stored with sRGB
nonlinear encoding in byte 2, and an 8-bit A component in byte 3.

• VK_FORMAT_A8B8G8R8_UNORM_PACK32 specifies a four-component, 32-bit packed unsigned
normalized format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits
16..23, an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SNORM_PACK32 specifies a four-component, 32-bit packed signed normalized
format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23, an 8-bit
G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_USCALED_PACK32 specifies a four-component, 32-bit packed unsigned scaled
integer format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23,
an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SSCALED_PACK32 specifies a four-component, 32-bit packed signed scaled
integer format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23,
an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_UINT_PACK32 specifies a four-component, 32-bit packed unsigned integer
format that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23, an 8-bit
G component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SINT_PACK32 specifies a four-component, 32-bit packed signed integer format
that has an 8-bit A component in bits 24..31, an 8-bit B component in bits 16..23, an 8-bit G
component in bits 8..15, and an 8-bit R component in bits 0..7.

• VK_FORMAT_A8B8G8R8_SRGB_PACK32 specifies a four-component, 32-bit packed unsigned normalized
format that has an 8-bit A component in bits 24..31, an 8-bit B component stored with sRGB
nonlinear encoding in bits 16..23, an 8-bit G component stored with sRGB nonlinear encoding in
bits 8..15, and an 8-bit R component stored with sRGB nonlinear encoding in bits 0..7.

1230

• VK_FORMAT_A2R10G10B10_UNORM_PACK32 specifies a four-component, 32-bit packed unsigned
normalized format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_SNORM_PACK32 specifies a four-component, 32-bit packed signed
normalized format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_USCALED_PACK32 specifies a four-component, 32-bit packed unsigned
scaled integer format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_SSCALED_PACK32 specifies a four-component, 32-bit packed signed scaled
integer format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits 20..29, a
10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_UINT_PACK32 specifies a four-component, 32-bit packed unsigned integer
format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits 20..29, a 10-bit G
component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2R10G10B10_SINT_PACK32 specifies a four-component, 32-bit packed signed integer
format that has a 2-bit A component in bits 30..31, a 10-bit R component in bits 20..29, a 10-bit G
component in bits 10..19, and a 10-bit B component in bits 0..9.

• VK_FORMAT_A2B10G10R10_UNORM_PACK32 specifies a four-component, 32-bit packed unsigned
normalized format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_SNORM_PACK32 specifies a four-component, 32-bit packed signed
normalized format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_USCALED_PACK32 specifies a four-component, 32-bit packed unsigned
scaled integer format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits
20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_SSCALED_PACK32 specifies a four-component, 32-bit packed signed scaled
integer format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits 20..29, a
10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_UINT_PACK32 specifies a four-component, 32-bit packed unsigned integer
format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits 20..29, a 10-bit G
component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_A2B10G10R10_SINT_PACK32 specifies a four-component, 32-bit packed signed integer
format that has a 2-bit A component in bits 30..31, a 10-bit B component in bits 20..29, a 10-bit G
component in bits 10..19, and a 10-bit R component in bits 0..9.

• VK_FORMAT_R16_UNORM specifies a one-component, 16-bit unsigned normalized format that has a
single 16-bit R component.

• VK_FORMAT_R16_SNORM specifies a one-component, 16-bit signed normalized format that has a
single 16-bit R component.

• VK_FORMAT_R16_USCALED specifies a one-component, 16-bit unsigned scaled integer format that has
a single 16-bit R component.

1231

• VK_FORMAT_R16_SSCALED specifies a one-component, 16-bit signed scaled integer format that has a
single 16-bit R component.

• VK_FORMAT_R16_UINT specifies a one-component, 16-bit unsigned integer format that has a single
16-bit R component.

• VK_FORMAT_R16_SINT specifies a one-component, 16-bit signed integer format that has a single 16-
bit R component.

• VK_FORMAT_R16_SFLOAT specifies a one-component, 16-bit signed floating-point format that has a
single 16-bit R component.

• VK_FORMAT_R16G16_UNORM specifies a two-component, 32-bit unsigned normalized format that has
a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SNORM specifies a two-component, 32-bit signed normalized format that has a
16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_USCALED specifies a two-component, 32-bit unsigned scaled integer format that
has a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SSCALED specifies a two-component, 32-bit signed scaled integer format that
has a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_UINT specifies a two-component, 32-bit unsigned integer format that has a 16-
bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SINT specifies a two-component, 32-bit signed integer format that has a 16-bit
R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16_SFLOAT specifies a two-component, 32-bit signed floating-point format that has
a 16-bit R component in bytes 0..1, and a 16-bit G component in bytes 2..3.

• VK_FORMAT_R16G16B16_UNORM specifies a three-component, 48-bit unsigned normalized format that
has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16_SNORM specifies a three-component, 48-bit signed normalized format that
has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16_USCALED specifies a three-component, 48-bit unsigned scaled integer format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16_SSCALED specifies a three-component, 48-bit signed scaled integer format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16_UINT specifies a three-component, 48-bit unsigned integer format that has a
16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B component in
bytes 4..5.

• VK_FORMAT_R16G16B16_SINT specifies a three-component, 48-bit signed integer format that has a
16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B component in
bytes 4..5.

• VK_FORMAT_R16G16B16_SFLOAT specifies a three-component, 48-bit signed floating-point format that

1232

has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, and a 16-bit B
component in bytes 4..5.

• VK_FORMAT_R16G16B16A16_UNORM specifies a four-component, 64-bit unsigned normalized format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B
component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SNORM specifies a four-component, 64-bit signed normalized format that
has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B component
in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_USCALED specifies a four-component, 64-bit unsigned scaled integer
format that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B
component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SSCALED specifies a four-component, 64-bit signed scaled integer format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B
component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_UINT specifies a four-component, 64-bit unsigned integer format that has
a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B component in
bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SINT specifies a four-component, 64-bit signed integer format that has a
16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B component in
bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R16G16B16A16_SFLOAT specifies a four-component, 64-bit signed floating-point format
that has a 16-bit R component in bytes 0..1, a 16-bit G component in bytes 2..3, a 16-bit B
component in bytes 4..5, and a 16-bit A component in bytes 6..7.

• VK_FORMAT_R32_UINT specifies a one-component, 32-bit unsigned integer format that has a single
32-bit R component.

• VK_FORMAT_R32_SINT specifies a one-component, 32-bit signed integer format that has a single 32-
bit R component.

• VK_FORMAT_R32_SFLOAT specifies a one-component, 32-bit signed floating-point format that has a
single 32-bit R component.

• VK_FORMAT_R32G32_UINT specifies a two-component, 64-bit unsigned integer format that has a 32-
bit R component in bytes 0..3, and a 32-bit G component in bytes 4..7.

• VK_FORMAT_R32G32_SINT specifies a two-component, 64-bit signed integer format that has a 32-bit
R component in bytes 0..3, and a 32-bit G component in bytes 4..7.

• VK_FORMAT_R32G32_SFLOAT specifies a two-component, 64-bit signed floating-point format that has
a 32-bit R component in bytes 0..3, and a 32-bit G component in bytes 4..7.

• VK_FORMAT_R32G32B32_UINT specifies a three-component, 96-bit unsigned integer format that has a
32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, and a 32-bit B component in
bytes 8..11.

• VK_FORMAT_R32G32B32_SINT specifies a three-component, 96-bit signed integer format that has a
32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, and a 32-bit B component in
bytes 8..11.

1233

• VK_FORMAT_R32G32B32_SFLOAT specifies a three-component, 96-bit signed floating-point format that
has a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, and a 32-bit B
component in bytes 8..11.

• VK_FORMAT_R32G32B32A32_UINT specifies a four-component, 128-bit unsigned integer format that
has a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, a 32-bit B component
in bytes 8..11, and a 32-bit A component in bytes 12..15.

• VK_FORMAT_R32G32B32A32_SINT specifies a four-component, 128-bit signed integer format that has
a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, a 32-bit B component in
bytes 8..11, and a 32-bit A component in bytes 12..15.

• VK_FORMAT_R32G32B32A32_SFLOAT specifies a four-component, 128-bit signed floating-point format
that has a 32-bit R component in bytes 0..3, a 32-bit G component in bytes 4..7, a 32-bit B
component in bytes 8..11, and a 32-bit A component in bytes 12..15.

• VK_FORMAT_R64_UINT specifies a one-component, 64-bit unsigned integer format that has a single
64-bit R component.

• VK_FORMAT_R64_SINT specifies a one-component, 64-bit signed integer format that has a single 64-
bit R component.

• VK_FORMAT_R64_SFLOAT specifies a one-component, 64-bit signed floating-point format that has a
single 64-bit R component.

• VK_FORMAT_R64G64_UINT specifies a two-component, 128-bit unsigned integer format that has a 64-
bit R component in bytes 0..7, and a 64-bit G component in bytes 8..15.

• VK_FORMAT_R64G64_SINT specifies a two-component, 128-bit signed integer format that has a 64-bit
R component in bytes 0..7, and a 64-bit G component in bytes 8..15.

• VK_FORMAT_R64G64_SFLOAT specifies a two-component, 128-bit signed floating-point format that
has a 64-bit R component in bytes 0..7, and a 64-bit G component in bytes 8..15.

• VK_FORMAT_R64G64B64_UINT specifies a three-component, 192-bit unsigned integer format that has
a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, and a 64-bit B component
in bytes 16..23.

• VK_FORMAT_R64G64B64_SINT specifies a three-component, 192-bit signed integer format that has a
64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, and a 64-bit B component
in bytes 16..23.

• VK_FORMAT_R64G64B64_SFLOAT specifies a three-component, 192-bit signed floating-point format
that has a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, and a 64-bit B
component in bytes 16..23.

• VK_FORMAT_R64G64B64A64_UINT specifies a four-component, 256-bit unsigned integer format that
has a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, a 64-bit B component
in bytes 16..23, and a 64-bit A component in bytes 24..31.

• VK_FORMAT_R64G64B64A64_SINT specifies a four-component, 256-bit signed integer format that has
a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, a 64-bit B component in
bytes 16..23, and a 64-bit A component in bytes 24..31.

• VK_FORMAT_R64G64B64A64_SFLOAT specifies a four-component, 256-bit signed floating-point format
that has a 64-bit R component in bytes 0..7, a 64-bit G component in bytes 8..15, a 64-bit B
component in bytes 16..23, and a 64-bit A component in bytes 24..31.

1234

• VK_FORMAT_B10G11R11_UFLOAT_PACK32 specifies a three-component, 32-bit packed unsigned
floating-point format that has a 10-bit B component in bits 22..31, an 11-bit G component in bits
11..21, an 11-bit R component in bits 0..10. See Unsigned 10-Bit Floating-Point Numbers and
Unsigned 11-Bit Floating-Point Numbers.

• VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 specifies a three-component, 32-bit packed unsigned floating-
point format that has a 5-bit shared exponent in bits 27..31, a 9-bit B component mantissa in bits
18..26, a 9-bit G component mantissa in bits 9..17, and a 9-bit R component mantissa in bits 0..8.

• VK_FORMAT_D16_UNORM specifies a one-component, 16-bit unsigned normalized format that has a
single 16-bit depth component.

• VK_FORMAT_X8_D24_UNORM_PACK32 specifies a two-component, 32-bit format that has 24 unsigned
normalized bits in the depth component and, optionally, 8 bits that are unused.

• VK_FORMAT_D32_SFLOAT specifies a one-component, 32-bit signed floating-point format that has 32
bits in the depth component.

• VK_FORMAT_S8_UINT specifies a one-component, 8-bit unsigned integer format that has 8 bits in the
stencil component.

• VK_FORMAT_D16_UNORM_S8_UINT specifies a two-component, 24-bit format that has 16 unsigned
normalized bits in the depth component and 8 unsigned integer bits in the stencil component.

• VK_FORMAT_D24_UNORM_S8_UINT specifies a two-component, 32-bit packed format that has 8
unsigned integer bits in the stencil component, and 24 unsigned normalized bits in the depth
component.

• VK_FORMAT_D32_SFLOAT_S8_UINT specifies a two-component format that has 32 signed float bits in
the depth component and 8 unsigned integer bits in the stencil component. There are
optionally 24 bits that are unused.

• VK_FORMAT_BC1_RGB_UNORM_BLOCK specifies a three-component, block-compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data. This format has no alpha and is considered opaque.

• VK_FORMAT_BC1_RGB_SRGB_BLOCK specifies a three-component, block-compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data with sRGB nonlinear encoding. This format has no alpha and is considered opaque.

• VK_FORMAT_BC1_RGBA_UNORM_BLOCK specifies a four-component, block-compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data, and provides 1 bit of alpha.

• VK_FORMAT_BC1_RGBA_SRGB_BLOCK specifies a four-component, block-compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data with sRGB nonlinear encoding, and provides 1 bit of alpha.

• VK_FORMAT_BC2_UNORM_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values.

• VK_FORMAT_BC2_SRGB_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values with sRGB
nonlinear encoding.

1235

• VK_FORMAT_BC3_UNORM_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values.

• VK_FORMAT_BC3_SRGB_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with the first 64 bits encoding alpha values followed by 64 bits encoding RGB values with sRGB
nonlinear encoding.

• VK_FORMAT_BC4_UNORM_BLOCK specifies a one-component, block-compressed format where each 64-
bit compressed texel block encodes a 4×4 rectangle of unsigned normalized red texel data.

• VK_FORMAT_BC4_SNORM_BLOCK specifies a one-component, block-compressed format where each 64-
bit compressed texel block encodes a 4×4 rectangle of signed normalized red texel data.

• VK_FORMAT_BC5_UNORM_BLOCK specifies a two-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RG texel data
with the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_BC5_SNORM_BLOCK specifies a two-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of signed normalized RG texel data with
the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_BC6H_UFLOAT_BLOCK specifies a three-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned floating-point RGB texel
data.

• VK_FORMAT_BC6H_SFLOAT_BLOCK specifies a three-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of signed floating-point RGB texel data.

• VK_FORMAT_BC7_UNORM_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_BC7_SRGB_BLOCK specifies a four-component, block-compressed format where each
128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel data
with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK specifies a three-component, ETC2 compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB
texel data. This format has no alpha and is considered opaque.

• VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK specifies a three-component, ETC2 compressed format where
each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB texel
data with sRGB nonlinear encoding. This format has no alpha and is considered opaque.

• VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK specifies a four-component, ETC2 compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB
texel data, and provides 1 bit of alpha.

• VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK specifies a four-component, ETC2 compressed format
where each 64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGB
texel data with sRGB nonlinear encoding, and provides 1 bit of alpha.

• VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK specifies a four-component, ETC2 compressed format
where each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized

1236

RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding RGB
values.

• VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK specifies a four-component, ETC2 compressed format
where each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized
RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding RGB
values with sRGB nonlinear encoding applied.

• VK_FORMAT_EAC_R11_UNORM_BLOCK specifies a one-component, ETC2 compressed format where each
64-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized red texel data.

• VK_FORMAT_EAC_R11_SNORM_BLOCK specifies a one-component, ETC2 compressed format where each
64-bit compressed texel block encodes a 4×4 rectangle of signed normalized red texel data.

• VK_FORMAT_EAC_R11G11_UNORM_BLOCK specifies a two-component, ETC2 compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RG texel
data with the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_EAC_R11G11_SNORM_BLOCK specifies a two-component, ETC2 compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of signed normalized RG texel data
with the first 64 bits encoding red values followed by 64 bits encoding green values.

• VK_FORMAT_ASTC_4x4_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_ASTC_4x4_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 4×4 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_5x4_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×4 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_ASTC_5x4_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×4 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×4 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_5x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×5 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_ASTC_5x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×5 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 5×5 rectangle of signed floating-point RGBA texel

1237

data.

• VK_FORMAT_ASTC_6x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×5 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_ASTC_6x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×5 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×5 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_6x6_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×6 rectangle of unsigned normalized RGBA texel
data.

• VK_FORMAT_ASTC_6x6_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×6 rectangle of unsigned normalized RGBA texel
data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 6×6 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_8x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×5 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_8x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×5 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 8×5 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_8x6_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×6 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_8x6_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×6 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 8×6 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_8x8_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×8 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_8x8_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes an 8×8 rectangle of unsigned normalized RGBA

1238

texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 8×8 rectangle of signed floating-point RGBA texel
data.

• VK_FORMAT_ASTC_10x5_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×5 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_10x5_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×5 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×5 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_10x6_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×6 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_10x6_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×6 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×6 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_10x8_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×8 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_10x8_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×8 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×8 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_10x10_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×10 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_10x10_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×10 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 10×10 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_12x10_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×10 rectangle of unsigned normalized RGBA

1239

texel data.

• VK_FORMAT_ASTC_12x10_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×10 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×10 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_ASTC_12x12_UNORM_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×12 rectangle of unsigned normalized RGBA
texel data.

• VK_FORMAT_ASTC_12x12_SRGB_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×12 rectangle of unsigned normalized RGBA
texel data with sRGB nonlinear encoding applied to the RGB components.

• VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK specifies a four-component, ASTC compressed format where
each 128-bit compressed texel block encodes a 12×12 rectangle of signed floating-point RGBA
texel data.

• VK_FORMAT_G8B8G8R8_422_UNORM specifies a four-component, 32-bit format containing a pair of G
components, an R component, and a B component, collectively encoding a 2×1 rectangle of
unsigned normalized RGB texel data. One G value is present at each i coordinate, with the B and
R values shared across both G values and thus recorded at half the horizontal resolution of the
image. This format has an 8-bit G component for the even i coordinate in byte 0, an 8-bit B
component in byte 1, an 8-bit G component for the odd i coordinate in byte 2, and an 8-bit R
component in byte 3. This format only supports images with a width that is a multiple of two.
For the purposes of the constraints on copy extents, this format is treated as a compressed
format with a 2×1 compressed texel block.

• VK_FORMAT_B8G8R8G8_422_UNORM specifies a four-component, 32-bit format containing a pair of G
components, an R component, and a B component, collectively encoding a 2×1 rectangle of
unsigned normalized RGB texel data. One G value is present at each i coordinate, with the B and
R values shared across both G values and thus recorded at half the horizontal resolution of the
image. This format has an 8-bit B component in byte 0, an 8-bit G component for the even i
coordinate in byte 1, an 8-bit R component in byte 2, and an 8-bit G component for the odd i
coordinate in byte 3. This format only supports images with a width that is a multiple of two.
For the purposes of the constraints on copy extents, this format is treated as a compressed
format with a 2×1 compressed texel block.

• VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, an 8-bit B component in plane 1, and an 8-bit R component
in plane 2. The horizontal and vertical dimensions of the R and B planes are halved relative to
the image dimensions, and each R and B component is shared with the G components for which

 and . The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and
VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width and
height that is a multiple of two.

• VK_FORMAT_G8_B8R8_2PLANE_420_UNORM specifies an unsigned normalized multi-planar format that

1240

has an 8-bit G component in plane 0, and a two-component, 16-bit BR plane 1 consisting of an 8-
bit B component in byte 0 and an 8-bit R component in byte 1. The horizontal and vertical
dimensions of the BR plane are halved relative to the image dimensions, and each R and B value
is shared with the G components for which and . The location
of each plane when this image is in linear layout can be determined via
vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and
VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane. This format only supports images with a width
and height that is a multiple of two.

• VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, an 8-bit B component in plane 1, and an 8-bit R component
in plane 2. The horizontal dimension of the R and B plane is halved relative to the image
dimensions, and each R and B value is shared with the G components for which

. The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R
plane. This format only supports images with a width that is a multiple of two.

• VK_FORMAT_G8_B8R8_2PLANE_422_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, and a two-component, 16-bit BR plane 1 consisting of an 8-
bit B component in byte 0 and an 8-bit R component in byte 1. The horizontal dimension of the
BR plane is halved relative to the image dimensions, and each R and B value is shared with the
G components for which . The location of each plane when this image is in
linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.
This format only supports images with a width that is a multiple of two.

• VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, an 8-bit B component in plane 1, and an 8-bit R component
in plane 2. Each plane has the same dimensions and each R, G and B component contributes to a
single texel. The location of each plane when this image is in linear layout can be determined
via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane,
VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane.

• VK_FORMAT_R10X6_UNORM_PACK16 specifies a one-component, 16-bit unsigned normalized format
that has a single 10-bit R component in the top 10 bits of a 16-bit word, with the bottom 6 bits
unused.

• VK_FORMAT_R10X6G10X6_UNORM_2PACK16 specifies a two-component, 32-bit unsigned normalized
format that has a 10-bit R component in the top 10 bits of the word in bytes 0..1, and a 10-bit G
component in the top 10 bits of the word in bytes 2..3, with the bottom 6 bits of each word
unused.

• VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 specifies a four-component, 64-bit unsigned
normalized format that has a 10-bit R component in the top 10 bits of the word in bytes 0..1, a
10-bit G component in the top 10 bits of the word in bytes 2..3, a 10-bit B component in the top
10 bits of the word in bytes 4..5, and a 10-bit A component in the top 10 bits of the word in bytes
6..7, with the bottom 6 bits of each word unused.

• VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16 specifies a four-component, 64-bit format
containing a pair of G components, an R component, and a B component, collectively encoding a
2×1 rectangle of unsigned normalized RGB texel data. One G value is present at each i

1241

coordinate, with the B and R values shared across both G values and thus recorded at half the
horizontal resolution of the image. This format has a 10-bit G component for the even i
coordinate in the top 10 bits of the word in bytes 0..1, a 10-bit B component in the top 10 bits of
the word in bytes 2..3, a 10-bit G component for the odd i coordinate in the top 10 bits of the
word in bytes 4..5, and a 10-bit R component in the top 10 bits of the word in bytes 6..7, with the
bottom 6 bits of each word unused. This format only supports images with a width that is a
multiple of two. For the purposes of the constraints on copy extents, this format is treated as a
compressed format with a 2×1 compressed texel block.

• VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16 specifies a four-component, 64-bit format
containing a pair of G components, an R component, and a B component, collectively encoding a
2×1 rectangle of unsigned normalized RGB texel data. One G value is present at each i
coordinate, with the B and R values shared across both G values and thus recorded at half the
horizontal resolution of the image. This format has a 10-bit B component in the top 10 bits of the
word in bytes 0..1, a 10-bit G component for the even i coordinate in the top 10 bits of the word
in bytes 2..3, a 10-bit R component in the top 10 bits of the word in bytes 4..5, and a 10-bit G
component for the odd i coordinate in the top 10 bits of the word in bytes 6..7, with the bottom 6
bits of each word unused. This format only supports images with a width that is a multiple of
two. For the purposes of the constraints on copy extents, this format is treated as a compressed
format with a 2×1 compressed texel block.

• VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0, a
10-bit B component in the top 10 bits of each 16-bit word of plane 1, and a 10-bit R component in
the top 10 bits of each 16-bit word of plane 2, with the bottom 6 bits of each word unused. The
horizontal and vertical dimensions of the R and B planes are halved relative to the image
dimensions, and each R and B component is shared with the G components for which

 and . The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and
VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width and
height that is a multiple of two.

• VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 10-bit B component in the top 10 bits of
the word in bytes 0..1, and a 10-bit R component in the top 10 bits of the word in bytes 2..3, with
the bottom 6 bits of each word unused. The horizontal and vertical dimensions of the BR plane
are halved relative to the image dimensions, and each R and B value is shared with the G
components for which and . The location of each plane when
this image is in linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.
This format only supports images with a width and height that is a multiple of two.

• VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0, a
10-bit B component in the top 10 bits of each 16-bit word of plane 1, and a 10-bit R component in
the top 10 bits of each 16-bit word of plane 2, with the bottom 6 bits of each word unused. The
horizontal dimension of the R and B plane is halved relative to the image dimensions, and each
R and B value is shared with the G components for which . The location of each

1242

plane when this image is in linear layout can be determined via vkGetImageSubresourceLayout,
using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane,
and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width
that is a multiple of two.

• VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 10-bit B component in the top 10 bits of
the word in bytes 0..1, and a 10-bit R component in the top 10 bits of the word in bytes 2..3, with
the bottom 6 bits of each word unused. The horizontal dimension of the BR plane is halved
relative to the image dimensions, and each R and B value is shared with the G components for
which . The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane. This format only supports images with
a width that is a multiple of two.

• VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0, a
10-bit B component in the top 10 bits of each 16-bit word of plane 1, and a 10-bit R component in
the top 10 bits of each 16-bit word of plane 2, with the bottom 6 bits of each word unused. Each
plane has the same dimensions and each R, G and B component contributes to a single texel.
The location of each plane when this image is in linear layout can be determined via
vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane,
VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane.

• VK_FORMAT_R12X4_UNORM_PACK16 specifies a one-component, 16-bit unsigned normalized format
that has a single 12-bit R component in the top 12 bits of a 16-bit word, with the bottom 4 bits
unused.

• VK_FORMAT_R12X4G12X4_UNORM_2PACK16 specifies a two-component, 32-bit unsigned normalized
format that has a 12-bit R component in the top 12 bits of the word in bytes 0..1, and a 12-bit G
component in the top 12 bits of the word in bytes 2..3, with the bottom 4 bits of each word
unused.

• VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16 specifies a four-component, 64-bit unsigned
normalized format that has a 12-bit R component in the top 12 bits of the word in bytes 0..1, a
12-bit G component in the top 12 bits of the word in bytes 2..3, a 12-bit B component in the top
12 bits of the word in bytes 4..5, and a 12-bit A component in the top 12 bits of the word in bytes
6..7, with the bottom 4 bits of each word unused.

• VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16 specifies a four-component, 64-bit format
containing a pair of G components, an R component, and a B component, collectively encoding a
2×1 rectangle of unsigned normalized RGB texel data. One G value is present at each i
coordinate, with the B and R values shared across both G values and thus recorded at half the
horizontal resolution of the image. This format has a 12-bit G component for the even i
coordinate in the top 12 bits of the word in bytes 0..1, a 12-bit B component in the top 12 bits of
the word in bytes 2..3, a 12-bit G component for the odd i coordinate in the top 12 bits of the
word in bytes 4..5, and a 12-bit R component in the top 12 bits of the word in bytes 6..7, with the
bottom 4 bits of each word unused. This format only supports images with a width that is a
multiple of two. For the purposes of the constraints on copy extents, this format is treated as a
compressed format with a 2×1 compressed texel block.

1243

• VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16 specifies a four-component, 64-bit format
containing a pair of G components, an R component, and a B component, collectively encoding a
2×1 rectangle of unsigned normalized RGB texel data. One G value is present at each i
coordinate, with the B and R values shared across both G values and thus recorded at half the
horizontal resolution of the image. This format has a 12-bit B component in the top 12 bits of the
word in bytes 0..1, a 12-bit G component for the even i coordinate in the top 12 bits of the word
in bytes 2..3, a 12-bit R component in the top 12 bits of the word in bytes 4..5, and a 12-bit G
component for the odd i coordinate in the top 12 bits of the word in bytes 6..7, with the bottom 4
bits of each word unused. This format only supports images with a width that is a multiple of
two. For the purposes of the constraints on copy extents, this format is treated as a compressed
format with a 2×1 compressed texel block.

• VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0, a
12-bit B component in the top 12 bits of each 16-bit word of plane 1, and a 12-bit R component in
the top 12 bits of each 16-bit word of plane 2, with the bottom 4 bits of each word unused. The
horizontal and vertical dimensions of the R and B planes are halved relative to the image
dimensions, and each R and B component is shared with the G components for which

 and . The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and
VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width and
height that is a multiple of two.

• VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 12-bit B component in the top 12 bits of
the word in bytes 0..1, and a 12-bit R component in the top 12 bits of the word in bytes 2..3, with
the bottom 4 bits of each word unused. The horizontal and vertical dimensions of the BR plane
are halved relative to the image dimensions, and each R and B value is shared with the G
components for which and . The location of each plane when
this image is in linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.
This format only supports images with a width and height that is a multiple of two.

• VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0, a
12-bit B component in the top 12 bits of each 16-bit word of plane 1, and a 12-bit R component in
the top 12 bits of each 16-bit word of plane 2, with the bottom 4 bits of each word unused. The
horizontal dimension of the R and B plane is halved relative to the image dimensions, and each
R and B value is shared with the G components for which . The location of each
plane when this image is in linear layout can be determined via vkGetImageSubresourceLayout,
using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane,
and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width
that is a multiple of two.

• VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 12-bit B component in the top 12 bits of
the word in bytes 0..1, and a 12-bit R component in the top 12 bits of the word in bytes 2..3, with

1244

the bottom 4 bits of each word unused. The horizontal dimension of the BR plane is halved
relative to the image dimensions, and each R and B value is shared with the G components for
which . The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane. This format only supports images with
a width that is a multiple of two.

• VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0, a
12-bit B component in the top 12 bits of each 16-bit word of plane 1, and a 12-bit R component in
the top 12 bits of each 16-bit word of plane 2, with the bottom 4 bits of each word unused. Each
plane has the same dimensions and each R, G and B component contributes to a single texel.
The location of each plane when this image is in linear layout can be determined via
vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane,
VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane.

• VK_FORMAT_G16B16G16R16_422_UNORM specifies a four-component, 64-bit format containing a pair of
G components, an R component, and a B component, collectively encoding a 2×1 rectangle of
unsigned normalized RGB texel data. One G value is present at each i coordinate, with the B and
R values shared across both G values and thus recorded at half the horizontal resolution of the
image. This format has a 16-bit G component for the even i coordinate in the word in bytes 0..1,
a 16-bit B component in the word in bytes 2..3, a 16-bit G component for the odd i coordinate in
the word in bytes 4..5, and a 16-bit R component in the word in bytes 6..7. This format only
supports images with a width that is a multiple of two. For the purposes of the constraints on
copy extents, this format is treated as a compressed format with a 2×1 compressed texel block.

• VK_FORMAT_B16G16R16G16_422_UNORM specifies a four-component, 64-bit format containing a pair of
G components, an R component, and a B component, collectively encoding a 2×1 rectangle of
unsigned normalized RGB texel data. One G value is present at each i coordinate, with the B and
R values shared across both G values and thus recorded at half the horizontal resolution of the
image. This format has a 16-bit B component in the word in bytes 0..1, a 16-bit G component for
the even i coordinate in the word in bytes 2..3, a 16-bit R component in the word in bytes 4..5,
and a 16-bit G component for the odd i coordinate in the word in bytes 6..7. This format only
supports images with a width that is a multiple of two. For the purposes of the constraints on
copy extents, this format is treated as a compressed format with a 2×1 compressed texel block.

• VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, a 16-bit B component in each 16-
bit word of plane 1, and a 16-bit R component in each 16-bit word of plane 2. The horizontal and
vertical dimensions of the R and B planes are halved relative to the image dimensions, and each
R and B component is shared with the G components for which and

. The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R
plane. This format only supports images with a width and height that is a multiple of two.

• VK_FORMAT_G16_B16R16_2PLANE_420_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, and a two-component, 32-bit BR
plane 1 consisting of a 16-bit B component in the word in bytes 0..1, and a 16-bit R component in
the word in bytes 2..3. The horizontal and vertical dimensions of the BR plane are halved
relative to the image dimensions, and each R and B value is shared with the G components for

1245

which and . The location of each plane when this image is in
linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.
This format only supports images with a width and height that is a multiple of two.

• VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, a 16-bit B component in each 16-
bit word of plane 1, and a 16-bit R component in each 16-bit word of plane 2. The horizontal
dimension of the R and B plane is halved relative to the image dimensions, and each R and B
value is shared with the G components for which . The location of each plane
when this image is in linear layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and
VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane. This format only supports images with a width that
is a multiple of two.

• VK_FORMAT_G16_B16R16_2PLANE_422_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, and a two-component, 32-bit BR
plane 1 consisting of a 16-bit B component in the word in bytes 0..1, and a 16-bit R component in
the word in bytes 2..3. The horizontal dimension of the BR plane is halved relative to the image
dimensions, and each R and B value is shared with the G components for which

. The location of each plane when this image is in linear layout can be
determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane. This format only supports images with
a width that is a multiple of two.

• VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, a 16-bit B component in each 16-
bit word of plane 1, and a 16-bit R component in each 16-bit word of plane 2. Each plane has the
same dimensions and each R, G and B component contributes to a single texel. The location of
each plane when this image is in linear layout can be determined via
vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane,
VK_IMAGE_ASPECT_PLANE_1_BIT for the B plane, and VK_IMAGE_ASPECT_PLANE_2_BIT for the R plane.

• VK_FORMAT_G8_B8R8_2PLANE_444_UNORM specifies an unsigned normalized multi-planar format that
has an 8-bit G component in plane 0, and a two-component, 16-bit BR plane 1 consisting of an 8-
bit B component in byte 0 and an 8-bit R component in byte 1. Both planes have the same
dimensions and each R, G and B component contributes to a single texel. The location of each
plane when this image is in linear layout can be determined via vkGetImageSubresourceLayout,
using VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR
plane.

• VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16 specifies an unsigned normalized multi-
planar format that has a 10-bit G component in the top 10 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 10-bit B component in the top 10 bits of
the word in bytes 0..1, and a 10-bit R component in the top 10 bits of the word in bytes 2..3, the
bottom 6 bits of each word unused. Both planes have the same dimensions and each R, G and B
component contributes to a single texel. The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.

• VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16 specifies an unsigned normalized multi-

1246

planar format that has a 12-bit G component in the top 12 bits of each 16-bit word of plane 0,
and a two-component, 32-bit BR plane 1 consisting of a 12-bit B component in the top 12 bits of
the word in bytes 0..1, and a 12-bit R component in the top 12 bits of the word in bytes 2..3, the
bottom 4 bits of each word unused. Both planes have the same dimensions and each R, G and B
component contributes to a single texel. The location of each plane when this image is in linear
layout can be determined via vkGetImageSubresourceLayout, using
VK_IMAGE_ASPECT_PLANE_0_BIT for the G plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.

• VK_FORMAT_G16_B16R16_2PLANE_444_UNORM specifies an unsigned normalized multi-planar format
that has a 16-bit G component in each 16-bit word of plane 0, and a two-component, 32-bit BR
plane 1 consisting of a 16-bit B component in the word in bytes 0..1, and a 16-bit R component in
the word in bytes 2..3. Both planes have the same dimensions and each R, G and B component
contributes to a single texel. The location of each plane when this image is in linear layout can
be determined via vkGetImageSubresourceLayout, using VK_IMAGE_ASPECT_PLANE_0_BIT for the G
plane, and VK_IMAGE_ASPECT_PLANE_1_BIT for the BR plane.

34.1.1. Compatible Formats of Planes of Multi-Planar Formats

Individual planes of multi-planar formats are size-compatible with single-plane color formats if
they occupy the same number of bits per texel block, and are compatible with those formats if they
have the same block extent.

In the following table, individual planes of a multi-planar format are compatible with the format
listed against the relevant plane index for that multi-planar format, and any format compatible
with the listed single-plane format according to Format Compatibility Classes. These planes are also
size-compatible with any format that is size-compatible with the listed single-plane format.

Table 34. Plane Format Compatibility Table

Plane Compatible format for plane Width relative to
the width w of the

plane with the
largest dimensions

Height relative to
the height h of the

plane with the
largest dimensions

VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8_UNORM w/2 h/2

2 VK_FORMAT_R8_UNORM w/2 h/2

VK_FORMAT_G8_B8R8_2PLANE_420_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8G8_UNORM w/2 h/2

VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8_UNORM w/2 h

2 VK_FORMAT_R8_UNORM w/2 h

VK_FORMAT_G8_B8R8_2PLANE_422_UNORM

1247

Plane Compatible format for plane Width relative to
the width w of the

plane with the
largest dimensions

Height relative to
the height h of the

plane with the
largest dimensions

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8G8_UNORM w/2 h

VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8_UNORM w h

2 VK_FORMAT_R8_UNORM w h

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6_UNORM_PACK16 w/2 h/2

2 VK_FORMAT_R10X6_UNORM_PACK16 w/2 h/2

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6G10X6_UNORM_2PACK16 w/2 h/2

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6_UNORM_PACK16 w/2 h

2 VK_FORMAT_R10X6_UNORM_PACK16 w/2 h

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6G10X6_UNORM_2PACK16 w/2 h

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6_UNORM_PACK16 w h

2 VK_FORMAT_R10X6_UNORM_PACK16 w h

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4_UNORM_PACK16 w/2 h/2

2 VK_FORMAT_R12X4_UNORM_PACK16 w/2 h/2

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4G12X4_UNORM_2PACK16 w/2 h/2

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16

1248

Plane Compatible format for plane Width relative to
the width w of the

plane with the
largest dimensions

Height relative to
the height h of the

plane with the
largest dimensions

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4_UNORM_PACK16 w/2 h

2 VK_FORMAT_R12X4_UNORM_PACK16 w/2 h

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4G12X4_UNORM_2PACK16 w/2 h

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4_UNORM_PACK16 w h

2 VK_FORMAT_R12X4_UNORM_PACK16 w h

VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16_UNORM w/2 h/2

2 VK_FORMAT_R16_UNORM w/2 h/2

VK_FORMAT_G16_B16R16_2PLANE_420_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16G16_UNORM w/2 h/2

VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16_UNORM w/2 h

2 VK_FORMAT_R16_UNORM w/2 h

VK_FORMAT_G16_B16R16_2PLANE_422_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16G16_UNORM w/2 h

VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16_UNORM w h

2 VK_FORMAT_R16_UNORM w h

VK_FORMAT_G8_B8R8_2PLANE_444_UNORM

0 VK_FORMAT_R8_UNORM w h

1 VK_FORMAT_R8G8_UNORM w h

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16

1249

Plane Compatible format for plane Width relative to
the width w of the

plane with the
largest dimensions

Height relative to
the height h of the

plane with the
largest dimensions

0 VK_FORMAT_R10X6_UNORM_PACK16 w h

1 VK_FORMAT_R10X6G10X6_UNORM_2PACK16 w h

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16

0 VK_FORMAT_R12X4_UNORM_PACK16 w h

1 VK_FORMAT_R12X4G12X4_UNORM_2PACK16 w h

VK_FORMAT_G16_B16R16_2PLANE_444_UNORM

0 VK_FORMAT_R16_UNORM w h

1 VK_FORMAT_R16G16_UNORM w h

34.1.2. Multi-planar Format Image Aspect

When using VkImageAspectFlagBits to select a plane of a multi-planar format, the following are the
valid options:

• Two planes

◦ VK_IMAGE_ASPECT_PLANE_0_BIT

◦ VK_IMAGE_ASPECT_PLANE_1_BIT

• Three planes

◦ VK_IMAGE_ASPECT_PLANE_0_BIT

◦ VK_IMAGE_ASPECT_PLANE_1_BIT

◦ VK_IMAGE_ASPECT_PLANE_2_BIT

34.1.3. Packed Formats

For the purposes of address alignment when accessing buffer memory containing vertex attribute
or texel data, the following formats are considered packed - components of the texels or attributes
are stored in bitfields packed into one or more 8-, 16-, or 32-bit fundamental data type.

• Packed into 8-bit data types:

◦ VK_FORMAT_R4G4_UNORM_PACK8

• Packed into 16-bit data types:

◦ VK_FORMAT_R4G4B4A4_UNORM_PACK16

◦ VK_FORMAT_B4G4R4A4_UNORM_PACK16

◦ VK_FORMAT_R5G6B5_UNORM_PACK16

◦ VK_FORMAT_B5G6R5_UNORM_PACK16

◦ VK_FORMAT_R5G5B5A1_UNORM_PACK16

1250

◦ VK_FORMAT_B5G5R5A1_UNORM_PACK16

◦ VK_FORMAT_A1R5G5B5_UNORM_PACK16

◦ VK_FORMAT_R10X6_UNORM_PACK16

◦ VK_FORMAT_R10X6G10X6_UNORM_2PACK16

◦ VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16

◦ VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16

◦ VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_R12X4_UNORM_PACK16

◦ VK_FORMAT_R12X4G12X4_UNORM_2PACK16

◦ VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16

◦ VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16

◦ VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_A4R4G4B4_UNORM_PACK16

◦ VK_FORMAT_A4B4G4R4_UNORM_PACK16

• Packed into 32-bit data types:

◦ VK_FORMAT_A8B8G8R8_UNORM_PACK32

◦ VK_FORMAT_A8B8G8R8_SNORM_PACK32

◦ VK_FORMAT_A8B8G8R8_USCALED_PACK32

◦ VK_FORMAT_A8B8G8R8_SSCALED_PACK32

◦ VK_FORMAT_A8B8G8R8_UINT_PACK32

◦ VK_FORMAT_A8B8G8R8_SINT_PACK32

◦ VK_FORMAT_A8B8G8R8_SRGB_PACK32

◦ VK_FORMAT_A2R10G10B10_UNORM_PACK32

1251

◦ VK_FORMAT_A2R10G10B10_SNORM_PACK32

◦ VK_FORMAT_A2R10G10B10_USCALED_PACK32

◦ VK_FORMAT_A2R10G10B10_SSCALED_PACK32

◦ VK_FORMAT_A2R10G10B10_UINT_PACK32

◦ VK_FORMAT_A2R10G10B10_SINT_PACK32

◦ VK_FORMAT_A2B10G10R10_UNORM_PACK32

◦ VK_FORMAT_A2B10G10R10_SNORM_PACK32

◦ VK_FORMAT_A2B10G10R10_USCALED_PACK32

◦ VK_FORMAT_A2B10G10R10_SSCALED_PACK32

◦ VK_FORMAT_A2B10G10R10_UINT_PACK32

◦ VK_FORMAT_A2B10G10R10_SINT_PACK32

◦ VK_FORMAT_B10G11R11_UFLOAT_PACK32

◦ VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

◦ VK_FORMAT_X8_D24_UNORM_PACK32

34.1.4. Identification of Formats

A “format” is represented by a single enum value. The name of a format is usually built up by using
the following pattern:

 VK_FORMAT_{component-format|compression-scheme}_{numeric-format}

The component-format indicates either the size of the R, G, B, and A components (if they are
present) in the case of a color format, or the size of the depth (D) and stencil (S) components (if they
are present) in the case of a depth/stencil format (see below). An X indicates a component that is
unused, but may be present for padding.

1252

Table 35. Interpretation of Numeric Format

Numeric
format

Type-
Declaration
instructions

Numeric type Description

UNORM OpTypeFloat floating-point The components are unsigned normalized values
in the range [0,1]

SNORM OpTypeFloat floating-point The components are signed normalized values in
the range [-1,1]

USCALED OpTypeFloat floating-point The components are unsigned integer values that
get converted to floating-point in the range [0,2n-1]

SSCALED OpTypeFloat floating-point The components are signed integer values that get
converted to floating-point in the range [-2n-1,2n-1-1]

UINT OpTypeInt unsigned
integer

The components are unsigned integer values in the
range [0,2n-1]

SINT OpTypeInt signed integer The components are signed integer values in the
range [-2n-1,2n-1-1]

UFLOAT OpTypeFloat floating-point The components are unsigned floating-point
numbers (used by packed, shared exponent, and
some compressed formats)

SFLOAT OpTypeFloat floating-point The components are signed floating-point numbers

SRGB OpTypeFloat floating-point The R, G, and B components are unsigned
normalized values that represent values using
sRGB nonlinear encoding, while the A component
(if one exists) is a regular unsigned normalized
value

n is the number of bits in the component.

The suffix _PACKnn indicates that the format is packed into an underlying type with nn bits. The
suffix _mPACKnn is a short-hand that indicates that the format has m groups of components (which
may or may not be stored in separate planes) that are each packed into an underlying type with nn
bits.

The suffix _BLOCK indicates that the format is a block-compressed format, with the representation of
multiple pixels encoded interdependently within a region.

Table 36. Interpretation of Compression Scheme

Compression
scheme

Description

BC Block Compression. See Block-Compressed Image Formats.

ETC2 Ericsson Texture Compression. See ETC Compressed Image Formats.

EAC ETC2 Alpha Compression. See ETC Compressed Image Formats.

1253

Compression
scheme

Description

ASTC Adaptive Scalable Texture Compression (LDR Profile). See ASTC Compressed
Image Formats.

For multi-planar images, the components in separate planes are separated by underscores, and the
number of planes is indicated by the addition of a _2PLANE or _3PLANE suffix. Similarly, the separate
aspects of depth-stencil formats are separated by underscores, although these are not considered
separate planes. Formats are suffixed by _422 to indicate that planes other than the first are
reduced in size by a factor of two horizontally or that the R and B values appear at half the
horizontal frequency of the G values, _420 to indicate that planes other than the first are reduced in
size by a factor of two both horizontally and vertically, and _444 for consistency to indicate that all
three planes of a three-planar image are the same size.

Note

No common format has a single plane containing both R and B components but
does not store these components at reduced horizontal resolution.

34.1.5. Representation and Texel Block Size

Color formats must be represented in memory in exactly the form indicated by the format’s name.
This means that promoting one format to another with more bits per component and/or additional
components must not occur for color formats. Depth/stencil formats have more relaxed
requirements as discussed below.

Each format has a texel block size, the number of bytes used to store one texel block (a single
addressable element of an uncompressed image, or a single compressed block of a compressed
image). The texel block size for each format is shown in the Compatible formats table.

The representation of non-packed formats is that the first component specified in the name of the
format is in the lowest memory addresses and the last component specified is in the highest
memory addresses. See Byte mappings for non-packed/compressed color formats. The in-memory
ordering of bytes within a component is determined by the host endianness.

Table 37. Byte mappings for non-packed/compressed color formats

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ← Byte

R VK_FORMAT_R8_*

R G VK_FORMAT_R8G8_*

R G B VK_FORMAT_R8G8B8_*

B G R VK_FORMAT_B8G8R8_*

R G B A VK_FORMAT_R8G8B8A8_*

B G R A VK_FORMAT_B8G8R8A8_*

G0 B G1 R VK_FORMAT_G8B8G8R8_422_UNORM

B G0 R G1
VK_FORMAT_B8G8R8G8_422_UNORM

1254

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ← Byte

R VK_FORMAT_R16_*

R G VK_FORMAT_R16G16_*

R G B VK_FORMAT_R16G16B16_*

R G B A VK_FORMAT_R16G16B16A16_*

G0 B G1 R VK_FORMAT_G10X6B10X6G10X6R10X6_4PACK16_422_UNORM
VK_FORMAT_G12X4B12X4G12X4R12X4_4PACK16_422_UNORM

VK_FORMAT_G16B16G16R16_UNORM

B G0 R G1 VK_FORMAT_B10X6G10X6R10X6G10X6_4PACK16_422_UNORM
VK_FORMAT_B12X4G12X4R12X4G12X4_4PACK16_422_UNORM

VK_FORMAT_B16G16R16G16_422_UNORM

R VK_FORMAT_R32_*

R G VK_FORMAT_R32G32_*

R G B VK_FORMAT_R32G32B32_*

R G B A VK_FORMAT_R32G32B32A32_*

R VK_FORMAT_R64_*

R G VK_FORMAT_R64G64_*

VK_FORMAT_R64G64B64_* as VK_FORMAT_R64G64_* but with B in bytes 16-23

VK_FORMAT_R64G64B64A64_* as VK_FORMAT_R64G64B64_* but with A in bytes 24-31

Packed formats store multiple components within one underlying type. The bit representation is
that the first component specified in the name of the format is in the most-significant bits and the
last component specified is in the least-significant bits of the underlying type. The in-memory
ordering of bytes comprising the underlying type is determined by the host endianness.

Table 38. Bit mappings for packed 8-bit formats

Bit

7 6 5 4 3 2 1 0

VK_FORMAT_R4G4_UNORM_PACK8

R G

3 2 1 0 3 2 1 0

Table 39. Bit mappings for packed 16-bit formats

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_R4G4B4A4_UNORM_PACK16

R G B A

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_B4G4R4A4_UNORM_PACK16

B G R A

1255

Bit

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_A4R4G4B4_UNORM_PACK16

A R G B

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_A4B4G4R4_UNORM_PACK16

A B G R

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

VK_FORMAT_R5G6B5_UNORM_PACK16

R G B

4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0

VK_FORMAT_B5G6R5_UNORM_PACK16

B G R

4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0

VK_FORMAT_R5G5B5A1_UNORM_PACK16

R G B A

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 0

VK_FORMAT_B5G5R5A1_UNORM_PACK16

B G R A

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 0

VK_FORMAT_A1R5G5B5_UNORM_PACK16

A R G B

0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0

VK_FORMAT_R10X6_UNORM_PACK16

R X

9 8 7 6 5 4 3 2 1 0 5 4 3 2 1 0

VK_FORMAT_R12X4_UNORM_PACK16

R X

11 10 9 8 7 6 5 4 3 2 1 0 3 2 1 0

Table 40. Bit mappings for packed 32-bit formats

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_A8B8G8R8_*_PACK32

A B G R

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

VK_FORMAT_A2R10G10B10_*_PACK32

A R G B

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_A2B10G10R10_*_PACK32

1256

Bit

A B G R

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_B10G11R11_UFLOAT_PACK32

B G R

9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0

VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

E B G R

4 3 2 1 0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0

VK_FORMAT_X8_D24_UNORM_PACK32

X D

7 6 5 4 3 2 1 0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

34.1.6. Depth/Stencil Formats

Depth/stencil formats are considered opaque and need not be stored in the exact number of bits per
texel or component ordering indicated by the format enum. However, implementations must not
substitute a different depth or stencil precision than is described in the format (e.g. D16 must not
be implemented as D24 or D32).

34.1.7. Format Compatibility Classes

Uncompressed color formats are compatible with each other if they occupy the same number of bits
per texel block . Compressed color formats are compatible with each other if the only difference
between them is the numeric format of the uncompressed pixels. Each depth/stencil format is only
compatible with itself. In the following table, all the formats in the same row are compatible. Each
format has a defined texel block extent specifying how many texels each texel block represents in
each dimension.

Table 41. Compatible Formats

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

8-bit
Block size 1 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R4G4_UNORM_PACK8,
VK_FORMAT_R8_UNORM,
VK_FORMAT_R8_SNORM,
VK_FORMAT_R8_USCALED,
VK_FORMAT_R8_SSCALED,
VK_FORMAT_R8_UINT,
VK_FORMAT_R8_SINT,
VK_FORMAT_R8_SRGB

1257

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

16-bit
Block size 2 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R10X6_UNORM_PACK16,
VK_FORMAT_R12X4_UNORM_PACK16,
VK_FORMAT_A4R4G4B4_UNORM_PACK16,
VK_FORMAT_A4B4G4R4_UNORM_PACK16,
VK_FORMAT_R4G4B4A4_UNORM_PACK16,
VK_FORMAT_B4G4R4A4_UNORM_PACK16,
VK_FORMAT_R5G6B5_UNORM_PACK16,
VK_FORMAT_B5G6R5_UNORM_PACK16,
VK_FORMAT_R5G5B5A1_UNORM_PACK16,
VK_FORMAT_B5G5R5A1_UNORM_PACK16,
VK_FORMAT_A1R5G5B5_UNORM_PACK16,
VK_FORMAT_R8G8_UNORM,
VK_FORMAT_R8G8_SNORM,
VK_FORMAT_R8G8_USCALED,
VK_FORMAT_R8G8_SSCALED,
VK_FORMAT_R8G8_UINT,
VK_FORMAT_R8G8_SINT,
VK_FORMAT_R8G8_SRGB,
VK_FORMAT_R16_UNORM,
VK_FORMAT_R16_SNORM,
VK_FORMAT_R16_USCALED,
VK_FORMAT_R16_SSCALED,
VK_FORMAT_R16_UINT,
VK_FORMAT_R16_SINT,
VK_FORMAT_R16_SFLOAT

24-bit
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R8G8B8_UNORM,
VK_FORMAT_R8G8B8_SNORM,
VK_FORMAT_R8G8B8_USCALED,
VK_FORMAT_R8G8B8_SSCALED,
VK_FORMAT_R8G8B8_UINT,
VK_FORMAT_R8G8B8_SINT,
VK_FORMAT_R8G8B8_SRGB,
VK_FORMAT_B8G8R8_UNORM,
VK_FORMAT_B8G8R8_SNORM,
VK_FORMAT_B8G8R8_USCALED,
VK_FORMAT_B8G8R8_SSCALED,
VK_FORMAT_B8G8R8_UINT,
VK_FORMAT_B8G8R8_SINT,
VK_FORMAT_B8G8R8_SRGB

1258

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

32-bit
Block size 4 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R10X6G10X6_UNORM_2PACK16,
VK_FORMAT_R12X4G12X4_UNORM_2PACK16,
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R8G8B8A8_SNORM,
VK_FORMAT_R8G8B8A8_USCALED,
VK_FORMAT_R8G8B8A8_SSCALED,
VK_FORMAT_R8G8B8A8_UINT,
VK_FORMAT_R8G8B8A8_SINT,
VK_FORMAT_R8G8B8A8_SRGB,
VK_FORMAT_B8G8R8A8_UNORM,
VK_FORMAT_B8G8R8A8_SNORM,
VK_FORMAT_B8G8R8A8_USCALED,
VK_FORMAT_B8G8R8A8_SSCALED,
VK_FORMAT_B8G8R8A8_UINT,
VK_FORMAT_B8G8R8A8_SINT,
VK_FORMAT_B8G8R8A8_SRGB,
VK_FORMAT_A8B8G8R8_UNORM_PACK32,
VK_FORMAT_A8B8G8R8_SNORM_PACK32,
VK_FORMAT_A8B8G8R8_USCALED_PACK32,
VK_FORMAT_A8B8G8R8_SSCALED_PACK32,
VK_FORMAT_A8B8G8R8_UINT_PACK32,
VK_FORMAT_A8B8G8R8_SINT_PACK32,
VK_FORMAT_A8B8G8R8_SRGB_PACK32,
VK_FORMAT_A2R10G10B10_UNORM_PACK32,
VK_FORMAT_A2R10G10B10_SNORM_PACK32,
VK_FORMAT_A2R10G10B10_USCALED_PACK32,
VK_FORMAT_A2R10G10B10_SSCALED_PACK32,
VK_FORMAT_A2R10G10B10_UINT_PACK32,
VK_FORMAT_A2R10G10B10_SINT_PACK32,
VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_FORMAT_A2B10G10R10_SNORM_PACK32,
VK_FORMAT_A2B10G10R10_USCALED_PACK32,
VK_FORMAT_A2B10G10R10_SSCALED_PACK32,
VK_FORMAT_A2B10G10R10_UINT_PACK32,
VK_FORMAT_A2B10G10R10_SINT_PACK32,
VK_FORMAT_R16G16_UNORM,
VK_FORMAT_R16G16_SNORM,
VK_FORMAT_R16G16_USCALED,
VK_FORMAT_R16G16_SSCALED,
VK_FORMAT_R16G16_UINT,
VK_FORMAT_R16G16_SINT,
VK_FORMAT_R16G16_SFLOAT,
VK_FORMAT_R32_UINT,
VK_FORMAT_R32_SINT,
VK_FORMAT_R32_SFLOAT,
VK_FORMAT_B10G11R11_UFLOAT_PACK32,
VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 1259

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

48-bit
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R16G16B16_UNORM,
VK_FORMAT_R16G16B16_SNORM,
VK_FORMAT_R16G16B16_USCALED,
VK_FORMAT_R16G16B16_SSCALED,
VK_FORMAT_R16G16B16_UINT,
VK_FORMAT_R16G16B16_SINT,
VK_FORMAT_R16G16B16_SFLOAT

64-bit
Block size 8 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16B16A16_SNORM,
VK_FORMAT_R16G16B16A16_USCALED,
VK_FORMAT_R16G16B16A16_SSCALED,
VK_FORMAT_R16G16B16A16_UINT,
VK_FORMAT_R16G16B16A16_SINT,
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_FORMAT_R32G32_UINT,
VK_FORMAT_R32G32_SINT,
VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R64_UINT,
VK_FORMAT_R64_SINT,
VK_FORMAT_R64_SFLOAT

96-bit
Block size 12 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R32G32B32_UINT,
VK_FORMAT_R32G32B32_SINT,
VK_FORMAT_R32G32B32_SFLOAT

128-bit
Block size 16 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R32G32B32A32_UINT,
VK_FORMAT_R32G32B32A32_SINT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R64G64_UINT,
VK_FORMAT_R64G64_SINT,
VK_FORMAT_R64G64_SFLOAT

192-bit
Block size 24 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R64G64B64_UINT,
VK_FORMAT_R64G64B64_SINT,
VK_FORMAT_R64G64B64_SFLOAT

256-bit
Block size 32 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R64G64B64A64_UINT,
VK_FORMAT_R64G64B64A64_SINT,
VK_FORMAT_R64G64B64A64_SFLOAT

1260

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

D16
Block size 2 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D16_UNORM

D24
Block size 4 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_X8_D24_UNORM_PACK32

D32
Block size 4 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D32_SFLOAT

S8
Block size 1 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_S8_UINT

D16S8
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D16_UNORM_S8_UINT

D24S8
Block size 4 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D24_UNORM_S8_UINT

D32S8
Block size 5 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_D32_SFLOAT_S8_UINT

BC1_RGB
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC1_RGB_UNORM_BLOCK,
VK_FORMAT_BC1_RGB_SRGB_BLOCK

BC1_RGBA
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
VK_FORMAT_BC1_RGBA_SRGB_BLOCK

BC2
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC2_UNORM_BLOCK,
VK_FORMAT_BC2_SRGB_BLOCK

1261

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

BC3
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC3_UNORM_BLOCK,
VK_FORMAT_BC3_SRGB_BLOCK

BC4
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC4_UNORM_BLOCK,
VK_FORMAT_BC4_SNORM_BLOCK

BC5
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC5_UNORM_BLOCK,
VK_FORMAT_BC5_SNORM_BLOCK

BC6H
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC6H_UFLOAT_BLOCK,
VK_FORMAT_BC6H_SFLOAT_BLOCK

BC7
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_BC7_UNORM_BLOCK,
VK_FORMAT_BC7_SRGB_BLOCK

ETC2_RGB
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK

ETC2_RGBA
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK

ETC2_EAC_RGBA
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK

EAC_R
Block size 8 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_EAC_R11_UNORM_BLOCK,
VK_FORMAT_EAC_R11_SNORM_BLOCK

EAC_RG
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_EAC_R11G11_UNORM_BLOCK,
VK_FORMAT_EAC_R11G11_SNORM_BLOCK

1262

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

ASTC_4x4
Block size 16 byte
4x4x1 block extent
16 texel/block

VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK,
VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
VK_FORMAT_ASTC_4x4_SRGB_BLOCK

ASTC_5x4
Block size 16 byte
5x4x1 block extent
20 texel/block

VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK,
VK_FORMAT_ASTC_5x4_UNORM_BLOCK,
VK_FORMAT_ASTC_5x4_SRGB_BLOCK

ASTC_5x5
Block size 16 byte
5x5x1 block extent
25 texel/block

VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK,
VK_FORMAT_ASTC_5x5_UNORM_BLOCK,
VK_FORMAT_ASTC_5x5_SRGB_BLOCK

ASTC_6x5
Block size 16 byte
6x5x1 block extent
30 texel/block

VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK,
VK_FORMAT_ASTC_6x5_UNORM_BLOCK,
VK_FORMAT_ASTC_6x5_SRGB_BLOCK

ASTC_6x6
Block size 16 byte
6x6x1 block extent
36 texel/block

VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK,
VK_FORMAT_ASTC_6x6_UNORM_BLOCK,
VK_FORMAT_ASTC_6x6_SRGB_BLOCK

ASTC_8x5
Block size 16 byte
8x5x1 block extent
40 texel/block

VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK,
VK_FORMAT_ASTC_8x5_UNORM_BLOCK,
VK_FORMAT_ASTC_8x5_SRGB_BLOCK

ASTC_8x6
Block size 16 byte
8x6x1 block extent
48 texel/block

VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK,
VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
VK_FORMAT_ASTC_8x6_SRGB_BLOCK

ASTC_8x8
Block size 16 byte
8x8x1 block extent
64 texel/block

VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK,
VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
VK_FORMAT_ASTC_8x8_SRGB_BLOCK

ASTC_10x5
Block size 16 byte
10x5x1 block extent
50 texel/block

VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK,
VK_FORMAT_ASTC_10x5_UNORM_BLOCK,
VK_FORMAT_ASTC_10x5_SRGB_BLOCK

ASTC_10x6
Block size 16 byte
10x6x1 block extent
60 texel/block

VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK,
VK_FORMAT_ASTC_10x6_UNORM_BLOCK,
VK_FORMAT_ASTC_10x6_SRGB_BLOCK

1263

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

ASTC_10x8
Block size 16 byte
10x8x1 block extent
80 texel/block

VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK,
VK_FORMAT_ASTC_10x8_UNORM_BLOCK,
VK_FORMAT_ASTC_10x8_SRGB_BLOCK

ASTC_10x10
Block size 16 byte
10x10x1 block extent
100 texel/block

VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK,
VK_FORMAT_ASTC_10x10_UNORM_BLOCK,
VK_FORMAT_ASTC_10x10_SRGB_BLOCK

ASTC_12x10
Block size 16 byte
12x10x1 block extent
120 texel/block

VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK,
VK_FORMAT_ASTC_12x10_UNORM_BLOCK,
VK_FORMAT_ASTC_12x10_SRGB_BLOCK

ASTC_12x12
Block size 16 byte
12x12x1 block extent
144 texel/block

VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK,
VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
VK_FORMAT_ASTC_12x12_SRGB_BLOCK

32-bit G8B8G8R8
Block size 4 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_G8B8G8R8_422_UNORM

32-bit B8G8R8G8
Block size 4 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_B8G8R8G8_422_UNORM

8-bit 3-plane 420
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM

8-bit 2-plane 420
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8R8_2PLANE_420_UNORM

8-bit 3-plane 422
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM

8-bit 2-plane 422
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8R8_2PLANE_422_UNORM

1264

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

8-bit 3-plane 444
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM

64-bit R10G10B10A10
Block size 8 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16

64-bit G10B10G10R10
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16

64-bit B10G10R10G10
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16

10-bit 3-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16

10-bit 2-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16

10-bit 3-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16

10-bit 2-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16

10-bit 3-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16

64-bit R12G12B12A12
Block size 8 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16

1265

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

64-bit G12B12G12R12
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16

64-bit B12G12R12G12
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16

12-bit 3-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16

12-bit 2-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16

12-bit 3-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16

12-bit 2-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16

12-bit 3-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16

64-bit G16B16G16R16
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_G16B16G16R16_422_UNORM

64-bit B16G16R16G16
Block size 8 byte
2x1x1 block extent
1 texel/block

VK_FORMAT_B16G16R16G16_422_UNORM

16-bit 3-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM

1266

Class, Texel Block Size,
Texel Block Extent, #
Texels/Block

Formats

16-bit 2-plane 420
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16R16_2PLANE_420_UNORM

16-bit 3-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM

16-bit 2-plane 422
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16R16_2PLANE_422_UNORM

16-bit 3-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM

8-bit 2-plane 444
Block size 3 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G8_B8R8_2PLANE_444_UNORM

10-bit 2-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16

12-bit 2-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16

16-bit 2-plane 444
Block size 6 byte
1x1x1 block extent
1 texel/block

VK_FORMAT_G16_B16R16_2PLANE_444_UNORM

Size Compatibility

Color formats with the same texel block size are considered size-compatible. If two size-compatible
formats have different block extents (i.e. for compressed formats), then an image with size A × B × C
in one format with a block extent of a × b × c can be represented as an image with size X × Y × Z in
the other format with block extent x × y × z at the ratio between the block extents for each format,
where

1267

⌈A/a⌉ = ⌈X/x⌉

⌈B/b⌉ = ⌈Y/y⌉

⌈C/c⌉ = ⌈Z/z⌉

Note

For example, a 7x3 image in the VK_FORMAT_ASTC_8x5_UNORM_BLOCK format can be
represented as a 1x1 VK_FORMAT_R64G64_UINT image.

Images created with the VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT flag can have size-
compatible views created from them to enable access via different size-compatible formats. Image
views created in this way will be sized to match the expectations of the block extents noted above.

Copy operations are able to copy between size-compatible formats in different resources to enable
manipulation of data in different formats. The extent used in these copy operations always matches
the source image, and is resized to the expectations of the block extents noted above for the
destination image.

34.2. Format Properties
To query supported format features which are properties of the physical device, call:

// Provided by VK_VERSION_1_0
void vkGetPhysicalDeviceFormatProperties(
 VkPhysicalDevice physicalDevice,
 VkFormat format,
 VkFormatProperties* pFormatProperties);

• physicalDevice is the physical device from which to query the format properties.

• format is the format whose properties are queried.

• pFormatProperties is a pointer to a VkFormatProperties structure in which physical device
properties for format are returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceFormatProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceFormatProperties-format-parameter
format must be a valid VkFormat value

• VUID-vkGetPhysicalDeviceFormatProperties-pFormatProperties-parameter
pFormatProperties must be a valid pointer to a VkFormatProperties structure

1268

The VkFormatProperties structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkFormatProperties {
 VkFormatFeatureFlags linearTilingFeatures;
 VkFormatFeatureFlags optimalTilingFeatures;
 VkFormatFeatureFlags bufferFeatures;
} VkFormatProperties;

• linearTilingFeatures is a bitmask of VkFormatFeatureFlagBits specifying features supported by
images created with a tiling parameter of VK_IMAGE_TILING_LINEAR.

• optimalTilingFeatures is a bitmask of VkFormatFeatureFlagBits specifying features supported
by images created with a tiling parameter of VK_IMAGE_TILING_OPTIMAL.

• bufferFeatures is a bitmask of VkFormatFeatureFlagBits specifying features supported by
buffers.

Note

If no format feature flags are supported, the format itself is not supported, and
images of that format cannot be created.

If format is a block-compressed format, then bufferFeatures must not support any features for the
format.

If format is not a multi-plane format then linearTilingFeatures and optimalTilingFeatures must not
contain VK_FORMAT_FEATURE_DISJOINT_BIT.

Bits which can be set in the VkFormatProperties features linearTilingFeatures,
optimalTilingFeatures, and bufferFeatures are:

// Provided by VK_VERSION_1_0
typedef enum VkFormatFeatureFlagBits {
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT = 0x00000001,
 VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT = 0x00000002,
 VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT = 0x00000004,
 VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000008,
 VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT = 0x00000010,
 VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT = 0x00000020,
 VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT = 0x00000040,
 VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT = 0x00000080,
 VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT = 0x00000100,
 VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000200,
 VK_FORMAT_FEATURE_BLIT_SRC_BIT = 0x00000400,
 VK_FORMAT_FEATURE_BLIT_DST_BIT = 0x00000800,
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT = 0x00001000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_TRANSFER_SRC_BIT = 0x00004000,
 // Provided by VK_VERSION_1_1

1269

 VK_FORMAT_FEATURE_TRANSFER_DST_BIT = 0x00008000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT = 0x00020000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT = 0x00040000,
 // Provided by VK_VERSION_1_1

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT =
0x00080000,
 // Provided by VK_VERSION_1_1

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT =
0x00100000,
 // Provided by VK_VERSION_1_1

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEA
BLE_BIT = 0x00200000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_DISJOINT_BIT = 0x00400000,
 // Provided by VK_VERSION_1_1
 VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT = 0x00800000,
 // Provided by VK_VERSION_1_2
 VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT = 0x00010000,
} VkFormatFeatureFlagBits;

These values all have the same meaning as the equivalently named values for
VkFormatFeatureFlags2 and may be set in linearTilingFeatures and optimalTilingFeatures,
specifying that the features are supported by images or image views or sampler Y′CBCR conversion
objects created with the queried vkGetPhysicalDeviceFormatProperties::format:

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT specifies that an image view can be sampled from.

• VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT specifies that an image view can be used as a storage
image.

• VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT specifies that an image view can be used as storage
image that supports atomic operations.

• VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT specifies that an image view can be used as a
framebuffer color attachment and as an input attachment.

• VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT specifies that an image view can be used as a
framebuffer color attachment that supports blending.

• VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT specifies that an image view can be used as a
framebuffer depth/stencil attachment and as an input attachment.

• VK_FORMAT_FEATURE_BLIT_SRC_BIT specifies that an image can be used as srcImage for the
vkCmdBlitImage2 and vkCmdBlitImage commands.

• VK_FORMAT_FEATURE_BLIT_DST_BIT specifies that an image can be used as dstImage for the
vkCmdBlitImage2 and vkCmdBlitImage commands.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT specifies that if

1270

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT is also set, an image view can be used with a sampler that
has either of magFilter or minFilter set to VK_FILTER_LINEAR, or mipmapMode set to
VK_SAMPLER_MIPMAP_MODE_LINEAR. If VK_FORMAT_FEATURE_BLIT_SRC_BIT is also set, an image can be
used as the srcImage to vkCmdBlitImage2 and vkCmdBlitImage with a filter of VK_FILTER_LINEAR.
This bit must only be exposed for formats that also support the
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT or VK_FORMAT_FEATURE_BLIT_SRC_BIT.

If the format being queried is a depth/stencil format, this bit only specifies that the depth aspect
(not the stencil aspect) of an image of this format supports linear filtering, and that linear
filtering of the depth aspect is supported whether depth compare is enabled in the sampler or
not. Where depth comparison is supported it may be linear filtered whether this bit is present
or not, but where this bit is not present the filtered value may be computed in an
implementation-dependent manner which differs from the normal rules of linear filtering. The
resulting value must be in the range [0,1] and should be proportional to, or a weighted average
of, the number of comparison passes or failures.

• VK_FORMAT_FEATURE_TRANSFER_SRC_BIT specifies that an image can be used as a source image for
copy commands. If the application apiVersion is Vulkan 1.0 and VK_KHR_maintenance1 is not
supported, VK_FORMAT_FEATURE_TRANSFER_SRC_BIT is implied to be set when the format feature flag
is not 0.

• VK_FORMAT_FEATURE_TRANSFER_DST_BIT specifies that an image can be used as a destination image
for copy commands and clear commands. If the application apiVersion is Vulkan 1.0 and
VK_KHR_maintenance1 is not supported, VK_FORMAT_FEATURE_TRANSFER_DST_BIT is implied to be set
when the format feature flag is not 0.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT specifies VkImage can be used as a sampled
image with a min or max VkSamplerReductionMode. This bit must only be exposed for formats
that also support the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT.

• VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT specifies that an application can define a
sampler Y′CBCR conversion using this format as a source, and that an image of this format can be
used with a VkSamplerYcbcrConversionCreateInfo xChromaOffset and/or yChromaOffset of
VK_CHROMA_LOCATION_MIDPOINT. Otherwise both xChromaOffset and yChromaOffset must be
VK_CHROMA_LOCATION_COSITED_EVEN. If a format does not incorporate chroma downsampling (it is
not a “422” or “420” format) but the implementation supports sampler Y′CBCR conversion for this
format, the implementation must set VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT.

• VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT specifies that an application can define a
sampler Y′CBCR conversion using this format as a source, and that an image of this format can be
used with a VkSamplerYcbcrConversionCreateInfo xChromaOffset and/or yChromaOffset of
VK_CHROMA_LOCATION_COSITED_EVEN. Otherwise both xChromaOffset and yChromaOffset must be
VK_CHROMA_LOCATION_MIDPOINT. If neither VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT nor
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT is set, the application must not define a sampler
Y′CBCR conversion using this format as a source.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT specifies that an
application can define a sampler Y′CBCR conversion using this format as a source with
chromaFilter set to VK_FILTER_LINEAR.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT
specifies that the format can have different chroma, min, and mag filters.

1271

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT
specifies that reconstruction is explicit, as described in Chroma Reconstruction. If this bit is not
present, reconstruction is implicit by default.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_B
IT specifies that reconstruction can be forcibly made explicit by setting
VkSamplerYcbcrConversionCreateInfo::forceExplicitReconstruction to VK_TRUE. If the format
being queried supports
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT it must
also support
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_B
IT.

• VK_FORMAT_FEATURE_DISJOINT_BIT specifies that a multi-planar image can have the
VK_IMAGE_CREATE_DISJOINT_BIT set during image creation. An implementation must not set
VK_FORMAT_FEATURE_DISJOINT_BIT for single-plane formats.

The following bits may be set in bufferFeatures, specifying that the features are supported by
buffers or buffer views created with the queried vkGetPhysicalDeviceFormatProperties::format:

• VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT specifies that the format can be used to create a
buffer view that can be bound to a VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT specifies that the format can be used to create a
buffer view that can be bound to a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT specifies that atomic operations are
supported on VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER with this format.

• VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT specifies that the format can be used as a vertex attribute
format (VkVertexInputAttributeDescription::format).

Note

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT and
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT are only intended to be
advertised for single-component formats, since SPIR-V atomic operations require a
scalar type.

// Provided by VK_VERSION_1_0
typedef VkFlags VkFormatFeatureFlags;

VkFormatFeatureFlags is a bitmask type for setting a mask of zero or more VkFormatFeatureFlagBits.

To query supported format features which are properties of the physical device, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceFormatProperties2(
 VkPhysicalDevice physicalDevice,
 VkFormat format,

1272

 VkFormatProperties2* pFormatProperties);

• physicalDevice is the physical device from which to query the format properties.

• format is the format whose properties are queried.

• pFormatProperties is a pointer to a VkFormatProperties2 structure in which physical device
properties for format are returned.

vkGetPhysicalDeviceFormatProperties2 behaves similarly to vkGetPhysicalDeviceFormatProperties,
with the ability to return extended information in a pNext chain of output structures.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceFormatProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceFormatProperties2-format-parameter
format must be a valid VkFormat value

• VUID-vkGetPhysicalDeviceFormatProperties2-pFormatProperties-parameter
pFormatProperties must be a valid pointer to a VkFormatProperties2 structure

The VkFormatProperties2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkFormatProperties2 {
 VkStructureType sType;
 void* pNext;
 VkFormatProperties formatProperties;
} VkFormatProperties2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• formatProperties is a VkFormatProperties structure describing features supported by the
requested format.

Valid Usage (Implicit)

• VUID-VkFormatProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2

• VUID-VkFormatProperties2-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkFormatProperties3

• VUID-VkFormatProperties2-sType-unique
The sType value of each struct in the pNext chain must be unique

1273

To query supported format extended features which are properties of the physical device, add
VkFormatProperties3 structure to the pNext chain of VkFormatProperties2.

The VkFormatProperties3 structure is defined as:

// Provided by VK_VERSION_1_3
typedef struct VkFormatProperties3 {
 VkStructureType sType;
 void* pNext;
 VkFormatFeatureFlags2 linearTilingFeatures;
 VkFormatFeatureFlags2 optimalTilingFeatures;
 VkFormatFeatureFlags2 bufferFeatures;
} VkFormatProperties3;

• linearTilingFeatures is a bitmask of VkFormatFeatureFlagBits2 specifying features supported
by images created with a tiling parameter of VK_IMAGE_TILING_LINEAR.

• optimalTilingFeatures is a bitmask of VkFormatFeatureFlagBits2 specifying features supported
by images created with a tiling parameter of VK_IMAGE_TILING_OPTIMAL.

• bufferFeatures is a bitmask of VkFormatFeatureFlagBits2 specifying features supported by
buffers.

The bits reported in linearTilingFeatures, optimalTilingFeatures and bufferFeatures must include
the bits reported in the corresponding fields of VkFormatProperties2::formatProperties.

Valid Usage (Implicit)

• VUID-VkFormatProperties3-sType-sType
sType must be VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3

Bits which can be set in the VkFormatProperties3 features linearTilingFeatures,
optimalTilingFeatures, and bufferFeatures are:

// Provided by VK_VERSION_1_3
// Flag bits for VkFormatFeatureFlagBits2
typedef VkFlags64 VkFormatFeatureFlagBits2;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT =
0x00000001ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT_KHR =
0x00000001ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT =
0x00000002ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT_KHR =
0x00000002ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_ATOMIC_BIT =
0x00000004ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_IMAGE_ATOMIC_BIT_KHR
= 0x00000004ULL;

1274

static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_UNIFORM_TEXEL_BUFFER_BIT =
0x00000008ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_UNIFORM_TEXEL_BUFFER_BIT_KHR
= 0x00000008ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_BIT =
0x00000010ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_BIT_KHR
= 0x00000010ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_ATOMIC_BIT = 0x00000020ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_ATOMIC_BIT_KHR = 0x00000020ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VERTEX_BUFFER_BIT =
0x00000040ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_VERTEX_BUFFER_BIT_KHR =
0x00000040ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT =
0x00000080ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT_KHR =
0x00000080ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BLEND_BIT =
0x00000100ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BLEND_BIT_KHR = 0x00000100ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DEPTH_STENCIL_ATTACHMENT_BIT
= 0x00000200ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_DEPTH_STENCIL_ATTACHMENT_BIT_KHR = 0x00000200ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_SRC_BIT =
0x00000400ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_SRC_BIT_KHR =
0x00000400ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_DST_BIT =
0x00000800ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_BLIT_DST_BIT_KHR =
0x00000800ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_LINEAR_BIT = 0x00001000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_LINEAR_BIT_KHR = 0x00001000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_CUBIC_BIT = 0x00002000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT = 0x00002000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT =
0x00004000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT_KHR =
0x00004000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT =
0x00008000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT_KHR =

1275

0x00008000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_MINMAX_BIT = 0x00010000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_MINMAX_BIT_KHR = 0x00010000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT
= 0x00020000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT_KHR = 0x00020000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT = 0x00040000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR =
0x00040000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT
= 0x00080000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_
KHR = 0x00080000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT
= 0x00100000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_
KHR = 0x00100000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORC
EABLE_BIT = 0x00200000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORC
EABLE_BIT_KHR = 0x00200000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DISJOINT_BIT =
0x00400000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_DISJOINT_BIT_KHR =
0x00400000ULL;
static const VkFormatFeatureFlagBits2 VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT =
0x00800000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT_KHR = 0x00800000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT = 0x80000000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT_KHR = 0x80000000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT = 0x100000000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT_KHR = 0x100000000ULL;
static const VkFormatFeatureFlagBits2
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT = 0x200000000ULL;
static const VkFormatFeatureFlagBits2

1276

VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT_KHR = 0x200000000ULL;

The following bits may be set in linearTilingFeatures and optimalTilingFeatures, specifying that
the features are supported by images or image views or sampler Y′CBCR conversion objects created
with the queried vkGetPhysicalDeviceFormatProperties2::format:

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT specifies that an image view can be sampled from.

• VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT specifies that an image view can be used as a storage
image.

• VK_FORMAT_FEATURE_2_STORAGE_IMAGE_ATOMIC_BIT specifies that an image view can be used as
storage image that supports atomic operations.

• VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT specifies that an image view can be used as a
framebuffer color attachment and as an input attachment.

• VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BLEND_BIT specifies that an image view can be used as a
framebuffer color attachment that supports blending.

• VK_FORMAT_FEATURE_2_DEPTH_STENCIL_ATTACHMENT_BIT specifies that an image view can be used as a
framebuffer depth/stencil attachment and as an input attachment.

• VK_FORMAT_FEATURE_2_BLIT_SRC_BIT specifies that an image can be used as the srcImage for
vkCmdBlitImage2 and vkCmdBlitImage.

• VK_FORMAT_FEATURE_2_BLIT_DST_BIT specifies that an image can be used as the dstImage for
vkCmdBlitImage2 and vkCmdBlitImage.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_LINEAR_BIT specifies that if
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT is also set, an image view can be used with a sampler
that has either of magFilter or minFilter set to VK_FILTER_LINEAR, or mipmapMode set to
VK_SAMPLER_MIPMAP_MODE_LINEAR. If VK_FORMAT_FEATURE_2_BLIT_SRC_BIT is also set, an image can be
used as the srcImage for vkCmdBlitImage2 and vkCmdBlitImage with a filter of VK_FILTER_LINEAR.
This bit must only be exposed for formats that also support the
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT or VK_FORMAT_FEATURE_2_BLIT_SRC_BIT.

If the format being queried is a depth/stencil format, this bit only specifies that the depth aspect
(not the stencil aspect) of an image of this format supports linear filtering. Where depth
comparison is supported it may be linear filtered whether this bit is present or not, but where
this bit is not present the filtered value may be computed in an implementation-dependent
manner which differs from the normal rules of linear filtering. The resulting value must be in
the range [0,1] and should be proportional to, or a weighted average of, the number of
comparison passes or failures.

• VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT specifies that an image can be used as a source image for
copy commands.

• VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT specifies that an image can be used as a destination
image for copy commands and clear commands.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_FILTER_MINMAX_BIT specifies VkImage can be used as a
sampled image with a min or max VkSamplerReductionMode. This bit must only be exposed for
formats that also support the VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT.

1277

• VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT specifies that an application can define a
sampler Y′CBCR conversion using this format as a source, and that an image of this format can be
used with a VkSamplerYcbcrConversionCreateInfo xChromaOffset and/or yChromaOffset of
VK_CHROMA_LOCATION_MIDPOINT. Otherwise both xChromaOffset and yChromaOffset must be
VK_CHROMA_LOCATION_COSITED_EVEN. If a format does not incorporate chroma downsampling (it is
not a “422” or “420” format) but the implementation supports sampler Y′CBCR conversion for this
format, the implementation must set VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT.

• VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT specifies that an application can define a
sampler Y′CBCR conversion using this format as a source, and that an image of this format can be
used with a VkSamplerYcbcrConversionCreateInfo xChromaOffset and/or yChromaOffset of
VK_CHROMA_LOCATION_COSITED_EVEN. Otherwise both xChromaOffset and yChromaOffset must be
VK_CHROMA_LOCATION_MIDPOINT. If neither VK_FORMAT_FEATURE_2_COSITED_CHROMA_SAMPLES_BIT nor
VK_FORMAT_FEATURE_2_MIDPOINT_CHROMA_SAMPLES_BIT is set, the application must not define a
sampler Y′CBCR conversion using this format as a source.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT specifies that an
application can define a sampler Y′CBCR conversion using this format as a source with
chromaFilter set to VK_FILTER_LINEAR.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT
specifies that the format can have different chroma, min, and mag filters.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT
specifies that reconstruction is explicit, as described in Chroma Reconstruction. If this bit is not
present, reconstruction is implicit by default.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE
_BIT specifies that reconstruction can be forcibly made explicit by setting
VkSamplerYcbcrConversionCreateInfo::forceExplicitReconstruction to VK_TRUE. If the format
being queried supports
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT it
must also support
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE
_BIT.

• VK_FORMAT_FEATURE_2_DISJOINT_BIT specifies that a multi-planar image can have the
VK_IMAGE_CREATE_DISJOINT_BIT set during image creation. An implementation must not set
VK_FORMAT_FEATURE_2_DISJOINT_BIT for single-plane formats.

• VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT specifies that image views or buffer views
created with this format can be used as storage images or storage texel buffers respectively for
read operations without specifying a format.

• VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT specifies that image views or buffer
views created with this format can be used as storage images or storage texel buffers
respectively for write operations without specifying a format.

• VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT specifies that image views created
with this format can be used for depth comparison performed by OpImage*Dref* instructions.

The following bits may be set in bufferFeatures, specifying that the features are supported by
buffers or buffer views created with the queried vkGetPhysicalDeviceFormatProperties2::format:

1278

• VK_FORMAT_FEATURE_2_UNIFORM_TEXEL_BUFFER_BIT specifies that the format can be used to create a
buffer view that can be bound to a VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_BIT specifies that the format can be used to create a
buffer view that can be bound to a VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER descriptor.

• VK_FORMAT_FEATURE_2_STORAGE_TEXEL_BUFFER_ATOMIC_BIT specifies that atomic operations are
supported on VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER with this format.

• VK_FORMAT_FEATURE_2_VERTEX_BUFFER_BIT specifies that the format can be used as a vertex
attribute format (VkVertexInputAttributeDescription::format).

• VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT specifies that buffer views created with
this format can be used as storage texel buffers for read operations without specifying a format.

• VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT specifies that buffer views created with
this format can be used as storage texel buffers for write operations without specifying a
format.

// Provided by VK_VERSION_1_3
typedef VkFlags64 VkFormatFeatureFlags2;

VkFormatFeatureFlags2 is a bitmask type for setting a mask of zero or more
VkFormatFeatureFlagBits2.

34.2.1. Potential Format Features

Some valid usage conditions depend on the format features supported by a VkImage whose
VkImageTiling is unknown. In such cases the exact VkFormatFeatureFlagBits supported by the
VkImage cannot be determined, so the valid usage conditions are expressed in terms of the
potential format features of the VkImage format.

The potential format features of a VkFormat are defined as follows:

• The union of VkFormatFeatureFlagBits and VkFormatFeatureFlagBits2, supported when the
VkImageTiling is VK_IMAGE_TILING_OPTIMAL or VK_IMAGE_TILING_LINEAR

34.3. Required Format Support
Implementations must support at least the following set of features on the listed formats. For
images, these features must be supported for every VkImageType (including arrayed and cube
variants) unless otherwise noted. These features are supported on existing formats without needing
to advertise an extension or needing to explicitly enable them. Support for additional functionality
beyond the requirements listed here is queried using the vkGetPhysicalDeviceFormatProperties
command.

Note

Unless otherwise excluded below, the required formats are supported for all
VkImageCreateFlags values as long as those flag values are otherwise allowed.

1279

The following tables show which feature bits must be supported for each format. Formats that are
required to support VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT must also support
VK_FORMAT_FEATURE_TRANSFER_SRC_BIT and VK_FORMAT_FEATURE_TRANSFER_DST_BIT.

Table 42. Key for format feature tables

✓ This feature must be supported on the named format

† This feature must be supported on at least some of the named
formats, with more information in the table where the symbol
appears

‡ This feature must be supported with some caveats or
preconditions, with more information in the table where the
symbol appears

§ This feature must be supported with some caveats or
preconditions, with more information in the table where the
symbol appears

Table 43. Feature bits in optimalTilingFeatures

VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

VK_FORMAT_FEATURE_TRANSFER_DST_BIT

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

VK_FORMAT_FEATURE_BLIT_SRC_BIT

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

VK_FORMAT_FEATURE_BLIT_DST_BIT

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

Table 44. Feature bits in bufferFeatures

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

1280

Table 45. Mandatory format support: sub-byte components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_UNDEFINED

VK_FORMAT_R4G4_UNORM_PACK8

VK_FORMAT_R4G4B4A4_UNORM_PACK16

VK_FORMAT_B4G4R4A4_UNORM_PACK16 ✓ ✓ ✓

VK_FORMAT_R5G6B5_UNORM_PACK16 ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_B5G6R5_UNORM_PACK16

VK_FORMAT_R5G5B5A1_UNORM_PACK16

VK_FORMAT_B5G5R5A1_UNORM_PACK16

VK_FORMAT_A1R5G5B5_UNORM_PACK16 ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A4R4G4B4_UNORM_PACK16 † † †

VK_FORMAT_A4B4G4R4_UNORM_PACK16 ‡ ‡ ‡

Format features marked † must be supported for optimalTilingFeatures if the VkPhysicalDevice
supports the VkPhysicalDevice4444FormatsFeaturesEXT::formatA4R4G4B4 feature.

Format features marked ‡ must be supported for optimalTilingFeatures if the VkPhysicalDevice
supports the VkPhysicalDevice4444FormatsFeaturesEXT::formatA4B4G4R4 feature.

1281

Table 46. Mandatory format support: 1-3 byte-sized components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R8_UNORM ✓ ✓ ✓ ‡ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8_SNORM ✓ ✓ ✓ ‡ ✓ ✓

VK_FORMAT_R8_USCALED

VK_FORMAT_R8_SSCALED

VK_FORMAT_R8_UINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R8_SINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R8_SRGB

VK_FORMAT_R8G8_UNORM ✓ ✓ ✓ ‡ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_SNORM ✓ ✓ ✓ ‡ ✓ ✓

VK_FORMAT_R8G8_USCALED

VK_FORMAT_R8G8_SSCALED

VK_FORMAT_R8G8_UINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_SINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8_SRGB

VK_FORMAT_R8G8B8_UNORM

VK_FORMAT_R8G8B8_SNORM

VK_FORMAT_R8G8B8_USCALED

VK_FORMAT_R8G8B8_SSCALED

VK_FORMAT_R8G8B8_UINT

VK_FORMAT_R8G8B8_SINT

VK_FORMAT_R8G8B8_SRGB

VK_FORMAT_B8G8R8_UNORM

VK_FORMAT_B8G8R8_SNORM

1282

VK_FORMAT_B8G8R8_USCALED

VK_FORMAT_B8G8R8_SSCALED

VK_FORMAT_B8G8R8_UINT

VK_FORMAT_B8G8R8_SINT

VK_FORMAT_B8G8R8_SRGB

Format features marked with ‡ must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderStorageImageExtendedFormats feature.

1283

Table 47. Mandatory format support: 4 byte-sized components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R8G8B8A8_UNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_SNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_USCALED

VK_FORMAT_R8G8B8A8_SSCALED

VK_FORMAT_R8G8B8A8_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R8G8B8A8_SRGB ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_B8G8R8A8_UNORM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_B8G8R8A8_SNORM

VK_FORMAT_B8G8R8A8_USCALED

VK_FORMAT_B8G8R8A8_SSCALED

VK_FORMAT_B8G8R8A8_UINT

VK_FORMAT_B8G8R8A8_SINT

VK_FORMAT_B8G8R8A8_SRGB ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_UNORM_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_SNORM_PACK32 ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_USCALED_PACK32

VK_FORMAT_A8B8G8R8_SSCALED_PACK32

VK_FORMAT_A8B8G8R8_UINT_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_SINT_PACK32 ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A8B8G8R8_SRGB_PACK32 ✓ ✓ ✓ ✓ ✓ ✓

1284

Table 48. Mandatory format support: 10- and 12-bit components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_A2R10G10B10_UNORM_PACK32

VK_FORMAT_A2R10G10B10_SNORM_PACK32

VK_FORMAT_A2R10G10B10_USCALED_PACK32

VK_FORMAT_A2R10G10B10_SSCALED_PACK32

VK_FORMAT_A2R10G10B10_UINT_PACK32

VK_FORMAT_A2R10G10B10_SINT_PACK32

VK_FORMAT_A2B10G10R10_UNORM_PACK32 ✓ ✓ ✓ ‡ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_A2B10G10R10_SNORM_PACK32

VK_FORMAT_A2B10G10R10_USCALED_PACK32

VK_FORMAT_A2B10G10R10_SSCALED_PACK32

VK_FORMAT_A2B10G10R10_UINT_PACK32 ✓ ✓ ‡ ✓ ✓ ✓

VK_FORMAT_A2B10G10R10_SINT_PACK32

VK_FORMAT_R10X6_UNORM_PACK16

VK_FORMAT_R10X6G10X6_UNORM_2PACK16

VK_FORMAT_R12X4_UNORM_PACK16

VK_FORMAT_R12X4G12X4_UNORM_2PACK16

Format features marked with ‡ must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderStorageImageExtendedFormats feature.

1285

Table 49. Mandatory format support: 16-bit components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R16_UNORM ‡ ✓

VK_FORMAT_R16_SNORM ‡ ✓

VK_FORMAT_R16_USCALED

VK_FORMAT_R16_SSCALED

VK_FORMAT_R16_UINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R16_SINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R16_SFLOAT ✓ ✓ ✓ ‡ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16_UNORM ‡ ✓

VK_FORMAT_R16G16_SNORM ‡ ✓

VK_FORMAT_R16G16_USCALED

VK_FORMAT_R16G16_SSCALED

VK_FORMAT_R16G16_UINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16_SINT ✓ ✓ ‡ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16_SFLOAT ✓ ✓ ✓ ‡ § ✓ ✓ ✓ ✓ ✓ § §

VK_FORMAT_R16G16B16_UNORM

VK_FORMAT_R16G16B16_SNORM

VK_FORMAT_R16G16B16_USCALED

VK_FORMAT_R16G16B16_SSCALED

VK_FORMAT_R16G16B16_UINT

VK_FORMAT_R16G16B16_SINT

VK_FORMAT_R16G16B16_SFLOAT

VK_FORMAT_R16G16B16A16_UNORM ‡ ✓

VK_FORMAT_R16G16B16A16_SNORM ‡ ✓

1286

VK_FORMAT_R16G16B16A16_USCALED

VK_FORMAT_R16G16B16A16_SSCALED

VK_FORMAT_R16G16B16A16_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16B16A16_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R16G16B16A16_SFLOAT ✓ ✓ ✓ ✓ § ✓ ✓ ✓ ✓ ✓ ✓ §

Format features marked with ‡ must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderStorageImageExtendedFormats feature.

1287

Table 50. Mandatory format support: 32-bit components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R32_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32B32_UINT ✓

VK_FORMAT_R32G32B32_SINT ✓

VK_FORMAT_R32G32B32_SFLOAT ✓

VK_FORMAT_R32G32B32A32_UINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32B32A32_SINT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VK_FORMAT_R32G32B32A32_SFLOAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1288

Table 51. Mandatory format support: 64-bit/uneven components

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_R64_UINT

VK_FORMAT_R64_SINT

VK_FORMAT_R64_SFLOAT

VK_FORMAT_R64G64_UINT

VK_FORMAT_R64G64_SINT

VK_FORMAT_R64G64_SFLOAT

VK_FORMAT_R64G64B64_UINT

VK_FORMAT_R64G64B64_SINT

VK_FORMAT_R64G64B64_SFLOAT

VK_FORMAT_R64G64B64A64_UINT

VK_FORMAT_R64G64B64A64_SINT

VK_FORMAT_R64G64B64A64_SFLOAT

VK_FORMAT_B10G11R11_UFLOAT_PACK32 ✓ ✓ ✓ ‡ ✓

VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 ✓ ✓ ✓

Format features marked with ‡ must be supported for optimalTilingFeatures if the
VkPhysicalDevice supports the shaderStorageImageExtendedFormats feature.

1289

Table 52. Mandatory format support: depth/stencil with VkImageType VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_D16_UNORM ✓ ✓ ✓

VK_FORMAT_X8_D24_UNORM_PACK32 †

VK_FORMAT_D32_SFLOAT ✓ ✓ †

VK_FORMAT_S8_UINT

VK_FORMAT_D16_UNORM_S8_UINT

VK_FORMAT_D24_UNORM_S8_UINT †

VK_FORMAT_D32_SFLOAT_S8_UINT †

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT feature must be supported for at least one of
VK_FORMAT_X8_D24_UNORM_PACK32 and VK_FORMAT_D32_SFLOAT, and must be supported for at least one
of VK_FORMAT_D24_UNORM_S8_UINT and VK_FORMAT_D32_SFLOAT_S8_UINT.

bufferFeatures must not support any features for these formats

1290

Table 53. Mandatory format support: BC compressed formats with VkImageType VK_IMAGE_TYPE_2D and
VK_IMAGE_TYPE_3D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_BC1_RGB_UNORM_BLOCK † † †

VK_FORMAT_BC1_RGB_SRGB_BLOCK † † †

VK_FORMAT_BC1_RGBA_UNORM_BLOCK † † †

VK_FORMAT_BC1_RGBA_SRGB_BLOCK † † †

VK_FORMAT_BC2_UNORM_BLOCK † † †

VK_FORMAT_BC2_SRGB_BLOCK † † †

VK_FORMAT_BC3_UNORM_BLOCK † † †

VK_FORMAT_BC3_SRGB_BLOCK † † †

VK_FORMAT_BC4_UNORM_BLOCK † † †

VK_FORMAT_BC4_SNORM_BLOCK † † †

VK_FORMAT_BC5_UNORM_BLOCK † † †

VK_FORMAT_BC5_SNORM_BLOCK † † †

VK_FORMAT_BC6H_UFLOAT_BLOCK † † †

VK_FORMAT_BC6H_SFLOAT_BLOCK † † †

VK_FORMAT_BC7_UNORM_BLOCK † † †

VK_FORMAT_BC7_SRGB_BLOCK † † †

The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in
optimalTilingFeatures for all the formats in at least one of: this table, Mandatory format support:
ETC2 and EAC compressed formats with VkImageType VK_IMAGE_TYPE_2D, or Mandatory format
support: ASTC LDR compressed formats with VkImageType VK_IMAGE_TYPE_2D.

1291

Table 54. Mandatory format support: ETC2 and EAC compressed formats with VkImageType
VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK † † †

VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK † † †

VK_FORMAT_EAC_R11_UNORM_BLOCK † † †

VK_FORMAT_EAC_R11_SNORM_BLOCK † † †

VK_FORMAT_EAC_R11G11_UNORM_BLOCK † † †

VK_FORMAT_EAC_R11G11_SNORM_BLOCK † † †

The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in
optimalTilingFeatures for all the formats in at least one of: this table, Mandatory format support:
BC compressed formats with VkImageType VK_IMAGE_TYPE_2D and VK_IMAGE_TYPE_3D, or Mandatory
format support: ASTC LDR compressed formats with VkImageType VK_IMAGE_TYPE_2D.

1292

Table 55. Mandatory format support: ASTC LDR compressed formats with VkImageType VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

↓
VK_FORMAT_FEATURE_BLIT_SRC_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
↓

Format

VK_FORMAT_ASTC_4x4_UNORM_BLOCK † † †

VK_FORMAT_ASTC_4x4_SRGB_BLOCK † † †

VK_FORMAT_ASTC_5x4_UNORM_BLOCK † † †

VK_FORMAT_ASTC_5x4_SRGB_BLOCK † † †

VK_FORMAT_ASTC_5x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_5x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_6x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_6x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_6x6_UNORM_BLOCK † † †

VK_FORMAT_ASTC_6x6_SRGB_BLOCK † † †

VK_FORMAT_ASTC_8x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_8x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_8x6_UNORM_BLOCK † † †

VK_FORMAT_ASTC_8x6_SRGB_BLOCK † † †

VK_FORMAT_ASTC_8x8_UNORM_BLOCK † † †

VK_FORMAT_ASTC_8x8_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x5_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x5_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x6_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x6_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x8_UNORM_BLOCK † † †

1293

VK_FORMAT_ASTC_10x8_SRGB_BLOCK † † †

VK_FORMAT_ASTC_10x10_UNORM_BLOCK † † †

VK_FORMAT_ASTC_10x10_SRGB_BLOCK † † †

VK_FORMAT_ASTC_12x10_UNORM_BLOCK † † †

VK_FORMAT_ASTC_12x10_SRGB_BLOCK † † †

VK_FORMAT_ASTC_12x12_UNORM_BLOCK † † †

VK_FORMAT_ASTC_12x12_SRGB_BLOCK † † †

The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in
optimalTilingFeatures for all the formats in at least one of: this table, Mandatory format support:
BC compressed formats with VkImageType VK_IMAGE_TYPE_2D and VK_IMAGE_TYPE_3D, or Mandatory
format support: ETC2 and EAC compressed formats with VkImageType VK_IMAGE_TYPE_2D.

To be used with VkImageView with subresourceRange.aspectMask equal to VK_IMAGE_ASPECT_COLOR_BIT,
sampler Y′CBCR conversion must be enabled for the following formats:

Table 56. Formats requiring sampler Y′CBCR conversion for VK_IMAGE_ASPECT_COLOR_BIT image views

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_
BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT

↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT

↓

VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT

↓

VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT

↓

VK_FORMAT_FEATURE_TRANSFER_DST_BIT

↓

VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

↓
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

↓VK_FORMAT_FEATURE_DISJOINT_BIT
↓

Format Planes

VK_FORMAT_G8B8G8R8_422_UNORM 1

VK_FORMAT_B8G8R8G8_422_UNORM 1

VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM 3 † † † †

VK_FORMAT_G8_B8R8_2PLANE_420_UNORM 2 † † † †

VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM 3

VK_FORMAT_G8_B8R8_2PLANE_422_UNORM 2

VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM 3

VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 1

VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16 1

VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16 1

1294

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16 3

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16 2

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16 3

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16 2

VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16 3

VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16 1

VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16 1

VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16 1

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16 3

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16 2

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16 3

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16 2

VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16 3

VK_FORMAT_G16B16G16R16_422_UNORM 1

VK_FORMAT_B16G16R16G16_422_UNORM 1

VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM 3

VK_FORMAT_G16_B16R16_2PLANE_420_UNORM 2

VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM 3

VK_FORMAT_G16_B16R16_2PLANE_422_UNORM 2

VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM 3

VK_FORMAT_G8_B8R8_2PLANE_444_UNORM 2

VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16 2

VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16 2

VK_FORMAT_G16_B16R16_2PLANE_444_UNORM 2

Format features marked † must be supported for optimalTilingFeatures with VkImageType
VK_IMAGE_TYPE_2D if the VkPhysicalDevice supports the
VkPhysicalDeviceSamplerYcbcrConversionFeatures feature.

Implementations are not required to support the VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, or VK_IMAGE_CREATE_SPARSE_ALIASED_BIT VkImageCreateFlags
for the above formats that require sampler Y′CBCR conversion. To determine whether the
implementation supports sparse image creation flags with these formats use
vkGetPhysicalDeviceImageFormatProperties or vkGetPhysicalDeviceImageFormatProperties2.

34.3.1. Formats Without Shader Storage Format

The device-level features for using a storage image or a storage texel buffer with an image format
of Unknown, shaderStorageImageReadWithoutFormat and shaderStorageImageWriteWithoutFormat, only
apply to the following formats:

1295

• VK_FORMAT_R8G8B8A8_UNORM

• VK_FORMAT_R8G8B8A8_SNORM

• VK_FORMAT_R8G8B8A8_UINT

• VK_FORMAT_R8G8B8A8_SINT

• VK_FORMAT_R32_UINT

• VK_FORMAT_R32_SINT

• VK_FORMAT_R32_SFLOAT

• VK_FORMAT_R32G32_UINT

• VK_FORMAT_R32G32_SINT

• VK_FORMAT_R32G32_SFLOAT

• VK_FORMAT_R32G32B32A32_UINT

• VK_FORMAT_R32G32B32A32_SINT

• VK_FORMAT_R32G32B32A32_SFLOAT

• VK_FORMAT_R16G16B16A16_UINT

• VK_FORMAT_R16G16B16A16_SINT

• VK_FORMAT_R16G16B16A16_SFLOAT

• VK_FORMAT_R16G16_SFLOAT

• VK_FORMAT_B10G11R11_UFLOAT_PACK32

• VK_FORMAT_R16_SFLOAT

• VK_FORMAT_R16G16B16A16_UNORM

• VK_FORMAT_A2B10G10R10_UNORM_PACK32

• VK_FORMAT_R16G16_UNORM

• VK_FORMAT_R8G8_UNORM

• VK_FORMAT_R16_UNORM

• VK_FORMAT_R8_UNORM

• VK_FORMAT_R16G16B16A16_SNORM

• VK_FORMAT_R16G16_SNORM

• VK_FORMAT_R8G8_SNORM

• VK_FORMAT_R16_SNORM

• VK_FORMAT_R8_SNORM

• VK_FORMAT_R16G16_SINT

• VK_FORMAT_R8G8_SINT

• VK_FORMAT_R16_SINT

• VK_FORMAT_R8_SINT

• VK_FORMAT_A2B10G10R10_UINT_PACK32

1296

• VK_FORMAT_R16G16_UINT

• VK_FORMAT_R8G8_UINT

• VK_FORMAT_R16_UINT

• VK_FORMAT_R8_UINT

Note

This list of formats is the union of required storage formats from Required Format
Support section and formats listed in shaderStorageImageExtendedFormats.

An implementation that supports VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT for any format from the
given list of formats and supports shaderStorageImageReadWithoutFormat must support
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT for that same format if Vulkan 1.3 or the
VK_KHR_format_feature_flags2 extension is supported.

An implementation that supports VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT for any format from the
given list of formats and supports shaderStorageImageWriteWithoutFormat must support
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT for that same format if Vulkan 1.3 or the
VK_KHR_format_feature_flags2 extension is supported.

An implementation that does not support either of
VK_FORMAT_FEATURE_2_STORAGE_READ_WITHOUT_FORMAT_BIT or
VK_FORMAT_FEATURE_2_STORAGE_WRITE_WITHOUT_FORMAT_BIT for a format must not report support for
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT or VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT for that format
if it is not listed in the SPIR-V and Vulkan Image Format Compatibility table.

