![]() |
The OpenVX Specification
a73e458
|
Computes the Harris Corners of an image.
The Harris Corners are computed with several parameters
\begin{eqnarray} I &=& \text{input image} \\ T_c &=& \text{corner strength threshold} \\ r &=& \text{euclidean radius} \\ k &=& \text{sensitivity threshold} \\ w &=& \text{window size} \\ b &=& \text{block size} \\ \end{eqnarray}
The computation to find the corner values or scores can be summarized as [R00060]:
\begin{eqnarray} G_x &=& Sobel_x(w, I) \\ G_y &=& Sobel_y(w, I) \\ A &=& window_{G_{x,y}}(x-b/2,y-b/2,x+b/2,y+b/2) \\ trace(A) &=& \sum^{A}{G_x^{2}} + \sum^{A}{G_y^{2}} \\ det(A) &=& \sum^{A}{G_x^{2}} \sum^{A}{G_y^{2}} - {\left(\sum^{A}{(G_x G_y)}\right)}^{2} \\ M_c(x,y) &=& det(A) - k*trace(A)^{2} \\ V_c(x,y) &=& \begin{cases} M_c(x,y) \text{ if } M_c(x,y) > T_c \\ 0 \text{ otherwise} \\ \end{cases} \end{eqnarray}
\[ \text{where } V_c \text{ is the thresholded corner value}. \]
The normalized Sobel kernels used for the gradient computation shall be as shown below:
\[ \mathbf{Sobel}_{x}(Normalized)= \frac{1}{4*255*b}* \begin{vmatrix} -1 & 0 & 1\\ -2 & 0 & 2\\ -1 & 0 & 1 \end{vmatrix} \]
\[ \mathbf{Sobel}_{y}(Normalized)= \frac{1}{4*255*b}*transpose({sobel}_{x})= \frac{1}{4*255*b}* \begin{vmatrix} -1 & -2 & -1\\ 0 & 0 & 0\\ 1 & 2 & 1 \end{vmatrix} \]
\[ \mathbf{Sobel}_{x}(Normalized)= \frac{1}{16*255*b}* \begin{vmatrix} -1 & -2 & 0 & 2 & 1\\ -4 & -8 & 0 & 8 & 4\\ -6 & -12 & 0 & 12 & 6\\ -4 & -8 & 0 & 8 & 4\\ -1 & -2 & 0 & 2 & 1\\ \end{vmatrix} \]
\[ \mathbf{Sobel}_{y}(Normalized)= \frac{1}{16*255*b}*transpose({sobel}_{x}) \]
\[ \mathbf{Sobel}_{x}(Normalized)= \frac{1}{64*255*b}* \begin{vmatrix} -1 & -4 & -5 & 0 & 5 & 4 & 1\\ -6 & -24 & -30 & 0 & 30 & 24 & 6\\ -15 & -60 & -75 & 0 & 75 & 60 & 15\\ -20 & -80 & -100 & 0 & 100 & 80 & 20\\ -15 & -60 & -75 & 0 & 75 & 60 & 15\\ -6 & -24 & -30 & 0 & 30 & 24 & 6\\ -1 & -4 & -5 & 0 & 5 & 4 & 1\\ \end{vmatrix} \]
\[ \mathbf{Sobel}_{y}(Normalized)= \frac{1}{64*255*b}*transpose({sobel}_{x}) \]
\( V_c \) is then non-maximally suppressed, returning the same results as using the following algorithm [R00064]:
An implementation shall support all values of Euclidean distance \( r \) that satisfy [R00065]:
0 <= max_dist <= 30
The feature set \(F\) is returned as a vx_array of vx_keypoint_t structs.
Functions | |
| vx_node VX_API_CALL | vxHarrisCornersNode (vx_graph graph, vx_image input, vx_scalar strength_thresh, vx_scalar min_distance, vx_scalar sensitivity, vx_int32 gradient_size, vx_int32 block_size, vx_array corners, vx_scalar num_corners) |
| [Graph] Creates a Harris Corners Node. More... | |
| vx_node VX_API_CALL vxHarrisCornersNode | ( | vx_graph | graph, |
| vx_image | input, | ||
| vx_scalar | strength_thresh, | ||
| vx_scalar | min_distance, | ||
| vx_scalar | sensitivity, | ||
| vx_int32 | gradient_size, | ||
| vx_int32 | block_size, | ||
| vx_array | corners, | ||
| vx_scalar | num_corners | ||
| ) |
[Graph] Creates a Harris Corners Node.
| [in] | graph | The reference to the graph [R00357]. |
| [in] | input | The input VX_DF_IMAGE_U8 image [R00358]. |
| [in] | strength_thresh | The VX_TYPE_FLOAT32 minimum threshold with which to eliminate Harris Corner scores (computed using the normalized Sobel kernel) [R00359]. |
| [in] | min_distance | The VX_TYPE_FLOAT32 radial Euclidean distance for non-maximum suppression [R00360]. |
| [in] | sensitivity | The VX_TYPE_FLOAT32 scalar sensitivity threshold \( k \) from the Harris-Stephens equation [R00361]. |
| [in] | gradient_size | The gradient window size to use on the input [R00362]. The implementation must support at least 3, 5, and 7. |
| [in] | block_size | The block window size used to compute the Harris Corner score [R00363]. The implementation must support at least 3, 5, and 7. |
| [out] | corners | The array of VX_TYPE_KEYPOINT objects [R00364]. The order of the keypoints in this array is implementation dependent. |
| [out] | num_corners | The total number of detected corners in image [R00365](optional). Use a VX_TYPE_SIZE scalar [R00366]. |
vx_node [R00367]. | vx_node | A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus |