C Specification
To create an acceleration structure, call:
// Provided by VK_KHR_acceleration_structure
VkResult vkCreateAccelerationStructureKHR(
VkDevice device,
const VkAccelerationStructureCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkAccelerationStructureKHR* pAccelerationStructure);
Parameters
-
device
is the logical device that creates the acceleration structure object. -
pCreateInfo
is a pointer to a VkAccelerationStructureCreateInfoKHR structure containing parameters affecting creation of the acceleration structure. -
pAllocator
controls host memory allocation as described in the Memory Allocation chapter. -
pAccelerationStructure
is a pointer to aVkAccelerationStructureKHR
handle in which the resulting acceleration structure object is returned.
Description
Similar to other objects in Vulkan, the acceleration structure creation merely creates an object with a specific “shape”. The type and quantity of geometry that can be built into an acceleration structure is determined by the parameters of VkAccelerationStructureCreateInfoKHR.
The acceleration structure data is stored in the object referred to by
VkAccelerationStructureCreateInfoKHR
::buffer
.
Once memory has been bound to that buffer, it must be populated by
acceleration structure build or acceleration structure copy commands such as
vkCmdBuildAccelerationStructuresKHR,
vkBuildAccelerationStructuresKHR,
vkCmdCopyAccelerationStructureKHR, and
vkCopyAccelerationStructureKHR.
Note
The expected usage for a trace capture/replay tool is that it will serialize
and later deserialize the acceleration structure data using acceleration
structure copy commands.
During capture the tool will use
vkCopyAccelerationStructureToMemoryKHR or
vkCmdCopyAccelerationStructureToMemoryKHR with a |
The input buffers passed to acceleration structure build commands will be referenced by the implementation for the duration of the command. After the command completes, the acceleration structure may hold a reference to any acceleration structure specified by an active instance contained therein. Apart from this referencing, acceleration structures must be fully self-contained. The application can reuse or free any memory which was used by the command as an input or as scratch without affecting the results of ray traversal.
Document Notes
For more information, see the Vulkan Specification
This page is extracted from the Vulkan Specification. Fixes and changes should be made to the Specification, not directly.