Note

Some older implementations do not follow this restriction. They report support for
formats as storage images even though they do not support access without the
Format qualifier and there is no matching Format token. Such images cannot be
either read from or written to.

Drivers which pass Vulkan conformance test suite version 1.3.9.0, or any
subsequent version will conform to the requirement above.

34.3.2. Depth Comparison Format Support

If Vulkan 1.3 or the VK_KHR_format_feature_flags2 extension is supported, a depth/stencil format
with a depth component supporting VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT must support
VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_DEPTH_COMPARISON_BIT.

34.3.3. Format Feature Dependent Usage Flags

Certain resource usage flags depend on support for the corresponding format feature flag for the
format in question. The following tables list the VkBufferUsageFlagBits and VkImageUsageFlagBits
that have such dependencies, and the format feature flags they depend on. Additional restrictions,
including, but not limited to, further required format feature flags specific to the particular use of
the resource may apply, as described in the respective sections of this specification.

1297

Table 57. Format feature dependent buffer usage flags

Buffer usage flag Required format feature flag

VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

VK_BUFFER_USAGE_VERTEX_BUFFER_BIT VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

Table 58. Format feature dependent image usage flags

Image usage flag Required format feature flag

VK_IMAGE_USAGE_SAMPLED_BIT VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT

VK_IMAGE_USAGE_STORAGE_BIT VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT or
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

1298

Chapter 35. Additional Capabilities
This chapter describes additional capabilities beyond the minimum capabilities described in the
Limits and Formats chapters, including:

• Additional Image Capabilities

• Additional Buffer Capabilities

• Optional Semaphore Capabilities

• Optional Fence Capabilities

35.1. Additional Image Capabilities
Additional image capabilities, such as larger dimensions or additional sample counts for certain
image types, or additional capabilities for linear tiling format images, are described in this section.

To query additional capabilities specific to image types, call:

// Provided by VK_VERSION_1_0
VkResult vkGetPhysicalDeviceImageFormatProperties(
 VkPhysicalDevice physicalDevice,
 VkFormat format,
 VkImageType type,
 VkImageTiling tiling,
 VkImageUsageFlags usage,
 VkImageCreateFlags flags,
 VkImageFormatProperties* pImageFormatProperties);

• physicalDevice is the physical device from which to query the image capabilities.

• format is a VkFormat value specifying the image format, corresponding to VkImageCreateInfo
::format.

• type is a VkImageType value specifying the image type, corresponding to VkImageCreateInfo
::imageType.

• tiling is a VkImageTiling value specifying the image tiling, corresponding to
VkImageCreateInfo::tiling.

• usage is a bitmask of VkImageUsageFlagBits specifying the intended usage of the image,
corresponding to VkImageCreateInfo::usage.

• flags is a bitmask of VkImageCreateFlagBits specifying additional parameters of the image,
corresponding to VkImageCreateInfo::flags.

• pImageFormatProperties is a pointer to a VkImageFormatProperties structure in which
capabilities are returned.

The format, type, tiling, usage, and flags parameters correspond to parameters that would be
consumed by vkCreateImage (as members of VkImageCreateInfo).

1299

If format is not a supported image format, or if the combination of format, type, tiling, usage, and
flags is not supported for images, then vkGetPhysicalDeviceImageFormatProperties returns
VK_ERROR_FORMAT_NOT_SUPPORTED.

The limitations on an image format that are reported by vkGetPhysicalDeviceImageFormatProperties
have the following property: if usage1 and usage2 of type VkImageUsageFlags are such that the bits
set in usage1 are a subset of the bits set in usage2, and flags1 and flags2 of type VkImageCreateFlags
are such that the bits set in flags1 are a subset of the bits set in flags2, then the limitations for
usage1 and flags1 must be no more strict than the limitations for usage2 and flags2, for all values of
format, type, and tiling.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceImageFormatProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceImageFormatProperties-format-parameter
format must be a valid VkFormat value

• VUID-vkGetPhysicalDeviceImageFormatProperties-type-parameter
type must be a valid VkImageType value

• VUID-vkGetPhysicalDeviceImageFormatProperties-tiling-parameter
tiling must be a valid VkImageTiling value

• VUID-vkGetPhysicalDeviceImageFormatProperties-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-vkGetPhysicalDeviceImageFormatProperties-usage-requiredbitmask
usage must not be 0

• VUID-vkGetPhysicalDeviceImageFormatProperties-flags-parameter
flags must be a valid combination of VkImageCreateFlagBits values

• VUID-vkGetPhysicalDeviceImageFormatProperties-pImageFormatProperties-parameter
pImageFormatProperties must be a valid pointer to a VkImageFormatProperties structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FORMAT_NOT_SUPPORTED

The VkImageFormatProperties structure is defined as:

1300

// Provided by VK_VERSION_1_0
typedef struct VkImageFormatProperties {
 VkExtent3D maxExtent;
 uint32_t maxMipLevels;
 uint32_t maxArrayLayers;
 VkSampleCountFlags sampleCounts;
 VkDeviceSize maxResourceSize;
} VkImageFormatProperties;

• maxExtent are the maximum image dimensions. See the Allowed Extent Values section below for
how these values are constrained by type.

• maxMipLevels is the maximum number of mipmap levels. maxMipLevels must be equal to the
number of levels in the complete mipmap chain based on the maxExtent.width, maxExtent.height,
and maxExtent.depth, except when one of the following conditions is true, in which case it may
instead be 1:

◦ vkGetPhysicalDeviceImageFormatProperties::tiling was VK_IMAGE_TILING_LINEAR

◦ the VkPhysicalDeviceImageFormatInfo2::pNext chain included a
VkPhysicalDeviceExternalImageFormatInfo structure with a handle type included in the
handleTypes member for which mipmap image support is not required

◦ image format is one of the formats that require a sampler Y′CBCR conversion

• maxArrayLayers is the maximum number of array layers. maxArrayLayers must be no less than
VkPhysicalDeviceLimits::maxImageArrayLayers, except when one of the following conditions is
true, in which case it may instead be 1:

◦ tiling is VK_IMAGE_TILING_LINEAR

◦ tiling is VK_IMAGE_TILING_OPTIMAL and type is VK_IMAGE_TYPE_3D

◦ format is one of the formats that require a sampler Y′CBCR conversion

• sampleCounts is a bitmask of VkSampleCountFlagBits specifying all the supported sample counts
for this image as described below.

• maxResourceSize is an upper bound on the total image size in bytes, inclusive of all image
subresources. Implementations may have an address space limit on total size of a resource,
which is advertised by this property. maxResourceSize must be at least 231.

Note

There is no mechanism to query the size of an image before creating it, to compare
that size against maxResourceSize. If an application attempts to create an image that
exceeds this limit, the creation will fail and vkCreateImage will return
VK_ERROR_OUT_OF_DEVICE_MEMORY. While the advertised limit must be at least 231, it
may not be possible to create an image that approaches that size, particularly for
VK_IMAGE_TYPE_1D.

If the combination of parameters to vkGetPhysicalDeviceImageFormatProperties is not supported by
the implementation for use in vkCreateImage, then all members of VkImageFormatProperties will be
filled with zero.

1301

Note

Filling VkImageFormatProperties with zero for unsupported formats is an exception
to the usual rule that output structures have undefined contents on error. This
exception was unintentional, but is preserved for backwards compatibility.

To query additional capabilities specific to image types, call:

// Provided by VK_VERSION_1_1
VkResult vkGetPhysicalDeviceImageFormatProperties2(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
 VkImageFormatProperties2* pImageFormatProperties);

• physicalDevice is the physical device from which to query the image capabilities.

• pImageFormatInfo is a pointer to a VkPhysicalDeviceImageFormatInfo2 structure describing the
parameters that would be consumed by vkCreateImage.

• pImageFormatProperties is a pointer to a VkImageFormatProperties2 structure in which
capabilities are returned.

vkGetPhysicalDeviceImageFormatProperties2 behaves similarly to
vkGetPhysicalDeviceImageFormatProperties, with the ability to return extended information in a
pNext chain of output structures.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceImageFormatProperties2-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceImageFormatProperties2-pImageFormatInfo-parameter
pImageFormatInfo must be a valid pointer to a valid VkPhysicalDeviceImageFormatInfo2
structure

• VUID-vkGetPhysicalDeviceImageFormatProperties2-pImageFormatProperties-parameter
pImageFormatProperties must be a valid pointer to a VkImageFormatProperties2 structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FORMAT_NOT_SUPPORTED

1302

The VkPhysicalDeviceImageFormatInfo2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceImageFormatInfo2 {
 VkStructureType sType;
 const void* pNext;
 VkFormat format;
 VkImageType type;
 VkImageTiling tiling;
 VkImageUsageFlags usage;
 VkImageCreateFlags flags;
} VkPhysicalDeviceImageFormatInfo2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure. The pNext chain of
VkPhysicalDeviceImageFormatInfo2 is used to provide additional image parameters to
vkGetPhysicalDeviceImageFormatProperties2.

• format is a VkFormat value indicating the image format, corresponding to VkImageCreateInfo
::format.

• type is a VkImageType value indicating the image type, corresponding to VkImageCreateInfo
::imageType.

• tiling is a VkImageTiling value indicating the image tiling, corresponding to
VkImageCreateInfo::tiling.

• usage is a bitmask of VkImageUsageFlagBits indicating the intended usage of the image,
corresponding to VkImageCreateInfo::usage.

• flags is a bitmask of VkImageCreateFlagBits indicating additional parameters of the image,
corresponding to VkImageCreateInfo::flags.

The members of VkPhysicalDeviceImageFormatInfo2 correspond to the arguments to
vkGetPhysicalDeviceImageFormatProperties, with sType and pNext added for extensibility.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceImageFormatInfo2-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2

• VUID-VkPhysicalDeviceImageFormatInfo2-pNext-pNext
Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkImageFormatListCreateInfo,
VkImageStencilUsageCreateInfo, or VkPhysicalDeviceExternalImageFormatInfo

• VUID-VkPhysicalDeviceImageFormatInfo2-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPhysicalDeviceImageFormatInfo2-format-parameter
format must be a valid VkFormat value

1303

• VUID-VkPhysicalDeviceImageFormatInfo2-type-parameter
type must be a valid VkImageType value

• VUID-VkPhysicalDeviceImageFormatInfo2-tiling-parameter
tiling must be a valid VkImageTiling value

• VUID-VkPhysicalDeviceImageFormatInfo2-usage-parameter
usage must be a valid combination of VkImageUsageFlagBits values

• VUID-VkPhysicalDeviceImageFormatInfo2-usage-requiredbitmask
usage must not be 0

• VUID-VkPhysicalDeviceImageFormatInfo2-flags-parameter
flags must be a valid combination of VkImageCreateFlagBits values

The VkImageFormatProperties2 structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkImageFormatProperties2 {
 VkStructureType sType;
 void* pNext;
 VkImageFormatProperties imageFormatProperties;
} VkImageFormatProperties2;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure. The pNext chain of
VkImageFormatProperties2 is used to allow the specification of additional capabilities to be
returned from vkGetPhysicalDeviceImageFormatProperties2.

• imageFormatProperties is a VkImageFormatProperties structure in which capabilities are
returned.

If the combination of parameters to vkGetPhysicalDeviceImageFormatProperties2 is not supported by
the implementation for use in vkCreateImage, then all members of imageFormatProperties will be
filled with zero.

Note

Filling imageFormatProperties with zero for unsupported formats is an exception to
the usual rule that output structures have undefined contents on error. This
exception was unintentional, but is preserved for backwards compatibility. This
exception only applies to imageFormatProperties, not sType, pNext, or any structures
chained from pNext.

Valid Usage (Implicit)

• VUID-VkImageFormatProperties2-sType-sType
sType must be VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2

• VUID-VkImageFormatProperties2-pNext-pNext

1304

Each pNext member of any structure (including this one) in the pNext chain must be either
NULL or a pointer to a valid instance of VkExternalImageFormatProperties or
VkSamplerYcbcrConversionImageFormatProperties

• VUID-VkImageFormatProperties2-sType-unique
The sType value of each struct in the pNext chain must be unique

To determine the image capabilities compatible with an external memory handle type, add a
VkPhysicalDeviceExternalImageFormatInfo structure to the pNext chain of the
VkPhysicalDeviceImageFormatInfo2 structure and a VkExternalImageFormatProperties structure to
the pNext chain of the VkImageFormatProperties2 structure.

The VkPhysicalDeviceExternalImageFormatInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceExternalImageFormatInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalMemoryHandleTypeFlagBits handleType;
} VkPhysicalDeviceExternalImageFormatInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the memory handle
type that will be used with the memory associated with the image.

If handleType is 0, vkGetPhysicalDeviceImageFormatProperties2 will behave as if
VkPhysicalDeviceExternalImageFormatInfo was not present, and
VkExternalImageFormatProperties will be ignored.

If handleType is not compatible with the format, type, tiling, usage, and flags specified in
VkPhysicalDeviceImageFormatInfo2, then vkGetPhysicalDeviceImageFormatProperties2 returns
VK_ERROR_FORMAT_NOT_SUPPORTED.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalImageFormatInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO

• VUID-VkPhysicalDeviceExternalImageFormatInfo-handleType-parameter
If handleType is not 0, handleType must be a valid VkExternalMemoryHandleTypeFlagBits
value

Possible values of VkPhysicalDeviceExternalImageFormatInfo::handleType, specifying an external
memory handle type, are:

// Provided by VK_VERSION_1_1

1305

typedef enum VkExternalMemoryHandleTypeFlagBits {
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT = 0x00000001,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT = 0x00000002,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT = 0x00000004,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT = 0x00000008,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT = 0x00000010,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT = 0x00000020,
 VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT = 0x00000040,
} VkExternalMemoryHandleTypeFlagBits;

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT specifies a POSIX file descriptor handle that has
only limited valid usage outside of Vulkan and other compatible APIs. It must be compatible
with the POSIX system calls dup, dup2, close, and the non-standard system call dup3. Additionally,
it must be transportable over a socket using an SCM_RIGHTS control message. It owns a reference
to the underlying memory resource represented by its Vulkan memory object.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT specifies an NT handle that has only limited
valid usage outside of Vulkan and other compatible APIs. It must be compatible with the
functions DuplicateHandle, CloseHandle, CompareObjectHandles, GetHandleInformation, and
SetHandleInformation. It owns a reference to the underlying memory resource represented by its
Vulkan memory object.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT specifies a global share handle that has
only limited valid usage outside of Vulkan and other compatible APIs. It is not compatible with
any native APIs. It does not own a reference to the underlying memory resource represented by
its Vulkan memory object, and will therefore become invalid when all Vulkan memory objects
associated with it are destroyed.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT specifies an NT handle returned by
IDXGIResource1::CreateSharedHandle referring to a Direct3D 10 or 11 texture resource. It owns a
reference to the memory used by the Direct3D resource.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT specifies a global share handle returned
by IDXGIResource::GetSharedHandle referring to a Direct3D 10 or 11 texture resource. It does not
own a reference to the underlying Direct3D resource, and will therefore become invalid when
all Vulkan memory objects and Direct3D resources associated with it are destroyed.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT specifies an NT handle returned by
ID3D12Device::CreateSharedHandle referring to a Direct3D 12 heap resource. It owns a reference
to the resources used by the Direct3D heap.

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT specifies an NT handle returned by
ID3D12Device::CreateSharedHandle referring to a Direct3D 12 committed resource. It owns a
reference to the memory used by the Direct3D resource.

1306

Some external memory handle types can only be shared within the same underlying physical
device and/or the same driver version, as defined in the following table:

Table 59. External memory handle types compatibility

Handle type VkPhysicalDeviceIDProperties::d
riverUUID

VkPhysicalDeviceIDProperties::d
eviceUUID

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_OPAQUE_FD_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_OPAQUE_WIN32_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_OPAQUE_WIN32_KMT_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_D3D11_TEXTURE_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_D3D11_TEXTURE_KMT_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_D3D12_HEAP_BIT

Must match Must match

VK_EXTERNAL_MEMORY_HANDLE_TYPE
_D3D12_RESOURCE_BIT

Must match Must match

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalMemoryHandleTypeFlags;

VkExternalMemoryHandleTypeFlags is a bitmask type for setting a mask of zero or more
VkExternalMemoryHandleTypeFlagBits.

The VkExternalImageFormatProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalImageFormatProperties {
 VkStructureType sType;
 void* pNext;
 VkExternalMemoryProperties externalMemoryProperties;
} VkExternalImageFormatProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• externalMemoryProperties is a VkExternalMemoryProperties structure specifying various
capabilities of the external handle type when used with the specified image creation
parameters.

Valid Usage (Implicit)

• VUID-VkExternalImageFormatProperties-sType-sType

1307

sType must be VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES

The VkExternalMemoryProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalMemoryProperties {
 VkExternalMemoryFeatureFlags externalMemoryFeatures;
 VkExternalMemoryHandleTypeFlags exportFromImportedHandleTypes;
 VkExternalMemoryHandleTypeFlags compatibleHandleTypes;
} VkExternalMemoryProperties;

• externalMemoryFeatures is a bitmask of VkExternalMemoryFeatureFlagBits specifying the
features of handleType.

• exportFromImportedHandleTypes is a bitmask of VkExternalMemoryHandleTypeFlagBits
specifying which types of imported handle handleType can be exported from.

• compatibleHandleTypes is a bitmask of VkExternalMemoryHandleTypeFlagBits specifying handle
types which can be specified at the same time as handleType when creating an image compatible
with external memory.

compatibleHandleTypes must include at least handleType. Inclusion of a handle type in
compatibleHandleTypes does not imply the values returned in VkImageFormatProperties2 will be the
same when VkPhysicalDeviceExternalImageFormatInfo::handleType is set to that type. The
application is responsible for querying the capabilities of all handle types intended for concurrent
use in a single image and intersecting them to obtain the compatible set of capabilities.

Bits which may be set in VkExternalMemoryProperties::externalMemoryFeatures, specifying features
of an external memory handle type, are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalMemoryFeatureFlagBits {
 VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT = 0x00000001,
 VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT = 0x00000002,
 VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT = 0x00000004,
} VkExternalMemoryFeatureFlagBits;

• VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT specifies that images or buffers created with the
specified parameters and handle type must use the mechanisms defined by
VkMemoryDedicatedRequirements and VkMemoryDedicatedAllocateInfo to create (or import) a
dedicated allocation for the image or buffer.

• VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT specifies that handles of this type can be exported
from Vulkan memory objects.

• VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT specifies that handles of this type can be imported
as Vulkan memory objects.

Because their semantics in external APIs roughly align with that of an image or buffer with a

1308

dedicated allocation in Vulkan, implementations are required to report
VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT for the following external handle types:

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT

• VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalMemoryFeatureFlags;

VkExternalMemoryFeatureFlags is a bitmask type for setting a mask of zero or more
VkExternalMemoryFeatureFlagBits.

To determine the number of combined image samplers required to support a multi-planar format,
add VkSamplerYcbcrConversionImageFormatProperties to the pNext chain of the
VkImageFormatProperties2 structure in a call to vkGetPhysicalDeviceImageFormatProperties2.

The VkSamplerYcbcrConversionImageFormatProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkSamplerYcbcrConversionImageFormatProperties {
 VkStructureType sType;
 void* pNext;
 uint32_t combinedImageSamplerDescriptorCount;
} VkSamplerYcbcrConversionImageFormatProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• combinedImageSamplerDescriptorCount is the number of combined image sampler descriptors that
the implementation uses to access the format.

Valid Usage (Implicit)

• VUID-VkSamplerYcbcrConversionImageFormatProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES

combinedImageSamplerDescriptorCount is a number between 1 and the number of planes in the
format. A descriptor set layout binding with immutable Y′CBCR conversion samplers will have a
maximum combinedImageSamplerDescriptorCount which is the maximum across all formats
supported by its samplers of the combinedImageSamplerDescriptorCount for each format. Descriptor
sets with that layout will internally use that maximum combinedImageSamplerDescriptorCount
descriptors for each descriptor in the binding. This expanded number of descriptors will be
consumed from the descriptor pool when a descriptor set is allocated, and counts towards the
maxDescriptorSetSamplers, maxDescriptorSetSampledImages, maxPerStageDescriptorSamplers, and
maxPerStageDescriptorSampledImages limits.

1309

Note

All descriptors in a binding use the same maximum
combinedImageSamplerDescriptorCount descriptors to allow implementations to use a
uniform stride for dynamic indexing of the descriptors in the binding.

For example, consider a descriptor set layout binding with two descriptors and
immutable samplers for multi-planar formats that have
VkSamplerYcbcrConversionImageFormatProperties::combinedImageSamplerDescriptorCo
unt values of 2 and 3 respectively. There are two descriptors in the binding and the
maximum combinedImageSamplerDescriptorCount is 3, so descriptor sets with this
layout consume 6 descriptors from the descriptor pool. To create a descriptor pool
that allows allocating four descriptor sets with this layout, descriptorCount must be
at least 24.

35.1.1. Supported Sample Counts

vkGetPhysicalDeviceImageFormatProperties returns a bitmask of VkSampleCountFlagBits in
sampleCounts specifying the supported sample counts for the image parameters.

sampleCounts will be set to VK_SAMPLE_COUNT_1_BIT if at least one of the following conditions is true:

• tiling is VK_IMAGE_TILING_LINEAR

• type is not VK_IMAGE_TYPE_2D

• flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT

• Neither the VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag nor the
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT flag in VkFormatProperties
::optimalTilingFeatures returned by vkGetPhysicalDeviceFormatProperties is set

• VkPhysicalDeviceExternalImageFormatInfo::handleType is an external handle type for which
multisampled image support is not required.

• format is one of the formats that require a sampler Y′CBCR conversion

Otherwise, the bits set in sampleCounts will be the sample counts supported for the specified values
of usage and format. For each bit set in usage, the supported sample counts relate to the limits in
VkPhysicalDeviceLimits as follows:

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT and format is a floating- or fixed-point
color format, a superset of VkPhysicalDeviceLimits::framebufferColorSampleCounts

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT and format is an integer format, a
superset of VkPhysicalDeviceVulkan12Properties::framebufferIntegerColorSampleCounts

• If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a depth
component, a superset of VkPhysicalDeviceLimits::framebufferDepthSampleCounts

• If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a stencil
component, a superset of VkPhysicalDeviceLimits::framebufferStencilSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a color component, a superset
of VkPhysicalDeviceLimits::sampledImageColorSampleCounts

1310

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a depth component, a superset
of VkPhysicalDeviceLimits::sampledImageDepthSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format is an integer format, a superset of
VkPhysicalDeviceLimits::sampledImageIntegerSampleCounts

• If usage includes VK_IMAGE_USAGE_STORAGE_BIT, a superset of VkPhysicalDeviceLimits
::storageImageSampleCounts

If multiple bits are set in usage, sampleCounts will be the intersection of the per-usage values
described above.

If none of the bits described above are set in usage, then there is no corresponding limit in
VkPhysicalDeviceLimits. In this case, sampleCounts must include at least VK_SAMPLE_COUNT_1_BIT.

35.1.2. Allowed Extent Values Based on Image Type

Implementations may support extent values larger than the required minimum/maximum values
for certain types of images. VkImageFormatProperties::maxExtent for each type is subject to the
constraints below.

Note

Implementations must support images with dimensions up to the required
minimum/maximum values for all types of images. It follows that the query for
additional capabilities must return extent values that are at least as large as the
required values.

For VK_IMAGE_TYPE_1D:

• maxExtent.width ≥ VkPhysicalDeviceLimits::maxImageDimension1D

• maxExtent.height = 1

• maxExtent.depth = 1

For VK_IMAGE_TYPE_2D when flags does not contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT:

• maxExtent.width ≥ VkPhysicalDeviceLimits::maxImageDimension2D

• maxExtent.height ≥ VkPhysicalDeviceLimits::maxImageDimension2D

• maxExtent.depth = 1

For VK_IMAGE_TYPE_2D when flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT:

• maxExtent.width ≥ VkPhysicalDeviceLimits::maxImageDimensionCube

• maxExtent.height ≥ VkPhysicalDeviceLimits::maxImageDimensionCube

• maxExtent.depth = 1

For VK_IMAGE_TYPE_3D:

• maxExtent.width ≥ VkPhysicalDeviceLimits::maxImageDimension3D

1311

• maxExtent.height ≥ VkPhysicalDeviceLimits::maxImageDimension3D

• maxExtent.depth ≥ VkPhysicalDeviceLimits::maxImageDimension3D

35.2. Additional Buffer Capabilities
To query the external handle types supported by buffers, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceExternalBufferProperties(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo,
 VkExternalBufferProperties* pExternalBufferProperties);

• physicalDevice is the physical device from which to query the buffer capabilities.

• pExternalBufferInfo is a pointer to a VkPhysicalDeviceExternalBufferInfo structure describing
the parameters that would be consumed by vkCreateBuffer.

• pExternalBufferProperties is a pointer to a VkExternalBufferProperties structure in which
capabilities are returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceExternalBufferProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceExternalBufferProperties-pExternalBufferInfo-parameter
pExternalBufferInfo must be a valid pointer to a valid
VkPhysicalDeviceExternalBufferInfo structure

• VUID-vkGetPhysicalDeviceExternalBufferProperties-pExternalBufferProperties-
parameter
pExternalBufferProperties must be a valid pointer to a VkExternalBufferProperties
structure

The VkPhysicalDeviceExternalBufferInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceExternalBufferInfo {
 VkStructureType sType;
 const void* pNext;
 VkBufferCreateFlags flags;
 VkBufferUsageFlags usage;
 VkExternalMemoryHandleTypeFlagBits handleType;
} VkPhysicalDeviceExternalBufferInfo;

• sType is a VkStructureType value identifying this structure.

1312

• pNext is NULL or a pointer to a structure extending this structure.

• flags is a bitmask of VkBufferCreateFlagBits describing additional parameters of the buffer,
corresponding to VkBufferCreateInfo::flags.

• usage is a bitmask of VkBufferUsageFlagBits describing the intended usage of the buffer,
corresponding to VkBufferCreateInfo::usage.

• handleType is a VkExternalMemoryHandleTypeFlagBits value specifying the memory handle
type that will be used with the memory associated with the buffer.

Only usage flags representable in VkBufferUsageFlagBits are returned in this structure’s usage.

Valid Usage

• VUID-VkPhysicalDeviceExternalBufferInfo-None-09499
usage must be a valid combination of VkBufferUsageFlagBits values

• VUID-VkPhysicalDeviceExternalBufferInfo-None-09500
usage must not be 0

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalBufferInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO

• VUID-VkPhysicalDeviceExternalBufferInfo-pNext-pNext
pNext must be NULL

• VUID-VkPhysicalDeviceExternalBufferInfo-flags-parameter
flags must be a valid combination of VkBufferCreateFlagBits values

• VUID-VkPhysicalDeviceExternalBufferInfo-handleType-parameter
handleType must be a valid VkExternalMemoryHandleTypeFlagBits value

The VkExternalBufferProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalBufferProperties {
 VkStructureType sType;
 void* pNext;
 VkExternalMemoryProperties externalMemoryProperties;
} VkExternalBufferProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• externalMemoryProperties is a VkExternalMemoryProperties structure specifying various
capabilities of the external handle type when used with the specified buffer creation
parameters.

1313

Valid Usage (Implicit)

• VUID-VkExternalBufferProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES

• VUID-VkExternalBufferProperties-pNext-pNext
pNext must be NULL

35.3. Optional Semaphore Capabilities
Semaphores may support import and export of their payload to external handles. To query the
external handle types supported by semaphores, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceExternalSemaphoreProperties(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo,
 VkExternalSemaphoreProperties* pExternalSemaphoreProperties);

• physicalDevice is the physical device from which to query the semaphore capabilities.

• pExternalSemaphoreInfo is a pointer to a VkPhysicalDeviceExternalSemaphoreInfo structure
describing the parameters that would be consumed by vkCreateSemaphore.

• pExternalSemaphoreProperties is a pointer to a VkExternalSemaphoreProperties structure in
which capabilities are returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceExternalSemaphoreProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceExternalSemaphoreProperties-pExternalSemaphoreInfo-
parameter
pExternalSemaphoreInfo must be a valid pointer to a valid
VkPhysicalDeviceExternalSemaphoreInfo structure

• VUID-vkGetPhysicalDeviceExternalSemaphoreProperties-pExternalSemaphoreProperties-
parameter
pExternalSemaphoreProperties must be a valid pointer to a
VkExternalSemaphoreProperties structure

The VkPhysicalDeviceExternalSemaphoreInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceExternalSemaphoreInfo {
 VkStructureType sType;

1314

 const void* pNext;
 VkExternalSemaphoreHandleTypeFlagBits handleType;
} VkPhysicalDeviceExternalSemaphoreInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalSemaphoreHandleTypeFlagBits value specifying the external
semaphore handle type for which capabilities will be returned.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalSemaphoreInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO

• VUID-VkPhysicalDeviceExternalSemaphoreInfo-pNext-pNext
pNext must be NULL or a pointer to a valid instance of VkSemaphoreTypeCreateInfo

• VUID-VkPhysicalDeviceExternalSemaphoreInfo-sType-unique
The sType value of each struct in the pNext chain must be unique

• VUID-VkPhysicalDeviceExternalSemaphoreInfo-handleType-parameter
handleType must be a valid VkExternalSemaphoreHandleTypeFlagBits value

Bits which may be set in VkPhysicalDeviceExternalSemaphoreInfo::handleType, specifying an
external semaphore handle type, are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalSemaphoreHandleTypeFlagBits {
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT = 0x00000001,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT = 0x00000002,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT = 0x00000004,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT = 0x00000008,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT = 0x00000010,
 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_FENCE_BIT =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT,
} VkExternalSemaphoreHandleTypeFlagBits;

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT specifies a POSIX file descriptor handle that
has only limited valid usage outside of Vulkan and other compatible APIs. It must be compatible
with the POSIX system calls dup, dup2, close, and the non-standard system call dup3. Additionally,
it must be transportable over a socket using an SCM_RIGHTS control message. It owns a reference
to the underlying synchronization primitive represented by its Vulkan semaphore object.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT specifies an NT handle that has only
limited valid usage outside of Vulkan and other compatible APIs. It must be compatible with the
functions DuplicateHandle, CloseHandle, CompareObjectHandles, GetHandleInformation, and
SetHandleInformation. It owns a reference to the underlying synchronization primitive
represented by its Vulkan semaphore object.

1315

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT specifies a global share handle that
has only limited valid usage outside of Vulkan and other compatible APIs. It is not compatible
with any native APIs. It does not own a reference to the underlying synchronization primitive
represented by its Vulkan semaphore object, and will therefore become invalid when all Vulkan
semaphore objects associated with it are destroyed.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT specifies an NT handle returned by
ID3D12Device::CreateSharedHandle referring to a Direct3D 12 fence, or ID3D11Device5::CreateFence
referring to a Direct3D 11 fence. It owns a reference to the underlying synchronization
primitive associated with the Direct3D fence.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_FENCE_BIT is an alias of
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT with the same meaning. It is provided for
convenience and code clarity when interacting with D3D11 fences.

• VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT specifies a POSIX file descriptor handle to a
Linux Sync File or Android Fence object. It can be used with any native API accepting a valid
sync file or fence as input. It owns a reference to the underlying synchronization primitive
associated with the file descriptor. Implementations which support importing this handle type
must accept any type of sync or fence FD supported by the native system they are running on.

Note

Handles of type VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT generated by the
implementation may represent either Linux Sync Files or Android Fences at the
implementation’s discretion. Applications should only use operations defined for
both types of file descriptors, unless they know via means external to Vulkan the
type of the file descriptor, or are prepared to deal with the system-defined
operation failures resulting from using the wrong type.

1316

Some external semaphore handle types can only be shared within the same underlying physical
device and/or the same driver version, as defined in the following table:

Table 60. External semaphore handle types compatibility

Handle type VkPhysicalDeviceIDProperties::d
riverUUID

VkPhysicalDeviceIDProperties::d
eviceUUID

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_OPAQUE_FD_BIT

Must match Must match

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_OPAQUE_WIN32_BIT

Must match Must match

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_OPAQUE_WIN32_KMT_BIT

Must match Must match

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_D3D12_FENCE_BIT

Must match Must match

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_SYNC_FD_BIT

No restriction No restriction

VK_EXTERNAL_SEMAPHORE_HANDLE_T
YPE_ZIRCON_EVENT_BIT_FUCHSIA

No restriction No restriction

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalSemaphoreHandleTypeFlags;

VkExternalSemaphoreHandleTypeFlags is a bitmask type for setting a mask of zero or more
VkExternalSemaphoreHandleTypeFlagBits.

The VkExternalSemaphoreProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalSemaphoreProperties {
 VkStructureType sType;
 void* pNext;
 VkExternalSemaphoreHandleTypeFlags exportFromImportedHandleTypes;
 VkExternalSemaphoreHandleTypeFlags compatibleHandleTypes;
 VkExternalSemaphoreFeatureFlags externalSemaphoreFeatures;
} VkExternalSemaphoreProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• exportFromImportedHandleTypes is a bitmask of VkExternalSemaphoreHandleTypeFlagBits
specifying which types of imported handle handleType can be exported from.

• compatibleHandleTypes is a bitmask of VkExternalSemaphoreHandleTypeFlagBits specifying
handle types which can be specified at the same time as handleType when creating a semaphore.

• externalSemaphoreFeatures is a bitmask of VkExternalSemaphoreFeatureFlagBits describing the
features of handleType.

1317

If handleType is not supported by the implementation, then VkExternalSemaphoreProperties
::externalSemaphoreFeatures will be set to zero.

Valid Usage (Implicit)

• VUID-VkExternalSemaphoreProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES

• VUID-VkExternalSemaphoreProperties-pNext-pNext
pNext must be NULL

Bits which may be set in VkExternalSemaphoreProperties::externalSemaphoreFeatures, specifying
the features of an external semaphore handle type, are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalSemaphoreFeatureFlagBits {
 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT = 0x00000001,
 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT = 0x00000002,
} VkExternalSemaphoreFeatureFlagBits;

• VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT specifies that handles of this type can be
exported from Vulkan semaphore objects.

• VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT specifies that handles of this type can be
imported as Vulkan semaphore objects.

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalSemaphoreFeatureFlags;

VkExternalSemaphoreFeatureFlags is a bitmask type for setting a mask of zero or more
VkExternalSemaphoreFeatureFlagBits.

35.4. Optional Fence Capabilities
Fences may support import and export of their payload to external handles. To query the external
handle types supported by fences, call:

// Provided by VK_VERSION_1_1
void vkGetPhysicalDeviceExternalFenceProperties(
 VkPhysicalDevice physicalDevice,
 const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo,
 VkExternalFenceProperties* pExternalFenceProperties);

• physicalDevice is the physical device from which to query the fence capabilities.

• pExternalFenceInfo is a pointer to a VkPhysicalDeviceExternalFenceInfo structure describing the

1318

parameters that would be consumed by vkCreateFence.

• pExternalFenceProperties is a pointer to a VkExternalFenceProperties structure in which
capabilities are returned.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceExternalFenceProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceExternalFenceProperties-pExternalFenceInfo-parameter
pExternalFenceInfo must be a valid pointer to a valid VkPhysicalDeviceExternalFenceInfo
structure

• VUID-vkGetPhysicalDeviceExternalFenceProperties-pExternalFenceProperties-parameter
pExternalFenceProperties must be a valid pointer to a VkExternalFenceProperties
structure

The VkPhysicalDeviceExternalFenceInfo structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkPhysicalDeviceExternalFenceInfo {
 VkStructureType sType;
 const void* pNext;
 VkExternalFenceHandleTypeFlagBits handleType;
} VkPhysicalDeviceExternalFenceInfo;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• handleType is a VkExternalFenceHandleTypeFlagBits value specifying an external fence handle
type for which capabilities will be returned.

Note

Handles of type VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT generated by the
implementation may represent either Linux Sync Files or Android Fences at the
implementation’s discretion. Applications should only use operations defined for
both types of file descriptors, unless they know via means external to Vulkan the
type of the file descriptor, or are prepared to deal with the system-defined
operation failures resulting from using the wrong type.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceExternalFenceInfo-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO

• VUID-VkPhysicalDeviceExternalFenceInfo-pNext-pNext
pNext must be NULL

1319

• VUID-VkPhysicalDeviceExternalFenceInfo-handleType-parameter
handleType must be a valid VkExternalFenceHandleTypeFlagBits value

Bits which may be set in

• VkPhysicalDeviceExternalFenceInfo::handleType

• VkExternalFenceProperties::exportFromImportedHandleTypes

• VkExternalFenceProperties::compatibleHandleTypes

indicate external fence handle types, and are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalFenceHandleTypeFlagBits {
 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT = 0x00000001,
 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT = 0x00000002,
 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT = 0x00000004,
 VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT = 0x00000008,
} VkExternalFenceHandleTypeFlagBits;

• VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT specifies a POSIX file descriptor handle that has
only limited valid usage outside of Vulkan and other compatible APIs. It must be compatible
with the POSIX system calls dup, dup2, close, and the non-standard system call dup3. Additionally,
it must be transportable over a socket using an SCM_RIGHTS control message. It owns a reference
to the underlying synchronization primitive represented by its Vulkan fence object.

• VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT specifies an NT handle that has only limited
valid usage outside of Vulkan and other compatible APIs. It must be compatible with the
functions DuplicateHandle, CloseHandle, CompareObjectHandles, GetHandleInformation, and
SetHandleInformation. It owns a reference to the underlying synchronization primitive
represented by its Vulkan fence object.

• VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT specifies a global share handle that has
only limited valid usage outside of Vulkan and other compatible APIs. It is not compatible with
any native APIs. It does not own a reference to the underlying synchronization primitive
represented by its Vulkan fence object, and will therefore become invalid when all Vulkan fence
objects associated with it are destroyed.

• VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT specifies a POSIX file descriptor handle to a Linux
Sync File or Android Fence. It can be used with any native API accepting a valid sync file or
fence as input. It owns a reference to the underlying synchronization primitive associated with
the file descriptor. Implementations which support importing this handle type must accept any
type of sync or fence FD supported by the native system they are running on.

1320

Some external fence handle types can only be shared within the same underlying physical device
and/or the same driver version, as defined in the following table:

Table 61. External fence handle types compatibility

Handle type VkPhysicalDeviceIDProperties::d
riverUUID

VkPhysicalDeviceIDProperties::d
eviceUUID

VK_EXTERNAL_FENCE_HANDLE_TYPE_
OPAQUE_FD_BIT

Must match Must match

VK_EXTERNAL_FENCE_HANDLE_TYPE_
OPAQUE_WIN32_BIT

Must match Must match

VK_EXTERNAL_FENCE_HANDLE_TYPE_
OPAQUE_WIN32_KMT_BIT

Must match Must match

VK_EXTERNAL_FENCE_HANDLE_TYPE_
SYNC_FD_BIT

No restriction No restriction

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalFenceHandleTypeFlags;

VkExternalFenceHandleTypeFlags is a bitmask type for setting a mask of zero or more
VkExternalFenceHandleTypeFlagBits.

The VkExternalFenceProperties structure is defined as:

// Provided by VK_VERSION_1_1
typedef struct VkExternalFenceProperties {
 VkStructureType sType;
 void* pNext;
 VkExternalFenceHandleTypeFlags exportFromImportedHandleTypes;
 VkExternalFenceHandleTypeFlags compatibleHandleTypes;
 VkExternalFenceFeatureFlags externalFenceFeatures;
} VkExternalFenceProperties;

• exportFromImportedHandleTypes is a bitmask of VkExternalFenceHandleTypeFlagBits indicating
which types of imported handle handleType can be exported from.

• compatibleHandleTypes is a bitmask of VkExternalFenceHandleTypeFlagBits specifying handle
types which can be specified at the same time as handleType when creating a fence.

• externalFenceFeatures is a bitmask of VkExternalFenceFeatureFlagBits indicating the features of
handleType.

If handleType is not supported by the implementation, then VkExternalFenceProperties
::externalFenceFeatures will be set to zero.

Valid Usage (Implicit)

• VUID-VkExternalFenceProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES

1321

• VUID-VkExternalFenceProperties-pNext-pNext
pNext must be NULL

Bits which may be set in VkExternalFenceProperties::externalFenceFeatures, indicating features of a
fence external handle type, are:

// Provided by VK_VERSION_1_1
typedef enum VkExternalFenceFeatureFlagBits {
 VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT = 0x00000001,
 VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT = 0x00000002,
} VkExternalFenceFeatureFlagBits;

• VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT specifies handles of this type can be exported from
Vulkan fence objects.

• VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT specifies handles of this type can be imported to
Vulkan fence objects.

// Provided by VK_VERSION_1_1
typedef VkFlags VkExternalFenceFeatureFlags;

VkExternalFenceFeatureFlags is a bitmask type for setting a mask of zero or more
VkExternalFenceFeatureFlagBits.

1322

Chapter 36. Debugging
To aid developers in tracking down errors in the application’s use of Vulkan, particularly in
combination with an external debugger or profiler, debugging extensions may be available.

The VkObjectType enumeration defines values, each of which corresponds to a specific Vulkan
handle type. These values can be used to associate debug information with a particular type of
object through one or more extensions.

// Provided by VK_VERSION_1_0
typedef enum VkObjectType {
 VK_OBJECT_TYPE_UNKNOWN = 0,
 VK_OBJECT_TYPE_INSTANCE = 1,
 VK_OBJECT_TYPE_PHYSICAL_DEVICE = 2,
 VK_OBJECT_TYPE_DEVICE = 3,
 VK_OBJECT_TYPE_QUEUE = 4,
 VK_OBJECT_TYPE_SEMAPHORE = 5,
 VK_OBJECT_TYPE_COMMAND_BUFFER = 6,
 VK_OBJECT_TYPE_FENCE = 7,
 VK_OBJECT_TYPE_DEVICE_MEMORY = 8,
 VK_OBJECT_TYPE_BUFFER = 9,
 VK_OBJECT_TYPE_IMAGE = 10,
 VK_OBJECT_TYPE_EVENT = 11,
 VK_OBJECT_TYPE_QUERY_POOL = 12,
 VK_OBJECT_TYPE_BUFFER_VIEW = 13,
 VK_OBJECT_TYPE_IMAGE_VIEW = 14,
 VK_OBJECT_TYPE_SHADER_MODULE = 15,
 VK_OBJECT_TYPE_PIPELINE_CACHE = 16,
 VK_OBJECT_TYPE_PIPELINE_LAYOUT = 17,
 VK_OBJECT_TYPE_RENDER_PASS = 18,
 VK_OBJECT_TYPE_PIPELINE = 19,
 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT = 20,
 VK_OBJECT_TYPE_SAMPLER = 21,
 VK_OBJECT_TYPE_DESCRIPTOR_POOL = 22,
 VK_OBJECT_TYPE_DESCRIPTOR_SET = 23,
 VK_OBJECT_TYPE_FRAMEBUFFER = 24,
 VK_OBJECT_TYPE_COMMAND_POOL = 25,
 // Provided by VK_VERSION_1_1
 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION = 1000156000,
 // Provided by VK_VERSION_1_1
 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE = 1000085000,
 // Provided by VK_VERSION_1_3
 VK_OBJECT_TYPE_PRIVATE_DATA_SLOT = 1000295000,
} VkObjectType;

Table 62. VkObjectType and Vulkan Handle Relationship

VkObjectType Vulkan Handle Type

VK_OBJECT_TYPE_UNKNOWN Unknown/Undefined Handle

1323

VkObjectType Vulkan Handle Type

VK_OBJECT_TYPE_INSTANCE VkInstance

VK_OBJECT_TYPE_PHYSICAL_DEVICE VkPhysicalDevice

VK_OBJECT_TYPE_DEVICE VkDevice

VK_OBJECT_TYPE_QUEUE VkQueue

VK_OBJECT_TYPE_SEMAPHORE VkSemaphore

VK_OBJECT_TYPE_COMMAND_BUFFER VkCommandBuffer

VK_OBJECT_TYPE_FENCE VkFence

VK_OBJECT_TYPE_DEVICE_MEMORY VkDeviceMemory

VK_OBJECT_TYPE_BUFFER VkBuffer

VK_OBJECT_TYPE_IMAGE VkImage

VK_OBJECT_TYPE_EVENT VkEvent

VK_OBJECT_TYPE_QUERY_POOL VkQueryPool

VK_OBJECT_TYPE_BUFFER_VIEW VkBufferView

VK_OBJECT_TYPE_IMAGE_VIEW VkImageView

VK_OBJECT_TYPE_SHADER_MODULE VkShaderModule

VK_OBJECT_TYPE_PIPELINE_CACHE VkPipelineCache

VK_OBJECT_TYPE_PIPELINE_LAYOUT VkPipelineLayout

VK_OBJECT_TYPE_RENDER_PASS VkRenderPass

VK_OBJECT_TYPE_PIPELINE VkPipeline

VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT VkDescriptorSetLayout

VK_OBJECT_TYPE_SAMPLER VkSampler

VK_OBJECT_TYPE_DESCRIPTOR_POOL VkDescriptorPool

VK_OBJECT_TYPE_DESCRIPTOR_SET VkDescriptorSet

VK_OBJECT_TYPE_FRAMEBUFFER VkFramebuffer

VK_OBJECT_TYPE_COMMAND_POOL VkCommandPool

VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION VkSamplerYcbcrConversion

VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE VkDescriptorUpdateTemplate

VK_OBJECT_TYPE_PRIVATE_DATA_SLOT VkPrivateDataSlot

If this Specification was generated with any such extensions included, they will be described in the
remainder of this chapter.

36.1. Active Tooling Information
Information about tools providing debugging, profiling, or similar services, active for a given

1324

physical device, can be obtained by calling:

// Provided by VK_VERSION_1_3
VkResult vkGetPhysicalDeviceToolProperties(
 VkPhysicalDevice physicalDevice,
 uint32_t* pToolCount,
 VkPhysicalDeviceToolProperties* pToolProperties);

• physicalDevice is the handle to the physical device to query for active tools.

• pToolCount is a pointer to an integer describing the number of tools active on physicalDevice.

• pToolProperties is either NULL or a pointer to an array of VkPhysicalDeviceToolProperties
structures.

If pToolProperties is NULL, then the number of tools currently active on physicalDevice is returned in
pToolCount. Otherwise, pToolCount must point to a variable set by the user to the number of
elements in the pToolProperties array, and on return the variable is overwritten with the number of
structures actually written to pToolProperties. If pToolCount is less than the number of currently
active tools, at most pToolCount structures will be written.

The count and properties of active tools may change in response to events outside the scope of the
specification. An application should assume these properties might change at any given time.

Valid Usage (Implicit)

• VUID-vkGetPhysicalDeviceToolProperties-physicalDevice-parameter
physicalDevice must be a valid VkPhysicalDevice handle

• VUID-vkGetPhysicalDeviceToolProperties-pToolCount-parameter
pToolCount must be a valid pointer to a uint32_t value

• VUID-vkGetPhysicalDeviceToolProperties-pToolProperties-parameter
If the value referenced by pToolCount is not 0, and pToolProperties is not NULL,
pToolProperties must be a valid pointer to an array of pToolCount
VkPhysicalDeviceToolProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

The VkPhysicalDeviceToolProperties structure is defined as:

1325

// Provided by VK_VERSION_1_3
typedef struct VkPhysicalDeviceToolProperties {
 VkStructureType sType;
 void* pNext;
 char name[VK_MAX_EXTENSION_NAME_SIZE];
 char version[VK_MAX_EXTENSION_NAME_SIZE];
 VkToolPurposeFlags purposes;
 char description[VK_MAX_DESCRIPTION_SIZE];
 char layer[VK_MAX_EXTENSION_NAME_SIZE];
} VkPhysicalDeviceToolProperties;

• sType is a VkStructureType value identifying this structure.

• pNext is NULL or a pointer to a structure extending this structure.

• name is a null-terminated UTF-8 string containing the name of the tool.

• version is a null-terminated UTF-8 string containing the version of the tool.

• purposes is a bitmask of VkToolPurposeFlagBits which is populated with purposes supported by
the tool.

• description is a null-terminated UTF-8 string containing a description of the tool.

• layer is a null-terminated UTF-8 string containing the name of the layer implementing the tool,
if the tool is implemented in a layer - otherwise it may be an empty string.

Valid Usage (Implicit)

• VUID-VkPhysicalDeviceToolProperties-sType-sType
sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES

• VUID-VkPhysicalDeviceToolProperties-pNext-pNext
pNext must be NULL

Bits which can be set in VkPhysicalDeviceToolProperties::purposes, specifying the purposes of an
active tool, are:

// Provided by VK_VERSION_1_3
typedef enum VkToolPurposeFlagBits {
 VK_TOOL_PURPOSE_VALIDATION_BIT = 0x00000001,
 VK_TOOL_PURPOSE_PROFILING_BIT = 0x00000002,
 VK_TOOL_PURPOSE_TRACING_BIT = 0x00000004,
 VK_TOOL_PURPOSE_ADDITIONAL_FEATURES_BIT = 0x00000008,
 VK_TOOL_PURPOSE_MODIFYING_FEATURES_BIT = 0x00000010,
 VK_TOOL_PURPOSE_VALIDATION_BIT_EXT = VK_TOOL_PURPOSE_VALIDATION_BIT,
 VK_TOOL_PURPOSE_PROFILING_BIT_EXT = VK_TOOL_PURPOSE_PROFILING_BIT,
 VK_TOOL_PURPOSE_TRACING_BIT_EXT = VK_TOOL_PURPOSE_TRACING_BIT,
 VK_TOOL_PURPOSE_ADDITIONAL_FEATURES_BIT_EXT =
VK_TOOL_PURPOSE_ADDITIONAL_FEATURES_BIT,
 VK_TOOL_PURPOSE_MODIFYING_FEATURES_BIT_EXT =

1326

VK_TOOL_PURPOSE_MODIFYING_FEATURES_BIT,
} VkToolPurposeFlagBits;

• VK_TOOL_PURPOSE_VALIDATION_BIT specifies that the tool provides validation of API usage.

• VK_TOOL_PURPOSE_PROFILING_BIT specifies that the tool provides profiling of API usage.

• VK_TOOL_PURPOSE_TRACING_BIT specifies that the tool is capturing data about the application’s API
usage, including anything from simple logging to capturing data for later replay.

• VK_TOOL_PURPOSE_ADDITIONAL_FEATURES_BIT specifies that the tool provides additional API
features/extensions on top of the underlying implementation.

• VK_TOOL_PURPOSE_MODIFYING_FEATURES_BIT specifies that the tool modifies the API
features/limits/extensions presented to the application.

// Provided by VK_VERSION_1_3
typedef VkFlags VkToolPurposeFlags;

VkToolPurposeFlags is a bitmask type for setting a mask of zero or more VkToolPurposeFlagBits.

1327

Appendix A: Vulkan Environment for SPIR-V
Shaders for Vulkan are defined by the Khronos SPIR-V Specification as well as the Khronos SPIR-V
Extended Instructions for GLSL Specification. This appendix defines additional SPIR-V
requirements applying to Vulkan shaders.

Versions and Formats
A Vulkan 1.3 implementation must support the 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6 versions of SPIR-V
and the 1.0 version of the SPIR-V Extended Instructions for GLSL.

A SPIR-V module passed into vkCreateShaderModule is interpreted as a series of 32-bit words in
host endianness, with literal strings packed as described in section 2.2 of the SPIR-V Specification.
The first few words of the SPIR-V module must be a magic number and a SPIR-V version number,
as described in section 2.3 of the SPIR-V Specification.

Capabilities
The table below lists the set of SPIR-V capabilities that may be supported in Vulkan
implementations. The application must not use any of these capabilities in SPIR-V passed to
vkCreateShaderModule unless one of the following conditions is met for the VkDevice specified in
the device parameter of vkCreateShaderModule:

• The corresponding field in the table is blank.

• Any corresponding Vulkan feature is enabled.

