C Specification

To bind vertex buffers to a command buffer for use in subsequent drawing commands, call:

// Provided by VK_VERSION_1_0
void vkCmdBindVertexBuffers(
    VkCommandBuffer                             commandBuffer,
    uint32_t                                    firstBinding,
    uint32_t                                    bindingCount,
    const VkBuffer*                             pBuffers,
    const VkDeviceSize*                         pOffsets);

Parameters

  • commandBuffer is the command buffer into which the command is recorded.

  • firstBinding is the index of the first vertex input binding whose state is updated by the command.

  • bindingCount is the number of vertex input bindings whose state is updated by the command.

  • pBuffers is a pointer to an array of buffer handles.

  • pOffsets is a pointer to an array of buffer offsets.

Description

The values taken from elements i of pBuffers and pOffsets replace the current state for the vertex input binding firstBinding + i, for i in [0, bindingCount). The vertex input binding is updated to start at the offset indicated by pOffsets[i] from the start of the buffer pBuffers[i]. All vertex input attributes that use each of these bindings will use these updated addresses in their address calculations for subsequent drawing commands. If the nullDescriptor feature is enabled, elements of pBuffers can be VK_NULL_HANDLE, and can be used by the vertex shader. If a vertex input attribute is bound to a vertex input binding that is VK_NULL_HANDLE, the values taken from memory are considered to be zero, and missing G, B, or A components are filled with (0,0,1).

Valid Usage
  • VUID-vkCmdBindVertexBuffers-firstBinding-00624
    firstBinding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

  • VUID-vkCmdBindVertexBuffers-firstBinding-00625
    The sum of firstBinding and bindingCount must be less than or equal to VkPhysicalDeviceLimits::maxVertexInputBindings

  • VUID-vkCmdBindVertexBuffers-pOffsets-00626
    All elements of pOffsets must be less than the size of the corresponding element in pBuffers

  • VUID-vkCmdBindVertexBuffers-pBuffers-00627
    All elements of pBuffers must have been created with the VK_BUFFER_USAGE_VERTEX_BUFFER_BIT flag

  • VUID-vkCmdBindVertexBuffers-pBuffers-00628
    Each element of pBuffers that is non-sparse must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdBindVertexBuffers-pBuffers-04001
    If the nullDescriptor feature is not enabled, all elements of pBuffers must not be VK_NULL_HANDLE

  • VUID-vkCmdBindVertexBuffers-pBuffers-04002
    If an element of pBuffers is VK_NULL_HANDLE, then the corresponding element of pOffsets must be zero

Valid Usage (Implicit)
  • VUID-vkCmdBindVertexBuffers-commandBuffer-parameter
    commandBuffer must be a valid VkCommandBuffer handle

  • VUID-vkCmdBindVertexBuffers-pBuffers-parameter
    pBuffers must be a valid pointer to an array of bindingCount valid or VK_NULL_HANDLE VkBuffer handles

  • VUID-vkCmdBindVertexBuffers-pOffsets-parameter
    pOffsets must be a valid pointer to an array of bindingCount VkDeviceSize values

  • VUID-vkCmdBindVertexBuffers-commandBuffer-recording
    commandBuffer must be in the recording state

  • VUID-vkCmdBindVertexBuffers-commandBuffer-cmdpool
    The VkCommandPool that commandBuffer was allocated from must support graphics operations

  • VUID-vkCmdBindVertexBuffers-bindingCount-arraylength
    bindingCount must be greater than 0

  • VUID-vkCmdBindVertexBuffers-commonparent
    Both of commandBuffer, and the elements of pBuffers that are valid handles of non-ignored parameters must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization
  • Host access to commandBuffer must be externally synchronized

  • Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties
Command Buffer Levels Render Pass Scope Supported Queue Types Command Type

Primary
Secondary

Both

Graphics

State

See Also

Document Notes

For more information, see the Vulkan Specification

This page is extracted from the Vulkan Specification. Fixes and changes should be made to the Specification, not directly.

Copyright 2014-2023 The Khronos Group Inc.

SPDX-License-Identifier: CC-BY-4.0