• Any corresponding Vulkan extension is enabled.

• Any corresponding Vulkan property is supported.

• The corresponding core version is supported (as returned by VkPhysicalDeviceProperties
::apiVersion).

Table 63. List of SPIR-V Capabilities and corresponding Vulkan features, extensions, or core version

SPIR-V OpCapability
 Vulkan feature, extension, or core version

Matrix
 VK_VERSION_1_0

Shader
 VK_VERSION_1_0

InputAttachment
 VK_VERSION_1_0

Sampled1D
 VK_VERSION_1_0

Image1D
 VK_VERSION_1_0

1328

SPIR-V OpCapability
 Vulkan feature, extension, or core version

SampledBuffer
 VK_VERSION_1_0

ImageBuffer
 VK_VERSION_1_0

ImageQuery
 VK_VERSION_1_0

DerivativeControl
 VK_VERSION_1_0

Geometry
 VkPhysicalDeviceFeatures::geometryShader

Tessellation
 VkPhysicalDeviceFeatures::tessellationShader

Float64
 VkPhysicalDeviceFeatures::shaderFloat64

Int64
 VkPhysicalDeviceFeatures::shaderInt64

Int64Atomics
 VkPhysicalDeviceVulkan12Features::shaderBufferInt64Atomics
 VkPhysicalDeviceVulkan12Features::shaderSharedInt64Atomics

Int16
 VkPhysicalDeviceFeatures::shaderInt16

TessellationPointSize
 VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize

GeometryPointSize
 VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize

ImageGatherExtended
 VkPhysicalDeviceFeatures::shaderImageGatherExtended

StorageImageMultisample
 VkPhysicalDeviceFeatures::shaderStorageImageMultisample

UniformBufferArrayDynamicIndexing
 VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing

SampledImageArrayDynamicIndexing
 VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing

StorageBufferArrayDynamicIndexing
 VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing

StorageImageArrayDynamicIndexing
 VkPhysicalDeviceFeatures::shaderStorageImageArrayDynamicIndexing

1329

SPIR-V OpCapability
 Vulkan feature, extension, or core version

ClipDistance
 VkPhysicalDeviceFeatures::shaderClipDistance

CullDistance
 VkPhysicalDeviceFeatures::shaderCullDistance

ImageCubeArray
 VkPhysicalDeviceFeatures::imageCubeArray

SampleRateShading
 VkPhysicalDeviceFeatures::sampleRateShading

SparseResidency
 VkPhysicalDeviceFeatures::shaderResourceResidency

MinLod
 VkPhysicalDeviceFeatures::shaderResourceMinLod

SampledCubeArray
 VkPhysicalDeviceFeatures::imageCubeArray

ImageMSArray
 VkPhysicalDeviceFeatures::shaderStorageImageMultisample

StorageImageExtendedFormats
 VK_VERSION_1_0

InterpolationFunction
 VkPhysicalDeviceFeatures::sampleRateShading

StorageImageReadWithoutFormat
 VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat
 VK_VERSION_1_3

StorageImageWriteWithoutFormat
 VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat
 VK_VERSION_1_3

MultiViewport
 VkPhysicalDeviceFeatures::multiViewport

DrawParameters
 VkPhysicalDeviceVulkan11Features::shaderDrawParameters
 VkPhysicalDeviceShaderDrawParametersFeatures::shaderDrawParameters

MultiView
 VkPhysicalDeviceVulkan11Features::multiview

DeviceGroup
 VK_VERSION_1_1

VariablePointersStorageBuffer
 VkPhysicalDeviceVulkan11Features::variablePointersStorageBuffer

1330

SPIR-V OpCapability
 Vulkan feature, extension, or core version

VariablePointers
 VkPhysicalDeviceVulkan11Features::variablePointers

ShaderViewportIndex
 VkPhysicalDeviceVulkan12Features::shaderOutputViewportIndex

ShaderLayer
 VkPhysicalDeviceVulkan12Features::shaderOutputLayer

StorageBuffer16BitAccess
 VkPhysicalDeviceVulkan11Features::storageBuffer16BitAccess

UniformAndStorageBuffer16BitAccess
 VkPhysicalDeviceVulkan11Features::uniformAndStorageBuffer16BitAccess

StoragePushConstant16
 VkPhysicalDeviceVulkan11Features::storagePushConstant16

StorageInputOutput16
 VkPhysicalDeviceVulkan11Features::storageInputOutput16

GroupNonUniform
 VK_SUBGROUP_FEATURE_BASIC_BIT

GroupNonUniformVote
 VK_SUBGROUP_FEATURE_VOTE_BIT

GroupNonUniformArithmetic
 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT

GroupNonUniformBallot
 VK_SUBGROUP_FEATURE_BALLOT_BIT

GroupNonUniformShuffle
 VK_SUBGROUP_FEATURE_SHUFFLE_BIT

GroupNonUniformShuffleRelative
 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT

GroupNonUniformClustered
 VK_SUBGROUP_FEATURE_CLUSTERED_BIT

GroupNonUniformQuad
 VK_SUBGROUP_FEATURE_QUAD_BIT

ShaderNonUniform
 VK_VERSION_1_2

RuntimeDescriptorArray
 VkPhysicalDeviceVulkan12Features::runtimeDescriptorArray

InputAttachmentArrayDynamicIndexing
 VkPhysicalDeviceVulkan12Features::shaderInputAttachmentArrayDynamicIndexing

UniformTexelBufferArrayDynamicIndexing
 VkPhysicalDeviceVulkan12Features::shaderUniformTexelBufferArrayDynamicIndexing

1331

SPIR-V OpCapability
 Vulkan feature, extension, or core version

StorageTexelBufferArrayDynamicIndexing
 VkPhysicalDeviceVulkan12Features::shaderStorageTexelBufferArrayDynamicIndexing

UniformBufferArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderUniformBufferArrayNonUniformIndexing

SampledImageArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderSampledImageArrayNonUniformIndexing

StorageBufferArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderStorageBufferArrayNonUniformIndexing

StorageImageArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderStorageImageArrayNonUniformIndexing

InputAttachmentArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderInputAttachmentArrayNonUniformIndexing

UniformTexelBufferArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderUniformTexelBufferArrayNonUniformIndexing

StorageTexelBufferArrayNonUniformIndexing
 VkPhysicalDeviceVulkan12Features::shaderStorageTexelBufferArrayNonUniformIndexing

Float16
 VkPhysicalDeviceVulkan12Features::shaderFloat16

Int8
 VkPhysicalDeviceVulkan12Features::shaderInt8

StorageBuffer8BitAccess
 VkPhysicalDeviceVulkan12Features::storageBuffer8BitAccess

UniformAndStorageBuffer8BitAccess
 VkPhysicalDeviceVulkan12Features::uniformAndStorageBuffer8BitAccess

StoragePushConstant8
 VkPhysicalDeviceVulkan12Features::storagePushConstant8

VulkanMemoryModel
 VkPhysicalDeviceVulkan12Features::vulkanMemoryModel

VulkanMemoryModelDeviceScope
 VkPhysicalDeviceVulkan12Features::vulkanMemoryModelDeviceScope

DenormPreserve
 VkPhysicalDeviceVulkan12Properties::shaderDenormPreserveFloat16
 VkPhysicalDeviceVulkan12Properties::shaderDenormPreserveFloat32
 VkPhysicalDeviceVulkan12Properties::shaderDenormPreserveFloat64

DenormFlushToZero
 VkPhysicalDeviceVulkan12Properties::shaderDenormFlushToZeroFloat16
 VkPhysicalDeviceVulkan12Properties::shaderDenormFlushToZeroFloat32
 VkPhysicalDeviceVulkan12Properties::shaderDenormFlushToZeroFloat64

1332

SPIR-V OpCapability
 Vulkan feature, extension, or core version

SignedZeroInfNanPreserve
 VkPhysicalDeviceVulkan12Properties::shaderSignedZeroInfNanPreserveFloat16
 VkPhysicalDeviceVulkan12Properties::shaderSignedZeroInfNanPreserveFloat32
 VkPhysicalDeviceVulkan12Properties::shaderSignedZeroInfNanPreserveFloat64

RoundingModeRTE
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTEFloat16
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTEFloat32
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTEFloat64

RoundingModeRTZ
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTZFloat16
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTZFloat32
 VkPhysicalDeviceVulkan12Properties::shaderRoundingModeRTZFloat64

PhysicalStorageBufferAddresses
 VkPhysicalDeviceVulkan12Features::bufferDeviceAddress

DemoteToHelperInvocationEXT
 VkPhysicalDeviceVulkan13Features::shaderDemoteToHelperInvocation

DotProductInputAllKHR
 VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct

DotProductInput4x8BitKHR
 VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct

DotProductInput4x8BitPackedKHR
 VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct

DotProductKHR
 VkPhysicalDeviceVulkan13Features::shaderIntegerDotProduct

The application must not pass a SPIR-V module containing any of the following to
vkCreateShaderModule:

• any OpCapability not listed above,

• an unsupported capability, or

• a capability which corresponds to a Vulkan feature or extension which has not been enabled.

SPIR-V Extensions

The following table lists SPIR-V extensions that implementations may support. The application
must not pass a SPIR-V module to vkCreateShaderModule that uses the following SPIR-V extensions
unless one of the following conditions is met for the VkDevice specified in the device parameter of
vkCreateShaderModule:

• Any corresponding Vulkan extension is enabled.

• The corresponding core version is supported (as returned by VkPhysicalDeviceProperties

1333

::apiVersion).

Table 64. List of SPIR-V Extensions and corresponding Vulkan extensions or core version

SPIR-V OpExtension
 Vulkan extension or core version

SPV_KHR_variable_pointers
 VK_VERSION_1_1

SPV_KHR_shader_draw_parameters
 VK_VERSION_1_1

SPV_KHR_8bit_storage
 VK_VERSION_1_2

SPV_KHR_16bit_storage
 VK_VERSION_1_1

SPV_KHR_float_controls
 VK_VERSION_1_2

SPV_KHR_storage_buffer_storage_class
 VK_VERSION_1_1

SPV_EXT_shader_viewport_index_layer
 VK_VERSION_1_2

SPV_EXT_descriptor_indexing
 VK_VERSION_1_2

SPV_KHR_vulkan_memory_model
 VK_VERSION_1_2

SPV_KHR_physical_storage_buffer
 VK_VERSION_1_2

SPV_EXT_demote_to_helper_invocation
 VK_VERSION_1_3

SPV_KHR_non_semantic_info
 VK_VERSION_1_3

SPV_KHR_terminate_invocation
 VK_VERSION_1_3

SPV_KHR_multiview
 VK_VERSION_1_1

SPV_KHR_subgroup_uniform_control_flow
 VK_VERSION_1_3

SPV_KHR_integer_dot_product
 VK_VERSION_1_3

SPV_KHR_device_group
 VK_VERSION_1_1

1334

Validation Rules Within a Module
A SPIR-V module passed to vkCreateShaderModule must conform to the following rules:

Standalone SPIR-V Validation

The following rules can be validated with only the SPIR-V module itself. They do not depend on
knowledge of the implementation and its capabilities or knowledge of runtime information, such as
enabled features.

Valid Usage

• VUID-StandaloneSpirv-None-04633
Every entry point must have no return value and accept no arguments

• VUID-StandaloneSpirv-None-04634
The static function-call graph for an entry point must not contain cycles; that is, static
recursion is not allowed

• VUID-StandaloneSpirv-None-04635
The Logical or PhysicalStorageBuffer64 addressing model must be selected

• VUID-StandaloneSpirv-None-04636
Scope for execution must be limited to Workgroup or Subgroup

• VUID-StandaloneSpirv-None-04637
If the Scope for execution is Workgroup, then it must only be used in the task, mesh,
tessellation control, or compute Execution Model

• VUID-StandaloneSpirv-None-04638
Scope for memory must be limited to Device, QueueFamily, Workgroup, ShaderCallKHR,
Subgroup, or Invocation

• VUID-StandaloneSpirv-ExecutionModel-07320
If the Execution Model is TessellationControl, and the MemoryModel is GLSL450, the Scope for
memory must not be Workgroup

• VUID-StandaloneSpirv-None-07321
If the Scope for memory is Workgroup, then it must only be used in the task, mesh,
tessellation control, or compute Execution Model

• VUID-StandaloneSpirv-None-04640
If the Scope for memory is ShaderCallKHR, then it must only be used in ray generation,
intersection, closest hit, any-hit, miss, and callable Execution Model

• VUID-StandaloneSpirv-None-04641
If the Scope for memory is Invocation, then memory semantics must be None

• VUID-StandaloneSpirv-None-04642
Scope for group operations must be limited to Subgroup

• VUID-StandaloneSpirv-SubgroupVoteKHR-07951
If none of the SubgroupVoteKHR, GroupNonUniform, or SubgroupBallotKHR capabilities are
declared, Scope for memory must not be Subgroup

1335

• VUID-StandaloneSpirv-None-04643
Storage Class must be limited to UniformConstant, Input, Uniform, Output, Workgroup, Private,
Function, PushConstant, Image, StorageBuffer, RayPayloadKHR, IncomingRayPayloadKHR,
HitAttributeKHR, CallableDataKHR, IncomingCallableDataKHR, ShaderRecordBufferKHR,
PhysicalStorageBuffer, or TileImageEXT

• VUID-StandaloneSpirv-None-04644
If the Storage Class is Output, then it must not be used in the GlCompute, RayGenerationKHR,
IntersectionKHR, AnyHitKHR, ClosestHitKHR, MissKHR, or CallableKHR Execution Model

• VUID-StandaloneSpirv-None-04645
If the Storage Class is Workgroup, then it must only be used in the task, mesh, or compute
Execution Model

• VUID-StandaloneSpirv-None-08720
If the Storage Class is TileImageEXT, then it must only be used in the fragment execution
model

• VUID-StandaloneSpirv-OpAtomicStore-04730
OpAtomicStore must not use Acquire, AcquireRelease, or SequentiallyConsistent memory
semantics

• VUID-StandaloneSpirv-OpAtomicLoad-04731
OpAtomicLoad must not use Release, AcquireRelease, or SequentiallyConsistent memory
semantics

• VUID-StandaloneSpirv-OpMemoryBarrier-04732
OpMemoryBarrier must use one of Acquire, Release, AcquireRelease, or
SequentiallyConsistent memory semantics

• VUID-StandaloneSpirv-OpMemoryBarrier-04733
OpMemoryBarrier must include at least one Storage Class

• VUID-StandaloneSpirv-OpControlBarrier-04650
If the semantics for OpControlBarrier includes one of Acquire, Release, AcquireRelease, or
SequentiallyConsistent memory semantics, then it must include at least one Storage Class

• VUID-StandaloneSpirv-OpVariable-04651
Any OpVariable with an Initializer operand must have Output, Private, Function, or
Workgroup as its Storage Class operand

• VUID-StandaloneSpirv-OpVariable-04734
Any OpVariable with an Initializer operand and Workgroup as its Storage Class operand
must use OpConstantNull as the initializer

• VUID-StandaloneSpirv-OpReadClockKHR-04652
Scope for OpReadClockKHR must be limited to Subgroup or Device

• VUID-StandaloneSpirv-OriginLowerLeft-04653
The OriginLowerLeft Execution Mode must not be used; fragment entry points must declare
OriginUpperLeft

• VUID-StandaloneSpirv-PixelCenterInteger-04654
The PixelCenterInteger Execution Mode must not be used (pixels are always centered at
half-integer coordinates)

1336

• VUID-StandaloneSpirv-UniformConstant-04655
Any variable in the UniformConstant Storage Class must be typed as either OpTypeImage,
OpTypeSampler, OpTypeSampledImage, OpTypeAccelerationStructureKHR, or an array of one of
these types

• VUID-StandaloneSpirv-Uniform-06807
Any variable in the Uniform or StorageBuffer Storage Class must be typed as OpTypeStruct
or an array of this type

• VUID-StandaloneSpirv-PushConstant-06808
Any variable in the PushConstant Storage Class must be typed as OpTypeStruct

• VUID-StandaloneSpirv-OpTypeImage-04656
OpTypeImage must declare a scalar 32-bit float, 64-bit integer, or 32-bit integer type for the
“Sampled Type” (RelaxedPrecision can be applied to a sampling instruction and to the
variable holding the result of a sampling instruction)

• VUID-StandaloneSpirv-OpTypeImage-04657
OpTypeImage must have a “Sampled” operand of 1 (sampled image) or 2 (storage image)

• VUID-StandaloneSpirv-OpTypeSampledImage-06671
OpTypeSampledImage must have a OpTypeImage with a “Sampled” operand of 1 (sampled
image)

• VUID-StandaloneSpirv-Image-04965
The SPIR-V Type of the Image Format operand of an OpTypeImage must match the Sampled
Type, as defined in Image Format and Type Matching

• VUID-StandaloneSpirv-OpImageTexelPointer-04658
If an OpImageTexelPointer is used in an atomic operation, the image type of the image
parameter to OpImageTexelPointer must have an image format of R64i, R64ui, R32f, R32i, or
R32ui

• VUID-StandaloneSpirv-OpImageQuerySizeLod-04659
OpImageQuerySizeLod, OpImageQueryLod, and OpImageQueryLevels must only consume an
“Image” operand whose type has its “Sampled” operand set to 1

• VUID-StandaloneSpirv-OpTypeImage-06214
An OpTypeImage with a “Dim” operand of SubpassData must have an “Arrayed” operand of 0
(non-arrayed) and a “Sampled” operand of 2 (storage image)

• VUID-StandaloneSpirv-SubpassData-04660
The (u,v) coordinates used for a SubpassData must be the <id> of a constant vector (0,0), or
if a layer coordinate is used, must be a vector that was formed with constant 0 for the u
and v components

• VUID-StandaloneSpirv-OpTypeImage-06924
Objects of types OpTypeImage, OpTypeSampler, OpTypeSampledImage,
OpTypeAccelerationStructureKHR, and arrays of these types must not be stored to or
modified

• VUID-StandaloneSpirv-Uniform-06925
Any variable in the Uniform Storage Class decorated as Block must not be stored to or
modified

• VUID-StandaloneSpirv-Offset-04663

1337

Image operand Offset must only be used with OpImage*Gather instructions

• VUID-StandaloneSpirv-Offset-04865
Any image instruction which uses an Offset, ConstOffset, or ConstOffsets image operand,
must only consume a “Sampled Image” operand whose type has its “Sampled” operand set
to 1

• VUID-StandaloneSpirv-OpImageGather-04664
The “Component” operand of OpImageGather, and OpImageSparseGather must be the <id> of
a constant instruction

• VUID-StandaloneSpirv-OpImage-04777
OpImage*Dref* instructions must not consume an image whose Dim is 3D

• VUID-StandaloneSpirv-None-04667
Structure types must not contain opaque types

• VUID-StandaloneSpirv-BuiltIn-04668
Any BuiltIn decoration not listed in Built-In Variables must not be used

• VUID-StandaloneSpirv-Location-06672
The Location or Component decorations must only be used with the Input, Output,
RayPayloadKHR, IncomingRayPayloadKHR, HitAttributeKHR, HitObjectAttributeNV,
CallableDataKHR, IncomingCallableDataKHR, or ShaderRecordBufferKHR storage classes

• VUID-StandaloneSpirv-Location-04915
The Location or Component decorations must not be used with BuiltIn

• VUID-StandaloneSpirv-Location-04916
The Location decorations must be used on user-defined variables

• VUID-StandaloneSpirv-Location-04917
If a user-defined variable is not a pointer to a Block decorated OpTypeStruct, then the
OpVariable must have a Location decoration

• VUID-StandaloneSpirv-Location-04918
If a user-defined variable has a Location decoration, and the variable is a pointer to a
OpTypeStruct, then the members of that structure must not have Location decorations

• VUID-StandaloneSpirv-Location-04919
If a user-defined variable does not have a Location decoration, and the variable is a
pointer to a Block decorated OpTypeStruct, then each member of the struct must have a
Location decoration

• VUID-StandaloneSpirv-Component-04920
The Component decoration value must not be greater than 3

• VUID-StandaloneSpirv-Component-04921
If the Component decoration is used on an OpVariable that has a OpTypeVector type with a
Component Type with a Width that is less than or equal to 32, the sum of its Component Count
and the Component decoration value must be less than or equal to 4

• VUID-StandaloneSpirv-Component-04922
If the Component decoration is used on an OpVariable that has a OpTypeVector type with a
Component Type with a Width that is equal to 64, the sum of two times its Component Count and
the Component decoration value must be less than or equal to 4

1338

• VUID-StandaloneSpirv-Component-04923
The Component decorations value must not be 1 or 3 for scalar or two-component 64-bit
data types

• VUID-StandaloneSpirv-Component-04924
The Component decorations must not be used with any type that is not a scalar or vector, or
an array of such a type

• VUID-StandaloneSpirv-Component-07703
The Component decorations must not be used for a 64-bit vector type with more than two
components

• VUID-StandaloneSpirv-Input-09557
The pointers of any Input or Output Interface user-defined variables must not contain any
PhysicalStorageBuffer Storage Class pointers

• VUID-StandaloneSpirv-GLSLShared-04669
The GLSLShared and GLSLPacked decorations must not be used

• VUID-StandaloneSpirv-Flat-04670
The Flat, NoPerspective, Sample, and Centroid decorations must only be used on variables
with the Output or Input Storage Class

• VUID-StandaloneSpirv-Flat-06201
The Flat, NoPerspective, Sample, and Centroid decorations must not be used on variables
with the Output storage class in a fragment shader

• VUID-StandaloneSpirv-Flat-06202
The Flat, NoPerspective, Sample, and Centroid decorations must not be used on variables
with the Input storage class in a vertex shader

• VUID-StandaloneSpirv-PerVertexKHR-06777
The PerVertexKHR decoration must only be used on variables with the Input Storage Class
in a fragment shader

• VUID-StandaloneSpirv-Flat-04744
Any variable with integer or double-precision floating-point type and with Input Storage
Class in a fragment shader, must be decorated Flat

• VUID-StandaloneSpirv-ViewportRelativeNV-04672
The ViewportRelativeNV decoration must only be used on a variable decorated with Layer
in the vertex, tessellation evaluation, or geometry shader stages

• VUID-StandaloneSpirv-ViewportRelativeNV-04673
The ViewportRelativeNV decoration must not be used unless a variable decorated with one
of ViewportIndex or ViewportMaskNV is also statically used by the same OpEntryPoint

• VUID-StandaloneSpirv-ViewportMaskNV-04674
The ViewportMaskNV and ViewportIndex decorations must not both be statically used by one
or more OpEntryPoint’s that form the pre-rasterization shader stages of a graphics pipeline

• VUID-StandaloneSpirv-FPRoundingMode-04675
Rounding modes other than round-to-nearest-even and round-towards-zero must not be
used for the FPRoundingMode decoration

• VUID-StandaloneSpirv-Invariant-04677

1339

Variables decorated with Invariant and variables with structure types that have any
members decorated with Invariant must be in the Output or Input Storage Class, Invariant
used on an Input Storage Class variable or structure member has no effect

• VUID-StandaloneSpirv-VulkanMemoryModel-04678
If the VulkanMemoryModel capability is not declared, the Volatile decoration must be used
on any variable declaration that includes one of the SMIDNV, WarpIDNV, SubgroupSize,
SubgroupLocalInvocationId, SubgroupEqMask, SubgroupGeMask, SubgroupGtMask, SubgroupLeMask,
or SubgroupLtMask BuiltIn decorations when used in the ray generation, closest hit, miss,
intersection, or callable shaders, or with the RayTmaxKHR Builtin decoration when used in
an intersection shader

• VUID-StandaloneSpirv-VulkanMemoryModel-04679
If the VulkanMemoryModel capability is declared, the OpLoad instruction must use the
Volatile memory semantics when it accesses into any variable that includes one of the
SMIDNV, WarpIDNV, SubgroupSize, SubgroupLocalInvocationId, SubgroupEqMask, SubgroupGeMask,
SubgroupGtMask, SubgroupLeMask, or SubgroupLtMask BuiltIn decorations when used in the
ray generation, closest hit, miss, intersection, or callable shaders, or with the RayTmaxKHR
Builtin decoration when used in an intersection shader

• VUID-StandaloneSpirv-OpTypeRuntimeArray-04680
OpTypeRuntimeArray must only be used for:

◦ the last member of a Block-decorated OpTypeStruct in StorageBuffer or
PhysicalStorageBuffer storage Storage Class

◦ BufferBlock-decorated OpTypeStruct in the Uniform storage Storage Class

◦ the outermost dimension of an arrayed variable in the StorageBuffer, Uniform, or
UniformConstant storage Storage Class

◦ variables in the NodePayloadAMDX storage Storage Class when the CoalescingAMDX
Execution Mode is specified

• VUID-StandaloneSpirv-Function-04681
A type T that is an array sized with a specialization constant must neither be, nor be
contained in, the type T2 of a variable V, unless either: a) T is equal to T2, b) V is declared
in the Function, or Private Storage Class, c) V is a non-Block variable in the Workgroup
Storage Class, or d) V is an interface variable with an additional level of arrayness, as
described in interface matching, and T is the member type of the array type T2

• VUID-StandaloneSpirv-OpControlBarrier-04682
If OpControlBarrier is used in ray generation, intersection, any-hit, closest hit, miss,
fragment, vertex, tessellation evaluation, or geometry shaders, the execution Scope must
be Subgroup

• VUID-StandaloneSpirv-LocalSize-06426
For each compute shader entry point, either a LocalSize or LocalSizeId Execution Mode, or
an object decorated with the WorkgroupSize decoration must be specified

• VUID-StandaloneSpirv-DerivativeGroupQuadsNV-04684
For compute shaders using the DerivativeGroupQuadsNV execution mode, the first two
dimensions of the local workgroup size must be a multiple of two

• VUID-StandaloneSpirv-DerivativeGroupLinearNV-04778

1340

For compute shaders using the DerivativeGroupLinearNV execution mode, the product of
the dimensions of the local workgroup size must be a multiple of four

• VUID-StandaloneSpirv-OpGroupNonUniformBallotBitCount-04685
If OpGroupNonUniformBallotBitCount is used, the group operation must be limited to Reduce,
InclusiveScan, or ExclusiveScan

• VUID-StandaloneSpirv-None-04686
The Pointer operand of all atomic instructions must have a Storage Class limited to
Uniform, Workgroup, Image, StorageBuffer, PhysicalStorageBuffer, or TaskPayloadWorkgroupEXT

• VUID-StandaloneSpirv-Offset-04687
Output variables or block members decorated with Offset that have a 64-bit type, or a
composite type containing a 64-bit type, must specify an Offset value aligned to a 8 byte
boundary

• VUID-StandaloneSpirv-Offset-04689
The size of any output block containing any member decorated with Offset that is a 64-bit
type must be a multiple of 8

• VUID-StandaloneSpirv-Offset-04690
The first member of an output block specifying a Offset decoration must specify a Offset
value that is aligned to an 8 byte boundary if that block contains any member decorated
with Offset and is a 64-bit type

• VUID-StandaloneSpirv-Offset-04691
Output variables or block members decorated with Offset that have a 32-bit type, or a
composite type contains a 32-bit type, must specify an Offset value aligned to a 4 byte
boundary

• VUID-StandaloneSpirv-Offset-04692
Output variables, blocks or block members decorated with Offset must only contain base
types that have components that are either 32-bit or 64-bit in size

• VUID-StandaloneSpirv-Offset-04716
Only variables or block members in the output interface decorated with Offset can be
captured for transform feedback, and those variables or block members must also be
decorated with XfbBuffer and XfbStride, or inherit XfbBuffer and XfbStride decorations
from a block containing them

• VUID-StandaloneSpirv-XfbBuffer-04693
All variables or block members in the output interface of the entry point being compiled
decorated with a specific XfbBuffer value must all be decorated with identical XfbStride
values

• VUID-StandaloneSpirv-Stream-04694
If any variables or block members in the output interface of the entry point being
compiled are decorated with Stream, then all variables belonging to the same XfbBuffer
must specify the same Stream value

• VUID-StandaloneSpirv-XfbBuffer-04696
For any two variables or block members in the output interface of the entry point being
compiled with the same XfbBuffer value, the ranges determined by the Offset decoration
and the size of the type must not overlap

1341

• VUID-StandaloneSpirv-XfbBuffer-04697
All block members in the output interface of the entry point being compiled that are in
the same block and have a declared or inherited XfbBuffer decoration must specify the
same XfbBuffer value

• VUID-StandaloneSpirv-RayPayloadKHR-04698
RayPayloadKHR Storage Class must only be used in ray generation, closest hit or miss
shaders

• VUID-StandaloneSpirv-IncomingRayPayloadKHR-04699
IncomingRayPayloadKHR Storage Class must only be used in closest hit, any-hit, or miss
shaders

• VUID-StandaloneSpirv-IncomingRayPayloadKHR-04700
There must be at most one variable with the IncomingRayPayloadKHR Storage Class in the
input interface of an entry point

• VUID-StandaloneSpirv-HitAttributeKHR-04701
HitAttributeKHR Storage Class must only be used in intersection, any-hit, or closest hit
shaders

• VUID-StandaloneSpirv-HitAttributeKHR-04702
There must be at most one variable with the HitAttributeKHR Storage Class in the input
interface of an entry point

• VUID-StandaloneSpirv-HitAttributeKHR-04703
A variable with HitAttributeKHR Storage Class must only be written to in an intersection
shader

• VUID-StandaloneSpirv-CallableDataKHR-04704
CallableDataKHR Storage Class must only be used in ray generation, closest hit, miss, and
callable shaders

• VUID-StandaloneSpirv-IncomingCallableDataKHR-04705
IncomingCallableDataKHR Storage Class must only be used in callable shaders

• VUID-StandaloneSpirv-IncomingCallableDataKHR-04706
There must be at most one variable with the IncomingCallableDataKHR Storage Class in the
input interface of an entry point

• VUID-StandaloneSpirv-ShaderRecordBufferKHR-07119
ShaderRecordBufferKHR Storage Class must only be used in ray generation, intersection,
any-hit, closest hit, callable, or miss shaders

• VUID-StandaloneSpirv-Base-07650
The Base operand of OpPtrAccessChain must have a storage class of Workgroup,
StorageBuffer, or PhysicalStorageBuffer

• VUID-StandaloneSpirv-Base-07651
If the Base operand of OpPtrAccessChain has a Workgroup Storage Class, then the
VariablePointers capability must be declared

• VUID-StandaloneSpirv-Base-07652
If the Base operand of OpPtrAccessChain has a StorageBuffer Storage Class, then the
VariablePointers or VariablePointersStorageBuffer capability must be declared

1342

• VUID-StandaloneSpirv-PhysicalStorageBuffer64-04708
If the PhysicalStorageBuffer64 addressing model is enabled, all instructions that support
memory access operands and that use a physical pointer must include the Aligned
operand

• VUID-StandaloneSpirv-PhysicalStorageBuffer64-04709
If the PhysicalStorageBuffer64 addressing model is enabled, any access chain instruction
that accesses into a RowMajor matrix must only be used as the Pointer operand to OpLoad or
OpStore

• VUID-StandaloneSpirv-PhysicalStorageBuffer64-04710
If the PhysicalStorageBuffer64 addressing model is enabled, OpConvertUToPtr and
OpConvertPtrToU must use an integer type whose Width is 64

• VUID-StandaloneSpirv-OpTypeForwardPointer-04711
OpTypeForwardPointer must have a Storage Class of PhysicalStorageBuffer

• VUID-StandaloneSpirv-None-04745
All block members in a variable with a Storage Class of PushConstant declared as an array
must only be accessed by dynamically uniform indices

• VUID-StandaloneSpirv-OpVariable-06673
There must not be more than one OpVariable in the PushConstant Storage Class listed in
the Interface for each OpEntryPoint

• VUID-StandaloneSpirv-OpEntryPoint-06674
Each OpEntryPoint must not statically use more than one OpVariable in the PushConstant
Storage Class

• VUID-StandaloneSpirv-OpEntryPoint-08721
Each OpEntryPoint must not have more than one Input variable assigned the same
Component word inside a Location slot, either explicitly or implicitly

• VUID-StandaloneSpirv-OpEntryPoint-08722
Each OpEntryPoint must not have more than one Output variable assigned the same
Component word inside a Location slot, either explicitly or implicitly

• VUID-StandaloneSpirv-Result-04780
The Result Type operand of any OpImageRead or OpImageSparseRead instruction must be a
vector of four components

• VUID-StandaloneSpirv-Base-04781
The Base operand of any OpBitCount, OpBitReverse, OpBitFieldInsert, OpBitFieldSExtract, or
OpBitFieldUExtract instruction must be a 32-bit integer scalar or a vector of 32-bit
integers

• VUID-StandaloneSpirv-PushConstant-06675
Any variable in the PushConstant or StorageBuffer storage class must be decorated as Block

• VUID-StandaloneSpirv-Uniform-06676
Any variable in the Uniform Storage Class must be decorated as Block or BufferBlock

• VUID-StandaloneSpirv-UniformConstant-06677
Any variable in the UniformConstant, StorageBuffer, or Uniform Storage Class must be
decorated with DescriptorSet and Binding

1343

• VUID-StandaloneSpirv-InputAttachmentIndex-06678
Variables decorated with InputAttachmentIndex must be in the UniformConstant Storage
Class

• VUID-StandaloneSpirv-DescriptorSet-06491
If a variable is decorated by DescriptorSet or Binding, the Storage Class must correspond
to an entry in Shader Resource and Storage Class Correspondence

• VUID-StandaloneSpirv-Input-06778
Variables with a Storage Class of Input in a fragment shader stage that are decorated with
PerVertexKHR must be declared as arrays

• VUID-StandaloneSpirv-MeshEXT-07102
The module must not contain both an entry point that uses the TaskEXT or MeshEXT
Execution Model and an entry point that uses the TaskNV or MeshNV Execution Model

• VUID-StandaloneSpirv-MeshEXT-07106
In mesh shaders using the MeshEXT Execution Model OpSetMeshOutputsEXT must be called
before any outputs are written

• VUID-StandaloneSpirv-MeshEXT-07107
In mesh shaders using the MeshEXT Execution Model all variables declared as output must
not be read from

• VUID-StandaloneSpirv-MeshEXT-07108
In mesh shaders using the MeshEXT Execution Model for OpSetMeshOutputsEXT instructions,
the “Vertex Count” and “Primitive Count” operands must not depend on ViewIndex

• VUID-StandaloneSpirv-MeshEXT-07109
In mesh shaders using the MeshEXT Execution Model variables decorated with
PrimitivePointIndicesEXT, PrimitiveLineIndicesEXT, or PrimitiveTriangleIndicesEXT
declared as an array must not be accessed by indices that depend on ViewIndex

• VUID-StandaloneSpirv-MeshEXT-07110
In mesh shaders using the MeshEXT Execution Model any values stored in variables
decorated with PrimitivePointIndicesEXT, PrimitiveLineIndicesEXT, or
PrimitiveTriangleIndicesEXT must not depend on ViewIndex

• VUID-StandaloneSpirv-MeshEXT-07111
In mesh shaders using the MeshEXT Execution Model variables in workgroup or private
Storage Class declared as or containing a composite type must not be accessed by indices
that depend on ViewIndex

• VUID-StandaloneSpirv-MeshEXT-07330
In mesh shaders using the MeshEXT Execution Model the OutputVertices Execution Mode must
be greater than 0

• VUID-StandaloneSpirv-MeshEXT-07331
In mesh shaders using the MeshEXT Execution Model the OutputPrimitivesEXT Execution Mode
must be greater than 0

• VUID-StandaloneSpirv-Input-07290
Variables with a Storage Class of Input or Output and a type of OpTypeBool must be
decorated with the BuiltIn decoration

• VUID-StandaloneSpirv-TileImageEXT-08723

1344

The tile image variable declarations must obey the constraints on the TileImageEXT
Storage Class and the Location decoration described in Fragment Tile Image Interface

• VUID-StandaloneSpirv-None-08724
The TileImageEXT Storage Class must only be used for declaring tile image variables.

• VUID-StandaloneSpirv-Pointer-08973
The Storage Class of the Pointer operand to OpCooperativeMatrixLoadKHR or
OpCooperativeMatrixStoreKHR must be limited to Workgroup, StorageBuffer, or
PhysicalStorageBuffer.

Runtime SPIR-V Validation

The following rules must be validated at runtime. These rules depend on knowledge of the
implementation and its capabilities and knowledge of runtime information, such as enabled
features.

Valid Usage

• VUID-RuntimeSpirv-vulkanMemoryModel-06265
If vulkanMemoryModel is enabled and vulkanMemoryModelDeviceScope is not enabled, Device
memory scope must not be used

• VUID-RuntimeSpirv-vulkanMemoryModel-06266
If vulkanMemoryModel is not enabled, QueueFamily memory scope must not be used

• VUID-RuntimeSpirv-None-09558
Any variable created with a “Type” of OpTypeImage that has a “Dim” operand of SubpassData
must be decorated with InputAttachmentIndex

• VUID-RuntimeSpirv-apiVersion-07952
If VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.3, and
shaderStorageImageWriteWithoutFormat is not enabled, any variable created with a “Type”
of OpTypeImage that has a “Sampled” operand of 2 and an “Image Format” operand of
Unknown must be decorated with NonWritable

• VUID-RuntimeSpirv-apiVersion-07953
If VkPhysicalDeviceProperties::apiVersion is less than Vulkan 1.3, and
shaderStorageImageReadWithoutFormat is not enabled, any variable created with a “Type” of
OpTypeImage that has a “Sampled” operand of 2 and an “Image Format” operand of Unknown
must be decorated with NonReadable

• VUID-RuntimeSpirv-OpImageWrite-07112
OpImageWrite to any Image whose Image Format is not Unknown must have the Texel operand
contain at least as many components as the corresponding VkFormat as given in the SPIR-
V Image Format compatibility table

• VUID-RuntimeSpirv-Location-06272
The sum of Location and the number of locations the variable it decorates consumes must
be less than or equal to the value for the matching Execution Model defined in Shader
Input and Output Locations

1345

• VUID-RuntimeSpirv-Location-06428
The maximum number of storage buffers, storage images, and output Location decorated
color attachments written to in the Fragment Execution Model must be less than or equal to
maxFragmentCombinedOutputResources

• VUID-RuntimeSpirv-NonUniform-06274
If an instruction loads from or stores to a resource (including atomics and image
instructions) and the resource descriptor being accessed is not dynamically uniform, then
the operand corresponding to that resource (e.g. the pointer or sampled image operand)
must be decorated with NonUniform

• VUID-RuntimeSpirv-None-06275
shaderSubgroupExtendedTypes must be enabled for group operations to use 8-bit integer,
16-bit integer, 64-bit integer, 16-bit floating-point, and vectors of these types

• VUID-RuntimeSpirv-subgroupBroadcastDynamicId-06276
If subgroupBroadcastDynamicId is VK_TRUE, and the shader module version is 1.5 or higher,
the “Index” for OpGroupNonUniformQuadBroadcast must be dynamically uniform within the
derivative group. Otherwise, “Index” must be a constant

• VUID-RuntimeSpirv-subgroupBroadcastDynamicId-06277
If subgroupBroadcastDynamicId is VK_TRUE, and the shader module version is 1.5 or higher,
the “Id” for OpGroupNonUniformBroadcast must be dynamically uniform within the
subgroup. Otherwise, “Id” must be a constant

• VUID-RuntimeSpirv-denormBehaviorIndependence-06289
If denormBehaviorIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY, then
the entry point must use the same denormals Execution Mode for both 16-bit and 64-bit
floating-point types

• VUID-RuntimeSpirv-denormBehaviorIndependence-06290
If denormBehaviorIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE, then the
entry point must use the same denormals Execution Mode for all floating-point types

• VUID-RuntimeSpirv-roundingModeIndependence-06291
If roundingModeIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY, then
the entry point must use the same rounding Execution Mode for both 16-bit and 64-bit
floating-point types

• VUID-RuntimeSpirv-roundingModeIndependence-06292
If roundingModeIndependence is VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE, then the entry
point must use the same rounding Execution Mode for all floating-point types

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat16-06293
If shaderSignedZeroInfNanPreserveFloat16 is VK_FALSE, then SignedZeroInfNanPreserve for
16-bit floating-point type must not be used

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat32-06294
If shaderSignedZeroInfNanPreserveFloat32 is VK_FALSE, then SignedZeroInfNanPreserve for
32-bit floating-point type must not be used

• VUID-RuntimeSpirv-shaderSignedZeroInfNanPreserveFloat64-06295
If shaderSignedZeroInfNanPreserveFloat64 is VK_FALSE, then SignedZeroInfNanPreserve for
64-bit floating-point type must not be used

1346

• VUID-RuntimeSpirv-shaderDenormPreserveFloat16-06296
If shaderDenormPreserveFloat16 is VK_FALSE, then DenormPreserve for 16-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderDenormPreserveFloat32-06297
If shaderDenormPreserveFloat32 is VK_FALSE, then DenormPreserve for 32-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderDenormPreserveFloat64-06298
If shaderDenormPreserveFloat64 is VK_FALSE, then DenormPreserve for 64-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat16-06299
If shaderDenormFlushToZeroFloat16 is VK_FALSE, then DenormFlushToZero for 16-bit floating-
point type must not be used

• VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat32-06300
If shaderDenormFlushToZeroFloat32 is VK_FALSE, then DenormFlushToZero for 32-bit floating-
point type must not be used

• VUID-RuntimeSpirv-shaderDenormFlushToZeroFloat64-06301
If shaderDenormFlushToZeroFloat64 is VK_FALSE, then DenormFlushToZero for 64-bit floating-
point type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTEFloat16-06302
If shaderRoundingModeRTEFloat16 is VK_FALSE, then RoundingModeRTE for 16-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTEFloat32-06303
If shaderRoundingModeRTEFloat32 is VK_FALSE, then RoundingModeRTE for 32-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTEFloat64-06304
If shaderRoundingModeRTEFloat64 is VK_FALSE, then RoundingModeRTE for 64-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTZFloat16-06305
If shaderRoundingModeRTZFloat16 is VK_FALSE, then RoundingModeRTZ for 16-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTZFloat32-06306
If shaderRoundingModeRTZFloat32 is VK_FALSE, then RoundingModeRTZ for 32-bit floating-point
type must not be used

• VUID-RuntimeSpirv-shaderRoundingModeRTZFloat64-06307
If shaderRoundingModeRTZFloat64 is VK_FALSE, then RoundingModeRTZ for 64-bit floating-point
type must not be used

• VUID-RuntimeSpirv-PhysicalStorageBuffer64-06314
If the PhysicalStorageBuffer64 addressing model is enabled any load or store through a
physical pointer type must be aligned to a multiple of the size of the largest scalar type in
the pointed-to type

• VUID-RuntimeSpirv-PhysicalStorageBuffer64-06315
If the PhysicalStorageBuffer64 addressing model is enabled the pointer value of a memory
access instruction must be at least as aligned as specified by the Aligned memory access

1347

operand

• VUID-RuntimeSpirv-DescriptorSet-06323
DescriptorSet and Binding decorations must obey the constraints on Storage Class, type,
and descriptor type described in DescriptorSet and Binding Assignment

• VUID-RuntimeSpirv-NonWritable-06340
If fragmentStoresAndAtomics is not enabled, then all storage image, storage texel buffer,
and storage buffer variables in the fragment stage must be decorated with the
NonWritable decoration

• VUID-RuntimeSpirv-NonWritable-06341
If vertexPipelineStoresAndAtomics is not enabled, then all storage image, storage texel
buffer, and storage buffer variables in the vertex, tessellation, and geometry stages must
be decorated with the NonWritable decoration

• VUID-RuntimeSpirv-None-06342
If subgroupQuadOperationsInAllStages is VK_FALSE, then quad subgroup operations must not
be used except for in fragment and compute stages

• VUID-RuntimeSpirv-None-06343
Group operations with subgroup scope must not be used if the shader stage is not in
subgroupSupportedStages

• VUID-RuntimeSpirv-Offset-06344
The first element of the Offset operand of InterpolateAtOffset must be greater than or
equal to:
fragwidth × minInterpolationOffset
where fragwidth is the width of the current fragment in pixels

• VUID-RuntimeSpirv-Offset-06345
The first element of the Offset operand of InterpolateAtOffset must be less than or equal
to
fragwidth × (maxInterpolationOffset + ULP) - ULP
where fragwidth is the width of the current fragment in pixels and ULP = 1 /
2^subPixelInterpolationOffsetBits^

• VUID-RuntimeSpirv-Offset-06346
The second element of the Offset operand of InterpolateAtOffset must be greater than or
equal to
fragheight × minInterpolationOffset
where fragheight is the height of the current fragment in pixels

• VUID-RuntimeSpirv-Offset-06347
The second element of the Offset operand of InterpolateAtOffset must be less than or
equal to
fragheight × (maxInterpolationOffset + ULP) - ULP
where fragheight is the height of the current fragment in pixels and ULP = 1 /
2^subPixelInterpolationOffsetBits^.

• VUID-RuntimeSpirv-x-06429
In compute shaders using the GLCompute Execution Model the x size in LocalSize or
LocalSizeId must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupSize[0]

1348

• VUID-RuntimeSpirv-y-06430
In compute shaders using the GLCompute Execution Model the y size in LocalSize or
LocalSizeId must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupSize[1]

• VUID-RuntimeSpirv-z-06431
In compute shaders using the GLCompute Execution Model the z size in LocalSize or
LocalSizeId must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupSize[2]

• VUID-RuntimeSpirv-x-06432
In compute shaders using the GLCompute Execution Model the product of x size, y size, and z
size in LocalSize or LocalSizeId must be less than or equal to VkPhysicalDeviceLimits
::maxComputeWorkGroupInvocations

• VUID-RuntimeSpirv-LocalSizeId-06434
If Execution Mode LocalSizeId is used, maintenance4 must be enabled

• VUID-RuntimeSpirv-maintenance4-06817
If maintenance4 is not enabled, any OpTypeVector output interface variables must not have
a higher Component Count than a matching OpTypeVector input interface variable

• VUID-RuntimeSpirv-OpEntryPoint-08743
Any user-defined variables shared between the OpEntryPoint of two shader stages, and
declared with Input as its Storage Class for the subsequent shader stage, must have all
Location slots and Component words declared in the preceding shader stage’s OpEntryPoint
with Output as the Storage Class

• VUID-RuntimeSpirv-OpEntryPoint-07754
Any user-defined variables between the OpEntryPoint of two shader stages must have the
same type and width for each Component

• VUID-RuntimeSpirv-OpVariable-08746
Any OpVariable, Block-decorated OpTypeStruct, or Block-decorated OpTypeStruct members
shared between the OpEntryPoint of two shader stages must have matching decorations as
defined in interface matching

• VUID-RuntimeSpirv-Workgroup-06530
The sum of size in bytes for variables and padding in the Workgroup Storage Class in the
GLCompute Execution Model must be less than or equal to maxComputeSharedMemorySize

• VUID-RuntimeSpirv-shaderZeroInitializeWorkgroupMemory-06372
If shaderZeroInitializeWorkgroupMemory is not enabled, any OpVariable with Workgroup as its
Storage Class must not have an Initializer operand

• VUID-RuntimeSpirv-OpImage-06376
If an OpImage*Gather operation has an image operand of Offset, ConstOffset, or
ConstOffsets the offset value must be greater than or equal to minTexelGatherOffset

• VUID-RuntimeSpirv-OpImage-06377
If an OpImage*Gather operation has an image operand of Offset, ConstOffset, or
ConstOffsets the offset value must be less than or equal to maxTexelGatherOffset

• VUID-RuntimeSpirv-OpImageSample-06435
If an OpImageSample* or OpImageFetch* operation has an image operand of ConstOffset then

1349

the offset value must be greater than or equal to minTexelOffset

• VUID-RuntimeSpirv-OpImageSample-06436
If an OpImageSample* or OpImageFetch* operation has an image operand of ConstOffset then
the offset value must be less than or equal to maxTexelOffset

• VUID-RuntimeSpirv-samples-08725
If an OpTypeImage has an MS operand 0, its bound image must have been created with
VkImageCreateInfo::samples as VK_SAMPLE_COUNT_1_BIT

• VUID-RuntimeSpirv-samples-08726
If an OpTypeImage has an MS operand 1, its bound image must not have been created with
VkImageCreateInfo::samples as VK_SAMPLE_COUNT_1_BIT

• VUID-RuntimeSpirv-OpEntryPoint-08727
Each OpEntryPoint must not have more than one variable decorated with
InputAttachmentIndex per image aspect of the attachment image bound to it, either
explicitly or implicitly as described by input attachment interface

• VUID-RuntimeSpirv-MeshEXT-09218
In mesh shaders using the MeshEXT or MeshNV Execution Model and the OutputPoints
Execution Mode, if the number of output points is greater than 0, a PointSize decorated
variable must be written to for each output point

Precision and Operation of SPIR-V Instructions
The following rules apply to half, single, and double-precision floating point instructions:

• Positive and negative infinities and positive and negative zeros are generated as dictated by
IEEE 754, but subject to the precisions allowed in the following table.

• Dividing a non-zero by a zero results in the appropriately signed IEEE 754 infinity.

• Signaling NaNs are not required to be generated and exceptions are never raised. Signaling NaN
may be converted to quiet NaNs values by any floating point instruction.

• By default, the implementation may perform optimizations on half, single, or double-precision
floating-point instructions that ignore sign of a zero, or assume that arguments and results are
not NaNs or infinities. If the entry point is declared with the SignedZeroInfNanPreserve Execution
Mode, then NaNs, infinities, and the sign of zero must not be ignored.

◦ The following core SPIR-V instructions must respect the SignedZeroInfNanPreserve Execution
Mode: OpPhi, OpSelect, OpReturnValue, OpVectorExtractDynamic, OpVectorInsertDynamic,
OpVectorShuffle, OpCompositeConstruct, OpCompositeExtract, OpCompositeInsert, OpCopyObject,
OpTranspose, OpFConvert, OpFNegate, OpFAdd, OpFSub, OpFMul, OpStore. This Execution Mode must
also be respected by OpLoad except for loads from the Input Storage Class in the fragment
shader stage with the floating-point result type. Other SPIR-V instructions may also respect
the SignedZeroInfNanPreserve Execution Mode.

• The following instructions must not flush denormalized values: OpConstant,
OpConstantComposite, OpSpecConstant, OpSpecConstantComposite, OpLoad, OpStore, OpBitcast, OpPhi,
OpSelect, OpFunctionCall, OpReturnValue, OpVectorExtractDynamic, OpVectorInsertDynamic,
OpVectorShuffle, OpCompositeConstruct, OpCompositeExtract, OpCompositeInsert, OpCopyMemory,

1350

OpCopyObject.

• Denormalized values are supported.

◦ By default, any half, single, or double-precision denormalized value input into a shader or
potentially generated by any instruction (except those listed above) or any extended
instructions for GLSL in a shader may be flushed to zero.

◦ If the entry point is declared with the DenormFlushToZero Execution Mode then for the affected
instructions the denormalized result must be flushed to zero and the denormalized
operands may be flushed to zero. Denormalized values obtained via unpacking an integer
into a vector of values with smaller bit width and interpreting those values as floating-point
numbers must be flushed to zero.

◦ The following core SPIR-V instructions must respect the DenormFlushToZero Execution Mode:
OpSpecConstantOp (with opcode OpFConvert), OpFConvert, OpFNegate, OpFAdd, OpFSub, OpFMul,
OpFDiv, OpFRem, OpFMod, OpVectorTimesScalar, OpMatrixTimesScalar, OpVectorTimesMatrix,
OpMatrixTimesVector, OpMatrixTimesMatrix, OpOuterProduct, OpDot; and the following extended
instructions for GLSL: Round, RoundEven, Trunc, FAbs, Floor, Ceil, Fract, Radians, Degrees, Sin,
Cos, Tan, Asin, Acos, Atan, Sinh, Cosh, Tanh, Asinh, Acosh, Atanh, Atan2, Pow, Exp, Log, Exp2, Log2,
Sqrt, InverseSqrt, Determinant, MatrixInverse, Modf, ModfStruct, FMin, FMax, FClamp, FMix, Step,
SmoothStep, Fma, UnpackHalf2x16, UnpackDouble2x32, Length, Distance, Cross, Normalize,
FaceForward, Reflect, Refract, NMin, NMax, NClamp. Other SPIR-V instructions (except those
excluded above) may also flush denormalized values.

◦ The following core SPIR-V instructions must respect the DenormPreserve Execution Mode:
OpTranspose, OpSpecConstantOp, OpFConvert, OpFNegate, OpFAdd, OpFSub, OpFMul,
OpVectorTimesScalar, OpMatrixTimesScalar, OpVectorTimesMatrix, OpMatrixTimesVector,
OpMatrixTimesMatrix, OpOuterProduct, OpDot, OpFOrdEqual, OpFUnordEqual, OpFOrdNotEqual,
OpFUnordNotEqual, OpFOrdLessThan, OpFUnordLessThan, OpFOrdGreaterThan, OpFUnordGreaterThan,
OpFOrdLessThanEqual, OpFUnordLessThanEqual, OpFOrdGreaterThanEqual,
OpFUnordGreaterThanEqual; and the following extended instructions for GLSL: FAbs, FSign,
Radians, Degrees, FMin, FMax, FClamp, FMix, Fma, PackHalf2x16, PackDouble2x32, UnpackHalf2x16,
UnpackDouble2x32, NMin, NMax, NClamp. Other SPIR-V instructions may also preserve denorm
values.

The precision of double-precision instructions is at least that of single precision.

The precision of individual operations is defined in Precision of Individual Operations. Subject to
the constraints below, however, implementations may reorder or combine operations, resulting in
expressions exhibiting different precisions than might be expected from the constituent operations.

Evaluation of Expressions

Implementations may rearrange floating-point operations using any of the mathematical
properties governing the expressions in precise arithmetic, even where the floating- point
operations do not share these properties. This includes, but is not limited to, associativity and
distributivity, and may involve a different number of rounding steps than would occur if the
operations were not rearranged. In shaders that use the SignedZeroInfNanPreserve Execution Mode
the values must be preserved if they are generated after any rearrangement but the Execution Mode
does not change which rearrangements are valid. This rearrangement can be prevented for

1351

particular operations by using the NoContraction decoration.

Note

For example, in the absence of the NoContraction decoration implementations are
allowed to implement a + b - a and as b. The SignedZeroInfNanPreserve does not
prevent these transformations, even though they may overflow to infinity or NaN
when evaluated in floating-point.

If the NoContraction decoration is applied then operations may not be rearranged,
so, for example, a + a - a must account for possible overflow to infinity. If infinities
are not preserved then the expression may be replaced with a, since the
replacement is exact when overflow does not occur and infinities may be replaced
with undefined values. If both NoContraction and SignedZeroInfNanPreserve are
used then the result must be infinity for sufficiently large a.

Precision of Individual Operations

The precision of individual operations is defined either in terms of rounding (correctly rounded), as
an error bound in ULP, or as inherited from a formula as follows:

Correctly Rounded

Operations described as “correctly rounded” will return the infinitely precise result, x, rounded so
as to be representable in floating-point. The rounding mode is not specified, unless the entry point
is declared with the RoundingModeRTE or the RoundingModeRTZ Execution Mode. These execution modes
affect only correctly rounded SPIR-V instructions. These execution modes do not affect
OpQuantizeToF16. If the rounding mode is not specified then this rounding is implementation
specific, subject to the following rules. If x is exactly representable then x will be returned.
Otherwise, either the floating-point value closest to and no less than x or the value closest to and no
greater than x will be returned.

ULP

Where an error bound of n ULP (units in the last place) is given, for an operation with infinitely
precise result x the value returned must be in the range [x - n × ulp(x), x + n × ulp(x)]. The function
ulp(x) is defined as follows:

If there exist non-equal, finite floating-point numbers a and b such that a ≤ x ≤ b then ulp(x) is
the minimum possible distance between such numbers, . If such numbers do
not exist then ulp(x) is defined to be the difference between the two non-equal, finite floating-
point numbers nearest to x.

Where the range of allowed return values includes any value of magnitude larger than that of the
largest representable finite floating-point number, operations may, additionally, return either an
infinity of the appropriate sign or the finite number with the largest magnitude of the appropriate
sign. If the infinitely precise result of the operation is not mathematically defined then the value
returned is undefined.

Inherited From …

1352

Where an operation’s precision is described as being inherited from a formula, the result returned
must be at least as accurate as the result of computing an approximation to x using a formula
equivalent to the given formula applied to the supplied inputs. Specifically, the formula given may
be transformed using the mathematical associativity, commutativity and distributivity of the
operators involved to yield an equivalent formula. The SPIR-V precision rules, when applied to each
such formula and the given input values, define a range of permitted values. If NaN is one of the
permitted values then the operation may return any result, otherwise let the largest permitted
value in any of the ranges be Fmax and the smallest be Fmin. The operation must return a value in the
range [x - E, x + E] where . If the entry point is declared with the
DenormFlushToZero execution mode, then any intermediate denormal value(s) while evaluating the
formula may be flushed to zero. Denormal final results must be flushed to zero. If the entry point is
declared with the DenormPreserve Execution Mode, then denormals must be preserved throughout the
formula.

For half- (16 bit) and single- (32 bit) precision instructions, precisions are required to be at least as
follows:

Table 65. Precision of core SPIR-V Instructions

Instruction Single precision, unless
decorated with
RelaxedPrecision

Half precision

OpFAdd Correctly rounded.

OpFSub Correctly rounded.

OpFMul, OpVectorTimesScalar,
OpMatrixTimesScalar

Correctly rounded.

OpDot(x, y) Inherited from .

OpFOrdEqual, OpFUnordEqual Correct result.

OpFOrdLessThan,
OpFUnordLessThan

Correct result.

OpFOrdGreaterThan,
OpFUnordGreaterThan

Correct result.

OpFOrdLessThanEqual,
OpFUnordLessThanEqual

Correct result.

OpFOrdGreaterThanEqual,
OpFUnordGreaterThanEqual

Correct result.

OpFDiv(x,y) 2.5 ULP for |y| in the range [2
-126, 2126].

2.5 ULP for |y| in the range [2-

14, 214].

OpFRem(x,y) Inherited from x - y × trunc(x/y).

OpFMod(x,y) Inherited from x - y × floor(x/y).

conversions between types Correctly rounded.

Note

The OpFRem and OpFMod instructions use cheap approximations of remainder, and

1353

the error can be large due to the discontinuity in trunc() and floor(). This can
produce mathematically unexpected results in some cases, such as FMod(x,x)
computing x rather than 0, and can also cause the result to have a different sign
than the infinitely precise result.

Table 66. Precision of GLSL.std.450 Instructions

Instruction Single precision, unless
decorated with
RelaxedPrecision

Half precision

fma() Inherited from OpFMul followed by OpFAdd.

exp(x), exp2(x) ULP. ULP.

log(), log2() 3 ULP outside the range
. Absolute error <

inside the range .

3 ULP outside the range
. Absolute error <

inside the range .

pow(x, y) Inherited from exp2(y × log2(x)).

sqrt() Inherited from 1.0 / inversesqrt().

inversesqrt() 2 ULP.

radians(x) Inherited from , where is a correctly rounded
approximation to .

degrees(x) Inherited from , where is a correctly rounded
approximation to .

sin() Absolute error inside the
range .

Absolute error inside the
range .

cos() Absolute error inside the
range .

Absolute error inside the
range .

tan() Inherited from .

asin(x) Inherited from .

acos(x) Inherited from .

atan(), atan2() 4096 ULP 5 ULP.

sinh(x) Inherited from .

cosh(x) Inherited from .

tanh() Inherited from .

asinh(x) Inherited from .

acosh(x) Inherited from .

atanh(x) Inherited from .

frexp() Correctly rounded.

ldexp() Correctly rounded.

length(x) Inherited from .

1354

Instruction Single precision, unless
decorated with
RelaxedPrecision

Half precision

distance(x, y) Inherited from .

cross() Inherited from OpFSub(OpFMul, OpFMul).

normalize(x) Inherited from .

faceforward(N, I, NRef) Inherited from dot(NRef, I) < 0.0 ? N : -N.

reflect(x, y) Inherited from x - 2.0 × dot(y, x) × y.

refract(I, N, eta) Inherited from k < 0.0 ? 0.0 : eta × I - (eta × dot(N, I) + sqrt(k)) × N,
where k = 1 - eta × eta × (1.0 - dot(N, I) × dot(N, I)).

round Correctly rounded.

roundEven Correctly rounded.

trunc Correctly rounded.

fabs Correctly rounded.

fsign Correctly rounded.

floor Correctly rounded.

ceil Correctly rounded.

fract Correctly rounded.

modf Correctly rounded.

fmin Correctly rounded.

fmax Correctly rounded.

fclamp Correctly rounded.

fmix(x, y, a) Inherited from .

step Correctly rounded.

smoothStep(edge0, edge1, x) Inherited from , where
.

nmin Correctly rounded.

nmax Correctly rounded.

nclamp Correctly rounded.

GLSL.std.450 extended instructions specifically defined in terms of the above instructions inherit
the above errors. GLSL.std.450 extended instructions not listed above and not defined in terms of
the above have undefined precision.

For the OpSRem and OpSMod instructions, if either operand is negative the result is undefined.

Note

While the OpSRem and OpSMod instructions are supported by the Vulkan

1355

environment, they require non-negative values and thus do not enable additional
functionality beyond what OpUMod provides.

Signedness of SPIR-V Image Accesses
SPIR-V associates a signedness with all integer image accesses. This is required in certain parts of
the SPIR-V and the Vulkan image access pipeline to ensure defined results. The signedness is
determined from a combination of the access instruction’s Image Operands and the underlying
image’s Sampled Type as follows:

1. If the instruction’s Image Operands contains the SignExtend operand then the access is signed.

2. If the instruction’s Image Operands contains the ZeroExtend operand then the access is unsigned.

3. Otherwise, the image accesses signedness matches that of the Sampled Type of the OpTypeImage
being accessed.

Image Format and Type Matching
When specifying the Image Format of an OpTypeImage, the converted bit width and type, as shown in
the table below, must match the Sampled Type. The signedness must match the signedness of any
access to the image.

Note

Formatted accesses are always converted from a shader readable type to the
resource’s format or vice versa via Format Conversion for reads and Texel Output
Format Conversion for writes. As such, the bit width and format below do not
necessarily match 1:1 with what might be expected for some formats.

For a given Image Format, the Sampled Type must be the type described in the Type column of the
below table, with its Literal Width set to that in the Bit Width column. Every access that is made to
the image must have a signedness equal to that in the Signedness column (where applicable).

Image Format Type-Declaration instructions Bit Width Signedness

Unknown Any Any Any

1356

Image Format Type-Declaration instructions Bit Width Signedness

Rgba32f OpTypeFloat 32 N/A
Rg32f

R32f

Rgba16f

Rg16f

R16f

Rgba16

Rg16

R16

Rgba16Snorm

Rg16Snorm

R16Snorm

Rgb10A2

R11fG11fB10f

Rgba8

Rg8

R8

Rgba8Snorm

Rg8Snorm

R8Snorm

1357

Image Format Type-Declaration instructions Bit Width Signedness

Rgba32i OpTypeInt 32 1
Rg32i

R32i

Rgba16i

Rg16i

R16i

Rgba8i

Rg8i

R8i

Rgba32ui 0
Rg32ui

R32ui

Rgba16ui

Rg16ui

R16ui

Rgb10a2ui

Rgba8ui

Rg8ui

R8ui

R64i OpTypeInt 64 1

R64ui 0

The SPIR-V Type is defined by an instruction in SPIR-V, declared with the Type-Declaration
Instruction, Bit Width, and Signedness from above.

Compatibility Between SPIR-V Image Formats and
Vulkan Formats
SPIR-V Image Format values are compatible with VkFormat values as defined below:

Table 67. SPIR-V and Vulkan Image Format Compatibility

SPIR-V Image Format Compatible Vulkan Format

Unknown Any

R8 VK_FORMAT_R8_UNORM

R8Snorm VK_FORMAT_R8_SNORM

R8ui VK_FORMAT_R8_UINT

R8i VK_FORMAT_R8_SINT

Rg8 VK_FORMAT_R8G8_UNORM

Rg8Snorm VK_FORMAT_R8G8_SNORM

1358

SPIR-V Image Format Compatible Vulkan Format

Rg8ui VK_FORMAT_R8G8_UINT

Rg8i VK_FORMAT_R8G8_SINT

Rgba8 VK_FORMAT_R8G8B8A8_UNORM

Rgba8Snorm VK_FORMAT_R8G8B8A8_SNORM

Rgba8ui VK_FORMAT_R8G8B8A8_UINT

Rgba8i VK_FORMAT_R8G8B8A8_SINT

Rgb10A2 VK_FORMAT_A2B10G10R10_UNORM_PACK32

Rgb10a2ui VK_FORMAT_A2B10G10R10_UINT_PACK32

R16 VK_FORMAT_R16_UNORM

R16Snorm VK_FORMAT_R16_SNORM

R16ui VK_FORMAT_R16_UINT

R16i VK_FORMAT_R16_SINT

R16f VK_FORMAT_R16_SFLOAT

Rg16 VK_FORMAT_R16G16_UNORM

Rg16Snorm VK_FORMAT_R16G16_SNORM

Rg16ui VK_FORMAT_R16G16_UINT

Rg16i VK_FORMAT_R16G16_SINT

Rg16f VK_FORMAT_R16G16_SFLOAT

Rgba16 VK_FORMAT_R16G16B16A16_UNORM

Rgba16Snorm VK_FORMAT_R16G16B16A16_SNORM

Rgba16ui VK_FORMAT_R16G16B16A16_UINT

Rgba16i VK_FORMAT_R16G16B16A16_SINT

Rgba16f VK_FORMAT_R16G16B16A16_SFLOAT

R32ui VK_FORMAT_R32_UINT

R32i VK_FORMAT_R32_SINT

R32f VK_FORMAT_R32_SFLOAT

Rg32ui VK_FORMAT_R32G32_UINT

Rg32i VK_FORMAT_R32G32_SINT

Rg32f VK_FORMAT_R32G32_SFLOAT

Rgba32ui VK_FORMAT_R32G32B32A32_UINT

Rgba32i VK_FORMAT_R32G32B32A32_SINT

Rgba32f VK_FORMAT_R32G32B32A32_SFLOAT

R64ui VK_FORMAT_R64_UINT

R64i VK_FORMAT_R64_SINT

R11fG11fB10f VK_FORMAT_B10G11R11_UFLOAT_PACK32

1359

Appendix B: Memory Model

Note

This memory model describes synchronizations provided by all implementations;
however, some of the synchronizations defined require extra features to be
supported by the implementation. See
VkPhysicalDeviceVulkanMemoryModelFeatures.

Agent
Operation is a general term for any task that is executed on the system.

Note

An operation is by definition something that is executed. Thus if an instruction is
skipped due to control flow, it does not constitute an operation.

Each operation is executed by a particular agent. Possible agents include each shader invocation,
each host thread, and each fixed-function stage of the pipeline.

Memory Location
A memory location identifies unique storage for 8 bits of data. Memory operations access a set of
memory locations consisting of one or more memory locations at a time, e.g. an operation accessing
a 32-bit integer in memory would read/write a set of four memory locations. Memory operations
that access whole aggregates may access any padding bytes between elements or members, but no
padding bytes at the end of the aggregate. Two sets of memory locations overlap if the intersection
of their sets of memory locations is non-empty. A memory operation must not affect memory at a
memory location not within its set of memory locations.

Memory locations for buffers and images are explicitly allocated in VkDeviceMemory objects, and
are implicitly allocated for SPIR-V variables in each shader invocation.

Allocation
The values stored in newly allocated memory locations are determined by a SPIR-V variable’s
initializer, if present, or else are undefined. At the time an allocation is created there have been no
memory operations to any of its memory locations. The initialization is not considered to be a
memory operation.

Note

For tessellation control shader output variables, a consequence of initialization not
being considered a memory operation is that some implementations may need to
insert a barrier between the initialization of the output variables and any reads of
those variables.

1360

Memory Operation
For an operation A and memory location M:

• A reads M if and only if the data stored in M is an input to A.

• A writes M if and only if the data output from A is stored to M.

• A accesses M if and only if it either reads or writes (or both) M.

Note

A write whose value is the same as what was already in those memory locations is
still considered to be a write and has all the same effects.

Reference
A reference is an object that a particular agent can use to access a set of memory locations. On the
host, a reference is a host virtual address. On the device, a reference is:

• The descriptor that a variable is bound to, for variables in Image, Uniform, or StorageBuffer
storage classes. If the variable is an array (or array of arrays, etc.) then each element of the
array may be a unique reference.

• The address range for a buffer in PhysicalStorageBuffer storage class, where the base of the
address range is queried with vkGetBufferDeviceAddress and the length of the range is the size
of the buffer.

• The variable itself for variables in other storage classes.

Two memory accesses through distinct references may require availability and visibility operations
as defined below.

Program-Order
A dynamic instance of an instruction is defined in SPIR-V (https://registry.khronos.org/spir-v/specs/
unified1/SPIRV.html#DynamicInstance) as a way of referring to a particular execution of a static
instruction. Program-order is an ordering on dynamic instances of instructions executed by a single
shader invocation:

• (Basic block): If instructions A and B are in the same basic block, and A is listed in the module
before B, then the n’th dynamic instance of A is program-ordered before the n’th dynamic
instance of B.

• (Branch): The dynamic instance of a branch or switch instruction is program-ordered before the
dynamic instance of the OpLabel instruction to which it transfers control.

• (Call entry): The dynamic instance of an OpFunctionCall instruction is program-ordered before
the dynamic instances of the OpFunctionParameter instructions and the body of the called
function.

• (Call exit): The dynamic instance of the instruction following an OpFunctionCall instruction is
program-ordered after the dynamic instance of the return instruction executed by the called

1361

https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#DynamicInstance
https://registry.khronos.org/spir-v/specs/unified1/SPIRV.html#DynamicInstance

function.

• (Transitive Closure): If dynamic instance A of any instruction is program-ordered before
dynamic instance B of any instruction and B is program-ordered before dynamic instance C of
any instruction then A is program-ordered before C.

• (Complete definition): No other dynamic instances are program-ordered.

For instructions executed on the host, the source language defines the program-order relation (e.g.
as “sequenced-before”).

Scope
Atomic and barrier instructions include scopes which identify sets of shader invocations that must
obey the requested ordering and atomicity rules of the operation, as defined below.

The various scopes are described in detail in the Shaders chapter.

Atomic Operation
An atomic operation on the device is any SPIR-V operation whose name begins with OpAtomic. An
atomic operation on the host is any operation performed with an std::atomic typed object.

Each atomic operation has a memory scope and a semantics. Informally, the scope determines
which other agents it is atomic with respect to, and the semantics constrains its ordering against
other memory accesses. Device atomic operations have explicit scopes and semantics. Each host
atomic operation implicitly uses the CrossDevice scope, and uses a memory semantics equivalent to
a C++ std::memory_order value of relaxed, acquire, release, acq_rel, or seq_cst.

Two atomic operations A and B are potentially-mutually-ordered if and only if all of the following
are true:

• They access the same set of memory locations.

• They use the same reference.

• A is in the instance of B’s memory scope.

• B is in the instance of A’s memory scope.

• A and B are not the same operation (irreflexive).

Two atomic operations A and B are mutually-ordered if and only if they are potentially-mutually-
ordered and any of the following are true:

• A and B are both device operations.

• A and B are both host operations.

• A is a device operation, B is a host operation, and the implementation supports concurrent host-
and device-atomics.

Note

1362

If two atomic operations are not mutually-ordered, and if their sets of memory
locations overlap, then each must be synchronized against the other as if they
were non-atomic operations.

Scoped Modification Order
For a given atomic write A, all atomic writes that are mutually-ordered with A occur in an order
known as A’s scoped modification order. A’s scoped modification order relates no other operations.

Note

Invocations outside the instance of A’s memory scope may observe the values at
A’s set of memory locations becoming visible to it in an order that disagrees with
the scoped modification order.

Note

It is valid to have non-atomic operations or atomics in a different scope instance to
the same set of memory locations, as long as they are synchronized against each
other as if they were non-atomic (if they are not, it is treated as a data race). That
means this definition of A’s scoped modification order could include atomic
operations that occur much later, after intervening non-atomics. That is a bit non-
intuitive, but it helps to keep this definition simple and non-circular.

Memory Semantics
Non-atomic memory operations, by default, may be observed by one agent in a different order than
they were written by another agent.

Atomics and some synchronization operations include memory semantics, which are flags that
constrain the order in which other memory accesses (including non-atomic memory accesses and
availability and visibility operations) performed by the same agent can be observed by other
agents, or can observe accesses by other agents.

Device instructions that include semantics are OpAtomic*, OpControlBarrier, OpMemoryBarrier, and
OpMemoryNamedBarrier. Host instructions that include semantics are some std::atomic methods and
memory fences.

SPIR-V supports the following memory semantics:

• Relaxed: No constraints on order of other memory accesses.

• Acquire: A memory read with this semantic performs an acquire operation. A memory barrier
with this semantic is an acquire barrier.

• Release: A memory write with this semantic performs a release operation. A memory barrier
with this semantic is a release barrier.

• AcquireRelease: A memory read-modify-write operation with this semantic performs both an
acquire operation and a release operation, and inherits the limitations on ordering from both of
those operations. A memory barrier with this semantic is both a release and acquire barrier.

1363

Note

SPIR-V does not support “consume” semantics on the device.

The memory semantics operand also includes storage class semantics which indicate which storage
classes are constrained by the synchronization. SPIR-V storage class semantics include:

• UniformMemory

• WorkgroupMemory

• ImageMemory

• OutputMemory

Each SPIR-V memory operation accesses a single storage class. Semantics in synchronization
operations can include a combination of storage classes.

The UniformMemory storage class semantic applies to accesses to memory in the
PhysicalStorageBuffer, Uniform and StorageBuffer storage classes. The WorkgroupMemory storage
class semantic applies to accesses to memory in the Workgroup storage class. The ImageMemory
storage class semantic applies to accesses to memory in the Image storage class. The OutputMemory
storage class semantic applies to accesses to memory in the Output storage class.

Note

Informally, these constraints limit how memory operations can be reordered, and
these limits apply not only to the order of accesses as performed in the agent that
executes the instruction, but also to the order the effects of writes become visible
to all other agents within the same instance of the instruction’s memory scope.

Note

Release and acquire operations in different threads can act as synchronization
operations, to guarantee that writes that happened before the release are visible
after the acquire. (This is not a formal definition, just an Informative forward
reference.)

Note

The OutputMemory storage class semantic is only useful in tessellation control
shaders, which is the only execution model where output variables are shared
between invocations.

The memory semantics operand can also include availability and visibility flags, which apply
availability and visibility operations as described in availability and visibility. The
availability/visibility flags are:

• MakeAvailable: Semantics must be Release or AcquireRelease. Performs an availability
operation before the release operation or barrier.

• MakeVisible: Semantics must be Acquire or AcquireRelease. Performs a visibility operation
after the acquire operation or barrier.

1364

The specifics of these operations are defined in Availability and Visibility Semantics.

Host atomic operations may support a different list of memory semantics and synchronization
operations, depending on the host architecture and source language.

Release Sequence
After an atomic operation A performs a release operation on a set of memory locations M, the
release sequence headed by A is the longest continuous subsequence of A’s scoped modification
order that consists of:

• the atomic operation A as its first element

• atomic read-modify-write operations on M by any agent

Note

The atomics in the last bullet must be mutually-ordered with A by virtue of being
in A’s scoped modification order.

Note

This intentionally omits “atomic writes to M performed by the same agent that
performed A”, which is present in the corresponding C++ definition.

Synchronizes-With
Synchronizes-with is a relation between operations, where each operation is either an atomic
operation or a memory barrier (aka fence on the host).

If A and B are atomic operations, then A synchronizes-with B if and only if all of the following are
true:

• A performs a release operation

• B performs an acquire operation

• A and B are mutually-ordered

• B reads a value written by A or by an operation in the release sequence headed by A

OpControlBarrier, OpMemoryBarrier, and OpMemoryNamedBarrier are memory barrier instructions in
SPIR-V.

If A is a release barrier and B is an atomic operation that performs an acquire operation, then A
synchronizes-with B if and only if all of the following are true:

• there exists an atomic write X (with any memory semantics)

• A is program-ordered before X

• X and B are mutually-ordered

• B reads a value written by X or by an operation in the release sequence headed by X

1365

◦ If X is relaxed, it is still considered to head a hypothetical release sequence for this rule

• A and B are in the instance of each other’s memory scopes

• X’s storage class is in A’s semantics.

If A is an atomic operation that performs a release operation and B is an acquire barrier, then A
synchronizes-with B if and only if all of the following are true:

• there exists an atomic read X (with any memory semantics)

• X is program-ordered before B

• X and A are mutually-ordered

• X reads a value written by A or by an operation in the release sequence headed by A

• A and B are in the instance of each other’s memory scopes

• X’s storage class is in B’s semantics.

If A is a release barrier and B is an acquire barrier, then A synchronizes-with B if all of the
following are true:

• there exists an atomic write X (with any memory semantics)

• A is program-ordered before X

• there exists an atomic read Y (with any memory semantics)

• Y is program-ordered before B

• X and Y are mutually-ordered

• Y reads the value written by X or by an operation in the release sequence headed by X

◦ If X is relaxed, it is still considered to head a hypothetical release sequence for this rule

• A and B are in the instance of each other’s memory scopes

• X’s and Y’s storage class is in A’s and B’s semantics.

◦ NOTE: X and Y must have the same storage class, because they are mutually ordered.

If A is a release barrier, B is an acquire barrier, and C is a control barrier (where A can equal C, and
B can equal C), then A synchronizes-with B if all of the following are true:

• A is program-ordered before (or equals) C

• C is program-ordered before (or equals) B

• A and B are in the instance of each other’s memory scopes

• A and B are in the instance of C’s execution scope

Note

This is similar to the barrier-barrier synchronization above, but with a control
barrier filling the role of the relaxed atomics.

No other release and acquire barriers synchronize-with each other.

1366

System-Synchronizes-With
System-synchronizes-with is a relation between arbitrary operations on the device or host. Certain
operations system-synchronize-with each other, which informally means the first operation occurs
before the second and that the synchronization is performed without using application-visible
memory accesses.

If there is an execution dependency between two operations A and B, then the operation in the first
synchronization scope system-synchronizes-with the operation in the second synchronization
scope.

Note

This covers all Vulkan synchronization primitives, including device operations
executing before a synchronization primitive is signaled, wait operations
happening before subsequent device operations, signal operations happening
before host operations that wait on them, and host operations happening before
vkQueueSubmit. The list is spread throughout the synchronization chapter, and is
not repeated here.

System-synchronizes-with implicitly includes all storage class semantics and has CrossDevice scope.

If A system-synchronizes-with B, we also say A is system-synchronized-before B and B is system-
synchronized-after A.

Private vs. Non-Private
By default, non-atomic memory operations are treated as private, meaning such a memory
operation is not intended to be used for communication with other agents. Memory operations with
the NonPrivatePointer/NonPrivateTexel bit set are treated as non-private, and are intended to be
used for communication with other agents.

More precisely, for private memory operations to be Location-Ordered between distinct agents
requires using system-synchronizes-with rather than shader-based synchronization. Private
memory operations still obey program-order.

Atomic operations are always considered non-private.

Inter-Thread-Happens-Before
Let SC be a non-empty set of storage class semantics. Then (using template syntax) operation A
inter-thread-happens-before<SC> operation B if and only if any of the following is true:

• A system-synchronizes-with B

• A synchronizes-with B, and both A and B have all of SC in their semantics

• A is an operation on memory in a storage class in SC or that has all of SC in its semantics, B is a
release barrier or release atomic with all of SC in its semantics, and A is program-ordered
before B

1367

• A is an acquire barrier or acquire atomic with all of SC in its semantics, B is an operation on
memory in a storage class in SC or that has all of SC in its semantics, and A is program-ordered
before B

• A and B are both host operations and A inter-thread-happens-before B as defined in the host
language specification

• A inter-thread-happens-before<SC> some X and X inter-thread-happens-before<SC> B

Happens-Before
Operation A happens-before operation B if and only if any of the following is true:

• A is program-ordered before B

• A inter-thread-happens-before<SC> B for some set of storage classes SC

Happens-after is defined similarly.

Note

Unlike C++, happens-before is not always sufficient for a write to be visible to a
read. Additional availability and visibility operations may be required for writes
to be visible-to other memory accesses.

Note

Happens-before is not transitive, but each of program-order and inter-thread-
happens-before<SC> are transitive. These can be thought of as covering the “single-
threaded” case and the “multi-threaded” case, and it is not necessary (and not
valid) to form chains between the two.

Availability and Visibility
Availability and visibility are states of a write operation, which (informally) track how far the write
has permeated the system, i.e. which agents and references are able to observe the write.
Availability state is per memory domain. Visibility state is per (agent,reference) pair. Availability
and visibility states are per-memory location for each write.

Memory domains are named according to the agents whose memory accesses use the domain.
Domains used by shader invocations are organized hierarchically into multiple smaller memory
domains which correspond to the different scopes. Each memory domain is considered the dual of
a scope, and vice versa. The memory domains defined in Vulkan include:

• host - accessible by host agents

• device - accessible by all device agents for a particular device

• shader - accessible by shader agents for a particular device, corresponding to the Device scope

• queue family instance - accessible by shader agents in a single queue family, corresponding to
the QueueFamily scope.

1368

• workgroup instance - accessible by shader agents in the same workgroup, corresponding to the
Workgroup scope.

• subgroup instance - accessible by shader agents in the same subgroup, corresponding to the
Subgroup scope.

The memory domains are nested in the order listed above, with memory domains later in the list
nested in the domains earlier in the list.

Note

Memory domains do not correspond to storage classes or device-local and host-
local VkDeviceMemory allocations, rather they indicate whether a write can be
made visible only to agents in the same subgroup, same workgroup, in any shader
invocation, or anywhere on the device, or host. The shader, queue family instance,
workgroup instance, and subgroup instance domains are only used for shader-
based availability/visibility operations, in other cases writes can be made available
from/visible to the shader via the device domain.

Availability operations, visibility operations, and memory domain operations alter the state of the
write operations that happen-before them, and which are included in their source scope to be
available or visible to their destination scope.

• For an availability operation, the source scope is a set of (agent,reference,memory location)
tuples, and the destination scope is a set of memory domains.

• For a memory domain operation, the source scope is a memory domain and the destination
scope is a memory domain.

• For a visibility operation, the source scope is a set of memory domains and the destination
scope is a set of (agent,reference,memory location) tuples.

How the scopes are determined depends on the specific operation. Availability and memory
domain operations expand the set of memory domains to which the write is available. Visibility
operations expand the set of (agent,reference,memory location) tuples to which the write is visible.

Recall that availability and visibility states are per-memory location, and let W be a write operation
to one or more locations performed by agent A via reference R. Let L be one of the locations
written. (W,L) (the write W to L), is initially not available to any memory domain and only visible to
(A,R,L). An availability operation AV that happens-after W and that includes (A,R,L) in its source
scope makes (W,L) available to the memory domains in its destination scope.

A memory domain operation DOM that happens-after AV and for which (W,L) is available in the
source scope makes (W,L) available in the destination memory domain.

A visibility operation VIS that happens-after AV (or DOM) and for which (W,L) is available in any
domain in the source scope makes (W,L) visible to all (agent,reference,L) tuples included in its
destination scope.

If write W2 happens-after W, and their sets of memory locations overlap, then W will not be
available/visible to all agents/references for those memory locations that overlap (and future
AV/DOM/VIS ops cannot revive W’s write to those locations).

1369

Availability, memory domain, and visibility operations are treated like other non-atomic memory
accesses for the purpose of memory semantics, meaning they can be ordered by release-acquire
sequences or memory barriers.

An availability chain is a sequence of availability operations to increasingly broad memory
domains, where element N+1 of the chain is performed in the dual scope instance of the destination
memory domain of element N and element N happens-before element N+1. An example is an
availability operation with destination scope of the workgroup instance domain that happens-
before an availability operation to the shader domain performed by an invocation in the same
workgroup. An availability chain AVC that happens-after W and that includes (A,R,L) in the source
scope makes (W,L) available to the memory domains in its final destination scope. An availability
chain with a single element is just the availability operation.

Similarly, a visibility chain is a sequence of visibility operations from increasingly narrow memory
domains, where element N of the chain is performed in the dual scope instance of the source
memory domain of element N+1 and element N happens-before element N+1. An example is a
visibility operation with source scope of the shader domain that happens-before a visibility
operation with source scope of the workgroup instance domain performed by an invocation in the
same workgroup. A visibility chain VISC that happens-after AVC (or DOM) and for which (W,L) is
available in any domain in the source scope makes (W,L) visible to all (agent,reference,L) tuples
included in its final destination scope. A visibility chain with a single element is just the visibility
operation.

Availability, Visibility, and Domain Operations
The following operations generate availability, visibility, and domain operations. When multiple
availability/visibility/domain operations are described, they are system-synchronized-with each
other in the order listed.

An operation that performs a memory dependency generates:

• If the source access mask includes VK_ACCESS_HOST_WRITE_BIT, then the dependency includes a
memory domain operation from host domain to device domain.

• An availability operation with source scope of all writes in the first access scope of the
dependency and a destination scope of the device domain.

• A visibility operation with source scope of the device domain and destination scope of the
second access scope of the dependency.

• If the destination access mask includes VK_ACCESS_HOST_READ_BIT or VK_ACCESS_HOST_WRITE_BIT,
then the dependency includes a memory domain operation from device domain to host domain.

vkFlushMappedMemoryRanges performs an availability operation, with a source scope of
(agents,references) = (all host threads, all mapped memory ranges passed to the command), and
destination scope of the host domain.

vkInvalidateMappedMemoryRanges performs a visibility operation, with a source scope of the host
domain and a destination scope of (agents,references) = (all host threads, all mapped memory
ranges passed to the command).

1370

vkQueueSubmit performs a memory domain operation from host to device, and a visibility
operation with source scope of the device domain and destination scope of all agents and
references on the device.

Availability and Visibility Semantics
A memory barrier or atomic operation via agent A that includes MakeAvailable in its semantics
performs an availability operation whose source scope includes agent A and all references in the
storage classes in that instruction’s storage class semantics, and all memory locations, and whose
destination scope is a set of memory domains selected as specified below. The implicit availability
operation is program-ordered between the barrier or atomic and all other operations program-
ordered before the barrier or atomic.

A memory barrier or atomic operation via agent A that includes MakeVisible in its semantics
performs a visibility operation whose source scope is a set of memory domains selected as specified
below, and whose destination scope includes agent A and all references in the storage classes in
that instruction’s storage class semantics, and all memory locations. The implicit visibility operation
is program-ordered between the barrier or atomic and all other operations program-ordered after
the barrier or atomic.

The memory domains are selected based on the memory scope of the instruction as follows:

• Device scope uses the shader domain

• QueueFamily scope uses the queue family instance domain

• Workgroup scope uses the workgroup instance domain

• Subgroup uses the subgroup instance domain

• Invocation perform no availability/visibility operations.

When an availability operation performed by an agent A includes a memory domain D in its
destination scope, where D corresponds to scope instance S, it also includes the memory domains
that correspond to each smaller scope instance S' that is a subset of S and that includes A. Similarly
for visibility operations.

Per-Instruction Availability and Visibility Semantics
A memory write instruction that includes MakePointerAvailable, or an image write instruction that
includes MakeTexelAvailable, performs an availability operation whose source scope includes the
agent and reference used to perform the write and the memory locations written by the
instruction, and whose destination scope is a set of memory domains selected by the Scope operand
specified in Availability and Visibility Semantics. The implicit availability operation is program-
ordered between the write and all other operations program-ordered after the write.

A memory read instruction that includes MakePointerVisible, or an image read instruction that
includes MakeTexelVisible, performs a visibility operation whose source scope is a set of memory
domains selected by the Scope operand as specified in Availability and Visibility Semantics, and
whose destination scope includes the agent and reference used to perform the read and the
memory locations read by the instruction. The implicit visibility operation is program-ordered

1371

between read and all other operations program-ordered before the read.

Note

Although reads with per-instruction visibility only perform visibility ops from the
shader or workgroup instance or subgroup instance domain, they will also see
writes that were made visible via the device domain, i.e. those writes previously
performed by non-shader agents and made visible via API commands.

Note

It is expected that all invocations in a subgroup execute on the same processor
with the same path to memory, and thus availability and visibility operations with
subgroup scope can be expected to be “free”.

Location-Ordered
Let X and Y be memory accesses to overlapping sets of memory locations M, where X != Y. Let (AX,R

X) be the agent and reference used for X, and (AY,RY) be the agent and reference used for Y. For now,
let “→” denote happens-before and “→rcpo” denote the reflexive closure of program-ordered before.

If D1 and D2 are different memory domains, then let DOM(D1,D2) be a memory domain operation
from D1 to D2. Otherwise, let DOM(D,D) be a placeholder such that X→DOM(D,D)→Y if and only if
X→Y.

X is location-ordered before Y for a location L in M if and only if any of the following is true:

• AX == AY and RX == RY and X→Y

◦ NOTE: this case means no availability/visibility ops are required when it is the same
(agent,reference).

• X is a read, both X and Y are non-private, and X→Y

• X is a read, and X (transitively) system-synchronizes with Y

• If RX == RY and AX and AY access a common memory domain D (e.g. are in the same workgroup
instance if D is the workgroup instance domain), and both X and Y are non-private:

◦ X is a write, Y is a write, AVC(AX,RX,D,L) is an availability chain making (X,L) available to
domain D, and X→rcpoAVC(AX,RX,D,L)→Y

◦ X is a write, Y is a read, AVC(AX,RX,D,L) is an availability chain making (X,L) available to
domain D, VISC(AY,RY,D,L) is a visibility chain making writes to L available in domain D
visible to Y, and X→rcpoAVC(AX,RX,D,L)→VISC(AY,RY,D,L)→rcpoY

◦ If VkPhysicalDeviceVulkanMemoryModelFeatures
::vulkanMemoryModelAvailabilityVisibilityChains is VK_FALSE, then AVC and VISC must each
only have a single element in the chain, in each sub-bullet above.

• Let DX and DY each be either the device domain or the host domain, depending on whether AX

and AY execute on the device or host:

◦ X is a write and Y is a write, and X→AV(AX,RX,DX,L)→DOM(DX,DY)→Y

1372

◦ X is a write and Y is a read, and X→AV(AX,RX,DX,L)→DOM(DX,DY)→VIS(AY,RY,DY,L)→Y

Note

The final bullet (synchronization through device/host domain) requires API-level
synchronization operations, since the device/host domains are not accessible via
shader instructions. And “device domain” is not to be confused with “device
scope”, which synchronizes through the “shader domain”.

Data Race
Let X and Y be operations that access overlapping sets of memory locations M, where X != Y, and at
least one of X and Y is a write, and X and Y are not mutually-ordered atomic operations. If there
does not exist a location-ordered relation between X and Y for each location in M, then there is a
data race.

Applications must ensure that no data races occur during the execution of their application.

Note

Data races can only occur due to instructions that are actually executed. For
example, an instruction skipped due to control flow must not contribute to a data
race.

Visible-To
Let X be a write and Y be a read whose sets of memory locations overlap, and let M be the set of
memory locations that overlap. Let M2 be a non-empty subset of M. Then X is visible-to Y for
memory locations M2 if and only if all of the following are true:

• X is location-ordered before Y for each location L in M2.

• There does not exist another write Z to any location L in M2 such that X is location-ordered
before Z for location L and Z is location-ordered before Y for location L.

If X is visible-to Y, then Y reads the value written by X for locations M2.

Note

It is possible for there to be a write between X and Y that overwrites a subset of the
memory locations, but the remaining memory locations (M2) will still be visible-to
Y.

Acyclicity
Reads-from is a relation between operations, where the first operation is a write, the second
operation is a read, and the second operation reads the value written by the first operation. From-
reads is a relation between operations, where the first operation is a read, the second operation is a
write, and the first operation reads a value written earlier than the second operation in the second
operation’s scoped modification order (or the first operation reads from the initial value, and the

1373

second operation is any write to the same locations).

Then the implementation must guarantee that no cycles exist in the union of the following
relations:

• location-ordered

• scoped modification order (over all atomic writes)

• reads-from

• from-reads

Note

This is a “consistency” axiom, which informally guarantees that sequences of
operations cannot violate causality.

Scoped Modification Order Coherence

Let A and B be mutually-ordered atomic operations, where A is location-ordered before B. Then the
following rules are a consequence of acyclicity:

• If A and B are both reads and A does not read the initial value, then the write that A takes its
value from must be earlier in its own scoped modification order than (or the same as) the write
that B takes its value from (no cycles between location-order, reads-from, and from-reads).

• If A is a read and B is a write and A does not read the initial value, then A must take its value
from a write earlier than B in B’s scoped modification order (no cycles between location-order,
scope modification order, and reads-from).

• If A is a write and B is a read, then B must take its value from A or a write later than A in A’s
scoped modification order (no cycles between location-order, scoped modification order, and
from-reads).

• If A and B are both writes, then A must be earlier than B in A’s scoped modification order (no
cycles between location-order and scoped modification order).

• If A is a write and B is a read-modify-write and B reads the value written by A, then B comes
immediately after A in A’s scoped modification order (no cycles between scoped modification
order and from-reads).

Shader I/O
If a shader invocation A in a shader stage other than Vertex performs a memory read operation X
from an object in storage class Input, then X is system-synchronized-after all writes to the
corresponding Output storage variable(s) in the shader invocation(s) that contribute to generating
invocation A, and those writes are all visible-to X.

Note

It is not necessary for the upstream shader invocations to have completed
execution, they only need to have generated the output that is being read.

1374

Deallocation
A call to vkFreeMemory must happen-after all memory operations on all memory locations in that
VkDeviceMemory object.

Note

Normally, device memory operations in a given queue are synchronized with
vkFreeMemory by having a host thread wait on a fence signaled by that queue,
and the wait happens-before the call to vkFreeMemory on the host.

The deallocation of SPIR-V variables is managed by the system and happens-after all operations on
those variables.

Descriptions (Informative)
This subsection offers more easily understandable consequences of the memory model for
app/compiler developers.

Let SC be the storage class(es) specified by a release or acquire operation or barrier.

• An atomic write with release semantics must not be reordered against any read or write to SC
that is program-ordered before it (regardless of the storage class the atomic is in).

• An atomic read with acquire semantics must not be reordered against any read or write to SC
that is program-ordered after it (regardless of the storage class the atomic is in).

• Any write to SC program-ordered after a release barrier must not be reordered against any read
or write to SC program-ordered before that barrier.

• Any read from SC program-ordered before an acquire barrier must not be reordered against
any read or write to SC program-ordered after the barrier.

A control barrier (even if it has no memory semantics) must not be reordered against any memory
barriers.

This memory model allows memory accesses with and without availability and visibility
operations, as well as atomic operations, all to be performed on the same memory location. This is
critical to allow it to reason about memory that is reused in multiple ways, e.g. across the lifetime of
different shader invocations or draw calls. While GLSL (and legacy SPIR-V) applies the “coherent”
decoration to variables (for historical reasons), this model treats each memory access instruction as
having optional implicit availability/visibility operations. GLSL to SPIR-V compilers should map all
(non-atomic) operations on a coherent variable to Make{Pointer,Texel}{Available}{Visible} flags in
this model.

Atomic operations implicitly have availability/visibility operations, and the scope of those
operations is taken from the atomic operation’s scope.

1375

Tessellation Output Ordering
For SPIR-V that uses the Vulkan Memory Model, the OutputMemory storage class is used to
synchronize accesses to tessellation control output variables. For legacy SPIR-V that does not enable
the Vulkan Memory Model via OpMemoryModel, tessellation outputs can be ordered using a control
barrier with no particular memory scope or semantics, as defined below.

Let X and Y be memory operations performed by shader invocations AX and AY. Operation X is
tessellation-output-ordered before operation Y if and only if all of the following are true:

• There is a dynamic instance of an OpControlBarrier instruction C such that X is program-ordered
before C in AX and C is program-ordered before Y in AY.

• AX and AY are in the same instance of C’s execution scope.

If shader invocations AX and AY in the TessellationControl execution model execute memory
operations X and Y, respectively, on the Output storage class, and X is tessellation-output-ordered
before Y with a scope of Workgroup, then X is location-ordered before Y, and if X is a write and Y is a
read then X is visible-to Y.

1376

Appendix C: Compressed Image Formats
The compressed texture formats used by Vulkan are described in the specifically identified sections
of the Khronos Data Format Specification, version 1.3.

Unless otherwise described, the quantities encoded in these compressed formats are treated as
normalized, unsigned values.

Those formats listed as sRGB-encoded have in-memory representations of R, G and B components
which are nonlinearly-encoded as R', G', and B'; any alpha component is unchanged. As part of
filtering, the nonlinear R', G', and B' values are converted to linear R, G, and B components; any
alpha component is unchanged. The conversion between linear and nonlinear encoding is
performed as described in the “KHR_DF_TRANSFER_SRGB” section of the Khronos Data Format
Specification.

1377

Block-Compressed Image Formats
BC1, BC2 and BC3 formats are described in “S3TC Compressed Texture Image Formats” chapter of
the Khronos Data Format Specification. BC4 and BC5 are described in the “RGTC Compressed
Texture Image Formats” chapter. BC6H and BC7 are described in the “BPTC Compressed Texture
Image Formats” chapter.

Table 68. Mapping of Vulkan BC formats to descriptions

VkFormat Khronos Data Format Specification
description

Formats described in the “S3TC Compressed Texture Image Formats” chapter

VK_FORMAT_BC1_RGB_UNORM_BLOCK BC1 with no alpha

VK_FORMAT_BC1_RGB_SRGB_BLOCK BC1 with no alpha, sRGB-encoded

VK_FORMAT_BC1_RGBA_UNORM_BLOCK BC1 with alpha

VK_FORMAT_BC1_RGBA_SRGB_BLOCK BC1 with alpha, sRGB-encoded

VK_FORMAT_BC2_UNORM_BLOCK BC2

VK_FORMAT_BC2_SRGB_BLOCK BC2, sRGB-encoded

VK_FORMAT_BC3_UNORM_BLOCK BC3

VK_FORMAT_BC3_SRGB_BLOCK BC3, sRGB-encoded

Formats described in the “RGTC Compressed Texture Image Formats” chapter

VK_FORMAT_BC4_UNORM_BLOCK BC4 unsigned

VK_FORMAT_BC4_SNORM_BLOCK BC4 signed

VK_FORMAT_BC5_UNORM_BLOCK BC5 unsigned

VK_FORMAT_BC5_SNORM_BLOCK BC5 signed

Formats described in the “BPTC Compressed Texture Image Formats” chapter

VK_FORMAT_BC6H_UFLOAT_BLOCK BC6H (unsigned version)

VK_FORMAT_BC6H_SFLOAT_BLOCK BC6H (signed version)

VK_FORMAT_BC7_UNORM_BLOCK BC7

VK_FORMAT_BC7_SRGB_BLOCK BC7, sRGB-encoded

1378

ETC Compressed Image Formats
The following formats are described in the “ETC2 Compressed Texture Image Formats” chapter of
the Khronos Data Format Specification.

Table 69. Mapping of Vulkan ETC formats to descriptions

VkFormat Khronos Data Format Specification
description

VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK RGB ETC2

VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK RGB ETC2 with sRGB encoding

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK RGB ETC2 with punch-through alpha

VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK RGB ETC2 with punch-through alpha and sRGB

VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK RGBA ETC2

VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK RGBA ETC2 with sRGB encoding

VK_FORMAT_EAC_R11_UNORM_BLOCK Unsigned R11 EAC

VK_FORMAT_EAC_R11_SNORM_BLOCK Signed R11 EAC

VK_FORMAT_EAC_R11G11_UNORM_BLOCK Unsigned RG11 EAC

VK_FORMAT_EAC_R11G11_SNORM_BLOCK Signed RG11 EAC

1379

ASTC Compressed Image Formats
ASTC formats are described in the “ASTC Compressed Texture Image Formats” chapter of the
Khronos Data Format Specification.

Table 70. Mapping of Vulkan ASTC formats to descriptions

VkFormat Compressed
texel block
dimensions

Requested mode

VK_FORMAT_ASTC_4x4_UNORM_BLOCK 4 × 4 Linear LDR

VK_FORMAT_ASTC_4x4_SRGB_BLOCK 4 × 4 sRGB

VK_FORMAT_ASTC_5x4_UNORM_BLOCK 5 × 4 Linear LDR

VK_FORMAT_ASTC_5x4_SRGB_BLOCK 5 × 4 sRGB

VK_FORMAT_ASTC_5x5_UNORM_BLOCK 5 × 5 Linear LDR

VK_FORMAT_ASTC_5x5_SRGB_BLOCK 5 × 5 sRGB

VK_FORMAT_ASTC_6x5_UNORM_BLOCK 6 × 5 Linear LDR

VK_FORMAT_ASTC_6x5_SRGB_BLOCK 6 × 5 sRGB

VK_FORMAT_ASTC_6x6_UNORM_BLOCK 6 × 6 Linear LDR

VK_FORMAT_ASTC_6x6_SRGB_BLOCK 6 × 6 sRGB

VK_FORMAT_ASTC_8x5_UNORM_BLOCK 8 × 5 Linear LDR

VK_FORMAT_ASTC_8x5_SRGB_BLOCK 8 × 5 sRGB

VK_FORMAT_ASTC_8x6_UNORM_BLOCK 8 × 6 Linear LDR

VK_FORMAT_ASTC_8x6_SRGB_BLOCK 8 × 6 sRGB

VK_FORMAT_ASTC_8x8_UNORM_BLOCK 8 × 8 Linear LDR

VK_FORMAT_ASTC_8x8_SRGB_BLOCK 8 × 8 sRGB

VK_FORMAT_ASTC_10x5_UNORM_BLOCK 10 × 5 Linear LDR

VK_FORMAT_ASTC_10x5_SRGB_BLOCK 10 × 5 sRGB

VK_FORMAT_ASTC_10x6_UNORM_BLOCK 10 × 6 Linear LDR

VK_FORMAT_ASTC_10x6_SRGB_BLOCK 10 × 6 sRGB

VK_FORMAT_ASTC_10x8_UNORM_BLOCK 10 × 8 Linear LDR

VK_FORMAT_ASTC_10x8_SRGB_BLOCK 10 × 8 sRGB

VK_FORMAT_ASTC_10x10_UNORM_BLOCK 10 × 10 Linear LDR

VK_FORMAT_ASTC_10x10_SRGB_BLOCK 10 × 10 sRGB

VK_FORMAT_ASTC_12x10_UNORM_BLOCK 12 × 10 Linear LDR

VK_FORMAT_ASTC_12x10_SRGB_BLOCK 12 × 10 sRGB

VK_FORMAT_ASTC_12x12_UNORM_BLOCK 12 × 12 Linear LDR

1380

VkFormat Compressed
texel block
dimensions

Requested mode

VK_FORMAT_ASTC_12x12_SRGB_BLOCK 12 × 12 sRGB

VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK 4 × 4 HDR

VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK 5 × 4 HDR

VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK 5 × 5 HDR

VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK 6 × 5 HDR

VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK 6 × 6 HDR

VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK 8 × 5 HDR

VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK 8 × 6 HDR

VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK 8 × 8 HDR

VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK 10 × 5 HDR

VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK 10 × 6 HDR

VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK 10 × 8 HDR

VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK 10 × 10 HDR

VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK 12 × 10 HDR

VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK 12 × 12 HDR

ASTC textures containing HDR block encodings should be passed to the API using an ASTC SFLOAT
texture format.

Note

An HDR block in a texture passed using a LDR UNORM format will return the
appropriate ASTC error color if the implementation supports only the ASTC LDR
profile, but may result in either the error color or a decompressed HDR color if the
implementation supports HDR decoding.

The ASTC decode mode is decode_float16.

Note that an implementation may use HDR mode when linear LDR mode is requested.

1381

Appendix D: Core Revisions (Informative)
New minor versions of the Vulkan API are defined periodically by the Khronos Vulkan Working
Group. These consist of some amount of additional functionality added to the core API, potentially
including both new functionality and functionality promoted from extensions.

It is possible to build the specification for earlier versions, but to aid readability of the latest
versions, this appendix gives an overview of the changes as compared to earlier versions.

Version 1.3
Vulkan Version 1.3 promoted a number of key extensions into the core API:

• VK_KHR_copy_commands2

• VK_KHR_dynamic_rendering

• VK_KHR_format_feature_flags2

• VK_KHR_maintenance4

• VK_KHR_shader_integer_dot_product

• VK_KHR_shader_non_semantic_info

• VK_KHR_shader_terminate_invocation

• VK_KHR_synchronization2

• VK_KHR_zero_initialize_workgroup_memory

• VK_EXT_4444_formats

• VK_EXT_extended_dynamic_state

• VK_EXT_extended_dynamic_state2

• VK_EXT_image_robustness

• VK_EXT_inline_uniform_block

• VK_EXT_pipeline_creation_cache_control

• VK_EXT_pipeline_creation_feedback

• VK_EXT_private_data

• VK_EXT_shader_demote_to_helper_invocation

• VK_EXT_subgroup_size_control

• VK_EXT_texel_buffer_alignment

• VK_EXT_texture_compression_astc_hdr

• VK_EXT_tooling_info

• VK_EXT_ycbcr_2plane_444_formats

1382

All differences in behavior between these extensions and the corresponding Vulkan 1.3
functionality are summarized below.

Differences Relative to VK_EXT_4444_formats

If the VK_EXT_4444_formats extension is not supported, support for all formats defined by it are
optional in Vulkan 1.3. There are no members in the VkPhysicalDeviceVulkan13Features structure
corresponding to the VkPhysicalDevice4444FormatsFeaturesEXT structure.

Differences Relative to VK_EXT_extended_dynamic_state

All dynamic state enumerants and entry points defined by VK_EXT_extended_dynamic_state are
required in Vulkan 1.3. There are no members in the VkPhysicalDeviceVulkan13Features structure
corresponding to the VkPhysicalDeviceExtendedDynamicStateFeaturesEXT structure.

Differences Relative to VK_EXT_extended_dynamic_state2

The optional dynamic state enumerants and entry points defined by
VK_EXT_extended_dynamic_state2 for patch control points and logic op are not promoted in Vulkan
1.3. There are no members in the VkPhysicalDeviceVulkan13Features structure corresponding to
the VkPhysicalDeviceExtendedDynamicState2FeaturesEXT structure.

Differences Relative to VK_EXT_texel_buffer_alignment

The more specific alignment requirements defined by
VkPhysicalDeviceTexelBufferAlignmentProperties are required in Vulkan 1.3. There are no
members in the VkPhysicalDeviceVulkan13Features structure corresponding to the
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT structure. The texelBufferAlignment feature is
enabled if using a Vulkan 1.3 instance.

Differences Relative to VK_EXT_texture_compression_astc_hdr

If the VK_EXT_texture_compression_astc_hdr extension is not supported, support for all formats
defined by it are optional in Vulkan 1.3. The textureCompressionASTC_HDR member of
VkPhysicalDeviceVulkan13Features indicates whether a Vulkan 1.3 implementation supports these
formats.

Differences Relative to VK_EXT_ycbcr_2plane_444_formats

If the VK_EXT_ycbcr_2plane_444_formats extension is not supported, support for all formats defined
by it are optional in Vulkan 1.3. There are no members in the VkPhysicalDeviceVulkan13Features
structure corresponding to the VkPhysicalDeviceYcbcr2Plane444FormatsFeaturesEXT structure.

Additional Vulkan 1.3 Feature Support

In addition to the promoted extensions described above, Vulkan 1.3 added required support for:

• SPIR-V version 1.6

1383

◦ SPIR-V 1.6 deprecates (but does not remove) the WorkgroupSize decoration.

• The bufferDeviceAddress feature which indicates support for accessing memory in shaders as
storage buffers via vkGetBufferDeviceAddress.

• The vulkanMemoryModel and vulkanMemoryModelDeviceScope features, which indicate support for
the corresponding Vulkan Memory Model capabilities.

• The maxInlineUniformTotalSize limit is added to provide the total size of all inline uniform block
bindings in a pipeline layout.

New Macros

• VK_API_VERSION_1_3

New Base Types

• VkFlags64

New Object Types

• VkPrivateDataSlot

New Commands

• vkCmdBeginRendering

• vkCmdBindVertexBuffers2

• vkCmdBlitImage2

• vkCmdCopyBuffer2

• vkCmdCopyBufferToImage2

• vkCmdCopyImage2

• vkCmdCopyImageToBuffer2

• vkCmdEndRendering

• vkCmdPipelineBarrier2

• vkCmdResetEvent2

• vkCmdResolveImage2

• vkCmdSetCullMode

• vkCmdSetDepthBiasEnable

• vkCmdSetDepthBoundsTestEnable

• vkCmdSetDepthCompareOp

• vkCmdSetDepthTestEnable

• vkCmdSetDepthWriteEnable

• vkCmdSetEvent2

1384

• vkCmdSetFrontFace

• vkCmdSetPrimitiveRestartEnable

• vkCmdSetPrimitiveTopology

• vkCmdSetRasterizerDiscardEnable

• vkCmdSetScissorWithCount

• vkCmdSetStencilOp

• vkCmdSetStencilTestEnable

• vkCmdSetViewportWithCount

• vkCmdWaitEvents2

• vkCmdWriteTimestamp2

• vkCreatePrivateDataSlot

• vkDestroyPrivateDataSlot

• vkGetDeviceBufferMemoryRequirements

• vkGetDeviceImageMemoryRequirements

• vkGetDeviceImageSparseMemoryRequirements

• vkGetPhysicalDeviceToolProperties

• vkGetPrivateData

• vkQueueSubmit2

• vkSetPrivateData

New Structures

• VkBlitImageInfo2

• VkBufferCopy2

• VkBufferImageCopy2

• VkBufferMemoryBarrier2

• VkCommandBufferSubmitInfo

• VkCopyBufferInfo2

• VkCopyBufferToImageInfo2

• VkCopyImageInfo2

• VkCopyImageToBufferInfo2

• VkDependencyInfo

• VkDeviceBufferMemoryRequirements

• VkDeviceImageMemoryRequirements

• VkImageBlit2

• VkImageCopy2

1385

• VkImageMemoryBarrier2

• VkImageResolve2

• VkPhysicalDeviceToolProperties

• VkPipelineCreationFeedback

• VkPrivateDataSlotCreateInfo

• VkRenderingAttachmentInfo

• VkRenderingInfo

• VkResolveImageInfo2

• VkSemaphoreSubmitInfo

• VkSubmitInfo2

• Extending VkCommandBufferInheritanceInfo:

◦ VkCommandBufferInheritanceRenderingInfo

• Extending VkDescriptorPoolCreateInfo:

◦ VkDescriptorPoolInlineUniformBlockCreateInfo

• Extending VkDeviceCreateInfo:

◦ VkDevicePrivateDataCreateInfo

• Extending VkFormatProperties2:

◦ VkFormatProperties3

• Extending VkGraphicsPipelineCreateInfo:

◦ VkPipelineRenderingCreateInfo

• Extending VkGraphicsPipelineCreateInfo, VkComputePipelineCreateInfo,
VkRayTracingPipelineCreateInfoNV, VkRayTracingPipelineCreateInfoKHR,
VkExecutionGraphPipelineCreateInfoAMDX:

◦ VkPipelineCreationFeedbackCreateInfo

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDeviceDynamicRenderingFeatures

◦ VkPhysicalDeviceImageRobustnessFeatures

◦ VkPhysicalDeviceInlineUniformBlockFeatures

◦ VkPhysicalDeviceMaintenance4Features

◦ VkPhysicalDevicePipelineCreationCacheControlFeatures

◦ VkPhysicalDevicePrivateDataFeatures

◦ VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures

◦ VkPhysicalDeviceShaderIntegerDotProductFeatures

◦ VkPhysicalDeviceShaderTerminateInvocationFeatures

◦ VkPhysicalDeviceSubgroupSizeControlFeatures

1386

◦ VkPhysicalDeviceSynchronization2Features

◦ VkPhysicalDeviceTextureCompressionASTCHDRFeatures

◦ VkPhysicalDeviceVulkan13Features

◦ VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeatures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceInlineUniformBlockProperties

◦ VkPhysicalDeviceMaintenance4Properties

◦ VkPhysicalDeviceShaderIntegerDotProductProperties

◦ VkPhysicalDeviceSubgroupSizeControlProperties

◦ VkPhysicalDeviceTexelBufferAlignmentProperties

◦ VkPhysicalDeviceVulkan13Properties

• Extending VkPipelineShaderStageCreateInfo, VkShaderCreateInfoEXT:

◦ VkPipelineShaderStageRequiredSubgroupSizeCreateInfo

• Extending VkSubpassDependency2:

◦ VkMemoryBarrier2

• Extending VkWriteDescriptorSet:

◦ VkWriteDescriptorSetInlineUniformBlock

New Enums

• VkAccessFlagBits2

• VkFormatFeatureFlagBits2

• VkPipelineCreationFeedbackFlagBits

• VkPipelineStageFlagBits2

• VkRenderingFlagBits

• VkSubmitFlagBits

• VkToolPurposeFlagBits

New Bitmasks

• VkAccessFlags2

• VkFormatFeatureFlags2

• VkPipelineCreationFeedbackFlags

• VkPipelineStageFlags2

• VkPrivateDataSlotCreateFlags

• VkRenderingFlags

• VkSubmitFlags

1387

• VkToolPurposeFlags

New Enum Constants

• Extending VkAccessFlagBits:

◦ VK_ACCESS_NONE

• Extending VkAttachmentStoreOp:

◦ VK_ATTACHMENT_STORE_OP_NONE

• Extending VkDescriptorType:

◦ VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK

• Extending VkDynamicState:

◦ VK_DYNAMIC_STATE_CULL_MODE

◦ VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE

◦ VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE

◦ VK_DYNAMIC_STATE_DEPTH_COMPARE_OP

◦ VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE

◦ VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE

◦ VK_DYNAMIC_STATE_FRONT_FACE

◦ VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE

◦ VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY

◦ VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE

◦ VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT

◦ VK_DYNAMIC_STATE_STENCIL_OP

◦ VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE

◦ VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE

◦ VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT

• Extending VkEventCreateFlagBits:

◦ VK_EVENT_CREATE_DEVICE_ONLY_BIT

• Extending VkFormat:

◦ VK_FORMAT_A4B4G4R4_UNORM_PACK16

◦ VK_FORMAT_A4R4G4B4_UNORM_PACK16

◦ VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK

1388

◦ VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK

◦ VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G16_B16R16_2PLANE_444_UNORM

◦ VK_FORMAT_G8_B8R8_2PLANE_444_UNORM

• Extending VkImageAspectFlagBits:

◦ VK_IMAGE_ASPECT_NONE

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL

◦ VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_PRIVATE_DATA_SLOT

• Extending VkPipelineCacheCreateFlagBits:

◦ VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT

◦ VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT

• Extending VkPipelineShaderStageCreateFlagBits:

◦ VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT

◦ VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT

• Extending VkPipelineStageFlagBits:

◦ VK_PIPELINE_STAGE_NONE

• Extending VkResult:

◦ VK_PIPELINE_COMPILE_REQUIRED

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2

◦ VK_STRUCTURE_TYPE_BUFFER_COPY_2

1389

◦ VK_STRUCTURE_TYPE_BUFFER_IMAGE_COPY_2

◦ VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2

◦ VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_RENDERING_INFO

◦ VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO

◦ VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2

◦ VK_STRUCTURE_TYPE_COPY_BUFFER_TO_IMAGE_INFO_2

◦ VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2

◦ VK_STRUCTURE_TYPE_COPY_IMAGE_TO_BUFFER_INFO_2

◦ VK_STRUCTURE_TYPE_DEPENDENCY_INFO

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS

◦ VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS

◦ VK_STRUCTURE_TYPE_DEVICE_PRIVATE_DATA_CREATE_INFO

◦ VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3

◦ VK_STRUCTURE_TYPE_IMAGE_BLIT_2

◦ VK_STRUCTURE_TYPE_IMAGE_COPY_2

◦ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2

◦ VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2

◦ VK_STRUCTURE_TYPE_MEMORY_BARRIER_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES

1390

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TOOL_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES

◦ VK_STRUCTURE_TYPE_PIPELINE_CREATION_FEEDBACK_CREATE_INFO

◦ VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO

◦ VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_PRIVATE_DATA_SLOT_CREATE_INFO

◦ VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO

◦ VK_STRUCTURE_TYPE_RENDERING_INFO

◦ VK_STRUCTURE_TYPE_RESOLVE_IMAGE_INFO_2

◦ VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO

◦ VK_STRUCTURE_TYPE_SUBMIT_INFO_2

◦ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK

Version 1.2
Vulkan Version 1.2 promoted a number of key extensions into the core API:

• VK_KHR_8bit_storage

• VK_KHR_buffer_device_address

• VK_KHR_create_renderpass2

• VK_KHR_depth_stencil_resolve

• VK_KHR_draw_indirect_count

• VK_KHR_driver_properties

• VK_KHR_image_format_list

• VK_KHR_imageless_framebuffer

• VK_KHR_sampler_mirror_clamp_to_edge

• VK_KHR_separate_depth_stencil_layouts

• VK_KHR_shader_atomic_int64

• VK_KHR_shader_float16_int8

• VK_KHR_shader_float_controls

• VK_KHR_shader_subgroup_extended_types

• VK_KHR_spirv_1_4

1391

• VK_KHR_timeline_semaphore

• VK_KHR_uniform_buffer_standard_layout

• VK_KHR_vulkan_memory_model

• VK_EXT_descriptor_indexing

• VK_EXT_host_query_reset

• VK_EXT_sampler_filter_minmax

• VK_EXT_scalar_block_layout

• VK_EXT_separate_stencil_usage

• VK_EXT_shader_viewport_index_layer

All differences in behavior between these extensions and the corresponding Vulkan 1.2
functionality are summarized below.

Differences Relative to VK_KHR_8bit_storage

If the VK_KHR_8bit_storage extension is not supported, support for the SPIR-V
storageBuffer8BitAccess capability in shader modules is optional. Support for this feature is defined
by VkPhysicalDeviceVulkan12Features::storageBuffer8BitAccess when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_draw_indirect_count

If the VK_KHR_draw_indirect_count extension is not supported, support for the entry points
vkCmdDrawIndirectCount and vkCmdDrawIndexedIndirectCount is optional. Support for this
feature is defined by VkPhysicalDeviceVulkan12Features::drawIndirectCount when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_sampler_mirror_clamp_to_edge

If the VK_KHR_sampler_mirror_clamp_to_edge extension is not supported, support for the
VkSamplerAddressMode VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE is optional. Support for this
feature is defined by VkPhysicalDeviceVulkan12Features::samplerMirrorClampToEdge when queried
via vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_EXT_descriptor_indexing

If the VK_EXT_descriptor_indexing extension is not supported, support for the descriptorIndexing
feature is optional. Support for this feature is defined by VkPhysicalDeviceVulkan12Features
::descriptorIndexing when queried via vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_EXT_scalar_block_layout

If the VK_EXT_scalar_block_layout extension is not supported, support for the scalarBlockLayout
feature is optional. Support for this feature is defined by VkPhysicalDeviceVulkan12Features
::scalarBlockLayout when queried via vkGetPhysicalDeviceFeatures2.

1392

Differences Relative to VK_EXT_shader_viewport_index_layer

The ShaderViewportIndexLayerEXT SPIR-V capability was replaced with the ShaderViewportIndex and
ShaderLayer capabilities. Declaring both is equivalent to declaring ShaderViewportIndexLayerEXT. If
the VK_EXT_shader_viewport_index_layer extension is not supported, support for the
ShaderViewportIndexLayerEXT SPIR-V capability is optional. Support for this feature is defined by
VkPhysicalDeviceVulkan12Features::shaderOutputViewportIndex and
VkPhysicalDeviceVulkan12Features::shaderOutputLayer when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_buffer_device_address

If the VK_KHR_buffer_device_address extension is not supported, support for the bufferDeviceAddress
feature is optional. Support for this feature is defined by VkPhysicalDeviceVulkan12Features
::bufferDeviceAddress when queried via vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_shader_atomic_int64

If the VK_KHR_shader_atomic_int64 extension is not supported, support for the
shaderBufferInt64Atomics feature is optional. Support for this feature is defined by
VkPhysicalDeviceVulkan12Features::shaderBufferInt64Atomics when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_shader_float16_int8

If the VK_KHR_shader_float16_int8 extension is not supported, support for the shaderFloat16 and
shaderInt8 features is optional. Support for these features are defined by
VkPhysicalDeviceVulkan12Features::shaderFloat16 and VkPhysicalDeviceVulkan12Features
::shaderInt8 when queried via vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_vulkan_memory_model

If the VK_KHR_vulkan_memory_model extension is not supported, support for the vulkanMemoryModel
feature is optional. Support for this feature is defined by VkPhysicalDeviceVulkan12Features
::vulkanMemoryModel when queried via vkGetPhysicalDeviceFeatures2.

Additional Vulkan 1.2 Feature Support

In addition to the promoted extensions described above, Vulkan 1.2 added support for:

• SPIR-V version 1.4.

• SPIR-V version 1.5.

• The samplerMirrorClampToEdge feature which indicates whether the implementation supports the
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE sampler address mode.

• The ShaderNonUniform capability in SPIR-V version 1.5.

• The shaderOutputViewportIndex feature which indicates that the ShaderViewportIndex capability
can be used.

1393

• The shaderOutputLayer feature which indicates that the ShaderLayer capability can be used.

• The subgroupBroadcastDynamicId feature which allows the “Id” operand of
OpGroupNonUniformBroadcast to be dynamically uniform within a subgroup, and the “Index”
operand of OpGroupNonUniformQuadBroadcast to be dynamically uniform within a derivative
group, in shader modules of version 1.5 or higher.

• The drawIndirectCount feature which indicates whether the vkCmdDrawIndirectCount and
vkCmdDrawIndexedIndirectCount functions can be used.

• The descriptorIndexing feature which indicates the implementation supports the minimum
number of descriptor indexing features as defined in the Feature Requirements section.

• The samplerFilterMinmax feature which indicates whether the implementation supports the
minimum number of image formats that support the
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT feature bit as defined by the
filterMinmaxSingleComponentFormats property minimum requirements.

• The framebufferIntegerColorSampleCounts limit which indicates the color sample counts that are
supported for all framebuffer color attachments with integer formats.

New Macros

• VK_API_VERSION_1_2

New Commands

• vkCmdBeginRenderPass2

• vkCmdDrawIndexedIndirectCount

• vkCmdDrawIndirectCount

• vkCmdEndRenderPass2

• vkCmdNextSubpass2

• vkCreateRenderPass2

• vkGetBufferDeviceAddress

• vkGetBufferOpaqueCaptureAddress

• vkGetDeviceMemoryOpaqueCaptureAddress

• vkGetSemaphoreCounterValue

• vkResetQueryPool

• vkSignalSemaphore

• vkWaitSemaphores

New Structures

• VkAttachmentDescription2

• VkAttachmentReference2

• VkBufferDeviceAddressInfo

1394

• VkConformanceVersion

• VkDeviceMemoryOpaqueCaptureAddressInfo

• VkFramebufferAttachmentImageInfo

• VkRenderPassCreateInfo2

• VkSemaphoreSignalInfo

• VkSemaphoreWaitInfo

• VkSubpassBeginInfo

• VkSubpassDependency2

• VkSubpassDescription2

• VkSubpassEndInfo

• Extending VkAttachmentDescription2:

◦ VkAttachmentDescriptionStencilLayout

• Extending VkAttachmentReference2:

◦ VkAttachmentReferenceStencilLayout

• Extending VkBufferCreateInfo:

◦ VkBufferOpaqueCaptureAddressCreateInfo

• Extending VkDescriptorSetAllocateInfo:

◦ VkDescriptorSetVariableDescriptorCountAllocateInfo

• Extending VkDescriptorSetLayoutCreateInfo:

◦ VkDescriptorSetLayoutBindingFlagsCreateInfo

• Extending VkDescriptorSetLayoutSupport:

◦ VkDescriptorSetVariableDescriptorCountLayoutSupport

• Extending VkFramebufferCreateInfo:

◦ VkFramebufferAttachmentsCreateInfo

• Extending VkImageCreateInfo, VkPhysicalDeviceImageFormatInfo2:

◦ VkImageStencilUsageCreateInfo

• Extending VkImageCreateInfo, VkSwapchainCreateInfoKHR, VkPhysicalDeviceImageFormatInfo2:

◦ VkImageFormatListCreateInfo

• Extending VkMemoryAllocateInfo:

◦ VkMemoryOpaqueCaptureAddressAllocateInfo

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevice8BitStorageFeatures

◦ VkPhysicalDeviceBufferDeviceAddressFeatures

◦ VkPhysicalDeviceDescriptorIndexingFeatures

◦ VkPhysicalDeviceHostQueryResetFeatures

1395

◦ VkPhysicalDeviceImagelessFramebufferFeatures

◦ VkPhysicalDeviceScalarBlockLayoutFeatures

◦ VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures

◦ VkPhysicalDeviceShaderAtomicInt64Features

◦ VkPhysicalDeviceShaderFloat16Int8Features

◦ VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures

◦ VkPhysicalDeviceTimelineSemaphoreFeatures

◦ VkPhysicalDeviceUniformBufferStandardLayoutFeatures

◦ VkPhysicalDeviceVulkan11Features

◦ VkPhysicalDeviceVulkan12Features

◦ VkPhysicalDeviceVulkanMemoryModelFeatures

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceDepthStencilResolveProperties

◦ VkPhysicalDeviceDescriptorIndexingProperties

◦ VkPhysicalDeviceDriverProperties

◦ VkPhysicalDeviceFloatControlsProperties

◦ VkPhysicalDeviceSamplerFilterMinmaxProperties

◦ VkPhysicalDeviceTimelineSemaphoreProperties

◦ VkPhysicalDeviceVulkan11Properties

◦ VkPhysicalDeviceVulkan12Properties

• Extending VkRenderPassBeginInfo:

◦ VkRenderPassAttachmentBeginInfo

• Extending VkSamplerCreateInfo:

◦ VkSamplerReductionModeCreateInfo

• Extending VkSemaphoreCreateInfo, VkPhysicalDeviceExternalSemaphoreInfo:

◦ VkSemaphoreTypeCreateInfo

• Extending VkSubmitInfo, VkBindSparseInfo:

◦ VkTimelineSemaphoreSubmitInfo

• Extending VkSubpassDescription2:

◦ VkSubpassDescriptionDepthStencilResolve

New Enums

• VkDescriptorBindingFlagBits

• VkDriverId

• VkResolveModeFlagBits

1396

• VkSamplerReductionMode

• VkSemaphoreType

• VkSemaphoreWaitFlagBits

• VkShaderFloatControlsIndependence

New Bitmasks

• VkDescriptorBindingFlags

• VkResolveModeFlags

• VkSemaphoreWaitFlags

New Enum Constants

• VK_MAX_DRIVER_INFO_SIZE

• VK_MAX_DRIVER_NAME_SIZE

• Extending VkBufferCreateFlagBits:

◦ VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

• Extending VkBufferUsageFlagBits:

◦ VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT

• Extending VkDescriptorPoolCreateFlagBits:

◦ VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT

• Extending VkDescriptorSetLayoutCreateFlagBits:

◦ VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT

• Extending VkFramebufferCreateFlagBits:

◦ VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL

◦ VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL

◦ VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL

◦ VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL

• Extending VkMemoryAllocateFlagBits:

◦ VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT

◦ VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

• Extending VkResult:

◦ VK_ERROR_FRAGMENTATION

1397

◦ VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS

• Extending VkSamplerAddressMode:

◦ VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2

◦ VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT

◦ VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2

◦ VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT

◦ VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO

◦ VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT

◦ VK_STRUCTURE_TYPE_DEVICE_MEMORY_OPAQUE_CAPTURE_ADDRESS_INFO

◦ VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO

◦ VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO

◦ VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO

◦ VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES

1398

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES

◦ VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO

◦ VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2

◦ VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_SEMAPHORE_SIGNAL_INFO

◦ VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO

◦ VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO

◦ VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2

◦ VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2

◦ VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE

◦ VK_STRUCTURE_TYPE_SUBPASS_END_INFO

◦ VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO

Version 1.1
Vulkan Version 1.1 promoted a number of key extensions into the core API:

• VK_KHR_16bit_storage

• VK_KHR_bind_memory2

• VK_KHR_dedicated_allocation

• VK_KHR_descriptor_update_template

• VK_KHR_device_group

• VK_KHR_device_group_creation

• VK_KHR_external_fence

• VK_KHR_external_fence_capabilities

• VK_KHR_external_memory

• VK_KHR_external_memory_capabilities

• VK_KHR_external_semaphore

1399

• VK_KHR_external_semaphore_capabilities

• VK_KHR_get_memory_requirements2

• VK_KHR_get_physical_device_properties2

• VK_KHR_maintenance1

• VK_KHR_maintenance2

• VK_KHR_maintenance3

• VK_KHR_multiview

• VK_KHR_relaxed_block_layout

• VK_KHR_sampler_ycbcr_conversion

• VK_KHR_shader_draw_parameters

• VK_KHR_storage_buffer_storage_class

• VK_KHR_variable_pointers

All differences in behavior between these extensions and the corresponding Vulkan 1.1
functionality are summarized below.

Differences Relative to VK_KHR_16bit_storage

If the VK_KHR_16bit_storage extension is not supported, support for the storageBuffer16BitAccess
feature is optional. Support for this feature is defined by VkPhysicalDevice16BitStorageFeatures
::storageBuffer16BitAccess or VkPhysicalDeviceVulkan11Features::storageBuffer16BitAccess when
queried via vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_sampler_ycbcr_conversion

If the VK_KHR_sampler_ycbcr_conversion extension is not supported, support for the
samplerYcbcrConversion feature is optional. Support for this feature is defined by
VkPhysicalDeviceSamplerYcbcrConversionFeatures::samplerYcbcrConversion or
VkPhysicalDeviceVulkan11Features::samplerYcbcrConversion when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_shader_draw_parameters

If the VK_KHR_shader_draw_parameters extension is not supported, support for the
SPV_KHR_shader_draw_parameters SPIR-V extension is optional. Support for this feature is defined by
VkPhysicalDeviceShaderDrawParametersFeatures::shaderDrawParameters or
VkPhysicalDeviceVulkan11Features::shaderDrawParameters when queried via
vkGetPhysicalDeviceFeatures2.

Differences Relative to VK_KHR_variable_pointers

If the VK_KHR_variable_pointers extension is not supported, support for the
variablePointersStorageBuffer feature is optional. Support for this feature is defined by

1400

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/master/extensions/KHR/SPV_KHR_shader_draw_parameters.html

VkPhysicalDeviceVariablePointersFeatures::variablePointersStorageBuffer or
VkPhysicalDeviceVulkan11Features::variablePointersStorageBuffer when queried via
vkGetPhysicalDeviceFeatures2.

Additional Vulkan 1.1 Feature Support

In addition to the promoted extensions described above, Vulkan 1.1 added support for:

• The group operations and subgroup scope.

• The protected memory feature.

• A new command to enumerate the instance version: vkEnumerateInstanceVersion.

• The VkPhysicalDeviceShaderDrawParametersFeatures feature query struct (where the
VK_KHR_shader_draw_parameters extension did not have one).

New Macros

• VK_API_VERSION_1_1

New Object Types

• VkDescriptorUpdateTemplate

• VkSamplerYcbcrConversion

New Commands

• vkBindBufferMemory2

• vkBindImageMemory2

• vkCmdDispatchBase

• vkCmdSetDeviceMask

• vkCreateDescriptorUpdateTemplate

• vkCreateSamplerYcbcrConversion

• vkDestroyDescriptorUpdateTemplate

• vkDestroySamplerYcbcrConversion

• vkEnumerateInstanceVersion

• vkEnumeratePhysicalDeviceGroups

• vkGetBufferMemoryRequirements2

• vkGetDescriptorSetLayoutSupport

• vkGetDeviceGroupPeerMemoryFeatures

• vkGetDeviceQueue2

• vkGetImageMemoryRequirements2

• vkGetImageSparseMemoryRequirements2

1401

• vkGetPhysicalDeviceExternalBufferProperties

• vkGetPhysicalDeviceExternalFenceProperties

• vkGetPhysicalDeviceExternalSemaphoreProperties

• vkGetPhysicalDeviceFeatures2

• vkGetPhysicalDeviceFormatProperties2

• vkGetPhysicalDeviceImageFormatProperties2

• vkGetPhysicalDeviceMemoryProperties2

• vkGetPhysicalDeviceProperties2

• vkGetPhysicalDeviceQueueFamilyProperties2

• vkGetPhysicalDeviceSparseImageFormatProperties2

• vkTrimCommandPool

• vkUpdateDescriptorSetWithTemplate

New Structures

• VkBindBufferMemoryInfo

• VkBindImageMemoryInfo

• VkBufferMemoryRequirementsInfo2

• VkDescriptorSetLayoutSupport

• VkDescriptorUpdateTemplateCreateInfo

• VkDescriptorUpdateTemplateEntry

• VkDeviceQueueInfo2

• VkExternalBufferProperties

• VkExternalFenceProperties

• VkExternalMemoryProperties

• VkExternalSemaphoreProperties

• VkFormatProperties2

• VkImageFormatProperties2

• VkImageMemoryRequirementsInfo2

• VkImageSparseMemoryRequirementsInfo2

• VkInputAttachmentAspectReference

• VkMemoryRequirements2

• VkPhysicalDeviceExternalBufferInfo

• VkPhysicalDeviceExternalFenceInfo

• VkPhysicalDeviceExternalSemaphoreInfo

• VkPhysicalDeviceGroupProperties

1402

• VkPhysicalDeviceImageFormatInfo2

• VkPhysicalDeviceMemoryProperties2

• VkPhysicalDeviceProperties2

• VkPhysicalDeviceSparseImageFormatInfo2

• VkQueueFamilyProperties2

• VkSamplerYcbcrConversionCreateInfo

• VkSparseImageFormatProperties2

• VkSparseImageMemoryRequirements2

• Extending VkBindBufferMemoryInfo:

◦ VkBindBufferMemoryDeviceGroupInfo

• Extending VkBindImageMemoryInfo:

◦ VkBindImageMemoryDeviceGroupInfo

◦ VkBindImagePlaneMemoryInfo

• Extending VkBindSparseInfo:

◦ VkDeviceGroupBindSparseInfo

• Extending VkBufferCreateInfo:

◦ VkExternalMemoryBufferCreateInfo

• Extending VkCommandBufferBeginInfo:

◦ VkDeviceGroupCommandBufferBeginInfo

• Extending VkDeviceCreateInfo:

◦ VkDeviceGroupDeviceCreateInfo

◦ VkPhysicalDeviceFeatures2

• Extending VkFenceCreateInfo:

◦ VkExportFenceCreateInfo

• Extending VkImageCreateInfo:

◦ VkExternalMemoryImageCreateInfo

• Extending VkImageFormatProperties2:

◦ VkExternalImageFormatProperties

◦ VkSamplerYcbcrConversionImageFormatProperties

• Extending VkImageMemoryRequirementsInfo2:

◦ VkImagePlaneMemoryRequirementsInfo

• Extending VkImageViewCreateInfo:

◦ VkImageViewUsageCreateInfo

• Extending VkMemoryAllocateInfo:

◦ VkExportMemoryAllocateInfo

1403

◦ VkMemoryAllocateFlagsInfo

◦ VkMemoryDedicatedAllocateInfo

• Extending VkMemoryRequirements2:

◦ VkMemoryDedicatedRequirements

• Extending VkPhysicalDeviceFeatures2, VkDeviceCreateInfo:

◦ VkPhysicalDevice16BitStorageFeatures

◦ VkPhysicalDeviceMultiviewFeatures

◦ VkPhysicalDeviceProtectedMemoryFeatures

◦ VkPhysicalDeviceSamplerYcbcrConversionFeatures

◦ VkPhysicalDeviceShaderDrawParameterFeatures

◦ VkPhysicalDeviceShaderDrawParametersFeatures

◦ VkPhysicalDeviceVariablePointerFeatures

◦ VkPhysicalDeviceVariablePointersFeatures

• Extending VkPhysicalDeviceImageFormatInfo2:

◦ VkPhysicalDeviceExternalImageFormatInfo

• Extending VkPhysicalDeviceProperties2:

◦ VkPhysicalDeviceIDProperties

◦ VkPhysicalDeviceMaintenance3Properties

◦ VkPhysicalDeviceMultiviewProperties

◦ VkPhysicalDevicePointClippingProperties

◦ VkPhysicalDeviceProtectedMemoryProperties

◦ VkPhysicalDeviceSubgroupProperties

• Extending VkPipelineTessellationStateCreateInfo:

◦ VkPipelineTessellationDomainOriginStateCreateInfo

• Extending VkRenderPassBeginInfo, VkRenderingInfo:

◦ VkDeviceGroupRenderPassBeginInfo

• Extending VkRenderPassCreateInfo:

◦ VkRenderPassInputAttachmentAspectCreateInfo

◦ VkRenderPassMultiviewCreateInfo

• Extending VkSamplerCreateInfo, VkImageViewCreateInfo:

◦ VkSamplerYcbcrConversionInfo

• Extending VkSemaphoreCreateInfo:

◦ VkExportSemaphoreCreateInfo

• Extending VkSubmitInfo:

◦ VkDeviceGroupSubmitInfo

1404

◦ VkProtectedSubmitInfo

New Enums

• VkChromaLocation

• VkDescriptorUpdateTemplateType

• VkDeviceQueueCreateFlagBits

• VkExternalFenceFeatureFlagBits

• VkExternalFenceHandleTypeFlagBits

• VkExternalMemoryFeatureFlagBits

• VkExternalMemoryHandleTypeFlagBits

• VkExternalSemaphoreFeatureFlagBits

• VkExternalSemaphoreHandleTypeFlagBits

• VkFenceImportFlagBits

• VkMemoryAllocateFlagBits

• VkPeerMemoryFeatureFlagBits

• VkPointClippingBehavior

• VkSamplerYcbcrModelConversion

• VkSamplerYcbcrRange

• VkSemaphoreImportFlagBits

• VkSubgroupFeatureFlagBits

• VkTessellationDomainOrigin

New Bitmasks

• VkCommandPoolTrimFlags

• VkDescriptorUpdateTemplateCreateFlags

• VkExternalFenceFeatureFlags

• VkExternalFenceHandleTypeFlags

• VkExternalMemoryFeatureFlags

• VkExternalMemoryHandleTypeFlags

• VkExternalSemaphoreFeatureFlags

• VkExternalSemaphoreHandleTypeFlags

• VkFenceImportFlags

• VkMemoryAllocateFlags

• VkPeerMemoryFeatureFlags

• VkSemaphoreImportFlags

1405

• VkSubgroupFeatureFlags

New Enum Constants

• VK_LUID_SIZE

• VK_MAX_DEVICE_GROUP_SIZE

• VK_QUEUE_FAMILY_EXTERNAL

• Extending VkBufferCreateFlagBits:

◦ VK_BUFFER_CREATE_PROTECTED_BIT

• Extending VkCommandPoolCreateFlagBits:

◦ VK_COMMAND_POOL_CREATE_PROTECTED_BIT

• Extending VkDependencyFlagBits:

◦ VK_DEPENDENCY_DEVICE_GROUP_BIT

◦ VK_DEPENDENCY_VIEW_LOCAL_BIT

• Extending VkDeviceQueueCreateFlagBits:

◦ VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT

• Extending VkFormat:

◦ VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16

◦ VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16

◦ VK_FORMAT_B16G16R16G16_422_UNORM

◦ VK_FORMAT_B8G8R8G8_422_UNORM

◦ VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16

◦ VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16

◦ VK_FORMAT_G16B16G16R16_422_UNORM

◦ VK_FORMAT_G16_B16R16_2PLANE_420_UNORM

◦ VK_FORMAT_G16_B16R16_2PLANE_422_UNORM

1406

◦ VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM

◦ VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM

◦ VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM

◦ VK_FORMAT_G8B8G8R8_422_UNORM

◦ VK_FORMAT_G8_B8R8_2PLANE_420_UNORM

◦ VK_FORMAT_G8_B8R8_2PLANE_422_UNORM

◦ VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM

◦ VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM

◦ VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM

◦ VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16

◦ VK_FORMAT_R10X6G10X6_UNORM_2PACK16

◦ VK_FORMAT_R10X6_UNORM_PACK16

◦ VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16

◦ VK_FORMAT_R12X4G12X4_UNORM_2PACK16

◦ VK_FORMAT_R12X4_UNORM_PACK16

• Extending VkFormatFeatureFlagBits:

◦ VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT

◦ VK_FORMAT_FEATURE_DISJOINT_BIT

◦ VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABL
E_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT

◦ VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT

◦ VK_FORMAT_FEATURE_TRANSFER_DST_BIT

◦ VK_FORMAT_FEATURE_TRANSFER_SRC_BIT

• Extending VkImageAspectFlagBits:

◦ VK_IMAGE_ASPECT_PLANE_0_BIT

◦ VK_IMAGE_ASPECT_PLANE_1_BIT

◦ VK_IMAGE_ASPECT_PLANE_2_BIT

• Extending VkImageCreateFlagBits:

◦ VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT

◦ VK_IMAGE_CREATE_ALIAS_BIT

◦ VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT

◦ VK_IMAGE_CREATE_DISJOINT_BIT

1407

◦ VK_IMAGE_CREATE_EXTENDED_USAGE_BIT

◦ VK_IMAGE_CREATE_PROTECTED_BIT

◦ VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT

• Extending VkImageLayout:

◦ VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL

◦ VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL

• Extending VkMemoryHeapFlagBits:

◦ VK_MEMORY_HEAP_MULTI_INSTANCE_BIT

• Extending VkMemoryPropertyFlagBits:

◦ VK_MEMORY_PROPERTY_PROTECTED_BIT

• Extending VkObjectType:

◦ VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE

◦ VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION

• Extending VkPipelineCreateFlagBits:

◦ VK_PIPELINE_CREATE_DISPATCH_BASE

◦ VK_PIPELINE_CREATE_DISPATCH_BASE_BIT

◦ VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT

• Extending VkQueueFlagBits:

◦ VK_QUEUE_PROTECTED_BIT

• Extending VkResult:

◦ VK_ERROR_INVALID_EXTERNAL_HANDLE

◦ VK_ERROR_OUT_OF_POOL_MEMORY

• Extending VkStructureType:

◦ VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO

◦ VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO

◦ VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO

◦ VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT

◦ VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO

1408

◦ VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO

◦ VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2

◦ VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO

◦ VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES

◦ VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES

◦ VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES

◦ VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO

◦ VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES

◦ VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2

◦ VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO

◦ VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2

◦ VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO

◦ VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO

◦ VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS

◦ VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES

1409

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES

◦ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES

◦ VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO

◦ VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO

◦ VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO

◦ VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES

◦ VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO

◦ VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2

◦ VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2

Version 1.0
Vulkan Version 1.0 was the initial release of the Vulkan API.

New Macros

• VK_API_VERSION

• VK_API_VERSION_1_0

• VK_API_VERSION_MAJOR

• VK_API_VERSION_MINOR

• VK_API_VERSION_PATCH

• VK_API_VERSION_VARIANT

• VK_DEFINE_HANDLE

• VK_DEFINE_NON_DISPATCHABLE_HANDLE

• VK_HEADER_VERSION

• VK_HEADER_VERSION_COMPLETE

1410

• VK_MAKE_API_VERSION

• VK_MAKE_VERSION

• VK_NULL_HANDLE

• VK_USE_64_BIT_PTR_DEFINES

• VK_VERSION_MAJOR

• VK_VERSION_MINOR

• VK_VERSION_PATCH

New Base Types

• VkBool32

• VkDeviceAddress

• VkDeviceSize

• VkFlags

• VkSampleMask

New Object Types

• VkBuffer

• VkBufferView

• VkCommandBuffer

• VkCommandPool

• VkDescriptorPool

• VkDescriptorSet

• VkDescriptorSetLayout

• VkDevice

• VkDeviceMemory

• VkEvent

• VkFence

• VkFramebuffer

• VkImage

• VkImageView

• VkInstance

• VkPhysicalDevice

• VkPipeline

• VkPipelineCache

• VkPipelineLayout

1411

• VkQueryPool

• VkQueue

• VkRenderPass

• VkSampler

• VkSemaphore

• VkShaderModule

New Commands

• vkAllocateCommandBuffers

• vkAllocateDescriptorSets

• vkAllocateMemory

• vkBeginCommandBuffer

• vkBindBufferMemory

• vkBindImageMemory

• vkCmdBeginQuery

• vkCmdBeginRenderPass

• vkCmdBindDescriptorSets

• vkCmdBindIndexBuffer

• vkCmdBindPipeline

• vkCmdBindVertexBuffers

• vkCmdBlitImage

• vkCmdClearAttachments

• vkCmdClearColorImage

• vkCmdClearDepthStencilImage

• vkCmdCopyBuffer

• vkCmdCopyBufferToImage

• vkCmdCopyImage

• vkCmdCopyImageToBuffer

• vkCmdCopyQueryPoolResults

• vkCmdDispatch

• vkCmdDispatchIndirect

• vkCmdDraw

• vkCmdDrawIndexed

• vkCmdDrawIndexedIndirect

• vkCmdDrawIndirect

1412

• vkCmdEndQuery

• vkCmdEndRenderPass

• vkCmdExecuteCommands

• vkCmdFillBuffer

• vkCmdNextSubpass

• vkCmdPipelineBarrier

• vkCmdPushConstants

• vkCmdResetEvent

• vkCmdResetQueryPool

• vkCmdResolveImage

• vkCmdSetBlendConstants

• vkCmdSetDepthBias

• vkCmdSetDepthBounds

• vkCmdSetEvent

• vkCmdSetLineWidth

• vkCmdSetScissor

• vkCmdSetStencilCompareMask

• vkCmdSetStencilReference

• vkCmdSetStencilWriteMask

• vkCmdSetViewport

• vkCmdUpdateBuffer

• vkCmdWaitEvents

• vkCmdWriteTimestamp

• vkCreateBuffer

• vkCreateBufferView

• vkCreateCommandPool

• vkCreateComputePipelines

• vkCreateDescriptorPool

• vkCreateDescriptorSetLayout

• vkCreateDevice

• vkCreateEvent

• vkCreateFence

• vkCreateFramebuffer

• vkCreateGraphicsPipelines

• vkCreateImage

1413

• vkCreateImageView

• vkCreateInstance

• vkCreatePipelineCache

• vkCreatePipelineLayout

• vkCreateQueryPool

• vkCreateRenderPass

• vkCreateSampler

• vkCreateSemaphore

• vkCreateShaderModule

• vkDestroyBuffer

• vkDestroyBufferView

• vkDestroyCommandPool

• vkDestroyDescriptorPool

• vkDestroyDescriptorSetLayout

• vkDestroyDevice

• vkDestroyEvent

• vkDestroyFence

• vkDestroyFramebuffer

• vkDestroyImage

• vkDestroyImageView

• vkDestroyInstance

• vkDestroyPipeline

• vkDestroyPipelineCache

• vkDestroyPipelineLayout

• vkDestroyQueryPool

• vkDestroyRenderPass

• vkDestroySampler

• vkDestroySemaphore

• vkDestroyShaderModule

• vkDeviceWaitIdle

• vkEndCommandBuffer

• vkEnumerateDeviceExtensionProperties

• vkEnumerateDeviceLayerProperties

• vkEnumerateInstanceExtensionProperties

• vkEnumerateInstanceLayerProperties

1414

• vkEnumeratePhysicalDevices

• vkFlushMappedMemoryRanges

• vkFreeCommandBuffers

• vkFreeDescriptorSets

• vkFreeMemory

• vkGetBufferMemoryRequirements

• vkGetDeviceMemoryCommitment

• vkGetDeviceProcAddr

• vkGetDeviceQueue

• vkGetEventStatus

• vkGetFenceStatus

• vkGetImageMemoryRequirements

• vkGetImageSparseMemoryRequirements

• vkGetImageSubresourceLayout

• vkGetInstanceProcAddr

• vkGetPhysicalDeviceFeatures

• vkGetPhysicalDeviceFormatProperties

• vkGetPhysicalDeviceImageFormatProperties

• vkGetPhysicalDeviceMemoryProperties

• vkGetPhysicalDeviceProperties

• vkGetPhysicalDeviceQueueFamilyProperties

• vkGetPhysicalDeviceSparseImageFormatProperties

• vkGetPipelineCacheData

• vkGetQueryPoolResults

• vkGetRenderAreaGranularity

• vkInvalidateMappedMemoryRanges

• vkMapMemory

• vkMergePipelineCaches

• vkQueueBindSparse

• vkQueueSubmit

• vkQueueWaitIdle

• vkResetCommandBuffer

• vkResetCommandPool

• vkResetDescriptorPool

• vkResetEvent

1415

• vkResetFences

• vkSetEvent

• vkUnmapMemory

• vkUpdateDescriptorSets

• vkWaitForFences

New Structures

• VkAllocationCallbacks

• VkApplicationInfo

• VkAttachmentDescription

• VkAttachmentReference

• VkBaseInStructure

• VkBaseOutStructure

• VkBindSparseInfo

• VkBufferCopy

• VkBufferCreateInfo

• VkBufferImageCopy

• VkBufferMemoryBarrier

• VkBufferViewCreateInfo

• VkClearAttachment

• VkClearDepthStencilValue

• VkClearRect

• VkCommandBufferAllocateInfo

• VkCommandBufferBeginInfo

• VkCommandBufferInheritanceInfo

• VkCommandPoolCreateInfo

• VkComponentMapping

• VkComputePipelineCreateInfo

• VkCopyDescriptorSet

• VkDescriptorBufferInfo

• VkDescriptorImageInfo

• VkDescriptorPoolCreateInfo

• VkDescriptorPoolSize

• VkDescriptorSetAllocateInfo

• VkDescriptorSetLayoutBinding

1416

• VkDescriptorSetLayoutCreateInfo

• VkDeviceCreateInfo

• VkDeviceQueueCreateInfo

• VkDispatchIndirectCommand

• VkDrawIndexedIndirectCommand

• VkDrawIndirectCommand

• VkEventCreateInfo

• VkExtensionProperties

• VkExtent2D

• VkExtent3D

• VkFenceCreateInfo

• VkFormatProperties

• VkFramebufferCreateInfo

• VkGraphicsPipelineCreateInfo

• VkImageBlit

• VkImageCopy

• VkImageCreateInfo

• VkImageFormatProperties

• VkImageMemoryBarrier

• VkImageResolve

• VkImageSubresource

• VkImageSubresourceLayers

• VkImageSubresourceRange

• VkImageViewCreateInfo

• VkInstanceCreateInfo

• VkLayerProperties

• VkMappedMemoryRange

• VkMemoryAllocateInfo

• VkMemoryBarrier

• VkMemoryHeap

• VkMemoryRequirements

• VkMemoryType

• VkOffset2D

• VkOffset3D

• VkPhysicalDeviceFeatures

1417

• VkPhysicalDeviceLimits

• VkPhysicalDeviceMemoryProperties

• VkPhysicalDeviceProperties

• VkPhysicalDeviceSparseProperties

• VkPipelineCacheCreateInfo

• VkPipelineCacheHeaderVersionOne

• VkPipelineColorBlendAttachmentState

• VkPipelineColorBlendStateCreateInfo

• VkPipelineDepthStencilStateCreateInfo

• VkPipelineDynamicStateCreateInfo

• VkPipelineInputAssemblyStateCreateInfo

• VkPipelineMultisampleStateCreateInfo

• VkPipelineRasterizationStateCreateInfo

• VkPipelineShaderStageCreateInfo

• VkPipelineTessellationStateCreateInfo

• VkPipelineVertexInputStateCreateInfo

• VkPipelineViewportStateCreateInfo

• VkPushConstantRange

• VkQueryPoolCreateInfo

• VkQueueFamilyProperties

• VkRect2D

• VkRenderPassBeginInfo

• VkRenderPassCreateInfo

• VkSamplerCreateInfo

• VkSemaphoreCreateInfo

• VkSparseBufferMemoryBindInfo

• VkSparseImageFormatProperties

• VkSparseImageMemoryBind

• VkSparseImageMemoryBindInfo

• VkSparseImageMemoryRequirements

• VkSparseImageOpaqueMemoryBindInfo

• VkSparseMemoryBind

• VkSpecializationInfo

• VkSpecializationMapEntry

• VkStencilOpState

1418

• VkSubmitInfo

• VkSubpassDependency

• VkSubpassDescription

• VkSubresourceLayout

• VkVertexInputAttributeDescription

• VkVertexInputBindingDescription

• VkViewport

• VkWriteDescriptorSet

• Extending VkBindDescriptorSetsInfoKHR, VkPushConstantsInfoKHR, VkPushDescriptorSetInfoKHR,
VkPushDescriptorSetWithTemplateInfoKHR, VkSetDescriptorBufferOffsetsInfoEXT,
VkBindDescriptorBufferEmbeddedSamplersInfoEXT:

◦ VkPipelineLayoutCreateInfo

• Extending VkPipelineShaderStageCreateInfo:

◦ VkShaderModuleCreateInfo

New Unions

• VkClearColorValue

• VkClearValue

New Function Pointers

• PFN_vkAllocationFunction

• PFN_vkFreeFunction

• PFN_vkInternalAllocationNotification

• PFN_vkInternalFreeNotification

• PFN_vkReallocationFunction

• PFN_vkVoidFunction

New Enums

• VkAccessFlagBits

• VkAttachmentDescriptionFlagBits

• VkAttachmentLoadOp

• VkAttachmentStoreOp

• VkBlendFactor

• VkBlendOp

• VkBorderColor

• VkBufferCreateFlagBits

1419

• VkBufferUsageFlagBits

• VkColorComponentFlagBits

• VkCommandBufferLevel

• VkCommandBufferResetFlagBits

• VkCommandBufferUsageFlagBits

• VkCommandPoolCreateFlagBits

• VkCommandPoolResetFlagBits

• VkCompareOp

• VkComponentSwizzle

• VkCullModeFlagBits

• VkDependencyFlagBits

• VkDescriptorPoolCreateFlagBits

• VkDescriptorSetLayoutCreateFlagBits

• VkDescriptorType

• VkDynamicState

• VkEventCreateFlagBits

• VkFenceCreateFlagBits

• VkFilter

• VkFormat

• VkFormatFeatureFlagBits

• VkFramebufferCreateFlagBits

• VkFrontFace

• VkImageAspectFlagBits

• VkImageCreateFlagBits

• VkImageLayout

• VkImageTiling

• VkImageType

• VkImageUsageFlagBits

• VkImageViewCreateFlagBits

• VkImageViewType

• VkIndexType

• VkInstanceCreateFlagBits

• VkInternalAllocationType

• VkLogicOp

• VkMemoryHeapFlagBits

1420

• VkMemoryMapFlagBits

• VkMemoryPropertyFlagBits

• VkObjectType

• VkPhysicalDeviceType

• VkPipelineBindPoint

• VkPipelineCacheHeaderVersion

• VkPipelineCreateFlagBits

• VkPipelineShaderStageCreateFlagBits

• VkPipelineStageFlagBits

• VkPolygonMode

• VkPrimitiveTopology

• VkQueryControlFlagBits

• VkQueryPipelineStatisticFlagBits

• VkQueryResultFlagBits

• VkQueryType

• VkQueueFlagBits

• VkRenderPassCreateFlagBits

• VkResult

• VkSampleCountFlagBits

• VkSamplerAddressMode

• VkSamplerCreateFlagBits

• VkSamplerMipmapMode

• VkShaderStageFlagBits

• VkSharingMode

• VkSparseImageFormatFlagBits

• VkSparseMemoryBindFlagBits

• VkStencilFaceFlagBits

• VkStencilOp

• VkStructureType

• VkSubpassContents

• VkSubpassDescriptionFlagBits

• VkSystemAllocationScope

• VkVendorId

• VkVertexInputRate

1421

New Bitmasks

• VkAccessFlags

• VkAttachmentDescriptionFlags

• VkBufferCreateFlags

• VkBufferUsageFlags

• VkBufferViewCreateFlags

• VkColorComponentFlags

• VkCommandBufferResetFlags

• VkCommandBufferUsageFlags

• VkCommandPoolCreateFlags

• VkCommandPoolResetFlags

• VkCullModeFlags

• VkDependencyFlags

• VkDescriptorPoolCreateFlags

• VkDescriptorPoolResetFlags

• VkDescriptorSetLayoutCreateFlags

• VkDeviceCreateFlags

• VkDeviceQueueCreateFlags

• VkEventCreateFlags

• VkFenceCreateFlags

• VkFormatFeatureFlags

• VkFramebufferCreateFlags

• VkImageAspectFlags

• VkImageCreateFlags

• VkImageUsageFlags

• VkImageViewCreateFlags

• VkInstanceCreateFlags

• VkMemoryHeapFlags

• VkMemoryMapFlags

• VkMemoryPropertyFlags

• VkPipelineCacheCreateFlags

• VkPipelineColorBlendStateCreateFlags

• VkPipelineCreateFlags

• VkPipelineDepthStencilStateCreateFlags

1422

• VkPipelineDynamicStateCreateFlags

• VkPipelineInputAssemblyStateCreateFlags

• VkPipelineLayoutCreateFlags

• VkPipelineMultisampleStateCreateFlags

• VkPipelineRasterizationStateCreateFlags

• VkPipelineShaderStageCreateFlags

• VkPipelineStageFlags

• VkPipelineTessellationStateCreateFlags

• VkPipelineVertexInputStateCreateFlags

• VkPipelineViewportStateCreateFlags

• VkQueryControlFlags

• VkQueryPipelineStatisticFlags

• VkQueryPoolCreateFlags

• VkQueryResultFlags

• VkQueueFlags

• VkRenderPassCreateFlags

• VkSampleCountFlags

• VkSamplerCreateFlags

• VkSemaphoreCreateFlags

• VkShaderModuleCreateFlags

• VkShaderStageFlags

• VkSparseImageFormatFlags

• VkSparseMemoryBindFlags

• VkStencilFaceFlags

• VkSubpassDescriptionFlags

New Headers

• vk_platform

New Enum Constants

• VK_ATTACHMENT_UNUSED

• VK_FALSE

• VK_LOD_CLAMP_NONE

• VK_MAX_DESCRIPTION_SIZE

• VK_MAX_EXTENSION_NAME_SIZE

1423

• VK_MAX_MEMORY_HEAPS

• VK_MAX_MEMORY_TYPES

• VK_MAX_PHYSICAL_DEVICE_NAME_SIZE

• VK_QUEUE_FAMILY_IGNORED

• VK_REMAINING_ARRAY_LAYERS

• VK_REMAINING_MIP_LEVELS

• VK_SUBPASS_EXTERNAL

• VK_TRUE

• VK_UUID_SIZE

• VK_WHOLE_SIZE

1424

Appendix E: Layers & Extensions
(Informative)
Extensions to the Vulkan API can be defined by authors, groups of authors, and the Khronos Vulkan
Working Group. In order not to compromise the readability of the Vulkan Specification, the core
Specification does not incorporate most extensions. The online Registry of extensions is available at
URL

https://registry.khronos.org/vulkan/

and allows generating versions of the Specification incorporating different extensions.

Authors creating extensions and layers must follow the mandatory procedures described in the
Vulkan Documentation and Extensions document when creating extensions and layers.

The remainder of this appendix documents a set of extensions chosen when this document was
built. Versions of the Specification published in the Registry include:

• Core API + mandatory extensions required of all Vulkan implementations.

• Core API + all registered and published Khronos (KHR) extensions.

• Core API + all registered and published extensions.

Extensions are grouped as Khronos KHR, multivendor EXT, and then alphabetically by author ID.
Within each group, extensions are listed in alphabetical order by their name.

Extension Dependencies
Extensions which have dependencies on specific core versions or on other extensions will list such
dependencies.

For core versions, the specified version must be supported at runtime. All extensions implicitly
require support for Vulkan 1.0.

For a device extension, use of any device-level functionality defined by that extension requires that
any extensions that extension depends on be enabled.

For any extension, use of any instance-level functionality defined by that extension requires only
that any extensions that extension depends on be supported at runtime.

Extension Interactions
Some extensions define APIs which are only supported when other extensions or core versions are
supported at runtime. Such interactions are noted as “API Interactions”.

1425

https://registry.khronos.org/vulkan/

List of Extensions

1426

Appendix F: Vulkan Roadmap Milestones
Roadmap milestones are intended to be supported by mid-to-high-end smartphones, tablets,
laptops, consoles, and desktop devices.

Each milestone indicates support for a set of extensions, features, limits, and formats across these
devices, and should be supported by all such new hardware shipping by the end of the target year
or shortly thereafter.

Roadmap 2022
The Roadmap 2022 milestone is intended to be supported by newer mid-to-high-end devices
shipping in 2022 or shortly thereafter across mainstream smartphone, tablet, laptops, console and
desktop devices.

Required API Versions

This profile requires Vulkan 1.3.

Required Features

The following core optional features are required to be supported:

• Vulkan 1.0 Optional Features

◦ fullDrawIndexUint32

◦ imageCubeArray

◦ independentBlend

◦ sampleRateShading

◦ drawIndirectFirstInstance

◦ depthClamp

◦ depthBiasClamp

◦ samplerAnisotropy

◦ occlusionQueryPrecise

◦ fragmentStoresAndAtomics

◦ shaderStorageImageExtendedFormats

◦ shaderUniformBufferArrayDynamicIndexing

◦ shaderSampledImageArrayDynamicIndexing

◦ shaderStorageBufferArrayDynamicIndexing

◦ shaderStorageImageArrayDynamicIndexing

• Vulkan 1.1 Optional Features

◦ samplerYcbcrConversion

1427

• Vulkan 1.2 Optional Features

◦ samplerMirrorClampToEdge

◦ descriptorIndexing

◦ shaderUniformTexelBufferArrayDynamicIndexing

◦ shaderStorageTexelBufferArrayDynamicIndexing

◦ shaderUniformBufferArrayNonUniformIndexing

◦ shaderSampledImageArrayNonUniformIndexing

◦ shaderStorageBufferArrayNonUniformIndexing

◦ shaderStorageImageArrayNonUniformIndexing

◦ shaderUniformTexelBufferArrayNonUniformIndexing

◦ shaderStorageTexelBufferArrayNonUniformIndexing

◦ descriptorBindingSampledImageUpdateAfterBind

◦ descriptorBindingStorageImageUpdateAfterBind

◦ descriptorBindingStorageBufferUpdateAfterBind

◦ descriptorBindingUniformTexelBufferUpdateAfterBind

◦ descriptorBindingStorageTexelBufferUpdateAfterBind

◦ descriptorBindingUpdateUnusedWhilePending

◦ descriptorBindingPartiallyBound

◦ descriptorBindingVariableDescriptorCount

◦ runtimeDescriptorArray

◦ scalarBlockLayout

Required Limits

The following core increased limits are required

Table 71. Vulkan 1.0 Limits

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

maxImageDimension1D - 4096 8192 min

maxImageDimension2D - 4096 8192 min

maxImageDimensionCube - 4096 8192 min

maxImageArrayLayers - 256 2048 min

maxUniformBufferRange - 16384 65536 min

bufferImageGranularity - 131072 4096 max

maxPerStageDescriptorSamplers - 16 64 min

1428

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

maxPerStageDescriptorUniformBuffers - 12 15 min

maxPerStageDescriptorStorageBuffers - 4 30 min

maxPerStageDescriptorSampledImages - 16 200 min

maxPerStageDescriptorStorageImages - 4 16 min

maxPerStageResources - 128 200 min

maxDescriptorSetSamplers - 96 576 min, n ×
PerStage

maxDescriptorSetUniformBuffers - 72 90 min, n ×
PerStage

maxDescriptorSetStorageBuffers - 24 96 min, n ×
PerStage

maxDescriptorSetSampledImages - 96 1800 min, n ×
PerStage

maxDescriptorSetStorageImages - 24 144 min, n ×
PerStage

maxFragmentCombinedOutputResources - 4 16 min

maxComputeWorkGroupInvocations - 128 256 min

maxComputeWorkGroupSize - (128,128,64) (256,256,64) min

subTexelPrecisionBits - 4 8 min

mipmapPrecisionBits - 4 6 min

maxSamplerLodBias - 2 14 min

pointSizeGranularity 0.0 1.0 0.125 max, fixed
point
increment

lineWidthGranularity 0.0 1.0 0.5 max, fixed
point
increment

standardSampleLocations - - VK_TRUE implementa
tion-
dependent

maxColorAttachments - 4 7 min

Table 72. Vulkan 1.1 Limits

1429

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

subgroupSize - 1/4 4 implementa
tion-
dependent

subgroupSupportedStages - VK_SHADER_STAGE
_COMPUTE_BIT

VK_SHADER_STAGE
_COMPUTE_BIT
VK_SHADER_STAGE
_FRAGMENT_BIT

implementa
tion-
dependent

subgroupSupportedOperations - VK_SUBGROUP_FEA
TURE_BASIC_BIT

VK_SUBGROUP_FEA
TURE_BASIC_BIT
VK_SUBGROUP_FEA
TURE_VOTE_BIT
VK_SUBGROUP_FEA
TURE_ARITHMETIC
_BIT
VK_SUBGROUP_FEA
TURE_BALLOT_BIT
VK_SUBGROUP_FEA
TURE_SHUFFLE_BI
T
VK_SUBGROUP_FEA
TURE_SHUFFLE_RE
LATIVE_BIT
VK_SUBGROUP_FEA
TURE_QUAD_BIT

implementa
tion-
dependent

Table 73. Vulkan 1.2 Limits

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

shaderSignedZeroInfNanPreserveFloat16 - - VK_TRUE implementa
tion-
dependent

shaderSignedZeroInfNanPreserveFloat32 - - VK_TRUE implementa
tion-
dependent

maxPerStageDescriptorUpdateAfterBindInp
utAttachments

0 4 7 min

Table 74. Vulkan 1.3 Limits

1430

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

maxSubgroupSize - - 4 min

Required Extensions

The following extensions are required

VK_KHR_global_priority

Roadmap 2024
The Roadmap 2024 milestone is intended to be supported by newer mid-to-high-end devices
shipping in 2024 or shortly thereafter across mainstream smartphone, tablet, laptops, console and
desktop devices.

Two of the core aims of this roadmap profile are to enable developers to rely on a number of
important rasterization and shader features have been available for a long time, but until now
have not enjoyed wide support.

Shader features required include smaller types (8/16-bit integers and 16-bit floats), reconvergence
guarantees for subgroup ops (VK_KHR_shader_maximal_reconvergence and
VK_KHR_shader_quad_control), and more consistent floating point handling
(VK_KHR_shader_float_controls2 and round-to-nearest-even for 32-/16-bit floats). Rasterization
features include requiring support for multi-draw indirect, shader draw parameters, 8-bit indices,
better line rasterization definitions, and local reads when using dynamic rendering. A few other
features have been added opportunistically, in lieu of shipping a Vulkan 1.4 in the same time frame,
such as push descriptors and the various minor improvements included in VK_KHR_maintenance5.

Required Profiles

This profile requires the Roadmap 2022 profile.

Required Features

The following core optional features are required to be supported:

• Vulkan 1.0 Optional Features

◦ multiDrawIndirect

◦ shaderImageGatherExtended

◦ shaderInt16

• Vulkan 1.1 Optional Features

◦ shaderDrawParameters

◦ storageBuffer16BitAccess

1431

• Vulkan 1.2 Optional Features

◦ shaderInt8

◦ shaderFloat16

◦ storageBuffer8BitAccess

Required Limits

The following core increased limits are required

Table 75. Vulkan 1.0 Limits

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

maxBoundDescriptorSets - 4 7 min

maxColorAttachments - 4 8 min

timestampComputeAndGraphics - FALSE TRUE Boolean

Table 76. Vulkan 1.2 Limits

Limit Name Unsuppo
rted
Limit

Core Limit Profile Limit Limit Type1

shaderRoundingModeRTEFloat16 - FALSE TRUE Boolean

shaderRoundingModeRTEFloat32 - FALSE TRUE Boolean

Required extensions

The following extensions are required

• VK_KHR_dynamic_rendering_local_read

• VK_KHR_load_store_op_none

• VK_KHR_shader_quad_control

• VK_KHR_shader_maximal_reconvergence

• VK_KHR_shader_subgroup_uniform_control_flow

• VK_KHR_shader_subgroup_rotate

• VK_KHR_shader_float_controls2

• VK_KHR_shader_expect_assume

• VK_KHR_line_rasterization

• VK_KHR_vertex_attribute_divisor

• VK_KHR_index_type_uint8

• VK_KHR_map_memory2

1432

• VK_KHR_maintenance5

• VK_KHR_push_descriptor

1433

Appendix G: API Boilerplate
This appendix defines Vulkan API features that are infrastructure required for a complete
functional description of Vulkan, but do not logically belong elsewhere in the Specification.

Vulkan Header Files
Vulkan is defined as an API in the C99 language. Khronos provides a corresponding set of header
files for applications using the API, which may be used in either C or C++ code. The interface
descriptions in the specification are the same as the interfaces defined in these header files, and
both are derived from the vk.xml XML API Registry, which is the canonical machine-readable
description of the Vulkan API. The Registry, scripts used for processing it into various forms, and
documentation of the registry schema are available as described at https://registry.khronos.org/
vulkan/#apiregistry .

Language bindings for other languages can be defined using the information in the Specification
and the Registry. Khronos does not provide any such bindings, but third-party developers have
created some additional bindings.

Vulkan Combined API Header vulkan.h (Informative)

Applications normally will include the header vulkan.h. In turn, vulkan.h always includes the
following headers:

• vk_platform.h, defining platform-specific macros and headers.

• vulkan_core.h, defining APIs for the Vulkan core and all registered extensions other than
window system-specific and provisional extensions, which are included in separate header files.

In addition, specific preprocessor macros defined at the time vulkan.h is included cause header files
for the corresponding window system-specific and provisional interfaces to be included, as
described below.

Vulkan Platform-Specific Header vk_platform.h (Informative)

Platform-specific macros and interfaces are defined in vk_platform.h. These macros are used to
control platform-dependent behavior, and their exact definitions are under the control of specific
platforms and Vulkan implementations.

Platform-Specific Calling Conventions

On many platforms the following macros are empty strings, causing platform- and compiler-
specific default calling conventions to be used.

VKAPI_ATTR is a macro placed before the return type in Vulkan API function declarations. This macro
controls calling conventions for C++11 and GCC/Clang-style compilers.

VKAPI_CALL is a macro placed after the return type in Vulkan API function declarations. This macro
controls calling conventions for MSVC-style compilers.

1434

https://registry.khronos.org/vulkan/#apiregistry
https://registry.khronos.org/vulkan/#apiregistry

VKAPI_PTR is a macro placed between the '(' and '*' in Vulkan API function pointer declarations. This
macro also controls calling conventions, and typically has the same definition as VKAPI_ATTR or
VKAPI_CALL, depending on the compiler.

With these macros, a Vulkan function declaration takes the form of:

VKAPI_ATTR <return_type> VKAPI_CALL <command_name>(<command_parameters>);

Additionally, a Vulkan function pointer type declaration takes the form of:

typedef <return_type> (VKAPI_PTR *PFN_<command_name>)(<command_parameters>);

Platform-Specific Header Control

If the VK_NO_STDINT_H macro is defined by the application at compile time, extended integer types
used by the Vulkan API, such as uint8_t, must also be defined by the application. Otherwise, the
Vulkan headers will not compile. If VK_NO_STDINT_H is not defined, the system <stdint.h> is used to
define these types. There is a fallback path when Microsoft Visual Studio version 2008 and earlier
versions are detected at compile time.

If the VK_NO_STDDEF_H macro is defined by the application at compile time, size_t, must also be
defined by the application. Otherwise, the Vulkan headers will not compile. If VK_NO_STDDEF_H is not
defined, the system <stddef.h> is used to define this type.

Vulkan Core API Header vulkan_core.h

Applications that do not make use of window system-specific extensions may simply include
vulkan_core.h instead of vulkan.h, although there is usually no reason to do so. In addition to the
Vulkan API, vulkan_core.h also defines a small number of C preprocessor macros that are described
below.

Vulkan Header File Version Number

VK_HEADER_VERSION is the version number of the vulkan_core.h header. This value is kept
synchronized with the patch version of the released Specification.

// Provided by VK_VERSION_1_0
// Version of this file
#define VK_HEADER_VERSION 280

VK_HEADER_VERSION_COMPLETE is the complete version number of the vulkan_core.h header,
comprising the major, minor, and patch versions. The major/minor values are kept synchronized
with the complete version of the released Specification. This value is intended for use by automated
tools to identify exactly which version of the header was used during their generation.

Applications should not use this value as their VkApplicationInfo::apiVersion. Instead applications

1435

should explicitly select a specific fixed major/minor API version using, for example, one of the
VK_API_VERSION_*_* values.

// Provided by VK_VERSION_1_0
// Complete version of this file
#define VK_HEADER_VERSION_COMPLETE VK_MAKE_API_VERSION(0, 1, 3, VK_HEADER_VERSION)

VK_API_VERSION is now commented out of vulkan_core.h and cannot be used.

// Provided by VK_VERSION_1_0
// DEPRECATED: This define has been removed. Specific version defines (e.g.
VK_API_VERSION_1_0), or the VK_MAKE_VERSION macro, should be used instead.
//#define VK_API_VERSION VK_MAKE_API_VERSION(0, 1, 0, 0) // Patch version should
always be set to 0

Vulkan Handle Macros

VK_DEFINE_HANDLE defines a dispatchable handle type.

// Provided by VK_VERSION_1_0

#define VK_DEFINE_HANDLE(object) typedef struct object##_T* object;

• object is the name of the resulting C type.

The only dispatchable handle types are those related to device and instance management, such as
VkDevice.

VK_DEFINE_NON_DISPATCHABLE_HANDLE defines a non-dispatchable handle type.

// Provided by VK_VERSION_1_0

#ifndef VK_DEFINE_NON_DISPATCHABLE_HANDLE
 #if (VK_USE_64_BIT_PTR_DEFINES==1)
 #define VK_DEFINE_NON_DISPATCHABLE_HANDLE(object) typedef struct object##_T
*object;
 #else
 #define VK_DEFINE_NON_DISPATCHABLE_HANDLE(object) typedef uint64_t object;
 #endif
#endif

• object is the name of the resulting C type.

Most Vulkan handle types, such as VkBuffer, are non-dispatchable.

 Note

1436

The vulkan_core.h header allows the VK_DEFINE_NON_DISPATCHABLE_HANDLE
and VK_NULL_HANDLE definitions to be overridden by the application. If
VK_DEFINE_NON_DISPATCHABLE_HANDLE is already defined when vulkan_core.h
is compiled, the default definitions for VK_DEFINE_NON_DISPATCHABLE_HANDLE
and VK_NULL_HANDLE are skipped. This allows the application to define a binary-
compatible custom handle which may provide more type-safety or other features
needed by the application. Applications must not define handles in a way that is
not binary compatible - where binary compatibility is platform dependent.

VK_NULL_HANDLE is a reserved value representing a non-valid object handle. It may be passed to and
returned from Vulkan commands only when specifically allowed.

// Provided by VK_VERSION_1_0

#ifndef VK_DEFINE_NON_DISPATCHABLE_HANDLE
 #if (VK_USE_64_BIT_PTR_DEFINES==1)
 #if (defined(__cplusplus) && (__cplusplus >= 201103L)) || (defined(_MSVC_LANG)
&& (_MSVC_LANG >= 201103L))
 #define VK_NULL_HANDLE nullptr
 #else
 #define VK_NULL_HANDLE ((void*)0)
 #endif
 #else
 #define VK_NULL_HANDLE 0ULL
 #endif
#endif
#ifndef VK_NULL_HANDLE
 #define VK_NULL_HANDLE 0
#endif

VK_USE_64_BIT_PTR_DEFINES defines whether the default non-dispatchable handles are declared using
either a 64-bit pointer type or a 64-bit unsigned integer type.

VK_USE_64_BIT_PTR_DEFINES is set to '1' to use a 64-bit pointer type or any other value to use a 64-bit
unsigned integer type.

// Provided by VK_VERSION_1_0

#ifndef VK_USE_64_BIT_PTR_DEFINES
 #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) &&
!defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) ||
defined(__aarch64__) || defined(__powerpc64__) || (defined(__riscv) && __riscv_xlen ==
64)
 #define VK_USE_64_BIT_PTR_DEFINES 1
 #else
 #define VK_USE_64_BIT_PTR_DEFINES 0
 #endif
#endif

1437

Note

The vulkan_core.h header allows the VK_USE_64_BIT_PTR_DEFINES definition to be
overridden by the application. This allows the application to select either a 64-bit
pointer type or a 64-bit unsigned integer type for non-dispatchable handles in the
case where the predefined preprocessor check does not identify the desired
configuration.

Note

This macro was introduced starting with the Vulkan 1.2.174 headers, and its
availability can be checked at compile time by requiring VK_HEADER_VERSION >= 174.

It is not available if you are using older headers, such as may be shipped with an
older Vulkan SDK. Developers requiring this functionality may wish to include a
copy of the current Vulkan headers with their project in this case.

Window System-Specific Header Control (Informative)
To use a Vulkan extension supporting a platform-specific window system, header files for that
window system must be included at compile time, or platform-specific types must be forward-
declared. The Vulkan header files are unable to determine whether or not an external header is
available at compile time, so platform-specific extensions are provided in separate headers from
the core API and platform-independent extensions, allowing applications to decide which ones they
need to be defined and how the external headers are included.

Extensions dependent on particular sets of platform headers, or that forward-declare platform-
specific types, are declared in a header named for that platform. Before including these platform-
specific Vulkan headers, applications must include both vulkan_core.h and any external native
headers the platform extensions depend on.

As a convenience for applications that do not need the flexibility of separate platform-specific
Vulkan headers, vulkan.h includes vulkan_core.h, and then conditionally includes platform-specific
Vulkan headers and the external headers they depend on. Applications control which platform-
specific headers are included by #defining macros before including vulkan.h.

The correspondence between platform-specific extensions, external headers they require, the
platform-specific header which declares them, and the preprocessor macros which enable
inclusion by vulkan.h are shown in the following table.

Table 77. Window System Extensions and Headers

Extension Name Window System
Name

Platform-specific
Header

Required
External Headers

Controlling
vulkan.h Macro

VK_KHR_android_sur
face

Android vulkan_android.h None VK_USE_PLATFORM_AN
DROID_KHR

VK_KHR_wayland_sur
face

Wayland vulkan_wayland.h <wayland-client.h> VK_USE_PLATFORM_WA
YLAND_KHR

1438

Extension Name Window System
Name

Platform-specific
Header

Required
External Headers

Controlling
vulkan.h Macro

VK_KHR_win32_surfa
ce,
VK_KHR_external_me
mory_win32,
VK_KHR_win32_keyed
_mutex,
VK_KHR_external_se
maphore_win32,
VK_KHR_external_fe
nce_win32,
VK_NV_external_mem
ory_win32,
VK_NV_win32_keyed_
mutex

Microsoft
Windows

vulkan_win32.h <windows.h> VK_USE_PLATFORM_WI
N32_KHR

VK_KHR_xcb_surface X11 Xcb vulkan_xcb.h <xcb/xcb.h> VK_USE_PLATFORM_XC
B_KHR

VK_KHR_xlib_surfac
e

X11 Xlib vulkan_xlib.h <X11/Xlib.h> VK_USE_PLATFORM_XL
IB_KHR

VK_EXT_directfb_su
rface

DirectFB vulkan_directfb.h <directfb/directfb
.h>

VK_USE_PLATFORM_DI
RECTFB_EXT

VK_EXT_acquire_xli
b_display

X11 XRAndR vulkan_xlib_xrandr
.h

<X11/Xlib.h>,
<X11/extensions/Xr
andr.h>

VK_USE_PLATFORM_XL
IB_XRANDR_EXT

VK_GGP_stream_desc
riptor_surface,
VK_GGP_frame_token

Google Games
Platform

vulkan_ggp.h <ggp_c/vulkan_typ
es.h>

VK_USE_PLATFORM_GG
P

VK_MVK_ios_surface iOS vulkan_ios.h None VK_USE_PLATFORM_IO
S_MVK

VK_MVK_macos_surfa
ce

macOS vulkan_macos.h None VK_USE_PLATFORM_MA
COS_MVK

VK_NN_vi_surface VI vulkan_vi.h None VK_USE_PLATFORM_VI
_NN

VK_FUCHSIA_imagepi
pe_surface

Fuchsia vulkan_fuchsia.h <zircon/types.h> VK_USE_PLATFORM_FU
CHSIA

VK_EXT_metal_surfa
ce

Metal on
CoreAnimation

vulkan_metal.h None VK_USE_PLATFORM_ME
TAL_EXT

VK_QNX_screen_surf
ace

QNX Screen vulkan_screen.h <screen/screen.h> VK_USE_PLATFORM_SC
REEN_QNX

Note

This section describes the purpose of the headers independently of the specific
underlying functionality of the window system extensions themselves. Each
extension name will only link to a description of that extension when viewing a
specification built with that extension included.

1439

Provisional Extension Header Control (Informative)
Provisional extensions should not be used in production applications. The functionality defined by
such extensions may change in ways that break backwards compatibility between revisions, and
before final release of a non-provisional version of that extension.

Provisional extensions are defined in a separate provisional header, vulkan_beta.h, allowing
applications to decide whether or not to include them. The mechanism is similar to window system-
specific headers: before including vulkan_beta.h, applications must include vulkan_core.h.

Note

Sometimes a provisional extension will include a subset of its interfaces in
vulkan_core.h. This may occur if the provisional extension is promoted from an
existing vendor or EXT extension and some of the existing interfaces are defined
as aliases of the provisional extension interfaces. All other interfaces of that
provisional extension which are not aliased will be included in vulkan_beta.h.

As a convenience for applications, vulkan.h conditionally includes vulkan_beta.h. Applications can
control inclusion of vulkan_beta.h by #defining the macro VK_ENABLE_BETA_EXTENSIONS before
including vulkan.h.

Note

Starting in version 1.2.171 of the Specification, all provisional enumerants are
protected by the macro VK_ENABLE_BETA_EXTENSIONS. Applications needing to use
provisional extensions must always define this macro, even if they are explicitly
including vulkan_beta.h. This is a minor change to behavior, affecting only
provisional extensions.

Note

This section describes the purpose of the provisional header independently of the
specific provisional extensions which are contained in that header at any given
time. The extension appendices for provisional extensions note their provisional
status, and link back to this section for more information. Provisional extensions
are intended to provide early access for bleeding-edge developers, with the
understanding that extension interfaces may change in response to developer
feedback. Provisional extensions are very likely to eventually be updated and
released as non-provisional extensions, but there is no guarantee this will happen,
or how long it will take if it does happen.

Video Std Headers
Performing video coding operations usually involves the application having to provide various
parameters, data structures, or other syntax elements specific to the particular video compression
standard used, and the associated semantics are covered by the specification of those.

The interface descriptions of these are available in the header files derived from the video.xml XML

1440

file, which is the canonical machine-readable description of data structures and enumerations that
are associated with the externally-provided video compression standards.

Table 78. Video Std Headers

Video Std Header
Name

Description Header File Related Extensions

vulkan_video_codecs_co
mmon

Codec-independent
common definitions

<vk_video/vulkan_video
_codecs_common.h>

-

vulkan_video_codec_h26
4std

ITU-T H.264 common
definitions

<vk_video/vulkan_video
_codec_h264std.h>

VK_KHR_video_decode_h2
64,
VK_KHR_video_encode_h2
64

vulkan_video_codec_h26
4std_decode

ITU-T H.264 decode-
specific definitions

<vk_video/vulkan_video
_codec_h264std_decode.
h>

VK_KHR_video_decode_h2
64

vulkan_video_codec_h26
4std_encode

ITU-T H.264 encode-
specific definitions

<vk_video/vulkan_video
_codec_h264std_encode.
h>

VK_KHR_video_encode_h2
64

vulkan_video_codec_h26
5std

ITU-T H.265 common
definitions

<vk_video/vulkan_video
_codec_h265std.h>

VK_KHR_video_decode_h2
65,
VK_KHR_video_encode_h2
65

vulkan_video_codec_h26
5std_decode

ITU-T H.265 decode-
specific definitions

<vk_video/vulkan_video
_codec_h265std_decode.
h>

VK_KHR_video_decode_h2
65

vulkan_video_codec_h26
5std_encode

ITU-T H.265 encode-
specific definitions

<vk_video/vulkan_video
_codec_h265std_encode.
h>

VK_KHR_video_encode_h2
65

vulkan_video_codec_av1
std

AV1 common
definitions

<vk_video/vulkan_video
_codec_av1std.h>

VK_KHR_video_decode_av
1

vulkan_video_codec_av1
std_decode

AV1 decode-specific
definitions

<vk_video/vulkan_video
_codec_av1std_decode.h
>

VK_KHR_video_decode_av
1

1441

Appendix H: Invariance
The Vulkan specification is not pixel exact. It therefore does not guarantee an exact match between
images produced by different Vulkan implementations. However, the specification does specify
exact matches, in some cases, for images produced by the same implementation. The purpose of
this appendix is to identify and provide justification for those cases that require exact matches.

Repeatability
The obvious and most fundamental case is repeated issuance of a series of Vulkan commands. For
any given Vulkan and framebuffer state vector, and for any Vulkan command, the resulting Vulkan
and framebuffer state must be identical whenever the command is executed on that initial Vulkan
and framebuffer state. This repeatability requirement does not apply when using shaders
containing side effects (image and buffer variable stores and atomic operations), because these
memory operations are not guaranteed to be processed in a defined order.

One purpose of repeatability is avoidance of visual artifacts when a double-buffered scene is
redrawn. If rendering is not repeatable, swapping between two buffers rendered with the same
command sequence may result in visible changes in the image. Such false motion is distracting to
the viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeatability as a requirement,
two scenes rendered with one (small) polygon changed in position might differ at every pixel. Such
a difference, while within the law of repeatability, is certainly not within its spirit. Additional
invariance rules are desirable to ensure useful operation.

Multi-pass Algorithms
Invariance is necessary for a whole set of useful multi-pass algorithms. Such algorithms render
multiple times, each time with a different Vulkan mode vector, to eventually produce a result in the
framebuffer. Examples of these algorithms include:

• “Erasing” a primitive from the framebuffer by redrawing it, either in a different color or using
the XOR logical operation.

• Using stencil operations to compute capping planes.

Invariance Rules
For a given Vulkan device:

Rule 1 For any given Vulkan and framebuffer state vector, and for any given Vulkan command, the
resulting Vulkan and framebuffer state must be identical each time the command is executed on that
initial Vulkan and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any other state value is
not affected by the change):

1442

Required:

• Color and depth/stencil attachment contents

• Scissor parameters (other than enable)

• Write masks (color, depth, stencil)

• Clear values (color, depth, stencil)

Strongly suggested:

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

Corollary 1 Fragment generation is invariant with respect to the state values listed in Rule 2.

Rule 3 The arithmetic of each per-fragment operation is invariant except with respect to parameters
that directly control it.

Corollary 2 Images rendered into different color attachments of the same framebuffer, either
simultaneously or separately using the same command sequence, are pixel identical.

Rule 4 Identical pipelines will produce the same result when run multiple times with the same input.
The wording “Identical pipelines” means VkPipeline objects that have been created with identical
SPIR-V binaries and identical state, which are then used by commands executed using the same
Vulkan state vector. Invariance is relaxed for shaders with side effects, such as performing stores or
atomics.

Rule 5 All fragment shaders that either conditionally or unconditionally assign FragCoord.z to
FragDepth are depth-invariant with respect to each other, for those fragments where the assignment to
FragDepth actually is done.

If a sequence of Vulkan commands specifies primitives to be rendered with shaders containing side
effects (image and buffer variable stores and atomic operations), invariance rules are relaxed. In
particular, rule 1, corollary 2, and rule 4 do not apply in the presence of shader side effects.

The following weaker versions of rules 1 and 4 apply to Vulkan commands involving shader side
effects:

Rule 6 For any given Vulkan and framebuffer state vector, and for any given Vulkan command, the
contents of any framebuffer state not directly or indirectly affected by results of shader image or
buffer variable stores or atomic operations must be identical each time the command is executed on
that initial Vulkan and framebuffer state.

Rule 7 Identical pipelines will produce the same result when run multiple times with the same input
as long as:

• shader invocations do not use image atomic operations;

1443

• no framebuffer memory is written to more than once by image stores, unless all such stores write
the same value; and

• no shader invocation, or other operation performed to process the sequence of commands, reads
memory written to by an image store.

Note

The OpenGL specification has the following invariance rule: Consider a primitive
p' obtained by translating a primitive p through an offset (x, y) in window
coordinates, where x and y are integers. As long as neither p' nor p is clipped, it
must be the case that each fragment f' produced from p' is identical to a
corresponding fragment f from p except that the center of f' is offset by (x, y) from
the center of f.

This rule does not apply to Vulkan and is an intentional difference from OpenGL.

When any sequence of Vulkan commands triggers shader invocations that perform image stores or
atomic operations, and subsequent Vulkan commands read the memory written by those shader
invocations, these operations must be explicitly synchronized.

Tessellation Invariance
When using a pipeline containing tessellation evaluation shaders, the fixed-function tessellation
primitive generator consumes the input patch specified by an application and emits a new set of
primitives. The following invariance rules are intended to provide repeatability guarantees.
Additionally, they are intended to allow an application with a carefully crafted tessellation
evaluation shader to ensure that the sets of triangles generated for two adjacent patches have
identical vertices along shared patch edges, avoiding “cracks” caused by minor differences in the
positions of vertices along shared edges.

Rule 1 When processing two patches with identical outer and inner tessellation levels, the tessellation
primitive generator will emit an identical set of point, line, or triangle primitives as long as the
pipeline used to process the patch primitives has tessellation evaluation shaders specifying the same
tessellation mode, spacing, vertex order, and point mode decorations. Two sets of primitives are
considered identical if and only if they contain the same number and type of primitives and the
generated tessellation coordinates for the vertex numbered m of the primitive numbered n are
identical for all values of m and n.

Rule 2 The set of vertices generated along the outer edge of the subdivided primitive in triangle and
quad tessellation, and the tessellation coordinates of each, depend only on the corresponding outer
tessellation level and the spacing decorations in the tessellation shaders of the pipeline.

Rule 3 The set of vertices generated when subdividing any outer primitive edge is always symmetric.
For triangle tessellation, if the subdivision generates a vertex with tessellation coordinates of the form
(0, x, 1-x), (x, 0, 1-x), or (x, 1-x, 0), it will also generate a vertex with coordinates of exactly (0, 1-x, x),
(1-x, 0, x), or (1-x, x, 0), respectively. For quad tessellation, if the subdivision generates a vertex with
coordinates of (x, 0) or (0, x), it will also generate a vertex with coordinates of exactly (1-x, 0) or (0, 1-
x), respectively. For isoline tessellation, if it generates vertices at (0, x) and (1, x) where x is not zero, it
will also generate vertices at exactly (0, 1-x) and (1, 1-x), respectively.

1444

Rule 4 The set of vertices generated when subdividing outer edges in triangular and quad tessellation
must be independent of the specific edge subdivided, given identical outer tessellation levels and
spacing. For example, if vertices at (x, 1 - x, 0) and (1-x, x, 0) are generated when subdividing the w = 0
edge in triangular tessellation, vertices must be generated at (x, 0, 1-x) and (1-x, 0, x) when
subdividing an otherwise identical v = 0 edge. For quad tessellation, if vertices at (x, 0) and (1-x, 0) are
generated when subdividing the v = 0 edge, vertices must be generated at (0, x) and (0, 1-x) when
subdividing an otherwise identical u = 0 edge.

Rule 5 When processing two patches that are identical in all respects enumerated in rule 1 except for
vertex order, the set of triangles generated for triangle and quad tessellation must be identical except
for vertex and triangle order. For each triangle n1 produced by processing the first patch, there must
be a triangle n2 produced when processing the second patch each of whose vertices has the same
tessellation coordinates as one of the vertices in n1.

Rule 6 When processing two patches that are identical in all respects enumerated in rule 1 other than
matching outer tessellation levels and/or vertex order, the set of interior triangles generated for
triangle and quad tessellation must be identical in all respects except for vertex and triangle order.
For each interior triangle n1 produced by processing the first patch, there must be a triangle n2
produced when processing the second patch each of whose vertices has the same tessellation
coordinates as one of the vertices in n1. A triangle produced by the tessellator is considered an
interior triangle if none of its vertices lie on an outer edge of the subdivided primitive.

Rule 7 For quad and triangle tessellation, the set of triangles connecting an inner and outer edge
depends only on the inner and outer tessellation levels corresponding to that edge and the spacing
decorations.

Rule 8 The value of all defined components of TessCoord will be in the range [0, 1]. Additionally, for
any defined component x of TessCoord, the results of computing 1.0-x in a tessellation evaluation
shader will be exact. If any floating-point values in the range [0, 1] fail to satisfy this property, such
values must not be used as tessellation coordinate components.

1445

Appendix I: Lexicon
This appendix defines terms, abbreviations, and API prefixes used in the Specification.

Glossary
The terms defined in this section are used consistently throughout the Specification and may be
used with or without capitalization.

Accessible (Descriptor Binding)

A descriptor binding is accessible to a shader stage if that stage is included in the stageFlags of
the descriptor binding. Descriptors using that binding can only be used by stages in which they
are accessible.

Acquire Operation (Resource)

An operation that acquires ownership of an image subresource or buffer range.

Adjacent Vertex

A vertex in an adjacency primitive topology that is not part of a given primitive, but is accessible
in geometry shaders.

Alias (API type/command)

An identical definition of another API type/command with the same behavior but a different
name.

Aliased Range (Memory)

A range of a device memory allocation that is bound to multiple resources simultaneously.

Allocation Scope

An association of a host memory allocation to a parent object or command, where the
allocation’s lifetime ends before or at the same time as the parent object is freed or destroyed, or
during the parent command.

Aspect (Image)

Some image types contain multiple kinds (called “aspects”) of data for each pixel, where each
aspect is used in a particular way by the pipeline and may be stored differently or separately
from other aspects. For example, the color components of an image format make up the color
aspect of the image, and can be used as a framebuffer color attachment. Some operations, like
depth testing, operate only on specific aspects of an image.

Attachment (Render Pass)

A zero-based integer index name used in render pass creation to refer to a framebuffer
attachment that is accessed by one or more subpasses. The index also refers to an attachment
description which includes information about the properties of the image view that will later be
attached.

1446

Availability Operation

An operation that causes the values generated by specified memory write accesses to become
available for future access.

Available

A state of values written to memory that allows them to be made visible.

Back-Facing

See Facingness.

Batch

A single structure submitted to a queue as part of a queue submission command, describing a
set of queue operations to execute.

Backwards Compatibility

A given version of the API is backwards compatible with an earlier version if an application,
relying only on valid behavior and functionality defined by the earlier specification, is able to
correctly run against each version without any modification. This assumes no active attempt by
that application to not run when it detects a different version.

Binary Semaphore

A semaphore with a boolean payload indicating whether the semaphore is signaled or
unsignaled. Represented by a VkSemaphore object created with a semaphore type of
VK_SEMAPHORE_TYPE_BINARY .

Binding (Memory)

An association established between a range of a resource object and a range of a memory object.
These associations determine the memory locations affected by operations performed on
elements of a resource object. Memory bindings are established using the vkBindBufferMemory
command for non-sparse buffer objects, using the vkBindImageMemory command for non-
sparse image objects , and using the vkQueueBindSparse command for sparse resources .

Blend Constant

Four floating point (RGBA) values used as an input to blending.

Blending

Arithmetic operations between a fragment color value and a value in a color attachment that
produce a final color value to be written to the attachment.

Buffer

A resource that represents a linear array of data in device memory. Represented by a VkBuffer
object.

Buffer Device Address

A 64-bit value used in a shader to access buffer memory through the PhysicalStorageBuffer
storage class.

1447

Buffer View

An object that represents a range of a specific buffer, and state controlling how the contents are
interpreted. Represented by a VkBufferView object.

Built-In Variable

A variable decorated in a shader, where the decoration makes the variable take values provided
by the execution environment or values that are generated by fixed-function pipeline stages.

Built-In Interface Block

A block defined in a shader containing only variables decorated with built-in decorations, and is
used to match against other shader stages.

Clip Coordinates

The homogeneous coordinate space in which vertex positions (Position decoration) are written
by pre-rasterization shader stages.

Clip Distance

A built-in output from pre-rasterization shader stages defining a clip half-space against which
the primitive is clipped.

Clip Volume

The intersection of the view volume with all clip half-spaces.

Color Attachment

A subpass attachment point, or image view, that is the target of fragment color outputs and
blending.

Color Renderable Format

A VkFormat where VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT is set in one of the following,
depending on the image’s tiling:

• VkFormatProperties::linearTilingFeatures

• VkFormatProperties::optimalTilingFeatures

Combined Image Sampler

A descriptor type that includes both a sampled image and a sampler.

Command Buffer

An object that records commands to be submitted to a queue. Represented by a
VkCommandBuffer object.

Command Pool

An object that command buffer memory is allocated from, and that owns that memory.
Command pools aid multithreaded performance by enabling different threads to use different
allocators, without internal synchronization on each use. Represented by a VkCommandPool
object.

1448

Compatible Allocator

When allocators are compatible, allocations from each allocator can be freed by the other
allocator.

Compatible Image Formats

When formats are compatible, images created with one of the formats can have image views
created from it using any of the compatible formats. Also see Size-Compatible Image Formats.

Compatible Queues

Queues within a queue family. Compatible queues have identical properties.

Complete Mipmap Chain

The entire set of mip levels that can be provided for an image, from the largest application
specified mip level size down to the minimum mip level size. See Image Mip Level Sizing.

Component (Format)

A distinct part of a format. Color components are represented with R, G, B, and A. Depth and
stencil components are represented with D and S. Formats can have multiple instances of the
same component. Some formats have other notations such as E or X which are not considered a
component of the format.

Compressed Texel Block

An element of an image having a block-compressed format, comprising a rectangular block of
texel values that are encoded as a single value in memory. Compressed texel blocks of a
particular block-compressed format have a corresponding width, height, and depth defining the
dimensions of these elements in units of texels, and a size in bytes of the encoding in memory.

Constant Integral Expressions

A SPIR-V constant instruction whose type is OpTypeInt. See Constant Instruction in section 2.2.1
“Instructions” of the Khronos SPIR-V Specification.

Coverage Index

The index of a sample in the coverage mask.

Coverage Mask

A bitfield associated with a fragment representing the samples that were determined to be
covered based on the result of rasterization, and then subsequently modified by fragment
operations or the fragment shader.

Cull Distance

A built-in output from pre-rasterization shader stages defining a cull half-space where the
primitive is rejected if all vertices have a negative value for the same cull distance.

Cull Volume

The intersection of the view volume with all cull half-spaces.

Decoration (SPIR-V)

Auxiliary information such as built-in variables, stream numbers, invariance, interpolation type,

1449

relaxed precision, etc., added to variables or structure-type members through decorations.

Deprecated (feature)

A feature is deprecated if it is no longer recommended as the correct or best way to achieve its
intended purpose.

Depth/Stencil Attachment

A subpass attachment point, or image view, that is the target of depth and/or stencil test
operations and writes.

Depth/Stencil Format

A VkFormat that includes depth and/or stencil components.

Depth/Stencil Image (or ImageView)

A VkImage (or VkImageView) with a depth/stencil format.

Depth/Stencil Resolve Attachment

A subpass attachment point, or image view, that is the target of a multisample resolve operation
from the corresponding depth/stencil attachment at the end of the subpass.

Derivative Group

A set of fragment shader invocations that cooperate to compute derivatives, including implicit
derivatives for sampled image operations.

Descriptor

Information about a resource or resource view written into a descriptor set that is used to access
the resource or view from a shader.

Descriptor Binding

An entry in a descriptor set layout corresponding to zero or more descriptors of a single
descriptor type in a set. Defined by a VkDescriptorSetLayoutBinding structure.

Descriptor Pool

An object that descriptor sets are allocated from, and that owns the storage of those descriptor
sets. Descriptor pools aid multithreaded performance by enabling different threads to use
different allocators, without internal synchronization on each use. Represented by a
VkDescriptorPool object.

Descriptor Set

An object that resource descriptors are written into via the API, and that can be bound to a
command buffer such that the descriptors contained within it can be accessed from shaders.
Represented by a VkDescriptorSet object.

Descriptor Set Layout

An object defining the set of resources (types and counts) and their relative arrangement (in the
binding namespace) within a descriptor set. Used when allocating descriptor sets and when
creating pipeline layouts. Represented by a VkDescriptorSetLayout object.

1450

Device

The processor(s) and execution environment that perform tasks requested by the application via
the Vulkan API.

Device Group

A set of physical devices that support accessing each other’s memory and recording a single
command buffer that can be executed on all the physical devices.

Device Index

A zero-based integer that identifies one physical device from a logical device. A device index is
valid if it is less than the number of physical devices in the logical device.

Device Mask

A bitmask where each bit represents one device index. A device mask value is valid if every bit
that is set in the mask is at a bit position that is less than the number of physical devices in the
logical device.

Device Memory

Memory accessible to the device. Represented by a VkDeviceMemory object.

Device-Level Command

Any command that is dispatched from a logical device, or from a child object of a logical device.

Device-Level Functionality

All device-level commands and objects, and their structures, enumerated types, and enumerants.
Additionally, physical-device-level functionality defined by a device extension is also considered
device-level functionality.

Device-Level Object

Logical device objects and their child objects. For example, VkDevice, VkQueue, and
VkCommandBuffer objects are device-level objects.

Device-Local Memory

Memory that is connected to the device, and may be more performant for device access than
host-local memory.

Direct Drawing Commands

Drawing commands that take all their parameters as direct arguments to the command (and not
sourced via structures in buffer memory as the indirect drawing commands). Includes
vkCmdDraw, and vkCmdDrawIndexed.

Disjoint

Disjoint planes are image planes to which memory is bound independently.
A disjoint image consists of multiple disjoint planes, and is created with the
VK_IMAGE_CREATE_DISJOINT_BIT bit set.

Dispatchable Command

A non-global command. The first argument to each dispatchable command is a dispatchable

1451

handle type.

Dispatchable Handle

A handle of a pointer handle type which may be used by layers as part of intercepting API
commands.

Dispatching Commands

Commands that provoke work using a compute pipeline. Includes vkCmdDispatch and
vkCmdDispatchIndirect.

Drawing Commands

Commands that provoke work using a graphics pipeline. Includes vkCmdDraw,
vkCmdDrawIndexed, vkCmdDrawIndirectCount, vkCmdDrawIndexedIndirectCount,
vkCmdDrawIndirect, and vkCmdDrawIndexedIndirect.

Duration (Command)

The duration of a Vulkan command refers to the interval between calling the command and its
return to the caller.

Dynamic Storage Buffer

A storage buffer whose offset is specified each time the storage buffer is bound to a command
buffer via a descriptor set.

Dynamic Uniform Buffer

A uniform buffer whose offset is specified each time the uniform buffer is bound to a command
buffer via a descriptor set.

Dynamically Uniform

See Dynamically Uniform in section 2.2 “Terms” of the Khronos SPIR-V Specification.

Element

Arrays are composed of multiple elements, where each element exists at a unique index within
that array. Used primarily to describe data passed to or returned from the Vulkan API.

Explicitly-Enabled Layer

A layer enabled by the application by adding it to the enabled layer list in vkCreateInstance or
vkCreateDevice.

Event

A synchronization primitive that is signaled when execution of previous commands completes
through a specified set of pipeline stages. Events can be waited on by the device and polled by
the host. Represented by a VkEvent object.

Executable State (Command Buffer)

A command buffer that has ended recording commands and can be executed. See also Initial
State and Recording State.

1452

Execution Dependency

A dependency that guarantees that certain pipeline stages’ work for a first set of commands has
completed execution before certain pipeline stages’ work for a second set of commands begins
execution. This is accomplished via pipeline barriers, subpass dependencies, events, or implicit
ordering operations.

Execution Dependency Chain

A sequence of execution dependencies that transitively act as a single execution dependency.

Explicit chroma reconstruction

An implementation of sampler Y′CBCR conversion which reconstructs reduced-resolution chroma
samples to luma resolution and then separately performs texture sample interpolation. This is
distinct from an implicit implementation, which incorporates chroma sample reconstruction
into texture sample interpolation.

Extension Scope

The set of objects and commands that can be affected by an extension. Extensions are either
device scope or instance scope.

Extending Structure

A structure type which may appear in the pNext chain of another structure, extending the
functionality of the other structure. Extending structures may be defined by either core API
versions or extensions.

External Handle

A resource handle which has meaning outside of a specific Vulkan device or its parent instance.
External handles may be used to share resources between multiple Vulkan devices in different
instances, or between Vulkan and other APIs. Some external handle types correspond to
platform-defined handles, in which case the resource may outlive any particular Vulkan device
or instance and may be transferred between processes, or otherwise manipulated via
functionality defined by the platform for that handle type.

External synchronization

A type of synchronization required of the application, where parameters defined to be
externally synchronized must not be used simultaneously in multiple threads.

Facingness (Polygon)

A classification of a polygon as either front-facing or back-facing, depending on the orientation
(winding order) of its vertices.

Facingness (Fragment)

A fragment is either front-facing or back-facing, depending on the primitive it was generated
from. If the primitive was a polygon (regardless of polygon mode), the fragment inherits the
facingness of the polygon. All other fragments are front-facing.

Fence

A synchronization primitive that is signaled when a set of batches or sparse binding operations
complete execution on a queue. Fences can be waited on by the host. Represented by a VkFence

1453

object.

Flat Shading

A property of a vertex attribute that causes the value from a single vertex (the provoking vertex)
to be used for all vertices in a primitive, and for interpolation of that attribute to return that
single value unaltered.

Format Features

A set of features from VkFormatFeatureFlagBits that a VkFormat is capable of using for various
commands. The list is determined by factors such as VkImageTiling.

Fragment

A rectangular framebuffer region with associated data produced by rasterization and processed
by fragment operations including the fragment shader.

Fragment Area

The width and height, in pixels, of a fragment.

Fragment Input Attachment Interface

Variables with UniformConstant storage class and a decoration of InputAttachmentIndex that are
statically used by a fragment shader’s entry point, which receive values from input attachments.

Fragment Output Interface

A fragment shader entry point’s variables with Output storage class, which output to color and/or
depth/stencil attachments.

Framebuffer

A collection of image views and a set of dimensions that, in conjunction with a render pass,
define the inputs and outputs used by drawing commands. Represented by a VkFramebuffer
object.

Framebuffer Attachment

One of the image views used in a framebuffer.

Framebuffer Coordinates

A coordinate system in which adjacent pixels’ coordinates differ by 1 in x and/or y, with (0,0) in
the upper left corner and pixel centers at half-integers.

Framebuffer-Space

Operating with respect to framebuffer coordinates.

Framebuffer-Local

A framebuffer-local dependency guarantees that only for a single framebuffer region, the first
set of operations happens-before the second set of operations.

Framebuffer-Global

A framebuffer-global dependency guarantees that for all framebuffer regions, the first set of
operations happens-before the second set of operations.

1454

Framebuffer Region

A framebuffer region is a set of sample (x, y, layer, sample) coordinates that is a subset of the
entire framebuffer.

Front-Facing

See Facingness.

Full Compatibility

A given version of the API is fully compatible with another version if an application, relying only
on valid behavior and functionality defined by either of those specifications, is able to correctly
run against each version without any modification. This assumes no active attempt by that
application to not run when it detects a different version.

Global Command

A Vulkan command for which the first argument is not a dispatchable handle type.

Global Workgroup

A collection of local workgroups dispatched by a single dispatching command.

Handle

An opaque integer or pointer value used to refer to a Vulkan object. Each object type has a
unique handle type.

Happen-after, happens-after

A transitive, irreflexive and antisymmetric ordering relation between operations. An execution
dependency with a source of A and a destination of B enforces that B happens-after A. The
inverse relation of happens-before.

Happen-before, happens-before

A transitive, irreflexive and antisymmetric ordering relation between operations. An execution
dependency with a source of A and a destination of B enforces that A happens-before B. The
inverse relation of happens-after.

Helper Invocation

A fragment shader invocation that is created solely for the purposes of evaluating derivatives for
use in non-helper fragment shader invocations, and which does not have side effects.

Host

The processor(s) and execution environment that the application runs on, and that the Vulkan
API is exposed on.

Host Mapped Device Memory

Device memory that is mapped for host access using vkMapMemory.

Host Memory

Memory not accessible to the device, used to store implementation data structures.

1455

Host-Accessible Subresource

A buffer, or a linear image subresource in either the VK_IMAGE_LAYOUT_PREINITIALIZED or
VK_IMAGE_LAYOUT_GENERAL layout. Host-accessible subresources have a well-defined addressing
scheme which can be used by the host.

Host-Local Memory

Memory that is not local to the device, and may be less performant for device access than
device-local memory.

Host-Visible Memory

Device memory that can be mapped on the host and can be read and written by the host.

ICD

Installable Client Driver. An ICD is represented as a VkPhysicalDevice.

Identically Defined Objects

Objects of the same type where all arguments to their creation or allocation functions, with the
exception of pAllocator, are

1. Vulkan handles which refer to the same object or

2. identical scalar or enumeration values or

3. Host pointers which point to an array of values or structures which also satisfy these three
constraints.

Image

A resource that represents a multi-dimensional formatted interpretation of device memory.
Represented by a VkImage object.

Image Subresource

A specific mipmap level, layer, and set of aspects of an image.

Image Subresource Range

A set of image subresources that are contiguous mipmap levels and layers.

Image View

An object that represents an image subresource range of a specific image, and state controlling
how the contents are interpreted. Represented by a VkImageView object.

Immutable Sampler

A sampler descriptor provided at descriptor set layout creation time for a specific binding. This
sampler is then used for that binding in all descriptor sets allocated with the layout, and it
cannot be changed.

Implicit chroma reconstruction

An implementation of sampler Y′CBCR conversion which reconstructs the reduced-resolution
chroma samples directly at the sample point, as part of the normal texture sampling operation.
This is distinct from an explicit chroma reconstruction implementation, which reconstructs the
reduced-resolution chroma samples to the resolution of the luma samples, then filters the result

1456

as part of texture sample interpolation.

Implicitly-Enabled Layer

A layer enabled by a loader-defined mechanism outside the Vulkan API, rather than explicitly by
the application during instance or device creation.

Index Buffer

A buffer bound via vkCmdBindIndexBuffer which is the source of index values used to fetch
vertex attributes for a vkCmdDrawIndexed or vkCmdDrawIndexedIndirect command.

Indexed Drawing Commands

Drawing commands which use an index buffer as the source of index values used to fetch vertex
attributes for a drawing command. Includes vkCmdDrawIndexed,
vkCmdDrawIndexedIndirectCount, and vkCmdDrawIndexedIndirect.

Indirect Commands

Drawing or dispatching commands that source some of their parameters from structures in
buffer memory. Includes vkCmdDrawIndirect, vkCmdDrawIndexedIndirect,
vkCmdDrawIndirectCount, vkCmdDrawIndexedIndirectCount, and vkCmdDispatchIndirect.

Indirect Drawing Commands

Drawing commands that source some of their parameters from structures in buffer memory.
Includes vkCmdDrawIndirect, vkCmdDrawIndirectCount, vkCmdDrawIndexedIndirectCount,
and vkCmdDrawIndexedIndirect.

Initial State (Command Buffer)

A command buffer that has not begun recording commands. See also Recording State and
Executable State.

Inline Uniform Block

A descriptor type that represents uniform data stored directly in descriptor sets, and supports
read-only access in a shader.

Input Attachment

A descriptor type that represents an image view, and supports unfiltered read-only access in a
shader, only at the fragment’s location in the view.

Instance

The top-level Vulkan object, which represents the application’s connection to the
implementation. Represented by a VkInstance object.

Instance-Level Command

Any command that is dispatched from an instance, or from a child object of an instance, except
for physical devices and their children.

Instance-Level Functionality

All instance-level commands and objects, and their structures, enumerated types, and
enumerants.

1457

Instance-Level Object

High-level Vulkan objects, which are not physical devices, nor children of physical devices. For
example, VkInstance is an instance-level object.

Instance (Memory)

In a logical device representing more than one physical device, some device memory allocations
have the requested amount of memory allocated multiple times, once for each physical device in
a device mask. Each such replicated allocation is an instance of the device memory.

Instance (Resource)

In a logical device representing more than one physical device, buffer and image resources exist
on all physical devices but can be bound to memory differently on each. Each such replicated
resource is an instance of the resource.

Internal Synchronization

A type of synchronization required of the implementation, where parameters not defined to be
externally synchronized may require internal mutexing to avoid multithreaded race conditions.

Invocation (Shader)

A single execution of an entry point in a SPIR-V module. For example, a single vertex’s execution
of a vertex shader or a single fragment’s execution of a fragment shader.

Invocation Group

A set of shader invocations that are executed in parallel and that must execute the same control
flow path in order for control flow to be considered dynamically uniform.

Linear Resource

A resource is linear if it is one of the following:

• a VkBuffer

• a VkImage created with VK_IMAGE_TILING_LINEAR

A resource is non-linear if it is one of the following:

• a VkImage created with VK_IMAGE_TILING_OPTIMAL

Local Workgroup

A collection of compute shader invocations invoked by a single dispatching command, which
share data via WorkgroupLocal variables and can synchronize with each other.

Logical Device

An object that represents the application’s interface to the physical device. The logical device is
the parent of most Vulkan objects. Represented by a VkDevice object.

Logical Operation

Bitwise operations between a fragment color value and a value in a color attachment, that
produce a final color value to be written to the attachment.

1458

Lost Device

A state that a logical device may be in as a result of unrecoverable implementation errors, or
other exceptional conditions.

Mappable

See Host-Visible Memory.

Memory Dependency

A memory dependency is an execution dependency which includes availability and visibility
operations such that:

• The first set of operations happens-before the availability operation

• The availability operation happens-before the visibility operation

• The visibility operation happens-before the second set of operations

Memory Domain

A memory domain is an abstract place to which memory writes are made available by
availability operations and memory domain operations. The memory domains correspond to the
set of agents that the write can then be made visible to. The memory domains are host, device,
shader, workgroup instance (for workgroup instance there is a unique domain for each compute
workgroup) and subgroup instance (for subgroup instance there is a unique domain for each
subgroup).

Memory Domain Operation

An operation that makes the writes that are available to one memory domain available to
another memory domain.

Memory Heap

A region of memory from which device memory allocations can be made.

Memory Type

An index used to select a set of memory properties (e.g. mappable, cached) for a device memory
allocation.

Minimum Mip Level Size

The smallest size that is permitted for a mip level. For conventional images this is 1x1x1. See
Image Mip Level Sizing.

Mip Tail Region

The set of mipmap levels of a sparse residency texture that are too small to fill a sparse block,
and that must all be bound to memory collectively and opaquely.

Multi-planar

A multi-planar format (or “planar format”) is an image format consisting of more than one plane,
identifiable with a _2PLANE or _3PLANE component to the format name and listed in Formats
requiring sampler Y′CBCR conversion for VK_IMAGE_ASPECT_COLOR_BIT image views. A multi-planar
image (or “planar image”) is an image of a multi-planar format.

1459

Non-Dispatchable Handle

A handle of an integer handle type. Handle values may not be unique, even for two objects of
the same type.

Non-Indexed Drawing Commands

Drawing commands for which the vertex attributes are sourced in linear order from the vertex
input attributes for a drawing command (i.e. they do not use an index buffer). Includes
vkCmdDraw, vkCmdDrawIndirectCount, and vkCmdDrawIndirect.

Normalized

A value that is interpreted as being in the range [0,1] as a result of being implicitly divided by
some other value.

Normalized Device Coordinates

A coordinate space after perspective division is applied to clip coordinates, and before the
viewport transformation converts them to framebuffer coordinates.

Obsoleted (feature)

A feature is obsolete if it can no longer be used.

Opaque Capture Address

A 64-bit value representing the device address of a buffer or memory object that is expected to
be used by trace capture/replay tools in combination with the bufferDeviceAddress feature.

Overlapped Range (Aliased Range)

The aliased range of a device memory allocation that intersects a given image subresource of an
image or range of a buffer.

Ownership (Resource)

If an entity (e.g. a queue family) has ownership of a resource, access to that resource is well-
defined for access by that entity.

Packed Format

A format whose components are stored as a single texel block in memory, with their relative
locations defined within that element.

Payload

Importable or exportable reference to the internal data of an object in Vulkan.

Peer Memory

An instance of memory corresponding to a different physical device than the physical device
performing the memory access, in a logical device that represents multiple physical devices.

Physical Device

An object that represents a single device in the system. Represented by a VkPhysicalDevice
object.

1460

Physical-Device-Level Command

Any command that is dispatched from a physical device.

Physical-Device-Level Functionality

All physical-device-level commands and objects, and their structures, enumerated types, and
enumerants.

Physical-Device-Level Object

Physical device objects. For example, VkPhysicalDevice is a physical-device-level object.

Pipeline

An object controlling how graphics or compute work is executed on the device. A pipeline
includes one or more shaders, as well as state controlling any non-programmable stages of the
pipeline. Represented by a VkPipeline object.

Pipeline Barrier

An execution and/or memory dependency recorded as an explicit command in a command
buffer, that forms a dependency between the previous and subsequent commands.

Pipeline Cache

An object that can be used to collect and retrieve information from pipelines as they are created,
and can be populated with previously retrieved information in order to accelerate pipeline
creation. Represented by a VkPipelineCache object.

Pipeline Layout

An object defining the set of resources (via a collection of descriptor set layouts) and push
constants used by pipelines that are created using the layout. Used when creating a pipeline and
when binding descriptor sets and setting push constant values. Represented by a
VkPipelineLayout object.

Pipeline Stage

A logically independent execution unit that performs some of the operations defined by an
action command.

pNext Chain

A set of structures chained together through their pNext members.

Planar

See multi-planar.

Plane

An image plane is part of the representation of an image, containing a subset of the color
components necessary to represent the texels in the image and with a contiguous mapping of
coordinates to bound memory. Most images consist only of a single plane, but some formats
spread the components across multiple image planes. The host-accessible properties of each
image plane are accessible for a linear layout using vkGetImageSubresourceLayout. If a multi-
planar image is created with the VK_IMAGE_CREATE_DISJOINT_BIT bit set, the image is described as
disjoint, and its planes are therefore bound to memory independently.

1461

Point Sampling (Rasterization)

A rule that determines whether a fragment sample location is covered by a polygon primitive by
testing whether the sample location is in the interior of the polygon in framebuffer-space, or on
the boundary of the polygon according to the tie-breaking rules.

Potential Format Features

The union of all VkFormatFeatureFlagBits that the implementation supports for a specified
VkFormat, over all supported image tilings.

Pre-rasterization

Operations that execute before rasterization, and any state associated with those operations.

Preserve Attachment

One of a list of attachments in a subpass description that is not read or written by the subpass,
but that is read or written on earlier and later subpasses and whose contents must be preserved
through this subpass.

Primary Command Buffer

A command buffer that can execute secondary command buffers, and can be submitted directly
to a queue.

Primitive Topology

State controlling how vertices are assembled into primitives, e.g. as lists of triangles, strips of
lines, etc.

Promoted (feature)

A feature from an older extension is considered promoted if it is made available as part of a new
core version or newer extension with wider support.

Protected Buffer

A buffer to which protected device memory can be bound.

Protected-capable Device Queue

A device queue to which protected command buffers can be submitted.

Protected Command Buffer

A command buffer which can be submitted to a protected-capable device queue.

Protected Device Memory

Device memory which can be visible to the device but must not be visible to the host.

Protected Image

An image to which protected device memory can be bound.

Provisional

A feature is released provisionally in order to get wider feedback on the functionality before it is
finalized. Provisional features may change in ways that break backwards compatibility, and thus
are not recommended for use in production applications.

1462

Provoking Vertex

The vertex in a primitive from which flat shaded attribute values are taken. This is generally the
“first” vertex in the primitive, and depends on the primitive topology.

Push Constants

A small bank of values writable via the API and accessible in shaders. Push constants allow the
application to set values used in shaders without creating buffers or modifying and binding
descriptor sets for each update.

Push Constant Interface

The set of variables with PushConstant storage class that are statically used by a shader entry
point, and which receive values from push constant commands.

Descriptor Update Template

An object specifying a mapping from descriptor update information in host memory to elements
in a descriptor set, which helps enable more efficient descriptor set updates.

Query Pool

An object containing a number of query entries and their associated state and results.
Represented by a VkQueryPool object.

Queue

An object that executes command buffers and sparse binding operations on a device.
Represented by a VkQueue object.

Queue Family

A set of queues that have common properties and support the same functionality, as advertised
in VkQueueFamilyProperties.

Queue Operation

A unit of work to be executed by a specific queue on a device, submitted via a queue submission
command. Each queue submission command details the specific queue operations that occur as
a result of calling that command. Queue operations typically include work that is specific to each
command, and synchronization tasks.

Queue Submission

Zero or more batches and an optional fence to be signaled, passed to a command for execution
on a queue. See the Devices and Queues chapter for more information.

Recording State (Command Buffer)

A command buffer that is ready to record commands. See also Initial State and Executable State.

Release Operation (Resource)

An operation that releases ownership of an image subresource or buffer range.

Render Pass

An object that represents a set of framebuffer attachments and phases of rendering using those
attachments. Represented by a VkRenderPass object.

1463

Render Pass Instance

A use of a render pass in a command buffer.

Required Extensions

Extensions that must be enabled alongside extensions dependent on them (see Extension
Dependencies).

Reset (Command Buffer)

Resetting a command buffer discards any previously recorded commands and puts a command
buffer in the initial state.

Residency Code

An integer value returned by sparse image instructions, indicating whether any sparse unbound
texels were accessed.

Resolve Attachment

A subpass attachment point, or image view, that is the target of a multisample resolve operation
from the corresponding color attachment at the end of the subpass.

Sample Index

The index of a sample within a single set of samples.

Sample Shading

Invoking the fragment shader multiple times per fragment, with the covered samples
partitioned among the invocations.

Sampled Image

A descriptor type that represents an image view, and supports filtered (sampled) and unfiltered
read-only access in a shader.

Sampler

An object containing state controlling how sampled image data is sampled (or filtered) when
accessed in a shader. Also a descriptor type describing the object. Represented by a VkSampler
object.

Secondary Command Buffer

A command buffer that can be executed by a primary command buffer, and must not be
submitted directly to a queue.

Self-Dependency

A subpass dependency from a subpass to itself, i.e. with srcSubpass equal to dstSubpass. A self-
dependency is not automatically performed during a render pass instance, rather a subset of it
can be performed via vkCmdPipelineBarrier during the subpass.

Semaphore

A synchronization primitive that supports signal and wait operations, and can be used to
synchronize operations within a queue or across queues. Represented by a VkSemaphore object.

1464

Shader

Instructions selected (via an entry point) from a shader module, which are executed in a shader
stage.

Shader Code

A stream of instructions used to describe the operation of a shader.

Shader Module

A collection of shader code, potentially including several functions and entry points, that is used
to create shaders in pipelines. Represented by a VkShaderModule object.

Shader Stage

A stage of the graphics or compute pipeline that executes shader code.

Side Effect

A store to memory or atomic operation on memory from a shader invocation.

Single-plane format

A format that is not multi-planar.

Size-Compatible Image Formats

When a compressed image format and an uncompressed image format are size-compatible, it
means that the texel block size of the uncompressed format must equal the texel block size of
the compressed format.

Sparse Block

An element of a sparse resource that can be independently bound to memory. Sparse blocks of a
particular sparse resource have a corresponding size in bytes that they use in the bound
memory.

Sparse Image Block

A sparse block in a sparse partially-resident image. In addition to the sparse block size in bytes,
sparse image blocks have a corresponding width, height, and depth defining the dimensions of
these elements in units of texels or compressed texel blocks, the latter being used in case of
sparse images having a block-compressed format.

Sparse Unbound Texel

A texel read from a region of a sparse texture that does not have memory bound to it.

Static Use

An object in a shader is statically used by a shader entry point if any function in the entry point’s
call tree contains an instruction using the object. A reference in the entry point’s interface list
does not constitute a static use. Static use is used to constrain the set of descriptors used by a
shader entry point.

Storage Buffer

A descriptor type that represents a buffer, and supports reads, writes, and atomics in a shader.

1465

Storage Image

A descriptor type that represents an image view, and supports unfiltered loads, stores, and
atomics in a shader.

Storage Texel Buffer

A descriptor type that represents a buffer view, and supports unfiltered, formatted reads, writes,
and atomics in a shader.

Subgroup

A set of shader invocations that can synchronize and share data with each other efficiently. In
compute shaders, the local workgroup is a superset of the subgroup.

Subgroup Mask

A bitmask for all invocations in the current subgroup with one bit per invocation, starting with
the least significant bit in the first vector component, continuing to the last bit (less than
SubgroupSize) in the last required vector component.

Subpass

A phase of rendering within a render pass, that reads and writes a subset of the attachments.

Subpass Dependency

An execution and/or memory dependency between two subpasses described as part of render
pass creation, and automatically performed between subpasses in a render pass instance. A
subpass dependency limits the overlap of execution of the pair of subpasses, and can provide
guarantees of memory coherence between accesses in the subpasses.

Subpass Description

Lists of attachment indices for input attachments, color attachments, depth/stencil attachment,
resolve attachments, depth/stencil resolve, and preserve attachments used by the subpass in a
render pass.

Subset (Self-Dependency)

A subset of a self-dependency is a pipeline barrier performed during the subpass of the self-
dependency, and whose stage masks and access masks each contain a subset of the bits set in the
identically named mask in the self-dependency.

Texel Block

A single addressable element of an image with an uncompressed VkFormat, or a single
compressed block of an image with a compressed VkFormat.

Texel Block Size

The size (in bytes) used to store a texel block of a compressed or uncompressed image.

Texel Coordinate System

One of three coordinate systems (normalized, unnormalized, integer) defining how texel
coordinates are interpreted in an image or a specific mipmap level of an image.

1466

Timeline Semaphore

A semaphore with a strictly increasing 64-bit unsigned integer payload indicating whether the
semaphore is signaled with respect to a particular reference value. Represented by a
VkSemaphore object created with a semaphore type of VK_SEMAPHORE_TYPE_TIMELINE.

Uniform Texel Buffer

A descriptor type that represents a buffer view, and supports unfiltered, formatted, read-only
access in a shader.

Uniform Buffer

A descriptor type that represents a buffer, and supports read-only access in a shader.

Units in the Last Place (ULP)

A measure of floating-point error loosely defined as the smallest representable step in a floating-
point format near a given value. For the precise definition see Precision and Operation of SPIR-V
instructions or Jean-Michel Muller, “On the definition of ulp(x)”, RR-5504, INRIA. Other sources
may also use the term “unit of least precision”.

Unnormalized

A value that is interpreted according to its conventional interpretation, and is not normalized.

Unprotected Buffer

A buffer to which unprotected device memory can be bound.

Unprotected Command Buffer

A command buffer which can be submitted to an unprotected device queue or a protected-
capable device queue.

Unprotected Device Memory

Device memory which can be visible to the device and can be visible to the host.

Unprotected Image

An image to which unprotected device memory can be bound.

User-Defined Variable Interface

A shader entry point’s variables with Input or Output storage class that are not built-in variables.

Vertex Input Attribute

A graphics pipeline resource that produces input values for the vertex shader by reading data
from a vertex input binding and converting it to the attribute’s format.

Variable-Sized Descriptor Binding

A descriptor binding whose size will be specified when a descriptor set is allocated using this
layout.

Vertex Input Binding

A graphics pipeline resource that is bound to a buffer and includes state that affects addressing
calculations within that buffer.

1467

Vertex Input Interface

A vertex shader entry point’s variables with Input storage class, which receive values from
vertex input attributes.

View Mask

When multiview is enabled, a view mask is a property of a subpass controlling which views the
rendering commands are broadcast to.

View Volume

A subspace in homogeneous coordinates, corresponding to post-projection x and y values
between -1 and +1, and z values between 0 and +1.

Viewport Transformation

A transformation from normalized device coordinates to framebuffer coordinates, based on a
viewport rectangle and depth range.

Visibility Operation

An operation that causes available values to become visible to specified memory accesses.

Visible

A state of values written to memory that allows them to be accessed by a set of operations.

Common Abbreviations
The abbreviations and acronyms defined in this section are sometimes used in the Specification
and the API where they are considered clear and commonplace.

Src

Source

Dst

Destination

Min

Minimum

Max

Maximum

Rect

Rectangle

Info

Information

LOD

Level of Detail

1468

Log

Logarithm

ID

Identifier

UUID

Universally Unique Identifier

Op

Operation

R

Red color component

G

Green color component

B

Blue color component

A

Alpha color component

RTZ

Round towards zero

RTE

Round to nearest even

Prefixes
Prefixes are used in the API to denote specific semantic meaning of Vulkan names, or as a label to
avoid name clashes, and are explained here:

VK/Vk/vk

Vulkan namespace
All types, commands, enumerants and defines in this specification are prefixed with these two
characters.

PFN/pfn

Function Pointer
Denotes that a type is a function pointer, or that a variable is of a pointer type.

p

Pointer
Variable is a pointer.

1469

vkCmd

Commands that record commands in command buffers
These API commands do not result in immediate processing on the device. Instead, they record
the requested action in a command buffer for execution when the command buffer is submitted
to a queue.

s

Structure
Used to denote the VK_STRUCTURE_TYPE* member of each structure in sType

1470

Appendix J: Credits (Informative)
Vulkan 1.3 is the result of contributions from many people and companies participating in the
Khronos Vulkan Working Group, as well as input from the Vulkan Advisory Panel.

Members of the Working Group, including the company that they represented at the time of their
most recent contribution, are listed in the following section. Some specific contributions made by
individuals are listed together with their name.

Working Group Contributors to Vulkan
• Aaron Greig, Codeplay Software Ltd. (version 1.1)

• Aaron Hagan, AMD (version 1.1)

• Adam Jackson, Red Hat (versions 1.0, 1.1)

• Adam Śmigielski, Mobica (version 1.0)

• Aditi Verma, Qualcomm (version 1.3)

• Ahmed Abdelkhalek, AMD (version 1.3)

• Aidan Fabius, Core Avionics & Industrial Inc. (version 1.2)

• Alan Baker, Google (versions 1.1, 1.2, 1.3)

• Alan Ward, Google (versions 1.1, 1.2)

• Alejandro Piñeiro, Igalia (version 1.1)

• Alex Bourd, Qualcomm Technologies, Inc. (versions 1.0, 1.1)

• Alex Crabb, Caster Communications (versions 1.2, 1.3)

• Alex Walters, Imagination Technologies (versions 1.2, 1.3)

• Alexander Galazin, Arm (versions 1.0, 1.1, 1.2, 1.3)

• Alexey Sachkov, Intel (version 1.3)

• Allan MacKinnon, Google (version 1.3)

• Allen Hux, Intel (version 1.0)

• Alon Or-bach, Google (versions 1.0, 1.1, 1.2, 1.3) (WSI technical sub-group chair)

• Anastasia Stulova, Arm (versions 1.2, 1.3)

• Andreas Vasilakis, Think Silicon (version 1.2)

• Andres Gomez, Igalia (version 1.1)

• Andrew Cox, Samsung Electronics (version 1.0)

• Andrew Ellem, Google (version 1.3)

• Andrew Garrard, Imagination Technologies (versions 1.0, 1.1, 1.2, 1.3) (format wrangler)

• Andrew Poole, Samsung Electronics (version 1.0)

• Andrew Rafter, Samsung Electronics (version 1.0)

1471

• Andrew Richards, Codeplay Software Ltd. (version 1.0)

• Andrew Woloszyn, Google (versions 1.0, 1.1)

• Ann Thorsnes, Khronos (versions 1.2, 1.3)

• Antoine Labour, Google (versions 1.0, 1.1)

• Aras Pranckevičius, Unity Technologies (version 1.0)

• Arseny Kapoulkine, Roblox (version 1.3)

• Ashwin Kolhe, NVIDIA (version 1.0)

• Baldur Karlsson, Valve Software (versions 1.1, 1.2, 1.3)

• Barthold Lichtenbelt, NVIDIA (version 1.1)

• Bas Nieuwenhuizen, Google (versions 1.1, 1.2)

• Ben Bowman, Imagination Technologies (version 1.0)

• Benj Lipchak, Unknown (version 1.0)

• Bill Hollings, Brenwill (versions 1.0, 1.1, 1.2, 1.3)

• Bill Licea-Kane, Qualcomm Technologies, Inc. (versions 1.0, 1.1)

• Blaine Kohl, Khronos (versions 1.2, 1.3)

• Bob Fraser, Google (version 1.3)

• Boris Zanin, Mobica (versions 1.2, 1.3)

• Brent E. Insko, Intel (version 1.0)

• Brian Ellis, Qualcomm Technologies, Inc. (version 1.0)

• Brian Paul, VMware (versions 1.2, 1.3)

• Caio Marcelo de Oliveira Filho, Intel (versions 1.2, 1.3)

• Cass Everitt, Oculus VR (versions 1.0, 1.1)

• Cemil Azizoglu, Canonical (version 1.0)

• Lina Versace, Google (versions 1.0, 1.1, 1.2)

• Chang-Hyo Yu, Samsung Electronics (version 1.0)

• Charles Giessen, LunarG (version 1.3)

• Chia-I Wu, LunarG (version 1.0)

• Chris Frascati, Qualcomm Technologies, Inc. (version 1.0)

• Chris Glover, Google (version 1.3)

• Christian Forfang, Arm (version 1.3)

• Christoph Kubisch, NVIDIA (version 1.3)

• Christophe Riccio, Unity Technologies (versions 1.0, 1.1)

• Cody Northrop, LunarG (version 1.0)

• Colin Riley, AMD (version 1.1)

• Cort Stratton, Google (versions 1.1, 1.2)

1472

• Courtney Goeltzenleuchter, Google (versions 1.0, 1.1, 1.3)

• Craig Davies, Huawei (version 1.2)

• Dae Kim, Imagination Technologies (version 1.1)

• Damien Leone, NVIDIA (version 1.0)

• Dan Baker, Oxide Games (versions 1.0, 1.1)

• Dan Ginsburg, Valve Software (versions 1.0, 1.1, 1.2, 1.3)

• Daniel Johnston, Intel (versions 1.0, 1.1)

• Daniel Koch, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Daniel Rakos, AMD (versions 1.0, 1.1, 1.2, 1.3)

• Daniel Stone, Collabora (versions 1.1, 1.2)

• Daniel Vetter, Intel (version 1.2)

• David Airlie, Red Hat (versions 1.0, 1.1, 1.2, 1.3)

• David Mao, AMD (versions 1.0, 1.2)

• David Miller, Miller & Mattson (versions 1.0, 1.1) (Vulkan reference card)

• David Neto, Google (versions 1.0, 1.1, 1.2, 1.3)

• David Pankratz, Huawei (version 1.3)

• David Wilkinson, AMD (version 1.2)

• David Yu, Pixar (version 1.0)

• Dejan Mircevski, Google (version 1.1)

• Diego Novillo, Google (version 1.3)

• Dimitris Georgakakis, Think Silicon (version 1.3)

• Dominik Witczak, AMD (versions 1.0, 1.1, 1.3)

• Donald Scorgie, Imagination Technologies (version 1.2)

• Dzmitry Malyshau, Mozilla (versions 1.1, 1.2, 1.3)

• Ed Hutchins, Oculus (version 1.2)

• Emily Stearns, Khronos (versions 1.2, 1.3)

• François Duranleau, Gameloft (version 1.3)

• Frank (LingJun) Chen, Qualcomm Technologies, Inc. (version 1.0)

• Fred Liao, Mediatek (version 1.0)

• Gabe Dagani, Freescale (version 1.0)

• Gabor Sines, AMD (version 1.2)

• Graeme Leese, Broadcom (versions 1.0, 1.1, 1.2, 1.3)

• Graham Connor, Imagination Technologies (version 1.0)

• Graham Sellers, AMD (versions 1.0, 1.1)

• Graham Wihlidal, Electronic Arts (version 1.3)

1473

• Greg Fischer, LunarG (version 1.1)

• Gregory Grebe, AMD (version 1.3)

• Hai Nguyen, Google (versions 1.2, 1.3)

• Hans-Kristian Arntzen, Valve Software (versions 1.1, 1.2, 1.3)

• Henri Verbeet, Codeweavers (version 1.2)

• Wyvern Wang, Huawei (version 1.3)

• Hwanyong Lee, Kyungpook National University (version 1.0)

• Iago Toral, Igalia (versions 1.1, 1.2)

• Ian Elliott, Google (versions 1.0, 1.1, 1.2)

• Ian Romanick, Intel (versions 1.0, 1.1, 1.3)

• Ivan Briano, Intel (version 1.3)

• James Fitzpatrick, Imagination (version 1.3)

• James Hughes, Oculus VR (version 1.0)

• James Jones, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• James Riordon, Khronos (versions 1.2, 1.3)

• Jamie Madill, Google (version 1.3)

• Jan Hermes, Continental Corporation (versions 1.0, 1.1)

• Jan-Harald Fredriksen, Arm (versions 1.0, 1.1, 1.2, 1.3)

• Faith Ekstrand, Intel (versions 1.0, 1.1, 1.2, 1.3)

• Jean-François Roy, Google (versions 1.1, 1.2, 1.3)

• Jeff Bolz, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Jeff Juliano, NVIDIA (versions 1.0, 1.1, 1.2)

• Jeff Leger, Qualcomm Technologies, Inc. (versions 1.1, 1.3)

• Jeff Phillips, Khronos (version 1.3)

• Jeff Vigil, Samsung Electronics (versions 1.0, 1.1, 1.2, 1.3)

• Jens Owen, Google (versions 1.0, 1.1)

• Jeremy Hayes, LunarG (version 1.0)

• Jesse Barker, Unity Technologies (versions 1.0, 1.1, 1.2, 1.3)

• Jesse Hall, Google (versions 1.0, 1.1, 1.2, 1.3)

• Joe Davis, Samsung Electronics (version 1.1)

• Johannes van Waveren, Oculus VR (versions 1.0, 1.1)

• John Anthony, Arm (version 1.2, 1.3)

• John Kessenich, Google (versions 1.0, 1.1, 1.2, 1.3) (SPIR-V and GLSL for Vulkan spec author)

• John McDonald, Valve Software (versions 1.0, 1.1, 1.2, 1.3)

• John Zulauf, LunarG (versions 1.1, 1.2, 1.3)

1474

• Jon Ashburn, LunarG (version 1.0)

• Jon Leech, Independent (versions 1.0, 1.1, 1.2, 1.3) (XML toolchain, normative language, release
wrangler)

• Jonas Gustavsson, Samsung Electronics (versions 1.0, 1.1)

• Jonas Meyer, Epic Games (versions 1.2, 1.3)

• Jonathan Hamilton, Imagination Technologies (version 1.0)

• Jordan Justen, Intel (version 1.1)

• Joshua Ashton, Valve Software (version 1.3)

• Jungwoo Kim, Samsung Electronics (versions 1.0, 1.1)

• Jörg Wagner, Arm (version 1.1)

• Kalle Raita, Google (version 1.1)

• Karen Ghavam, LunarG (versions 1.1, 1.2, 1.3)

• Karl Schultz, LunarG (versions 1.1, 1.2)

• Kathleen Mattson, Khronos (versions 1.0, 1.1, 1.2)

• Kaye Mason, Google (version 1.2)

• Keith Packard, Valve (version 1.2)

• Kenneth Benzie, Codeplay Software Ltd. (versions 1.0, 1.1)

• Kenneth Russell, Google (version 1.1)

• Kerch Holt, NVIDIA (versions 1.0, 1.1)

• Kevin O’Neil, AMD (version 1.1)

• Kevin Petit, Arm (version 1.3)

• Kris Rose, Khronos (versions 1.2, 1.3)

• Kristian Kristensen, Intel (versions 1.0, 1.1)

• Krzysztof Iwanicki, Samsung Electronics (version 1.0)

• Larry Seiler, Intel (version 1.0)

• Laura Shubel, Caster Communications (version 1.3)

• Lauri Ilola, Nokia (version 1.1)

• Lei Zhang, Google (version 1.2)

• Lenny Komow, LunarG (versions 1.1, 1.2)

• Liam Middlebrook, NVIDIA (version 1.3)

• Lionel Landwerlin, Intel (versions 1.1, 1.2)

• Lisie Aartsen, Khronos (version 1.3)

• Liz Maitral, Khronos (version 1.2)

• Lou Kramer, AMD (version 1.3)

• Lutz Latta, Lucasfilm (version 1.0)

1475

• Maciej Jesionowski, AMD (version 1.1)

• Mais Alnasser, AMD (version 1.1)

• Marcin Kantoch, AMD (version 1.3)

• Marcin Rogucki, Mobica (version 1.1)

• Maria Rovatsou, Codeplay Software Ltd. (version 1.0)

• Mariusz Merecki, Intel (version 1.3)

• Mark Bellamy, Arm (version 1.2, 1.3)

• Mark Callow, Independent (versions 1.0, 1.1, 1.2, 1.3)

• Mark Kilgard, NVIDIA (versions 1.1, 1.2)

• Mark Lobodzinski, LunarG (versions 1.0, 1.1, 1.2)

• Mark Young, LunarG (versions 1.1, 1.3)

• Markus Tavenrath, NVIDIA (version 1.1)

• Marty Johnson, Khronos (version 1.3)

• Mateusz Przybylski, Intel (version 1.0)

• Mathias Heyer, NVIDIA (versions 1.0, 1.1)

• Mathias Schott, NVIDIA (versions 1.0, 1.1)

• Mathieu Robart, Arm (version 1.2)

• Matt Netsch, Qualcomm Technologies, Inc. (version 1.1)

• Matthew Rusch, NVIDIA (version 1.3)

• Matthäus Chajdas, AMD (versions 1.1, 1.2, 1.3)

• Maurice Ribble, Qualcomm Technologies, Inc. (versions 1.0, 1.1)

• Maxim Lukyanov, Samsung Electronics (version 1.0)

• Michael Blumenkrantz, Self (version 1.3)

• Michael Lentine, Google (version 1.0)

• Michael O’Hara, AMD (version 1.1)

• Michael Phillip, Samsung Electronics (version 1.2)

• Michael Wong, Codeplay Software Ltd. (version 1.1)

• Michael Worcester, Imagination Technologies (versions 1.0, 1.1)

• Michal Pietrasiuk, Intel (versions 1.0, 1.3)

• Mika Isojarvi, Google (versions 1.0, 1.1)

• Mike Schuchardt, LunarG (versions 1.1, 1.2)

• Mike Stroyan, LunarG (version 1.0)

• Mike Weiblen, LunarG (versions 1.1, 1.2, 1.3)

• Minyoung Son, Samsung Electronics (version 1.0)

• Mitch Singer, AMD (versions 1.0, 1.1, 1.2, 1.3)

1476

• Mythri Venugopal, Samsung Electronics (version 1.0)

• Naveen Leekha, Google (version 1.0)

• Neil Henning, AMD (versions 1.0, 1.1, 1.2, 1.3)

• Neil Hickey, Arm (version 1.2)

• Neil Trevett, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Nick Penwarden, Epic Games (version 1.0)

• Nicolai Hähnle, AMD (version 1.1)

• Niklas Smedberg, Unity Technologies (version 1.0)

• Norbert Nopper, Independent (versions 1.0, 1.1)

• Nuno Subtil, NVIDIA (versions 1.1, 1.2, 1.3)

• Pat Brown, NVIDIA (version 1.0)

• Patrick Cozzi, Independent (version 1.1)

• Patrick Doane, Blizzard Entertainment (version 1.0)

• Peter Lohrmann, AMD (versions 1.0, 1.2)

• Petros Bantolas, Imagination Technologies (version 1.1)

• Philip Rebohle, Valve Software (version 1.3)

• Pierre Boudier, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Pierre-Loup Griffais, Valve Software (versions 1.0, 1.1, 1.2, 1.3)

• Piers Daniell, NVIDIA (versions 1.0, 1.1, 1.2, 1.3)

• Ping Liu, Intel (version 1.3)

• Piotr Bialecki, Intel (version 1.0)

• Piotr Byszewski, Mobica (version 1.3)

• Prabindh Sundareson, Samsung Electronics (version 1.0)

• Pyry Haulos, Google (versions 1.0, 1.1) (Vulkan conformance test subcommittee chair)

• Rachel Bradshaw, Caster Communications (version 1.3)

• Rajeev Rao, Qualcomm (version 1.2)

• Ralph Potter, Samsung Electronics (versions 1.1, 1.2, 1.3)

• Raun Krisch, Samsung Electronics (version 1.3)

• Ray Smith, Arm (versions 1.0, 1.1, 1.2)

• Ricardo Garcia, Igalia (version 1.3)

• Richard Huddy, Samsung Electronics (versions 1.2, 1.3)

• Rob Barris, NVIDIA (version 1.1)

• Rob Stepinski, Transgaming (version 1.0)

• Robert Simpson, Qualcomm Technologies, Inc. (versions 1.0, 1.1, 1.3)

• Rolando Caloca Olivares, Epic Games (versions 1.0, 1.1, 1.2, 1.3)

1477

• Ronan Keryell, Xilinx (version 1.3)

• Roy Ju, Mediatek (version 1.0)

• Rufus Hamade, Imagination Technologies (version 1.0)

• Ruihao Zhang, Qualcomm Technologies, Inc. (versions 1.1, 1.2, 1.3)

• Samuel (Sheng-Wen) Huang, Mediatek (version 1.3)

• Samuel Iglesias Gonsalvez, Igalia (version 1.3)

• Sascha Willems, Self (version 1.3)

• Sean Ellis, Arm (version 1.0)

• Sean Harmer, KDAB Group (versions 1.0, 1.1)

• Shannon Woods, Google (versions 1.0, 1.1, 1.2, 1.3)

• Slawomir Cygan, Intel (versions 1.0, 1.1, 1.3)

• Slawomir Grajewski, Intel (versions 1.0, 1.1, 1.3)

• Sorel Bosan, AMD (version 1.1)

• Spencer Fricke, Samsung Electronics (versions 1.2, 1.3)

• Stefanus Du Toit, Google (version 1.0)

• Stephen Huang, Mediatek (version 1.1)

• Steve Hill, Broadcom (versions 1.0, 1.2)

• Steve Viggers, Core Avionics & Industrial Inc. (versions 1.0, 1.2)

• Steve Winston, Holochip (version 1.3)

• Stuart Smith, AMD (versions 1.0, 1.1, 1.2, 1.3)

• Sujeevan Rajayogam, Google (version 1.3)

• Tilmann Scheller, Samsung Electronics (version 1.1)

• Tim Foley, Intel (version 1.0)

• Tim Lewis, Khronos (version 1.3)

• Timo Suoranta, AMD (version 1.0)

• Timothy Lottes, AMD (versions 1.0, 1.1)

• Tobias Hector, AMD (versions 1.0, 1.1, 1.2, 1.3) (validity language and toolchain)

• Tobin Ehlis, LunarG (version 1.0)

• Tom Olson, Arm (versions 1.0, 1.1, 1.2, 1.3) (Working Group chair)

• Tomasz Bednarz, Independent (version 1.1)

• Tomasz Kubale, Intel (version 1.0)

• Tony Barbour, LunarG (versions 1.0, 1.1, 1.2)

• Tony Zlatinski, NVIDIA (version 1.3)

• Victor Eruhimov, Unknown (version 1.1)

• Vikram Kushwaha, NVIDIA (version 1.3)

1478

• Vincent Hindriksen, Stream HPC (versions 1.2, 1.3)

• Wasim Abbas, Arm (version 1.3)

• Wayne Lister, Imagination Technologies (version 1.0)

• Wolfgang Engel, Unknown (version 1.1)

• Yanjun Zhang, VeriSilicon (versions 1.0, 1.1, 1.2, 1.3)

• Yunxing Zhu, Huawei (version 1.3)

Other Credits
The Vulkan Advisory Panel members provided important real-world usage information and advice
that helped guide design decisions.

The wider Vulkan community have provided useful feedback, questions and specification changes
that have helped improve the quality of the Specification via GitHub.

Administrative support to the Working Group for Vulkan 1.1, 1.2, and 1.3 was provided by Khronos
staff including Ann Thorsnes, Blaine Kohl, Dominic Agoro-Ombaka, Emily Stearns, Jeff Phillips,
Lisie Aartsen, Liz Maitral, Marty Johnson, Tim Lewis, and Xiao-Yu CHENG; and by Alex Crabb,
Laura Shubel, and Rachel Bradshaw of Caster Communications.

Administrative support for Vulkan 1.0 was provided by Andrew Riegel, Elizabeth Riegel, Glenn
Fredericks, Kathleen Mattson and Michelle Clark of Gold Standard Group.

Technical support was provided by James Riordon, site administration of Khronos.org and
OpenGL.org.

1479

https://github.com/KhronosGroup/Vulkan-Docs/graphs/contributors

	Vulkan® 1.3.280 - A Specification
	Table of Contents
	Chapter 1. Preamble
	Chapter 2. Introduction
	2.1. Document Conventions

	Chapter 3. Fundamentals
	3.1. Host and Device Environment
	3.2. Execution Model
	3.3. Object Model
	3.4. Application Binary Interface
	3.5. Command Syntax and Duration
	3.6. Threading Behavior
	3.7. Valid Usage
	3.8. VkResult Return Codes
	3.9. Numeric Representation and Computation
	3.10. Fixed-Point Data Conversions
	3.11. Common Object Types
	3.12. API Name Aliases

	Chapter 4. Initialization
	4.1. Command Function Pointers
	4.2. Instances

	Chapter 5. Devices and Queues
	5.1. Physical Devices
	5.2. Devices
	5.3. Queues

	Chapter 6. Command Buffers
	6.1. Command Buffer Lifecycle
	6.2. Command Pools
	6.3. Command Buffer Allocation and Management
	6.4. Command Buffer Recording
	6.5. Command Buffer Submission
	6.6. Queue Forward Progress
	6.7. Secondary Command Buffer Execution
	6.8. Command Buffer Device Mask

	Chapter 7. Synchronization and Cache Control
	7.1. Execution and Memory Dependencies
	7.2. Implicit Synchronization Guarantees
	7.3. Fences
	7.4. Semaphores
	7.5. Events
	7.6. Pipeline Barriers
	7.7. Memory Barriers
	7.8. Wait Idle Operations
	7.9. Host Write Ordering Guarantees
	7.10. Synchronization and Multiple Physical Devices

	Chapter 8. Render Pass
	8.1. Render Pass Objects
	8.2. Render Pass Creation
	8.3. Render Pass Compatibility
	8.4. Framebuffers
	8.5. Render Pass Load Operations
	8.6. Render Pass Store Operations
	8.7. Render Pass Multisample Resolve Operations
	8.8. Render Pass Commands
	8.9. Common Render Pass Data Races (Informative)

	Chapter 9. Shaders
	9.1. Shader Modules
	9.2. Binding Shaders
	9.3. Shader Execution
	9.4. Shader Memory Access Ordering
	9.5. Shader Inputs and Outputs
	9.6. Vertex Shaders
	9.7. Tessellation Control Shaders
	9.8. Tessellation Evaluation Shaders
	9.9. Geometry Shaders
	9.10. Fragment Shaders
	9.11. Compute Shaders
	9.12. Interpolation Decorations
	9.13. Static Use
	9.14. Scope
	9.15. Group Operations
	9.16. Quad Group Operations
	9.17. Derivative Operations
	9.18. Helper Invocations

	Chapter 10. Pipelines
	10.1. Multiple Pipeline Creation
	10.2. Compute Pipelines
	10.3. Graphics Pipelines
	10.4. Pipeline Destruction
	10.5. Pipeline Derivatives
	10.6. Pipeline Cache
	10.7. Specialization Constants
	10.8. Pipeline Binding
	10.9. Dynamic State
	10.10. Pipeline Creation Feedback

	Chapter 11. Memory Allocation
	11.1. Host Memory
	11.2. Device Memory

	Chapter 12. Resource Creation
	12.1. Buffers
	12.2. Buffer Views
	12.3. Images
	12.4. Image Layouts
	12.5. Image Views
	12.6. Resource Memory Association
	12.7. Resource Sharing Mode
	12.8. Memory Aliasing

	Chapter 13. Samplers
	13.1. Sampler Y′CBCR Conversion

	Chapter 14. Resource Descriptors
	14.1. Descriptor Types
	14.2. Descriptor Sets
	14.3. Physical Storage Buffer Access

	Chapter 15. Shader Interfaces
	15.1. Shader Input and Output Interfaces
	15.2. Vertex Input Interface
	15.3. Fragment Output Interface
	15.4. Fragment Input Attachment Interface
	15.5. Shader Resource Interface
	15.6. Built-In Variables

	Chapter 16. Image Operations
	16.1. Image Operations Overview
	16.2. Conversion Formulas
	16.3. Texel Input Operations
	16.4. Texel Output Operations
	16.5. Normalized Texel Coordinate Operations
	16.6. Unnormalized Texel Coordinate Operations
	16.7. Integer Texel Coordinate Operations
	16.8. Image Sample Operations
	16.9. Image Operation Steps
	16.10. Image Query Instructions

	Chapter 17. Queries
	17.1. Query Pools
	17.2. Query Operation
	17.3. Occlusion Queries
	17.4. Pipeline Statistics Queries
	17.5. Timestamp Queries

	Chapter 18. Clear Commands
	18.1. Clearing Images Outside a Render Pass Instance
	18.2. Clearing Images Inside a Render Pass Instance
	18.3. Clear Values
	18.4. Filling Buffers
	18.5. Updating Buffers

	Chapter 19. Copy Commands
	19.1. Copying Data Between Buffers
	19.2. Copying Data Between Images
	19.3. Copying Data Between Buffers and Images
	19.4. Image Copies With Scaling
	19.5. Resolving Multisample Images

	Chapter 20. Drawing Commands
	20.1. Primitive Topologies
	20.2. Primitive Order
	20.3. Programmable Primitive Shading

	Chapter 21. Fixed-Function Vertex Processing
	21.1. Vertex Attributes
	21.2. Vertex Input Description
	21.3. Vertex Input Address Calculation

	Chapter 22. Tessellation
	22.1. Tessellator
	22.2. Tessellator Patch Discard
	22.3. Tessellator Spacing
	22.4. Tessellation Primitive Ordering
	22.5. Tessellator Vertex Winding Order
	22.6. Triangle Tessellation
	22.7. Quad Tessellation
	22.8. Isoline Tessellation
	22.9. Tessellation Point Mode
	22.10. Tessellation Pipeline State

	Chapter 23. Geometry Shading
	23.1. Geometry Shader Input Primitives
	23.2. Geometry Shader Output Primitives
	23.3. Multiple Invocations of Geometry Shaders
	23.4. Geometry Shader Primitive Ordering

	Chapter 24. Fixed-Function Vertex Post-Processing
	24.1. Flat Shading
	24.2. Primitive Clipping
	24.3. Clipping Shader Outputs
	24.4. Coordinate Transformations
	24.5. Controlling the Viewport

	Chapter 25. Rasterization
	25.1. Discarding Primitives Before Rasterization
	25.2. Rasterization Order
	25.3. Multisampling
	25.4. Sample Shading
	25.5. Points
	25.6. Line Segments
	25.7. Polygons

	Chapter 26. Fragment Operations
	26.1. Scissor Test
	26.2. Sample Mask Test
	26.3. Fragment Shading
	26.4. Multisample Coverage
	26.5. Depth and Stencil Operations
	26.6. Depth Bounds Test
	26.7. Stencil Test
	26.8. Depth Test
	26.9. Sample Counting
	26.10. Coverage Reduction

	Chapter 27. The Framebuffer
	27.1. Blending
	27.2. Logical Operations
	27.3. Color Write Mask

	Chapter 28. Dispatching Commands
	Chapter 29. Sparse Resources
	29.1. Sparse Resource Features
	29.2. Sparse Buffers and Fully-Resident Images
	29.3. Sparse Partially-Resident Buffers
	29.4. Sparse Partially-Resident Images
	29.5. Sparse Memory Aliasing
	29.6. Sparse Resource Implementation Guidelines (Informative)
	29.7. Sparse Resource API

	Chapter 30. Private Data
	Chapter 31. Extending Vulkan
	31.1. Instance and Device Functionality
	31.2. Core Versions
	31.3. Layers
	31.4. Extensions
	31.5. Extension Dependencies
	31.6. Compatibility Guarantees (Informative)

	Chapter 32. Features
	32.1. Feature Requirements
	32.2. Profile Features

	Chapter 33. Limits
	33.1. Limit Requirements
	33.2. Profile Limits

	Chapter 34. Formats
	34.1. Format Definition
	34.2. Format Properties
	34.3. Required Format Support

	Chapter 35. Additional Capabilities
	35.1. Additional Image Capabilities
	35.2. Additional Buffer Capabilities
	35.3. Optional Semaphore Capabilities
	35.4. Optional Fence Capabilities

	Chapter 36. Debugging
	36.1. Active Tooling Information

	Appendix A: Vulkan Environment for SPIR-V
	Versions and Formats
	Capabilities
	Validation Rules Within a Module
	Precision and Operation of SPIR-V Instructions
	Signedness of SPIR-V Image Accesses
	Image Format and Type Matching
	Compatibility Between SPIR-V Image Formats and Vulkan Formats

	Appendix B: Memory Model
	Agent
	Memory Location
	Allocation
	Memory Operation
	Reference
	Program-Order
	Scope
	Atomic Operation
	Scoped Modification Order
	Memory Semantics
	Release Sequence
	Synchronizes-With
	System-Synchronizes-With
	Private vs. Non-Private
	Inter-Thread-Happens-Before
	Happens-Before
	Availability and Visibility
	Availability, Visibility, and Domain Operations
	Availability and Visibility Semantics
	Per-Instruction Availability and Visibility Semantics
	Location-Ordered
	Data Race
	Visible-To
	Acyclicity
	Shader I/O
	Deallocation
	Descriptions (Informative)
	Tessellation Output Ordering

	Appendix C: Compressed Image Formats
	Block-Compressed Image Formats
	ETC Compressed Image Formats
	ASTC Compressed Image Formats

	Appendix D: Core Revisions (Informative)
	Version 1.3
	Version 1.2
	Version 1.1
	Version 1.0

	Appendix E: Layers & Extensions (Informative)
	Extension Dependencies
	Extension Interactions
	List of Extensions

	Appendix F: Vulkan Roadmap Milestones
	Roadmap 2022
	Roadmap 2024

	Appendix G: API Boilerplate
	Vulkan Header Files
	Window System-Specific Header Control (Informative)
	Provisional Extension Header Control (Informative)
	Video Std Headers

	Appendix H: Invariance
	Repeatability
	Multi-pass Algorithms
	Invariance Rules
	Tessellation Invariance

	Appendix I: Lexicon
	Glossary
	Common Abbreviations
	Prefixes

	Appendix J: Credits (Informative)
	Working Group Contributors to Vulkan
	Other Credits

